US3629776A - Sliding thin film resistance for measuring instruments - Google Patents

Sliding thin film resistance for measuring instruments Download PDF

Info

Publication number
US3629776A
US3629776A US768716A US3629776DA US3629776A US 3629776 A US3629776 A US 3629776A US 768716 A US768716 A US 768716A US 3629776D A US3629776D A US 3629776DA US 3629776 A US3629776 A US 3629776A
Authority
US
United States
Prior art keywords
film
chrome
resistance
thin film
measuring instruments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US768716A
Inventor
Yutaka Watano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Application granted granted Critical
Publication of US3629776A publication Critical patent/US3629776A/en
Assigned to NIKON CORPORATION, 2-3, MARUNOUCHI 3-CHOME, CHIYODA-KU, TOKYO, JAPAN reassignment NIKON CORPORATION, 2-3, MARUNOUCHI 3-CHOME, CHIYODA-KU, TOKYO, JAPAN CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE APR. 1, 1988 Assignors: NIPPON KOGAKU, K.K.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/22Adjustable resistors resistive element dimensions changing gradually in one direction, e.g. tapered resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/30Adjustable resistors the contact sliding along resistive element
    • H01C10/308Adjustable resistors the contact sliding along resistive element consisting of a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/46Arrangements of fixed resistors with intervening connectors, e.g. taps

