US3650800A - Textile products and production thereof - Google Patents
Textile products and production thereof Download PDFInfo
- Publication number
- US3650800A US3650800A US809932A US3650800DA US3650800A US 3650800 A US3650800 A US 3650800A US 809932 A US809932 A US 809932A US 3650800D A US3650800D A US 3650800DA US 3650800 A US3650800 A US 3650800A
- Authority
- US
- United States
- Prior art keywords
- fabric
- coating
- coated
- napped
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004753 textile Substances 0.000 title abstract description 27
- 238000004519 manufacturing process Methods 0.000 title description 12
- 239000004744 fabric Substances 0.000 claims abstract description 75
- 238000000034 method Methods 0.000 claims abstract description 39
- 239000004814 polyurethane Substances 0.000 claims abstract description 12
- 229920002635 polyurethane Polymers 0.000 claims abstract description 12
- 238000000576 coating method Methods 0.000 claims description 48
- 239000011248 coating agent Substances 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 10
- 238000003490 calendering Methods 0.000 claims description 8
- 238000009940 knitting Methods 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- 238000004043 dyeing Methods 0.000 claims description 7
- 239000011527 polyurethane coating Substances 0.000 claims description 7
- 229920001296 polysiloxane Polymers 0.000 claims description 5
- 239000000463 material Substances 0.000 description 39
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 24
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 12
- 239000000835 fiber Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000010276 construction Methods 0.000 description 8
- 229920000728 polyester Polymers 0.000 description 8
- 239000001361 adipic acid Substances 0.000 description 6
- 235000011037 adipic acid Nutrition 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- JXCHMDATRWUOAP-UHFFFAOYSA-N diisocyanatomethylbenzene Chemical compound O=C=NC(N=C=O)C1=CC=CC=C1 JXCHMDATRWUOAP-UHFFFAOYSA-N 0.000 description 6
- 229920000742 Cotton Polymers 0.000 description 5
- 229920002292 Nylon 6 Polymers 0.000 description 5
- -1 for example Polymers 0.000 description 5
- 239000002759 woven fabric Substances 0.000 description 5
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 239000002964 rayon Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 150000002605 large molecules Chemical class 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- 229940117969 neopentyl glycol Drugs 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000001054 red pigment Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229940113165 trimethylolpropane Drugs 0.000 description 2
- 238000009976 warp beam dyeing Methods 0.000 description 2
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- SJEYSFABYSGQBG-UHFFFAOYSA-M Patent blue Chemical compound [Na+].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 SJEYSFABYSGQBG-UHFFFAOYSA-M 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 244000090125 Solidago odora Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- VJMAITQRABEEKP-UHFFFAOYSA-N [6-(phenylmethoxymethyl)-1,4-dioxan-2-yl]methyl acetate Chemical compound O1C(COC(=O)C)COCC1COCC1=CC=CC=C1 VJMAITQRABEEKP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000980 acid dye Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229940067573 brown iron oxide Drugs 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000001609 comparable effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002168 ethanoic acid esters Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000001034 iron oxide pigment Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000010020 roller printing Methods 0.000 description 1
- 229940024463 silicone emollient and protective product Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- FXSGDOZPBLGOIN-UHFFFAOYSA-N trihydroxy(methoxy)silane Chemical compound CO[Si](O)(O)O FXSGDOZPBLGOIN-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0002—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
- D06N3/0009—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using knitted fabrics
Definitions
- ABSTRACT Coated textiles are produced by a process in which 4-rail [52] U.S. Cl ..l17/37, 26/29, 28/74, knitted fabric which i napped on one face is coated on the 7/11, 7/411 7 7/109! 7/161 KP napped face with a polyurethane and subsequently grained [51 Int. Cl ..B44d 1/44 mechanically [58] Field ofSearch ..l6l/67; 28/74; 26/29; 117/1 1,
- This invention relates to coated textiles and to a process for producing the same. More particularly, this invention relates to textiles coated with polyurethane and to a method of producing the same.
- Another object of this invention is to provide coated textiles and a process for producing the same which is devoid of the foregoing problems and disadvantages.
- Another object of this invention is to provide coated textile material that is of such a construction that it can be acceptably coated by both the direct coating process and the reverse coating process.
- a further object of this invention is to provide a coated textile and a process for producing the same wherein a coated knitted fabric having a grain which is irregular and which can be as varied as desired and yet which does not repeat itself periodically is obtained.
