US3439163A - X-ray crystal monochromator with a reflecting surface that conforms to part of a logarithmic spiral - Google Patents
X-ray crystal monochromator with a reflecting surface that conforms to part of a logarithmic spiral Download PDFInfo
- Publication number
- US3439163A US3439163A US484907A US3439163DA US3439163A US 3439163 A US3439163 A US 3439163A US 484907 A US484907 A US 484907A US 3439163D A US3439163D A US 3439163DA US 3439163 A US3439163 A US 3439163A
- Authority
- US
- United States
- Prior art keywords
- plate
- incidence
- rays
- logarithmic spiral
- strip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000013078 crystal Substances 0.000 title description 23
- 230000004075 alteration Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000010445 mica Substances 0.000 description 3
- 229910052618 mica group Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/20008—Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/06—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/10—Different kinds of radiation or particles
- G01N2223/101—Different kinds of radiation or particles electromagnetic radiation
- G01N2223/1016—X-ray
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/30—Accessories, mechanical or electrical features
- G01N2223/315—Accessories, mechanical or electrical features monochromators
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K2201/00—Arrangements for handling radiation or particles
- G21K2201/06—Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
- G21K2201/062—Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements the element being a crystal
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K2201/00—Arrangements for handling radiation or particles
- G21K2201/06—Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
- G21K2201/064—Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements having a curved surface
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K2201/00—Arrangements for handling radiation or particles
- G21K2201/06—Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
- G21K2201/067—Construction details
Definitions
- This invention relates to a device for making a spectrochemical analyses with X-rays, and in particular to an analyzing crystal which is used in a device employing X-rays for making spectrochernical analyses.
- a set of lattice planes of the crystal lattice, with mutual distance d, will be capable of reflecting the X-ray beam with Wavelength A only at angles of incidence 0 which satisfies this equation.
- an analyzer which generally has the shape of an elongated strip consisting of a single crystal plate provided with parallel surfaces.
- This plate will hereinafter be termed the plate of incidence ifOI X-rays.
- the plate of incidence for X-rays of a given wavelength is arranged at the correct angle 0, rays originating from a source of a small cross-section will be reflected by a given zone of the plate of incidence.
- a flat plate of incidence only a small part of the incident rays is reflected.
- a focusing arrangement is used in which the reflecting surface of the plate of incidence is curved.
- the most favorable arrangement is obtained by bending the plate of incidence in the form which corresponds to the curvature of the logarithmic spiral.
- This shape of the plate of incidence enables the active surface used for the X-ray deflection, to be as large as possible.
- rays starting from a source of finite, although none too large proportions, and of a given wavelength can be collected in a sharply bounded focus after reflection. As a result of this a high intensity of the reflected radiations is obtained.
- the plate of incidence is an X-ray monochromator which need not necessarily consist of a single crystal. It may be a carrier which is coated with a material which reflects the radiation. In that case the carrier has a surface curved to the desired shape.
- the required shape can be obtained by clamping the plate between two moldings which are curved in the correct manner.
- the ends of a rectangular crystal plate are clamped in a holder of such a construction that unequal bending moments can be exerted on the two ICC ends.
- the resulting curvature of the crystal plate is a good approximation of the logarithmic spiral and the shape can easily be adapted to various distances between the ray source and the plate of incidence.
- the invention relates to a plate of incidence or crystal monochromator for X-ray diffraction which has the shape of an elongated strip, which strip, when deflected, assumes the shape of a part of a logarithmic spiral.
- the surface of the plate of incidence is bounded by four sides joining one another, two opposite points of intersection of which are located on a symmetry line of the surface. The remaining two points of intersection determine the largest width of the strip. Furthermore the sides which meet in one point of intersection with the symmetry line are curved concave with respect to the said line, and the sides which meet in the opposite point of intersection are curved convex with respect to the said line.
- Such a plate of incidence may be made from flexible single crystal plates, bounded by parallel surfaces, but may alternatively consist of flexible carrier material, for example, thin sheet steel which is laminated with substances which reflect X-rays.
- FIG. 1 shows the arrangement for an X-ray spectrometer with logarithmically curved plate of incidence.
