US20230388409A1 - Accelerated task performance - Google Patents

Accelerated task performance Download PDF

Info

Publication number
US20230388409A1
US20230388409A1 US18/204,884 US202318204884A US2023388409A1 US 20230388409 A1 US20230388409 A1 US 20230388409A1 US 202318204884 A US202318204884 A US 202318204884A US 2023388409 A1 US2023388409 A1 US 2023388409A1
Authority
US
United States
Prior art keywords
task
user
affordance
electronic device
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/204,884
Inventor
Ari WEINSTEIN
John BLATZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Priority to US18/204,884 priority Critical patent/US20230388409A1/en
Publication of US20230388409A1 publication Critical patent/US20230388409A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/903Querying
    • G06F16/9032Query formulation
    • G06F16/90324Query formulation using system suggestions
    • G06F16/90328Query formulation using system suggestions using search space presentation or visualization, e.g. category or range presentation and selection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/903Querying
    • G06F16/9032Query formulation
    • G06F16/90332Natural language query formulation or dialogue systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/0482Interaction with lists of selectable items, e.g. menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/167Audio in a user interface, e.g. using voice commands for navigating, audio feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/451Execution arrangements for user interfaces
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/18Speech classification or search using natural language modelling
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/26Speech to text systems
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/06Transformation of speech into a non-audible representation, e.g. speech visualisation or speech processing for tactile aids
    • G10L21/10Transforming into visible information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/07User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail characterised by the inclusion of specific contents
    • H04L51/18Commands or executable codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/18Speech classification or search using natural language modelling
    • G10L15/1822Parsing for meaning understanding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L2015/088Word spotting
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • G10L2015/221Announcement of recognition results
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • G10L2015/223Execution procedure of a spoken command
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • G10L2015/225Feedback of the input speech
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/07User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail characterised by the inclusion of specific contents
    • H04L51/10Multimedia information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/22Details of telephonic subscriber devices including a touch pad, a touch sensor or a touch detector

Definitions

  • This relates generally to digital assistants and, more specifically, to accelerating task performance using a digital assistant.
  • Intelligent automated assistants can provide a beneficial interface between human users and electronic devices.
  • Such assistants can allow users to interact with devices or systems using natural language in spoken and/or text forms.
  • a user can provide a speech input containing a user request to a digital assistant operating on an electronic device.
  • the digital assistant can interpret the user's intent from the speech input, operationalize the user's intent into a task, and perform the task.
  • performing tasks in this manner may be constrained in the manner by which a task is identified.
  • a user may be limited to a particular set of commands such that the user cannot readily instruct a digital assistant to perform a task using natural-language speech inputs.
  • digital assistants fail to adapt based on previous user behavior and in turn lack a desirable optimization of user experience.
  • An example method includes, at an electronic device with a display and a touch-sensitive surface, displaying, on the display, a user interface including a suggestion affordance associated with a task, detecting, via the one or more input devices, a first user input corresponding to a selection of the suggestion affordance; in response to detecting the first user input: in accordance with a determination that the task is a task of a first type, performing the task; and in accordance with a determination that the task is a task of a second type different than the first type, displaying a confirmation interface including a confirmation affordance.
  • An example electronic device comprises one or more processors, a memory, and one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for: displaying, on the display, a user interface including a suggestion affordance associated with a task; detecting, via the one or more input devices, a first user input corresponding to a selection of the suggestion affordance; in response to detecting the first user input: in accordance with a determination that the task is a task of a first type, performing the task; and in accordance with a determination that the task is a task of a second type different than the first type, displaying a confirmation interface including a confirmation affordance.
  • An example electronic device includes means for displaying, on the display, a user interface including a suggestion affordance associated with a task, means for detecting, via the one or more input devices, a first user input corresponding to a selection of the suggestion affordance, means for, in response to detecting the first user input: in accordance with a determination that the task is a task of a first type, performing the task; and in accordance with a determination that the task is a task of a second type different than the first type, displaying a confirmation interface including a confirmation affordance.
  • Example non-transitory computer-readable media are disclosed herein.
  • An example non-transitory computer-readable medium stores one or more programs comprising instructions, which when executed by one or more processors of an electronic device, cause the electronic device to: display, on the display, a user interface including a suggestion affordance associated with a task; detect, via the one or more input devices, a first user input corresponding to a selection of the suggestion affordance; in response to detecting the first user input: in accordance with a determination that the task is a task of a first type, perform the task; and in accordance with a determination that the task is a task of a second type different than the first type, display a confirmation interface including a confirmation affordance.
  • Displaying a user interface including a suggestion affordance and selectively requiring confirmation to perform a task in response to selection of the suggestion affordance provides a user with an easily recognizable and intuitive approach for performing tasks on the electronic device, thereby reducing the number of user inputs otherwise needed to perform such tasks.
  • displaying user interfaces in this manner enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • An example method includes, at an electronic device having one or more processors, displaying a plurality of candidate task affordances including a candidate task affordance associated with a task, detecting a set of inputs including a first user input corresponding to a selection of the candidate task affordance associated with the task, in response to detecting the set of user inputs, displaying a first interface for generating a voice shortcut associated with the task, while displaying the first interface: receiving, by the audio input device, a natural-language speech input, and displaying, in the first interface, a candidate phrase, wherein the candidate phrase is based on the natural-language speech input, after displaying the candidate phrase, detecting, via the touch-sensitive surface, a second user input, and in response to detecting the second user input, associating the candidate phrase with the task.
  • An example non-transitory computer-readable storage medium stores one or more programs.
  • the one or more programs comprise instructions, which when executed by one or more processors of an electronic device, cause the electronic device to display a plurality of candidate task affordances including a candidate task affordance associated with a task, detect a set of inputs including a first user input corresponding to a selection of the candidate task affordance associated with the task, in response to detecting the set of user inputs, display a first interface for generating a voice shortcut associated with the task, while displaying the first interface: receive, by the audio input device, a natural-language speech input, and display, in the first interface, a candidate phrase, wherein the candidate phrase is based on the natural-language speech input, after displaying the candidate phrase, detect, via the touch-sensitive surface, a second user input, and in response to detecting the second user input, associate the candidate phrase with the task.
  • An example electronic device comprises one or more processors, a memory, and one or more programs, where the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for displaying a plurality of candidate task affordances including a candidate task affordance associated with a task, detecting a set of inputs including a first user input corresponding to a selection of the candidate task affordance associated with the task, in response to detecting the set of user inputs, displaying a first interface for generating a voice shortcut associated with the task, while displaying the first interface: receiving, by the audio input device, a natural-language speech input, and displaying, in the first interface, a candidate phrase, wherein the candidate phrase is based on the natural-language speech input, after displaying the candidate phrase, detecting, via the touch-sensitive surface, a second user input, and in response to detecting the second user input, associating the candidate phrase with the task.
  • An example electronic device comprises means for displaying a plurality of candidate task affordances including a candidate task affordance associated with a task, means for detecting a set of inputs including a first user input corresponding to a selection of the candidate task affordance associated with the task, means for, in response to detecting the set of user inputs, displaying a first interface for generating a voice shortcut associated with the task, means for, while displaying the first interface: receiving, by the audio input device, a natural-language speech input, and displaying, in the first interface, a candidate phrase, wherein the candidate phrase is based on the natural-language speech input, means for, after displaying the candidate phrase, detecting, via the touch-sensitive surface, a second user input, and means for, in response to detecting the second user input, associating the candidate phrase with the task.
  • Providing candidate phrases based on a natural-language speech input and associating candidate phrases with respective tasks allows a user to accurately and efficiently generate user-specific voice shortcuts that can be used to perform tasks on the electronic device. For example, allowing a user to associate voice shortcuts with tasks in this manner allows a user to visually confirm that a desired voice shortcut has been selected and assigned to the correct task, thereby reducing the likelihood of an incorrect or unwanted association.
  • providing candidate phrases in the manner described provides for more efficient use of the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • An example method includes, at an electronic device having one or more processors, receiving context data associated with the electronic device, determining, based on the context data, a task probability for a task, determining, based on the context data, a parameter probability for a parameter, wherein the parameter is associated with the task, determining, based on the task probability and the parameter probability, whether the task satisfies suggestion criteria, in accordance with a determination that the task satisfies the suggestion criteria, displaying, on the display, a suggestion affordance corresponding to the task and the parameter, and in accordance with a determination that the task does not satisfy the suggestion criteria, forgoing displaying the suggestion affordance.
  • An example non-transitory computer-readable storage medium stores one or more programs.
  • the one or more programs comprise instructions, which when executed by one or more processors of an electronic device, cause the electronic device to receive context data associated with the electronic device, determine, based on the context data, a task probability for a task, determine, based on the context data, a parameter probability for a parameter, wherein the parameter is associated with the task, determine, based on the task probability and the parameter probability, whether the task satisfies suggestion criteria, in accordance with a determination that the task satisfies the suggestion criteria, display, on the display, a suggestion affordance corresponding to the task and the parameter, and in accordance with a determination that the task does not satisfy the suggestion criteria, forgo displaying the suggestion affordance.
  • An example electronic device comprises one or more processors, a memory, and one or more programs, where the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for receiving context data associated with the electronic device, determining, based on the context data, a task probability for a task, determining, based on the context data, a parameter probability for a parameter, wherein the parameter is associated with the task, determining, based on the task probability and the parameter probability, whether the task satisfies suggestion criteria, in accordance with a determination that the task satisfies the suggestion criteria, displaying, on the display, a suggestion affordance corresponding to the task and the parameter, and in accordance with a determination that the task does not satisfy the suggestion criteria, forgoing displaying the suggestion affordance.
  • An example electronic device comprises means for receiving context data associated with the electronic device, means for determining, based on the context data, a task probability for a task, means for determining, based on the context data, a parameter probability for a parameter, wherein the parameter is associated with the task, means for determining, based on the task probability and the parameter probability, whether the task satisfies suggestion criteria, means for, in accordance with a determination that the task satisfies the suggestion criteria, displaying, on the display, a suggestion affordance corresponding to the task and the parameter, and means for in accordance with a determination that the task does not satisfy the suggestion criteria, forgoing displaying the suggestion affordance.
  • suggestion affordances displayed by the electronic device can correspond to tasks identified based on context data of the electronic device, such as context data indicative of prior use of the electronic device by the user.
  • context data of the electronic device such as context data indicative of prior use of the electronic device by the user.
  • An example method includes, at an electronic device having one or more processors, receiving a natural-language speech input, determining whether the natural-language speech input satisfies voice shortcut criteria, in accordance with a determination that the natural-language speech input satisfies the voice shortcut criteria: identifying a task associated with the voice shortcut, and performing the task associated with the voice shortcut, and in accordance with a determination that the natural-language speech input does not satisfy the voice shortcut criteria: identifying a task associated with the natural-language speech input, and performing the task associated with the natural-language speech input.
  • An example non-transitory computer-readable storage medium stores one or more programs.
  • the one or more programs comprise instructions, which when executed by one or more processors of an electronic device, cause the electronic device to receive a natural-language speech input, determine whether the natural-language speech input satisfies voice shortcut criteria, in accordance with a determination that the natural-language speech input satisfies the voice shortcut criteria: identify a task associated with the voice shortcut, and perform the task associated with the voice shortcut, and in accordance with a determination that the natural-language speech input does not satisfy the voice shortcut criteria: identify a task associated with the natural-language speech input, and perform the task associated with the natural-language speech input.
  • An example electronic device comprises one or more processors, a memory, and one or more programs, where the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for receiving a natural-language speech input, determining whether the natural-language speech input satisfies voice shortcut criteria, in accordance with a determination that the natural-language speech input satisfies the voice shortcut criteria: identifying a task associated with the voice shortcut, and performing the task associated with the voice shortcut, and in accordance with a determination that the natural-language speech input does not satisfy the voice shortcut criteria: identifying a task associated with the natural-language speech input, and performing the task associated with the natural-language speech input.
