US3428610A - Polyurethanes prepared from aromatic amines having alkyl groups in the ortho positions to the amine groups - Google Patents
Polyurethanes prepared from aromatic amines having alkyl groups in the ortho positions to the amine groups Download PDFInfo
- Publication number
- US3428610A US3428610A US548858A US3428610DA US3428610A US 3428610 A US3428610 A US 3428610A US 548858 A US548858 A US 548858A US 3428610D A US3428610D A US 3428610DA US 3428610 A US3428610 A US 3428610A
- Authority
- US
- United States
- Prior art keywords
- groups
- diamine
- parts
- isocyanate
- din
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 125000003277 amino group Chemical group 0.000 title description 18
- 239000004814 polyurethane Substances 0.000 title description 13
- 229920002635 polyurethane Polymers 0.000 title description 13
- 125000000217 alkyl group Chemical group 0.000 title description 3
- 150000004982 aromatic amines Chemical class 0.000 title 1
- 239000012948 isocyanate Substances 0.000 description 27
- 150000002513 isocyanates Chemical class 0.000 description 27
- 229920000728 polyester Polymers 0.000 description 27
- 229920003023 plastic Polymers 0.000 description 22
- 239000004033 plastic Substances 0.000 description 20
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 15
- 150000004984 aromatic diamines Chemical class 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 150000004985 diamines Chemical class 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 239000005056 polyisocyanate Substances 0.000 description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 13
- 125000004432 carbon atom Chemical group C* 0.000 description 13
- 229920001228 polyisocyanate Polymers 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 12
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 11
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 11
- 239000007795 chemical reaction product Substances 0.000 description 10
- 238000012545 processing Methods 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 7
- 239000004721 Polyphenylene oxide Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229920000570 polyether Polymers 0.000 description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 7
- -1 toluylene diamine Chemical class 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 150000002894 organic compounds Chemical class 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920001281 polyalkylene Polymers 0.000 description 5
- 239000004970 Chain extender Substances 0.000 description 4
- 239000001361 adipic acid Substances 0.000 description 4
- 235000011037 adipic acid Nutrition 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 125000005442 diisocyanate group Chemical group 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 150000005846 sugar alcohols Polymers 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 150000003673 urethanes Chemical class 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- JGYUBHGXADMAQU-UHFFFAOYSA-N 2,4,6-triethylbenzene-1,3-diamine Chemical compound CCC1=CC(CC)=C(N)C(CC)=C1N JGYUBHGXADMAQU-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- KZXDETHBUVFJMZ-UHFFFAOYSA-N 2-ethylbenzene-1,3-diamine Chemical compound CCC1=C(N)C=CC=C1N KZXDETHBUVFJMZ-UHFFFAOYSA-N 0.000 description 2
- MWCBGWLCXSUTHK-UHFFFAOYSA-N 2-methylbutane-1,4-diol Chemical compound OCC(C)CCO MWCBGWLCXSUTHK-UHFFFAOYSA-N 0.000 description 2
- RQEOBXYYEPMCPJ-UHFFFAOYSA-N 4,6-diethyl-2-methylbenzene-1,3-diamine Chemical compound CCC1=CC(CC)=C(N)C(C)=C1N RQEOBXYYEPMCPJ-UHFFFAOYSA-N 0.000 description 2
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 2
- ZERULLAPCVRMCO-UHFFFAOYSA-N Dipropyl sulfide Chemical compound CCCSCCC ZERULLAPCVRMCO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 150000001414 amino alcohols Chemical class 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920006295 polythiol Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZTNJGMFHJYGMDR-UHFFFAOYSA-N 1,2-diisocyanatoethane Chemical compound O=C=NCCN=C=O ZTNJGMFHJYGMDR-UHFFFAOYSA-N 0.000 description 1
- ZGDSDWSIFQBAJS-UHFFFAOYSA-N 1,2-diisocyanatopropane Chemical compound O=C=NC(C)CN=C=O ZGDSDWSIFQBAJS-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- ZVDSMYGTJDFNHN-UHFFFAOYSA-N 2,4,6-trimethylbenzene-1,3-diamine Chemical group CC1=CC(C)=C(N)C(C)=C1N ZVDSMYGTJDFNHN-UHFFFAOYSA-N 0.000 description 1
- PISLZQACAJMAIO-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine Chemical compound CCC1=CC(C)=C(N)C(CC)=C1N PISLZQACAJMAIO-UHFFFAOYSA-N 0.000 description 1
- KELUYBRGBRRUCW-UHFFFAOYSA-N 2,4-diethylbenzene-1,3-diamine Chemical compound CCC1=CC=C(N)C(CC)=C1N KELUYBRGBRRUCW-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical group CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 1
- VSOJIKTXJSNURZ-UHFFFAOYSA-N 3,4-dimethylcyclohexa-1,5-diene-1,4-diamine Chemical group CC1C=C(N)C=CC1(C)N VSOJIKTXJSNURZ-UHFFFAOYSA-N 0.000 description 1
- WDBZEBXYXWWDPJ-UHFFFAOYSA-N 3-(2-methylphenoxy)propanoic acid Chemical compound CC1=CC=CC=C1OCCC(O)=O WDBZEBXYXWWDPJ-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- HTIRHQRTDBPHNZ-UHFFFAOYSA-N Dibutyl sulfide Chemical compound CCCCSCCCC HTIRHQRTDBPHNZ-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- VSSAZBXXNIABDN-UHFFFAOYSA-N cyclohexylmethanol Chemical compound OCC1CCCCC1 VSSAZBXXNIABDN-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- TZMQHOJDDMFGQX-UHFFFAOYSA-N hexane-1,1,1-triol Chemical compound CCCCCC(O)(O)O TZMQHOJDDMFGQX-UHFFFAOYSA-N 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N o-dimethylbenzene Natural products CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- SQYNKIJPMDEDEG-UHFFFAOYSA-N paraldehyde Chemical compound CC1OC(C)OC(C)O1 SQYNKIJPMDEDEG-UHFFFAOYSA-N 0.000 description 1
- 229960003868 paraldehyde Drugs 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- YODZTKMDCQEPHD-UHFFFAOYSA-N thiodiglycol Chemical compound OCCSCCO YODZTKMDCQEPHD-UHFFFAOYSA-N 0.000 description 1
- 229950006389 thiodiglycol Drugs 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- VOZKAJLKRJDJLL-UHFFFAOYSA-N tolylenediamine group Chemical group CC1=C(C=C(C=C1)N)N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S528/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S528/903—Polymerizing or processing an isocyanate under substantially anhydrous conditions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S528/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S528/906—Fiber or elastomer prepared from an isocyanate reactant
Definitions
- Cross-linked polyurethanes are prepared by reacting (1) one equivalent of an intermediate containing between 0.5 percent and percent free NCO groups with (2) between 0.8 and 1.2 equivalents of an aromatic diamine having (i) one linear alkyl substituent of 1 to 3 carbon atoms in an ortho position to one amino group and two linear alkyl substituents of l to 3 carbon atoms in both ortho positions to the other amino group, or (ii) two linear alkyl substituents of 1 to 3 carbon atoms in both ortho positions of both amino groups.
