US3299672A - Method and apparatus for producing knit pile fabric - Google Patents

Method and apparatus for producing knit pile fabric Download PDF

Info

Publication number
US3299672A
US3299672A US332227A US33222763A US3299672A US 3299672 A US3299672 A US 3299672A US 332227 A US332227 A US 332227A US 33222763 A US33222763 A US 33222763A US 3299672 A US3299672 A US 3299672A
Authority
US
United States
Prior art keywords
fibers
pile
fabric
carding
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US332227A
Other languages
English (en)
Inventor
Arnold W Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAYER ROTHKOPF INDUSTRIES Inc A CORP OFDE
Original Assignee
Arnold W Schmidt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arnold W Schmidt filed Critical Arnold W Schmidt
Priority to US332227A priority Critical patent/US3299672A/en
Priority to BE656286D priority patent/BE656286A/xx
Priority to LU47486A priority patent/LU47486A1/xx
Priority to NL6414380A priority patent/NL6414380A/xx
Priority to GB40064/67A priority patent/GB1098143A/en
Priority to DE1785588A priority patent/DE1785588B2/de
Priority to GB50557/64A priority patent/GB1098142A/en
Priority to DE19641585362 priority patent/DE1585362C/de
Priority to JP39071296A priority patent/JPS5237106B1/ja
Priority to SE15431/64A priority patent/SE314467B/xx
Priority to US600490A priority patent/US3501812A/en
Application granted granted Critical
Publication of US3299672A publication Critical patent/US3299672A/en
Priority to JP46068816A priority patent/JPS5130622B1/ja
Priority to JP46068815A priority patent/JPS5136823B1/ja
Priority to JP46068817A priority patent/JPS5239113B1/ja
Assigned to MAYER, ROTHKOPF INDUSTRIES, INC. A CORP. OFDE reassignment MAYER, ROTHKOPF INDUSTRIES, INC. A CORP. OFDE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HAYES-ALBION CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B9/00Circular knitting machines with independently-movable needles
    • D04B9/14Circular knitting machines with independently-movable needles with provision for incorporating loose fibres, e.g. in high-pile fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/02Pile fabrics or articles having similar surface features
    • D04B1/025Pile fabrics or articles having similar surface features incorporating loose fibres, e.g. high-pile fabrics or artificial fur