- FIG. 2 diagrammatically shows the manner of deflection of the plate of incidence.
- FIGS. 3 and 4 show embodiments of plates of incidence according to the invention.
- FIG. 5 shows a mounting structure for supporting a deflection plate of incidence.
- the logarithmic spiral has the characteristic feature that any radius vector from the origin 0 encloses equal angles with the surface of the curve A-B, as a result of which the origin 0 also is the focus of reflected rays of equal wavelengths.
- a A(lx/B) (Li- 2 for x and wherein A is the largest width of the strip.
- the plate of incidence is used as a carrier for the reflecting layer
- substances may be used which are provided in thin layers on the surface and have properties useful for the reflection of rays.
- the arrangement of the ends of a strip of material which tapers to points may present difliculties when the plate has a low mechanical strength. Since the ends of the plate of incidence do not contribute substantially to the reflection of rays, the plate of incidence may be extended at the ends as shown in FIG. 4, by laterally projecting wings which afford the required rigidity to the supported parts.
- X-rays from a source 1 are deflected by a monochromator 2, which is an elongated strip of a flat crystal plate the central portion of which bears against two upright right angle members 3 of a rectangular frame 4 while the end portions rest on contact members the height of which is adjustable by screws 5 so that by turning knobs 6 the ends of the strip may be raised.
- the deflected X-rays are received by a counter 7.
- An X-ray crystal monochromator the reflecting surface of which is curved in the shape of parts of a logarithmic spiral the smallest radius of curvature of which is adapted to be placed closest to the source of X-rays by bending an elongated strip of a flat crystal plate having a central portion and end portions, the opposite end portions of which are deflected in the same direction with respect to the central portion, which strip is bounded by four sides joining one another in pairs, two opposite points of intersection of said sides being located at the end portions and the remaining two points of intersection being located in the central portion and determining the largest width of the strip, said sides meeting in one point of intersection at the end portion placed closest to the source being curved concave with respect to the central portion and the sides which meet in the opposite point of intersection being curved convex with respect to the central portion of the strip.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NL6410514A NL6410514A (enExample) | 1964-09-10 | 1964-09-10 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3439163A true US3439163A (en) | 1969-04-15 |
Family
ID=19790980
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US484907A Expired - Lifetime US3439163A (en) | 1964-09-10 | 1965-09-03 | X-ray crystal monochromator with a reflecting surface that conforms to part of a logarithmic spiral |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US3439163A (enExample) |
| AT (1) | AT257212B (enExample) |
| BE (1) | BE669377A (enExample) |
| CH (1) | CH441813A (enExample) |
| DE (1) | DE1598850C3 (enExample) |
| GB (1) | GB1089714A (enExample) |
| NL (1) | NL6410514A (enExample) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4132653A (en) * | 1977-06-29 | 1979-01-02 | Samson James A R | Polarization analyzer for vacuum ultraviolet and x-ray radiation |
| EP0129939A1 (en) * | 1983-06-27 | 1985-01-02 | Koninklijke Philips Electronics N.V. | X-ray analysis apparatus including a monochromator crystal having crystal lattice surfaces |
| US4599741A (en) * | 1983-11-04 | 1986-07-08 | USC--Dept. of Materials Science | System for local X-ray excitation by monochromatic X-rays |
| US4752945A (en) * | 1985-11-04 | 1988-06-21 | North American Philips Corp. | Double crystal X-ray spectrometer |