- This invention relates to crosslinked polyurethane plastics and to a method of preparing the same. More particularly, it relates to new crosslinked polyurethane using different extenders.
- plastics having elastomeric properties by the isocyanate polyaddition process.
- linear polyesters having terminal OH-groups can be reacted with an excess of diisocyanates and the poly ester urethanes containing isocyanate groups which are formed are then reacted with aromatic diamines at relatively high temperatures to yield a melt which can be cast. After shaping, this melt is cured by heating for several hours at 100 C.
- a preliminary condition in this respect is that the NCO-polyester urethanes do not react too quickly with the diamines serving as chain-extending agents, in order that an appropriate processing time in the liquid phase is guaranteed.
- aromatic diamines which have proved especially suitable are those which comprise additional chlorine substituents in the benzene ring, for example, -o-dichlorobenzidine, 2,5-dichloro-phenylene-1,4-diamine, 4,6-dichloro-phenylene-l,3 diamine and 3,3'-dichloro-4,4-d'iaminodiphenylmethane (as well as toluylene diamine, when it is used in conjunction with hexamethylene diisocyanate).
- the decided disadvantage of this process is that the state of cross linking of the cast (or injectionmolded) specimens is only reached by subsequent heating for 4 to 12 hours at 100 C.
- plastics by the isocyanate polyaddition process at a temperature which is not raised or is only slightly raised by adding, to the reaction mixtures, catalysts which strongly accelerate the reactions between isocyanate and amines, on the one hand, and isocyanate and the forming urea compounds, on the other hand.
- this method has the disadvantage that the plastics containing the catalyst are substantially impaired as regards their hydrolysis stability and thermostability.
- Another object of this invention is to provide improved crosslinked polyurethane plastics. Another object of this invention is to provide an improved method of preparing polyurethane plastics. It is still another object 'ice of this invention to provide polyurethane plastics with good mechanical properties in combination with high rebound elasticity. It is a further object to provide a process which yields solid elastomers in a short time even when conducted at room temperature.
- crosslinked polyurethane plastics by reacting an intermediate having terminal NCO groups and prepared from an organic compound having at least two active hydrogen atoms, as determined 'by the Zerewitinolf test, which atoms are reactive with NCO groups, the compound having a molecular weight higher than about 300 and an excess of an organic polyisocyanate with an aromatic diamine having at least one linear alkyl substituent of 1 to 3 carbons atoms in the o-position to each amino group.
- Crosslinked plastics of high molecular weight are produced according to the invention at room temperature in a simple manner by the isocyanate polyaddition process without adding catalysts, which plastics are distinguished by good mechanical properties with simultaneously high rebound elasticity.
- the cured materials are insoluble and no longer can be shaped or deformed by action of heat.
- a reaction product comprising free NCO-groups is first of all prepared in a manner known per se, for example by reacting an organic compound with at least two active hydrogen atoms and a molecular weight of at least 300 with aliphatic, cycloaliphatic or aromatic polyisocyanates while heating to to C.
- the procedure which can be adopted is for the organic compound with the reactive hydrogen atoms to be reacted with a large excess of polyisocyanate and subsequently for the excess polyisocy-anate to be removed under reduced pressure at high temperature.
- reaction can take place with a quantity of isocyanate calculated in such manner that there is the required excess of NCO-groups to each OH-group.
- the mixture is heated for so long to relatively high temperature that the theoretically calculated NCO-content is reached or is not quite reached.
- the adducts which are obtained should comprise 0.5 to 15% and advantageously 2 to 7% of free NCO-groups.
- free polyisocyanates can also be added to the isocyanate initial adducts within the limits indicated above.
- Any suitable organic compounds having active hydrogen atoms and a molecular weight of at least 300 can be used, such as, for example, linear or slightly branched hydroxyl polyesters, with molecular weights up to 6000 and advantageously between 1000 and 3000, polyhydric polyalkylene ethers, polythioethers, polyacetals and the like.
- Any suitable hydroxyl polyester may be used such as, for example, the reaction product of a polycarboxylic acid and a polyhydric alcohol.
- Any suitable polycarboxylic acid may be used in the preparation of the hydroxyl polyester such as, for example, adipic acid, succinic acid, sebacic acid, oxalic acid, methyl adipic acid, glutaric acid, pimelic acid, azelaic acid, phthalic acid, terephthalic acd, isophthalic acid, thiodipropionie acid, maleic acid, fumaric acid, citraconic acid, itaconic acid and the like.
- any suitable polyhydric alcohol may be used in the reaction with the polycarboxylic acid to form a polyester such as, for example, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, amylene glycol, hexanediol, bis (hydroxy methyl-cyclohexane) and the like.
- the hydroxyl polyester may contain urethane groups, urea groups, amide groups, chalkogen groups and the like.
- the hydroxyl terminated polyester includes, in addition to hydroxyl terminated polyesters, also hydroxyl terminated polyester amides, polyester urethanes, polyetheresters and the like.
- Any suitable polyester amide may be used such as, for example, the reaction product of a diamine or an amino alcohol with any of the compositions set forth for preparing polyesters.
- Any suitable amine may be used such as, for example, ethylene diamine, propylene diamine, tolylene diamine and the like.
- Any suitable amino alcohol such as, for example, beta-hydroxy ethyl-amine and the like may be used.
- Any suitable polyester urethane may be used such as, for example, the reaction of any of the above-mentioned polyesters or polyester amides with a de- -ficiency of an organic polyisocyanate to produce a compound having terminal hydroxyl groups. Any of the polyisocyanates set forth hereinafter may be used to prepare such compounds.
- Any suitable polyetherester may be used as the organic compound containing terminal hydroxyl groups such as, for example, the reaction product of an ether glycol and a polycarboxylic acid such as those mentioned above, with relation to the preparation of polyesters.
- Any suitable i ether glycol may be used such as, for example, diethylene glycol, triethylene glycol, l,4-phenylene-bis-hydroxy ethyl ether, 2,2-diphenyl propane-4,4-bis-hydroxy ethyl ether and the like.
- Any suitable polyhydric polyalkylene ether may be used such as, for example, the condensation product of an alkylene oxide with a small amount of a compound con taining active hydrogen containing groups such as, for example, water, ethylene glycol, propylene glycol, butylene glycol, amylene glycol, trimethylol propane, glycerine, pentaerythritol, hexanetriol and the like.
- Any suitable alkylene oxide condensate may also be used such as, for example, the condensates of ethylene oxide, propylene oxide, butylene oxide, amylene oxide and mixtures thereof.
- the polyalkylene ethers prepared from tetrahydrofuran may be used.
- polyhydric polyalkylene ethers may be prepared by any known process such as, for example, the process described by Wurtz in 1859 and in the Encyclopedia of Chemical Technology, volume 7, pages 257-262, published by Interscience Publishers in 1951 or in US. Patent 1,922,459.
- Any suitable polyhydric polythioether may be used such as, for example, the reaction product of one of the aforementioned alkylene oxides used in the preparation of the polyhydric polyalkylene ether with a polyhydric thioether such as, for example, thiodiglycol, 3,3'-dihydroxy propyl sulfide, 4,4'-dihydroxy butyl sulfide, 1,4-(beta-hydroxy ethyl) phenylene dithioether and the like.