Definitions

  • ABSTRACT A variable resistor is pl'OVldCd wherein a thln 185 186, 190, 194, 140 142 metallic film is deposited as by sputtering on a base of insulating material.
  • the thin film consists of at least two layers; the [56] References Cited bottom layer being of a base metal selected from the group UNITED STATES PATENTS consisting of manganese, titanium beryllium, tantalum, nickel 2,632,831 3/1953 Pritikin etal. 338/140 "'3 :l '9" the upper layer bemg 2,897,584 8/1959 Schumpelt 117/21-7 ux, a
  • variable resistor in which a thin film having electrical resistive characteristics is deposited on a baseplate of insulating material, a sliding contact engaging the deposited film.
  • the variable resistor is particularly useful for measuring instruments such as exposure meters.
  • the resistance elements are formed of a carbon film, a nickel-chrome alloy film, or a chrome-gold double layer film.
  • the resistance value of the elements changed considerably with use and wear.
  • the nickel-chrome elements had similar drawbacks, the resistance value changing in various positions of the sliding contact as abrasion took place with use.
  • variable resistors are quite small and very little force is available for moving the sliding contact. It is thus desirable to have a variable resistor in which the resistance element surface has a high wear resistance and in which very little pressure is required to engage the sliding contact with the resistance element and in which a very small force is required to move the sliding contact so that stability of the resistance values is obtained.
  • the object of the present invention is to provide a variable resistor for measuring instruments wherein a small force is required to move the sliding contact, the sliding contact firmly engaging the resistance element or elements with a slight pressure, and wherein the resistance element or elements comprising a thin film has a high resistance to abrasion.
  • a variable resistor for measuring instruments wherein a thin film of electrical resistive characteristics are deposited on a baseplate of insulating material, the thin film comprising of at least two layers; the lower layer being of a base metal selected from the group consisting of manganese, titanium, beryllium, tantalum, nickel and chrome, or alloys thereof, the upper layer being of palladium and engaged by the sliding contact.
  • FIG. 1 is a plan view of an embodiment of this invention
  • FIG. 2 is a side view thereof
  • FIG. 3 is a plan view of another embodiment of this invention.
  • the variable resistor comprises a baseplate 1 of insulating material having deposited thereon a film 2 of electrical resistive material.
  • an electrode 3 serving as an electrical connection for the variable resistor.
  • a sliding contact 4 is provided for engaging the surface of the film 2, the contact being movably (by means not shown) along a straight line from the apex of the triangular film to the electrode 3.
  • the film 2 is in two layers, the lower layer being in this instance chrome and the upper layer being palladium.
  • the sliding contact 4 is preferably made of phosphor bronze wire about 0.3 mm. in diameter and engages the palladium layer with a pressure of several grams.
  • the triangular shape of the film 2 provides a functional change in the resistance values as the sliding contact is moved along its straight line path between the apex and base of the film.
  • the film 2 as previously mentioned is a double-layer film of chrome and palladium.
  • the chrome layer is deposited first on the baseplate l and may be deposited by sputtering or any other well-known process.
  • the palladium layer is similarly deposited on the chrome layer. It has been found that palladium is not subject to changes in resistivity when the sliding contact is being moved over or remains stationary on a particular position regardless of the material comprising the sliding contact and even though only slight contact pressure is applied. Palladium also has excellent wear resistance to that there is very little change in the resistance values obtainable even after many movements of the sliding contact.
  • the thickness of chrome film is from A. to I000 A. and the thickness of palladium film is from 200 A. to 2000 A. the resistivity ranging from 20 (In to 1 O can be obtained, but when the thickness of the respective films is adjusted, the range of the resistivity can be further increased.
  • the intermediate portion of the double-layer film is made into the mixture film of chrome and palladium at an appropriate mixing ration, and when the mixing ratio is gradually changed in the direction of thickness, it is possible to reduce the temperature coefficient or resistivity.
  • the chrome film improves the adhereability to the baseplate, and therefore when other than chrome such as nickel-chrome or chrome alloy, 'or other base metals such as manganese, titanium, beryllium, tantalum or nickel are used, the effectiveness of this invention is not impaired. It is possible to prepare a strongest film when it is prepared under such conditions wherein the temperature of the baseplate is above 200 C. and the degree of vacuum is below 5X10 Torr.
  • this film it is needless to mention here that it can be performed by means of conventional sputtering process, moreover palladium film has excellent wear resistance and antioxidation property which are indispensable factors as the sliding resistance, and at the same time palladium film has such an advantage that it has excellent stability for a high temperature above 200' C., and excellent stability for moisture and overloading.
  • the chrome-palladium film 2' is deposited in stripe form of increasing lengths from left to right and engaged by a sliding contact 4', the contact having a width slightly greater than the spacing between two adjacent stripes 2.
  • a second resistance film 5 of higher sheet resistance is deposited on the baseplate which may either be deposited under or over the stripes 2'.
  • the form of the second film 5 is also triangular.
  • the sliding contact 4' may be moved within the path between the lines 6 and 7 or within the path between the phantom lines 6' and 7'. In the latter case, the second film 5 should be deposited under the film stripes 2'.
  • a protective film such as a silicon oxide film, on the exposed portions of the second film 5 after the films 2' and 5 have been deposited.
  • a variable resistor for measuring instruments comprising a sliding contact
  • a thin film resistance of at least two layers including a lower layer which is a tapered resistance layer deposited on said insulating plate and an upper layer deposited on said lower layer, said lower layer being made of a base metal selected from the group consisting of manganese, titanium, beryllium, tantalum, nickel and chrome, said supper layer being made of palladium and being multiple stripes overlaid on said lower layer and extending on said insulating plate, said sliding contact engaging the extending end portions of said stripes.
  • variable resistor according to claim 1 wherein said lower layerv has a higher sheet resistance than that of said upper layer.

Abstract

A variable resistor is provided wherein a thin metallic film is deposited as by sputtering on a base of insulating material. The thin film consists of at least two layers; the bottom layer being of a base metal selected from the group consisting of manganese, titanium beryllium, tantalum, nickel and chrome, or alloys thereof, and the upper layer being of palladium.