Definitions

  • This invention relates to a blended knit pile fabric and more particularly to a fur-like knit pile fabric and to the method and apparatus for producing such fabric.
  • Fur-like or pile fabrics generally include a base fabric or back, knitted or woven, and a pile made up of fibers which are interlaced or interlocked with the base fabric so as to be securely held and extended from a surface of the base fabric.
  • pile fabrics are well known and usually the base fabric is made of cotton or any other suitable natural or synthetic fiber and the pile is also made from natural or real fur or any one or more of well known synthetic fibers such as nylon, Dacron, the acrylic synthetic fibers such as Orlon, A-crilan, Dynel, rayon, or other well known natural or man-made fibers. Fibers which are commonly used as pile in a fur-like or pile fabric are commercially obtainable in almost any color desired, for example, white, black, gray, brown, yellow, blue, etc.
  • Another object of the invention is to provide a knit pile fabric wherein the pile is arranged in any design, pattern or blend desired by varying the physical characteristics of the fibers within each consecutive pile bundle or element during the process of knitting the pile fabric.
  • the invention also contemplates a method and machine for manufacturing a pile fabric such, for example, as a knit pile fabric which incorporates any desired design in the pile of the fabric during the manufacture of the same which is simple, efficient, economical and readily lends itself to the production of any desired design, pattern or configuration of the pile.
  • FIG. 1 is an elevation showing a new pile fabric knitting machine of the present invention, portions being broken away to illustrate detail.
  • FIG. 2 is an elevational fragmentary view showing a cylinder or sleeve of knit pile fabric as it is produced by the machine of FIG. 1 before cutting.
  • FIG. 3 is a fragmentary perspective view of a piece of knit pile fabric after cutting the cylinder along an axial .line and flattening it, but prior to clipping or shaving of the pile fibers to a desired uniform length.
  • FIGS. 4-7 are diagrammatic fragmentary plan views each showing a different piece of the finished fabric of the invention exemplifying four different designs or patterns which have been knitted therein.
  • FIG. 8 is a side elevation partly in section showing a new carding or pile fiber feeding head of the present invention applied to a conventional circular knitting machine, only a fragment of the conventional knitting machine being shown.
  • FIG. 9 is a side elevation of the same head shown in FIG. 8 but viewed from the opposite side of the head.
  • FIG. 10 is a schematic showing of a knitting machine provided with the new carding head for practicing the new method of the present invention.
  • FIG. 11 is a fragmentary plan view of one set of feed rollers of the upper drawing section of the carding head for feeding one of the rovings to the main cylinder of the carding head.
  • FIG. 12 is a fragmentary end elevation partly in section of the end rolls of one drawing section.
  • FIG. 13 is a schematic circuit diagram showingthe rheostat control for a variable speed motor one of which is utilized for driving each set of feed rollers of the several drawing or drafting sections which feed the roving to the main cylinder of the carding head.
  • FIG. 14 is an elevation of a dual unit control mechanism of the present invention for automatically controlling the dual feed carding head of FIG. 10.
  • FIG. 15 is a fragmentary enlarged elevation of one unit of the dual unit control mechanism of FIG. 14.
  • FIG. 16 is a sectional view taken on the line 16-16 of FIG. 15, and rotated degrees to maintain the same scale.
  • a knitting machine such as a circular latch needle machine manufactured by the Wildman Manufacturing Company of Norristown, Pennsylvania.
  • the circular latch needle knitting machine is old and well known and therefore will not be. described in detail, see, for example, the patents to Schmidt 2,680,360, Brandt 2,710,525 and Moore 1,848,370.
  • the so-called head ring 10 which is an annular ring forming part of the frame of the circular knitting machine, is supported above the floor by other parts of the frame 11.
  • the head ring supports a ring gear 12 which is rotatable about a'vertical axis in a manner well known in the art.
  • the drive for the ring gear 12 is conventional and includes an electric motor M which is connected to ring gear 12 via an electric clutch and brake unit (not shown), belt drive D, bevel gear B and the gear shaft S.
  • the power for driving the main cylinder, doifer and fancy wheel of the carding unit described hereinafter is taken from ring gear 12 by means of a gear 13 (FIG.
  • Gear 13 is fixed to the lower end of shaft 14 which is journalled in the bearing housing 16 by means of ball bearing races 15.
  • Bearing housing 16 is fixed in the base of carding unit frame 17.
  • Bevel Wear 18 is fixed to the upper end of shaft 14 and meshes with a bevel gear 19 fixed on a horizontal drive shaft 20 journalled in frame 17.
  • a needle cylinder 21 is supported upon and secured by screws to ring gear 12 for rotation therewith.
  • Cylinder 21 carries a circular row of latch needles 22, only a few of which are shown, which are moved vertically by a cam 22 such as disclosed in more detail in the patents to Schmidt 2,680,360 or Moore 2,255,078. Since circular knitting machines for knitting pile fabrics are well known, no further description or showing of the knitting mechanism of the machine is necessary.
  • Carding head The pile fabric knitting machine is provided with one or more carding heads, only one of which is disclosed herein inasmuch as the description of one carding head will apply also to the others.
  • each carding head is carried on a frame'17 secured by screws 23 to the frame ring of the knitting machine.
  • the main cylinder or transfer roll 24 of the carding unit is fixed upon a shaft 25 which is journalled at each end in the upright side walls 26 of frame 17.
  • Cylinder 24 is covered with a conventional card clothing generally designated 27 which comprises the usual cotton backing and felt body and wire teeth 28.
  • a conventional doffer roll 29 is fixed upon a shaft 30 which is also journalled at each end in radially adjustable arms 31 which are supported upon the side walls 26 of frame 17.
  • Arms 31 are angularly adjusted by a stop screw 32" and held in adjusted position by set screws 32 which pass through arcuate slots 33 in each arm 31 and screw into tapped openings in the side walls 26. Radial or lengthwise adjustment is provided by set screws 32 and slots 33'.
  • the dofi'er roll also is covered with a conventional card clothing such as the card clothing which covers main cylinder 24.
  • the teeth 28 of the main cylinder or transfer roll 24 preferably just touch the teeth 34 of the doffer roll 29.
  • gear 35 (FIG. 9) is fixed on one end of shaft 20 and is thus driven off the main ring gear 12 through gear 13, shaft 14, bevel gears 18 and 19 and shaft 20.
  • Gear 35 meshes with a gear 36 which is fixed on a shaft 37 journalled in the adjacent side wall 26 of the frame 17.
  • Gear 38 meshes a gear 38 fixed on .a shaft 39 also journalled in the adjacent side wall 26 of the frame 17.
  • Gear 28 meshes with a gear 40 which is fixed on shaft 25 which supports the main cylinder or transfer roll 24.
  • the doffer 29 is driven by means of a gear 41 fixed on shaft 30 which meshes with a gear 42 fixed on shaft 43 journalled in the adjacent side wall 26 of frame .17.
  • Gear 42 in turn is driven by gear 44 fixed on shaft 20.
  • the carding head of the invention illustrated herein also includes a fancy wheel 46 (FIGS. 8 and 9) fixed on a shaft 48 journalled at its ends in radially adjustable arms 50 attached to arms 52 by set screws 54 which pass through slots 56 in arms 52.
  • Each arm 52 is integral with the arm 31 on the same side of the head and hence moves angularly therewith during such adjustment.
  • Fancy wheel 46 is driven by a V-belt 58 trained around a pulley 60- fixed to shaft 30 and a pulley 62 fixed to shaft 48.
  • Fancy wheel 46- is somewhat similar in construction to the main cylinder 24 and dolfer 29 eX- cept that the card clothing consists of longer and more widely spaced wires 64 (FIG. 9) which preferably intermesh about A3 with the wires 28 of main cylinder 24.
  • the fancy wheel 46 is substantially completely enclosed by side plates 66 and a peripheral cover 68 which is hinged at 70 to facilitate cleaning.
  • each knitting machine of the invention is illustrated herein as having but a single carding unit, it is to be understood that each knitting machine can be provided with a plurality of carding units arranged in angularly spaced relation around frame ring 10. However, it is to be understood that each carding unit is provided with a plurality, that is, two or more drafting or drawing sections. Any suitable drawing or drafting section can be provided for the car-ding unit but a preferred form is disclosed hereinafter. As shown in simplified form in FIG. 10; two drawing or drafting sections 72 and 74 of the carding unit feed fibers to the main cylinder 24.
  • a lower drafting section 72 and an upper drafting section 74 are shown, each of which deliver fibers to the main cylinder 24.
  • Each drawing or drafting section derives these fibers from a separate roving 76 and 78 respectively and acts upon the roving to progressively attenuate, flatten, and widen the same by the drawing action and to preferably convert the roving into a thin, relatively wide web of parallelized fibers uniformly distributed across the width of said web.
  • Eachv drafting section is driven independently of the main cylinder 24, preferably by a conventional direct current variable speed motor 80 (FIG. 8) and 82 (FIG. 9) for sections 72 and 74, respectively.
  • motor 80 drives the lower drafting section 72 through a reduction gearing 84 which, by way of example, has a reduction ratio of about 15 to 1.
  • motor 80 is connected into a conventional control unit 86 which includes a rheostat 88 in series with the motor leads 90, 92.
  • Each motor is provided with an identical control unit designated 86 for the right hand motor 80' and 94 for the left hand motor 82 as viewed on the frame 10 in FIG. 1.
  • Rheostat 88 of unit 86 may be manually rotated to vary the speed of motor 80 and rheostat 96 likewise operated to control the speed of motor 82.
  • Each motor 80, 82 and associated reduction gearing and speed control unit are available commercially as a unit and may, for example, comprise the horsepower motor speed control unit sold under the trademark Ratiotrol by Boston Gear Works of Quincy, Mass.
  • each drafting section 72, 74 comprises three pairs of counter-rotating meshing rollers 100, 102, 104, 106, 108 and 110; respectively, fixed to shafts I100, 102', 104', 106', 10-8' and 110'.
  • shafts 100' and 102' are supported at their ends in a pair of arms 112 pivoted at 114 on frame 17 and held in adjusted position by a set screw 116 which passes through a slot in arm 112 and threads into frame 17.
  • Shafts 104', 106 and shafts 108 and 1'10 are similarly supported in pairs of arms 118 and 120 respectively.
  • Shafts 100 and 104' are journalled in adjustable bearing blocks 122 which are biased by springs 124 toward shafts 102' and 106' respectively, thereby providing a floating mount of the first and second upper rollers to accommodate variations in roving density.
  • shaft 108 is journalled in fixed position relative to shaft 110'.