  • An example electronic device comprises means for receiving a natural-language speech input, means for determining whether the natural-language speech input satisfies voice shortcut criteria, means for, in accordance with a determination that the natural-language speech input satisfies the voice shortcut criteria: identifying a task associated with the voice shortcut, and performing the task associated with the voice shortcut, and means for, in accordance with a determination that the natural-language speech input does not satisfy the voice shortcut criteria: identifying a task associated with the natural-language speech input, and performing the task associated with the natural-language speech input.
  • Performing tasks in response to natural-language speech inputs provides an intuitive and efficient approach for performing tasks on the electronic device.
  • one or more tasks may be performed in response to a natural-language speech input without any additional input from the user.
  • performing tasks in response to natural-language speech inputs in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • An example method includes, at an electronic device having one or more processors, receiving, with a digital assistant, a natural-language speech input, determining a voice shortcut associated with the natural-language speech input, determining a task corresponding to the voice shortcut, causing an application to initiate performance of the task, receiving a response from the application, wherein the response is associated with the task, determining, based on the response, whether the task was successfully performed, and providing an output indicating whether the task was successfully performed.
  • An example non-transitory computer-readable storage medium stores one or more programs.
  • the one or more programs comprise instructions, which when executed by one or more processors of an electronic device, cause the electronic device to receive, with a digital assistant, a natural-language speech input, determine a voice shortcut associated with the natural-language speech input, determine a task corresponding to the voice shortcut, cause an application to initiate performance of the task, receive a response from the application, wherein the response is associated with the task, determine, based on the response, whether the task was successfully performed, and provide an output indicating whether the task was successfully performed.
  • An example electronic device comprises one or more processors, a memory, and one or more programs, where the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for receiving, with a digital assistant, a natural-language speech input, determining a voice shortcut associated with the natural-language speech input, determining a task corresponding to the voice shortcut, causing an application to initiate performance of the task, receiving a response from the application, wherein the response is associated with the task, determining, based on the response, whether the task was successfully performed, and providing an output indicating whether the task was successfully performed.
  • An example electronic device comprises means for receiving, with a digital assistant, a natural-language speech input, means for determining a voice shortcut associated with the natural-language speech input, and means for determining a task corresponding to the voice shortcut, means for causing an application to initiate performance of the task, means for receiving a response from the application, wherein the response is associated with the task, means for determining, based on the response, whether the task was successfully performed, and means for providing an output indicating whether the task was successfully performed.
  • Providing an output allows the digital assistant to provide feedback and/or other information from an application, for instance during the course of a dialog (e.g., conversational dialog) between a user and the digital assistant, in an intuitive and flexible manner.
  • the digital assistant may provide (e.g., relay) natural-language expressions from an application to the user such that the user can interact with the application without opening or otherwise directly accessing the application.
  • providing natural-language outputs in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • An example method includes receiving a plurality of media items from an application, receiving context data associated with the electronic device, determining a task based on the plurality of media items and the context data, determining whether the task satisfies suggestion criteria, in accordance with a determination that the task satisfies the suggestion criteria, displaying, on the display, a suggestion affordance corresponding to the task, and in accordance with a determination that the task does not satisfy the suggestion criteria, forgoing displaying the suggestion affordance.
  • An example electronic device comprises one or more processors, a memory, and one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for receiving a plurality of media items from an application, receiving context data associated with the electronic device, determining a task based on the plurality of media items and the context data, determining whether the task satisfies suggestion criteria, in accordance with a determination that the task satisfies the suggestion criteria, displaying, on the display, a suggestion affordance corresponding to the task, and in accordance with a determination that the task does not satisfy the suggestion criteria, forgoing displaying the suggestion affordance.
  • An example electronic device comprises means for receiving a plurality of media items from an application, means for receiving context data associated with the electronic device, means for determining a task based on the plurality of media items and the context data, means for determining whether the task satisfies suggestion criteria, means for, in accordance with a determination that the task satisfies the suggestion criteria, displaying, on the display, a suggestion affordance corresponding to the task, and means for, in accordance with a determination that the task does not satisfy the suggestion criteria, forgoing displaying the suggestion affordance.
  • An example non-transitory computer-readable medium stores one or more programs comprising instructions, which when executed by one or more processors of an electronic device, cause the electronic device to receive a plurality of media items from an application, receive context data associated with the electronic device, determine a task based on the plurality of media items and the context data, determine whether the task satisfies suggestion criteria, in accordance with a determination that the task satisfies the suggestion criteria, display, on the display, a suggestion affordance corresponding to the task, and in accordance with a determination that the task does not satisfy the suggestion criteria, forgo displaying the suggestion affordance.
  • suggestion affordances displayed by the electronic device can correspond to tasks identified based on media consumption and/or determined media preferences of the user.
  • selectively providing suggestions in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • An example method includes receiving, using a digital assistant, a user input including a shortcut; and in response to receiving the user input including the shortcut: determining a set of tasks associated with the shortcut; performing a first task of the set of tasks, wherein the first task is associated with a first application; providing a first response indicating whether the first task was successfully performed; performing a second task of the set of tasks, wherein the second task is associated with a second application different than the first application; and after providing the first response, providing a second response indicating whether the second task was successfully performed.
  • An example electronic device comprises one or more processors, a memory, and one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for receiving, using a digital assistant, a user input including a shortcut; and in response to receiving the user input including the shortcut: determining a set of tasks associated with the shortcut; performing a first task of the set of tasks, wherein the first task is associated with a first application; providing a first response indicating whether the first task was successfully performed; performing a second task of the set of tasks, wherein the second task is associated with a second application different than the first application; and after providing the first response, providing a second response indicating whether the second task was successfully performed.
  • An example electronic device comprises means for receiving, using a digital assistant, a user input including a shortcut; and means for, in response to receiving the user input including the shortcut: determining a set of tasks associated with the shortcut; performing a first task of the set of tasks, wherein the first task is associated with a first application; providing a first response indicating whether the first task was successfully performed; performing a second task of the set of tasks, wherein the second task is associated with a second application different than the first application; and after providing the first response, providing a second response indicating whether the second task was successfully performed.
  • An example non-transitory computer-readable medium stores one or more programs comprising instructions, which when executed by one or more processors of an electronic device, cause the electronic device to receive, using a digital assistant, a user input including a shortcut; and in response to receiving the user input including the shortcut: determine a set of tasks associated with the shortcut; perform a first task of the set of tasks, wherein the first task is associated with a first application; provide a first response indicating whether the first task was successfully performed; perform a second task of the set of tasks, wherein the second task is associated with a second application different than the first application; and after providing the first response, provide a second response indicating whether the second task was successfully performed.
  • Performing a set of tasks in response to user inputs including shortcuts e.g., voice shortcuts
  • one or more tasks may be performed in response to a single user input without any additional input from the user.
  • performing tasks in response to natural-language speech inputs in this manner decreases the number of inputs and amount of time needed for the user to successfully operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • FIG. 1 is a block diagram illustrating a system and environment for implementing a digital assistant, according to various examples.
  • FIG. 2 A is a block diagram illustrating a portable multifunction device implementing the client-side portion of a digital assistant, according to various examples.
  • FIG. 2 B is a block diagram illustrating exemplary components for event handling, according to various examples.
  • FIG. 3 illustrates a portable multifunction device implementing the client-side portion of a digital assistant, according to various examples.
  • FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface, according to various examples.
  • FIG. 5 A illustrates an exemplary user interface for a menu of applications on a portable multifunction device, according to various examples.
  • FIG. 5 B illustrates an exemplary user interface for a multifunction device with a touch-sensitive surface that is separate from the display, according to various examples.
  • FIG. 6 A illustrates a personal electronic device, according to various examples.
  • FIG. 6 B is a block diagram illustrating a personal electronic device, according to various examples.
  • FIGS. 6 C- 6 D illustrate exemplary components of a personal electronic device having a touch-sensitive display and intensity sensors in accordance with some embodiments.
  • FIGS. 6 E- 6 H illustrate exemplary components and user interfaces of a personal electronic device in accordance with some embodiments.
  • FIG. 7 A is a block diagram illustrating a digital assistant system or a server portion thereof, according to various examples.
  • FIG. 7 B illustrates the functions of the digital assistant shown in FIG. 7 A , according to various examples.
  • FIG. 7 C illustrates a portion of an ontology, according to various examples.
  • FIGS. 8 A- 8 AF illustrate exemplary user interfaces for providing suggestions, according to various examples.
  • FIGS. 9 A- 9 B are a flow diagram illustrating a method of providing suggestions, according to various examples.
  • FIGS. 10 A- 10 AJ illustrate exemplary user interfaces for providing voice shortcuts, according to various examples.
  • FIGS. 11 A- 11 B are a flow diagram illustrating a method of providing voice shortcuts, according to various examples.
  • FIG. 12 is a block diagram illustrating a task suggestion system, according to various examples.
  • FIG. 13 is a flow diagram illustrating a method for providing suggestions, according to various examples.
  • FIG. 14 illustrates an exemplary sequence of operations for performing a task in a privacy preserving manner, according to various examples.
  • FIG. 15 is a flow diagram illustrating a method of performing tasks, according to various examples.
  • FIGS. 16 A- 16 S illustrate exemplary user interfaces for performing a task using a digital assistant, according to various examples.
  • FIG. 17 is a flow diagram illustrating a method of performing a task using a digital assistant, according to various examples.
  • FIGS. 18 A- 18 D illustrate exemplary user interfaces for providing media item suggestions, according to various examples.
  • FIG. 19 is a flow diagram illustrating a method of providing media item suggestions, according to various examples.
  • FIGS. 20 A- 20 N illustrate exemplary user interfaces for providing voice shortcuts, according to various examples.
  • FIGS. 21 A- 21 F illustrate exemplary user interfaces for performing a task using a digital assistant, according to various examples.
  • FIGS. 22 A- 220 illustrate exemplary user interfaces for performing a set of tasks using a digital assistant, according to various examples.
  • FIG. 23 is a flow diagram illustrating a method for performing a set of tasks using a digital assistant, according to various examples.
  • first could be termed a second input
  • first input could be termed a first input
  • second input could be termed a first input
  • the first input and the second input are both inputs and, in some cases, are separate and different inputs.
  • if may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context.
  • phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
  • FIG. 1 illustrates a block diagram of system 100 according to various examples.
  • system 100 implements a digital assistant.
  • digital assistant refers to any information processing system that interprets natural language input in spoken and/or textual form to infer user intent, and performs actions based on the inferred user intent.
  • the system performs one or more of the following: identifying a task flow with steps and parameters designed to accomplish the inferred user intent, inputting specific requirements from the inferred user intent into the task flow; executing the task flow by invoking programs, methods, services, APIs, or the like; and generating output responses to the user in an audible (e.g., speech) and/or visual form.
  • audible e.g., speech
  • a digital assistant is capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry.
  • the user request seeks either an informational answer or performance of a task by the digital assistant.
  • a satisfactory response to the user request includes a provision of the requested informational answer, a performance of the requested task, or a combination of the two.
  • a user asks the digital assistant a question, such as “Where am I right now?” Based on the user's current location, the digital assistant answers, “You are in Central Park near the west gate.” The user also requests the performance of a task, for example, “Please invite my friends to my girlfriend's birthday party next week.” In response, the digital assistant can acknowledge the request by saying “Yes, right away,” and then send a suitable calendar invite on behalf of the user to each of the user's friends listed in the user's electronic address book. During performance of a requested task, the digital assistant sometimes interacts with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time. There are numerous other ways of interacting with a digital assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the digital assistant also provides responses in other visual or audio forms, e.g., as text, alerts, music, videos, animations, etc.