Description

United States Patent [72] Inventor Yutah Wlteno 3,252,831 5/1966 Ragan Q 117/227 X Tokyo, Japan 3,274,022 9/1966 Rhoda.. 117/227 X [21] Appl. No. 768,716 3,415,679 12/1968 Chuss... 117/217 X 1 Flled 1968 2,734,976 2/1956 Strege 338/196X [45] Patented 0621, 1 3,106,489 10/1963 Leaselter 29/195 UX 8 pp 8 3,290,127 12/1966 Kahng et al...... 29/195 e 1 11 3,339,267 9/1967 Bronnes 6151... 29/195 x [32] Priority Oct-24,1967 3,353,134 11/1967 Elarde 338/308 x hi 3,458,847 7/1969 Watts 338/308 x 42/6803! 3,495,959 2/1970 J0hnson,Jr 29/195 1 OTHER REFERENCES [54] SLIDING THIN FILM RESISTANCE FOR W. H. Nebergall, F. C. Schmidt, H. F. Holtzclaw, .lr.,
I MEASURING INSTRUMENTS General Chemistry D. C. Heath & Co., Boston, 1963, p. 706
2 Claims 3 Drum! Figs Primary Examiner-Alfred L. Leavitt [52] U.S.Cl 338/140, Assistant Ex min r-C. K- W iff n h 117/217, 117/212, 117/221, 117/227, 338/142 Mummy-Anton 1 wine [51] Int-Cl l-l0lc 5/06 29/195;
W212, 217 221 227; 33 30 309 19 200 ABSTRACT: A variable resistor is pl'OVldCd wherein a thln 185 186, 190, 194, 140 142 metallic film is deposited as by sputtering on a base of insulating material. The thin film consists of at least two layers; the [56] References Cited bottom layer being of a base metal selected from the group UNITED STATES PATENTS consisting of manganese, titanium beryllium, tantalum, nickel 2,632,831 3/1953 Pritikin etal. 338/140 "'3 :l '9" the upper layer bemg 2,897,584 8/1959 Schumpelt 117/21-7 ux, a
7 6 4' 3 1 .1 I 1 ,5 ,1 k 9 F 7 g I: 4; .J: IJQ Q 71/- -7 7'1 L L 4 Q Z A PATENTED 051221 m1 FIG.
FIG.2
SLIDING TIIIN FILM RESISTANCE FOR MEASURING INSTRUMENTS This invention relates to a variable resistor in which a thin film having electrical resistive characteristics is deposited on a baseplate of insulating material, a sliding contact engaging the deposited film. The variable resistor is particularly useful for measuring instruments such as exposure meters.
In conventional resistor units for measuring instruments, and the like, the resistance elements are formed of a carbon film, a nickel-chrome alloy film, or a chrome-gold double layer film.
With the conventional carbon film, the resistance value of the elements changed considerably with use and wear. The nickel-chrome elements had similar drawbacks, the resistance value changing in various positions of the sliding contact as abrasion took place with use.
It was found that by increasing the pressure of the sliding contact that the differences in the resistance values thus obtained from those values obtained by sliding the contact over the nickel-chrome elements could be reduced, but this increase in contact pressure also increased the abrasion of the elements. The chrome-gold resistance elements where the gold film formed the upper layer, the same difficulties due to wear are also encountered.
ln measuring instruments such as an exposure meter used for photography, a carbon film resistor is used for the most part, a nickel-chrome film'element being used in conjunction therewith as a film-sensitivity-adjusting element. In such instruments, the variable resistors are quite small and very little force is available for moving the sliding contact. It is thus desirable to have a variable resistor in which the resistance element surface has a high wear resistance and in which very little pressure is required to engage the sliding contact with the resistance element and in which a very small force is required to move the sliding contact so that stability of the resistance values is obtained.
The object of the present invention is to provide a variable resistor for measuring instruments wherein a small force is required to move the sliding contact, the sliding contact firmly engaging the resistance element or elements with a slight pressure, and wherein the resistance element or elements comprising a thin film has a high resistance to abrasion.
In accordance with the present invention,a variable resistor for measuring instruments is provided wherein a thin film of electrical resistive characteristics are deposited on a baseplate of insulating material, the thin film comprising of at least two layers; the lower layer being of a base metal selected from the group consisting of manganese, titanium, beryllium, tantalum, nickel and chrome, or alloys thereof, the upper layer being of palladium and engaged by the sliding contact.
This invention will be described more clearly referring to the illustrative embodiments shown in the attached drawings, in which:
FIG. 1 is a plan view of an embodiment of this invention;
FIG. 2 is a side view thereof; and
FIG. 3 is a plan view of another embodiment of this invention.