  • feed rollers 100, 102 and 104, 106 of the first and second pairs are formed with helical intermeshing teeth 126 and 128.
  • the second pair of rollers are arranged so that their helical teeth are reversed from those of the first set of rollers.
  • the helical intermeshing teeth cause the roving 76 drawn therebetween to be widened as well as flattened due to the helical shape of the teeth pulling the fibers laterally apart.
  • the helical intermeshing teeth also tend to shift the entire Web laterally as it emerges from rollers 100, 102, but this effect is corrected by the reversed relationship of the helix angles of the first and second pairs of rollers since the entire web is shifted laterally in the opposite direction as it emerges from the second pair of rollers.
  • the teeth 130 of the third set of rollers 108, 110 are straight rather than helical, and this set feeds the attenuated, flattened and widened roving onto the card clothing 27 of cylinder 24.
  • rollers 108, 110 are positioned so that they are spaced about of an inch from the ends of wires 28 of main cylinder 24.
  • the feed rollers of drafting section 72 are driven by a gear train including the drive gear 132 of the reduction gear unit 84 which meshes with a gear 133 fixed on one end of shaft 108'.
  • the other end of shaft 108" (FIG. 9) carries a gear 134 which drives via an idler gear 135 a gear 136 fixed on shaft 106'.
  • a gear 137 fixed on the other end of shaft 106 (FIG. 8) drives an idler 138 which in turn drives a gear 139 fixed on shaft 102.
  • the second pair of rollers 104, 106 preferably rotate at about 2% times the speed of the first pair of rollers 100 and 102, and the third set of rollers 108, 110 rotate at about 2% times the speed of the second pair of rollers to thereby cause the attenuating action on the roving as it is fed through the drafting section.
  • Each drafting section 72, 74 also has an apron 140 and 141 respectively adapted to receive the rovings 76 and 78 from their bins or other source of supply thereof and to carry the roving to the first set of feed rollers 100 and 102.
  • aprons 140 and 141 each support a cross bar 142 and 144 each of which slidably supports a pair of adjustable guide posts 146, 148 respectively.
  • the guide posts are held in adjusted position by set screws threaded in their upper ends which engage the cross bar.
  • the posts are set so that they are spaced laterally apart slightly less than the average width of the roving. As viewed in FIG.
  • guide posts 146 of the upper drafting section 74 are offset towards the left side of apron 141, while posts 148 of the lower drafting section are offset towards the right side of apron 140.
  • This staggered relationship of the roving guides causes roving 78 to be cent the opposite side edge 155 of main cylinder 24.
  • Each drafting section 72, 74 also has a cylindrical brush 156 (FIGS. 8, 9 and supported at its ends in the upper ends of arms 120 in a friction mount so that the brush normally remains stationary but may be rotated manually as required to present a fresh surface to card clothing 27 and to even up wear on the brush.
  • the bristles of brush 156 just touch the ends of the wires 28 of main cylinder 24 and assist in spreading and smoothing the fibers just after they have been picked up by the main cylinder from each drafting section.
  • FIGS. 14-16 One example of an automatic control mechanism is illustrated in FIGS. 14-16 wherein an electro-mechanical type control unit 160 is shown for controlling the previously described dual feed carding head of the invention.
  • Control unit 160 comprises an identical pair of stepping rheostat control mechanisms 162 and 164 enclosed in a common housing, unit 162 being electrically connected to motor 80 and unit 164 being electrically connected to motor 82.
  • Control mechanism 162 is shown in detail in FIGS. 15 and 16, and since this mechanism is identical to control mechanism 164 a description of it will suffice for both.
  • Control mechanism 162 includes a conventional rheostat motor speed control unit 166 identical to units 86 and 94 described previously except that the finger knob 171 (FIG. l) on the end of the rheostat armature shaft 172 is replaced by a pair of ratchet wheels 168 and fixed to shaft 172.
  • Wheel 168 is driven in a counterclockwise direction as viewed in FIG. 15 by a pawl 174 fixed on a post 176 which in turn is pivotally carried by an arm 178 pivoted at one end on shaft 172 and disposed between ratchet wheels 168 and 170.
  • arm 178 carries a plate 180 which depends therefrom and supports a post 182 connected by a link 184 to the armature 186 of a conventional solenoid 188.
  • a tension spring 190 is connected at one end to a pivot-pin 192 which interconnects link 184 and armature 186.
  • Spring 190 is connected at its other end to an arm 194 affixed to a bracket 196 mounted
  • the limit of pivotal movement of arm 178 in a counterclockwise direction is determined by a screw 198 threaded into bracket 196.
  • Another screw 200 is threaded into a bracket 202 also fixed to unit 166 and provides an adjustable stop for limiting pivotal movement of arm 178 in a clockwise direction as viewed in FIG. 15.
  • the outer racthet wheel 168 is normally held against reverse rotation by a detent comprising a spring arm 204 secured at one end to bracket 196 and adapted to engagethe teeth 206 of ratchet 168 at its free end.
  • a spring arm 208 secured at one end to bracket 202 and adapted at its free end to engage the teeth 210 of ratchet 170.
  • Arm 178 has a pair of wings 212 and 214 whichcarry screws 216 and 218 respectively. Screw 216 is adjusted to engage detent 204 as arm 178 approaches the counterclockwise limit of its travel, while screw 218 is adapted to engage detent 208 when arm 17 8 approaches the clockwise limit of its travel.
  • Pawl 174 is biased into engagement with teeth 206 of ratchet '168 by a tension spring 220.
  • Spring 220 is connected at one end to a post 222 which is fixed to the outer end of an adjusting screw 224 threaded into the outer end of arm 178.
  • the other end of spring 220 is connected to the bent-up end of an arm 226 which extends through post 176 and is fixed thereto.
  • Post 176 carries another pawl 228 which is disposed adjacent teeth 210 of the lower ratchet 170, pawl 228 being held clear of teeth 210 by spring 220 when pawl 174 is working against the upper ratchet 168.
  • a pair of reversing dogs 230 and 232 are secured to the outer surface of ratchet 168 by screws 234 which are threadably received in one of ten threaded holes 236 provided at equally spaced angular intervals around ratchet 168.
  • the solenoid 188 of unit 162 and the corresponding solenoid of unit 164 may be energized by any suitable timing device. However for ease of synchronization it is preferred to mount one or more microswitches 237 (FIG. 8) adjacent ring gear 12 or other rotating part of the knitting machine, and to mount a switch-actuating arm 238 on the rotating part in a position to strike the microswitch once during each revolution of the rotating part.
  • the microswitch is connected as an on-off switch in a conventional solenoid energizing circuit (not shown).
  • solenoid 188 is energized to retract armature 186 which, via link 184, pulls arm 178 in a clockwise direction as viewed in FIG. 15.
  • screw 216 disengages detent 204, allowing it to seat between teeth 206 of ratchet 168 to prevent reverse rotation thereof as pawl 174 is dragged clockwise back over a tooth and then engages behind the next tooth.
  • screw 218 strikes detent 208 to disengage its free end from a tooth 210 of lower ratchet 170.
  • detent 208 then rides down the back of this tooth until ratchet 170 has been rotated one notch, whereupon detent 208 strikes the leading edge of the next tooth at the same time that arm 178 strikes stop 198.
  • Detent 208 thus serves at this time as a positive stop to prevent overshooting of the ratchets as they are rotated notch by notch in a clockwise direction.
  • control mechanism 164 for motor 82 is also connected in the microswitch circuit of control mechanism 162 so that control mechanisms 162 and 164 operate in unison.
  • One rheostat of unit 160 is wired so that clockwise rotation thereof increases the speed of the associated motor, while the rheostat of the other unit is wired so that clockwise rotation thereof decreases the speed of the motor connected to the latter unit.
  • Normally a 180 out of phase relationship is preferred so that the speed of one motor reaches its maximum when the other motor reaches its minimum, and vice versa, the sum of the individanl speeds always remaining constant.
  • the rate at which rovings 76 and 78 are fed to the main cylinder 24 varies directly with the speed of motors 80 and 82 respectively, the rate of feed of roving 76 is at its maximum when the rate of feed of roving 78 is at its minimum, and vice versa. Hence the sum of the rates of feed will also remain constant, thereby causing the total quantity of fibers delivered by the drafting sections to the main cylinder 24, dofier 29 and needles 22 per unit of time to remain substantially uniform.
  • the fabric 250 shown in FIG. 4 is a knit pile fabric made to resemble a natural mink pelt but otherwise is somewhat similar in structure to that illustrated in the patent to Moore 1,791,741 when greatly enlarged and dissected.
  • each pile element is made up of a substantially constant number N of fibers including X number of fibers of one color and Y number of fibers of another color corresponding, for example, tov the two basic colors found in the fur of the animal which is being simulated.
  • fabric 250 is made up of a row 252 containing a predominance of brown fibers in each pile element adjacent to a row 254 containing a predominance of gray fibers in each pile element.
  • Rows 252 and 254 extend coursewise of the fabric (circumferentially of knitting cylinder 21 as the fabric is being knit) and alternate with respect to one another in the direction of the wales of the fabric. It is to be noted that the brown rows or stripes 252 merge very gradually into the adjacent gray stripes 254, and vice versa, taken in the direction of the wales of the fabric in the same manner that the brown and gray stripes in a mink pelt gradually blend into one another. Thus in appearance fabric 250 is a very close approximation of the natural mink fur.
  • the previously described dual feed carding head having the upper and lower drafting sections 74 and 72 is employed.
  • a roving 76 of gray fibers is fed through guide posts 148 of the lower drafting section 72 and between the three pairs of feed rollers, following the aforementioned staggered or offset set-up procedure.
  • roving 78 of brown fibers is similarly fed int-o the upper drafting section 74.
  • the base strand or yarn 260 (FIG. 1) is then fed in the usual manner through the conventional guides and tube 262 and threaded into the circular row of latch needles 22 as is well known in the art.
  • the control mechanism is adjusted to produce the desired stripe width, e.g., the dimension taken in the direction of the wales of the fabric between the center line of the brown stripe 252 to the center line of the adjacent gray stripe 254. This is determined by the angular spacing of reversing dogs 230 and 232, with the speed of rotation of the knitting cylinder 21 taken as the constant reference point.
  • the machine is set up to knit 29 courses of base fabric per minute and that the stripe width is to be 87 courses or about three inches.
