US3397057A - Method for producing flowable metal powders - Google Patents
Method for producing flowable metal powders Download PDFInfo
- Publication number
- US3397057A US3397057A US581768A US58176866A US3397057A US 3397057 A US3397057 A US 3397057A US 581768 A US581768 A US 581768A US 58176866 A US58176866 A US 58176866A US 3397057 A US3397057 A US 3397057A
- Authority
- US
- United States
- Prior art keywords
- powder
- agglomerates
- powders
- sintering
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 title description 106
- 229910052751 metal Inorganic materials 0.000 title description 37
- 239000002184 metal Substances 0.000 title description 37
- 230000009969 flowable effect Effects 0.000 title description 5
- 238000004519 manufacturing process Methods 0.000 title description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 48
- 238000005245 sintering Methods 0.000 description 41
- 238000000034 method Methods 0.000 description 29
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 25
- 230000008569 process Effects 0.000 description 21
- 239000007788 liquid Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 239000000463 material Substances 0.000 description 17
- 229910052759 nickel Inorganic materials 0.000 description 17
- 239000002245 particle Substances 0.000 description 16
- 239000001257 hydrogen Substances 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 229910001111 Fine metal Inorganic materials 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 238000001035 drying Methods 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 238000005054 agglomeration Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000004663 powder metallurgy Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- UMYVESYOFCWRIW-UHFFFAOYSA-N cobalt;methanone Chemical compound O=C=[Co] UMYVESYOFCWRIW-UHFFFAOYSA-N 0.000 description 3
- -1 gums Polymers 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Natural products CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229940087654 iron carbonyl Drugs 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000004482 other powder Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000009703 powder rolling Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- VGBPIHVLVSGJGR-UHFFFAOYSA-N thorium(4+);tetranitrate Chemical compound [Th+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VGBPIHVLVSGJGR-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
- B01J2/28—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using special binding agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/148—Agglomerating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
Definitions
- the present invention solves a problem which has existed in the art for seventy years.
- Metal powders produced by the thermal decomposition of metal carbonyls have been available since the days of Ludwig Mond. Such metal powders are valuable metallurgical raw materials because of their high purity.
- the powders have good pressability, provide compacts having high green strength and green compacts made thereof can be sintered to high density at relatively low temperatures as compared to coarser nickel powders produced by other methods.
- the physical nature of these powders is such that they do not flow readily. This lack of flowability prevents utilization of carbonyl metal powders in conventional pressing equipment employed in the powder metallurgy art, despite the other marked advantages of these powders.
- the as-produced powders not only fail to fill dies in automatic pressing equipment, but, also, because of their fineness, quickly cause scoring and seizing of the punch within the die.
- Carbonyl iron and nickel powders have average particle sizes of less than 10 microns and, more usually, less than microns. Carbonyl iron powders generally tend to be spherical in shape and their poor fiowability thus is principally due to the fine particle size thereof. Carbonyl nickel powders tend to be irregular in shape, with spiky projections extending from more or less spherical bodies and, in some grades, with an overall fibrous appearance. These physical attributes further contribute to poor flowability to the extent that a pile of the powder can be parted with a knife and the parted face removed leaving a substantially vertical face.
- Flowable fine metal powders are usually produced industrially by three general techniques: (1) the metal or 3,397,057 Patented Aug. 13, 1968 alloy is produced as a relatively brittle ingot which is then crushed and pulverized; (2) the metal or alloy in nonflowing fine powder form is sintered to a cake which is then crushed; (3) molten metal or alloy is atomized by spraying a liquid stream thereof into a fluid medium. All of these techniques are characterized by commercial objections, including loss of material as unusable fines which must be reprocessed at extra cost, introduction of undesired impurities, including oxides, other compounds, tramp elements, etc., and by the fact that the product does not always have satisfactory flowability. Accordingly, despite many attempts in the art, no commercial method is presently available for increasing the flowability of essentially nonfiowable pure metal powders while still retaining the high purity, good pressability. and good sinterability thereof.