Referring to FIGS. 1 and 2 of the drawing in which one embodiment of the invention is illustrated, the variable resistor comprises a baseplate 1 of insulating material having deposited thereon a film 2 of electrical resistive material. Provided at one end of the triangular shaped film 2 is an electrode 3 serving as an electrical connection for the variable resistor. A sliding contact 4 is provided for engaging the surface of the film 2, the contact being movably (by means not shown) along a straight line from the apex of the triangular film to the electrode 3. The film 2 is in two layers, the lower layer being in this instance chrome and the upper layer being palladium. The sliding contact 4 is preferably made of phosphor bronze wire about 0.3 mm. in diameter and engages the palladium layer with a pressure of several grams. The triangular shape of the film 2 provides a functional change in the resistance values as the sliding contact is moved along its straight line path between the apex and base of the film.
The film 2 as previously mentioned is a double-layer film of chrome and palladium. The chrome layer is deposited first on the baseplate l and may be deposited by sputtering or any other well-known process. The palladium layer is similarly deposited on the chrome layer. It has been found that palladium is not subject to changes in resistivity when the sliding contact is being moved over or remains stationary on a particular position regardless of the material comprising the sliding contact and even though only slight contact pressure is applied. Palladium also has excellent wear resistance to that there is very little change in the resistance values obtainable even after many movements of the sliding contact. When the thickness of chrome film is from A. to I000 A. and the thickness of palladium film is from 200 A. to 2000 A. the resistivity ranging from 20 (In to 1 O can be obtained, but when the thickness of the respective films is adjusted, the range of the resistivity can be further increased.
On the other hand, when the intermediate portion of the double-layer film is made into the mixture film of chrome and palladium at an appropriate mixing ration, and when the mixing ratio is gradually changed in the direction of thickness, it is possible to reduce the temperature coefficient or resistivity. The chrome film improves the adhereability to the baseplate, and therefore when other than chrome such as nickel-chrome or chrome alloy, 'or other base metals such as manganese, titanium, beryllium, tantalum or nickel are used, the effectiveness of this invention is not impaired. It is possible to prepare a strongest film when it is prepared under such conditions wherein the temperature of the baseplate is above 200 C. and the degree of vacuum is below 5X10 Torr. In regard to the formation of this film, it is needless to mention here that it can be performed by means of conventional sputtering process, moreover palladium film has excellent wear resistance and antioxidation property which are indispensable factors as the sliding resistance, and at the same time palladium film has such an advantage that it has excellent stability for a high temperature above 200' C., and excellent stability for moisture and overloading.
Referring now to F IG. 3 in which a second embodiment of the invention is disclosed, the chrome-palladium film 2' is deposited in stripe form of increasing lengths from left to right and engaged by a sliding contact 4', the contact having a width slightly greater than the spacing between two adjacent stripes 2. A second resistance film 5 of higher sheet resistance is deposited on the baseplate which may either be deposited under or over the stripes 2'. The form of the second film 5 is also triangular. The sliding contact 4' may be moved within the path between the lines 6 and 7 or within the path between the phantom lines 6' and 7'. In the latter case, the second film 5 should be deposited under the film stripes 2'. It is further possible in the second embodiment to provide a protective film such as a silicon oxide film, on the exposed portions of the second film 5 after the films 2' and 5 have been deposited.
In the embodiment as illustrated in FIG. 3, it will be apparent that the change in the resistance values of the resistor will be stepwise. The width of step changes can be made very small by conventional techniques so that the stepwise changes in resistance values are of no technical disadvantages.
What is claimed is:
l. A variable resistor for measuring instruments comprising a sliding contact,
and insulating plate, and
a thin film resistance of at least two layers including a lower layer which is a tapered resistance layer deposited on said insulating plate and an upper layer deposited on said lower layer, said lower layer being made of a base metal selected from the group consisting of manganese, titanium, beryllium, tantalum, nickel and chrome, said supper layer being made of palladium and being multiple stripes overlaid on said lower layer and extending on said insulating plate, said sliding contact engaging the extending end portions of said stripes.
2. A variable resistor according to claim 1, wherein said lower layerv has a higher sheet resistance than that of said upper layer.