  • the reversing dogs 230 and 232 are spaced angularly apart on ratchet 168 so that it requires three minutes from the time one dog leaves arm 226 until the other dog strikes arm 226 to reverse the rotation of the rheostat.
  • motor M is connected to drive knitting cylinder 21 at a constant rotational speed, thereby causing main cylinder 24, doffer 29 and fancy wheel 46 to rotate at the aforementioned constant speed ratio.
  • rate of feed of rovings 76 and 78 is controlled independently of the other elements of the carding head by control unit 160. Assume that rheostat unit 162 controls the rate of feed of gray roving 76 and that it is at the maximum speed 28 of the carding wheel (FIG. 9).
  • the gray roving 76 will thus be fed at full speed through the lower drafting section 72 onto the card clothing 27 of main cylinder 24 which carries it clockwise (FIG. 10) first past brush 156 and then up past the upper drafting section 74 where brown roving 78- is being fed at slow speed onto the periphery of cylinder 24. Due to the staggered relation of rovings 76 and 78, the brown roving will be laid over the gray roving 76 with a slight overlap as indicated in FIG. 11, thereby covering substantially all of the transverse width of cylinder 24 with gray and brown fibers. The gray and brown fibers are then carried under brush 156 of drafting section 78 and onward to fancy wheel 46.
  • the fancy wheel wires 64 intermesh about one-eighth inch with the wires Wheel 46 does not function as a transfer roll but rather operates to raise the fibers being carried by the card clothing 27 of main cylinder 24 from the bottom of the clothing up to the outer surface of the clothing for presentation to dotfer 29 thereby promoting a greater transfer of fibers from the main cylinder 24-to the doffer 29.
  • the pile density of the fabrics hereunder consideration normally ranges from about 1 pound to about pounds per square yard.
  • fancy wheel 46 When making the lighter density fabrics, fancy wheel 46 may be omitted but its use is recommended when making the greater density fabrics and high rates of roving feed are encountered. Wheel 46 also is beneficial in causing some degree of intermixing of the gray and brown fibers as they are being carried on the main cylinder 22.
  • the fibers then reach the tangential contact point of cylinder 24 with doffer 29, which is rotating counterclockwise as viewed in FIG. at about 5 times the speed of cylinder 24.
  • the wires 34 of doifer 29 preferably just touch wires 28 of main cylinder 24 and pick up the fibers which have been raised to the surface of the clothing 27, plus whatever fibers are entangled with the surface fibers.
  • the balance of the fibers continue on around with cylinder 24 and become mixed with the fibers being added at drafting sections 72 and 74.
  • the transfer of fibers to doifer 29 causes some further mixing of the brown and gray fibers.
  • each needle picks up a bundle of pile fibers which represents an average sampling of the relative amounts of gray and brown fibers then present on the dotfer.
  • the rate of feedof the gray roving 76 is gradually diminished under the control of motor 80 as rheostat unit 162 rotates step by step clockwise, while simultaneously the speed of motor 82 and consequently the rate of feed of brown roving 78.is gradually increased under the control of unit 164.
  • the first few courses knitted in the sleeve 262 will be predominantly gray.
  • the next courses knit by the machine will become more brown in hue, this transition continuing until the maximum brown and minimum gray is being fed by the carding head to the needles, whereupon several courses of predominantly brown knit pile fabric are produced.
  • pile fibers differing with respect to one or more other physical characteristics, such as the denier of the fibers, average length ofthe fibers or the material from which the fiber is made, may be intermixed in accordance with the present invention.
  • fibers of two colors and two deniers, for example may be blended in varying amounts to produce a striped pattern which also alternates as to the coarseness of the pile.
  • the blending card head of the present invention is advantageous even when two different rovings are fed to the carding head at equal and constant rates of feed.
  • the endproduct resulting from this, method'and mode of operating the machine is illustrated by the knitted pile fabric 272 shown schematically in FIG. 7.
  • Fabric 272 has an improvedblend of the two fibers over that hitherto obtainable by feeding two rovings of differently colored fiber into a single drafting section.
  • the two different fibers are more thoroughly intermixed and less readily recognizable to the naked eye which, in the case of a two-color blend, means a more solid shade of an intermediate hue.
  • a further example of the product possibilities obtainable with a carding head having a plurality of individually controllable drafting sections is exemplified by the checkerboard patterns produced in the fabrics 274 and 276 illustrated respectively in FIGS. and 6.
  • a suitable phase control of the two motors is provided by microswi-tches arranged in the manner of the timing switch or switches previously described for ratchet rheostat unit 160 or by other conventional timer controls. With such a control the motors 80 and 82 are alternately turned on and off to first cause a feed solely of one roving followed by a feed solely of the other roving in an alternating sequence within each course of the sleeve 266 as it is knit.
  • first row 278 of fabric 274 (FIG. 5) several courses of fibers 280 from one roving alternate coursewise with several courses of fibers 282 from the other roving.
  • a suitable phase shift control or other device causes the roving feed to continue for a double interval and thereafter the original sequence resumes, thereby knitting the second row 284 of fabric 274 wherein the fibers 282 are adjacent fibers 280 of the row 278 and fibers 280 of the row 284 are adjacent fibers 282 of row 27 8.
  • the term physical characteristics when referring to the properties of the individual fibers, either natural or synthetic or a mixture of the same, making up each pile element or bundle in the fabric is used generically to encompass both visually identifiable properties such as color, length, denier and size as well as other physical properties identifiable only by test or analysis, such as strength. It is also to be understood that the individual rovings 76, 78 may be made up of mixtures of fibers, either natural or synthetic, having different characteristics and such' mixed rovings fed separately onto the carding means in the practice of the present invention. 7
  • Another important variable which is controllable in a predetermined manner in the practice of the present invention is the density of the pile fibers within the fabric.
  • the combined rate of feed of the separate rovings 76 and 78 is varied as the base fabric is being knit as a function of the portions of the sleeve 266 corresponding to the back and belly in such a manner as to simulate this natural condition.
  • This causes the total number of pile fibers per bundle to vary as the fabric is being knit.
  • this density variable may be superimposed on the color variable which is controlled to produce the alternating brown and gray striped effect.
  • the density or total number of pile fibers per bundle may be the sole variable knit into the fabric.
  • variable density of the fabric pile is by manual operation of rheostat control units 86 and 94 in such a manner that the combined rate of feed of rovings 76 and 78 is variable to increase or decrease the density of the pile fibers as required to produce the desired density variation in the pile of the fabric as it is being knit.
  • units 86 and 94 may both be rotated at the same time to increase the speed of motors 80 and 82 at the same rate. This will maintain a constant ratio of fibers derived from the respective rovings,
  • the two controls 86 and 94 may be operated in the 180 outof-phase relationship (i.e., as the speed of one motor increases the speed of the other correspondingly decreases) previously described through a progression of ranges.
  • control 86 may be rotated to vary the speed of motor 80 from say 0 percent to 10 percent of its maximum speed while control 94 is operated to decrease the speed of motor 82 from 10 percent down to 0 percent of its maximum speed, and vice versa.
  • the resulting pile density will then be equal to the number of fibers fed by one drafting section 72 or 74 operating at 10 percent of maximum speed.
  • the range may be shifted upwardly so that controls 86 and 94 are similarly operated to run motors 80 and 82 between 10 percent and 20 percent of their maximum speed. This will cause the same striping effect due to the 180 out-of-phase variation between the two controls 86 and 94, but the pile density will be increased and equal to that produced by one drafting section operating at 30 percent of its maximum speed. This progression can be continued until the motors are being operated 180 out-of-phase between percent and percent of their maximum speeds.
  • the resulting pile density will be greater than that produced in the earlier described example wherein each motor varied between its minimum and maximum speeds in a out-of-phase relationship to produce a uniform pile density equal to the maximum output of one drafting section, e.g., 50 percent of total pile delivering capacity of the dual feed carding head.
  • a pelt of varying density but of one blended color will be knit.
  • two rovings of the same color may also be fed by the two drafting sections 72 and 74 in the above manner when producing a solid color pelt, or only one drafting section 72 need be used to feed one suitably colored roving.
  • the rate of feed of the sole roving is controlled by using just the one control 86 to vary the density of the pile fiber bundles being knit into the fabric.
  • two differently colored rovings 76 and 78 are fed via drafting sections 72 and 74.
  • control 86 is first increased from 10 to 20 percent of full speed while control 94 is decreased from 20 to 10 percent of full speed, and vice versa, for a given period of time corresponding to several courses of fabric.
  • the ranges are gradually increased to between 11 to 22 percent, 12 to 24 percent, 13 to 26 percent and so on, of full speed for each control while still maintaining the 180 out-of-phase manipulation. This produces a gradual increase in density while maintaining the color pattern, e.g., stripe width and color variation from stripe to stripe.
  • the two controls When the back portion is reached the two controls will then, for example, be manipulated between 50 to 100 percent of their respective full speeds, thereby producing a density of pile in the fabric five times that knit at the start of the belly portion. The sequence is then. reversed until the belly .portion (the opposite c oursewise edge of the finished fabric) is reached.
  • the gray fibers may predominate throughout the fabric by controlling the rate of feed of gray roving so that it ranges between predetermined limits, say from 70 to 80. percent of the fiber content of the fabric, while the brown-fibers are fed at a rate such that they range between 20 and 30percent of the fiber content.
  • predetermined limits say from 70 to 80. percent of the fiber content of the fabric
  • brown-fibers are fed at a rate such that they range between 20 and 30percent of the fiber content.