- the present invention is directed to a process for improving the flowability of fine metal powders having high purity and poor flowability comprising balling the metal powder with a liquid such as water, then drying and sintering a bed formed from the resulting agglomerates in a protective atmosphere to a temperature range in which substantial sintering occurs within the agglomerates but below that at which substantial sintering occurs between agglomerates to produce substantially spherical, flowable agglomerates.
- the invention is particularly applicable to the treatment of fine metal powders of high purity having a particle size not exceeding about 10 microns and bulk densi ties of about 0.5 to about 3.5 grams per cubic centimeter (gm./cc.).
- Metal powders such as carbonyl iron, carbonyl nickel and carbonyl cobalt powders are particularly amenable to treatment in accordance with the invention to provide free-flowing particles having a particle size of at least about 20 microns to about 1,000 microns, e.g., about 20 to about microns, while still retaining the high purity and other desirable metallurgical qualities in these materials.
- the wet agglomerates which may contain, for example, about 5% to about 30% water, by weight, have low strength and it is important that they should be transferred immediately, or at least after the lapse of only a short time during which loss of water is prevented, to the sintering and drying operations with only minimal handling.
- This can be readily accomplished, for example, by loading the wet agglomerates directly from the balling operation to a continuous belt communicating with the drying and sintering furnace. Any other means whereby the wet agglomerates are formed into a substantially fixed, quiescent or static bed during drying and sintering may be employed.
- the balling operation may be conducted in a balling disc or drum, a vibrating table, vibrating screen, etc., equipped with a liquid fog or spray feed, or in a rotary twin-cone blender equipped with a rotating liquid spray bar located near the juncture of the cones or in any other convenient type of balling equipment known to those skilled in the art.
- Spray drying may also be employed for agglomerating.
- twin-cone liquid-solids blender having a rotating liquid spray bar adapted to introduce liquid in the form of a spray or fog under substantial velocity and pressure into the tumbling powder.
- Blenders of this general type are described, for example, in US. Patents Nos. 2,890,027 and 2,915,300 and patents mentioned therein.
- Bailing is conducted by tumbling the powder under conditions such that components of rolling and of compression are imparted thereto while the balling liquid is introduced into the tumbling powder. It is advantageous from the control standpoint to introduce the balling liquid in the form of fine droplets as a spray or fog into the dry powder while the powder is in motion in the balling apparatus. Difficulties are encountered in attempting to moisten the metal powder before balling and control of agglomerate size in balling is uncertain, particularly from the standpoint of size uniformity.
- the green strength of the agglomerates can be increased to permit more handling and some motion of the agglomerates during drying and sintering by incorporating a soluble or dispersible organic heat-decomposable binder in the liquid employed for wetting the powder.
- binders such as methyl cellulose, starch, gums, polyacrylamides, dextrines, etc.
- water e.g., demineralized water
- volatile organic solvents including carbon tetrachloride, trichlorethane, ethyl and methyl alcohol, etc.
- solvent-soluble binders such as parafiin, stearic acid, waxes, ethylcellulose, etc.
- demineralized water itself as the liquid medium in the balling operation.
- the water can be removed from the agglomerates during the drying and sintering operations without any detrimental impurities such as carbon, etc., being retained in the final agglomerates.
- the other desirable metallurgical characteristics of the original powder including good pressability, sinterability at low temperatures and purity are retained. It is important that the agglomerates not be disturbed during the interval after drying and before sintering since they then have low strength.
- the sintering operation is conducted in a protective atmosphere which may be, for example, hydrogen, cracked ammonia, partially-combusted natural gas, argon, etc.
- a protective atmosphere which may be, for example, hydrogen, cracked ammonia, partially-combusted natural gas, argon, etc.
- the essential requirement of the atmosphere in the heat hardening or sintering operation is that it prevents oxidation of the metal powder agglomerates being sintered.
- the sintering operation is conducted at a temperature not exceeding about two-thirds of the melting point of the metal as measured in degrees Fahrenheit.
- the initial agglomerates substantially retain their size and shape as a result of the sintering operation but that there is little adhesion between the agglomerates. Any caking or interagglomerate adhesion is readily removed by light mechanical treatment with only minimal loss of material in the form of fine dust. It is found that when sintering of nickel powder agglomerates is conducted at temperatures below about 1000 F., e.g., 800 F., an unduly high proportion of fine material is obtained whereas at a temperature of about 1500 F. only a small amount of fine material resulted.
