US3337433A - Electrolytic process - Google Patents
Electrolytic process Download PDFInfo
- Publication number
- US3337433A US3337433A US262498A US26249863A US3337433A US 3337433 A US3337433 A US 3337433A US 262498 A US262498 A US 262498A US 26249863 A US26249863 A US 26249863A US 3337433 A US3337433 A US 3337433A
- Authority
- US
- United States
- Prior art keywords
- cathode
- diaphragm
- reactive material
- cell
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 16
- 239000000463 material Substances 0.000 claims description 77
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 30
- 239000011574 phosphorus Substances 0.000 claims description 30
- 229910052698 phosphorus Inorganic materials 0.000 claims description 30
- 239000003792 electrolyte Substances 0.000 claims description 29
- 238000005868 electrolysis reaction Methods 0.000 claims description 10
- 238000009736 wetting Methods 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 150000001340 alkali metals Chemical class 0.000 claims description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 3
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 35
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 17
- 239000004744 fabric Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 239000011521 glass Substances 0.000 description 9
- -1 polyethylene Polymers 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000005499 meniscus Effects 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 229920001206 natural gum Polymers 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000013032 Hydrocarbon resin Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 229920006270 hydrocarbon resin Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 150000001455 metallic ions Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910001152 Bi alloy Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920004934 Dacron® Polymers 0.000 description 1
- 229920001875 Ebonite Polymers 0.000 description 1
- 229910000792 Monel Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- JWVAUCBYEDDGAD-UHFFFAOYSA-N bismuth tin Chemical compound [Sn].[Bi] JWVAUCBYEDDGAD-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- HGAZMNJKRQFZKS-UHFFFAOYSA-N chloroethene;ethenyl acetate Chemical compound ClC=C.CC(=O)OC=C HGAZMNJKRQFZKS-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 description 1
- VVNXEADCOVSAER-UHFFFAOYSA-N lithium sodium Chemical compound [Li].[Na] VVNXEADCOVSAER-UHFFFAOYSA-N 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Chemical compound CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229920001959 vinylidene polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/04—Diaphragms; Spacing elements characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
Definitions
- This invention relates to an electrolytic cell and more particularly to a diaphragm in an electrolytic cell.
- a reactive material present in the cell reacts with one of the products being produced at either the anode or the cathode of the cell to produce an end product. It has been found that in certain cells of this type a shut-down of the cell for cleaning of the diaphragm becomes desirable when the reactive material included in the cell Wets or builds up on the diaphragm. Build-up of the reactive material on the diaphragm, if it does not cause the cell to malfunction, causes at least a decrease in the efficiency of the cell and a corresponding decrease in the yield of the desired end product. The build-up of the reactive material on the diaphragm may also cause an increase in the electrical power needed for operation of the cell, thus increasing the cost of operating the cell and adding to the electrical load of the installation.
- Another object of the invention is to prevent the wetting of a diaphragm by a reactive material contained within an electrolytic cell, thereby increasing cell life and efficiency.
- Another object is to protect a diaphragm in an electrolytic cell which is wetted by a reactive material contained within the cell.
- a further object is to inhibit wetting of a diaphragm by molten phosphorus in an electrolytic cell producing phosphine.
- the invention has particular application to uses in which the reactive material is phosphorus and a product of the cell is phosphine.
- Another aspect of the invention which is of importance is the structure of the covered or sheathed diaphragm and the materials thereof.
- an electrolytic cell will be of increased efliciency when it comprises anodic and cathodic electrodes, a diaphragm separating anode and cathode, an electrolyte in contact with the electrodes and the diaphragm, from which electrolyte a product of electrolysis is formed at an electrode when an electric current flows between the electrodes through the electrolyte, and a reactive material 3,337,433 Patented Aug. 22, 1967 14, cathode compartment 16, and cathode 18.
- a porous or permeable diaphragm 20 separates anode and cathode compartments and separates the electrolyte into anolyte 17 and catholyte 19 sections.
- a reactive material 24 e.g., phosphorus, in liquid state.
