US3753694A - Production of composite metallic articles - Google Patents
Production of composite metallic articles Download PDFInfo
- Publication number
- US3753694A US3753694A US00052713A US3753694DA US3753694A US 3753694 A US3753694 A US 3753694A US 00052713 A US00052713 A US 00052713A US 3753694D A US3753694D A US 3753694DA US 3753694 A US3753694 A US 3753694A
- Authority
- US
- United States
- Prior art keywords
- accordance
- metal
- coating
- particles
- molten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title description 7
- 239000000470 constituent Substances 0.000 claims abstract description 32
- 229910052751 metal Inorganic materials 0.000 claims description 64
- 239000002184 metal Substances 0.000 claims description 64
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 61
- 238000000034 method Methods 0.000 claims description 55
- 230000008569 process Effects 0.000 claims description 51
- 238000000576 coating method Methods 0.000 claims description 47
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 42
- 239000002245 particle Substances 0.000 claims description 42
- 229910002804 graphite Inorganic materials 0.000 claims description 40
- 239000010439 graphite Substances 0.000 claims description 40
- 239000011248 coating agent Substances 0.000 claims description 37
- 229910052759 nickel Inorganic materials 0.000 claims description 31
- 229910052782 aluminium Inorganic materials 0.000 claims description 29
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 29
- 239000000155 melt Substances 0.000 claims description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 18
- 229910052802 copper Inorganic materials 0.000 claims description 18
- 239000010949 copper Substances 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 15
- 239000011701 zinc Substances 0.000 claims description 15
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 14
- 229910052725 zinc Inorganic materials 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 229910000838 Al alloy Inorganic materials 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 7
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- 239000010953 base metal Substances 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 6
- 238000005299 abrasion Methods 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 5
- 150000001247 metal acetylides Chemical class 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 239000006104 solid solution Substances 0.000 claims description 4
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- -1 i.e. Substances 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 230000000717 retained effect Effects 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 238000005266 casting Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 229910000480 nickel oxide Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010120 permanent mold casting Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010128 melt processing Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/14—Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/18—Non-metallic particles coated with metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/14—Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1047—Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12486—Laterally noncoextensive components [e.g., embedded, etc.]
Definitions
- ABSTRACT Composites formed of incompatible constituents, i.e., constituents which are mutua11y insoluble, are produced by introducing at least one such constituent in c oated form into a molten bath of the other, the bath being subjected to the influence of a vortex.
- the present invention is addressed essentially to the same problem but a new and different process has been developed, a process which among other advantages, can be carried forth both more expeditiously and economically, and which in many instances does not require special measures to ensure against oxidation attack.
- the present invention concerns the pyrometallurgical production (melt processing as opposed to powder metallurgy) of composite metallic products (composites) characterized in that at least one constituent thereof (often referred to herein as the dispersoid") is, as a practical matter, insoluble in a second, the latter being metal the percentage of which (by weight) is normally not less than that of any other component of the composite.
- the second constituent can be an alloy or a single element.
- the dispersoid particles may take the form of powders, pellets, fibers, etc., the specific property required and/or the intended application usually being a determining factor.
- powders would be likely used where such qualities as friction, abrasion and wear are important whereas fibers would often be useful where enhanced strength would be the primary objective.
- Powders submicron in size can be utilized although sizes on the order of about 5 or 10 microns or more might be more conducive to ease of handling.
- the coatings encapsulating the dispersoids are advantageously metallic.
- Metals such as nickel, copper, cobalt, iron, aluminum, zinc and various alloys thereof are deemed suitable.
- silicon, tin, molybdenum, chromium, antimony and tungsten are deemed suitable.
- the coating should possess the capability of imparting or contributing to achieving a state of wettability between the incompatible materials sufficient to cause or bring about the dispersion and retention of one in the other. it is considered preferable in using metal coatings that the metal selected not be one capable of readily forming a substantial solid solution with the base material, e.g., nickel in copper.