Claims (1)

  1. 2. A variable resistor according to claim 1, wherein said lower layer has a higher sheet resistance than that of said upper layer.
US768716A 1967-10-24 1968-10-18 Sliding thin film resistance for measuring instruments Expired - Lifetime US3629776A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6803767 1967-10-24

Publications (1)

Publication Number Publication Date
US3629776A true US3629776A (en) 1971-12-21

Family

ID=13362181

Family Applications (1)

Application Number Title Priority Date Filing Date
US768716A Expired - Lifetime US3629776A (en) 1967-10-24 1968-10-18 Sliding thin film resistance for measuring instruments

Country Status (3)

Country Link
US (1) US3629776A (en)
DE (1) DE1804911A1 (en)
GB (1) GB1239235A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3838888A (en) * 1973-04-02 1974-10-01 Syncro Corp Electric brake controller
US3851150A (en) * 1971-11-19 1974-11-26 Foerderung Forschung Gmbh Electrical resistance tubular heating conductor with axially varying power distribution
US3857689A (en) * 1971-12-28 1974-12-31 Nippon Selfoc Co Ltd Ion exchange process for manufacturing integrated optical circuits
US3921118A (en) * 1973-10-01 1975-11-18 Gen Electric Variable resistor assembly
US4099071A (en) * 1976-12-03 1978-07-04 Xerox Corporation Monolithic electronic scanning device
US4137517A (en) * 1976-05-19 1979-01-30 Alfa Romeo S.P.A. Potentiometric regulator of a physical magnitude which is a function whatever of other two magnitudes
US4146957A (en) * 1977-01-17 1979-04-03 Engelhard Minerals & Chemicals Corporation Thick film resistance thermometer
US4281041A (en) * 1979-02-22 1981-07-28 Degussa Aktiengesellschaft Hard solderable metal layers on ceramic
US4311982A (en) * 1980-08-01 1982-01-19 The Yellow Springs Instrument Company, Inc. Trimmable wirewound resistance temperature transducer
US4338145A (en) * 1979-12-27 1982-07-06 Taisei Kohki Co., Ltd. Chrome-tantalum alloy thin film resistor and method of producing the same
FR2528222A1 (en) * 1982-06-04 1983-12-09 Jaeger Linear potentiometer with two sliders - has hairpin shaped spring which maintains contact with slider whose width is less than resistance tap spacing
US4949453A (en) * 1989-06-15 1990-08-21 Cray Research, Inc. Method of making a chip carrier with terminating resistive elements
US5122620A (en) * 1989-06-15 1992-06-16 Cray Research Inc. Chip carrier with terminating resistive elements
USRE34395E (en) * 1989-06-15 1993-10-05 Cray Research, Inc. Method of making a chip carrier with terminating resistive elements
US5258576A (en) * 1989-06-15 1993-11-02 Cray Research, Inc. Integrated circuit chip carrier lid
US5364705A (en) * 1992-06-25 1994-11-15 Mcdonnell Douglas Helicopter Co. Hybrid resistance cards and methods for manufacturing same
US6518873B1 (en) * 2001-09-13 2003-02-11 Bourns, Inc. Variable resistive element
US20040196137A1 (en) * 2003-04-03 2004-10-07 Ronald Dedert Fuel tank resistor card having improved corrosion resistance
WO2007112527A2 (en) * 2006-03-31 2007-10-11 Alaide Pellegrini Mammana Devices constructive arrangement and methods applied to thoraxic cirtometry

