US2401858A - Exhaust mechanism for internalcombustion engines - Google Patents

Exhaust mechanism for internalcombustion engines Download PDF

Info

Publication number
US2401858A
US2401858A US526603A US52660344A US2401858A US 2401858 A US2401858 A US 2401858A US 526603 A US526603 A US 526603A US 52660344 A US52660344 A US 52660344A US 2401858 A US2401858 A US 2401858A
Authority
US
United States
Prior art keywords
exhaust
engine
valve
engines
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US526603A
Inventor
Clark Egbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US526603A priority Critical patent/US2401858A/en
Application granted granted Critical
Publication of US2401858A publication Critical patent/US2401858A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2700/00Measures relating to the combustion process without indication of the kind of fuel or with more than one fuel
    • F02B2700/02Four stroke engines
    • F02B2700/021Four stroke engines with measures for removing exhaust gases from the cylinder

Definitions

  • This invention relates to internal combustion engines and it aims to provide a novel exhaust means or mechanism which will result in the production of more power to the engine, without additional fuel, and hence, result in greater economy.
  • Figure l is a view in central longitudinal section through the cylinder and associated parts of a two-cycle internal combustion engine. the piston being in position for firing;
  • Figure 2 is a view similar to Figure 1 with the piston shown at the end of an exhaust stroke;
  • Figure 3 is a cross section taken on the line 3-3 of Figure 2;
  • Figure 4 is a view similar to Figure 1 but through a four-cycle internal combustion engine.
  • I designates a cylinder in which a conventional piston I I is adapted for reciprocation.
  • the intake pipe is shown at I2, the spark plug at I3 and the usual exhaust pipe leading from said cylinder is disclosed at I8.
  • a high-pressure exhaust pipe I4 leads from cylinder I 0 to the atmosphere and contains a check-valve at I5, which i a non-return valve as it is inclined so that it can only open outwardly under high pressure and cannot open inwardly.
  • This valve may be of any suitable design for example, may be pivoted at I6 to a screw or other removable plug II.
  • FIG. 4 The beneficial results attained with the twocycle engine structure of Figures 1 to 3 may also v be obtained in a four-cycle engine as disclosed in Figure 4.
  • This engine has a cylinder I8 in which a piston I9 is reciprocable.
  • the intake pipe is shown at 2B in connection with an intake valve 2
  • the spark plug is shown at 22.
  • the usual exhaust pipe 26 communicates with the cylinder I8 and is closed or controlled by an exhaust valve 24.
  • the pipe 23 includes a plug I1 to which a no -return valve I5 is pivoted at I6 so as to function in the same manner as valve I5.
  • Pipe 23 serves as a high pressure exhaust pipe and it communicates at a port 25 through valve 24 with the cylinder, which may be formed integral therewith and which communicates with the atmosphere, being under control of a mechanically operated Valve 21.
  • valve may be either directly operated from the engine or externally timed and operated electrically, hydraulically, etc., of poppet, gate, sleeve, or other type.
  • the valve is adapted to be mechanically and positively operated from any suitable moving part of the engine.
  • valve 24 is opened mechanically by operation of the engine, allowing the hot gases to pass the exhaust valve 24, and valve I5.
  • mechanically operated valve 21 which is normally closed, would open, allowing the remainder of the gases to fiow to the atmosphere, thus establishing communication between the cylinder l8 and the atmosphere.
  • the gas passing the valve l could be used or applied to any desired work such as the operation of a gas turbine, to a piston type engine, to providing additional power to the shaft of the engine, or be used to run any auxiliary mechanism such as the super-charger, water pump, compressor or the like.
  • the exhaust gas from the engine may be used to produce steam in boilers for heat during winter, in laundries or the like for heating water, etc., therefore reducing the expense of the plant; in the invention the gas trapped in may be used to run exhaust in turn will drive super-chargers for super-charging the engine, to run water pumps, run generators for lights, ventilators for engine room extra power to the shaft of the engine all without the use of extra fuel.
  • the gas may also be used Without any engine capable of converting heat, pressure orboth into power (reciprocating, boilers, etc.).
  • the invention will prevent the mixture of cold, scavenging air with the hot exhaust gas such as the high-pressure manifold gas turbines which 4 two-cycle and super-charged engines.
  • the invention is applicable to two or four-cycle internal combustion engines, double or single acting, auto or Diesel cycle and adaptable to new as well as old engines.
  • the principal parts of the invention are the extra exhaust manifold as a duplicate of the usual exhaust manifold, directly connected from each cylinder and "known as the high-pressure manifold; a non-return valve, one for each cylinder at the opening of high-pressure manifold and automatically operated to trap exhaust gas in the high-pressure manifold for further use; and the mechanically .operated valve, one for each cylinder, situated at the opening of the lowpressure manifold.
  • a high pressure exhaust pipe leading a from the cylinder under control. of an exhaust valve a low pressure exhaust pipe close to and in communication with the high pressure exhaust pipe at the end thereof controlled by said, exhaust valve, arranged to communicate with the atmosphere, valve means operable to, open the low pressure exhaust pipe subsequent to opening of the exhaust valve, the first-mentioned exhaust pipe having a check-valve therein constrained to open outwardly.