- the coating should envelop the dispersoid surface as completeiy as possible. Should the overall enclosed surface area be significantly less than what otherwise could be attained, greater can be the expected loss percentagewise of retained (recovered) dispersoid in the incompatible component, a point being ultimately reached at which recovery of the dispersoid is so inferior as to be tantamount to virtual rejection. This is simply another way of stating that poor coatings lead to inferior results.
- coating thickness up to 25 or 50 microns are ordinarily satisfactory.
- the coatings can be provided by well known procedures, including galvanic deposition, deposition from decomposition of carbonyls, e.g., nickel from nickel carbonyl, etc.
- the energy used to generate the vortex should be sufficient to overcome the surface tension at the melt surface such that the vortex is visible. Excessive speeds to the point of turbulence are without benefit and may lead to the loss of material by way of overflow or to undue oxidation of the bath or to the introduction of an undesirable amount of dross in the melt body. On the other hand, unnecessarily low speeds could result in sluggishness of operation with attendant inferior results. For example, although the use of speeds in which a visible vortex is not induced are not excluded from the invention, a greater amount of processing time is more apt to be required and the percentage of retained dispersoid particles might be less.
- rotational speed employed in a given case will somewhat depend upon the nature of the particular materials used in forming a composite, as will be appreciated by those skilled in the art. Generating a vortex in aluminum (light) and lead (heavy) might, though not necessarily, require different speeds due, for example, to viscosity effects. Too, where an impeller is used the diameter thereof will also have an influence upon impeller speed.
- the vortex can be created by other known suitable means, including other mechanical devices or by techniques such as those involving magnetic principles.
- EXAMPLE I A 50 lb. heat of an aluminum-base alloy (nominally containing 9 percent silicon, 3 percent copper and 1 percent magnesium, the balance essentially being aluminum) was melted in an induction furnace fitted with a clay-graphite crucible. The melt was brought to and maintained at a temperature of about 1,350F. and then degassed with nitrogen for approximately 10 minutes. (In commercial practice aluminum and aluminum-base alloys are commonly degassed with nitrogen and this step was for the purpose of simulating commercial processing.)
- a four-bladed impeller was placed in and near the bottom of the bath, the shaft being inclined about degrees from the vertical.
- About 5 lbs. of nickel-coated graphite particles ranging in size from about 100 to 325 mesh (U.S. Series Equivalent) were then dispersed on the melt surface and a visible vortex was induced in the bath by rotating the impeller (driven by an air motor) at approximately 520 revolutions per minute (rpm.).
- the coated particles (each coated particle contained about 50 percent nickel and 50 percent graphite, 2.5 lbs. of graphite being added) were drawn down and into the molten bath within a period of about l minute. The impeller speed was then reduced to rpm. From a visual observation, the vortex had disappeared but no marked rejection of graphite was noted at the surface.
- Example Vll That dispersoids other than graphite can be introduced, dispersed and retained in various molten baths of incompatible base materials is illustrated by Example Vll.
- EXAMPLE VII Using the procedure set forth in Examples Il-Vl, approximately 0.98 percent of silicon carbide was introduced in the form of nickel-coated particles (50 percent nickel by weight) into an aluminum-base alloy melt which nominally contained 12 percent silicon. Subsequent metallographic examination revealed a uniform dispersion of silicon carbide throughout the alloy matrix and analysis showed the presence of about 0.88 percent silicon carbide, a recovery of some 89 percent.
- an advantage of the subject invention is that in using metal coatings the undertaking of special precautionary measures to protect the coatings from atmospheric attack is normally not necessary before being subjected to the influence of the scribed in connection with Example VIII.
- EXAMPLE VIII After forming a molten bath (50 lb.) of a composition set forth in Example I, approximately 5 lbs. of nickel-coated graphite (50 percent graphite) were dispersed on the surface of the melt and permitted to dwell thereon for about 35 minutes at which point the impeller was turned on and the speed raised to 520 rpm., thus generating a visible vortex. After the lapse of about 2 minutes, the impeller speed was reduced to 70 rpm. as in Example I. Again, the once visible vortex disappeared and no marked rejection of graphite was visually detected. Ten permanent mold castings were poured consecutively as in Example I and upon examination each exhibited a pattern of satisfactory graphite distribution, notwithstanding the dwell time of 35 minutes. Three of the castings were analyzed for graphite recovery and the average percentage retained was about 78 percent.