- a sintering temperature in the range of about 1200 F. to 1300 F. provides sintered agglomerates which do not break down on handling yet have the desired pressability and sinterability for pressing and sintering, direct powder rolling and other powder metallurgical operations.
- pulverizing the sintered agglomerates for example, in a hammer mill, provides a further improvement in fiowability, i.e., reduction in flow time in a fiowmeter, an increase in apparent density and an improved capacity to be directly rolled to strip having higher apparent density.
- fiowability i.e., reduction in flow time in a fiowmeter
- an increase in apparent density and an improved capacity to be directly rolled to strip having higher apparent density As applied to fine carbonyl nickel powders, wateragglomerated balls sintered in hydrogen at temperatures of about 1400 F. to about 1730 F. are particularly suitable for pulverization to improve the flow properties thereof.
- Carbonyl nickel powder agglomerates sintered at temperatures above 1730 F. cannot readily be pulverized.
- Example I About 2,000 grams of nickel powder produced by the decomposition of nickel carbonyl and having an average particle size in the range of about 3 to 5 microns with an apparent density in the range of about 1.6 to 2.1 gm./ cc. were water agglomerated in a liquid-solids blender of the twin-cone type equipped with a high speed liquid spray feed bar. About 350 milliliters of water were employed in the operation and the powders were simultaneously tumbled and blended during the wetting to achieve agglomeration. Portions of the wetted agglomerates were placed in a metal boat and were dried and sintered at 1150 F., 1200 F. and 1250 F. in a furnace having a hydrogen atmosphere for about 5 minutes.
- Example II Two types of carbonyl iron powder having, respectively, an average particle size of about 5 microns and about 6 microns and an apparent density of about 3 gm./cc. and about 3 gm./ cc. were agglomerated with water in the manner described in conjunction with Example I and were sintered in hydrogen at a temperature of about 1250 F. for about 5 minutes.
- the fiow rate of the resulting material was about 46.9 seconds whereas the initial powder would not pass through the fiowmeter.
- the apparent density of the resulting material was about 2.12 gm./ cc.
- Example III An electrodeposited copper powder having an average particle size of about 8 microns and an apparent density of about 2.3 gm./cc. was agglomerated with water in the manner described in Example I using about 230 milliliters of Water for a charge weight of 1,370 grams of powder. Portions of the resulting agglomerated powder were sintered at 895 F. and 1300 F. for about 10 minutes. The sintered agglomerates had a flow rate of 48.9 seconds whereas the initial powder would not pass through the flowmeter.
- the invention also contemplates agglomerated metal powders, especially carbonyl nickel, cobalt and iron powders and mixtures and alloys thereof, having a particle size of at least about 20 microns and up to about 1,000 microns, having good flowability, e.g., a flow rate of about 25 to about 50 seconds in the standard Hall Flowmeter described in A.S.T.M. Standard B-213, and having an apparent density of about 1.5 to about 3 or 4 grams per cubic centimeter.
- agglomerates having an apparent density in the range of about 1.7 to about 2.7 grams per cubic centimeter are readily provided.
- a further characteristic of the agglomerates is that they are compactible and may readily be hot or cold roll-compacted directly to strip without lamination of the strip.
- the agglomerates have an irregular particle outline.
- portions of the same carbonyl nickel powder described in conjunction with Example I were sintered in hydrogen to form cakes.
- a temperature in the range of 1700 F. to 2000 F. was required to produce sintered cakes from the loosely packed powder.
- the cakes were quite tough and ductile.
- the cakes were mechanically crushed it was found that the resulting crushed powder aggregates were irregularly shaped and they exhibited poor flow characteristics.
- carbonyl nickel powder of the same type as that described in conjunction with Example I is sintered in hydrogen without agglomeration at a temperature of about 1200 F. and the resulting sintered material is crushed, the powder obtained has a size distribution similar to that of the initial powder and is not improved in flow rate.
- material processed with agglomeration in accordance with the invention and sintered at 1200 F. is a free-flowing agglomerated powder.