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2632831A (en) * 1951-05-09 1953-03-24 Pritikin Variable resistance element
US2734976A (en) * 1956-02-14 Variable wattage lamp socket
US2897584A (en) * 1957-05-22 1959-08-04 Sel Rex Corp Gold plated electrical contact and similar elements
US3106489A (en) * 1960-12-09 1963-10-08 Bell Telephone Labor Inc Semiconductor device fabrication
US3252831A (en) * 1964-05-06 1966-05-24 Electra Mfg Company Electrical resistor and method of producing the same
US3274022A (en) * 1963-03-26 1966-09-20 Int Nickel Co Palladium deposition
US3290127A (en) * 1964-03-30 1966-12-06 Bell Telephone Labor Inc Barrier diode with metal contact and method of making
US3339267A (en) * 1962-12-26 1967-09-05 Philips Corp Metallizing non-metals
US3353134A (en) * 1964-08-17 1967-11-14 Amphenol Corp Resistive element and variable resistor
US3415679A (en) * 1965-07-09 1968-12-10 Western Electric Co Metallization of selected regions of surfaces and products so formed
US3458847A (en) * 1967-09-21 1969-07-29 Fairchild Camera Instr Co Thin-film resistors
US3495959A (en) * 1967-03-09 1970-02-17 Western Electric Co Electrical termination for a tantalum nitride film

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734976A (en) * 1956-02-14 Variable wattage lamp socket
US2632831A (en) * 1951-05-09 1953-03-24 Pritikin Variable resistance element
US2897584A (en) * 1957-05-22 1959-08-04 Sel Rex Corp Gold plated electrical contact and similar elements
US3106489A (en) * 1960-12-09 1963-10-08 Bell Telephone Labor Inc Semiconductor device fabrication
US3339267A (en) * 1962-12-26 1967-09-05 Philips Corp Metallizing non-metals
US3274022A (en) * 1963-03-26 1966-09-20 Int Nickel Co Palladium deposition
US3290127A (en) * 1964-03-30 1966-12-06 Bell Telephone Labor Inc Barrier diode with metal contact and method of making
US3252831A (en) * 1964-05-06 1966-05-24 Electra Mfg Company Electrical resistor and method of producing the same
US3353134A (en) * 1964-08-17 1967-11-14 Amphenol Corp Resistive element and variable resistor
US3415679A (en) * 1965-07-09 1968-12-10 Western Electric Co Metallization of selected regions of surfaces and products so formed
US3495959A (en) * 1967-03-09 1970-02-17 Western Electric Co Electrical termination for a tantalum nitride film
US3458847A (en) * 1967-09-21 1969-07-29 Fairchild Camera Instr Co Thin-film resistors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W. H. Nebergall, F. C. Schmidt, H. F. Holtzclaw, Jr., General Chemistry D. C. Heath & Co., Boston, 1963, p. 706 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851150A (en) * 1971-11-19 1974-11-26 Foerderung Forschung Gmbh Electrical resistance tubular heating conductor with axially varying power distribution
US3857689A (en) * 1971-12-28 1974-12-31 Nippon Selfoc Co Ltd Ion exchange process for manufacturing integrated optical circuits
US3838888A (en) * 1973-04-02 1974-10-01 Syncro Corp Electric brake controller
US3921118A (en) * 1973-10-01 1975-11-18 Gen Electric Variable resistor assembly
US4137517A (en) * 1976-05-19 1979-01-30 Alfa Romeo S.P.A. Potentiometric regulator of a physical magnitude which is a function whatever of other two magnitudes
US4099071A (en) * 1976-12-03 1978-07-04 Xerox Corporation Monolithic electronic scanning device
US4146957A (en) * 1977-01-17 1979-04-03 Engelhard Minerals & Chemicals Corporation Thick film resistance thermometer
US4281041A (en) * 1979-02-22 1981-07-28 Degussa Aktiengesellschaft Hard solderable metal layers on ceramic
US4338145A (en) * 1979-12-27 1982-07-06 Taisei Kohki Co., Ltd. Chrome-tantalum alloy thin film resistor and method of producing the same
US4311982A (en) * 1980-08-01 1982-01-19 The Yellow Springs Instrument Company, Inc. Trimmable wirewound resistance temperature transducer
FR2528222A1 (en) * 1982-06-04 1983-12-09 Jaeger Linear potentiometer with two sliders - has hairpin shaped spring which maintains contact with slider whose width is less than resistance tap spacing
US4949453A (en) * 1989-06-15 1990-08-21 Cray Research, Inc. Method of making a chip carrier with terminating resistive elements
US5122620A (en) * 1989-06-15 1992-06-16 Cray Research Inc. Chip carrier with terminating resistive elements
USRE34395E (en) * 1989-06-15 1993-10-05 Cray Research, Inc. Method of making a chip carrier with terminating resistive elements
US5258576A (en) * 1989-06-15 1993-11-02 Cray Research, Inc. Integrated circuit chip carrier lid
US5364705A (en) * 1992-06-25 1994-11-15 Mcdonnell Douglas Helicopter Co. Hybrid resistance cards and methods for manufacturing same
US5494180A (en) * 1992-06-25 1996-02-27 Mcdonnell Douglas Helicopter Company Hybrid resistance cards and methods for manufacturing same
US6518873B1 (en) * 2001-09-13 2003-02-11 Bourns, Inc. Variable resistive element
US20040196137A1 (en) * 2003-04-03 2004-10-07 Ronald Dedert Fuel tank resistor card having improved corrosion resistance
US6828898B2 (en) * 2003-04-03 2004-12-07 Cts Corporation Fuel tank resistor card having improved corrosion resistance
WO2007112527A2 (en) * 2006-03-31 2007-10-11 Alaide Pellegrini Mammana Devices constructive arrangement and methods applied to thoraxic cirtometry
WO2007112527A3 (en) * 2006-03-31 2008-08-14 Alaide Pellegrini Mammana Devices constructive arrangement and methods applied to thoraxic cirtometry