- a still further object of this invention is to provide such coated textile fabric grained by mechanical means.
- Yet another object of this invention is to provide coated textiles and a process for producing the same wherein said coated textiles have a substantially constant weight per unit area over large production lengths.
- a process for producing coated textiles utilizing as the starting material a knitted fabric which is stable under tension and which is made of a pattern that can be napped and which comprises tearing open the threads of the knitted fabric introduced on the upper guide bar (rough laying) during the napping process and then coating the fabric with a polyurethane coating composition.
- a suitable starting material for this purpose is 4-rail warped knitted material in which the fiber pile produced by the napping process is of such uniformity that no subsequent shearing of the napped product is required. in the 4-rail construction the knitted material produced in this manner is so stable in the uncoated state that it can be conveniently washed and dyed on ajig.
- a particularly preferred form of this invention relates to a process for the production of textiles which are coated with polyurethanes by a process in which a 4-rail knitted fabric which has been napped on one side is coated on the napped face with a polyurethane coating composition and is subsequently grained by mechanical means.
- the invention also produces in this preferred form a coated textile of 4-rail warp knitted material which is napped on one side and coated on the napped face with a polyurethane coating composition and subsequently grained mechanically.
- the knitted fabrics to be used in the process according to the invention can be produced from one or more fibers of known types. Both non-twisted and twisted or folded yarns as well as endless filaments can be used. Mixed fiber constructions can be produced, for example, by supplying the four rails with fibers of different origin.
- Suitable fibers are, for example, those obtained from polyamides such as polyamide-6 from caprolactam, polyamide-66 from adipic acid and hexamethylene diamine, or polyamide-l2 and the like, terephthalic acid polyesters such as, for example, polyethylene terephthalate, polyacrylonitrile, cellulose-2 /2- acetate, cellulose triacetate, cotton, wool, rayon, regenerated cellulose, polyolefins such as polyethylene, polypropylene and the like, vinyl derivatives such as polyvinyl chloride, polyvinylidene chloride and the like, and polyurethanes.
- polyamides such as polyamide-6 from caprolactam
- polyamide-66 from adipic acid and hexamethylene diamine
- polyamide-l2 and the like terephthalic acid polyesters such as, for example, polyethylene terephthalate, polyacrylonitrile, cellulose-2 /2- acetate, cellulose triacetate, cotton, wool,
- the fibers may be pure white, matted or spun dyed. They can be colored by the usual dyeing and printing processes employed in the textile industry.
- the knitting data that is, for example, the warp thread count, pattern, stitch count, rod count or guide rails may, of course, be varied and be of any suitable parameter. These knitted materials can be coated in the napped state both on the napped surface and on the smooth surface by the usual processes generally known to those skilled in the art.
- Knitting of a stable knitted fabric for example, on a 4-rail warp knitting loom;
- Napping the goods such as, for example, on a hosiery napping machine with 24 rollers, on a napping machine for woven fabric with 32 rollers, or on any other suitable roller scraper napping machines which have both stroke and counterstroke rollers;
- the coating apparatuses should be suitable both for use in the direct coating process and in the reverse coating process.
- Steps 4 and 5 may be omitted in the case of spun dyed or predyed yarn or filaments. The individual steps are described in more detail below.
- Knitting A stretch resistant or dimensionally stable warp knitted fabric, for example, made of a 4-rail construction, is suitable for use in production of a stable basic fabric which is substantially equivalent to a woven fabric as regards resistance to stretching in width wise and length wise.
- Width of untreated material about I80 cm.
- the 4-rail warp knitted goods knitted according to these data have a final weight per square meter (prior to coating) of about 230 to about 240 go, it has been found in practice that such a weight per square meter is very suitable for textile purposes.
- the weight per square meter may, however, be varied within wide limits.
- 40, 60, 80, 100 or 120 and the like den cuprammonium rayon filaments may be used in the upper guide bar (rough patterning) or alternations may be effected by altering, for example, the feed ratio, the stitch count and rod count and the pattern. Changes in the stability of the fabric can be produced, for example, by supplying all the guide bars with nylon-6 or nylon-66 or other fibers in contrast to that used in the above-mentioned examples.
- the guide bars may also be supplied with the same or different fibers or filamentary materials as previously disclosed.