- Diaphragm 20 is covered, coated, or protected in such a manner that the side thereof facing the reactive material, where it may otherwise contact that material, is coated with a coating, cover or sheath 22 against which the reactive material then does not adhere or wet the coating, which action is evidenced by convex meniscus 21.
- Ports 26 and 28 permit the addition and removal of anolyte from the anode section 12.
- Ports 30 and 32 permit the addition and removal of catholyte from the cathode section 16.
- Port 34 permits the addition and removal of the reactive material from cathode section 16.
- Suflicient reactive material 24 is added to the cathode compartment 16 to contact the portion or edge of cathode 18, permitting contact of the reactive material with a greater surface of the cathode by a wetting action.
- Anolyte gas discharge port 36 is provided in the top of the anode section to remove analyte gas from the electrolytic cell.
- Catholytic gas discharge port 38 is provided on the top of the cathode section 16 to remove catholyte gas. Gas-liquid interfaces are indicated at 15.
- Electrolyzing current to the electrodes is transmitted by anode electrical connector 40 and cathode electrical connector 42 joining the anode and cathode to the positive and negative poles, respectively, of a source of direct current 44.
- a heating or cooling means such as a constant temperature hath, not shown, may be employed to maintain the cell at or near a desired temperature.
- Cell vessel 10 may be constructed of a material capable of resisting corrosion by the electrolyte and other materials employed in the cell.
- suitable materials of construction of cell vessel 10 include glass, glazed ceramic, tantalum, titanium, hard rubber, polyethylene, polyurethane, rigid materials coated with phenolformaldehyde resin, and the like.
- Diaphragm 20 which separates the anode section 12 from the cathode section 16 may be semipermeable or permeable material resistant to the cell contents and capable of maintaining the anode and cathode gases separate.
- suitable materials for use as a diaphragm include: porous alundum, porous porcelain,
- FIGURE 1 is a central vertical sectional view of apparatus of this invention along 1-1
- FIGURE 2 is a horizontal sectional view along 22.
- Cell vessel 10 contains anode compartment 12, anode of the types which may be normally employed in lead storage batteries.
- Cover, coating or surface 22 is a material which does not become wetted by the reactive material. Such lack of wetting effect is indicated by formation of a convex meniscus when the surface is in contact with a reactive material contained in the cell. The surface, in essence, prevents the reactive material from wetting the diaphragm.
- glass fabric is the material which is non-wettable by phosphorous.
- non-wettable materials suitable for the practice of this invention are vinylidene polymers, polypropylene, polyurethane, chlorinated polyether, acrylonitrile resins, polyethylene, fluorinated hydrocarbon resins, polyester resins, polyvinyl chloride resins, graphite, phenolformaldehyde resins, natural gum rubber and chloroprene resins. It is preferred that the above resins be fabrics thereof, but it is to be understood that the resins themselves in their thermosetting or thermoplastic forms may also be utilized in the invention in accordance with the description herein. These sheathing materials also should be permeable, non-resistance to electrochemical flow and stable in the electrolyte media which may be utilized.
- the cover material may be applied to the diaphragm by any suitable method, as by spraying, fusing, adhering, wrapping about the diaphragm, mechanically fastening, depositing, and integrally forming with the diaphragm. lt is preferred, however, to form a fabric material into the shape of the diaphragm, but slightly larger and then to insert the diaphragm into the preformed sheath. Alternately, one may wrap the fabric around the diaphragm and fasten it so that it will remain in place. The diaphragm is then placed into and connected to the cell vessel 10. It is to be understood that one or both sides of the diaphragm may be coated, usually depending on which surface or surfaces may come into contact with the reactive material.
- cathodic materials include lead, amalgamated lead, cadmium, tin, aluminum, nickel, alloys of nickel, such as Mumetal (an alloy containing 77.2 percent nickel, 4.8 percent copper, 1.5 percent chromium, and 14.9 percent iron), Monel, copper, silver, bismuth, and alloys thereof.
- lead-tin, lead-bismuth, and tin-bismuth alloys may be employed.
- Various shapes of cathodes may be employed, e.g., the cathode may be cylindrical as illustrated, or may be of plate or other shape.