  • a digital assistant is implemented according to a client-server model.
  • the digital assistant includes client-side portion 102 (hereafter “DA client 102 ”) executed on user device 104 and server-side portion 106 (hereafter “DA server 106 ”) executed on server system 108 .
  • DA client 102 communicates with DA server 106 through one or more networks 110 .
  • DA client 102 provides client-side functionalities such as user-facing input and output processing and communication with DA server 106 .
  • DA server 106 provides server-side functionalities for any number of DA clients 102 each residing on a respective user device 104 .
  • DA server 106 includes client-facing I/O interface 112 , one or more processing modules 114 , data and models 116 , and I/O interface to external services 118 .
  • the client-facing I/O interface 112 facilitates the client-facing input and output processing for DA server 106 .
  • One or more processing modules 114 utilize data and models 116 to process speech input and determine the user's intent based on natural language input. Further, one or more processing modules 114 perform task execution based on inferred user intent.
  • DA server 106 communicates with external services 120 through network(s) 110 for task completion or information acquisition. I/O interface to external services 118 facilitates such communications.
  • User device 104 can be any suitable electronic device.
  • user device 104 is a portable multifunctional device (e.g., device 200 , described below with reference to FIG. 2 A ), a multifunctional device (e.g., device 400 , described below with reference to FIG. 4 ), or a personal electronic device (e.g., device 600 , described below with reference to FIGS. 6 A- 6 B .)
  • a portable multifunctional device is, for example, a mobile telephone that also contains other functions, such as PDA and/or music player functions.
  • portable multifunction devices include the Apple Watch®, iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, California.
  • user device 104 is a non-portable multifunctional device.
  • user device 104 is a desktop computer, a game console, a speaker, a television, or a television set-top box.
  • user device 104 includes a touch-sensitive surface (e.g., touch screen displays and/or touchpads).
  • user device 104 optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick.
  • electronic devices such as multifunctional devices, are described below in greater detail.
  • Examples of communication network(s) 110 include local area networks (LAN) and wide area networks (WAN), e.g., the Internet.
  • Communication network(s) 110 is implemented using any known network protocol, including various wired or wireless protocols, such as, for example, Ethernet, Universal Serial Bus (USB), FIREWIRE, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wi-Fi, voice over Internet Protocol (VoIP), Wi-MAX, or any other suitable communication protocol.
  • Server system 108 is implemented on one or more standalone data processing apparatus or a distributed network of computers.
  • server system 108 also employs various virtual devices and/or services of third-party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of server system 108 .
  • third-party service providers e.g., third-party cloud service providers
  • user device 104 communicates with DA server 106 via second user device 122 .
  • Second user device 122 is similar or identical to user device 104 .
  • second user device 122 is similar to devices 200 , 400 , or 600 described below with reference to FIGS. 2 A, 4 , and 6 A- 6 B .
  • User device 104 is configured to communicatively couple to second user device 122 via a direct communication connection, such as Bluetooth, NFC, BTLE, or the like, or via a wired or wireless network, such as a local Wi-Fi network.
  • second user device 122 is configured to act as a proxy between user device 104 and DA server 106 .
  • DA client 102 of user device 104 is configured to transmit information (e.g., a user request received at user device 104 ) to DA server 106 via second user device 122 .
  • DA server 106 processes the information and returns relevant data (e.g., data content responsive to the user request) to user device 104 via second user device 122 .
  • user device 104 is configured to communicate abbreviated requests for data to second user device 122 to reduce the amount of information transmitted from user device 104 .
  • Second user device 122 is configured to determine supplemental information to add to the abbreviated request to generate a complete request to transmit to DA server 106 .
  • This system architecture can advantageously allow user device 104 having limited communication capabilities and/or limited battery power (e.g., a watch or a similar compact electronic device) to access services provided by DA server 106 by using second user device 122 , having greater communication capabilities and/or battery power (e.g., a mobile phone, laptop computer, tablet computer, or the like), as a proxy to DA server 106 . While only two user devices 104 and 122 are shown in FIG. 1 , it should be appreciated that system 100 , in some examples, includes any number and type of user devices configured in this proxy configuration to communicate with DA server system 106 .
  • the digital assistant shown in FIG. 1 includes both a client-side portion (e.g., DA client 102 ) and a server-side portion (e.g., DA server 106 ), in some examples, the functions of a digital assistant are implemented as a standalone application installed on a user device. In addition, the divisions of functionalities between the client and server portions of the digital assistant can vary in different implementations. For instance, in some examples, the DA client is a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of the digital assistant to a backend server.
  • FIG. 2 A is a block diagram illustrating portable multifunction device 200 with touch-sensitive display system 212 in accordance with some embodiments.
  • Touch-sensitive display 212 is sometimes called a “touch screen” for convenience and is sometimes known as or called a “touch-sensitive display system.”
  • Device 200 includes memory 202 (which optionally includes one or more computer-readable storage mediums), memory controller 222 , one or more processing units (CPUs) 220 , peripherals interface 218 , RF circuitry 208 , audio circuitry 210 , speaker 211 , microphone 213 , input/output (I/O) subsystem 206 , other input control devices 216 , and external port 224 .
  • memory 202 which optionally includes one or more computer-readable storage mediums
  • memory controller 222 includes one or more processing units (CPUs) 220 , peripherals interface 218 , RF circuitry 208 , audio circuitry 210 , speaker 211 , microphone 213 , input/output (I/O) subsystem
  • Device 200 optionally includes one or more optical sensors 264 .
  • Device 200 optionally includes one or more contact intensity sensors 265 for detecting intensity of contacts on device 200 (e.g., a touch-sensitive surface such as touch-sensitive display system 212 of device 200 ).
  • Device 200 optionally includes one or more tactile output generators 267 for generating tactile outputs on device 200 (e.g., generating tactile outputs on a touch-sensitive surface such as touch-sensitive display system 212 of device 200 or touchpad 455 of device 400 ).
  • These components optionally communicate over one or more communication buses or signal lines 203 .
  • the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface.
  • the intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256).
  • Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface.
  • force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact.
  • a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface.
  • the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface.
  • the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements).
  • the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure).
  • intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).
  • the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch.
  • a component e.g., a touch-sensitive surface
  • another component e.g., housing
  • the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device.
  • a touch-sensitive surface e.g., a touch-sensitive display or trackpad
  • the user is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button.
  • a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements.
  • movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users.
  • a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”)
  • the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.
  • device 200 is only one example of a portable multifunction device, and that device 200 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components.
  • the various components shown in FIG. 2 A are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application-specific integrated circuits.
  • Memory 202 includes one or more computer-readable storage mediums.
  • the computer-readable storage mediums are, for example, tangible and non-transitory.
  • Memory 202 includes high-speed random access memory and also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • Memory controller 222 controls access to memory 202 by other components of device 200 .
  • a non-transitory computer-readable storage medium of memory 202 is used to store instructions (e.g., for performing aspects of processes described below) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions.
  • the instructions e.g., for performing aspects of the processes described below
  • Peripherals interface 218 is used to couple input and output peripherals of the device to CPU 220 and memory 202 .
  • the one or more processors 220 run or execute various software programs and/or sets of instructions stored in memory 202 to perform various functions for device 200 and to process data.
  • peripherals interface 218 , CPU 220 , and memory controller 222 are implemented on a single chip, such as chip 204 . In some other embodiments, they are implemented on separate chips.
  • RF (radio frequency) circuitry 208 receives and sends RF signals, also called electromagnetic signals.
  • RF circuitry 208 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals.
  • RF circuitry 208 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth.
  • an antenna system an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth.
  • SIM subscriber identity module
  • RF circuitry 208 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication.
  • the RF circuitry 208 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio.
  • NFC near field communication
  • the wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g
  • Audio circuitry 210 , speaker 211 , and microphone 213 provide an audio interface between a user and device 200 .
  • Audio circuitry 210 receives audio data from peripherals interface 218 , converts the audio data to an electrical signal, and transmits the electrical signal to speaker 211 .
  • Speaker 211 converts the electrical signal to human-audible sound waves.
  • Audio circuitry 210 also receives electrical signals converted by microphone 213 from sound waves. Audio circuitry 210 converts the electrical signal to audio data and transmits the audio data to peripherals interface 218 for processing. Audio data are retrieved from and/or transmitted to memory 202 and/or RF circuitry 208 by peripherals interface 218 .
  • audio circuitry 210 also includes a headset jack (e.g., 312 , FIG.
  • the headset jack provides an interface between audio circuitry 210 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).
  • removable audio input/output peripherals such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).
  • I/O subsystem 206 couples input/output peripherals on device 200 , such as touch screen 212 and other input control devices 216 , to peripherals interface 218 .
  • I/O subsystem 206 optionally includes display controller 256 , optical sensor controller 258 , depth camera controller 269 , intensity sensor controller 259 , haptic feedback controller 261 , and one or more input controllers 260 for other input or control devices.
  • the one or more input controllers 260 receive/send electrical signals from/to other input control devices 216 .
  • the other input control devices 216 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth.
  • input controller(s) 260 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse.
  • the one or more buttons optionally include an up/down button for volume control of speaker 211 and/or microphone 213 .
  • the one or more buttons optionally include a push button (e.g., 306 , FIG. 3 ).
  • a quick press of the push button optionally disengages a lock of touch screen 212 or optionally begins a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety.
  • a longer press of the push button e.g., 306
  • the functionality of one or more of the buttons is, optionally, user customizable.
  • Touch screen 212 is used to implement virtual or soft buttons and one or more soft keyboards.
  • Touch-sensitive display 212 provides an input interface and an output interface between the device and a user.
  • Display controller 256 receives and/or sends electrical signals from/to touch screen 212 .
  • Touch screen 212 displays visual output to the user.
  • the visual output optionally includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output optionally corresponds to user-interface objects.
  • Touch screen 212 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact.
  • Touch screen 212 and display controller 256 (along with any associated modules and/or sets of instructions in memory 202 ) detect contact (and any movement or breaking of the contact) on touch screen 212 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 212 .
  • user-interface objects e.g., one or more soft keys, icons, web pages, or images
  • a point of contact between touch screen 212 and the user corresponds to a finger of the user.
  • Touch screen 212 optionally uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies are used in other embodiments.
  • Touch screen 212 and display controller 256 optionally detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 212 .
  • projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, California.
  • a touch-sensitive display in some embodiments of touch screen 212 is, optionally, analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety.
  • touch screen 212 displays visual output from device 200 , whereas touch-sensitive touchpads do not provide visual output.
  • a touch-sensitive display in some embodiments of touch screen 212 is described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No.
  • Touch screen 212 optionally has a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi.
  • the user optionally makes contact with touch screen 212 using any suitable object or appendage, such as a stylus, a finger, and so forth.
  • the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen.
  • the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
  • device 200 in addition to the touch screen, device 200 optionally includes a touchpad for activating or deactivating particular functions.
  • the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output.
  • the touchpad is, optionally, a touch-sensitive surface that is separate from touch screen 212 or an extension of the touch-sensitive surface formed by the touch screen.
  • Power system 262 for powering the various components.
  • Power system 262 optionally includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
  • power sources e.g., battery, alternating current (AC)
  • AC alternating current
  • a recharging system e.g., a recharging system
  • a power failure detection circuit e.g., a power failure detection circuit
  • a power converter or inverter e.g., a power converter or inverter
  • a power status indicator e.g., a light-emitting diode (LED)
  • Device 200 optionally also includes one or more optical sensors 264 .
  • FIG. 2 A shows an optical sensor coupled to optical sensor controller 258 in I/O subsystem 206 .
  • Optical sensor 264 includes charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors.
  • CMOS complementary metal-oxide semiconductor
  • Optical sensor 264 optionally receives light from the environment, projected through one or more lenses, and converts the light to data representing an image.