Description

Julie 11, 1946. E. CLARK 2,401,858
EXHAUS' J. MECHANISM FOR INTERNAL-COMBUSTION ENGINES Filed March is, 1944 2 Sheets-Sheet 1 Elma/rim E9 22 rialari I E. CLARK 2,401,858
Filed March 15, 1944' 2 Sheets-Sheet 2 WQN EXHAUST MECHANISM FOR INTERNAL-COMBUSTION ENGINES .June 11, 1946.
Patented June 11, 1946 EXHAUST MECHANISM FOR INTERNAL- COMIBUSTION ENGINES Egbert Clark, Gamboa, 0. Z. Application March 15, 1944, Serial No. 526.603
1 Claim. 1
This invention relates to internal combustion engines and it aims to provide a novel exhaust means or mechanism which will result in the production of more power to the engine, without additional fuel, and hence, result in greater economy.
It is particularly aimed to provide such a means as will be applicable to either twoor four-cycle engines and which will include high pressure exhaust through the exhaust manifold as usual, and low pressure exhaust to the atmosphere, both the high pressure and low pressure exhausts occurring during the common exhaust stroke of the piston.
The more specific objects and advantages will become apparent from a consideration of the description following taken in connection with accompanying drawings illustrating an operative embodiment.
In said drawings:
Figure l is a view in central longitudinal section through the cylinder and associated parts of a two-cycle internal combustion engine. the piston being in position for firing;
Figure 2 is a view similar to Figure 1 with the piston shown at the end of an exhaust stroke;
Figure 3 is a cross section taken on the line 3-3 of Figure 2; and
Figure 4 is a view similar to Figure 1 but through a four-cycle internal combustion engine.
Referring specifically to the drawings wherein like reference characters designate like or similar parts, and first to the two-cycle internal combustion engine shown in Figures 1 to 3, I designates a cylinder in which a conventional piston I I is adapted for reciprocation. The intake pipe is shown at I2, the spark plug at I3 and the usual exhaust pipe leading from said cylinder is disclosed at I8. In this instance, a high-pressure exhaust pipe I4 leads from cylinder I 0 to the atmosphere and contains a check-valve at I5, which i a non-return valve as it is inclined so that it can only open outwardly under high pressure and cannot open inwardly. This valve may be of any suitable design for example, may be pivoted at I6 to a screw or other removable plug II.
It will be noted that when the exhaust stroke of the piston I I, that is, in moving from the position of Figure 1 to the position of Figure 2, that the pipe I4 is first uncovered and the pipe I8 then uncovered, during the same or common stroke of such piston.
In the operation of the engine, as the piston II moves downwardly on its exhaust stroke, it
first uncovers the pipe I4 which because of the high pressure, would force some of the gas out of the same undiluted. In continuance of such travel, the piston also uncovers the low-pressure pipe I8, allowing the cylinder to thus be thoroughly scavenged and filled with fresh air for the next cycle. Since the gas in the high pressure manifold would be free from dilution, it would have a higher temperature than normal two-cycle engines. The gas obtained maybe applied to any useful purpose.
Present-day two-cycle internal combustion engines of industrial and marine type use some kind of waste heat boilers for the conversion of waste heat for several uses which has its limitation owing to the mixing of the cool air with the hot exhaust gas, and also the back pressure imposed on such engines which tends to reduce fresh air to the cylinder and a reduction in power delivered from the engine. My invention overcomes these disadvantages. I
The beneficial results attained with the twocycle engine structure of Figures 1 to 3 may also v be obtained in a four-cycle engine as disclosed in Figure 4. This engine has a cylinder I8 in which a piston I9 is reciprocable. The intake pipe is shown at 2B in connection with an intake valve 2|. The spark plug is shown at 22. The usual exhaust pipe 26 communicates with the cylinder I8 and is closed or controlled by an exhaust valve 24. The pipe 23 includes a plug I1 to which a no -return valve I5 is pivoted at I6 so as to function in the same manner as valve I5. Pipe 23 serves as a high pressure exhaust pipe and it communicates at a port 25 through valve 24 with the cylinder, which may be formed integral therewith and which communicates with the atmosphere, being under control of a mechanically operated Valve 21. Such valve may be either directly operated from the engine or externally timed and operated electrically, hydraulically, etc., of poppet, gate, sleeve, or other type. The valve is adapted to be mechanically and positively operated from any suitable moving part of the engine.
