US3274022A - Palladium deposition - Google Patents
Palladium deposition Download PDFInfo
- Publication number
- US3274022A US3274022A US267947A US26794763A US3274022A US 3274022 A US3274022 A US 3274022A US 267947 A US267947 A US 267947A US 26794763 A US26794763 A US 26794763A US 3274022 A US3274022 A US 3274022A
- Authority
- US
- United States
- Prior art keywords
- palladium
- bath
- per liter
- copper
- grams per
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 title claims description 115
- 229910052763 palladium Inorganic materials 0.000 title claims description 53
- 230000008021 deposition Effects 0.000 title claims description 27
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 21
- 229910021529 ammonia Inorganic materials 0.000 claims description 16
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 11
- RHUYHJGZWVXEHW-UHFFFAOYSA-N 1,1-Dimethyhydrazine Chemical compound CN(C)N RHUYHJGZWVXEHW-UHFFFAOYSA-N 0.000 claims description 10
- 230000003197 catalytic effect Effects 0.000 claims description 10
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 5
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 claims description 4
- 235000019270 ammonium chloride Nutrition 0.000 claims description 4
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims description 4
- 235000011130 ammonium sulphate Nutrition 0.000 claims description 4
- DPBLXKKOBLCELK-UHFFFAOYSA-N pentan-1-amine Chemical compound CCCCCN DPBLXKKOBLCELK-UHFFFAOYSA-N 0.000 claims description 4
- 239000003381 stabilizer Substances 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 28
- 229910052802 copper Inorganic materials 0.000 description 28
- 239000010949 copper Substances 0.000 description 28
- 238000000151 deposition Methods 0.000 description 26
- 229910045601 alloy Inorganic materials 0.000 description 13
- 239000000956 alloy Substances 0.000 description 13
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 10
- 229960001484 edetic acid Drugs 0.000 description 9
- 238000007747 plating Methods 0.000 description 9
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000000908 ammonium hydroxide Substances 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000007792 addition Methods 0.000 description 6
- 230000001464 adherent effect Effects 0.000 description 6
- 229910001369 Brass Inorganic materials 0.000 description 5
- 229910000906 Bronze Inorganic materials 0.000 description 5
- 239000010951 brass Substances 0.000 description 5
- 239000010974 bronze Substances 0.000 description 5
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000005234 chemical deposition Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- -1 that is Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000570 Cupronickel Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- JGUQDUKBUKFFRO-CIIODKQPSA-N dimethylglyoxime Chemical compound O/N=C(/C)\C(\C)=N\O JGUQDUKBUKFFRO-CIIODKQPSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- SGMHGVVTMOGJMX-UHFFFAOYSA-N n-naphthalen-2-yl-2-sulfanylacetamide Chemical compound C1=CC=CC2=CC(NC(=O)CS)=CC=C21 SGMHGVVTMOGJMX-UHFFFAOYSA-N 0.000 description 1
- 239000010956 nickel silver Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- FNXKBSAUKFCXIK-UHFFFAOYSA-M sodium;hydrogen carbonate;8-hydroxy-7-iodoquinoline-5-sulfonic acid Chemical class [Na+].OC([O-])=O.C1=CN=C2C(O)=C(I)C=C(S(O)(=O)=O)C2=C1 FNXKBSAUKFCXIK-UHFFFAOYSA-M 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- IUTCEZPPWBHGIX-UHFFFAOYSA-N tin(2+) Chemical compound [Sn+2] IUTCEZPPWBHGIX-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
- C23C18/44—Coating with noble metals using reducing agents
Definitions
- Electroless methods of palladium deposition known heretofore have not been successful in producing relatively thick, continuous coatings of palladium directly on copper and copper-rich alloys.
- copper acts as a poison to halt the catalytic and autocatalytic deposition of the palladium.
- Another object of the invention is to provide a novel autocatalytic process for the electroless deposition of palladium on copper-rich metallic substrates.
- the invention also contemplates providing a novel process for producing metallic electronic components having a copper-rich base and a surface of palladium metal.
- the present invention contemplates a process for the electroless deposition of palladium which comprises establishing an aqueous bath containing about 100 to about 350 grams per liter (g.p.l.) of ammonia substantially as ammonium hydroxide, up to about 80 g.p.l. of ethylenediaminetetraacetic acid (E.D.T.A.), about 0.04 to about 0.50 g.p.l. of unsymmetrical dimethylhydrazine (U.D.M.H.) and about 1 to about 20 g.p.l.