- the foregoing confirms that the invention alfords a method for producing free-flowing metal powder starting with materials such as fine carbony l nickel powder having a poor flow characteristic wherein only a low energy input is required. This feature provides economy in carrying out the process of the invention.
- powders of a single metal be agglomerated in accordance with the invention to provide free-flowing powder agglomerates but that also carbonyl codeposited iron-nickel powders, alloyed powders, coated powders and mixtures of initial single metal powders can be treated so as to produce powder agglomerates containing controlled proportions of the initial metals.
- agglomerates containing nickel and iron; nickel and cobalt; nickel, iron and cobalt; nickel and copper, etc. can readily be produced in accordance with the invention and these materials can be employed directly to produce alloy articles by pressing and sintering in accordance with conventional powder metallurgy techniques.
- the process provided in accordance with the invention can be employed to provide coated powders.
- nickel coatings can be produced upon other powders such as chromium, graphite and copper by agglomerating and sintering in accordance with the invention.
- the particles to be coated may be of major particle sizes, e.g., about 15 to about microns, and these can be coated with fine particle size powders by wet agglomeration and sintering as described hereinbefore.
- the invention is also applicable to the production of free-flowing material for use in dispersionhardening systems.
- the 'agglomerating liquid may contain therein a salt which is heat-decomposable to a stable oxide such as thoria, alumina, etc., to provide thorough wetting of the initial powder with a salt such as, for example, thorium nitrate.
- a salt such as, for example, thorium nitrate.
- the salt decomposes to provide finely dispersed material intimately mixed throughout the hardened agglomerates. Oxides, carbides, nitrides, silicides and other dispersants can be introduced into nickel and other metal powders in this manner by wet agglomeration with a solution of an appropriate decomposable salt.
- the process for producing free-flowing metal powder agglomerates from a fine metal powder having an average particle size not exceeding about 10 microns and having poor flow properties which comprises tumbling said powder while spraying a balling liquid thereon to form separate ball agglomerates to said powder containing up to about 30% by weight of said liquid, quiescently drying said agglomerates to remove said liquid and thereafter sintering the resultant agglomerates in a protective atmosphere at a temperature at which sintering occurs within said agglomerates but below that at which substantial sintering occurs between agglomerates to produce freeflowing metal powder agglomerates having an average particle size of about 20 to 1,000 microns.
- the metal powder is a fine metal powder from the group consisting of nickel, cobalt, iron, copper, tungsten and molybdenum, and alloys and mixtures thereof.
- the metal pow-der is a codeposited nickel-iron carbonyl powder
- the sintering temperature is of the order of 1700 F.
- the sintered agglomerates are pulverized to improve the flow rate thereof.
- the sintered agglomerates are pulverized to improve the flow rate thereof.
- the process for producing free-flowing metal powder agglomerates from a fine metal pow-der from the group consisting of nickel, cobalt, iron, copper, tungsten and molybdenum and alloys or mixtures thereof having an average particle size not exceeding about 10 microns and having poor flow properties which comprises tumbling said powder while spraying a balling liquid consisting essentially of water thereon to form separate ball agglomerates of said powder containing about 5% to about 30% by weight of water, quiescently drying said agglomerates and thereafter sintering the resultant agglomerates in contact with each other in a protective atmosphere at a temperature not exceeding about two-thirds of the melting point of said metal in degrees Fahrenheit to produce free flowing metal powder agglomerates having an average particle size of about 20 to about 1,000 microns.