  • imaging module 243 also called a camera module
  • optical sensor 264 captures still images or video.
  • an optical sensor is located on the back of device 200 , opposite touch screen display 212 on the front of the device so that the touch screen display is enabled for use as a viewfinder for still and/or video image acquisition.
  • an optical sensor is located on the front of the device so that the user's image is, optionally, obtained for video conferencing while the user views the other video conference participants on the touch screen display.
  • the position of optical sensor 264 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a single optical sensor 264 is used along with the touch screen display for both video conferencing and still and/or video image acquisition.
  • Device 200 optionally also includes one or more depth camera sensors 275 .
  • FIG. 2 A shows a depth camera sensor coupled to depth camera controller 269 in I/O subsystem 206 .
  • Depth camera sensor 275 receives data from the environment to create a three dimensional model of an object (e.g., a face) within a scene from a viewpoint (e.g., a depth camera sensor).
  • a viewpoint e.g., a depth camera sensor
  • depth camera sensor 275 in conjunction with imaging module 243 (also called a camera module), depth camera sensor 275 is optionally used to determine a depth map of different portions of an image captured by the imaging module 243 .
  • a depth camera sensor is located on the front of device 200 so that the user's image with depth information is, optionally, obtained for video conferencing while the user views the other video conference participants on the touch screen display and to capture selfies with depth map data.
  • the depth camera sensor 275 is located on the back of device, or on the back and the front of the device 200 .
  • the position of depth camera sensor 275 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a depth camera sensor 275 is used along with the touch screen display for both video conferencing and still and/or video image acquisition.
  • a depth map (e.g., depth map image) contains information (e.g., values) that relates to the distance of objects in a scene from a viewpoint (e.g., a camera, an optical sensor, a depth camera sensor).
  • a viewpoint e.g., a camera, an optical sensor, a depth camera sensor.
  • each depth pixel defines the position in the viewpoint's Z-axis where its corresponding two-dimensional pixel is located.
  • a depth map is composed of pixels wherein each pixel is defined by a value (e.g., 0-255).
  • the “0” value represents pixels that are located at the most distant place in a “three dimensional” scene and the “255” value represents pixels that are located closest to a viewpoint (e.g., a camera, an optical sensor, a depth camera sensor) in the “three dimensional” scene.
  • a depth map represents the distance between an object in a scene and the plane of the viewpoint.
  • the depth map includes information about the relative depth of various features of an object of interest in view of the depth camera (e.g., the relative depth of eyes, nose, mouth, ears of a user's face).
  • the depth map includes information that enables the device to determine contours of the object of interest in a z direction.
  • Device 200 optionally also includes one or more contact intensity sensors 265 .
  • FIG. 2 A shows a contact intensity sensor coupled to intensity sensor controller 259 in I/O subsystem 206 .
  • Contact intensity sensor 265 optionally includes one or more piezoresistive strain gauges, capacitive force sensors, electric force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other intensity sensors (e.g., sensors used to measure the force (or pressure) of a contact on a touch-sensitive surface).
  • Contact intensity sensor 265 receives contact intensity information (e.g., pressure information or a proxy for pressure information) from the environment.
  • contact intensity information e.g., pressure information or a proxy for pressure information
  • At least one contact intensity sensor is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212 ). In some embodiments, at least one contact intensity sensor is located on the back of device 200 , opposite touch screen display 212 , which is located on the front of device 200 .
  • Device 200 optionally also includes one or more proximity sensors 266 .
  • FIG. 2 A shows proximity sensor 266 coupled to peripherals interface 218 .
  • proximity sensor 266 is, optionally, coupled to input controller 260 in I/O subsystem 206 .
  • Proximity sensor 266 optionally performs as described in U.S. patent application Ser. No. 11/241,839, “Proximity Detector In Handheld Device”; Ser. No. 11/240,788, “Proximity Detector In Handheld Device”; Ser. No. 11/620,702, “Using Ambient Light Sensor To Augment Proximity Sensor Output”; Ser. No. 11/586,862, “Automated Response To And Sensing Of User Activity In Portable Devices”; and Ser.
  • the proximity sensor turns off and disables touch screen 212 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call).
  • Device 200 optionally also includes one or more tactile output generators 267 .
  • FIG. 2 A shows a tactile output generator coupled to haptic feedback controller 261 in I/O subsystem 206 .
  • Tactile output generator 267 optionally includes one or more electroacoustic devices such as speakers or other audio components and/or electromechanical devices that convert energy into linear motion such as a motor, solenoid, electroactive polymer, piezoelectric actuator, electrostatic actuator, or other tactile output generating component (e.g., a component that converts electrical signals into tactile outputs on the device).
  • Contact intensity sensor 265 receives tactile feedback generation instructions from haptic feedback module 233 and generates tactile outputs on device 200 that are capable of being sensed by a user of device 200 .
  • At least one tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212 ) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 200 ) or laterally (e.g., back and forth in the same plane as a surface of device 200 ).
  • at least one tactile output generator sensor is located on the back of device 200 , opposite touch screen display 212 , which is located on the front of device 200 .
  • Device 200 optionally also includes one or more accelerometers 268 .
  • FIG. 2 A shows accelerometer 268 coupled to peripherals interface 218 .
  • accelerometer 268 is, optionally, coupled to an input controller 260 in I/O subsystem 206 .
  • Accelerometer 268 optionally performs as described in U.S. Patent Publication No. 20050190059, “Acceleration-based Theft Detection System for Portable Electronic Devices,” and U.S. Patent Publication No. 20060017692, “Methods And Apparatuses For Operating A Portable Device Based On An Accelerometer,” both of which are incorporated by reference herein in their entirety.
  • information is displayed on the touch screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers.
  • Device 200 optionally includes, in addition to accelerometer(s) 268 , a magnetometer and a GPS (or GLONASS or other global navigation system) receiver for obtaining information concerning the location and orientation (e.g., portrait or landscape) of device 200 .
  • GPS or GLONASS or other global navigation system
  • the software components stored in memory 202 include operating system 226 , communication module (or set of instructions) 228 , contact/motion module (or set of instructions) 230 , graphics module (or set of instructions) 232 , text input module (or set of instructions) 234 , Global Positioning System (GPS) module (or set of instructions) 235 , Digital Assistant Client Module 229 , and applications (or sets of instructions) 236 .
  • memory 202 stores data and models, such as user data and models 231 .
  • memory 202 ( FIG. 2 A ) or 470 ( FIG. 4 ) stores device/global internal state 257 , as shown in FIGS. 2 A and 4 .
  • Device/global internal state 257 includes one or more of: active application state, indicating which applications, if any, are currently active; display state, indicating what applications, views or other information occupy various regions of touch screen display 212 ; sensor state, including information obtained from the device's various sensors and input control devices 216 ; and location information concerning the device's location and/or attitude.
  • Operating system 226 e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks
  • Operating system 226 includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
  • Communication module 228 facilitates communication with other devices over one or more external ports 224 and also includes various software components for handling data received by RF circuitry 208 and/or external port 224 .
  • External port 224 e.g., Universal Serial Bus (USB), FIREWIRE, etc.
  • USB Universal Serial Bus
  • FIREWIRE FireWire
  • the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.
  • Contact/motion module 230 optionally detects contact with touch screen 212 (in conjunction with display controller 256 ) and other touch-sensitive devices (e.g., a touchpad or physical click wheel).
  • Contact/motion module 230 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact).
  • Contact/motion module 230 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 230 and display controller 256 detect contact on a touchpad.
  • contact/motion module 230 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon).
  • at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 200 ). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware.
  • a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).
  • Contact/motion module 230 optionally detects a gesture input by a user.
  • Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts).
  • a gesture is, optionally, detected by detecting a particular contact pattern.
  • detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon).
  • detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.
  • Graphics module 232 includes various known software components for rendering and displaying graphics on touch screen 212 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed.
  • graphics includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.
  • graphics module 232 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 232 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 256 .
  • Haptic feedback module 233 includes various software components for generating instructions used by tactile output generator(s) 267 to produce tactile outputs at one or more locations on device 200 in response to user interactions with device 200 .
  • Text input module 234 which is optionally, a component of graphics module 232 , provides soft keyboards for entering text in various applications (e.g., contacts 237 , email 240 , IM 241 , browser 247 , and any other application that needs text input).
  • applications e.g., contacts 237 , email 240 , IM 241 , browser 247 , and any other application that needs text input.
  • GPS module 235 determines the location of the device and provides this information for use in various applications (e.g., to telephone 238 for use in location-based dialing; to camera 243 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
  • applications e.g., to telephone 238 for use in location-based dialing; to camera 243 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
  • Digital assistant client module 229 includes various client-side digital assistant instructions to provide the client-side functionalities of the digital assistant.
  • digital assistant client module 229 is capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., microphone 213 , accelerometer(s) 268 , touch-sensitive display system 212 , optical sensor(s) 229 , other input control devices 216 , etc.) of portable multifunction device 200 .
  • Digital assistant client module 229 is also capable of providing output in audio (e.g., speech output), visual, and/or tactile forms through various output interfaces (e.g., speaker 211 , touch-sensitive display system 212 , tactile output generator(s) 267 , etc.) of portable multifunction device 200 .
  • output is provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above.
  • digital assistant client module 229 communicates with DA server 106 using RF circuitry 208 .
  • User data and models 231 include various data associated with the user (e.g., user-specific vocabulary data, user preference data, user-specified name pronunciations, data from the user's electronic address book, to-do lists, shopping lists, etc.) to provide the client-side functionalities of the digital assistant. Further, user data and models 231 include various models (e.g., speech recognition models, statistical language models, natural language processing models, ontology, task flow models, service models, etc.) for processing user input and determining user intent.
  • models e.g., speech recognition models, statistical language models, natural language processing models, ontology, task flow models, service models, etc.
  • digital assistant client module 229 utilizes the various sensors, subsystems, and peripheral devices of portable multifunction device 200 to gather additional information from the surrounding environment of the portable multifunction device 200 to establish a context associated with a user, the current user interaction, and/or the current user input.
  • digital assistant client module 229 provides the contextual information or a subset thereof with the user input to DA server 106 to help infer the user's intent.
  • the digital assistant also uses the contextual information to determine how to prepare and deliver outputs to the user. Contextual information is referred to as context data.
  • the contextual information that accompanies the user input includes sensor information, e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, etc.
  • the contextual information can also include the physical state of the device, e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signals strength, etc.
  • information related to the software state of DA server 106 e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc., and of portable multifunction device 200 is provided to DA server 106 as contextual information associated with a user input.
  • the digital assistant client module 229 selectively provides information (e.g., user data 231 ) stored on the portable multifunction device 200 in response to requests from DA server 106 .
  • digital assistant client module 229 also elicits additional input from the user via a natural language dialogue or other user interfaces upon request by DA server 106 .
  • Digital assistant client module 229 passes the additional input to DA server 106 to help DA server 106 in intent deduction and/or fulfillment of the user's intent expressed in the user request.
  • digital assistant client module 229 can include any number of the sub-modules of digital assistant module 726 described below.
  • Applications 236 optionally include the following modules (or sets of instructions), or a subset or superset thereof:
  • Examples of other applications 236 that are, optionally, stored in memory 202 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
  • contacts module 237 are, optionally, used to manage an address book or contact list (e.g., stored in application internal state 292 of contacts module 237 in memory 202 or memory 470 ), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 238 , video conference module 239 , e-mail 240 , or IM 241 ; and so forth.
  • an address book or contact list e.g., stored in application internal state 292 of contacts module 237 in memory 202 or memory 470 , including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a
  • telephone module 238 are, optionally, used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 237 , modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed.
  • the wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies.
  • video conference module 239 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.
  • e-mail client module 240 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions.