- Warp knitted goods which are strong or dimensionally stable, made, for example, from a 4--rail construction, have certain advantages Over woven goods. Spinning and variations in the material are eliminated since one can always work with the same den or dtex numbers on capillary numbers and the same stitch count, rod count, pattern, feed ratio and the like. Furthermore, it is much easier to produce a certain weight per square meter within narrow tolerances.
- Heat fixing When using synthetic fibers, especially of the polyamide type, a heat fixing step may have to be employed which may be carried out in the usual manner on suitable tentering frames. Accurate control of the temperature, keeping it constant, is especially important.
- Dyeing may also be carried out on the rear face ofthe white raw material.
- Suitable dyeing apparatuses are, for example, jigs, and HT beam dyeing apparatuses and the like.
- Napping Napping of the knitted goods to be used according to the invention can be carried out without any significant shrinkage in width, for example, on a 24 roller hosiery napping machine, or, for example, on a 32 roller napping machine for woven goods. Four to six passages through such machines are generally necessary to achieve sufficient napping. This is an important advantage over the process of napping woven fabric to achieve a more or less comparable effect since, for example, duvetyn, moleskin or velvetone require about 30 to passages through napping machines to obtain a suitable quality fabric. Owing to the fact that the fiber floats are always the same in the guide bar 4 (rough laying) napping is easier to achieve and no subsequent or intermediate shearing is necessary. These shearing processes are unavoidable when achieving a uniform pile in woven goods. Another advantage is that, in contrast to comparable woven napped fabric, napped knitted fabric need not be dampened or brushed.
- Napping of the fabric is generally carried out in the direction of the pile but may also be carried out against the pile, according to the napping system or types of napping machines employed.
- the process is started at a low napping 0 energy and this is gradually increased during the subsequent passages through the machine. It has been found to be desirable that, for example, the 4-rail warp knitted goods does not undergo any increase in density on napping owing to mechanical shrinkage in width and that the floats placed in the guide bar 4 can be napped completely and uniformly in the napping machine with practically no shrinkage in width. This effect is especially advantageous in allowing one to obtain constant weights per square meter over large production lengths.
- Felt calendering should be used to obtain a satisfactory handie in the case ofa uniform compacted surface. Calendering is carried out in the direction of the pile. The temperature may, for example, be from about C. to about C., and the pile face is placed on steel and the rear face on cotton. Other equipment, such as, for example, cylinder presses or smoothing calenders, are also suitable.
- Various processes can be employed for coating the fabric. in the direct coating process, for example, one can use a transparent undercoat followed by a pigmented filling or top coat.
- the fabric may first be provided with a transparent undercoat and a pigmented top coat is then applied by the reverse coating method.
- the fabric can be directly provided with a pigmented top coat by the process ofreverse coating without the use ofan undercoat.
- the transparent undercoat is applied by the reverse process and after the reaction is complete, the surface is coated by the direct process with pigmented solution of high molecular weight compounds.
- the above-mentioned transparent coats consist of polyurethanes which may be prepared, for example, from higher molecular weight polyhydroxyl compounds such a hydroxyl polyesters, polyethers, polyester amides or polyacetals and the like, preferably polyhydroxyl polyesterurethanes, such as, for example, those disclosed in German Pat. Nos. 1,012,456; 957,294; 897,625; and 847,502, and polyisocyanates. Suitable polyisocyanates are those disclosed, for example in German Pat. Nos. 957,294; 1,012,456; 870,400; 953,012 and 1,090,196.
- the polyurethanes which are to be used according to the invention adhere very firmly on the textile substrates.
- the transparent undercoating can be produced from a combination of the following components;
- a solution of a basic accelerator which consists of the following individual components; 7 parts of phenyl diurethane 3 parts of tetraoctadecyl titanate 45 parts of ethylene chloride 45 parts of ethyl acetate 2 parts of acetic acid 025 parts of acetic acid anhydride.
- the additive c) is not necessary if a transparent undercoat is applied to the direct process and this is followed by reverse coating.
- an undercoat having a composition in which, for example, as component a) 1,000 parts of a 30 percent solution of a polyesterurethane prepolymer (polyester of adipic acid and hexane diol prelengthened with toluylene diisocyanate) in acetic acid ester is reacted with 50 parts of a component analogous to b) and 50 parts ofa component analogous to c) are used.