- the metal powder is carbonyl nickel powder
- the balling liquid is demineralized water
- the sintering temperature is about 1000 F. to about 1730 F.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Glanulating (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Closing And Opening Devices For Wings, And Checks For Wings (AREA)
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US581768A US3397057A (en) | 1966-09-26 | 1966-09-26 | Method for producing flowable metal powders |
GB42112/67A GB1158620A (en) | 1966-09-26 | 1967-09-15 | Flowable Metal Powders |
NO169772A NO119756B (enrdf_load_stackoverflow) | 1966-09-26 | 1967-09-18 | |
FI672536A FI46596C (fi) | 1966-09-26 | 1967-09-22 | Menetelmä vapaasti juoksevien aglomeraattien valmistamiseksi hienosta metallijauheesta. |
GR670134468A GR34468B (el) | 1966-09-26 | 1967-09-22 | Σφαιροποιηθεισαι και συσσωματωθεισαι (συντακεισαι) κονεις ικαναι προς ροην. |
DE1583742A DE1583742C3 (de) | 1966-09-26 | 1967-09-23 | Verfahren zum Herstellen fließfähiger Metallpulver und so hergestelltes granuliertes Karbonylmetallpulver |
AT867767A AT285964B (de) | 1966-09-26 | 1967-09-25 | Verfahren zur Herstellung freifließender Agglomerate aus feinem Metallpulver |
NL6713041A NL6713041A (enrdf_load_stackoverflow) | 1966-09-26 | 1967-09-25 | |
ES345430A ES345430A1 (es) | 1966-09-26 | 1967-09-25 | Un procedimiento para producir aglomerados libremente flu- yentes a partir de un polvo metalico fino. |
BE704310D BE704310A (enrdf_load_stackoverflow) | 1966-09-26 | 1967-09-26 | |
SE13195/67A SE323178B (enrdf_load_stackoverflow) | 1966-09-26 | 1967-09-26 | |
DO1967001388A DOP1967001388A (es) | 1966-09-26 | 1967-09-26 | Polvos fluyentes de metal. |
CH1342767A CH475053A (fr) | 1966-09-26 | 1967-09-26 | Procédé de fabrication d'une masse de particules métalliques pouvant s'écouler |
US729849*A US3481714A (en) | 1966-09-26 | 1968-03-04 | Flowable metal powders |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US581768A US3397057A (en) | 1966-09-26 | 1966-09-26 | Method for producing flowable metal powders |
Publications (1)
Publication Number | Publication Date |
---|---|
US3397057A true US3397057A (en) | 1968-08-13 |
Family
ID=24326480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US581768A Expired - Lifetime US3397057A (en) | 1966-09-26 | 1966-09-26 | Method for producing flowable metal powders |
Country Status (13)
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3653883A (en) * | 1970-04-01 | 1972-04-04 | Rca Corp | Method of fabricating a porous tungsten body for a dispenser cathode |
US3663297A (en) * | 1970-06-24 | 1972-05-16 | Us Navy | Process for the preparation of sintered zinc powder battery electrodes |
US3796565A (en) * | 1973-03-16 | 1974-03-12 | Sherritt Gordon Mines Ltd | Production of porous nickel plates |
US3881911A (en) * | 1973-11-01 | 1975-05-06 | Gte Sylvania Inc | Free flowing, sintered, refractory agglomerates |
US4109060A (en) * | 1975-12-08 | 1978-08-22 | Svenska Utvecklingsaktiebolaget (Su) Swedish National Development Co. | Porous electrode for a chemo-electric cell and a method of preparing the same |
FR2493872A1 (fr) * | 1980-11-10 | 1982-05-14 | Edstrom John | Procede de fabrication d'un metal a partir de l'oxyde metallique a fine granulometrie |
EP0118716A1 (de) * | 1983-02-03 | 1984-09-19 | Siemens Aktiengesellschaft | Verfahren zum Granulieren nicht fliessfähiger Metallpulver oder Metallpulvermischungen |
WO1999061184A1 (en) * | 1998-05-22 | 1999-12-02 | Cabot Corporation | Method to agglomerate metal particles and metal particles having improved properties |
WO2001021345A1 (en) * | 1999-09-23 | 2001-03-29 | Kemet Electronics Corporation | Binder systems for powder metallurgy compacts |