  • e-mail client module 240 makes it very easy to create and send e-mails with still or video images taken with camera module 243 .
  • the instant messaging module 241 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages.
  • SMS Short Message Service
  • MMS Multimedia Message Service
  • XMPP extensible Markup Language
  • SIMPLE Session Initiation Protocol
  • IMPS Internet Messaging Protocol
  • transmitted and/or received instant messages optionally include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS).
  • EMS Enhanced Messaging Service
  • instant messaging refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).
  • workout support module 242 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data.
  • create workouts e.g., with time, distance, and/or calorie burning goals
  • communicate with workout sensors sports devices
  • receive workout sensor data calibrate sensors used to monitor a workout
  • select and play music for a workout and display, store, and transmit workout data.
  • camera module 243 includes executable instructions to capture still images or video (including a video stream) and store them into memory 202 , modify characteristics of a still image or video, or delete a still image or video from memory 202 .
  • image management module 244 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
  • modify e.g., edit
  • present e.g., in a digital slide show or album
  • browser module 247 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.
  • calendar module 248 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.
  • widget modules 249 are mini-applications that are, optionally, downloaded and used by a user (e.g., weather widget 249 - 1 , stocks widget 249 - 2 , calculator widget 249 - 3 , alarm clock widget 249 - 4 , and dictionary widget 249 - 5 ) or created by the user (e.g., user-created widget 249 - 6 ).
  • a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file.
  • a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).
  • the widget creator module 250 are, optionally, used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).
  • search module 251 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 202 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.
  • search criteria e.g., one or more user-specified search terms
  • video and music player module 252 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 212 or on an external, connected display via external port 224 ).
  • device 200 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).
  • notes module 253 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.
  • map module 254 are, optionally, used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.
  • maps e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data
  • online video module 255 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 224 ), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264.
  • instant messaging module 241 is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.
  • modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein).
  • modules e.g., sets of instructions
  • video player module is optionally, combined with music player module into a single module (e.g., video and music player module 252 , FIG. 2 A ).
  • memory 202 optionally stores a subset of the modules and data structures identified above.
  • memory 202 optionally stores additional modules and data structures not described above.
  • device 200 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad.
  • a touch screen and/or a touchpad as the primary input control device for operation of device 200 , the number of physical input control devices (such as push buttons, dials, and the like) on device 200 is, optionally, reduced.
  • the predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces.
  • the touchpad when touched by the user, navigates device 200 to a main, home, or root menu from any user interface that is displayed on device 200 .
  • a “menu button” is implemented using a touchpad.
  • the menu button is a physical push button or other physical input control device instead of a touchpad.
  • FIG. 2 B is a block diagram illustrating exemplary components for event handling in accordance with some embodiments.
  • memory 202 ( FIG. 2 A ) or 470 ( FIG. 4 ) includes event sorter 270 (e.g., in operating system 226 ) and a respective application 236 - 1 (e.g., any of the aforementioned applications 237 - 251 , 255 , 480 - 490 ).
  • Event sorter 270 receives event information and determines the application 236 - 1 and application view 291 of application 236 - 1 to which to deliver the event information.
  • Event sorter 270 includes event monitor 271 and event dispatcher module 274 .
  • application 236 - 1 includes application internal state 292 , which indicates the current application view(s) displayed on touch-sensitive display 212 when the application is active or executing.
  • device/global internal state 257 is used by event sorter 270 to determine which application(s) is (are) currently active, and application internal state 292 is used by event sorter 270 to determine application views 291 to which to deliver event information.
  • application internal state 292 includes additional information, such as one or more of: resume information to be used when application 236 - 1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 236 - 1 , a state queue for enabling the user to go back to a prior state or view of application 236 - 1 , and a redo/undo queue of previous actions taken by the user.
  • Event monitor 271 receives event information from peripherals interface 218 .
  • Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 212 , as part of a multi-touch gesture).
  • Peripherals interface 218 transmits information it receives from I/O subsystem 206 or a sensor, such as proximity sensor 266 , accelerometer(s) 268 , and/or microphone 213 (through audio circuitry 210 ).
  • Information that peripherals interface 218 receives from I/O subsystem 206 includes information from touch-sensitive display 212 or a touch-sensitive surface.
  • event monitor 271 sends requests to the peripherals interface 218 at predetermined intervals. In response, peripherals interface 218 transmits event information. In other embodiments, peripherals interface 218 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).
  • event sorter 270 also includes a hit view determination module 272 and/or an active event recognizer determination module 273 .
  • Hit view determination module 272 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 212 displays more than one view. Views are made up of controls and other elements that a user can see on the display.
  • the application views (of a respective application) in which a touch is detected optionally correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is, optionally, called the hit view, and the set of events that are recognized as proper inputs are, optionally, determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.
  • Hit view determination module 272 receives information related to sub events of a touch-based gesture.
  • hit view determination module 272 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event).
  • the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.
  • Active event recognizer determination module 273 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 273 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 273 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.
  • Event dispatcher module 274 dispatches the event information to an event recognizer (e.g., event recognizer 280 ). In embodiments including active event recognizer determination module 273 , event dispatcher module 274 delivers the event information to an event recognizer determined by active event recognizer determination module 273 . In some embodiments, event dispatcher module 274 stores in an event queue the event information, which is retrieved by a respective event receiver 282 .
  • operating system 226 includes event sorter 270 .
  • application 236 - 1 includes event sorter 270 .
  • event sorter 270 is a stand-alone module, or a part of another module stored in memory 202 , such as contact/motion module 230 .
  • application 236 - 1 includes a plurality of event handlers 290 and one or more application views 291 , each of which includes instructions for handling touch events that occur within a respective view of the application's user interface.
  • Each application view 291 of the application 236 - 1 includes one or more event recognizers 280 .
  • a respective application view 291 includes a plurality of event recognizers 280 .
  • one or more of event recognizers 280 are part of a separate module, such as a user interface kit or a higher level object from which application 236 - 1 inherits methods and other properties.
  • a respective event handler 290 includes one or more of: data updater 276 , object updater 277 , GUI updater 278 , and/or event data 279 received from event sorter 270 .
  • Event handler 290 utilizes or calls data updater 276 , object updater 277 , or GUI updater 278 to update the application internal state 292 .
  • one or more of the application views 291 include one or more respective event handlers 290 .
  • one or more of data updater 276 , object updater 277 , and GUI updater 278 are included in a respective application view 291 .
  • a respective event recognizer 280 receives event information (e.g., event data 279 ) from event sorter 270 and identifies an event from the event information.
  • Event recognizer 280 includes event receiver 282 and event comparator 284 .
  • event recognizer 280 also includes at least a subset of: metadata 283 , and event delivery instructions 288 (which optionally include sub-event delivery instructions).
  • Event receiver 282 receives event information from event sorter 270 .
  • the event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information optionally also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.
  • Event comparator 284 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub event, or determines or updates the state of an event or sub-event.
  • event comparator 284 includes event definitions 286 .
  • Event definitions 286 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 ( 287 - 1 ), event 2 ( 287 - 2 ), and others.
  • sub-events in an event ( 287 ) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching.
  • the definition for event 1 ( 287 - 1 ) is a double tap on a displayed object.
  • the double tap for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase.
  • the definition for event 2 ( 287 - 2 ) is a dragging on a displayed object.
  • the dragging for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 212 , and liftoff of the touch (touch end).
  • the event also includes information for one or more associated event handlers 290 .
  • event definition 287 includes a definition of an event for a respective user-interface object.
  • event comparator 284 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 212 , when a touch is detected on touch-sensitive display 212 , event comparator 284 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 290 , the event comparator uses the result of the hit test to determine which event handler 290 should be activated. For example, event comparator 284 selects an event handler associated with the sub-event and the object triggering the hit test.
  • the definition for a respective event ( 287 ) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.
  • a respective event recognizer 280 determines that the series of sub-events do not match any of the events in event definitions 286 , the respective event recognizer 280 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.
  • a respective event recognizer 280 includes metadata 283 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers.
  • metadata 283 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another.
  • metadata 283 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.
  • a respective event recognizer 280 activates event handler 290 associated with an event when one or more particular sub-events of an event are recognized.
  • a respective event recognizer 280 delivers event information associated with the event to event handler 290 .
  • Activating an event handler 290 is distinct from sending (and deferred sending) sub-events to a respective hit view.
  • event recognizer 280 throws a flag associated with the recognized event, and event handler 290 associated with the flag catches the flag and performs a predefined process.
  • event delivery instructions 288 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.
  • data updater 276 creates and updates data used in application 236 - 1 .
  • data updater 276 updates the telephone number used in contacts module 237 , or stores a video file used in video player module.
  • object updater 277 creates and updates objects used in application 236 - 1 .
  • object updater 277 creates a new user-interface object or updates the position of a user-interface object.
  • GUI updater 278 updates the GUI.
  • GUI updater 278 prepares display information and sends it to graphics module 232 for display on a touch-sensitive display.
  • event handler(s) 290 includes or has access to data updater 276 , object updater 277 , and GUI updater 278 .
  • data updater 276 , object updater 277 , and GUI updater 278 are included in a single module of a respective application 236 - 1 or application view 291 . In other embodiments, they are included in two or more software modules.
  • event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 200 with input devices, not all of which are initiated on touch screens.
  • mouse movement and mouse button presses optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.
  • FIG. 3 illustrates a portable multifunction device 200 having a touch screen 212 in accordance with some embodiments.
  • the touch screen optionally displays one or more graphics within user interface (UI) 300 .
  • UI user interface
  • a user is enabled to select one or more of the graphics by making a gesture on the graphics, for example, with one or more fingers 302 (not drawn to scale in the figure) or one or more styluses 303 (not drawn to scale in the figure).
  • selection of one or more graphics occurs when the user breaks contact with the one or more graphics.
  • the gesture optionally includes one or more taps, one or more swipes (from left to right, right to left, upward and/or downward), and/or a rolling of a finger (from right to left, left to right, upward and/or downward) that has made contact with device 200 .
  • inadvertent contact with a graphic does not select the graphic.
  • a swipe gesture that sweeps over an application icon optionally does not select the corresponding application when the gesture corresponding to selection is a tap.
  • Device 200 optionally also includes one or more physical buttons, such as “home” or menu button 304 .
  • menu button 304 is, optionally, used to navigate to any application 236 in a set of applications that are, optionally, executed on device 200 .
  • the menu button is implemented as a soft key in a GUI displayed on touch screen 212 .
  • device 200 includes touch screen 212 , menu button 304 , push button 306 for powering the device on/off and locking the device, volume adjustment button(s) 308 , subscriber identity module (SIM) card slot 310 , headset jack 312 , and docking/charging external port 224 .
  • Push button 306 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process.
  • device 200 also accepts verbal input for activation or deactivation of some functions through microphone 213 .
  • Device 200 also, optionally, includes one or more contact intensity sensors 265 for detecting intensity of contacts on touch screen 212 and/or one or more tactile output generators 267 for generating tactile outputs for a user of device 200 .
  • FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments.
  • Device 400 need not be portable.
  • device 400 is a laptop computer, a desktop computer, a tablet computer, a multimedia player device, a navigation device, an educational device (such as a child's learning toy), a gaming system, or a control device (e.g., a home or industrial controller).
  • Device 400 typically includes one or more processing units (CPUs) 410 , one or more network or other communications interfaces 460 , memory 470 , and one or more communication buses 420 for interconnecting these components.
  • CPUs processing units
  • Communication buses 420 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components.
  • Device 400 includes input/output (I/O) interface 430 comprising display 440 , which is typically a touch screen display.
  • I/O interface 430 also optionally includes a keyboard and/or mouse (or other pointing device) 450 and touchpad 455 , tactile output generator 457 for generating tactile outputs on device 400 (e.g., similar to tactile output generator(s) 267 described above with reference to FIG. 2 A ), sensors 459 (e.g., optical, acceleration, proximity, touch-sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 265 described above with reference to FIG. 2 A ).