- a polyesterurethane prepolymer polyester of adipic acid and hexane diol prelengthened with toluylene diisocyanate
- An undercoat can also be prepared, for example, by reacting 1,000 parts of a 30 percent solution of polyesterurethane prepolymer (polyester of adipic acid and diethylene glycol pre-lengthened with toluylene diisocyanate) with 50 parts of a component analogous to b) and adding 50 parts of a component analogous to c).
- the pigmented coating may, for example be a paste of 600 parts of 30 percent polyesterurethane prepolymer solution in ethyl acetate, 35 parts of a solution analogous to b) and 35 parts of a solution analogous to c) in which 30 parts of a silicic sol which has a very large surface area, 80 parts ofa titanium dioxide pigment of the rutile type, 3 parts of a green chromium oxide pigment and 1 part of a brown iron oxide pigment have been ground in. An ivory color is thereby obtained.
- a deep red coating is obtained, for example, by adding 35 parts of a cadmium red pigment to the above-mentioned pigment containing composition.
- the single colored coating can easily be made more decorative by applying certain color effects. This can be done, for example, by any suitable known roller printing or film techniques. Ornamental effects can also be obtained by spraying the fabric with differently colored solutions of high molecular weight compounds or dyes. It is also known that pre-printed ornaments on special supports may be applied to the coating in the manner of transfers. Furthermore, when using grained transfer paper, one may employ an undercoat which is of a different color to the top coat.
- Finish A finish is generally applied in order to obtain an elegant smooth flowing handle. Silicone products are particularly suitable for this purpose in the case of textile materials which are to be used for clothing. A finish can be applied by means of doctor blades, spraying or by immersion in a bath of the finish. Finishes comprising, for example, cellulose acetobutyrate or mixed esters of ethyl and methyl silicic acid are preferably used in the production of upholstery articles. The finish should not be applied until the coated fabric has been cross-linked to such an extent that it can easily withstand being rolled out.
- the fabric is treated for this purpose in an axial spin drier the direction of rotation of which can be altered as desired.
- Machines of this type are known as tumblers.
- the fineness of the grain can also be influenced by this method.
- the treatment temperature is generally between about 20 C. and about C., preferably about 50 C. to about 70 C.
- the periods of residence in the tumbler are generally between about 3 and about 10 minutes. The higher the treatment temperature, the shorter will be the required period of residence and the finer will be the grain.
- the felt calendering carried out in the previous stage and the application of the coating in the case of the reverse process coating also have an important effect on the final nature of the grain.
- the axial spin drier should have a drum diameter of at least about em but preferably more.
- the fabric should first be provided with a suitable finish to prevent the fabrics sticking when applying the grain.
- the coated fabric should be allowed to stand for about 24 to about 28 hours before graining to avoid formation of surface cracks. Different but reproducible grain effects can be achieved in this way.
- the fabric may subsequently be stretched with slight dampening and at the same time rolled up to remove creasing in the grained fabric.
- the products obtained according to the invention may be used, for example, for clothing, millinery material, upholstery materials, protective coverings, household textiles, bags and luggage, decorative material and material for wood facings.
- the materials may be worked up by the methods normally employed in the art, for example, they may be backed with foam plastics and provided with decorative quilted seams.
- the material is washed on a winch vat to which a nonionic washing agent has been added for about 20 minutes at moderate tetnperature. It is then heat fixed on a tentering frame at the temperature usually employed for the particular type of fiber, in the present case at about 188 C. to about 192 C. for poly-e-caprolaetam.
- the material is dyed a black shade on a jig with acid dyes.
- After rinsing and drying the fabric is napped. This is carried out in six passages through a 24 roller hosiery napping machine. Napping is carried out in the direction of the nap, starting with a low napping energy which is gradually increased during the subsequent passages.
- the napped fabric is passed three times at about 130 C. over a felt calender which has a diameter of about 2 m. Coating is carried out by first applying a clear undcrcoat having the following composition in a quantity of about parts of solids (setting ofdoctor wiper: doctor blade: 1 mm.).
- Coating of this material is carried out using a doctor applicator cover with a rubber sheet without the use of a supporting roller.
- the reverse coating has the following composition:
- polyester urethane prepolymer poly(ethylene glycol)
- polyester urethane prepolymer poly(ethylene glycol)
- hexanediol and neopentyl glycol pre-lengthened with tolylene diisocyanate in ethyl acetate
- acetic acid anhydride 50 parts of a solution of a basic accelerator which consists ofthe following individual components: 7 parts of phenyldiurethane, 3 parts of tetraoctacyltitanate, 45 parts of ethylene chloride, 45 parts of ethyl acetate 2 parts ofacetic acid, and 0.25 parts of acetic acid anhydride.