- a polyhydric thioether such as, for example, thiodiglycol, 3,3'-dihydroxy propyl sulfide, 4,4'-dihydroxy butyl sulfide, 1,4-(beta-hydroxy ethyl) phenylene dithioether and the like.
- Any suitable polyacetal may be used such as, for example, the reaction product of an aldehyde with a polyhydric alcohol.
- Any suitable aldehyde may be used such as, for example, formaldehyde, paraldehyde, butyraldehyde and the like.
- Any of the polyhydric alcohols mentioned above with relation to the preparation of hydroxyl polyesters may be used.
- Any suitable organic polyisocyanate may be used such as aliphatic polyisocyanate having the formula OCN-(CH ),,NCO
- 11:2 to 8 such as ethylene diisocyanate, propylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate and the like, cyclohexylene-l,4-diisocyanate and cyclohexylene-1,3-diisocyanate, hexahydrotoluylene- 2,4-diisocyanate and hexahydrotoluylene-2,6-diisocyanate, dicyclohexylmethane-4,4-diisocyanate, aromatic diisocyanates such as toluylene-2,4-diisocyanate and toluylene- 2,6-diisocyanate, phenylene-1,4-diisocyanate and phenylene-1,3 diisocyanate, diphenylmethane-4,4-diisocyanate, naphthylene-1,5-diisocyanate or even also
- Any suitable aromatic diamine having at least one linear alkyl substituent with 1 to 3 carbon atoms in the o-position may be used as chain-extenders such as, for example, toluylene-2,6-diamine, 2,5-diaminoxylene, 1,3-diethyl-2,4- diaminobenzene, 2,4-diaminomesitylene, l ethyl 2,6-diaminobenzene, l methyl-3,5-diethyl-2,4-diaminobenzene, 1-methyl-3,5-diethyl 2,6 diaminobenzene, 1,3,5-triethyl- 2,6-diaminobenzene, 3,5,3,5-tetraethyl 4,4 diaminodiphenylmethane and 2,6-diethylnaphthylene-1,5-diamine.
- chain-extenders such as, for example, toluylene-2,6-
- diamines which are either liquid or in dissolved state. It is further preferred to use diamines which have at least one linear alkyl substituent in ortho position to the one amino group and two alkyl substituents with 1 to 3 carbon atoms in both the ortho positions of the other amino group. Most preferred are those diamines which have an alkyl substituent in all ortho positions to both amino groups.
- aromatic diamines can also be used in admixture and in additon also in combination with other aromatic diamines.
- aromatic diamines having at least one linear alkyl substituent in the o-position to the first amino group and two linear alkyl substituents with 1 to 3 carbon atoms in the o-position to the second amino group, and also naphthylene diamines which comprise at least one linear alkyl substituent with 1 to 3 carbon atoms in the 0- position to each amino group and more especially aromatic diamines which comprise a linear alkyl substituent with 1 to 3 carbon atoms in both o-positions to each amino group.
- the diamines to be used according to the invention are added as chain extenders to the reaction product comprising free NCO-groups at room temperature or, in those cases in which there is a solid product at room temperature, they are added at a moderately elevated temperature which is generally up to about 50 C., and care is taken that thorough mixing takes place.
- a moderately elevated temperature which is generally up to about 50 C.
- the mixture passing by way of a plastic state and after complete setting into the cross-linked insoluble final state.
- the material Before the material loses its capacity to flow, it should be worked, and this can, for example, be carried out by brushing, casting, injection-molding, spraying or centrifuging. Films, plates, solid molded elements and the like are obtained in this way.
- the curing in order to obtain the maximum mechanical properties of the products to be obtained takes a few hours up to days.
- the curing process can be shortened by a heat treatment.
- a proportion of diamine is expediently so chosen that the ratio between NCO- and NH -groups is within the limits of 120.8 to 1.2, harder or softer products being the result. Generally, a ratio of 120.95 to 1:1.05 is chosen.
- the hardness and mechanical properties of the plastics which are obtained can moreover be varied, as already mentioned, by adding free polyisocyanates to the isocyanate initial adducts and reacting these mixtures with the corresponding quantity of chain-extender. Since the reaction is accelerated by this step, it is obvious that only limited quantities of free polyisocyanate can be added, and the admixture of less reactive aliphatic polyisocyanates can again be greater than that of the reactive aromatic polyisocyanatcs.
- a number of the diamines used according to the invention as chain-extenders exist in liquid form at room temperature: for example, 2-ethyl- 1,3-diaminobenzene, l-methyl 3,5 diethyl-2,4-diaminobenzene or a mixture of these with 1-methyl-3,5-diethyl- 2,6-diaminobenzene an'd 1,3,5-triethyl 2,4 diaminobenzene.
- the processing times vary between 3 and 45 minutes.
- the use of highly substituted aromatic diamines permits a lengthening of the processing time, while initial adducts with a high isocyanate content cause a shortening thereof.
- any mechanical processing methods for the production of the plastics which permit a continuous mixing of the reaction product comprising NCO-groups with the aromatic diamines to be used according to the invention.
- many different types of molded articles can be produced by casting or by centrifugal casting.
- Other uses are presented in the field of the sealing compositions for sealing joints or packing pipe connections, and also as floor or road surfaces, as a printing composition or as adhesives.
- Freely supporting foils can also be produced in a simplest possible manner or textiles or paper can be impregnated or coated therewith.
- the high speed at which the reaction can be carried out permits the rubberizing of vertical surfaces and thus, for example, the lining of containers.
- the composition can also be used with continuously operating injection molding machines for the production of endless flexible tubes of any profile.
- Example 1 About 1000 parts of a linear polypropylene glycol (OH number 113) are dehydrated in vacuo at 130 C. for about one hour. It is allowed to cool to about 60 C. and about 1200 parts of hexamethylene diisocyanate are added. The mixture is heated while stirring for about 4 hours to about 130 C. Excess hexamethylene diisocyanate is distilled off in a rotary evaporator up to 140 C./0.1 mm. Hg. A thinly liquid polyether isocyanate is obtained, which comprises 6.3% of free isocyanate groups and a viscosity of 1650 cp./ 25 C.
- polyester isocyanate About 250 parts of the polyester isocyanate are thoroughly mixed at room temperature and for two minutes with about 19.6 parts of 1-methyl-3,5-diethylphenylene-2,4-diamine and poured into a mold. The mold can be emptied after about 20 minutes.
- the transparent, homogeneous plastic plate which is obtained is stored for two days and then has the following physical properties:
- Example 3 About 250 parts by weight of the polyester isocyanate of Example 3 are reacted with a solution of about 16.5 parts of 1,3,S-trimethylphenylene-2,4-diamine in about 22 parts by volume of tetrahydrofuran under the same conditions as Example 3. After storing for about 8 days until the weight is constant, a plastic paint is obtained which has the following material values:
- Example 7 A polyether isocyanate comprising about 5.6% of free NCO-groups is prepared from about 1000 parts of a linear polypropylene glycol (OH number 113) and about 1500 parts of toluylene-2,4-diisocyanate and toluylene- 2,6-diisocyanate in the isomer ratio of 65:35 by these being heated for about one hour to about 130 C., as in Example 1.
- the polyester isocyanate which has 4.3% of free NCO-groups is in the form of a waxy mass.