  • sensors 459 e.g., optical, acceleration, proximity, touch-sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 265 described above with reference to FIG. 2 A ).
  • Memory 470 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM, or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 470 optionally includes one or more storage devices remotely located from CPU(s) 410 . In some embodiments, memory 470 stores programs, modules, and data structures analogous to the programs, modules, and data structures stored in memory 202 of portable multifunction device 200 ( FIG. 2 A ), or a subset thereof. Furthermore, memory 470 optionally stores additional programs, modules, and data structures not present in memory 202 of portable multifunction device 200 .
  • memory 470 of device 400 optionally stores drawing module 480 , presentation module 482 , word processing module 484 , website creation module 486 , disk authoring module 488 , and/or spreadsheet module 490 , while memory 202 of portable multifunction device 200 ( FIG. 2 A ) optionally does not store these modules.
  • Each of the above-identified elements in FIG. 4 is, optionally, stored in one or more of the previously mentioned memory devices.
  • Each of the above-identified modules corresponds to a set of instructions for performing a function described above.
  • the above-identified modules or programs (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are, optionally, combined or otherwise rearranged in various embodiments.
  • memory 470 optionally stores a subset of the modules and data structures identified above. Furthermore, memory 470 optionally stores additional modules and data structures not described above.
  • FIG. 5 A illustrates an exemplary user interface for a menu of applications on portable multifunction device 200 in accordance with some embodiments. Similar user interfaces are, optionally, implemented on device 400 .
  • user interface 500 includes the following elements, or a subset or superset thereof:
  • icon labels illustrated in FIG. 5 A are merely exemplary.
  • icon 522 for video and music player module 252 is optionally labeled “Music” or “Music Player.”
  • Other labels are, optionally, used for various application icons.
  • a label for a respective application icon includes a name of an application corresponding to the respective application icon.
  • a label for a particular application icon is distinct from a name of an application corresponding to the particular application icon.
  • FIG. 5 B illustrates an exemplary user interface on a device (e.g., device 400 , FIG. 4 ) with a touch-sensitive surface 551 (e.g., a tablet or touchpad 455 , FIG. 4 ) that is separate from the display 550 (e.g., touch screen display 212 ).
  • Device 400 also, optionally, includes one or more contact intensity sensors (e.g., one or more of sensors 457 ) for detecting intensity of contacts on touch-sensitive surface 551 and/or one or more tactile output generators 459 for generating tactile outputs for a user of device 400 .
  • one or more contact intensity sensors e.g., one or more of sensors 457
  • tactile output generators 459 for generating tactile outputs for a user of device 400 .
  • the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in FIG. 5 B .
  • the touch-sensitive surface e.g., 551 in FIG. 5 B
  • the touch-sensitive surface has a primary axis (e.g., 552 in FIG. 5 B ) that corresponds to a primary axis (e.g., 553 in FIG. 5 B ) on the display (e.g., 550 ).
  • the device detects contacts (e.g., 560 and 562 in FIG.
  • finger inputs e.g., finger contacts, finger tap gestures, finger swipe gestures
  • one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input).
  • a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact).
  • a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact).
  • multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.
  • FIG. 6 A illustrates exemplary personal electronic device 600 .
  • Device 600 includes body 602 .
  • device 600 can include some or all of the features described with respect to devices 200 and 400 (e.g., FIGS. 2 A- 4 ).
  • device 600 has touch-sensitive display screen 604 , hereafter touch screen 604 .
  • touch screen 604 or the touch-sensitive surface
  • touch screen 604 optionally incudes one or more intensity sensors for detecting intensity of contacts (e.g., touches) being applied.
  • the one or more intensity sensors of touch screen 604 can provide output data that represents the intensity of touches.
  • the user interface of device 600 responds to touches based on their intensity, meaning that touches of different intensities can invoke different user interface operations on device 600 .
  • Exemplary techniques for detecting and processing touch intensity are found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, published as WIPO Publication No. WO/2013/169849, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, published as WIPO Publication No. WO/2014/105276, each of which is hereby incorporated by reference in their entirety.
  • device 600 has one or more input mechanisms 606 and 608 .
  • Input mechanisms 606 and 608 can be physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms.
  • device 600 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 600 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms permit device 600 to be worn by a user.
  • FIG. 6 B depicts exemplary personal electronic device 600 .
  • device 600 optionally includes some or all of the components described with respect to FIGS. 2 A, 2 B, and 4 .
  • Device 600 has bus 612 that operatively couples I/O section 614 with one or more computer processors 616 and memory 618 .
  • I/O section 614 is optionally connected to display 604 , which can have touch-sensitive component 622 and, optionally, intensity sensor 624 (e.g., contact intensity sensor).
  • I/O section 614 is optionally connected with communication unit 630 for receiving application and operating system data, using Wi-Fi, Bluetooth, near field communication (NFC), cellular, and/or other wireless communication techniques.
  • Device 600 optionally includes input mechanisms 606 and/or 608 .
  • Input mechanism 606 is, optionally, a rotatable input device or a depressible and rotatable input device, for example.
  • Input mechanism 608 is, optionally, a button, in some examples.
  • Input mechanism 608 is, optionally, a microphone, in some examples.
  • Personal electronic device 600 optionally includes various sensors, such as GPS sensor 632 , accelerometer 634 , directional sensor 640 (e.g., compass), gyroscope 636 , motion sensor 638 , and/or a combination thereof, all of which are, optionally, operatively connected to I/O section 614 .
  • sensors such as GPS sensor 632 , accelerometer 634 , directional sensor 640 (e.g., compass), gyroscope 636 , motion sensor 638 , and/or a combination thereof, all of which are, optionally, operatively connected to I/O section 614 .
  • Memory 618 of personal electronic device 600 can include one or more non-transitory computer-readable storage media, for storing computer-executable instructions, which, when executed by one or more computer processors 616 , for example, cause the computer processors to perform the techniques and processes described below.
  • the computer-executable instructions for example, are also stored and/or transported within any non-transitory computer-readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions.
  • the storage medium is a non-transitory computer-readable storage medium.
  • the non-transitory computer-readable storage medium any type of storage including but not limited to, magnetic, optical, and/or semiconductor storages. Examples of such storage include magnetic disks, optical discs based on CD, DVD, or Blu-ray technologies, as well as persistent solid-state memory such as flash, solid-state drives, and the like.
  • Personal electronic device 600 is not limited to the components and configuration of FIG. 6 B , but can include other or additional components in multiple configurations.
  • the term “affordance” refers to a user-interactive graphical user interface object that is, optionally, displayed on the display screen of devices 200 , 400 , 600 , 800 , 1000 , 1600 and/or 1800 ( FIGS. 2 A, 4 , and 6 A- 6 B , FIGS. 8 A- 8 AF , FIGS. 10 A- 10 AJ , FIGS. 16 A- 16 S, 18 A- 18 D ).
  • an image e.g., icon
  • a button e.g., hyperlink
  • the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting.
  • the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 455 in FIG. 4 or touch-sensitive surface 551 in FIG. 5 B ) while the cursor is over a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input.
  • a touch screen display e.g., touch-sensitive display system 212 in FIG.
  • a detected contact on the touch screen acts as a “focus selector” so that when an input (e.g., a press input by the contact) is detected on the touch screen display at a location of a particular user interface element (e.g., a button, window, slider, or other user interface element), the particular user interface element is adjusted in accordance with the detected input.
  • an input e.g., a press input by the contact
  • a particular user interface element e.g., a button, window, slider, or other user interface element
  • focus is moved from one region of a user interface to another region of the user interface without corresponding movement of a cursor or movement of a contact on a touch screen display (e.g., by using a tab key or arrow keys to move focus from one button to another button); in these implementations, the focus selector moves in accordance with movement of focus between different regions of the user interface.
  • the focus selector is generally the user interface element (or contact on a touch screen display) that is controlled by the user so as to communicate the user's intended interaction with the user interface (e.g., by indicating, to the device, the element of the user interface with which the user is intending to interact).
  • a focus selector e.g., a cursor, a contact, or a selection box
  • a press input is detected on the touch-sensitive surface (e.g., a touchpad or touch screen) will indicate that the user is intending to activate the respective button (as opposed to other user interface elements shown on a display of the device).
  • the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact).
  • a predefined time period e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds
  • a characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like.
  • the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time).
  • the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user.
  • the set of one or more intensity thresholds optionally includes a first intensity threshold and a second intensity threshold.
  • a contact with a characteristic intensity that does not exceed the first threshold results in a first operation
  • a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation
  • a contact with a characteristic intensity that exceeds the second threshold results in a third operation.
  • a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.
  • FIG. 6 C illustrates detecting a plurality of contacts 652 A- 652 E on touch-sensitive display screen 604 with a plurality of intensity sensors 624 A- 624 D.
  • FIG. 6 C additionally includes intensity diagrams that show the current intensity measurements of the intensity sensors 624 A- 624 D relative to units of intensity.
  • the intensity measurements of intensity sensors 624 A and 624 D are each 9 units of intensity
  • the intensity measurements of intensity sensors 624 B and 624 C are each 7 units of intensity.
  • an aggregate intensity is the sum of the intensity measurements of the plurality of intensity sensors 624 A- 624 D, which in this example is 32 intensity units.
  • each contact is assigned a respective intensity that is a portion of the aggregate intensity.
  • each of contacts 652 A, 652 B, and 652 E are assigned an intensity of contact of 8 intensity units of the aggregate intensity
  • each of contacts 652 C and 652 D are assigned an intensity of contact of 4 intensity units of the aggregate intensity.
  • Ij A ⁇ (Dj// ⁇ Di)
  • Dj is the distance of the respective contact j to the center of force
  • the operations described with reference to FIGS. 6 C- 6 D can be performed using an electronic device similar or identical to device 104 , 200 , 400 , or 600 .
  • a characteristic intensity of a contact is based on one or more intensities of the contact.
  • the intensity sensors are used to determine a single characteristic intensity (e.g., a single characteristic intensity of a single contact). It should be noted that the intensity diagrams are not part of a displayed user interface, but are included in FIGS. 6 C- 6 D to aid the reader.
  • a portion of a gesture is identified for purposes of determining a characteristic intensity.
  • a touch-sensitive surface optionally receives a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases.
  • the characteristic intensity of the contact at the end location is, optionally, based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location).
  • a smoothing algorithm is, optionally, applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact.
  • the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm.
  • these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.
  • the intensity of a contact on the touch-sensitive surface is, optionally, characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds.
  • the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad.
  • the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad.
  • the device when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold.
  • a characteristic intensity below the light press intensity threshold e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected
  • these intensity thresholds are consistent between different sets of user interface figures.
  • An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input.
  • An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input.
  • An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface.
  • a decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface.
  • the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.
  • one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold.
  • the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input).
  • the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).
  • FIGS. 6 E- 6 H illustrate detection of a gesture that includes a press input that corresponds to an increase in intensity of a contact 662 from an intensity below a light press intensity threshold (e.g., “ITL”) in FIG. 6 E , to an intensity above a deep press intensity threshold (e.g., “ITD”) in FIG. 6 H .
  • the gesture performed with contact 662 is detected on touch-sensitive surface 660 while cursor 676 is displayed over application icon 672 B corresponding to App 2, on a displayed user interface 670 that includes application icons 672 A- 672 D displayed in predefined region 674 .
  • the gesture is detected on touch-sensitive display 604 .
  • the intensity sensors detect the intensity of contacts on touch-sensitive surface 660 .
  • the device determines that the intensity of contact 662 peaked above the deep press intensity threshold (e.g., “ITD”).