- E.D.T.A. ethylenediaminetetraacetic acid
- U.D.M.H. unsymmetrical dimethylhydrazine
- divalent palladium added advantageously as tetramminepalladium (II) chloride, immersing or dipping a body having a catalytic surface in said aqueous bath while maintaining the temperature of said bath at about 68 C. to about 100 C. to effect catalytic and autocatalytic deposition of metallic palladium from said bath on said surface while maintaining the concentration of U.D.M.H. within the aforesaid range.
- the present invention also contemplates the palladium bath which contains water, ammonia, divalent palladium and U.D.M.H. as essential ingredients.
- Objects to be plated in the bath of the present invention and according to the process of the present. invention must have a surface of a catalytic metal such as aluminum, chromium, cobalt, copper, gold, iron, molybdenum, nickel, palladium, platinum, ruthenium, silver, tin, tungsten, and alloys rich in cobalt, nickel and/or copper.
- a catalytic metal such as aluminum, chromium, cobalt, copper, gold, iron, molybdenum, nickel, palladium, platinum, ruthenium, silver, tin, tungsten, and alloys rich in cobalt, nickel and/or copper.
- a catalytic metal such as aluminum, chromium, cobalt, copper, gold, iron, molybdenum, nickel, palladium, platinum, ruthenium, silver, tin, tungsten, and alloys rich in cobalt, nickel and/or copper.
- Such objects can be composed of such a cata
- Objects made of materials such as glass, plastics and ceramics which do not catalyze the reduction of palladium can be coated with a preliminary deposit of a catalytic substance such as nickel, silver, palladium, etc., and thus, by this means, it is possible in accordance with the present invention to chemically deposit smooth and adherent plates of palladium on substantially any object.
- a catalytic substance such as nickel, silver, palladium, etc.
- a bath for the chemical deposition of palladium in accordance with the present invention is advantageously made by dissolving tetramminepalladium II) chloride in an aqueous solution of ammonium hydroxide to which is added E.D.T.A. as the disodium salt.
- Palladous palladium can also be added to the ammoniacal bath of the present invention (that is, an alkaline bath containing ammonium hydroxide or free ammonia) as palladous chloride and palladous nitrate.
- the bath can be employed statically or in a dynamic system such as in a rotating barrel.
- the deposition bath When objects are ready to be plated, that is, when they have been carefully cleaned in the manner normal to electroplating techniques, the deposition bath is brought to or maintained at operating temperature and the requisite amount of U.D.M.H. is added to the bath. The object or objects to be plated are then brought in contact with said bath. As plating progresses, periodic additions of U.D.M.H. should be made to the bath so that the concentration thereof is maintained within the required limits. In general, plating resulting from chemical deposition in the bath proceeds at a deposition rate of about 40 to about 60 microinches per hour. At these plating rates it has been found to be advantageous to add about 0.48 gram of U.D.M.H.
- the proportions of ingredients in the aqueous baths of the present invention are important in that if divalent palladium and U.D.M.H. are present in too large a concentration, the baths will tend to decompose spontaneously. On the other hand, if too little of these ingredients are present, the plating rate will be very slOW. Too little amine, e.g., ammonia, also causes low plating rates. Amounts of ammonia in excess of about 280 g.p.l. are usually not advantageous in that at the operating temperabetter understanding of the'invention, the following illustrative examples are given:
- Example I An aqueous solution containing g.p.l. of palladous palladium, 280 g.p.l. of ammonium hydroxide and 8 g.p.l. of the disodium salt of E.D.T.A. was placed in a rotatable plating barrel and maintained at a temperature of 75 C. Enough U.D.M.H. was added to provide a concentration of about 0.086 g.p.l. thereof in the solution. A brass object having a surface area of 500 cm. was thoroughly cleaned and placed in the solution in the barrel. The barrel was then rotated and at fifteen minute intervals, about 0.06 gram of U.D.M.H. was added to the solution. After one hour, the brass sample exhibited an adherent metallic deposit of palladium about 43 microinches thick.
- Example II A bronze object having a surface area of about 500 cm. was suspended in :a. U.D.M.H. containing solution as em ployed in Example I. The solution was maintained at 85 C. and the concentration of U.D.M.H. was maintained. Over a period of time, an adherent deposit of palladium metal was obtained on the bronze sample.