US20040141872A1 (en) * | 2003-01-17 | 2004-07-22 | Tsai Peter Ru-Feng | Methods for producing agglomerates of metal powders and articles incorporating the agglomerates |
US20050044988A1 (en) * | 2003-09-03 | 2005-03-03 | Apex Advanced Technologies, Llc | Composition for powder metallurgy |
US20110112203A1 (en) * | 2009-11-06 | 2011-05-12 | Basf Se | Iron- and copper-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen |
US20110112205A1 (en) * | 2009-11-06 | 2011-05-12 | Basf Se | Iron- and manganese-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen |
EP3047926A3 (en) * | 2014-12-30 | 2016-10-19 | Delavan, Inc. | Particulates for additive manufacturing techniques and method for providing said particulates |
US11059096B2 (en) * | 2016-07-29 | 2021-07-13 | Raytheon Technologies Corporation | Abradable material feedstock and methods and apparatus for manufacture |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5897962A (en) * | 1993-07-16 | 1999-04-27 | Osram Sylvania Inc. | Method of making flowable tungsten/copper composite powder |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2179960A (en) * | 1931-11-28 | 1939-11-14 | Schwarzkopf Paul | Agglomerated material in particular for electrical purposes and shaped bodies made therefrom |
GB689349A (en) * | 1951-02-09 | 1953-03-25 | Hoeganaes Ab | Improved method of producing metal powder for powder metallurgical purposes |
GB727807A (en) * | 1951-05-11 | 1955-04-06 | Basf Ag | Improvements in the production of porous electrodes for accumulators |
US2853767A (en) * | 1955-03-23 | 1958-09-30 | Mallory & Co Inc P R | Method of making high density ferrous alloy powder compacts and products thereof |
US2857270A (en) * | 1950-12-27 | 1958-10-21 | Hoganas Billesholms Ab | Method for the production of metal powder for powder metallurgical purposes |
GB818191A (en) * | 1956-11-30 | 1959-08-12 | Atomic Energy Authority Uk | Improvements in or relating to the treatment of metals in powder form |
US3001871A (en) * | 1957-05-03 | 1961-09-26 | Commissariat Energie Atomique | Manufacture of microporous metallic tubes consisting mainly of nickel |
GB930003A (en) * | 1958-09-19 | 1963-06-26 | Siemens Ag | Process for the production of shaped articles from non-flowing metal powders |
-
1966
- 1966-09-26 US US581768A patent/US3397057A/en not_active Expired - Lifetime
-
1967
- 1967-09-15 GB GB42112/67A patent/GB1158620A/en not_active Expired
- 1967-09-18 NO NO169772A patent/NO119756B/no unknown
- 1967-09-22 GR GR670134468A patent/GR34468B/el unknown
- 1967-09-22 FI FI672536A patent/FI46596C/fi active
- 1967-09-23 DE DE1583742A patent/DE1583742C3/de not_active Expired
- 1967-09-25 AT AT867767A patent/AT285964B/de active
- 1967-09-25 ES ES345430A patent/ES345430A1/es not_active Expired
- 1967-09-25 NL NL6713041A patent/NL6713041A/xx unknown
- 1967-09-26 BE BE704310D patent/BE704310A/xx unknown
- 1967-09-26 CH CH1342767A patent/CH475053A/fr not_active IP Right Cessation
- 1967-09-26 DO DO1967001388A patent/DOP1967001388A/es unknown
- 1967-09-26 SE SE13195/67A patent/SE323178B/xx unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2179960A (en) * | 1931-11-28 | 1939-11-14 | Schwarzkopf Paul | Agglomerated material in particular for electrical purposes and shaped bodies made therefrom |
US2857270A (en) * | 1950-12-27 | 1958-10-21 | Hoganas Billesholms Ab | Method for the production of metal powder for powder metallurgical purposes |
GB689349A (en) * | 1951-02-09 | 1953-03-25 | Hoeganaes Ab | Improved method of producing metal powder for powder metallurgical purposes |
GB727807A (en) * | 1951-05-11 | 1955-04-06 | Basf Ag | Improvements in the production of porous electrodes for accumulators |
US2853767A (en) * | 1955-03-23 | 1958-09-30 | Mallory & Co Inc P R | Method of making high density ferrous alloy powder compacts and products thereof |