- Mats of metallic wool and porous metallic sheaths may also be employed, if desired. Essentially the reactive material will wet such materials and rise to cover the cathode surface thinly, promoting reaction with the product of electrolysis generated at the cathode surface.
- Suitable anode materials include lead, platinum, lead peroxide, graphite and other materials of construction capable of conducting current and resisting corrosion under the conditions of electrolysis employed.
- the electrolyte may be a salt or other organic or inorganic electrolyte which is itself nonreactive with the reactive material utilized and which is capable of forming a product, e.g., hydrogen gas or ion, under electrolytic conditions employed which will react with the reactive material.
- a product e.g., hydrogen gas or ion
- suitable compounds in aqueous solution include hydrochloric acid, sodium chloride, lithium chloride, potassium chloride, sodium sulfate, potassium sulfate, monosodium phosphate, disodium phosphate, acetice acid, ammonium hydroxide, phosphoric acid, sulfuric acid and mixtures thereof.
- the concentration of a compound in an aqueous electrolyte may vary from about 1 to about 95 percent, but is usually between about 5 and about 80 percent, preferably between about and about 50 percent.
- suitable concentrations of metal ions may be between 0.01 percent and 5 percent by weight of electrolyte, however, between about 0.02 percent and 3 percent by weight of electrolyte may also be utilized. Preferably though between about 0.02 percent and 0.5 percent by weight of electrolyte may be utilized.
- metallic ions which may be utilized are antimony, bismuth, lead, tin, cadmium, mercury, silver, zinc, cobalt, calcium, barium, and mixtures thereof.
- the metal ions may be placed in the electrolyte by employing a consumable anode of the desired metal or metals, such as a lead anode, whereby the metal ions are formed in the electrolyte and transferred to the area adjacent to the cathode.
- Salts or other compounds of the metals such as chlorides, phosphates, acetates, and the like, also may be dissolved in the electrolyte if desired.
- finely divided metal in elemental form is added to the electrolyte.
- the diaphragm protected in the manner illustrated and described herein is preferably utilized in the electrolytic production of phosphine.
- the temperature of the catholyte and anolyte should be maintained above the melting point of phosphorus (about 44 degrees centigrade), and below the boiling point of the electrolyte. Temperatures between about 60 degress centigrade and 110 degrees centigrade are satisfactory, but optimum yields of phosphine are obtained at temperatures between about 70 degrees centigrade and 100 degrees centigrade.
- an electric current is passed through the cell, molten phosphorus on the surface of the cathode is consumed in the formation of a catholyte gas in the cathode section.
- the catholyte gas is predominantly phosphine, but contains some hydrogen.
- the anolyte gas depends on the over-voltages of the anions in the anolyte, with reference to the anode material.
- the anolyte gas predominates in oxygen if sulfuric acid or phosphoric acid is used with a platinum anode, whereas for the same anode, chlorine predominates if hydrochloric acid is used as anolyte.
- the coproduction of anodic oxidation products may be carried out in the anode compartment of the cell of this invention without departing from the spirit of the invention.
- the current density on the cathode may be controlled so that the phosphorus is consumed at a rate at which it is replenished on the cathode surface from the molten pool of phosphorus.
- the cathode current density may be set by the operator and is dependent on which density gives the best results, the cell design and the construction of the cathode.
- the optimum cathodic current density appears to be between about 6 and 12 amperes per square foot.
- other current densities consistent with the economic production of phosphine may be employed.
- the phosphine containing gas produced at the cathode has a relatively high concentration of phosphine, usually more than 60 percent, and it may be as high as percent phosphine by volume or higher.
- the catholyte gas is substantially free from other phosphorus hydrides.
- a lead plate is employed as the cathode
- a graphite rod is employed as the anode with an alundum diaphragm coated with glass fabric to keep the phosphorus from the diaphragm, separating the anode from the cathode.