- Example 111 After being suspended for one hour at 90 C. in an aqueous solution containing the same amounts of U.D.M.H., ammonium hydroxide and the disodium salt of E.D.T.A. as employed in Example I but containing 10 g.p.l. of palladous palladium, a brass object having a surface area of 500 cm. was found to have an adherent deposit of metallic palladium about 59 microinches thick.
- Example IV To an aqueous solution containing 5 g.p.l. of palladous palladium, about 280 g.p.l. of ammonium hydroxide and about 0.08 g.p.l. of U.D.M.H. in a rotatable barrel, was introduced a brass object having a surface area of about 500 cm. The barrel was rotated for about one hour while the temperature of the solution was maintained at about 83 C. and while the concentration of U.D.M.H. was maintained by additions every fifteen minutes of about 0.06 gram of U.D.M.H. After one hour, the object was found to have an adherent plate of metallic palladium about 45 microinches thick.
- Example V Boiling aqueous solutions containing 10 g.p.l. of palladous palladium, 280 g.p.l. of ammonium hydroxide and 0.08 g.p.l. of U.D.M.H. were employed to plate copper and bronze objects.
- the objects each had about 500 cm. surface area.
- the copper object suspended in the bath exhibited a metallic palladium deposit about 60 microinches thick
- the bronze object, plated in a rotating barrel exhibited a metallic palladium deposit about 52 microinches thick.
- the present invention is particularly applicable to the production of electrical and/or electronic components made of copper and coated with an adherent bright deposit of palladium.
- other ingredients can be employed in the bath.
- mole for mole amounts of stabilizing substances such as ammonium chloride and ammonium sulfate can be employed in place of or in addition to E.D.T.A.
- Other amines such as aminoethyl ethanolamine and/ or amylamine can be employed mole for mole in addition to or in place of part of the ammonium hydroxide.
- substances for brightening, leveling, etc. can be employed in the bath.
- the present invention is not to be confused with processes for electroless deposition of palladium involving the use of hydrazine.
- Objects made of copper or alloys rich in copper cannot be directly coated with palladium from ammoniacal baths containing high concentrations of ammonia and containing hydrazine as the sole agent for reducing palladium ion to palladium metal.
- the process of the present invention is particularly adapted to be employed in the plating of electrical and electronic components made of copper and/or copper-rich alloys.
- a bath for the electroless deposition of palladium comprising an aqueous solution containing about 1 to about 20 grams per liter of divalent palladium, about 0.04 to about 0.50 gram per liter of unsymmetrical dimethylhydrazine, an amine selected from the group consisting of ammonia, aminoethyl ethanolamine and amylamine in an amount equivalent in molar concentration to about 100 to about 350 grams per liter of ammonia and a stabilizing agent selected from the group consisting of ammonium chloride, ammonium sulfate and ethylenediaminetetraacetic acid in an amount equivalent in molar concentration to up to about grams per liter of ethylenediaminetetraacetic acid.
- a bath for the electroless deposition of palladium comprising an aqueous solution containing about 1 to 20 grams per liter of divalent palladium, about 0.04 to about 0.50 gram per liter of unsymmetrical dimethylhydrazine, about to about 350 grams per liter of ammonia and up to about 80 grams per liter of ethylenediaminetetraacetic acid.
- a bath for the electroless deposition of palladium comprising anaqueous solution containing about 5 to about 10 grams per liter of divalent palladium, about 0.05 to about 0.45 gram per liter of unsymmetrical dimethylhydrazine, about to about grams per liter of ammonia and about 5 to about 24 grams per liter of ethylenediaminetetraacetic acid.
- a process for the electroless deposition of palladium which comprises establishing an aqueous bath containing about 1 to about 20 grams per liter of divalent palladium, about 0.04 to about 0.50 gram per liter of unsymmetrical dimethylhydrazine, an amine selected from the group consisting of ammonia, aminoethyl ethanolamine and amylamine in an amount equivalent in molar concentration to about 100 to about 350 grams per liter of ammonia and a stabilizing agent selected from the group consisting of ammonium chloride, ammonium sulfate and ethylenediaminetetraacetic acid in an amount equivalent in molar concentration to up to about 80 grams per liter of ethylenediaminetetraacetic acid and placing a body having a catalytic surface in contact with said aqueous bath while maintaining the temperature of said bath at about 68 C. to about 100 C. to effect a deposition of metallic palladium from said bath on said surface and while replenishing said bath with unsymmetrical dimethylhydn
- a process for the electroless deposition of palladium which comprises establishing an aqueous bath containing about 100 to about 350 grams per liter of ammonia, up to amout 80 grams per liter of ethylenediaminete-traacetic acid, about 0.04 to about 0.50 gram per liter of unsymmetrical dimethylhydrazine and about 1 to about 20 grams per liter of divalent palladium, placing a body having a catalytic surface in contact with said aqueous bath while maintaining the temperature of said bath at about 68 C. to about 100 C. to effect a deposition of metallic palladium from said bath on said surface and while replenishing said bath with unsymmetrical dimethylhydrazine to maintain the concentration thereof within said range of about 0.04 to about 0.50 gram per liter.