Also Published As

Publication number Publication date
GB1239235A (en) 1971-07-14
DE1804911A1 (en) 1969-06-19

Similar Documents

Publication Publication Date Title
US3629776A (en) Sliding thin film resistance for measuring instruments
US4246563A (en) Electric safety fuse
US5019797A (en) Electrical resistance device
US4164607A (en) Thin film resistor having a thin layer of resistive metal of a nickel, chromium, gold alloy
US4345236A (en) Abrasion-resistant screen-printed potentiometer
US2962393A (en) Method of preparing electrical resistors
US3451793A (en) Magnetic thin film wire with multiple laminated film coating
US3564475A (en) Variable resistance element with multiple patterns for measuring instruments
CA1040746A (en) Thin film resistance temperature detector
CN100466112C (en) Resistor
US2688679A (en) Metallic film variable resistor
US3778744A (en) Film resistors
US3723938A (en) Non-linear potentiometer with conductor array
US3601744A (en) Variable resistor with strain-reducing attachment means for the substrate
US4226899A (en) Method for fabricating controlled TCR thin film resistors
US3473146A (en) Electrical resistor having low resistance values
US3353134A (en) Resistive element and variable resistor
US3200010A (en) Electrical resistance element
US2759078A (en) Compensated miniature potentiometer and method of making
US2748234A (en) Electric resistors
US4293839A (en) Thick film resistor
US3324440A (en) Cermet resistance elements and terminal and tap connections therefor
US3906425A (en) Oxide semiconductor-metal contact resistance elements
US1859344A (en) Resistance device
US3351881A (en) Potentiometer

Legal Events

Date Code Title Description
AS Assignment

Owner name: NIKON CORPORATION, 2-3, MARUNOUCHI 3-CHOME, CHIYOD

Free format text: CHANGE OF NAME;ASSIGNOR:NIPPON KOGAKU, K.K.;REEL/FRAME:004935/0584