- the wicking action becomes more rapid. It was further observed that the rate of the wicking action was faster for some metals than others, and that the thickness of the phosphorus layer on the metal surfaces was thicker on some metals than on others. Further, in the utilization of the invented apparatus for phosphine production when phosphorus is the reactive material, it has been found that the non-wetting materials, sheathing the diaphragm prevents the diaphragm from building up a layer of phosphorus on its surface, which otherwise would cause a decrease in the efliciency of the cell.
- Suitable reactive materials which may be utilized in the apparatus of the invention are sulfur, the alkali metals and their salts, e.g., potassium, sodium lithium, rubidium, cesium, sodium chloride, etc., alkaline earth metals, e.g., beryllium,
- the porosity or openings of the coating material may be between 0.5 micron and A of an inch, as desired, to block the flow of reactive material through the protective coating of the diaphragm.
- Example I To an electrolytic cell containing a graphite anode and lead cathode were added 2,330 parts of 10 percent hydrogen chloride solution containing 1 gram per liter of lead chloride. A porous alundum diaphragm in a glass cloth sleeve with openings about 764 Of an inch, separated the anode and cathode so as to form anodic and cathodic compartments. 266 parts of phosphorus were added to the cathodic chamber. The cell was maintained at 95 degrees centigrade. An electric potential was applied to the electrodes to cause flow of a current of about 4.6 amperes.
- Example 2 Example 1 was repeated, except for the omission of the glass fabric sleeve. The cell was operated forabout 66 days. The voltage during this period had to be increased from 4.2 to 5.3 volts. At the time of shut down, 70 percent of the porous diaphragm area was coated with phosphorus and was blocked by it.
- Examples 3 to 14 These examples illustrate the various nonwettable materials which may be utilized in place of glass cloth to sheath or cover the diaphragm of the electrolytic cell of Example 1, and thereby to increase the efliciency of the cell by preventing the deposition of a reactive material on its surface to block openings therein. Elemental phosphorus under concentrated hydrochloric acid was heated to cell temperature, between about 70 and 80 degrees centigrade. The following fabrics were then tested:
- Polyester (Dacron (R)) Polyvinyl chloride (Tygon(R)) Graphite (rod and fabric) Phenoliormaldehyde resins Natural gum iubber Polymer of chloroprene (N eoprene (R)).
- a process for producing chemicals which comprises contacting anodic and cathodic electrodes with an contact with a material reactive with a product of electrolysis produced there, said reactive material being selected from the group consisting of phosphorus, sulfur, alkali metals, alkaline earth metals, magnesium, germanium, and lead, maintaining a thin layer of the reactive material on the surface of said electrode, separating the anode and cathode with a diaphragm having its side facing the electrode which contacts the reactive material covered with a material covered with a material against which the reactive material is non-Wetting, and passing an electric current between the anode and the cathode through the electrolyte to produce a compound of the reactive material and the product of electrolysis of the electrode in contact therewith.
- a process for producing phosphine' which comprises contacting anodic and cathodic electrodes with an electrolyte, the lower portion of the cathodic electrode being in contact with phosphorus, maintaining a thin layer of phosphorus on the surface of said cathode electrode, sepa rating the anode and cathode with a diaphragm having its side facing the cathode covered with a material against which phosphorus is nonwetting, and passing an electric current between the anode and the cathode through the electrolyte to produce phosphine.
- nonwettable material is a glass fabric.