GB818191A (en) * | 1956-11-30 | 1959-08-12 | Atomic Energy Authority Uk | Improvements in or relating to the treatment of metals in powder form |
US3001871A (en) * | 1957-05-03 | 1961-09-26 | Commissariat Energie Atomique | Manufacture of microporous metallic tubes consisting mainly of nickel |
GB930003A (en) * | 1958-09-19 | 1963-06-26 | Siemens Ag | Process for the production of shaped articles from non-flowing metal powders |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3653883A (en) * | 1970-04-01 | 1972-04-04 | Rca Corp | Method of fabricating a porous tungsten body for a dispenser cathode |
US3663297A (en) * | 1970-06-24 | 1972-05-16 | Us Navy | Process for the preparation of sintered zinc powder battery electrodes |
US3796565A (en) * | 1973-03-16 | 1974-03-12 | Sherritt Gordon Mines Ltd | Production of porous nickel plates |
US3881911A (en) * | 1973-11-01 | 1975-05-06 | Gte Sylvania Inc | Free flowing, sintered, refractory agglomerates |
US4109060A (en) * | 1975-12-08 | 1978-08-22 | Svenska Utvecklingsaktiebolaget (Su) Swedish National Development Co. | Porous electrode for a chemo-electric cell and a method of preparing the same |
FR2493872A1 (fr) * | 1980-11-10 | 1982-05-14 | Edstrom John | Procede de fabrication d'un metal a partir de l'oxyde metallique a fine granulometrie |
EP0118716A1 (de) * | 1983-02-03 | 1984-09-19 | Siemens Aktiengesellschaft | Verfahren zum Granulieren nicht fliessfähiger Metallpulver oder Metallpulvermischungen |
RU2226139C2 (ru) * | 1998-05-22 | 2004-03-27 | Кабот Корпорейшн | Способ агломерации металлических частиц и металлические частицы с улучшенными свойствами |
CN1305399B (zh) * | 1998-05-22 | 2012-12-26 | 卡伯特公司 | 金属微粒的制团方法及具有改进性能的金属团化颗粒 |
CZ303300B6 (cs) * | 1998-05-22 | 2012-07-25 | Cabot Corporation | Zpusob aglomerace tantalu a/nebo niobu a aglomerované cástice obsahující tantal a/nebo niob |
AU746431B2 (en) * | 1998-05-22 | 2002-05-02 | Cabot Corporation | Method to agglomerate metal particles and metal particles having improved properties |
WO1999061184A1 (en) * | 1998-05-22 | 1999-12-02 | Cabot Corporation | Method to agglomerate metal particles and metal particles having improved properties |
US6479012B2 (en) | 1998-05-22 | 2002-11-12 | Cabot Corporation | Method to agglomerate metal particles and metal particles having improved properties |
US6576038B1 (en) | 1998-05-22 | 2003-06-10 | Cabot Corporation | Method to agglomerate metal particles and metal particles having improved properties |
GB2371309A (en) * | 1999-09-23 | 2002-07-24 | Kemet Electronics Corp | Binder systems for powder metallurgy compacts |
US6224990B1 (en) | 1999-09-23 | 2001-05-01 | Kemet Electronics Corporation | Binder systems for powder metallurgy compacts |
WO2001021345A1 (en) * | 1999-09-23 | 2001-03-29 | Kemet Electronics Corporation | Binder systems for powder metallurgy compacts |
US20040141872A1 (en) * | 2003-01-17 | 2004-07-22 | Tsai Peter Ru-Feng | Methods for producing agglomerates of metal powders and articles incorporating the agglomerates |
WO2004068619A3 (en) * | 2003-01-17 | 2004-12-23 | Eveready Battery Inc | Methods for producing agglomerates of metal powders and articles incorporating the agglomerates |
US7413703B2 (en) | 2003-01-17 | 2008-08-19 | Eveready Battery Company, Inc. | Methods for producing agglomerates of metal powders and articles incorporating the agglomerates |
US20080213666A1 (en) * | 2003-01-17 | 2008-09-04 | Peter Ru-Feng Tsai | Methods for producing agglomerates of metal powders and articles incorporating the agglomerates |
US7709144B2 (en) | 2003-01-17 | 2010-05-04 | Eveready Battery Company, Inc. | Methods for producing agglomerates of metal powders and articles incorporating the agglomerates |
US7192464B2 (en) | 2003-09-03 | 2007-03-20 | Apex Advanced Technologies, Llc | Composition for powder metallurgy |