  • Contact 662 is maintained on touch-sensitive surface 660 .
  • reduced-scale representations 678 A- 678 C e.g., thumbnails
  • the intensity which is compared to the one or more intensity thresholds, is the characteristic intensity of a contact. It should be noted that the intensity diagram for contact 662 is not part of a displayed user interface, but is included in FIGS. 6 E- 6 H to aid the reader.
  • the display of representations 678 A- 678 C includes an animation.
  • representation 678 A is initially displayed in proximity of application icon 672 B, as shown in FIG. 6 F .
  • representation 678 A moves upward and representation 678 B is displayed in proximity of application icon 672 B, as shown in FIG. 6 G.
  • representations 678 A moves upward, 678 B moves upward toward representation 678 A, and representation 678 C is displayed in proximity of application icon 672 B, as shown in FIG. 6 H .
  • Representations 678 A- 678 C form an array above icon 672 B.
  • the animation progresses in accordance with an intensity of contact 662 , as shown in FIGS.
  • the intensity, on which the progress of the animation is based is the characteristic intensity of the contact.
  • the operations described with reference to FIGS. 6 E- 6 H can be performed using an electronic device similar or identical to device 104 , 200 , 400 , or 600 .
  • the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold).
  • the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold.
  • the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input).
  • the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).
  • the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold.
  • the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.
  • an “installed application” refers to a software application that has been downloaded onto an electronic device (e.g., devices 100 , 200 , 400 , and/or 600 ) and is ready to be launched (e.g., become opened) on the device.
  • a downloaded application becomes an installed application by way of an installation program that extracts program portions from a downloaded package and integrates the extracted portions with the operating system of the computer system.
  • open application or “executing application” refer to a software application with retained state information (e.g., as part of device/global internal state 157 and/or application internal state 192 ).
  • An open or executing application is, optionally, any one of the following types of applications:
  • closing an application refers to software applications without retained state information (e.g., state information for closed applications is not stored in a memory of the device). Accordingly, closing an application includes stopping and/or removing application processes for the application and removing state information for the application from the memory of the device. Generally, opening a second application while in a first application does not close the first application. When the second application is displayed and the first application ceases to be displayed, the first application becomes a background application.
  • FIG. 7 A illustrates a block diagram of digital assistant system 700 in accordance with various examples.
  • digital assistant system 700 is implemented on a standalone computer system.
  • digital assistant system 700 is distributed across multiple computers.
  • some of the modules and functions of the digital assistant are divided into a server portion and a client portion, where the client portion resides on one or more user devices (e.g., devices 104 , 122 , 200 , 400 , 600 , 800 , 1000 , 1404 , 1600 , 1800 ) and communicates with the server portion (e.g., server system 108 ) through one or more networks, e.g., as shown in FIG. 1 .
  • user devices e.g., devices 104 , 122 , 200 , 400 , 600 , 800 , 1000 , 1404 , 1600 , 1800
  • the server portion e.g., server system 108
  • networks e.g., as shown in FIG. 1 .
  • digital assistant system 700 is an implementation of server system 108 (and/or DA server 106 ) shown in FIG. 1 . It should be noted that digital assistant system 700 is only one example of a digital assistant system, and that digital assistant system 700 can have more or fewer components than shown, can combine two or more components, or can have a different configuration or arrangement of the components.
  • the various components shown in FIG. 7 A are implemented in hardware, software instructions for execution by one or more processors, firmware, including one or more signal processing and/or application specific integrated circuits, or a combination thereof.
  • Digital assistant system 700 includes memory 702 , one or more processors 704 , input/output (I/O) interface 706 , and network communications interface 708 . These components can communicate with one another over one or more communication buses or signal lines 710 .
  • memory 702 includes a non-transitory computer-readable medium, such as high-speed random access memory and/or a non-volatile computer-readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices).
  • a non-transitory computer-readable medium such as high-speed random access memory and/or a non-volatile computer-readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices).
  • I/O interface 706 couples input/output devices 716 of digital assistant system 700 , such as displays, keyboards, touch screens, and microphones, to user interface module 722 .
  • I/O interface 706 in conjunction with user interface module 722 , receives user inputs (e.g., voice input, keyboard inputs, touch inputs, etc.) and processes them accordingly.
  • digital assistant system 700 includes any of the components and I/O communication interfaces described with respect to devices 200 , 400 , 600 , 1200 , and 1404 in FIGS. 2 A, 4 , 6 A- 6 H, 12 , and 14 respectively.
  • digital assistant system 700 represents the server portion of a digital assistant implementation, and can interact with the user through a client-side portion residing on a user device (e.g., devices 104 , 200 , 400 , 600 , 800 , 1000 , 1404 , 1600 , 1800 ).
  • a user device e.g., devices 104 , 200 , 400 , 600 , 800 , 1000 , 1404 , 1600 , 1800 ).
  • the network communications interface 708 includes wired communication port(s) 712 and/or wireless transmission and reception circuitry 714 .
  • the wired communication port(s) receives and send communication signals via one or more wired interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc.
  • the wireless circuitry 714 receives and sends RF signals and/or optical signals from/to communications networks and other communications devices.
  • the wireless communications use any of a plurality of communications standards, protocols, and technologies, such as GSM, EDGE, CDMA, TDMA, Bluetooth, Wi-Fi, VoIP, Wi-MAX, or any other suitable communication protocol.
  • Network communications interface 708 enables communication between digital assistant system 700 with networks, such as the Internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN), and/or a metropolitan area network (MAN), and other devices.
  • networks such as the Internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN), and/or a metropolitan area network (MAN), and other devices.
  • networks such as the Internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN), and/or a metropolitan area network (MAN), and other devices.
  • networks such as the Internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN), and/or a metropolitan area network (MAN), and other devices.
  • LAN wireless local area network
  • MAN metropolitan area network
  • memory 702 stores programs, modules, instructions, and data structures including all or a subset of: operating system 718 , communications module 720 , user interface module 722 , one or more applications 724 , and digital assistant module 726 .
  • memory 702 or the computer-readable storage media of memory 702 , stores instructions for performing the processes described below.
  • processors 704 execute these programs, modules, and instructions, and reads/writes from/to the data structures.
  • Operating system 718 e.g., Darwin, RTXC, LINUX, UNIX, iOS, OS X, WINDOWS, or an embedded operating system such as VxWorks
  • Operating system 718 includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communications between various hardware, firmware, and software components.
  • Communications module 720 facilitates communications between digital assistant system 700 with other devices over network communications interface 708 .
  • communications module 720 communicates with RF circuitry 208 of electronic devices such as devices 200 , 400 , and 600 shown in FIGS. 2 A, 4 , 6 A- 6 B , respectively.
  • Communications module 720 also includes various components for handling data received by wireless circuitry 714 and/or wired communications port 712 .
  • User interface module 722 receives commands and/or inputs from a user via I/O interface 706 (e.g., from a keyboard, touch screen, pointing device, controller, and/or microphone), and generate user interface objects on a display. User interface module 722 also prepares and delivers outputs (e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, light, etc.) to the user via the I/O interface 706 (e.g., through displays, audio channels, speakers, touch-pads, etc.).
  • outputs e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, light, etc.
  • Applications 724 include programs and/or modules that are configured to be executed by one or more processors 704 .
  • applications 724 include user applications, such as games, a calendar application, a navigation application, or an email application.
  • applications 724 include resource management applications, diagnostic applications, or scheduling applications, for example.
  • Memory 702 also stores digital assistant module 726 (or the server portion of a digital assistant).
  • digital assistant module 726 includes the following sub-modules, or a subset or superset thereof: input/output processing module 728 , speech-to-text (STT) processing module 730 , natural language processing module 732 , dialogue flow processing module 734 , task flow processing module 736 , service processing module 738 , and speech synthesis processing module 740 .
  • STT speech-to-text
  • Each of these modules has access to one or more of the following systems or data and models of the digital assistant module 726 , or a subset or superset thereof: ontology 760 , vocabulary index 744 , user data 748 , task flow models 754 , service models 756 , and ASR systems 758 .
  • the digital assistant can perform at least some of the following: converting speech input into text; identifying a user's intent expressed in a natural language input received from the user; actively eliciting and obtaining information needed to fully infer the user's intent (e.g., by disambiguating words, games, intentions, etc.); determining the task flow for fulfilling the inferred intent; and executing the task flow to fulfill the inferred intent.
  • I/O processing module 728 interacts with the user through I/O devices 716 in FIG. 7 A or with a user device (e.g., devices 104 , 200 , 400 , or 600 ) through network communications interface 708 in FIG. 7 A to obtain user input (e.g., a speech input) and to provide responses (e.g., as speech outputs) to the user input.
  • I/O processing module 728 optionally obtains contextual information associated with the user input from the user device, along with or shortly after the receipt of the user input.
  • the contextual information includes user-specific data, vocabulary, and/or preferences relevant to the user input.
  • the contextual information also includes software and hardware states of the user device at the time the user request is received, and/or information related to the surrounding environment of the user at the time that the user request was received.
  • I/O processing module 728 also sends follow-up questions to, and receive answers from, the user regarding the user request. When a user request is received by I/O processing module 728 and the user request includes speech input, I/O processing module 728 forwards the speech input to STT processing module 730 (or speech recognizer) for speech-to-text conversions.
  • STT processing module 730 includes one or more ASR systems 758 .
  • the one or more ASR systems 758 can process the speech input that is received through I/O processing module 728 to produce a recognition result.
  • Each ASR system 758 includes a front-end speech pre-processor.
  • the front-end speech pre-processor extracts representative features from the speech input. For example, the front-end speech pre-processor performs a Fourier transform on the speech input to extract spectral features that characterize the speech input as a sequence of representative multi-dimensional vectors.
  • each ASR system 758 includes one or more speech recognition models (e.g., acoustic models and/or language models) and implements one or more speech recognition engines.
  • Examples of speech recognition models include Hidden Markov Models, Gaussian-Mixture Models, Deep Neural Network Models, n-gram language models, and other statistical models.
  • Examples of speech recognition engines include the dynamic time warping based engines and weighted finite-state transducers (WFST) based engines.
  • the one or more speech recognition models and the one or more speech recognition engines are used to process the extracted representative features of the front-end speech pre-processor to produce intermediate recognitions results (e.g., phonemes, phonemic strings, and sub-words), and ultimately, text recognition results (e.g., words, word strings, or sequence of tokens).
  • the speech input is processed at least partially by a third-party service or on the user's device (e.g., device 104 , 200 , 400 , or 600 ) to produce the recognition result.
  • STT processing module 730 produces recognition results containing a text string (e.g., words, or sequence of words, or sequence of tokens)
  • the recognition result is passed to natural language processing module 732 for intent deduction.
  • STT processing module 730 produces multiple candidate text representations of the speech input. Each candidate text representation is a sequence of words or tokens corresponding to the speech input.
  • each candidate text representation is associated with a speech recognition confidence score.
  • STT processing module 730 includes and/or accesses a vocabulary of recognizable words via phonetic alphabet conversion module 731 .
  • Each vocabulary word is associated with one or more candidate pronunciations of the word represented in a speech recognition phonetic alphabet.
  • the vocabulary of recognizable words includes a word that is associated with a plurality of candidate pronunciations.
  • the vocabulary includes the word “tomato” that is associated with the candidate pronunciations of and .
  • vocabulary words are associated with custom candidate pronunciations that are based on previous speech inputs from the user.
  • Such custom candidate pronunciations are stored in STT processing module 730 and are associated with a particular user via the user's profile on the device.
  • the candidate pronunciations for words are determined based on the spelling of the word and one or more linguistic and/or phonetic rules.
  • the candidate pronunciations are manually generated, e.g., based on known canonical pronunciations.