- a process for producing phosphine which comprises contacting anodic and cathodic electrodes with an electrolyte, the lower portion of a cathodic electrode being in contact with phosphorus which is reactive with a product of electrolysis produced there, to produce phosphine, maintaining a thin layer of phosphorus on the surface of said electrode, separating the anode and cathode with a diaphragm having a side facing the cathodic electrode covered with a material selected from the group consisting of glass fabric, vinyldene polymers, polypropylene, polyurethane, chlorinated polyether, acrylonitrile resins, polyethylene, fluorinated hydrocarbon resins, polyester resins, polyvinyl chloride resins, graphite, phenolformaldehyde resins, natural gum rubber and chloroprene resins, against which the reactive material is nonwetting, and passing an electric current between the anode and the cathode through the electrolyte.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrolytic Production Of Metals (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Glass Compositions (AREA)
Priority Applications (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB26293/59A GB889639A (en) | 1959-07-31 | 1959-07-31 | Improvements in or relating to the production of phosphine |
US45567A US3109787A (en) | 1959-07-31 | 1960-07-27 | Production of phosphine |
FR834368A FR1270717A (fr) | 1959-07-31 | 1960-07-29 | Procédé de production de la phosphine par voie électrolytique |
DEA35249A DE1112722B (de) | 1959-07-31 | 1960-08-01 | Verfahren zur elektrolytischen Herstellung von Phosphin |
US262498A US3337433A (en) | 1959-07-31 | 1963-03-04 | Electrolytic process |
US262496A US3312610A (en) | 1959-07-31 | 1963-03-04 | Electrolytic process for producing phosphine |
FR965832A FR85418E (fr) | 1959-07-31 | 1964-03-03 | Procédé de production de la phosphine par voie électrolytique |
FR965831A FR85417E (fr) | 1959-07-31 | 1964-03-03 | Procédé de production de la phosphine par voie électrolytique |
FR965830A FR85416E (fr) | 1959-07-31 | 1964-03-03 | Procédé de production de la phosphine par voie électrolytique |
GB9212/64A GB1042391A (en) | 1959-07-31 | 1964-03-04 | Electrolytic cell, and process for producing phosphine therewith |
GB9214/64A GB1042393A (en) | 1959-07-31 | 1964-03-04 | Process and apparatus for producing phosphine |
DE1964H0051939 DE1210426C2 (de) | 1959-07-31 | 1964-03-04 | Verfahren zur elektrolytischen Herstellung von Phosphin |
DEH51938A DE1210425B (de) | 1959-07-31 | 1964-03-04 | Verfahren zur elektrolytischen Herstellung von Phosphin |
GB9213/64A GB1042392A (en) | 1959-07-31 | 1964-03-04 | Electrolytic cell, and process for producing phosphine therewith |
DEH51937A DE1210424B (de) | 1959-07-31 | 1964-03-04 | Verfahren zur elektrolytischen Herstellung von Phosphin |
BE694669D BE694669A (enrdf_load_stackoverflow) | 1959-07-31 | 1967-02-27 | |
BE694670D BE694670A (enrdf_load_stackoverflow) | 1959-07-31 | 1967-02-27 | |
BE694671D BE694671A (enrdf_load_stackoverflow) | 1959-07-31 | 1967-02-27 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB26293/59A GB889639A (en) | 1959-07-31 | 1959-07-31 | Improvements in or relating to the production of phosphine |
US45669A US3109795A (en) | 1960-07-27 | 1960-07-27 | Method of preparing phosphine |
US29249663A | 1963-03-04 | 1963-03-04 | |
US262496A US3312610A (en) | 1959-07-31 | 1963-03-04 | Electrolytic process for producing phosphine |
US262497A US3251756A (en) | 1963-03-04 | 1963-03-04 | Electrolytic process for making phosphine |
US262498A US3337433A (en) | 1959-07-31 | 1963-03-04 | Electrolytic process |
Publications (1)
Publication Number | Publication Date |
---|---|
US3337433A true US3337433A (en) | 1967-08-22 |
Family
ID=27546704