- EXAMPLE IX In a further test performed in much the same manner as in Example VIII, a determination was made that during the dwell period nickel oxide formed. In this test a dwell time of minutes was used; however, samples of the nickel-coated graphite particles were removed at predetermined time intervals of 1 min., 2%, 5 and 15 mins. Temperature was maintained at about 1,350F. Upon X-ray diffraction analysis, a nickel oxide phase was detected as well as nickel and carbon, the intensity of the oxide (ratio of nickel oxide to nickel) increasing with dwell time. (A control example showed only nickel and carbon.) After the 15 min. period, the remaining nickel-coated graphite particles were subjected tothe vortex treatment with good results.
- coated dispersoid particles can remain on the surface of a molten bath for a period at least sufficient for a reaction to take place whereby a substantial portion of the surface of the coating assumes the oxide form but without ultimate detrimental results, is advantageous from a commercial viewpoint. Apart from rendering special measures unnecessary, should an operator unduly delay in generating the vortex once coated particles have been deposited on the melt surface, the operation need not be stopped and scrapped with the possible ineurrence of added expense through loss of material, downtime, etc.
- At least one or more of the constituents constituting the base metal should be capable of reducing the surface of the coating if in oxide form. It is believed that when the oxide is pulled down into the cavity and into the body of molten metal, during the period of suspension therein it is reduced by or reacts with the molten metal such that it transforms back into its native (metallic) state to an extent suffrcient to impart substantial compositional stability between the otherwise incompatible materials. Put another way, it is thought that thevortex operation allows for adequate suspension time to enable the reduction process to take place to a substantial degree.
- a protective atmosphere i.e., a gas blanket, e.g., nitrogen or argon, during the introduction of the coated particles into the bath.
- incompatible systems envisaged as being treatable in accordance herewith, are graphite in copper and copper alloys (e.g., brass and bronze) and lead and tin alloys; silica, alumina and magnesia and other oxides in metals such as copper and nickel; silica, magnesia and others in aluminum; heavy oxides in lead; silicon carbide in nonferrous metals as, for example, zinc or copper as well as aluminum; diamond in aluminum and zinc among others; mica in low melting point metals as zinc, lead, aluminum and magnesium; etc.
- Nitrides and borides as well as carbides and oxides can also serve as the dispersoid.
- molybdenum disulfide is considered a useful dispersoid.
- intermetallic compounds are also contemplated.
- sliding contact elements such as pistons, bearings, sliding valves, cylinder liners and blocks, electrical pickup shoes, all of which can be made from composites of graphite in aluminum and. aluminum alloys.
- Non-skid devices such as tread plates, boat seats, tool handles, boot and shoe soles, nails, etc. are contemplated.
- friction generating devices discs, brakes, brake drums, linings and the like
- friction drive components clutches, conveyor belts, conveyor rolls, gears, mechanisms for toys and projectors, pulleys for belt drives, etc
- machine tool equipment laps, hones, broaches, dies, tools, etc.
- abrasion resistant materials electrical contacts, e.g., for switch gears, pump casings, safes, heat and drill proof items, and grinding wheels.
- a process for producing a solid composite metal product having a metal matrix and at least one constituent distributed therein which is virtually insoluble in a molten bath of the matrix metal which comprises forming a melt of the matrix metal, supplying energy from an external power source to the molten bath such that the molten metal is caused to rotate at a speed sufficient to overcome the surface tension of the melt and to induce therein a visible vortex, subjecting particles of the said insoluble constituent to the rotational action of the vortex, the surfaces of the insoluble constituent particles being substantially encapsulated by a coating possessing the capability of imparting a condition of wettability between the particles and the molten metal, maintaining the vortex until the particles are introduced into and dispersed within the body of the molten bath, and thereafter solidifying at least a portion of the molten metal.