- the coating material is colored black and applied to a smooth silicone separating paper and united directly under slight pressure with the fabric which has been provided with an undercoat.
- the fabric is rolled up together with the separable material and unrolled after about 48 hours.
- a silicone finish is then applied by a doctor blade, After drying, the material is placed in a tumbler where it is rolled around for about 3 minutes at 70 C., the direction of rotation of the drum changing after every 10 revolutions.
- the diameter of the drum is about 150 cm.
- the finished fabric has a fine grain and attractive handle. It is taken out of the tumbler, spread out, stretched, while slightly damp and is at the same time rolled up.
- a process for producing coated textiles which comprises napping a tension stable 4-rail knitted fabric on one face and coating the napped face with a polyurethane coating composition and mechanically graining by tumbling the polyurethane coated napped fabric in an axial spin drier by rotating said dryer in alternate directions of rotation at a temperature of from about 20 C. to C.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Laminated Bodies (AREA)
- Treatment Of Fiber Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19681760260 DE1760260A1 (de) | 1968-04-25 | 1968-04-25 | Verfahren zur Herstellung von mit Polyurethanen beschichteten Textilien |
Publications (1)
Publication Number | Publication Date |
---|---|
US3650800A true US3650800A (en) | 1972-03-21 |
Family
ID=5696014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US809932A Expired - Lifetime US3650800A (en) | 1968-04-25 | 1969-03-24 | Textile products and production thereof |
Country Status (10)
Country | Link |
---|---|
US (1) | US3650800A (en)) |
AT (1) | AT307360B (en)) |
BE (1) | BE728538A (en)) |
BR (1) | BR6906701D0 (en)) |
DE (1) | DE1760260A1 (en)) |
ES (1) | ES366439A1 (en)) |
FR (1) | FR2006872A1 (en)) |
GB (1) | GB1220561A (en)) |
NL (1) | NL6906271A (en)) |
SE (1) | SE342767B (en)) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3931427A (en) * | 1972-11-23 | 1976-01-06 | Benzaquen Sociedad Anonima Industrial, Commercial, Immobiliaria & Financiera | Stamp dyed napped fabric |
US5416958A (en) * | 1992-01-21 | 1995-05-23 | Basf Corporation | Easy nap textile fabric and process for making |
US6063473A (en) * | 1993-02-26 | 2000-05-16 | Xymid L.L.C. | Abrasion-resistant composite sheet |
WO2000049217A1 (en) * | 1999-02-18 | 2000-08-24 | Milliken & Company | Face finishing of fabrics containing immobilized fibers |
US6233795B1 (en) | 1999-02-18 | 2001-05-22 | Milliken & Company | Face finishing of cotton-containing fabrics containing immobilized fibers |
US6260247B1 (en) | 1999-02-18 | 2001-07-17 | Milliken & Company | Face finishing of fabrics containing selectively immobilized fibers |
US20030194938A1 (en) * | 1999-02-18 | 2003-10-16 | Efird Scott W. | Abraded fabrics exhibiting excellent hand properties and simultaneously high fill strength retention |
US6716775B1 (en) | 2000-05-12 | 2004-04-06 | Milliken & Company | Range-dyed face finished fabrics exhibiting non-directional surface fiber characteristics |
US9885148B2 (en) * | 2012-12-18 | 2018-02-06 | Kyowa Leather Cloth Co., Ltd. | Laminated sheet and method of manufacturing the same |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB879489A (en) * | 1958-06-24 | 1961-10-11 | Edward Bellamy Mcmillan | Absorber for short radio waves |
DE1285350B (de) * | 1958-12-13 | 1968-12-12 | Eltro Gmbh | Panzerplatte, insbesondere fuer Schiffe |