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US262498A Expired - Lifetime US3337433A (en) | 1959-07-31 | 1963-03-04 | Electrolytic process |
US262496A Expired - Lifetime US3312610A (en) | 1959-07-31 | 1963-03-04 | Electrolytic process for producing phosphine |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US262496A Expired - Lifetime US3312610A (en) | 1959-07-31 | 1963-03-04 | Electrolytic process for producing phosphine |
Country Status (4)
Country | Link |
---|---|
US (2) | US3337433A (enrdf_load_stackoverflow) |
BE (3) | BE694671A (enrdf_load_stackoverflow) |
DE (4) | DE1112722B (enrdf_load_stackoverflow) |
GB (4) | GB889639A (enrdf_load_stackoverflow) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009010203A1 (de) | 2007-07-18 | 2009-01-22 | Monopharm Handelsgesellschaft Mbh | Diaphragmalyse-verfahren und verwendung der nach dem verfahren erhaltenen produkte |
EP2592053A3 (de) * | 2011-11-09 | 2013-07-03 | Monopharm Beratungs- Und Handelsgesellschaft Mbh | Verfahren zur Herstellung eines Katholyts und dessen Verwendung |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3404076A (en) * | 1965-04-15 | 1968-10-01 | Shell Oil Co | Electrolytic preparation of hydrides |
DE2639941C2 (de) * | 1976-09-04 | 1984-10-04 | Hoechst Ag, 6230 Frankfurt | Verfahren zur Herstellung von Phosphin |
WO2020113089A1 (en) * | 2018-11-28 | 2020-06-04 | Ayers Group, LLC | Method and apparatus for energy efficient electrochemical production of hydride gases |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1094315A (en) * | 1912-11-16 | 1914-04-21 | Hood Rubber Co Inc | PROCESS FOR PRODUCING 1.3-GLYCOLS, (β-GLYCOLS.) |
US2688594A (en) * | 1948-12-27 | 1954-09-07 | American Enka Corp | Mercury cell |
US2944956A (en) * | 1956-11-16 | 1960-07-12 | Dow Chemical Co | Chlorine cell having protected diaphragm |
US3017338A (en) * | 1958-03-03 | 1962-01-16 | Diamond Alkali Co | Electrolytic process and apparatus |
US3109788A (en) * | 1960-07-27 | 1963-11-05 | Hooker Chemical Corp | Electrolytic production of phosphine |
US3109795A (en) * | 1960-07-27 | 1963-11-05 | Hooker Chemical Corp | Method of preparing phosphine |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1926837A (en) * | 1931-07-10 | 1933-09-12 | Martin E Cupery | Electrolytic reduction of organic nitro compounds |
US2780593A (en) * | 1951-09-01 | 1957-02-05 | New Jersey Zinc Co | Production of metallic titanium |
US2719822A (en) * | 1952-01-10 | 1955-10-04 | Universal Oil Prod Co | Production of chlorine from hydrogen chloride |
-
1959
- 1959-07-31 GB GB26293/59A patent/GB889639A/en not_active Expired
-
1960
- 1960-08-01 DE DEA35249A patent/DE1112722B/de active Pending
-
1963
- 1963-03-04 US US262498A patent/US3337433A/en not_active Expired - Lifetime
- 1963-03-04 US US262496A patent/US3312610A/en not_active Expired - Lifetime
-
1964
- 1964-03-04 DE DEH51937A patent/DE1210424B/de active Pending
- 1964-03-04 GB GB9214/64A patent/GB1042393A/en not_active Expired
- 1964-03-04 DE DEH51938A patent/DE1210425B/de active Pending
- 1964-03-04 GB GB9213/64A patent/GB1042392A/en not_active Expired
- 1964-03-04 GB GB9212/64A patent/GB1042391A/en not_active Expired
- 1964-03-04 DE DE1964H0051939 patent/DE1210426C2/de not_active Expired
-
1967
- 1967-02-27 BE BE694671D patent/BE694671A/xx unknown
- 1967-02-27 BE BE694670D patent/BE694670A/xx unknown
- 1967-02-27 BE BE694669D patent/BE694669A/xx unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1094315A (en) * | 1912-11-16 | 1914-04-21 | Hood Rubber Co Inc | PROCESS FOR PRODUCING 1.3-GLYCOLS, (β-GLYCOLS.) |
US2688594A (en) * | 1948-12-27 | 1954-09-07 | American Enka Corp | Mercury cell |
US2944956A (en) * | 1956-11-16 | 1960-07-12 | Dow Chemical Co | Chlorine cell having protected diaphragm |