- a process for producing a solid composite metal product composed of at least one dispersoid constituent distributed therein which is virtually insoluble in a molten bath of the metal which comprises forming a melt of the matrix metal, supplying energy to the molten bath such that the molten metal is caused to rotate at a speed sufficient to induce therein a vortex, subjecting particles of the insoluble dispersoid to the action of the rotational effects of the vortex, the surfaces of the particles being substantially encapsulated by a coating possessing the capability of imparting a condition of wettability between the particles and the molten metal, maintaining the vortex such that the particles are drawn into and dispersed within the body of the molten bath, and thereafter solidifying at least a portion of the molten metal.
- a process for producing a solid composite metal product member selected from the group consisting of a sliding contact element, a non-skid device, a friction generating device, a friction drive component and an abrasion resistant article which comprises forming a matrix of molten metal, supplying energy from an external power source to the molten bath such that the bath is caused to rotate at a speed sufficient to overcome the surface tension of the melt and to induce a visible vortex therein, introducing into the molten bath particles of at least one constituent virtually insoluble in the molten metal, the said insoluble constituent particles being subjected to the action of the rotational effects of the'vortex and being further characterized in that they are substantially encapsulated by a metal coating possessing the capability of imparting a condition of wettability between the particles and the molten metal, maintaining the vortex until the particles are introduced into and dispersed within the body of the molten bath, solidifying the molten metal into a composite body and then forming the solid composite into the metal product member desired.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Chemically Coating (AREA)
- Printing Plates And Materials Therefor (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US5271370A | 1970-07-06 | 1970-07-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3753694A true US3753694A (en) | 1973-08-21 |
Family
ID=21979427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00052713A Expired - Lifetime US3753694A (en) | 1970-07-06 | 1970-07-06 | Production of composite metallic articles |
Country Status (13)
Country | Link |
---|---|
US (1) | US3753694A (en)) |
JP (1) | JPS5429442B1 (en)) |
AT (1) | AT311069B (en)) |
AU (1) | AU3079171A (en)) |
BE (1) | BE769565A (en)) |
CA (1) | CA934167A (en)) |
CH (1) | CH537768A (en)) |
DE (1) | DE2132665A1 (en)) |
ES (1) | ES392902A1 (en)) |
FR (1) | FR2100260A5 (en)) |
GB (1) | GB1305846A (en)) |
NL (1) | NL7109305A (en)) |
ZA (1) | ZA714048B (en)) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5154815A (en) * | 1974-11-09 | 1976-05-14 | Nippon Musical Instruments Mfg | Taimamosei al gokinzai |
US4152149A (en) * | 1974-02-08 | 1979-05-01 | Sumitomo Chemical Company, Ltd. | Composite material comprising reinforced aluminum or aluminum-base alloy |
EP0022869A1 (fr) * | 1978-08-11 | 1981-01-28 | Hitachi, Ltd. | Procede de production d'un alliage d'aluminium contenant du graphite |
EP0099195A1 (en) * | 1982-07-21 | 1984-01-25 | Borg-Warner Corporation | Metal composite friction materials |
US4759995A (en) * | 1983-06-06 | 1988-07-26 | Dural Aluminum Composites Corp. | Process for production of metal matrix composites by casting and composite therefrom |