In the operation of this four-cycle engine of Figure 4, valve 24 is opened mechanically by operation of the engine, allowing the hot gases to pass the exhaust valve 24, and valve I5. At a given point of piston travel on the exhaust stroke in which maximum power may be obtained from the exhaust, mechanically operated valve 21 which is normally closed, would open, allowing the remainder of the gases to fiow to the atmosphere, thus establishing communication between the cylinder l8 and the atmosphere. The gas passing the valve l could be used or applied to any desired work such as the operation of a gas turbine, to a piston type engine, to providing additional power to the shaft of the engine, or be used to run any auxiliary mechanism such as the super-charger, water pump, compressor or the like.
With the present invention, more power may be obtained from a given internal combustion engine without the use of extra fuel and hence greater economy per unit; also the exhaust gas from the engine may be used to produce steam in boilers for heat during winter, in laundries or the like for heating water, etc., therefore reducing the expense of the plant; in the invention the gas trapped in may be used to run exhaust in turn will drive super-chargers for super-charging the engine, to run water pumps, run generators for lights, ventilators for engine room extra power to the shaft of the engine all without the use of extra fuel. i The gas may also be used Without any engine capable of converting heat, pressure orboth into power (reciprocating, boilers, etc.). It may also be used to clean exhaust gas or carbon which might increase the wear of engines and the gas could be passed, first, through a usual spark arrester, which by centrifugal action would clean the gases of impurities. There would be no back pressure on the engine which would tend to reduce the output as the final stagev of the cycle would be reduced to atmospheric pressure through low-pressure manifold. It is possible to use the invention with the Buchi turbocharge system connected to either high or low pressure manifolds. The auxiliaries used (turbine-reciprocating) may be integral with the engine or separate therefrom, geared, with or without clutches, as the design will allow for the most efficient operation. An airplane engine at low altitude could use part of the exhaust gas to run generators, etc., but at high altitudes all could be diverted for use of the super-charger.
The invention will prevent the mixture of cold, scavenging air with the hot exhaust gas such as the high-pressure manifold gas turbines which 4 two-cycle and super-charged engines. The invention is applicable to two or four-cycle internal combustion engines, double or single acting, auto or Diesel cycle and adaptable to new as well as old engines.
It is known that the thermal efficiencies and. heat-distribution efiiciency of internal combustion engines are (Diesel) powered to shaft 30 percent, friction 9 percent, cooling water percent, exhaust gases 28 percent, radiation and other losses 8 percent. After using 30 percent for power, the largest single loss is through the exhaust. This invention tends to reduce this loss. The principal parts of the invention are the extra exhaust manifold as a duplicate of the usual exhaust manifold, directly connected from each cylinder and "known as the high-pressure manifold; a non-return valve, one for each cylinder at the opening of high-pressure manifold and automatically operated to trap exhaust gas in the high-pressure manifold for further use; and the mechanically .operated valve, one for each cylinder, situated at the opening of the lowpressure manifold.
It will be understood that the structure of my invention may beembodied in existing engines by way of attachment, as Well as being capable of manufacture at the factory into such engines.
Various changes may be resorted to provide they fall within the spirit and scope of the appended claim.
I claim as my'invention:
In an internal combustion engine, in combl nation with a cylinder and a piston reciprocable therein, a high pressure exhaust pipe leading a from the cylinder under control. of an exhaust valve, a low pressure exhaust pipe close to and in communication with the high pressure exhaust pipe at the end thereof controlled by said, exhaust valve, arranged to communicate with the atmosphere, valve means operable to, open the low pressure exhaust pipe subsequent to opening of the exhaust valve, the first-mentioned exhaust pipe having a check-valve therein constrained to open outwardly. V
EGBERT CLARK.
US526603A 1944-03-15 1944-03-15 Exhaust mechanism for internalcombustion engines Expired - Lifetime US2401858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US526603A US2401858A (en) 1944-03-15 1944-03-15 Exhaust mechanism for internalcombustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US526603A US2401858A (en) 1944-03-15 1944-03-15 Exhaust mechanism for internalcombustion engines

Publications (1)

Publication Number Publication Date
US2401858A true US2401858A (en) 1946-06-11

Family

ID=24098005

Family Applications (1)