US20050044988A1 (en) * | 2003-09-03 | 2005-03-03 | Apex Advanced Technologies, Llc | Composition for powder metallurgy |
US20110112205A1 (en) * | 2009-11-06 | 2011-05-12 | Basf Se | Iron- and manganese-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen |
US20110112203A1 (en) * | 2009-11-06 | 2011-05-12 | Basf Se | Iron- and copper-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen |
US8614164B2 (en) * | 2009-11-06 | 2013-12-24 | Basf Se | Iron- and copper-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen |
US8618016B2 (en) * | 2009-11-06 | 2013-12-31 | Basf Se | Iron- and manganese-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen |
EP3047926A3 (en) * | 2014-12-30 | 2016-10-19 | Delavan, Inc. | Particulates for additive manufacturing techniques and method for providing said particulates |
US10144061B2 (en) | 2014-12-30 | 2018-12-04 | Delavan Inc. | Particulates for additive manufacturing techniques |
US11059096B2 (en) * | 2016-07-29 | 2021-07-13 | Raytheon Technologies Corporation | Abradable material feedstock and methods and apparatus for manufacture |
Also Published As
Publication number | Publication date |
---|---|
FI46596B (enrdf_load_stackoverflow) | 1973-01-31 |
ES345430A1 (es) | 1968-11-01 |
DOP1967001388A (es) | 1972-07-26 |
SE323178B (enrdf_load_stackoverflow) | 1970-04-27 |
FI46596C (fi) | 1973-05-08 |
GR34468B (el) | 1968-05-14 |
GB1158620A (en) | 1969-07-16 |
BE704310A (enrdf_load_stackoverflow) | 1968-03-26 |
NO119756B (enrdf_load_stackoverflow) | 1970-06-29 |
DE1583742B2 (de) | 1974-08-22 |
DE1583742A1 (de) | 1970-09-24 |
AT285964B (de) | 1970-11-25 |
NL6713041A (enrdf_load_stackoverflow) | 1968-03-27 |
CH475053A (fr) | 1969-07-15 |
DE1583742C3 (de) | 1975-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3397057A (en) | Method for producing flowable metal powders | |
US3909241A (en) | Process for producing free flowing powder and product | |
US3974245A (en) | Process for producing free flowing powder and product | |
US4832741A (en) | Powder-metallurgical process for the production of a green pressed article of high strength and of low relative density from a heat-resistant aluminum alloy | |
US4070184A (en) | Process for producing refractory carbide grade powder | |
US3372021A (en) | Tungsten addition agent | |
US3434831A (en) | Fabrication of spherical powders | |
CA2332889A1 (en) | Sinter-active metal and alloy powders for powder metallurgy applications and methods for their production and their use | |
US4508788A (en) | Plasma spray powder | |
CN108188405B (zh) | 一种提高硬质合金混合料球磨分散均匀性的方法 | |
US2238382A (en) | Formation of ferrous metal powders and formation of articles by sintering | |
US3481714A (en) | Flowable metal powders | |
US4923509A (en) | Spherical light metal based powder particles and process for producing same | |
US3663667A (en) | Process for producing metal powders | |
US3583864A (en) | Chemical process of producing an iron-copper alloy powder | |
US3385696A (en) | Process for producing nickel-magnesium product by powder metallurgy | |
JP2002501440A (ja) | 予備合金化された、銅含有粉末およびダイヤモンド工具の製造におけるその使用 | |
US2942334A (en) | Powdered ferrous metals and articles and methods of making the same | |
US3375109A (en) | Process for preparing rheniumrefractory alloys | |
CA2155841C (en) | Sponge-iron powder | |
US4569822A (en) | Powder metal process for preparing computer disk substrates | |
US2657129A (en) | Aluminum-alloyed corrosion-resistant metal powders and related products and processes | |
US3196007A (en) | Beryllium copper composition and method of producing green compacts and sintered articles therefrom | |
US2657127A (en) | Production of chromium-alloyed corrosion-resistant metal powders and related products | |
US2041493A (en) | Pulverulent alloy |