- a process for the electroless deposition of palladium which comprises establishing an aqueous bath containing about 120 to about 170 grams per liter of ammonia, about 5 to about 24 grams per liter of ethylenediaminetetraacetic acid, about 0.05 to about 0.45 gram per liter of unsymmetrical dimethylhydrazine and about 5 to about 10 grams per liter of divalent palladium, placing a body having a catalytic surface in contact with said aqueous bath While maintaining the temperature of said bath at about 68 C. to about 100 C. to effect a deposition of metallic palladium from said bath on said surface and while replenishing said bath with unsymmetrical dimethylhydrazine to maintain the concentration thereof within said range of about 0.05 to about 0.45 gram per liter.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemically Coating (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US267947A US3274022A (en) | 1963-03-26 | 1963-03-26 | Palladium deposition |
GB10064/64A GB994560A (en) | 1963-03-26 | 1964-03-10 | Deposition of palladium |
DEJ25485A DE1247804B (de) | 1963-03-26 | 1964-03-19 | Alkalisches Bad zum chemischen Abscheiden von festhaftenden Palladiumueberzuegen |
NL6403078A NL6403078A (en)) | 1963-03-26 | 1964-03-23 | |
BE645775A BE645775A (en)) | 1963-03-26 | 1964-03-26 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US267947A US3274022A (en) | 1963-03-26 | 1963-03-26 | Palladium deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
US3274022A true US3274022A (en) | 1966-09-20 |
Family
ID=23020789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US267947A Expired - Lifetime US3274022A (en) | 1963-03-26 | 1963-03-26 | Palladium deposition |
Country Status (5)
Country | Link |
---|---|
US (1) | US3274022A (en)) |
BE (1) | BE645775A (en)) |
DE (1) | DE1247804B (en)) |
GB (1) | GB994560A (en)) |
NL (1) | NL6403078A (en)) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3530050A (en) * | 1964-06-12 | 1970-09-22 | Johnson Matthey Co Ltd | Electrodeposition of palladium |
US3629776A (en) * | 1967-10-24 | 1971-12-21 | Nippon Kogaku Kk | Sliding thin film resistance for measuring instruments |
US3846345A (en) * | 1969-10-06 | 1974-11-05 | Owens Illinois Inc | Electroconductive paste composition and structures formed therefrom |
US3861919A (en) * | 1970-03-30 | 1975-01-21 | Itek Corp | A photoconductor process using a copy medium sensitized with an amine |
US3862488A (en) * | 1970-11-20 | 1975-01-28 | Rca Corp | Method of making a joined metal structure |
US4180480A (en) * | 1975-10-15 | 1979-12-25 | Mcgean Chemical Company, Inc. | Catalytically active compositions from precious metal complexes |
US4255194A (en) * | 1979-01-15 | 1981-03-10 | Mine Safety Appliances Company | Palladium alloy baths for the electroless deposition |
US4279951A (en) * | 1979-01-15 | 1981-07-21 | Mine Safety Appliances Company | Method for the electroless deposition of palladium |
US4424241A (en) | 1982-09-27 | 1984-01-03 | Bell Telephone Laboratories, Incorporated | Electroless palladium process |
CN104674201A (zh) * | 2015-02-11 | 2015-06-03 | 江苏澳光电子有限公司 | 一种用于金属表面镀覆金属钯镀层的化学镀钯液 |
CN105296974A (zh) * | 2015-08-27 | 2016-02-03 | 中国科学院兰州化学物理研究所 | 一种镀钯液及使用其在铜表面镀钯的方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2915406A (en) * | 1958-03-03 | 1959-12-01 | Int Nickel Co | Palladium plating by chemical reduction |
US3156634A (en) * | 1962-12-12 | 1964-11-10 | Sel Rex Corp | Gold plating |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1187886B (de) | 1958-03-03 | 1965-02-25 | Mond Nickel Co Ltd | Bad und Verfahren zur chemischen Abscheidung von Palladiumueberzuegen |
GB844358A (en) * | 1958-03-03 | 1960-08-10 | Mond Nickel Co Ltd | Improvements in palladium plating |