US4786467A (en) * | 1983-06-06 | 1988-11-22 | Dural Aluminum Composites Corp. | Process for preparation of composite materials containing nonmetallic particles in a metallic matrix, and composite materials made thereby |
US4865806A (en) * | 1986-05-01 | 1989-09-12 | Dural Aluminum Composites Corp. | Process for preparation of composite materials containing nonmetallic particles in a metallic matrix |
US5578386A (en) * | 1991-10-23 | 1996-11-26 | Inco Limited | Nickel coated carbon preforms |
WO2001088215A1 (en) * | 2000-05-15 | 2001-11-22 | Yeh Hsien Yang | Process for nodulizing silicon in casting aluminum silicon alloys |
US6482248B1 (en) | 2000-11-28 | 2002-11-19 | Magnum Research, Inc. | Aluminum composite for gun barrels |
FR2848129A1 (fr) * | 2002-12-05 | 2004-06-11 | Ascometal Sa | Procede de fabrication d'un piston pour moteur a explosion, et piston ainsi obtenu |
WO2004092430A3 (en) * | 2003-04-09 | 2005-01-27 | Dow Global Technologies Inc | Composition for making metal matrix composites |
US20070256345A1 (en) * | 2006-05-04 | 2007-11-08 | Hall David R | A Rigid Composite Structure with a Superhard Interior Surface |
US20070277774A1 (en) * | 2006-01-27 | 2007-12-06 | Allred J G | Apparatus, system, and method for a centrifugal turbine engine |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3894677A (en) * | 1971-03-24 | 1975-07-15 | Nasa | Method of preparing graphite reinforced aluminum composite |
SE454519B (sv) * | 1981-09-11 | 1988-05-09 | Inst Mekhaniki Metallopolimern | Sjevsmorjande kompositmaterial |
US4578115A (en) * | 1984-04-05 | 1986-03-25 | Metco Inc. | Aluminum and cobalt coated thermal spray powder |
CA1289748C (en) * | 1985-03-01 | 1991-10-01 | Abinash Banerji | Producing titanium carbide |
IT1213484B (it) * | 1986-08-19 | 1989-12-20 | Samim Soc Azionaria Minero Met | Materiale composito di lega zn-a1rinforzato con polvere di carburo di silicio. |
FR2655056A1 (fr) * | 1989-11-27 | 1991-05-31 | Pechiney Recherche | Procede de fabrication en continu d'un composite a matrice metallique renforcee par des particules d'un materiau ceramique refractaire. |
GB9406513D0 (en) * | 1994-03-31 | 1994-05-25 | Brunel University Of West Lond | Ceramic reinforced metal-matrix composites |
GB2316092A (en) * | 1996-08-08 | 1998-02-18 | London Scandinavian Metall | Metal matrix composite alloys |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2170259A (en) * | 1936-01-09 | 1939-08-22 | Firm Mettmanner Britannia Ware | Process for the introduction of graphitic carbon into light metals or light metal alloys |
US2528208A (en) * | 1946-07-12 | 1950-10-31 | Walter M Weil | Process of smelting metals |
US3240592A (en) * | 1962-04-16 | 1966-03-15 | Copper Range Co | Dispersion hardened materials and processes therefor |
US3272619A (en) * | 1963-07-23 | 1966-09-13 | Metal Pumping Services Inc | Apparatus and process for adding solids to a liquid |
US3432293A (en) * | 1966-01-06 | 1969-03-11 | Glacier Metal Co Ltd | Bearing materials and method of making same |
US3464816A (en) * | 1965-03-04 | 1969-09-02 | United States Borax Chem | Aluminum master alloys |
US3514285A (en) * | 1963-10-15 | 1970-05-26 | Tno | Method for feeding additive materials into a stream of molten metals |
US3545943A (en) * | 1966-03-16 | 1970-12-08 | Gen Motors Corp | Aluminum-lead based alloys and method of preparation |
US3600163A (en) * | 1968-03-25 | 1971-08-17 | Int Nickel Co | Process for producing at least one constituent dispersed in a metal |
-
1970
- 1970-07-06 US US00052713A patent/US3753694A/en not_active Expired - Lifetime
-
1971
- 1971-03-23 CA CA108511A patent/CA934167A/en not_active Expired