US3017338A (en) * | 1958-03-03 | 1962-01-16 | Diamond Alkali Co | Electrolytic process and apparatus |
US3109788A (en) * | 1960-07-27 | 1963-11-05 | Hooker Chemical Corp | Electrolytic production of phosphine |
US3109795A (en) * | 1960-07-27 | 1963-11-05 | Hooker Chemical Corp | Method of preparing phosphine |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009010203A1 (de) | 2007-07-18 | 2009-01-22 | Monopharm Handelsgesellschaft Mbh | Diaphragmalyse-verfahren und verwendung der nach dem verfahren erhaltenen produkte |
US20110059028A1 (en) * | 2007-07-18 | 2011-03-10 | Burkhard Ponitz | Method for membrane electrolysis and the use of the products obtained by it |
CN101808947B (zh) * | 2007-07-18 | 2012-12-12 | 莫纳制药贸易有限公司 | 用于膜电解的方法和由其获得的产物的用途 |
AU2008278002B2 (en) * | 2007-07-18 | 2013-01-17 | Monopharm Handelsgesellschaft Mbh | Diaphragm analysis method and use of products obtained using the method |
EP2592053A3 (de) * | 2011-11-09 | 2013-07-03 | Monopharm Beratungs- Und Handelsgesellschaft Mbh | Verfahren zur Herstellung eines Katholyts und dessen Verwendung |
Also Published As
Publication number | Publication date |
---|---|
US3312610A (en) | 1967-04-04 |
GB1042392A (en) | 1966-09-14 |
DE1210425B (de) | 1966-02-10 |
DE1112722B (de) | 1961-08-17 |
GB1042393A (en) | 1966-09-14 |
GB889639A (en) | 1962-02-21 |
DE1210424B (de) | 1966-02-10 |
DE1210426B (de) | 1966-02-10 |
BE694671A (enrdf_load_stackoverflow) | 1967-07-31 |
BE694670A (enrdf_load_stackoverflow) | 1967-07-31 |
BE694669A (enrdf_load_stackoverflow) | 1967-07-31 |
GB1042391A (en) | 1966-09-14 |
DE1210426C2 (de) | 1966-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5106465A (en) | Electrochemical process for producing chlorine dioxide solutions from chlorites | |
US5092970A (en) | Electrochemical process for producing chlorine dioxide solutions from chlorites | |
US3361653A (en) | Organic electrolytic reactions | |
US4135995A (en) | Method of electrolysis, and electrode for the electrolysis | |
TW202024400A (zh) | 電解合成用陽極,及,氟氣或含氟化合物之製造方法 | |
EP0199957B1 (en) | Electrolysis of alkali metal chloride brine in catholyteless membrane cells employing an oxygen consuming cathode | |
US5108560A (en) | Electrochemical process for production of chloric acid from hypochlorous acid | |
CA1195949A (en) | Hydrogen chloride electrolysis in cell with polymeric membrane having catalytic electrodes bonbed thereto | |
US5089095A (en) | Electrochemical process for producing chlorine dioxide from chloric acid | |
US3337433A (en) | Electrolytic process | |
Bewer et al. | Titanium for electrochemical processes | |
Caldwell | Production of chlorine | |
US3109788A (en) | Electrolytic production of phosphine | |
US4167468A (en) | Apparatus for electrowinning multivalent metals | |
US3361656A (en) | Wicking electrode for an electrolytic cell | |
US3251756A (en) | Electrolytic process for making phosphine | |
US4919791A (en) | Controlled operation of high current density oxygen consuming cathode cells to prevent hydrogen formation | |
US4116801A (en) | Apparatus for electrowinning multivalent metals | |
US4483752A (en) | Valve metal electrodeposition onto graphite | |
US4165262A (en) | Method of electrowinning titanium | |
US4118291A (en) | Method of electrowinning titanium | |
EP0204515B1 (en) | Electrolytic process for manufacturing potassium peroxydiphosphate | |
US3878084A (en) | Bipolar electrode | |
EP0221685B1 (en) | Electrolytic process for the manufacture of salts | |
EP0041365B1 (en) | Improved electrolytic process for the production of ozone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OCCIDENTAL CHEMICAL CORPORATION Free format text: CHANGE OF NAME;ASSIGNOR:HOOKER CHEMICALS & PLASTICS CORP.;REEL/FRAME:004109/0487 Effective date: 19820330 |