- polyester isocyanate About 244 parts of the polyester isocyanate are dissolved in about 60 parts of anhydrous acetone. Abou 22.2 parts or 1-methyl-3,5-diethylphenylene-2,4-diamine are incorporated by stirring into this solution, which is evacuated for a short time in order to remove the main quantity of the acetone and then the melt is cast into a plate. After stirring for about 8 days until the weight is constant, the resulting transparent plastic element has the following technical properties:
- Example 9 A polyether isocyanate which has 3.5% of free NCO- groups and a viscosity of 1946 cp./25 C. is prepared from about 1000 parts of a linear polypropylene glycol (OH number 56) and about 1000 parts of hexamethylene diisocyanate being heated for about 4 hours to about 130 C., as in Example 3.
- Phenylene-1,3-diamine 52 41 Soft plate with little elasticity, moderate mechanical properties.
- Example '10 A polyester isocyanate comprising 5.2% of free isocyanate groups and in the form of a waxy mass, is prepared from about 1000 parts of a polyester of ethylene glycol and adipic acid (OH number 56; acid number 1) and about 1000 parts of hexamethylene diisocyanate by heating for about 30 minutes to about 110 C., as in Example 3.
- polyester isocyanate About 50 parts of the polyester isocyanate are dissolved together with about 5.5 parts of a mixture of 65 parts of 1-methyl-3,5-diethylphenylene-Z,4-diamine and 35 parts of l-methyl-3,S-diethylphenylene-Z,6-diamine in about 150 parts by volume of tetrahydrofuran and this solution is poured onto a grease-free glass plate. After about 2 hours, a crystal clear foil with a thickness of about 0.3 to 0.5 mm. can be detached therefrom and this foil is stored for about 8 days to remove any solvent which may still be present. Thereafter, the following physical measurement values are established:
- a cross-linked polyurethane prepared by reacting (1) one equivalent of an intermediate containing between 0.5 percent and 15 percent free NCO groups prepared by reacting an organic polyisocyanate with an organic compound having at least two active hydrogen atoms as determined by the Zerewitinofi test with (2) between 0.8 to 1.2 equivalents of a liquid aromatic diamine having (i) one linear alkyl substituent of 1 to 3 carbon atoms in an o-position to one amino group and two linear alkyl substitutents of 1 to 3 carbon atoms in both o-positions to the other amino groups, or (ii) two linear alkyl substitutents of 1 to 3 carbon atoms in both o-positions of both amino groups.
- polyurethane of claim 1 wherein the aromatic diamine has at least one linear alkyl substituent in the o-position to the first amino group and two linear alkyl substituents with 1 to 3 carbon atoms in the o-position to the second amino group.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEF46056A DE1240654B (de) | 1965-05-14 | 1965-05-14 | Verfahren zur Herstellung vernetzter Kunststoffe nach dem Isocyanat-Polyadditions-Verfahren |
Publications (1)
Publication Number | Publication Date |
---|---|
US3428610A true US3428610A (en) | 1969-02-18 |
Family
ID=7100811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US548858A Expired - Lifetime US3428610A (en) | 1965-05-14 | 1966-05-10 | Polyurethanes prepared from aromatic amines having alkyl groups in the ortho positions to the amine groups |
Country Status (4)
Country | Link |
---|---|
US (1) | US3428610A (en:Method) |
BE (1) | BE680987A (en:Method) |
DE (1) | DE1240654B (en:Method) |
GB (1) | GB1148454A (en:Method) |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE28541E (en) * | 1969-04-23 | 1975-09-02 | Diamine-curable polyurethane compositions | |
US4054556A (en) * | 1972-09-15 | 1977-10-18 | E. I. Du Pont De Nemours And Company | Polyurethanes cured with derivatives of 2,4-diamino-benzoic acid |
US4093759A (en) * | 1972-12-23 | 1978-06-06 | Toyo Ink Manufacturing Co., Ltd. | Glass container coated with polyurethane |
US4208507A (en) * | 1977-07-14 | 1980-06-17 | Basf Aktiengesellschaft | Polyurethane-urea elastomers and their production |
US4210728A (en) * | 1978-01-03 | 1980-07-01 | Basf Wyandotte Corporation | Preparation of high resiliency polyurethane foams |
US4218543A (en) * | 1976-05-21 | 1980-08-19 | Bayer Aktiengesellschaft | Rim process for the production of elastic moldings |
US4298701A (en) * | 1979-04-24 | 1981-11-03 | Bayer Aktiengesellschaft | Process for the production of elastic shaped articles |
US4309378A (en) * | 1979-08-16 | 1982-01-05 | Bayer Aktiengesellschaft | Process for the production of pneumatic tires having particularly high dynamic strength |
US4324867A (en) * | 1980-10-06 | 1982-04-13 | Basf Wyandotte Corporation | Process for the preparation of molded polyurethane-polyurea elastomers and molded parts prepared thereby |
FR2495166A1 (fr) * | 1980-08-27 | 1982-06-04 | Upjohn Co | Polymeres de polyurethanne et leur preparation |
US4374210A (en) * | 1981-09-18 | 1983-02-15 | The Upjohn Company | Polyurea-polyurethane from a mixture of a polyol, an aromatic diamine, and an isocyanate-terminated prepolymer |
US4379105A (en) * | 1980-07-21 | 1983-04-05 | Mobay Chemical Corporation | Process for the production of elastic shaped articles |
US4389454A (en) * | 1980-04-12 | 1983-06-21 | Basf Aktiengesellschaft | Molded foamed polyurethane part having a lightweight skin and a process for its manufacture |
EP0082258A1 (en) * | 1981-12-21 | 1983-06-29 | The Dow Chemical Company | Substituted m-phenylenediamines |
US4396729A (en) * | 1982-04-23 | 1983-08-02 | Texaco Inc. | Reaction injection molded elastomer containing an internal mold release made by a two-stream system |
US4433067A (en) * | 1982-04-23 | 1984-02-21 | Texaco Inc. | Reaction injection molded elastomers prepared from amine terminated polyethers, amine terminated chain extender and aromatic polyisocyanate |
US4444910A (en) * | 1982-04-23 | 1984-04-24 | Texaco Inc. | Reaction injection molded elastomers made using a polyurethane organometallic catalyst amine terminated polyethers amine terminated chain extender and aromatic polyisocyanate |
US4459399A (en) * | 1981-09-18 | 1984-07-10 | Ethyl Corporation | Polyurethanes and process therefor |