DE1265251B (de) * | 1963-03-12 | 1968-04-04 | Siemens Ag | Reflexionsarme breitbandige Daempfungsanordnung fuer elektromagnetische Wellen |
DE1255747B (de) * | 1965-07-15 | 1967-12-07 | Siemens Ag | Reflexionsarme Daempfungsanordnung fuer elektromagnetische Wellen |
DE1254719B (de) * | 1965-07-19 | 1967-11-23 | Siemens Ag | Reflexionsarme, breitbandige Daempfungsanordnung fuer elektromagnetische Wellen |
US3775528A (en) * | 1970-07-23 | 1973-11-27 | Firestone Tire & Rubber Co | Process of making a pneumatic tire |
US4726980A (en) * | 1986-03-18 | 1988-02-23 | Nippon Carbon Co., Ltd. | Electromagnetic wave absorbers of silicon carbide fibers |
DE3802150A1 (de) * | 1987-07-14 | 1989-01-26 | Licentia Gmbh | Verfahren zum herstellen eines bezueglich seiner dielektrischen, pyroelektrischen und/oder magnetischen eigenschaften vorgebbaren materials und dessen verwendung |
DE3900857A1 (de) * | 1989-01-13 | 1990-07-26 | Messerschmitt Boelkow Blohm | Fassadenaufbau von hochbauten in waermedaemmender ausbildung und verfahren zur herstellung einer waermedaemmung |
DE3900856A1 (de) * | 1989-01-13 | 1990-07-26 | Messerschmitt Boelkow Blohm | Fassadenaufbau von hochbauten |
DE4201871A1 (de) * | 1991-03-07 | 1992-09-10 | Feldmuehle Ag Stora | Bauteil zur absorption elektromagnetischer wellen und seine verwendung |
DE4223177C2 (de) * | 1992-07-15 | 1994-06-16 | Cerasiv Gmbh | Werkstoff zur Absorption und Abschirmung elektromagnetischer Wellen, Verfahren zu dessen Herstellung und dessen Verwendung |
CN113350578B (zh) * | 2021-04-14 | 2022-07-15 | 山东德信皮业有限公司 | 一种基于静电纺丝技术对真皮损伤修补的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1406710A (en) * | 1920-01-12 | 1922-02-14 | Duratex Company | Coated fabric and the process of making same |
US2914836A (en) * | 1957-06-25 | 1959-12-01 | Dow Corning | Method of making synthetic pile fabrics |
US3387989A (en) * | 1965-09-20 | 1968-06-11 | Reeves Bros Inc | Simulated leather products |
US3483015A (en) * | 1965-02-03 | 1969-12-09 | Kuraray Co | Method for production of poromeric fibrous sheet materials |
-
1968
- 1968-04-25 DE DE19681760260 patent/DE1760260A1/de active Pending
-
1969
- 1969-01-09 AT AT18269A patent/AT307360B/de not_active IP Right Cessation
- 1969-01-24 GB GB4063/69A patent/GB1220561A/en not_active Expired
- 1969-02-10 FR FR6903076A patent/FR2006872A1/fr not_active Withdrawn
- 1969-02-17 BE BE728538D patent/BE728538A/xx unknown
- 1969-02-27 BR BR206701/69A patent/BR6906701D0/pt unknown
- 1969-03-24 US US809932A patent/US3650800A/en not_active Expired - Lifetime
- 1969-04-22 SE SE5698/69A patent/SE342767B/xx unknown
- 1969-04-23 NL NL6906271A patent/NL6906271A/xx unknown
- 1969-04-25 ES ES366439A patent/ES366439A1/es not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1406710A (en) * | 1920-01-12 | 1922-02-14 | Duratex Company | Coated fabric and the process of making same |
US2914836A (en) * | 1957-06-25 | 1959-12-01 | Dow Corning | Method of making synthetic pile fabrics |
US3483015A (en) * | 1965-02-03 | 1969-12-09 | Kuraray Co | Method for production of poromeric fibrous sheet materials |
US3387989A (en) * | 1965-09-20 | 1968-06-11 | Reeves Bros Inc | Simulated leather products |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3931427A (en) * | 1972-11-23 | 1976-01-06 | Benzaquen Sociedad Anonima Industrial, Commercial, Immobiliaria & Financiera | Stamp dyed napped fabric |
US5416958A (en) * | 1992-01-21 | 1995-05-23 | Basf Corporation | Easy nap textile fabric and process for making |
US6063473A (en) * | 1993-02-26 | 2000-05-16 | Xymid L.L.C. | Abrasion-resistant composite sheet |
US6260247B1 (en) | 1999-02-18 | 2001-07-17 | Milliken & Company | Face finishing of fabrics containing selectively immobilized fibers |