| US4949367A (en) * | 1988-04-20 | 1990-08-14 | U.S. Philips Corporation | X-ray spectrometer having a doubly curved crystal |
| US5757883A (en) * | 1995-04-26 | 1998-05-26 | U.S. Philips Corporation | Method of manufacturing an X-ray optical element for an X-ray analysis apparatus |
| US5914997A (en) * | 1996-12-20 | 1999-06-22 | U.S. Philips Corporation | X-ray spectrometer with an analyzer crystal having a partly variable and a partly constant radius of curvature |
| US6038285A (en) * | 1998-02-02 | 2000-03-14 | Zhong; Zhong | Method and apparatus for producing monochromatic radiography with a bent laue crystal |
| US6259763B1 (en) * | 1999-05-21 | 2001-07-10 | The United States Of America As Represented By The United States Department Of Energy | X-ray imaging crystal spectrometer for extended X-ray sources |
| US20060072702A1 (en) * | 2004-10-04 | 2006-04-06 | Chapman Leroy D | Diffraction enhanced imaging method using a line x-ray source |
| US7076025B2 (en) | 2004-05-19 | 2006-07-11 | Illinois Institute Of Technology | Method for detecting a mass density image of an object |
| US20060153332A1 (en) * | 2003-03-27 | 2006-07-13 | Hisayuki Kohno | X-ray fluorescence analyzer |
| US20080247511A1 (en) * | 2007-04-03 | 2008-10-09 | Wernick Miles N | Method for detecting a mass density image of an object |
| US20100284513A1 (en) * | 2005-09-01 | 2010-11-11 | Jeol Ltd. | Wavelength-dispersive X-ray spectrometer |
| US20100310041A1 (en) * | 2009-06-03 | 2010-12-09 | Adams William L | X-Ray System and Methods with Detector Interior to Focusing Element |
| US20140291518A1 (en) * | 2011-10-28 | 2014-10-02 | Hamamatsu Photonics K.K. | X-ray spectrometry detector device |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3071231D1 (en) * | 1979-08-28 | 1985-12-19 | Gec Avionics | X-ray diffraction apparatus |
| NL8300421A (nl) * | 1983-02-04 | 1984-09-03 | Philips Nv | Roentgen onderzoek apparaat met dubbel focusserend kristal. |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2853617A (en) * | 1955-01-27 | 1958-09-23 | California Inst Res Found | Focusing crystal for x-rays and method of manufacture |
-
1964
- 1964-09-10 NL NL6410514A patent/NL6410514A/xx unknown
-
1965
- 1965-09-03 US US484907A patent/US3439163A/en not_active Expired - Lifetime
- 1965-09-07 CH CH1243065A patent/CH441813A/de unknown
- 1965-09-07 DE DE1598850A patent/DE1598850C3/de not_active Expired
- 1965-09-07 GB GB38161/65A patent/GB1089714A/en not_active Expired
- 1965-09-07 AT AT816665A patent/AT257212B/de active
- 1965-09-08 BE BE669377A patent/BE669377A/xx unknown
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2853617A (en) * | 1955-01-27 | 1958-09-23 | California Inst Res Found | Focusing crystal for x-rays and method of manufacture |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4132653A (en) * | 1977-06-29 | 1979-01-02 | Samson James A R | Polarization analyzer for vacuum ultraviolet and x-ray radiation |
| EP0129939A1 (en) * | 1983-06-27 | 1985-01-02 | Koninklijke Philips Electronics N.V. | X-ray analysis apparatus including a monochromator crystal having crystal lattice surfaces |
| US4649557A (en) * | 1983-06-27 | 1987-03-10 | U.S. Philips Corporation | X-ray analysis apparatus including a monochromator crystal having crystal lattice surfaces |
| US4599741A (en) * | 1983-11-04 | 1986-07-08 | USC--Dept. of Materials Science | System for local X-ray excitation by monochromatic X-rays |
| US4752945A (en) * | 1985-11-04 | 1988-06-21 | North American Philips Corp. | Double crystal X-ray spectrometer |
| US4949367A (en) * | 1988-04-20 | 1990-08-14 | U.S. Philips Corporation | X-ray spectrometer having a doubly curved crystal |
| US5757883A (en) * | 1995-04-26 | 1998-05-26 | U.S. Philips Corporation | Method of manufacturing an X-ray optical element for an X-ray analysis apparatus |