- 1971-06-21 ZA ZA714048A patent/ZA714048B/xx unknown
- 1971-07-01 DE DE19712132665 patent/DE2132665A1/de active Pending
- 1971-07-05 AT AT581871A patent/AT311069B/de not_active IP Right Cessation
- 1971-07-05 AU AU30791/71A patent/AU3079171A/en not_active Expired
- 1971-07-05 FR FR7124517A patent/FR2100260A5/fr not_active Expired
- 1971-07-05 ES ES392902A patent/ES392902A1/es not_active Expired
- 1971-07-05 CH CH985471A patent/CH537768A/fr not_active IP Right Cessation
- 1971-07-06 NL NL7109305A patent/NL7109305A/xx unknown
- 1971-07-06 JP JP4986971A patent/JPS5429442B1/ja active Pending
- 1971-07-06 GB GB3172271A patent/GB1305846A/en not_active Expired
- 1971-07-06 BE BE769565A patent/BE769565A/xx unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2170259A (en) * | 1936-01-09 | 1939-08-22 | Firm Mettmanner Britannia Ware | Process for the introduction of graphitic carbon into light metals or light metal alloys |
US2528208A (en) * | 1946-07-12 | 1950-10-31 | Walter M Weil | Process of smelting metals |
US3240592A (en) * | 1962-04-16 | 1966-03-15 | Copper Range Co | Dispersion hardened materials and processes therefor |
US3272619A (en) * | 1963-07-23 | 1966-09-13 | Metal Pumping Services Inc | Apparatus and process for adding solids to a liquid |
US3514285A (en) * | 1963-10-15 | 1970-05-26 | Tno | Method for feeding additive materials into a stream of molten metals |
US3464816A (en) * | 1965-03-04 | 1969-09-02 | United States Borax Chem | Aluminum master alloys |
US3432293A (en) * | 1966-01-06 | 1969-03-11 | Glacier Metal Co Ltd | Bearing materials and method of making same |
US3545943A (en) * | 1966-03-16 | 1970-12-08 | Gen Motors Corp | Aluminum-lead based alloys and method of preparation |
US3600163A (en) * | 1968-03-25 | 1971-08-17 | Int Nickel Co | Process for producing at least one constituent dispersed in a metal |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4152149A (en) * | 1974-02-08 | 1979-05-01 | Sumitomo Chemical Company, Ltd. | Composite material comprising reinforced aluminum or aluminum-base alloy |
JPS5154815A (en) * | 1974-11-09 | 1976-05-14 | Nippon Musical Instruments Mfg | Taimamosei al gokinzai |
EP0022869A1 (fr) * | 1978-08-11 | 1981-01-28 | Hitachi, Ltd. | Procede de production d'un alliage d'aluminium contenant du graphite |
EP0099195A1 (en) * | 1982-07-21 | 1984-01-25 | Borg-Warner Corporation | Metal composite friction materials |
US4759995A (en) * | 1983-06-06 | 1988-07-26 | Dural Aluminum Composites Corp. | Process for production of metal matrix composites by casting and composite therefrom |
US4786467A (en) * | 1983-06-06 | 1988-11-22 | Dural Aluminum Composites Corp. | Process for preparation of composite materials containing nonmetallic particles in a metallic matrix, and composite materials made thereby |
US4865806A (en) * | 1986-05-01 | 1989-09-12 | Dural Aluminum Composites Corp. | Process for preparation of composite materials containing nonmetallic particles in a metallic matrix |
US5578386A (en) * | 1991-10-23 | 1996-11-26 | Inco Limited | Nickel coated carbon preforms |
WO2001088215A1 (en) * | 2000-05-15 | 2001-11-22 | Yeh Hsien Yang | Process for nodulizing silicon in casting aluminum silicon alloys |
US6482248B1 (en) | 2000-11-28 | 2002-11-19 | Magnum Research, Inc. | Aluminum composite for gun barrels |
FR2848129A1 (fr) * | 2002-12-05 | 2004-06-11 | Ascometal Sa | Procede de fabrication d'un piston pour moteur a explosion, et piston ainsi obtenu |
US20040129243A1 (en) * | 2002-12-05 | 2004-07-08 | Marc Robelet | Method of manufacture of a piston for an internal combustion engine, and piston thus obtained |