  • a third drafting section similar to and in addition to drafting sections 72 and-74 maybe used to feed' a third roving made up of fiber guard hairs to the carding head at a. rate correlated with the feed of rovings 76 and 78. This will result in extra-long, heavier denier pile fibers 255 (FIG. 4) being scattered throughout the fabric 250in a predetermined arrangement to simulate the'way in which such guard hairs occur. in-the pelt of a furbearing animal.
  • the third drafting section may be omitted and the fiber guard hairs mixed into the rovings 76 and/ or 78 prior to feeding these rovings to their respective drafting sections 72 and 74.
  • control systems other than the manual system shown in conjunction with FIG. 1 and the electro-mechanical stepping rheostat type shown in conjunction with FIGS. 14-16 may be employed to control the machine of the invention in accordance with the method ofthe invention.
  • the rheostat associated with each motor of the respective drafting or drawing section may be controlled by a control mechanism wherein a cam or cams control the operation of servo-motors which in turn control rotation of the rheostat armatures.
  • a particular fabric design representing the combination of one or more variables may be produced by providing suitably designed cams to reproduce this fabric.
  • a method of making a simulated fur pelt knit pile ffabric comprising the steps of:
  • Apparatus for making a knit pile fabric comprising cardingmeans,-a plurality of roving feeding means for feeding aplurality of. rovings independently of one another into said carding means whereby said rovings are carded in said cardings means, variable'speed electric drive means, means drivingly connected to one of said feeding means for varying the .rate.
  • said electric drive means for varying the rate of feed of said one roving includes control means operably electrically connected to said drive means for varying the speed of said drive means and thereby the rate of feed of said one roving relative to the rate of feedof another of said rovings to thereby vary the relative proportions of fibers in said cardingmeans derived respectively from said one and other rovings and means for maintaining the speed of said carding means substantially constant relative .to the speed of said knitting means.
  • Apparatus for making a knit pile fabric comprising a carding unit, first and second feed roller means for simultaneously feeding a plurality of rovings independently of one another into said carding unit whereby. said rovings are continuously intermixed and carded in said carding unit, first electric drive means drivingly connected to sad first feed roller means and being speed variable between predetermined minimum and maximum speeds for varying the rate of feed of a first one of said rovings to said carding unit, second electric drive means drivingly connected to said second feed roller means and being speed variable between predetermined minimum and maximum speeds forvarying the rateof feed of a second one of said rovings to said carding unit and control means connected to said first and second drive means for proportionately varying the rate of feed of said first and second "rovings relative to one another such that the quantity of fibers in said carding unit derived from said first and second rovings is maintained substantially constant and means for kntting a base fabric including knitting needle means for. removing the intermixed and carded
  • Apparatus for making a knit pile fabric comprising a carding unit including transfer roll means, first and second feeding means for respectively feeding first and second pile fiber rovings to said transfer roll means, each said feeding means comprising counter-rotating loosely inter- ,meshed toothed rollers adapted to pass the associated roving therebetween, variable speed drive means for driving said first and second feeding means independently of one another, control means operably connected to said driving means operable to vary the speed of said first feedmg means relative to said second feeding means, means for operating said transfer roll means at a substantially constant speed, means including a circular latch needle knitting machine operably associated with said transfer roll means such that the needles thereof remove fibers from said transfer roll means and incorporate said removed fibers into a base fabric as it is being knitted on said machine and means for driving said knittng machne at a substantially constant speed. 7
  • Apparatus for making a knit pile fabric comprising a carding unit including a carding transfer roll and a doifer for receiving fibers from said transfer roll, first and second drafting sections for respectively drafting and feeding first and second pile fiber rovings to said transfer roll, means for driving said first and second drafting sections independently of one another, control means operably connected to said driving means to vary the speed of said first drafting section relative to the speed of said second drafting section, means including a circular latch needle knitting machine operably associated with said doifer such that the needles thereof remove fibers from said doffer and incorporate said removed fibers into a base fabric as it is being knitted on said machine and means for driving said carding transfer roll, said dotfer and said knitting machine at a substantially constant speed-ratio relative to one another.
  • Apparatus for making knit pile fabric comprising a carding head including a main cylinder having card clothing carried around the periphery thereof and a doffer disposed generally tangentially to said clothing of said main cylinder, a first roving drafting sectionhaving an output end disposed for feeding a first roving onto the clothing of said main cylinder, means for rotating said main cylinder and doffer at a predetermined constant speed ratio relative to one another, speed regulatable drive means operably connected for driving said first drafting section, means for controlling the speed of said drive means to vary the rate at which roving is fed through said first drafting section independentlyof the rotational speed of said main cylinder andv doffer' and means for knitting a base fabric including means for removing the carded fibers from said doffer and incorporating said removed fibers into the base fabric as it is being knitted to thereby produce the knit pile fabric, a second roving drafting section having an output end disposed for feeding a second roving onto the clothing of said main cylinder, speed regulatable drive means
  • Apparatus for making knit pile fabric including in combination a circular latch needle knitting machine, means for driving said'knitting machine at a substantally constant speed, a carding head mounted on said machine including a carding transfer roll and a dofferdisposed for receiving fibers from said transfer roll and positioned to be raked by the needles of said knitting machine to thereby remove fibers from the doifer for incorporation of the fibers thus removed into a base fabric as it is being knitted on said machine, first and second drafting sections for respectively drafting and feeding first and second pile fiber rovings to said transfer roll, each of said drafting sections comprising at least two pairs of counter-rotating rollers, the rollers of each pair being adapted to feed the roving therebetween and one of said pairs of rollers being spaced from the other of said pairs of rollers in the direction of roving feed, said one pair of said rollers being disposed adjacent said trans- 16 fer roll, each of said drafting sections having a variable speed electric motor mounted thereon and a gear train drivingly connecting
  • a method of making knit pile fabric comprising the steps ofi (1) independently feeding at least two individual streams of pile fibers with one of said streams containing pile fibers of a first characteristic and the other of said streams containing fibers of a second characteristic differing from said first characteristic,
  • Apparatus for making a knit pile fabric comprising a carding unit including transfer roll means, first and second feeding means for respectively feeding first and second pile fiber rovings to said transfer roll means, variable speed drive means for driving said first and second feeding means independently of one another, control means operably connected to said dn'ving means operable to vary the speed of said first feeding means relative to said second feeding means, means for operating said transfer roll means at a substantially constant speed, means including a circular latch needle knitting machine operably associated with said transfer roll means such that the needles thereof remove fibers from said transfer roll means and incorporate the removed fibers into a base fabric as it is being knitted on said machine and means for driving said knitting machine at a substantially constant speed.
  • Apparatus for making a knit pile fabric comprismg a carding unit including transfer roll means, first and second feeding means for respectively feeding first and second pile fiber rovings to said transfer roll means, means for driving said first and second feeding means lndependently of one another including a variable speed electric motor operably connected to said first feeding means for varying the speed thereof, control means operably connected to said driving means operable to vary the speed of said electric motor to thereby vary the speed of said first feeding means relative to said second feeding means, a circular latch needle knitting machine, and means for operating said transfer roll means to transfer pile fibers received from said first and second rovings to said knitting machine, said knitting machine being operably associated with said transfer roll means such that theneed-les of said knitting machine remove fibers from said transfer roll means and incorporate said removed fibers into a base fabric as it is being knitted on said m ch ne.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Knitting Machines (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Knitting Of Fabric (AREA)
US332227A 1963-12-20 1963-12-20 Method and apparatus for producing knit pile fabric Expired - Lifetime US3299672A (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US332227A US3299672A (en) 1963-12-20 1963-12-20 Method and apparatus for producing knit pile fabric
BE656286D BE656286A (US08080257-20111220-C00005.png) 1963-12-20 1964-11-26
LU47486A LU47486A1 (US08080257-20111220-C00005.png) 1963-12-20 1964-11-30
NL6414380A NL6414380A (US08080257-20111220-C00005.png) 1963-12-20 1964-12-10
DE1785588A DE1785588B2 (de) 1963-12-20 1964-12-11 Verfahren und Rundstrickmaschine zum Herstellen von Strickwaren mit eingekämmten Fasern *
GB50557/64A GB1098142A (en) 1963-12-20 1964-12-11 Improvements in or relating to method and apparatus for producing knit pile fabric
DE19641585362 DE1585362C (de) 1963-12-20 1964-12-11 Verfahren und Rundstrickmaschine zum Herstellen einer Strickware mit eingekammten Fasern
GB40064/67A GB1098143A (en) 1963-12-20 1964-12-11 Improvements in or relating to method and apparatus for producing knit pile fabric
JP39071296A JPS5237106B1 (US08080257-20111220-C00005.png) 1963-12-20 1964-12-18
SE15431/64A SE314467B (US08080257-20111220-C00005.png) 1963-12-20 1964-12-19
US600490A US3501812A (en) 1963-12-20 1966-12-09 Carding head attachment for pile fabric knitting machines
JP46068816A JPS5130622B1 (US08080257-20111220-C00005.png) 1963-12-20 1971-09-06
JP46068815A JPS5136823B1 (US08080257-20111220-C00005.png) 1963-12-20 1971-09-06
JP46068817A JPS5239113B1 (US08080257-20111220-C00005.png) 1963-12-20 1971-09-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US332227A US3299672A (en) 1963-12-20 1963-12-20 Method and apparatus for producing knit pile fabric