US6112381A (en) * | 1999-02-18 | 2000-09-05 | Milliken & Company | Face finishing of fabrics containing immobilized fibers |
US6230376B1 (en) | 1999-02-18 | 2001-05-15 | Milliken & Company | Faced finished fabrics containing immobilized fibers |
US6233795B1 (en) | 1999-02-18 | 2001-05-22 | Milliken & Company | Face finishing of cotton-containing fabrics containing immobilized fibers |
US20010005661A1 (en) * | 1999-02-18 | 2001-06-28 | Louis Dischler | Abraded fabrics exhibiting balanced tensile strengths |
WO2000049217A1 (en) * | 1999-02-18 | 2000-08-24 | Milliken & Company | Face finishing of fabrics containing immobilized fibers |
US6269525B2 (en) * | 1999-02-18 | 2001-08-07 | Milliken & Company | Face finished fabrics containing immobilized fibers |
US20030194938A1 (en) * | 1999-02-18 | 2003-10-16 | Efird Scott W. | Abraded fabrics exhibiting excellent hand properties and simultaneously high fill strength retention |
US7070847B2 (en) | 1999-02-18 | 2006-07-04 | Milliken & Company | Abraded fabrics exhibiting excellent hand properties and simultaneously high fill strength retention |
US6716775B1 (en) | 2000-05-12 | 2004-04-06 | Milliken & Company | Range-dyed face finished fabrics exhibiting non-directional surface fiber characteristics |
US20040107552A1 (en) * | 2000-05-12 | 2004-06-10 | Louis Dischler | Method of producing non-directional range-dyed face finished fabrics |
US6916349B2 (en) | 2000-05-12 | 2005-07-12 | Milliken & Company | Method of producing non-directional range-dyed face finished fabrics |
US9885148B2 (en) * | 2012-12-18 | 2018-02-06 | Kyowa Leather Cloth Co., Ltd. | Laminated sheet and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
SE342767B (en)) | 1972-02-21 |
ES366439A1 (es) | 1971-04-16 |
GB1220561A (en) | 1971-01-27 |
DE1760260A1 (de) | 1971-06-03 |
NL6906271A (en)) | 1969-10-28 |
BE728538A (en)) | 1969-08-01 |
FR2006872A1 (en)) | 1970-01-02 |
AT307360B (de) | 1973-05-25 |
BR6906701D0 (pt) | 1973-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3650800A (en) | Textile products and production thereof | |
Choudhury | Principles of textile finishing | |
EP0891437B1 (en) | Improved printed flocked pile fabric and method for making same | |
US4349593A (en) | Double knit fabric processing into decorative goods | |
US3986824A (en) | Process for the manufacture of a dyed sheet-like textile structure | |
JPS6039776B2 (ja) | スエ−ド調起毛織物及びその製造方法 | |
US2685120A (en) | Fabric having contoured decorative surface | |
US3044891A (en) | Textile sheet material and process for producing same | |
US3403433A (en) | Method of producing pill resistant polyester fiber containing fabrics | |
JPH04327259A (ja) | 立体模様を有する布帛の製造方法 | |
JPH11256484A (ja) | 光沢のある植毛シートの製造方法 | |
JPH02289171A (ja) | ウオッシャブル絹織物及びその製造方法 | |
US20030221301A1 (en) | Method for reducing pilling | |
HU216322B (hu) | Textilanyag hővel rögzíthető közbélés számára, amely textilanyag levegősugárral terjedelmesített vetülékfonalakat tartalmaz | |
DE1944439A1 (de) | Verfahren zur Herstellung von mit Polyurethanen beschichteten Textilien | |
GB1261762A (en) | Process and apparatus for the continuous treatment of thick voluminous textile materials | |
RU2153543C1 (ru) | Способ получения обивочного материала "капровелюр" | |
US694860A (en) | Process of imitating beige or vigoreux by printing. | |
JPH0235056B2 (en)) | ||
JP3026202U (ja) | 図柄状に解撚差を有するセルロ−ス繊維布帛 | |
JPH02154059A (ja) | 布帛のウォッシュアウト調皺付け加工方法 | |
JP2002194641A (ja) | 制電性伸縮布帛 | |
JPS59187678A (ja) | パイル経編物の目曲り防止加工方法 | |
JPS63282375A (ja) | 特殊模様布帛およびその製造方法 | |
JPH04343757A (ja) | 布帛の皺付け加工方法 |