US4463126A (en) * | 1982-02-03 | 1984-07-31 | Bayer Aktiengesellschaft | Coatings prepared from prepolymers and aromatic diamines having at least one alkyl substituent in an ortho position to each amino group |
US4482690A (en) * | 1984-02-09 | 1984-11-13 | Air Products And Chemicals, Inc. | Process for the production of polyurethane urea elastomers |
EP0124843A1 (en) * | 1983-05-09 | 1984-11-14 | Mobay Chemical Corporation | Process and composition for the production of polyurethane elastomer moldings |
US4526905A (en) * | 1982-07-06 | 1985-07-02 | Ethyl Corporation | Polyurethanes from dialkyl diaminobenzenes and processes therefor |
EP0154768A1 (de) * | 1984-01-19 | 1985-09-18 | Bayer Ag | Verfahren zur Herstellung von Polyurethanen, Polyurethane mit aromatischen Aminoendgruppen und ihre Verwendung |
US4546167A (en) * | 1984-07-30 | 1985-10-08 | American Cyanamid Company | P-TMXDI Polyurethane elastomers with good compression set properties |
US4581433A (en) * | 1985-04-29 | 1986-04-08 | Mobay Corporation | Elastomer polyurethane-polyurea coatings based on bis(4-isocyanatocyclohexyl)methane |
US4636531A (en) * | 1984-02-17 | 1987-01-13 | Basf Aktiengesellschaft | Process for the preparation of optionally cellular polyurethane polyurea molded parts with improved demolding characteristics |
US4698371A (en) * | 1984-02-10 | 1987-10-06 | Basf Aktiengesellschaft | Process for the preparation of optionally cellular polyurethane-polyurea molded parts using urethane group- and isocyanurate group-containing 2,4- and/or 2,6-toluene diisocyanates |
US4714778A (en) * | 1986-03-07 | 1987-12-22 | Air Products And Chemicals, Inc. | Alkenylated toluenediamines for use in preparing polyurethane/urea systems |
US4745223A (en) * | 1984-10-11 | 1988-05-17 | Air Products And Chemicals, Inc. | Mono-tertiary-alkylated toluenediamine and derivatives |
US4792623A (en) * | 1981-12-21 | 1988-12-20 | The Dow Chemical Company | Meta-phenylene-diamines |
US4816543A (en) * | 1984-10-11 | 1989-03-28 | Air Products And Chemicals, Inc. | Polyurethane system using monotertiary-alkyltoluenediamine as a cross linker |
US4845291A (en) * | 1986-12-24 | 1989-07-04 | Air Products And Chemicals, Inc. | Cycloalkenyl aryldiamines |
US4866208A (en) * | 1981-12-21 | 1989-09-12 | The Dow Chemical Company | Meta-phenylene diamine derivatives |
US4868225A (en) * | 1981-12-21 | 1989-09-19 | The Dow Chemical Company | Novel product |
JPH0288616A (ja) * | 1988-08-13 | 1990-03-28 | Bayer Ag | ウレタン基を有するポリ尿素エラストマーの製造方法 |
US4931487A (en) * | 1988-03-04 | 1990-06-05 | Dow Chemical Company | Chain extenders for polyurethanes |
US4945120A (en) * | 1984-09-15 | 1990-07-31 | Richard Kopp | Process for the production of polyurethane foams using sterically hindered aromatic diamines |
EP0371916A3 (en) * | 1988-11-21 | 1990-09-12 | Ciba-Geigy Ag | Curable casting resins based on polyurethane, and amine curing agent for these resins |
US4978791A (en) * | 1984-07-06 | 1990-12-18 | Lonza Ltd. | Substituted P,P'-methylene-bis-aniline |
US5001166A (en) * | 1989-01-25 | 1991-03-19 | Robson Mafoti | Novel polyetherester based prepolymers and elastomers made therefrom |
US5026815A (en) * | 1989-03-17 | 1991-06-25 | Lonza Ltd. | Chain-lengthening agents for p-phenylene-methylenediisocyanate-prepolymers for cast polyurethane elastomers |
US5066761A (en) * | 1988-11-21 | 1991-11-19 | Ciba-Geigy Corporation | Curable polyurethane casting systems and amine hardeners therefor |
US5141967A (en) * | 1989-07-28 | 1992-08-25 | Miles Inc. | Process for the preparation of polyurea-polyurethane elastomers |
US5151484A (en) * | 1991-01-26 | 1992-09-29 | Bayer Aktiengesellschaft | Isocyanate prepolymers containing ether and ester groups a process for their preparation and their use for the production of coating, sealing or casting composition |
EP0490158A3 (en) * | 1990-12-08 | 1992-10-28 | Bayer Ag | Process for the preparation of polyurethane coatings |
EP0193872B1 (en) * | 1985-03-04 | 1993-03-31 | Ethyl Corporation | Di(alkylthio) diamine chain extenders for polyurethane elastomers |
US5238973A (en) * | 1991-05-08 | 1993-08-24 | Bayer Aktiengesellschaft | Process for the preparation of polyurea elastomers containing urethane groups |
US5262448A (en) * | 1989-05-04 | 1993-11-16 | Bayer Aktiengesellschaft | Process for the preparation of polyurea elastomers containing urethane groups |
US5371288A (en) * | 1994-04-13 | 1994-12-06 | Air Products And Chemicals, Inc. | Branched alkyl-containing aminobenzamides as chain extenders in polyurethane-urea elastomers |
US5453478A (en) * | 1993-05-04 | 1995-09-26 | Air Products And Chemicals, Inc. | Ortho-alkylated tolidines |
US5574124A (en) * | 1994-08-17 | 1996-11-12 | Bayer Aktiengesellschaft | Isocyanate prepolymers, a process for their preparation and their use |
US5719307A (en) * | 1994-04-13 | 1998-02-17 | Air Products And Chemicals, Inc. | Diamine chain extenders and method of use |
FR2764893A1 (fr) * | 1997-06-20 | 1998-12-24 | Roland Alexandre Ganga | Elastomeres polyurethannes-polyurees a tres haute tenue en temperature et/ou ignifuges |
US20040068079A1 (en) * | 2002-10-07 | 2004-04-08 | Meike Niesten | Two-component systems for producing elastic coatings |
US20070015894A1 (en) * | 2003-02-19 | 2007-01-18 | Heijkants Ralf Guillaume J C | Method for the preparation of new segmented polyurethanes with high tear and tensile strengths and method for making porous scaffolds |
US20070078255A1 (en) * | 2005-10-04 | 2007-04-05 | Bayer Materialscience Ag | Two-component systems for producing flexible coatings |
US20080262187A1 (en) * | 2005-12-30 | 2008-10-23 | Albemarle Corporation | Blends of Diamines Having Reduced Color |
DE102008024352A1 (de) | 2008-05-20 | 2009-11-26 | Bayer Materialscience Ag | Polyharnstoffzusammensetzung |
EP2143707A2 (en) | 2005-03-28 | 2010-01-13 | Albermarle Corporation | Secondary diamine |
DE102009007194A1 (de) | 2009-02-03 | 2010-08-05 | Bayer Materialscience Ag | Flexible Beschichtungen |
DE102009007228A1 (de) | 2009-02-03 | 2010-08-05 | Bayer Materialscience Ag | Beschichtungen |
DE102010031682A1 (de) | 2010-07-20 | 2012-01-26 | Bayer Materialscience Ag | Bindemittelkombinationen für konstruktive Trinkwasserrohrbeschichtungen |