Application Number Title Priority Date Filing Date
US526603A Expired - Lifetime US2401858A (en) 1944-03-15 1944-03-15 Exhaust mechanism for internalcombustion engines

Country Status (1)

Country Link
US (1) US2401858A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2693076A (en) * 1951-05-18 1954-11-02 Daniel H Francis Free piston internal-combustion engine
US2811149A (en) * 1955-02-11 1957-10-29 Tirloni Emilio Internal combustion engines
US3346071A (en) * 1964-11-05 1967-10-10 Allan N Lader Muffler construction for motorcycles
US3670502A (en) * 1970-03-06 1972-06-20 Joseph C Firey Engine exhaust gas separating devices
US3918420A (en) * 1974-05-10 1975-11-11 Tony R Villella Internal combustion engine
US4621596A (en) * 1983-11-02 1986-11-11 Kawasaki Jukogyo Kabushiki Kaisha Exhaust control system
WO1991014087A1 (en) * 1990-03-05 1991-09-19 Hammett Robert B Free-piston engine
US5107801A (en) * 1991-02-20 1992-04-28 Industrial Technology Research Institute Electromagnetic auxiliary exhausting device
US5209192A (en) * 1990-11-02 1993-05-11 Regie Nationale Des Usiness Renault Two-cycle engine
US6158213A (en) * 1999-08-25 2000-12-12 Linberg; G. Douglas Vehicle exhaust changeover apparatus
WO2023224775A1 (en) * 2022-05-18 2023-11-23 Cyclazoom, LLC Four-stroke engine with two-stage exhaust cycle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2693076A (en) * 1951-05-18 1954-11-02 Daniel H Francis Free piston internal-combustion engine
US2811149A (en) * 1955-02-11 1957-10-29 Tirloni Emilio Internal combustion engines
US3346071A (en) * 1964-11-05 1967-10-10 Allan N Lader Muffler construction for motorcycles
US3670502A (en) * 1970-03-06 1972-06-20 Joseph C Firey Engine exhaust gas separating devices
US3918420A (en) * 1974-05-10 1975-11-11 Tony R Villella Internal combustion engine
US4621596A (en) * 1983-11-02 1986-11-11 Kawasaki Jukogyo Kabushiki Kaisha Exhaust control system
WO1991014087A1 (en) * 1990-03-05 1991-09-19 Hammett Robert B Free-piston engine
US5209192A (en) * 1990-11-02 1993-05-11 Regie Nationale Des Usiness Renault Two-cycle engine
US5107801A (en) * 1991-02-20 1992-04-28 Industrial Technology Research Institute Electromagnetic auxiliary exhausting device
US6158213A (en) * 1999-08-25 2000-12-12 Linberg; G. Douglas Vehicle exhaust changeover apparatus
WO2023224775A1 (en) * 2022-05-18 2023-11-23 Cyclazoom, LLC Four-stroke engine with two-stage exhaust cycle

Similar Documents

Publication Publication Date Title
US2768616A (en) Two cycle opposed piston internal combustion engine
US2401858A (en) Exhaust mechanism for internalcombustion engines
US1593571A (en) Power plant comprising a gas engine and turbine
US3093959A (en) Compound power plant
GB244032A (en) Compound internal combustion engine power plants
GB397824A (en) Improvements in and relating to internal combustion engines
US1869455A (en) Internal combustion engine and method of operating the same
US2381646A (en) Two-cycle engine
US2346207A (en) Two-cycle internal combustion engine
US2088923A (en) Internal combustion engine
US2888800A (en) Engine with exhaust gas extractor
GB522730A (en) Improvements in or relating to cylinder liners of two-stroke internal combustion engines
US1788576A (en) Internal-combustion engine
GB866017A (en) Four-stroke internal combustion engine having an exhaust gas turbo-charger
US898768A (en) Two-cycle diesel engine.
GB583843A (en) Improvements in heat engine power plant including turbines
SU842208A1 (en) Piston i.c. engine with gas turbine supercharging system
US2735411A (en) Zinner
GB283940A (en) Improvements in combined hot air and internal combustion engines
GB339406A (en) Improvements in internal combustion engines for producing combustion gases at high pressure
GB415474A (en) Improvements in or relating to internal combustion engines
GB704743A (en) Improvements in or relating to reciprocating piston engine type gas generators for gas turbines
GB378771A (en) Improvements in two stroke cycle internal combustion engines having associated scavenging air blowers driven by exhaust turbines
GB112466A (en) Improvements in or relating to Internal Combustion Engines.
GB656421A (en) An internal combustion engine