Publications (1)

Publication Number Publication Date
US3299672A true US3299672A (en) 1967-01-24

Family

ID=23297288

Family Applications (1)

Application Number Title Priority Date Filing Date
US332227A Expired - Lifetime US3299672A (en) 1963-12-20 1963-12-20 Method and apparatus for producing knit pile fabric

Country Status (8)

Country Link
US (1) US3299672A (US08080257-20111220-C00005.png)
JP (4) JPS5237106B1 (US08080257-20111220-C00005.png)
BE (1) BE656286A (US08080257-20111220-C00005.png)
DE (1) DE1785588B2 (US08080257-20111220-C00005.png)
GB (2) GB1098143A (US08080257-20111220-C00005.png)
LU (1) LU47486A1 (US08080257-20111220-C00005.png)
NL (1) NL6414380A (US08080257-20111220-C00005.png)
SE (1) SE314467B (US08080257-20111220-C00005.png)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3411187A (en) * 1967-02-23 1968-11-19 Wellman Ind Feed roller arrangement to card licker-in
US3418697A (en) * 1967-02-23 1968-12-31 Wellman Ind Auxiliary transfer rolls for textile card licker-in
US3427829A (en) * 1966-07-06 1969-02-18 Marshall John D Control means for pile fabric knitting machines
US3447343A (en) * 1966-07-11 1969-06-03 Reid Meredith Inc Apparatus for knitting frosted pile fabric
US3495422A (en) * 1968-03-12 1970-02-17 North American Rockwell Variable feeding mechanism for knitting pile fabric
US3516265A (en) * 1966-12-01 1970-06-23 Louis Collez Method of producing artificial furs of nonuniform fiber density
US3590604A (en) * 1968-08-30 1971-07-06 Bunker Ramo Knitted pile fabric
US3709002A (en) * 1970-08-20 1973-01-09 Bunker Ramo Apparatus for producing patterned deep pile circular knitted fabrics
US3896636A (en) * 1972-11-06 1975-07-29 Glenoit Mills Sliver feeding means for high pile fabric circular knitting machines
JPS5149972A (ja) * 1974-10-08 1976-04-30 Bii Wai Shimyureetetsudo Fuaas Suraibayokoamikegawanuno
US4006610A (en) * 1975-06-10 1977-02-08 Glenoit Mills, Inc. Method and apparatus for feeding plural slivers selectively to a high pile fabric knitting machine
US4007607A (en) * 1975-10-09 1977-02-15 Hayes-Albion Corporation Method and apparatus for knitting patterned sliver high pile fabric
US4236286A (en) * 1978-06-01 1980-12-02 Borg Textile Corporation Manufacture of knitted synthetic fur fabric
US4408370A (en) * 1981-08-24 1983-10-11 Mayer, Rothkopf Industries, Inc. Short fiber feed system for sliver high pile fabric knitting machines
DE3407392A1 (de) * 1983-10-03 1985-04-11 Mayer, Rothkopf Industries, Inc., Orangeburg, S.C. Mit kratzenbelag ueberzogene filettrommel fuer faser-hochflor-strickmaschinen
US4510773A (en) * 1983-10-07 1985-04-16 Mayer, Rothkopf Industries, Inc. Fiber transfer system for sliver high pile fabric circular knitting machines
US4673599A (en) * 1986-01-24 1987-06-16 David Vanderslice Synthetic fur garland and method of making same
US5431029A (en) * 1994-03-17 1995-07-11 Mayer Industries, Inc. Method and apparatus for forming reverse loop sliver knit fabric
US5546768A (en) * 1995-10-06 1996-08-20 Mayer Industries, Inc. Circular sliver knitting machine having a manifold for controlling multidirectional airflow
US5577402A (en) * 1995-10-06 1996-11-26 Mayer Industries, Inc. Positioning gauges for a circular sliver knitting machine
US5685176A (en) * 1995-10-06 1997-11-11 Mayer Industries, Inc. Circular sliver knitting machine
US6112384A (en) * 1997-04-07 2000-09-05 Barnes; Michael A. Multi-color fiber fluff products and method and apparatus for making same
US20040014387A1 (en) * 2002-07-16 2004-01-22 Sinykin Daniel L. Sliver-knit material
US20050274152A1 (en) * 2004-06-12 2005-12-15 Monterey, Inc. D/B/A Monterey Mills High heat filter fabric and method
US7026048B1 (en) 1997-04-07 2006-04-11 Barnes Michael A Multi-color fiber fluff products and method and apparatus for making same
US7344035B1 (en) 2004-06-12 2008-03-18 Siny Corp. High heat filter fabric and method
US20080263792A1 (en) * 2007-04-25 2008-10-30 Knight John C Tubular sliver knit fabric for paint roller covers
US20080263802A1 (en) * 2007-04-25 2008-10-30 Knight John C Tubular Cut Pile Knit Fabric For Paint Roller Covers
US20090064719A1 (en) * 2006-02-13 2009-03-12 Reinhard Koenig Machine for producing a knitted fabric from fibre material, in particular circular knitting machine
US7503190B1 (en) * 2007-10-12 2009-03-17 Seamless Technologies, Llc Forming a tubular knit fabric for a paint roller cover
US20090095025A1 (en) * 2007-10-12 2009-04-16 Seamless Technologies, Llc Forming A Tubular Knit Fabric For A Paint Roller Cover
US20090170677A1 (en) * 2007-04-25 2009-07-02 Seamless Technologies, Llc Tubular knit fabric having alternating courses of sliver fiber pile and cut-pile for paint roller covers
US20090183817A1 (en) * 2008-01-17 2009-07-23 Sinykin Daniel L Methods of Manufacturing Paint Roller Covers From a Tubular Fabric Sleeve
US20100175429A1 (en) * 2007-06-14 2010-07-15 Reinhard Koenig Circular knitting machine for the production of knitted fabrics by at least partially using fibre materials
US7905980B2 (en) 2007-04-25 2011-03-15 Seamless Technologies, Llc Method of manufacturing paint roller covers from a tubular fabric sleeve
US8118967B2 (en) 2008-01-17 2012-02-21 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US8221578B2 (en) 2007-04-25 2012-07-17 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US8298364B2 (en) 2008-01-17 2012-10-30 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US20130255325A1 (en) * 2012-03-30 2013-10-03 Deckers Outdoor Corporation Wool pile fabric including security fibers and method of manufacturing same
US20140223968A1 (en) * 2011-09-21 2014-08-14 Reinhard Konig Folding Drawing System For A Spin-Knit Machine
US8858750B2 (en) 2007-04-25 2014-10-14 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US8882957B2 (en) 2007-04-25 2014-11-11 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
CN105051274A (zh) * 2013-03-20 2015-11-11 Sipra专利发展合作股份有限公司 用于针织机的牵伸机构
USD962299S1 (en) * 2019-06-12 2022-08-30 Santoni S.P.A. Textile machine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458720U (US08080257-20111220-C00005.png) * 1977-09-30 1979-04-23
JPS55146251A (en) * 1980-03-10 1980-11-14 Nissan Motor Co Ltd Cylinder head for internal combustion engine
JPS6020478U (ja) * 1983-07-21 1985-02-13 三菱自動車工業株式会社 車体のリヤフロアパンの構造
DE3334912C1 (de) * 1983-09-27 1985-05-23 Hollingsworth Gmbh, 7265 Neubulach Karde oder Krempel zum wahlweisen Herstellen von laengsorientierten Vliesen oder Wirrvliesen
JPS61107803A (ja) * 1984-10-31 1986-05-26 Toshiba Corp テ−プレコ−ダのミクシング回路
DE3632483A1 (de) * 1986-09-24 1988-03-31 Hollingsworth Gmbh Universalmaschine zum wahlweisen herstellen von laengsorientierten vliesen oder wirrvliesen
DE4308133C1 (de) * 1993-03-15 1994-08-18 Pwh Anlagen & Systeme Gmbh Becherwerk
EP3649984B1 (en) 2017-07-07 2022-08-10 DIO Corporation Digital denture manufacturing method and manufacturing system, and denture hole guider applied thereto and manufacturing method thereof