WO2020016292A1 (en) | 2018-07-20 | 2020-01-23 | Covestro Deutschland Ag | A coating composition |
CN110734693A (zh) * | 2018-07-20 | 2020-01-31 | 科思创德国股份有限公司 | 一种涂料组合物 |
EP3626755A1 (en) | 2018-09-24 | 2020-03-25 | Covestro Deutschland AG | A coating composition |
WO2022002808A1 (en) | 2020-06-29 | 2022-01-06 | Covestro Deutschland Ag | Polyether-modified polyisocyanate composition |
WO2022002679A1 (en) | 2020-06-29 | 2022-01-06 | Covestro Deutschland Ag | Two-component coating composition |
EP3988596A1 (en) | 2020-10-26 | 2022-04-27 | Covestro Deutschland AG | Polyether-modified polyisocyanate composition |
EP3988597A1 (en) | 2020-10-26 | 2022-04-27 | Covestro Deutschland AG | Two-component coating composition |
US12234373B2 (en) | 2018-09-20 | 2025-02-25 | Akzo Nobel Coatings International B.V. | Two-component coating composition, method for coating a substrate, coated substrate, and use of such coating composition for improving erosion resistance |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CS184491B1 (en) * | 1975-08-29 | 1978-08-31 | Eduard Mueck | Ambroz,ludvik,cs |
DE2622951B2 (de) * | 1976-05-21 | 1979-09-06 | Bayer Ag, 5090 Leverkusen | Verfahren zur Herstellung von elastischen Fonnkörpern |
DE2837501A1 (de) * | 1978-08-28 | 1980-03-20 | Basf Ag | Transparente, elastische polyurethan-harnstoff-elastomere |
US4219502A (en) * | 1979-06-01 | 1980-08-26 | Ethyl Corporation | Aromatic amine alkylation process |
US4456541A (en) * | 1981-04-24 | 1984-06-26 | Ethyl Corporation | Antioxidant diamine |
US4439553A (en) * | 1983-01-17 | 1984-03-27 | W. R. Grace & Co. | High molecular weight aromatic amine scavengers and method of use |
US4631298A (en) * | 1985-12-16 | 1986-12-23 | Ethyl Corporation | Mixed diamine chain extender |
DE3811645A1 (de) * | 1988-04-07 | 1989-10-26 | Behnje Hans Joachim | Verfahren zur herstellung von einstueckgussprothesen fuer den zahnersatz |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2888439A (en) * | 1957-08-16 | 1959-05-26 | Du Pont | Polyurethane diamines |
US2929804A (en) * | 1955-01-31 | 1960-03-22 | Du Pont | Elastic filaments of linear segmented polymers |
US2929800A (en) * | 1951-07-19 | 1960-03-22 | Du Pont | Polytetramethylene ether polyurethane polymers |
GB869562A (en) * | 1958-08-18 | 1961-05-31 | Us Rubber Co | Improvements in polyurethane elastomers |
DE1131398B (de) * | 1960-12-15 | 1962-06-14 | Bayer Ag | Verfahren zur Herstellung von hochmolekularen vernetzten, Urethangruppen aufweisenden Kunststoffen |
US3188302A (en) * | 1959-01-30 | 1965-06-08 | Du Pont | Diamine cured fluid polyether urethane compositions |
US3194793A (en) * | 1961-12-13 | 1965-07-13 | Du Pont | Polyurethanes cured with mixtures of aromatic primary and secondary diamines |
-
1965
- 1965-05-14 DE DEF46056A patent/DE1240654B/de active Pending
-
1966
- 1966-05-10 US US548858A patent/US3428610A/en not_active Expired - Lifetime
- 1966-05-13 BE BE680987D patent/BE680987A/xx unknown
- 1966-05-13 GB GB21451/66A patent/GB1148454A/en not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2929800A (en) * | 1951-07-19 | 1960-03-22 | Du Pont | Polytetramethylene ether polyurethane polymers |
US2929804A (en) * | 1955-01-31 | 1960-03-22 | Du Pont | Elastic filaments of linear segmented polymers |
US2888439A (en) * | 1957-08-16 | 1959-05-26 | Du Pont | Polyurethane diamines |
GB869562A (en) * | 1958-08-18 | 1961-05-31 | Us Rubber Co | Improvements in polyurethane elastomers |
US3105062A (en) * | 1958-08-18 | 1963-09-24 | Us Rubber Co | Method of making shaped polyurethane elastomer |
US3188302A (en) * | 1959-01-30 | 1965-06-08 | Du Pont | Diamine cured fluid polyether urethane compositions |
DE1131398B (de) * | 1960-12-15 | 1962-06-14 | Bayer Ag | Verfahren zur Herstellung von hochmolekularen vernetzten, Urethangruppen aufweisenden Kunststoffen |
US3194793A (en) * | 1961-12-13 | 1965-07-13 | Du Pont | Polyurethanes cured with mixtures of aromatic primary and secondary diamines |
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE28541E (en) * | 1969-04-23 | 1975-09-02 | Diamine-curable polyurethane compositions | |
US4054556A (en) * | 1972-09-15 | 1977-10-18 | E. I. Du Pont De Nemours And Company | Polyurethanes cured with derivatives of 2,4-diamino-benzoic acid |
US4093759A (en) * | 1972-12-23 | 1978-06-06 | Toyo Ink Manufacturing Co., Ltd. | Glass container coated with polyurethane |
US4218543A (en) * | 1976-05-21 | 1980-08-19 | Bayer Aktiengesellschaft | Rim process for the production of elastic moldings |
US4208507A (en) * | 1977-07-14 | 1980-06-17 | Basf Aktiengesellschaft | Polyurethane-urea elastomers and their production |
US4210728A (en) * | 1978-01-03 | 1980-07-01 | Basf Wyandotte Corporation | Preparation of high resiliency polyurethane foams |
US4298701A (en) * | 1979-04-24 | 1981-11-03 | Bayer Aktiengesellschaft | Process for the production of elastic shaped articles |
US4309378A (en) * | 1979-08-16 | 1982-01-05 | Bayer Aktiengesellschaft | Process for the production of pneumatic tires having particularly high dynamic strength |
US4389454A (en) * | 1980-04-12 | 1983-06-21 | Basf Aktiengesellschaft | Molded foamed polyurethane part having a lightweight skin and a process for its manufacture |
US4379105A (en) * | 1980-07-21 | 1983-04-05 | Mobay Chemical Corporation | Process for the production of elastic shaped articles |
FR2495166A1 (fr) * | 1980-08-27 | 1982-06-04 | Upjohn Co | Polymeres de polyurethanne et leur preparation |
US4324867A (en) * | 1980-10-06 | 1982-04-13 | Basf Wyandotte Corporation | Process for the preparation of molded polyurethane-polyurea elastomers and molded parts prepared thereby |
US4374210A (en) * | 1981-09-18 | 1983-02-15 | The Upjohn Company | Polyurea-polyurethane from a mixture of a polyol, an aromatic diamine, and an isocyanate-terminated prepolymer |
EP0075130A3 (en) * | 1981-09-18 | 1983-05-25 | The Upjohn Company | Improved reaction injection molding process |
US4459399A (en) * | 1981-09-18 | 1984-07-10 | Ethyl Corporation | Polyurethanes and process therefor |
EP0082258A1 (en) * | 1981-12-21 | 1983-06-29 | The Dow Chemical Company | Substituted m-phenylenediamines |