EP1443200A1 (fr) * | 2002-12-05 | 2004-08-04 | Ascometal | Procédé de fabrication d'un piston pour moteur à explosion, et piston ainsi obtenu |
US7472674B2 (en) | 2002-12-05 | 2009-01-06 | Ascometal | Method of manufacture of a piston for an internal combustion engine, and piston thus obtained |
WO2004092430A3 (en) * | 2003-04-09 | 2005-01-27 | Dow Global Technologies Inc | Composition for making metal matrix composites |
CN1771343B (zh) * | 2003-04-09 | 2010-06-02 | 陶氏环球技术公司 | 用于制造金属基质复合材料的组合物 |
US20110135948A1 (en) * | 2003-04-09 | 2011-06-09 | Pyzik Aleksander J | Composition for making metal matrix composites |
US8399107B2 (en) | 2003-04-09 | 2013-03-19 | Dow Global Technologies Llc | Composition for making metal matrix composites |
US20070277774A1 (en) * | 2006-01-27 | 2007-12-06 | Allred J G | Apparatus, system, and method for a centrifugal turbine engine |
US20070256345A1 (en) * | 2006-05-04 | 2007-11-08 | Hall David R | A Rigid Composite Structure with a Superhard Interior Surface |
US20110200840A1 (en) * | 2006-05-04 | 2011-08-18 | Schlumberger Technology Corporation | Cylinder with polycrystalline diamond interior |
US8020333B2 (en) * | 2006-05-04 | 2011-09-20 | Schlumberger Technology Corporation | Cylinder with polycrystalline diamond interior |
US8261480B2 (en) | 2006-05-04 | 2012-09-11 | Hall David R | Rigid composite structure with a superhard interior surface |
Also Published As
Publication number | Publication date |
---|---|
NL7109305A (en)) | 1972-01-10 |
ZA714048B (en) | 1972-02-23 |
GB1305846A (en)) | 1973-02-07 |
JPS5429442B1 (en)) | 1979-09-22 |
AU3079171A (en) | 1973-01-11 |
DE2132665A1 (de) | 1972-02-17 |
FR2100260A5 (en)) | 1972-03-17 |
BE769565A (fr) | 1972-01-06 |
CH537768A (fr) | 1973-06-15 |
AT311069B (de) | 1973-10-25 |
ES392902A1 (es) | 1973-09-16 |
CA934167A (en) | 1973-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3753694A (en) | Production of composite metallic articles | |
Pai et al. | Fabrication of aluminium-alumina (magnesia) particulate composites in foundries using magnesium additions to the melts | |
US4753690A (en) | Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement | |
US4713111A (en) | Production of aluminum-SiC composite using sodium tetrasborate as an addition agent | |
US3885959A (en) | Composite metal bodies | |
Rohatgi et al. | Preparation of cast aluminium-silica particulate composites | |
US4207096A (en) | Method of producing graphite-containing copper alloys | |
CN112143921B (zh) | 一种用于制备铝基复合材料制动盘的制备方法 | |
Singer et al. | Metal matrix composites produced by spray codeposition | |
WO1992013978A1 (en) | High strength, high stiffness magnesium base metal alloy composites | |
WO1987004377A1 (en) | Engine bearing alloy composition and method of making same | |
US4084669A (en) | Composite collector | |
CN105543841A (zh) | 铜基轴承合金表面激光熔覆制备复合耐磨层的方法 | |
US4174214A (en) | Wear resistant magnesium composite | |
JPH0360578B2 (en)) | ||
Agarwala et al. | Fabrication of aluminium base composite by foundry technique | |
EP0814277A2 (en) | Roller brake for two-wheeler | |
US4432936A (en) | Method for adding insoluble material to a liquid or partially liquid metal | |
Herling et al. | Low-cost aluminum metal matrix composites | |
JP4165794B2 (ja) | ショット | |
US5149496A (en) | Method of making high strength, high stiffness, magnesium base metal alloy composites | |
JP4121733B2 (ja) | 黒鉛含有アルミニウム合金の製造方法及び摺動部材 | |
JP2002505375A (ja) | 滑り軸受アルミニウム合金の連続鋳造物の製造方法及び連続鋳造物 | |
US3650312A (en) | Hybrid casting-hot working process for shaping magnesium, aluminum, zinc and other die casting metals | |
US3985557A (en) | Method of producing a high strength composite of zircon |