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1759260A (en) * 1906-01-20 1930-05-20 Hoffmann Oswald Spinning process for polychromatic yarns, device for said process, and the product of said process
US1848370A (en) * 1930-11-28 1932-03-08 Moore David Pelton Pile fabric knitting machine
US2159992A (en) * 1933-01-23 1939-05-30 Egan Cotton Mills Process of making slivers for use in padding
US2542314A (en) * 1945-06-06 1951-02-20 Comptoir Textiles Artificiels Method of making mixed yarns
US2712225A (en) * 1951-05-11 1955-07-05 Moore David Pelton Methods of and apparatus for making double faced fleece knitted fabrics
US2757529A (en) * 1955-06-07 1956-08-07 Moore David Pelton Double faced pile fabric
US2953912A (en) * 1957-04-02 1960-09-27 Wildman Jacquard Co Method and mechanism for knitting pile fabrics
US3020774A (en) * 1958-03-26 1962-02-13 Badger Meter Mfg Co Control mechanisms
US3035404A (en) * 1957-04-02 1962-05-22 Hayeshaw Ltd Process for making yarn of varying colour character
US3071820A (en) * 1959-01-21 1963-01-08 Bettoni Ezio Apparatus for card-drawing and doubling textile fibers
US3071821A (en) * 1960-06-10 1963-01-08 Crompton & Knowles Corp Method of producing discontinuous fibers from continuous filaments incident to forming a nonwoven web
US3122904A (en) * 1959-10-28 1964-03-03 Amphenol Borg Electronics Corp Pile fabric knitting machine for striped pile
US3134144A (en) * 1960-12-30 1964-05-26 Greenwood Mills Inc Carding and drafting apparatus
US3153335A (en) * 1960-05-18 1964-10-20 Wildman Jacquard Co Pile fabric knitting mechanism
US3154934A (en) * 1960-10-27 1964-11-03 Ltd Malden Pile fabric
US3188834A (en) * 1962-12-10 1965-06-15 Glenoit Mills Means for feeding fibers to a pile fabric knitting machine

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1759260A (en) * 1906-01-20 1930-05-20 Hoffmann Oswald Spinning process for polychromatic yarns, device for said process, and the product of said process
US1848370A (en) * 1930-11-28 1932-03-08 Moore David Pelton Pile fabric knitting machine
US2159992A (en) * 1933-01-23 1939-05-30 Egan Cotton Mills Process of making slivers for use in padding
US2542314A (en) * 1945-06-06 1951-02-20 Comptoir Textiles Artificiels Method of making mixed yarns
US2712225A (en) * 1951-05-11 1955-07-05 Moore David Pelton Methods of and apparatus for making double faced fleece knitted fabrics
US2757529A (en) * 1955-06-07 1956-08-07 Moore David Pelton Double faced pile fabric
US3035404A (en) * 1957-04-02 1962-05-22 Hayeshaw Ltd Process for making yarn of varying colour character
US2953912A (en) * 1957-04-02 1960-09-27 Wildman Jacquard Co Method and mechanism for knitting pile fabrics
US3020774A (en) * 1958-03-26 1962-02-13 Badger Meter Mfg Co Control mechanisms
US3071820A (en) * 1959-01-21 1963-01-08 Bettoni Ezio Apparatus for card-drawing and doubling textile fibers
US3122904A (en) * 1959-10-28 1964-03-03 Amphenol Borg Electronics Corp Pile fabric knitting machine for striped pile
US3153335A (en) * 1960-05-18 1964-10-20 Wildman Jacquard Co Pile fabric knitting mechanism
US3071821A (en) * 1960-06-10 1963-01-08 Crompton & Knowles Corp Method of producing discontinuous fibers from continuous filaments incident to forming a nonwoven web
US3154934A (en) * 1960-10-27 1964-11-03 Ltd Malden Pile fabric
US3134144A (en) * 1960-12-30 1964-05-26 Greenwood Mills Inc Carding and drafting apparatus
US3188834A (en) * 1962-12-10 1965-06-15 Glenoit Mills Means for feeding fibers to a pile fabric knitting machine