US4792623A (en) * | 1981-12-21 | 1988-12-20 | The Dow Chemical Company | Meta-phenylene-diamines |
US4868225A (en) * | 1981-12-21 | 1989-09-19 | The Dow Chemical Company | Novel product |
US4866208A (en) * | 1981-12-21 | 1989-09-12 | The Dow Chemical Company | Meta-phenylene diamine derivatives |
US4463126A (en) * | 1982-02-03 | 1984-07-31 | Bayer Aktiengesellschaft | Coatings prepared from prepolymers and aromatic diamines having at least one alkyl substituent in an ortho position to each amino group |
US4396729A (en) * | 1982-04-23 | 1983-08-02 | Texaco Inc. | Reaction injection molded elastomer containing an internal mold release made by a two-stream system |
US4433067A (en) * | 1982-04-23 | 1984-02-21 | Texaco Inc. | Reaction injection molded elastomers prepared from amine terminated polyethers, amine terminated chain extender and aromatic polyisocyanate |
US4444910A (en) * | 1982-04-23 | 1984-04-24 | Texaco Inc. | Reaction injection molded elastomers made using a polyurethane organometallic catalyst amine terminated polyethers amine terminated chain extender and aromatic polyisocyanate |
US4526905A (en) * | 1982-07-06 | 1985-07-02 | Ethyl Corporation | Polyurethanes from dialkyl diaminobenzenes and processes therefor |
EP0124843A1 (en) * | 1983-05-09 | 1984-11-14 | Mobay Chemical Corporation | Process and composition for the production of polyurethane elastomer moldings |
US4574147A (en) * | 1984-01-19 | 1986-03-04 | Bayer Aktiengesellschaft | Process for the production of polyurethanes, polyurethanes containing terminal aromatic amino groups and their use |
EP0154768A1 (de) * | 1984-01-19 | 1985-09-18 | Bayer Ag | Verfahren zur Herstellung von Polyurethanen, Polyurethane mit aromatischen Aminoendgruppen und ihre Verwendung |
US4482690A (en) * | 1984-02-09 | 1984-11-13 | Air Products And Chemicals, Inc. | Process for the production of polyurethane urea elastomers |
US4698371A (en) * | 1984-02-10 | 1987-10-06 | Basf Aktiengesellschaft | Process for the preparation of optionally cellular polyurethane-polyurea molded parts using urethane group- and isocyanurate group-containing 2,4- and/or 2,6-toluene diisocyanates |
US4636531A (en) * | 1984-02-17 | 1987-01-13 | Basf Aktiengesellschaft | Process for the preparation of optionally cellular polyurethane polyurea molded parts with improved demolding characteristics |
US4978791A (en) * | 1984-07-06 | 1990-12-18 | Lonza Ltd. | Substituted P,P'-methylene-bis-aniline |
EP0171536A1 (en) * | 1984-07-30 | 1986-02-19 | American Cyanamid Company | P-TMXDI polyurethane elastomers with good compression set properties |
JPH0649747B2 (ja) | 1984-07-30 | 1994-06-29 | アメリカン・サイアナミド・カンパニー | 優れた圧縮永久ひずみ特性を有するp―TMXDIポリウレタンエラストマーの製造方法 |
US4546167A (en) * | 1984-07-30 | 1985-10-08 | American Cyanamid Company | P-TMXDI Polyurethane elastomers with good compression set properties |
US4945120A (en) * | 1984-09-15 | 1990-07-31 | Richard Kopp | Process for the production of polyurethane foams using sterically hindered aromatic diamines |
US4816543A (en) * | 1984-10-11 | 1989-03-28 | Air Products And Chemicals, Inc. | Polyurethane system using monotertiary-alkyltoluenediamine as a cross linker |
US4745223A (en) * | 1984-10-11 | 1988-05-17 | Air Products And Chemicals, Inc. | Mono-tertiary-alkylated toluenediamine and derivatives |
EP0193872B1 (en) * | 1985-03-04 | 1993-03-31 | Ethyl Corporation | Di(alkylthio) diamine chain extenders for polyurethane elastomers |
US4581433A (en) * | 1985-04-29 | 1986-04-08 | Mobay Corporation | Elastomer polyurethane-polyurea coatings based on bis(4-isocyanatocyclohexyl)methane |
US4714778A (en) * | 1986-03-07 | 1987-12-22 | Air Products And Chemicals, Inc. | Alkenylated toluenediamines for use in preparing polyurethane/urea systems |
US4845291A (en) * | 1986-12-24 | 1989-07-04 | Air Products And Chemicals, Inc. | Cycloalkenyl aryldiamines |
US4931487A (en) * | 1988-03-04 | 1990-06-05 | Dow Chemical Company | Chain extenders for polyurethanes |
JPH0288616A (ja) * | 1988-08-13 | 1990-03-28 | Bayer Ag | ウレタン基を有するポリ尿素エラストマーの製造方法 |
JPH07103211B2 (ja) | 1988-08-13 | 1995-11-08 | バイエル・アクチェンゲゼルシャフト | ウレタン基を有するポリ尿素エラストマーの製造方法 |
EP0371916A3 (en) * | 1988-11-21 | 1990-09-12 | Ciba-Geigy Ag | Curable casting resins based on polyurethane, and amine curing agent for these resins |
US5066761A (en) * | 1988-11-21 | 1991-11-19 | Ciba-Geigy Corporation | Curable polyurethane casting systems and amine hardeners therefor |
US5001166A (en) * | 1989-01-25 | 1991-03-19 | Robson Mafoti | Novel polyetherester based prepolymers and elastomers made therefrom |
US5026815A (en) * | 1989-03-17 | 1991-06-25 | Lonza Ltd. | Chain-lengthening agents for p-phenylene-methylenediisocyanate-prepolymers for cast polyurethane elastomers |
US5262448A (en) * | 1989-05-04 | 1993-11-16 | Bayer Aktiengesellschaft | Process for the preparation of polyurea elastomers containing urethane groups |
US5141967A (en) * | 1989-07-28 | 1992-08-25 | Miles Inc. | Process for the preparation of polyurea-polyurethane elastomers |
EP0490158A3 (en) * | 1990-12-08 | 1992-10-28 | Bayer Ag | Process for the preparation of polyurethane coatings |
US5151484A (en) * | 1991-01-26 | 1992-09-29 | Bayer Aktiengesellschaft | Isocyanate prepolymers containing ether and ester groups a process for their preparation and their use for the production of coating, sealing or casting composition |
US5238973A (en) * | 1991-05-08 | 1993-08-24 | Bayer Aktiengesellschaft | Process for the preparation of polyurea elastomers containing urethane groups |
EP0512347B1 (de) * | 1991-05-08 | 2000-07-26 | Bayer Ag | Verfahren zur Herstellung von Urethangruppen aufweisenden Polyharnstoff-Elastomeren |
US5453478A (en) * | 1993-05-04 | 1995-09-26 | Air Products And Chemicals, Inc. | Ortho-alkylated tolidines |
US5719307A (en) * | 1994-04-13 | 1998-02-17 | Air Products And Chemicals, Inc. | Diamine chain extenders and method of use |
US5371288A (en) * | 1994-04-13 | 1994-12-06 | Air Products And Chemicals, Inc. | Branched alkyl-containing aminobenzamides as chain extenders in polyurethane-urea elastomers |
US5574124A (en) * | 1994-08-17 | 1996-11-12 | Bayer Aktiengesellschaft | Isocyanate prepolymers, a process for their preparation and their use |