| US5914997A (en) * | 1996-12-20 | 1999-06-22 | U.S. Philips Corporation | X-ray spectrometer with an analyzer crystal having a partly variable and a partly constant radius of curvature |
| US6038285A (en) * | 1998-02-02 | 2000-03-14 | Zhong; Zhong | Method and apparatus for producing monochromatic radiography with a bent laue crystal |
| US6259763B1 (en) * | 1999-05-21 | 2001-07-10 | The United States Of America As Represented By The United States Department Of Energy | X-ray imaging crystal spectrometer for extended X-ray sources |
| US20060153332A1 (en) * | 2003-03-27 | 2006-07-13 | Hisayuki Kohno | X-ray fluorescence analyzer |
| US7076025B2 (en) | 2004-05-19 | 2006-07-11 | Illinois Institute Of Technology | Method for detecting a mass density image of an object |
| US20060072702A1 (en) * | 2004-10-04 | 2006-04-06 | Chapman Leroy D | Diffraction enhanced imaging method using a line x-ray source |
| US7330530B2 (en) | 2004-10-04 | 2008-02-12 | Illinois Institute Of Technology | Diffraction enhanced imaging method using a line x-ray source |
| US20100284513A1 (en) * | 2005-09-01 | 2010-11-11 | Jeol Ltd. | Wavelength-dispersive X-ray spectrometer |
| US7864922B2 (en) | 2005-09-01 | 2011-01-04 | Jeol Ltd. | Wavelength-dispersive X-ray spectrometer |
| US20080247511A1 (en) * | 2007-04-03 | 2008-10-09 | Wernick Miles N | Method for detecting a mass density image of an object |
| US7469037B2 (en) | 2007-04-03 | 2008-12-23 | Illinois Institute Of Technology | Method for detecting a mass density image of an object |
| US20100310041A1 (en) * | 2009-06-03 | 2010-12-09 | Adams William L | X-Ray System and Methods with Detector Interior to Focusing Element |
| US20140291518A1 (en) * | 2011-10-28 | 2014-10-02 | Hamamatsu Photonics K.K. | X-ray spectrometry detector device |
Also Published As
| Publication number | Publication date |
|---|---|
| BE669377A (enExample) | 1966-03-08 |
| NL6410514A (enExample) | 1966-03-11 |
| GB1089714A (en) | 1967-11-08 |
| AT257212B (de) | 1967-09-25 |
| DE1598850B2 (de) | 1974-01-24 |
| CH441813A (de) | 1967-08-15 |
| DE1598850C3 (de) | 1974-08-08 |
| DE1598850A1 (de) | 1970-07-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3439163A (en) | X-ray crystal monochromator with a reflecting surface that conforms to part of a logarithmic spiral | |
| US2853617A (en) | Focusing crystal for x-rays and method of manufacture | |
| WO1988001428A1 (en) | Instrumentation for conditioning x-ray or neutron beams | |
| CN110530907B (zh) | X射线吸收测量系统 | |
| US3143651A (en) | X-ray reflection collimator adapted to focus x-radiation directly on a detector | |
| US20150357069A1 (en) | High brightness x-ray absorption spectroscopy system | |
| Riste | Singly bent graphite monochromators for neutrons | |
| US7801272B2 (en) | X-ray diffraction apparatus and X-ray diffraction method | |
| US2922331A (en) | Spectroscopic device | |
| US20020080916A1 (en) | Multilayer optics with adjustable working wavelength | |
| WO2015187219A1 (en) | X-ray absorption measurement system | |
| JPS6020139A (ja) | X線分析装置 | |
| JP2017508160A (ja) | 光干渉デバイス | |
| US5008910A (en) | X-ray analysis apparatus comprising a saggitally curved analysis crystal | |
| Suortti et al. | An X-ray spectrometer for inelastic scattering experiments. II. Spectral flux and resolution | |
| US3013470A (en) | Wedge structure for a double beam spectrophotometer | |
| US20140112452A1 (en) | Double-multilayer Monochromator | |
| US3420138A (en) | Variable angle attenuated total reflection attachment | |
| RU2080669C1 (ru) | Устройство для фокусировки рентгеновского излучения | |
| JPH06167605A (ja) | 光学素子 | |
| JPH02271300A (ja) | X線集光器 | |
| RU2248559C1 (ru) | Фокусирующий монохроматор | |
| Pantojas et al. | A polycapillary-based X-ray optical system for diffraction applications | |
| US2887585A (en) | X-ray diffraction method and apparatus | |
| Peele et al. | Lobster-eye all-sky monitors: A comparison of one-and two-dimensional designs |