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3427829A (en) * 1966-07-06 1969-02-18 Marshall John D Control means for pile fabric knitting machines
US3447343A (en) * 1966-07-11 1969-06-03 Reid Meredith Inc Apparatus for knitting frosted pile fabric
US3516265A (en) * 1966-12-01 1970-06-23 Louis Collez Method of producing artificial furs of nonuniform fiber density
US3411187A (en) * 1967-02-23 1968-11-19 Wellman Ind Feed roller arrangement to card licker-in
US3418697A (en) * 1967-02-23 1968-12-31 Wellman Ind Auxiliary transfer rolls for textile card licker-in
US3495422A (en) * 1968-03-12 1970-02-17 North American Rockwell Variable feeding mechanism for knitting pile fabric
US3590604A (en) * 1968-08-30 1971-07-06 Bunker Ramo Knitted pile fabric
US3709002A (en) * 1970-08-20 1973-01-09 Bunker Ramo Apparatus for producing patterned deep pile circular knitted fabrics
US3896636A (en) * 1972-11-06 1975-07-29 Glenoit Mills Sliver feeding means for high pile fabric circular knitting machines
JPS5149972A (ja) * 1974-10-08 1976-04-30 Bii Wai Shimyureetetsudo Fuaas Suraibayokoamikegawanuno
US4006610A (en) * 1975-06-10 1977-02-08 Glenoit Mills, Inc. Method and apparatus for feeding plural slivers selectively to a high pile fabric knitting machine
US4007607A (en) * 1975-10-09 1977-02-15 Hayes-Albion Corporation Method and apparatus for knitting patterned sliver high pile fabric
US4236286A (en) * 1978-06-01 1980-12-02 Borg Textile Corporation Manufacture of knitted synthetic fur fabric
US4408370A (en) * 1981-08-24 1983-10-11 Mayer, Rothkopf Industries, Inc. Short fiber feed system for sliver high pile fabric knitting machines
DE3407392A1 (de) * 1983-10-03 1985-04-11 Mayer, Rothkopf Industries, Inc., Orangeburg, S.C. Mit kratzenbelag ueberzogene filettrommel fuer faser-hochflor-strickmaschinen
US4510773A (en) * 1983-10-07 1985-04-16 Mayer, Rothkopf Industries, Inc. Fiber transfer system for sliver high pile fabric circular knitting machines
US4673599A (en) * 1986-01-24 1987-06-16 David Vanderslice Synthetic fur garland and method of making same
US5431029A (en) * 1994-03-17 1995-07-11 Mayer Industries, Inc. Method and apparatus for forming reverse loop sliver knit fabric
WO1995025191A1 (en) * 1994-03-17 1995-09-21 Mayer Industries, Inc. Method and apparatus for forming reverse loop sliver knit fabric
US5460016A (en) * 1994-03-17 1995-10-24 Mayer Industries, Inc. Method and apparatus for forming reverse loop sliver knit fabric
US5497531A (en) * 1994-03-17 1996-03-12 Mayer Industries, Inc. Manifold for use with a circular sliver knitting machine
US5546768A (en) * 1995-10-06 1996-08-20 Mayer Industries, Inc. Circular sliver knitting machine having a manifold for controlling multidirectional airflow
US5577402A (en) * 1995-10-06 1996-11-26 Mayer Industries, Inc. Positioning gauges for a circular sliver knitting machine
US5685176A (en) * 1995-10-06 1997-11-11 Mayer Industries, Inc. Circular sliver knitting machine
US5809804A (en) * 1995-10-06 1998-09-22 Mayer Industries, Inc. Sliver knitting machine card unit and air nozzle
US6112384A (en) * 1997-04-07 2000-09-05 Barnes; Michael A. Multi-color fiber fluff products and method and apparatus for making same
US6632755B1 (en) 1997-04-07 2003-10-14 Michael A. Barnes Multi-color fiber fluff products and method and apparatus for making same
US7026048B1 (en) 1997-04-07 2006-04-11 Barnes Michael A Multi-color fiber fluff products and method and apparatus for making same
US20040014387A1 (en) * 2002-07-16 2004-01-22 Sinykin Daniel L. Sliver-knit material
US6766668B2 (en) 2002-07-16 2004-07-27 Daniel L. Sinykin Silver-knit material
US20050274152A1 (en) * 2004-06-12 2005-12-15 Monterey, Inc. D/B/A Monterey Mills High heat filter fabric and method
US7043943B2 (en) 2004-06-12 2006-05-16 Monterey Mills High heat filter fabric and method
US7344035B1 (en) 2004-06-12 2008-03-18 Siny Corp. High heat filter fabric and method
US20090064719A1 (en) * 2006-02-13 2009-03-12 Reinhard Koenig Machine for producing a knitted fabric from fibre material, in particular circular knitting machine
US7926306B2 (en) * 2006-02-13 2011-04-19 Reinhard Koenig Machine for producing a knitted fabric from fibre material, in particular circular knitting machine
US20080263792A1 (en) * 2007-04-25 2008-10-30 Knight John C Tubular sliver knit fabric for paint roller covers
US7905980B2 (en) 2007-04-25 2011-03-15 Seamless Technologies, Llc Method of manufacturing paint roller covers from a tubular fabric sleeve
US7503191B2 (en) * 2007-04-25 2009-03-17 Seamless Technologies, Llc Tubular sliver knit fabric for paint roller covers
US9994069B2 (en) 2007-04-25 2018-06-12 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US8882957B2 (en) 2007-04-25 2014-11-11 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US8858750B2 (en) 2007-04-25 2014-10-14 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US20090170677A1 (en) * 2007-04-25 2009-07-02 Seamless Technologies, Llc Tubular knit fabric having alternating courses of sliver fiber pile and cut-pile for paint roller covers
US8652289B2 (en) 2007-04-25 2014-02-18 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US7596972B2 (en) * 2007-04-25 2009-10-06 Seamless Technologies, Llc Tubular knit fabric having alternating courses of sliver fiber pile and cut-pile for paint roller covers
US8221578B2 (en) 2007-04-25 2012-07-17 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US20080263802A1 (en) * 2007-04-25 2008-10-30 Knight John C Tubular Cut Pile Knit Fabric For Paint Roller Covers
US7748241B2 (en) 2007-04-25 2010-07-06 Seamless Technologies, Llc Tubular cut pile knit fabric for paint roller covers
US20100175429A1 (en) * 2007-06-14 2010-07-15 Reinhard Koenig Circular knitting machine for the production of knitted fabrics by at least partially using fibre materials
US7882710B2 (en) * 2007-06-14 2011-02-08 Reinhard Koenig Circular knitting machine for the production of knitted fabrics by at least partially using fibre materials
US7634921B2 (en) 2007-10-12 2009-12-22 Seamless Technologies, Llc Knitting a tubular fabric for a paint roller cover
CN101407968B (zh) * 2007-10-12 2013-09-11 西姆利斯技术有限公司 用于形成漆滚筒刷用管状编织毛套的编织设备和方法
US20100095711A1 (en) * 2007-10-12 2010-04-22 Seamless Technologies, Llc Forming A Tubular Knit Fabric For A Paint Roller Cover
US20110154863A1 (en) * 2007-10-12 2011-06-30 Knight Sr John Cecil Forming a Tubular Knit Fabric for a Paint Roller Cover
US20090095025A1 (en) * 2007-10-12 2009-04-16 Seamless Technologies, Llc Forming A Tubular Knit Fabric For A Paint Roller Cover
US8156767B2 (en) 2007-10-12 2012-04-17 Seamless Technologies, Llc Forming a tubular knit fabric for a paint roller cover
US20090145170A1 (en) * 2007-10-12 2009-06-11 Knight Sr John Cecil Forming A Tubular Knit Fabric For A Paint Roller Cover
US7503190B1 (en) * 2007-10-12 2009-03-17 Seamless Technologies, Llc Forming a tubular knit fabric for a paint roller cover
US7552602B2 (en) 2007-10-12 2009-06-30 Seamless Technologies, Llc Forming a tubular knit fabric for a paint roller cover
US7908889B2 (en) 2007-10-12 2011-03-22 Seamless Technologies, Llc Forming a tubular knit fabric for a paint roller cover
US20090183817A1 (en) * 2008-01-17 2009-07-23 Sinykin Daniel L Methods of Manufacturing Paint Roller Covers From a Tubular Fabric Sleeve
US8298364B2 (en) 2008-01-17 2012-10-30 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US8182645B2 (en) 2008-01-17 2012-05-22 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US8118967B2 (en) 2008-01-17 2012-02-21 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US20140223968A1 (en) * 2011-09-21 2014-08-14 Reinhard Konig Folding Drawing System For A Spin-Knit Machine
US9328438B2 (en) * 2011-09-21 2016-05-03 Reinhard König Folding drawing system for a spin-knit machine
US20130255325A1 (en) * 2012-03-30 2013-10-03 Deckers Outdoor Corporation Wool pile fabric including security fibers and method of manufacturing same
CN105051274A (zh) * 2013-03-20 2015-11-11 Sipra专利发展合作股份有限公司 用于针织机的牵伸机构
US20160017525A1 (en) * 2013-03-20 2016-01-21 Sipra Patentwicklungs- Und Beteiligungsgesellschaft Mbh Drafting arrangement for a knitting machine
USD962299S1 (en) * 2019-06-12 2022-08-30 Santoni S.P.A. Textile machine

Also Published As

Publication number Publication date
DE1785588A1 (de) 1972-08-31
GB1098143A (en) 1968-01-10
NL6414380A (US08080257-20111220-C00005.png) 1965-06-21
JPS5136823B1 (US08080257-20111220-C00005.png) 1976-10-12
JPS5237106B1 (US08080257-20111220-C00005.png) 1977-09-20
DE1585362B1 (de) 1972-08-31
SE314467B (US08080257-20111220-C00005.png) 1969-09-08
JPS5239113B1 (US08080257-20111220-C00005.png) 1977-10-03
LU47486A1 (US08080257-20111220-C00005.png) 1965-01-30
GB1098142A (en) 1968-01-10
DE1785588B2 (de) 1975-02-13
JPS5130622B1 (US08080257-20111220-C00005.png) 1976-09-02
BE656286A (US08080257-20111220-C00005.png) 1965-03-16

Similar Documents

Publication Publication Date Title
US3299672A (en) Method and apparatus for producing knit pile fabric
US3710597A (en) Knit pile fabric
DE1585514B2 (de) Verfahren zum herstellen eines gestricks
US3501812A (en) Carding head attachment for pile fabric knitting machines
US2255078A (en) Method and apparatus for making knitted fabrics
DE69816454T2 (de) Nahtlose kettenstrickwaren
US3188834A (en) Means for feeding fibers to a pile fabric knitting machine
US3563058A (en) Method and apparatus for producing knit pile fabric
US2110371A (en) Product and process for the manufacture thereof
US3952372A (en) Method and means for blending fiber strand segments in a base strand
JP6794358B2 (ja) 編み物の製造のための機械および方法
US3248902A (en) Striping attachment for a carding head for a pile fabric knitting machine
US2619682A (en) Carding machinery
US3590604A (en) Knitted pile fabric
US5867880A (en) Method and device for producing textile products from fibers and/or filaments and products obtained
IL43399A (en) Means for feeding strands to circular knitting machines of fabric with long hair
CN114990749A (zh) 一种珠片拉毛纱的生产设备及生产工艺
US3516265A (en) Method of producing artificial furs of nonuniform fiber density
US4051697A (en) High pile fabric
US3269147A (en) Method and means for knitting pile fabric
US3651664A (en) Method of producing artificial furs of nonuniform fiber density
US3859823A (en) Control system for high pile circular knitting machines
US3447343A (en) Apparatus for knitting frosted pile fabric
DE370736C (de) Verfahren und Strickmaschine zur Herstellung von Wirkwaren mit Pelzdecke
JP2001064830A (ja) 家庭用混繊色トップ機