FR2764893A1 (fr) * | 1997-06-20 | 1998-12-24 | Roland Alexandre Ganga | Elastomeres polyurethannes-polyurees a tres haute tenue en temperature et/ou ignifuges |
WO1998058979A1 (fr) * | 1997-06-20 | 1998-12-30 | Roland Ganga | Elastomeres polyurethanes polyurees a tres haute tenue en temperature et/ou ignifuges et/ou une excellente tenue a l'hydrolyse |
US20040068079A1 (en) * | 2002-10-07 | 2004-04-08 | Meike Niesten | Two-component systems for producing elastic coatings |
US7943678B2 (en) | 2003-02-19 | 2011-05-17 | Orteq, B.V. | Method for the preparation of new segmented polyurethanes with high tear and tensile strengths and method for making porous scaffolds |
US20070015894A1 (en) * | 2003-02-19 | 2007-01-18 | Heijkants Ralf Guillaume J C | Method for the preparation of new segmented polyurethanes with high tear and tensile strengths and method for making porous scaffolds |
US20070037954A1 (en) * | 2003-02-19 | 2007-02-15 | Heijkants Ralf Guillaume J C | Method for the preparation of new segmented polyurethanes with high tear and tensile strengths and method for making porous scaffolds |
EP2570440A3 (en) * | 2003-02-19 | 2014-06-11 | Orteq B.V. | Method for the preparation of new segmented polyurethanes with high tear and tensile strengths and method for making porous scaffolds |
EP2143707A2 (en) | 2005-03-28 | 2010-01-13 | Albermarle Corporation | Secondary diamine |
US20070078255A1 (en) * | 2005-10-04 | 2007-04-05 | Bayer Materialscience Ag | Two-component systems for producing flexible coatings |
US7927704B2 (en) | 2005-10-04 | 2011-04-19 | Bayer Materialscience Ag | Two-component systems for producing flexible coatings |
US20080262187A1 (en) * | 2005-12-30 | 2008-10-23 | Albemarle Corporation | Blends of Diamines Having Reduced Color |
DE102008024352A1 (de) | 2008-05-20 | 2009-11-26 | Bayer Materialscience Ag | Polyharnstoffzusammensetzung |
US20110070387A1 (en) * | 2008-05-20 | 2011-03-24 | Bayer Materialscience Ag | Polyurea composition |
DE102009007194A1 (de) | 2009-02-03 | 2010-08-05 | Bayer Materialscience Ag | Flexible Beschichtungen |
WO2010089034A1 (de) | 2009-02-03 | 2010-08-12 | Bayer Materialscience Ag | Zweikomponenten-beschichtungszusammensetzungen für flexible beschichtungen |
WO2010089033A1 (de) | 2009-02-03 | 2010-08-12 | Bayer Materialscience Ag | Beschichtungen auf basis allophanatgruppen haltiger polyisocyanate |
DE102009007228A1 (de) | 2009-02-03 | 2010-08-05 | Bayer Materialscience Ag | Beschichtungen |
DE102010031682A1 (de) | 2010-07-20 | 2012-01-26 | Bayer Materialscience Ag | Bindemittelkombinationen für konstruktive Trinkwasserrohrbeschichtungen |
WO2012010528A1 (de) | 2010-07-20 | 2012-01-26 | Bayer Materialscience Ag | Bindemittelkombinationen für konstruktive trinkwasserrohrbeschichtungen |
CN110734693A (zh) * | 2018-07-20 | 2020-01-31 | 科思创德国股份有限公司 | 一种涂料组合物 |
WO2020016292A1 (en) | 2018-07-20 | 2020-01-23 | Covestro Deutschland Ag | A coating composition |
US12180387B2 (en) | 2018-07-20 | 2024-12-31 | Covestro Deutschland Ag | Coating composition |
US12234373B2 (en) | 2018-09-20 | 2025-02-25 | Akzo Nobel Coatings International B.V. | Two-component coating composition, method for coating a substrate, coated substrate, and use of such coating composition for improving erosion resistance |
EP3626755A1 (en) | 2018-09-24 | 2020-03-25 | Covestro Deutschland AG | A coating composition |
WO2022002808A1 (en) | 2020-06-29 | 2022-01-06 | Covestro Deutschland Ag | Polyether-modified polyisocyanate composition |
WO2022002679A1 (en) | 2020-06-29 | 2022-01-06 | Covestro Deutschland Ag | Two-component coating composition |
US11795262B2 (en) | 2020-06-29 | 2023-10-24 | Covestro Deutschland Ag | Polyether-modified polyisocyanate composition |
EP3988596A1 (en) | 2020-10-26 | 2022-04-27 | Covestro Deutschland AG | Polyether-modified polyisocyanate composition |
EP3988597A1 (en) | 2020-10-26 | 2022-04-27 | Covestro Deutschland AG | Two-component coating composition |
Also Published As
Publication number | Publication date |
---|---|
GB1148454A (en) | 1969-04-10 |
DE1240654B (de) | 1967-05-18 |
BE680987A (en:Method) | 1966-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3428610A (en) | Polyurethanes prepared from aromatic amines having alkyl groups in the ortho positions to the amine groups | |
US3963656A (en) | Thermoplastic polyurethanes and a two-stage process for their preparation | |
KR840000523B1 (ko) | 합성 중합체의 제조방법 | |
US4483974A (en) | Process for the production of stabilized polyisocyanates, the polyisocyanates so-stabilized and their use in the production of polyurethanes | |
US3243475A (en) | Polyurethanes | |
US3267078A (en) | Polyether urethane coating composition cured with a di-imine | |
US2900368A (en) | Polyurethanes of polyalkylene etherthioether glycols | |
US3483167A (en) | Viscosity control in the chain extension of linear polyurethanes using a combination of chain extenders and a chain-stopper | |
US3721645A (en) | Polyurethanes stabilized with 1,2,3-,1,2,4-1,2,5-,and 1,3,4-triazoles | |
GB2046281A (en) | Process for producing polyurethane elastomer | |
US5502150A (en) | Linear HDI urethane prepolymers for rim application | |
US3794621A (en) | Polyurethane elastomers prepared from diamino-benzoic acid esters | |
US3049514A (en) | Ordered hydroxy-terminated tertiarynitrogen-containing polyether-based urethane compositions | |
US3049513A (en) | Ordered isocyanate-terminated polyether-based urethane compositions | |
JPS6322553A (ja) | 低融点ウレタン結合トルエンジイソシアネ−トの製法とその組成物 | |
US3202636A (en) | Isocyanato terminated urethane cured with a carboxylic acid hydrazide | |
US3274160A (en) | Polyurethanes from a three component prepolymer | |
US3940371A (en) | Diamino disulfide curatives for polyurethanes | |
JPH0314847B2 (en:Method) | ||
US2987504A (en) | Polyurethane rubber via storable intermediates | |
US3252943A (en) | Preparation of polyetherpolyurethane plastics | |
US5064875A (en) | Process for the preparation of heat-stable polyurethane urea elastomers | |
US3761452A (en) | Epoxy polyurethane prepolymer compositions which are self curing uponapplication of heat | |
US3632845A (en) | Soluble cured polyester polyurethanes | |
US3169119A (en) | Polysulfide polyurethanes |