-
1963
- 1963-03-26 US US267947A patent/US3274022A/en not_active Expired - Lifetime
-
1964
- 1964-03-10 GB GB10064/64A patent/GB994560A/en not_active Expired
- 1964-03-19 DE DEJ25485A patent/DE1247804B/de active Pending
- 1964-03-23 NL NL6403078A patent/NL6403078A/xx unknown
- 1964-03-26 BE BE645775A patent/BE645775A/xx unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2915406A (en) * | 1958-03-03 | 1959-12-01 | Int Nickel Co | Palladium plating by chemical reduction |
US3156634A (en) * | 1962-12-12 | 1964-11-10 | Sel Rex Corp | Gold plating |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3530050A (en) * | 1964-06-12 | 1970-09-22 | Johnson Matthey Co Ltd | Electrodeposition of palladium |
US3629776A (en) * | 1967-10-24 | 1971-12-21 | Nippon Kogaku Kk | Sliding thin film resistance for measuring instruments |
US3846345A (en) * | 1969-10-06 | 1974-11-05 | Owens Illinois Inc | Electroconductive paste composition and structures formed therefrom |
US3861919A (en) * | 1970-03-30 | 1975-01-21 | Itek Corp | A photoconductor process using a copy medium sensitized with an amine |
US3862488A (en) * | 1970-11-20 | 1975-01-28 | Rca Corp | Method of making a joined metal structure |
US4180480A (en) * | 1975-10-15 | 1979-12-25 | Mcgean Chemical Company, Inc. | Catalytically active compositions from precious metal complexes |
US4255194A (en) * | 1979-01-15 | 1981-03-10 | Mine Safety Appliances Company | Palladium alloy baths for the electroless deposition |
US4279951A (en) * | 1979-01-15 | 1981-07-21 | Mine Safety Appliances Company | Method for the electroless deposition of palladium |
US4424241A (en) | 1982-09-27 | 1984-01-03 | Bell Telephone Laboratories, Incorporated | Electroless palladium process |
CN104674201A (zh) * | 2015-02-11 | 2015-06-03 | 江苏澳光电子有限公司 | 一种用于金属表面镀覆金属钯镀层的化学镀钯液 |
CN105296974A (zh) * | 2015-08-27 | 2016-02-03 | 中国科学院兰州化学物理研究所 | 一种镀钯液及使用其在铜表面镀钯的方法 |
Also Published As
Publication number | Publication date |
---|---|
BE645775A (en)) | 1964-09-28 |
NL6403078A (en)) | 1964-09-28 |
GB994560A (en) | 1965-06-10 |
DE1247804B (de) | 1967-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Barker | Electroless deposition of metals | |
US3486928A (en) | Bath and process for platinum and platinum alloys | |
US3485597A (en) | Electroless deposition of nickel-phosphorus based alloys | |
US3745039A (en) | Electroless cobalt plating bath and process | |
US2915406A (en) | Palladium plating by chemical reduction | |
US4337091A (en) | Electroless gold plating | |
US3033703A (en) | Electroless plating of copper | |
US3437507A (en) | Plating of substrates | |
JP2004502871A (ja) | 無電解銀めっき | |
US3096182A (en) | Chemical plating solution and process for plating therewith | |
US3032436A (en) | Method and composition for plating by chemical reduction | |
US3870526A (en) | Electroless deposition of copper and copper-tin alloys | |
US4255194A (en) | Palladium alloy baths for the electroless deposition | |
US3754939A (en) | Electroless deposition of palladium alloys | |
US4061802A (en) | Plating process and bath | |
US3274022A (en) | Palladium deposition | |
US2532284A (en) | Cobalt plating by chemical reduction | |
GB1222969A (en) | Plating process | |
US3853590A (en) | Electroless plating solution and process | |
US3264199A (en) | Electroless plating of metals | |
US3178311A (en) | Electroless plating process | |
US3148072A (en) | Electroless deposition of nickel | |
US4341846A (en) | Palladium boron plates by electroless deposition alloy | |
US3485725A (en) | Method of increasing the deposition rate of electroless solutions | |
US4279951A (en) | Method for the electroless deposition of palladium |