  • the candidate pronunciations are ranked based on the commonness of the candidate pronunciation. For example, the candidate pronunciation is ranked higher than , because the former is a more commonly used pronunciation (e.g., among all users, for users in a particular geographical region, or for any other appropriate subset of users).
  • candidate pronunciations are ranked based on whether the candidate pronunciation is a custom candidate pronunciation associated with the user. For example, custom candidate pronunciations are ranked higher than canonical candidate pronunciations. This can be useful for recognizing proper nouns having a unique pronunciation that deviates from canonical pronunciation.
  • candidate pronunciations are associated with one or more speech characteristics, such as geographic origin, nationality, or ethnicity.
  • the candidate pronunciation is associated with the United States, whereas the candidate pronunciation is associated with Great Britain.
  • the rank of the candidate pronunciation is based on one or more characteristics (e.g., geographic origin, nationality, ethnicity, etc.) of the user stored in the user's profile on the device. For example, it can be determined from the user's profile that the user is associated with the United States. Based on the user being associated with the United States, the candidate pronunciation (associated with the United States) is ranked higher than the candidate pronunciation (associated with Great Britain). In some examples, one of the ranked candidate pronunciations is selected as a predicted pronunciation (e.g., the most likely pronunciation).
  • STT processing module 730 When a speech input is received, STT processing module 730 is used to determine the phonemes corresponding to the speech input (e.g., using an acoustic model), and then attempt to determine words that match the phonemes (e.g., using a language model). For example, if STT processing module 730 first identifies the sequence of phonemes corresponding to a portion of the speech input, it can then determine, based on vocabulary index 744 , that this sequence corresponds to the word “tomato.”
  • STT processing module 730 uses approximate matching techniques to determine words in an utterance. Thus, for example, the STT processing module 730 determines that the sequence of phonemes corresponds to the word “tomato,” even if that particular sequence of phonemes is not one of the candidate sequence of phonemes for that word.
  • Natural language processing module 732 (“natural language processor”) of the digital assistant takes the n-best candidate text representation(s) (“word sequence(s)” or “token sequence(s)”) generated by STT processing module 730 , and attempts to associate each of the candidate text representations with one or more “actionable intents” recognized by the digital assistant.
  • An “actionable intent” (or “user intent”) represents a task that can be performed by the digital assistant, and can have an associated task flow implemented in task flow models 754 .
  • the associated task flow is a series of programmed actions and steps that the digital assistant takes in order to perform the task.
  • the scope of a digital assistant's capabilities is dependent on the number and variety of task flows that have been implemented and stored in task flow models 754 , or in other words, on the number and variety of “actionable intents” that the digital assistant recognizes.
  • the effectiveness of the digital assistant also dependents on the assistant's ability to infer the correct “actionable intent(s)” from the user request expressed in natural language.
  • natural language processing module 732 in addition to the sequence of words or tokens obtained from STT processing module 730 , natural language processing module 732 also receives contextual information associated with the user request, e.g., from I/O processing module 728 .
  • the natural language processing module 732 optionally uses the contextual information to clarify, supplement, and/or further define the information contained in the candidate text representations received from STT processing module 730 .
  • the contextual information includes, for example, user preferences, hardware, and/or software states of the user device, sensor information collected before, during, or shortly after the user request, prior interactions (e.g., dialogue) between the digital assistant and the user, and the like.
  • contextual information is, in some examples, dynamic, and changes with time, location, content of the dialogue, and other factors.
  • the natural language processing is based on, e.g., ontology 760 .
  • Ontology 760 is a hierarchical structure containing many nodes, each node representing either an “actionable intent” or a “property” relevant to one or more of the “actionable intents” or other “properties.”
  • an “actionable intent” represents a task that the digital assistant is capable of performing, i.e., it is “actionable” or can be acted on.
  • a “property” represents a parameter associated with an actionable intent or a sub-aspect of another property.
  • a linkage between an actionable intent node and a property node in ontology 760 defines how a parameter represented by the property node pertains to the task represented by the actionable intent node.
  • ontology 760 is made up of actionable intent nodes and property nodes.
  • each actionable intent node is linked to one or more property nodes either directly or through one or more intermediate property nodes.
  • each property node is linked to one or more actionable intent nodes either directly or through one or more intermediate property nodes.
  • ontology 760 includes a “restaurant reservation” node (i.e., an actionable intent node).
  • Property nodes “restaurant,” “date/time” (for the reservation), and “party size” are each directly linked to the actionable intent node (i.e., the “restaurant reservation” node).
  • property nodes “cuisine,” “price range,” “phone number,” and “location” are sub-nodes of the property node “restaurant,” and are each linked to the “restaurant reservation” node (i.e., the actionable intent node) through the intermediate property node “restaurant.”
  • ontology 760 also includes a “set reminder” node (i.e., another actionable intent node).
  • Property nodes “date/time” (for setting the reminder) and “subject” (for the reminder) are each linked to the “set reminder” node.
  • the property node “date/time” is linked to both the “restaurant reservation” node and the “set reminder” node in ontology 760 .
  • An actionable intent node along with its linked property nodes, is described as a “domain.”
  • each domain is associated with a respective actionable intent, and refers to the group of nodes (and the relationships there between) associated with the particular actionable intent.
  • ontology 760 shown in FIG. 7 C includes an example of restaurant reservation domain 762 and an example of reminder domain 764 within ontology 760 .
  • the restaurant reservation domain includes the actionable intent node “restaurant reservation,” property nodes “restaurant,” “date/time,” and “party size,” and sub-property nodes “cuisine,” “price range,” “phone number,” and “location.”
  • Reminder domain 764 includes the actionable intent node “set reminder,” and property nodes “subject” and “date/time.”
  • ontology 760 is made up of many domains. Each domain shares one or more property nodes with one or more other domains.
  • the “date/time” property node is associated with many different domains (e.g., a scheduling domain, a travel reservation domain, a movie ticket domain, etc.), in addition to restaurant reservation domain 762 and reminder domain 764 .
  • FIG. 7 C illustrates two example domains within ontology 760
  • other domains include, for example, “find a movie,” “initiate a phone call,” “find directions,” “schedule a meeting,” “send a message,” and “provide an answer to a question,” “read a list,” “providing navigation instructions,” “provide instructions for a task” and so on.
  • a “send a message” domain is associated with a “send a message” actionable intent node, and further includes property nodes such as “recipient(s),” “message type,” and “message body.”
  • the property node “recipient” is further defined, for example, by the sub-property nodes such as “recipient name” and “message address.”
  • ontology 760 includes all the domains (and hence actionable intents) that the digital assistant is capable of understanding and acting upon. In some examples, ontology 760 is modified, such as by adding or removing entire domains or nodes, or by modifying relationships between the nodes within the ontology 760 .
  • nodes associated with multiple related actionable intents are clustered under a “super domain” in ontology 760 .
  • a “travel” super-domain includes a cluster of property nodes and actionable intent nodes related to travel.
  • the actionable intent nodes related to travel includes “airline reservation,” “hotel reservation,” “car rental,” “get directions,” “find points of interest,” and so on.
  • the actionable intent nodes under the same super domain (e.g., the “travel” super domain) have many property nodes in common.
  • the actionable intent nodes for “airline reservation,” “hotel reservation,” “car rental,” “get directions,” and “find points of interest” share one or more of the property nodes “start location,” “destination,” “departure date/time,” “arrival date/time,” and “party size.”
  • each node in ontology 760 is associated with a set of words and/or phrases that are relevant to the property or actionable intent represented by the node.
  • the respective set of words and/or phrases associated with each node are the so-called “vocabulary” associated with the node.
  • the respective set of words and/or phrases associated with each node are stored in vocabulary index 744 in association with the property or actionable intent represented by the node. For example, returning to FIG. 7 B , the vocabulary associated with the node for the property of “restaurant” includes words such as “food,” “drinks,” “cuisine,” “hungry,” “eat,” “pizza,” “fast food,” “meal,” and so on.
  • the vocabulary associated with the node for the actionable intent of “initiate a phone call” includes words and phrases such as “call,” “phone,” “dial,” “ring,” “call this number,” “make a call to,” and so on.
  • the vocabulary index 744 optionally includes words and phrases in different languages.
  • Natural language processing module 732 receives the candidate text representations (e.g., text string(s) or token sequence(s)) from STT processing module 730 , and for each candidate representation, determines what nodes are implicated by the words in the candidate text representation. In some examples, if a word or phrase in the candidate text representation is found to be associated with one or more nodes in ontology 760 (via vocabulary index 744 ), the word or phrase “triggers” or “activates” those nodes. Based on the quantity and/or relative importance of the activated nodes, natural language processing module 732 selects one of the actionable intents as the task that the user intended the digital assistant to perform. In some examples, the domain that has the most “triggered” nodes is selected.
  • the candidate text representations e.g., text string(s) or token sequence(s)
  • the domain having the highest confidence value (e.g., based on the relative importance of its various triggered nodes) is selected. In some examples, the domain is selected based on a combination of the number and the importance of the triggered nodes. In some examples, additional factors are considered in selecting the node as well, such as whether the digital assistant has previously correctly interpreted a similar request from a user.
  • User data 748 includes user-specific information, such as user-specific vocabulary, user preferences, user address, user's default and secondary languages, user's contact list, and other short-term or long-term information for each user.
  • natural language processing module 732 uses the user-specific information to supplement the information contained in the user input to further define the user intent. For example, for a user request “invite my friends to my birthday party,” natural language processing module 732 is able to access user data 748 to determine who the “friends” are and when and where the “birthday party” would be held, rather than requiring the user to provide such information explicitly in his/her request.
  • natural language processing module 732 is implemented using one or more machine learning mechanisms (e.g., neural networks).
  • the one or more machine learning mechanisms are configured to receive a candidate text representation and contextual information associated with the candidate text representation. Based on the candidate text representation and the associated contextual information, the one or more machine learning mechanisms are configured to determine intent confidence scores over a set of candidate actionable intents.
  • Natural language processing module 732 can select one or more candidate actionable intents from the set of candidate actionable intents based on the determined intent confidence scores.
  • an ontology e.g., ontology 760
  • natural language processing module 732 identifies an actionable intent (or domain) based on the user request
  • natural language processing module 732 generates a structured query to represent the identified actionable intent.
  • the structured query includes parameters for one or more nodes within the domain for the actionable intent, and at least some of the parameters are populated with the specific information and requirements specified in the user request. For example, the user says “Make me a dinner reservation at a sushi place at 7 .” In this case, natural language processing module 732 is able to correctly identify the actionable intent to be “restaurant reservation” based on the user input.
  • a structured query for a “restaurant reservation” domain includes parameters such as ⁇ Cuisine ⁇ , ⁇ Time ⁇ , ⁇ Date ⁇ , ⁇ Party Size ⁇ , and the like.
  • the user's utterance contains insufficient information to complete the structured query associated with the domain. Therefore, other necessary parameters such as ⁇ Party Size ⁇ and ⁇ Date ⁇ are not specified in the structured query based on the information currently available.
  • natural language processing module 732 populates some parameters of the structured query with received contextual information. For example, in some examples, if the user requested a sushi restaurant “near me,” natural language processing module 732 populates a ⁇ location ⁇ parameter in the structured query with GPS coordinates from the user device.
  • natural language processing module 732 identifies multiple candidate actionable intents for each candidate text representation received from STT processing module 730 . Further, in some examples, a respective structured query (partial or complete) is generated for each identified candidate actionable intent. Natural language processing module 732 determines an intent confidence score for each candidate actionable intent and ranks the candidate actionable intents based on the intent confidence scores. In some examples, natural language processing module 732 passes the generated structured query (or queries), including any completed parameters, to task flow processing module 736 (“task flow processor”). In some examples, the structured query (or queries) for the m-best (e.g., m highest ranked) candidate actionable intents are provided to task flow processing module 736 , where m is a predetermined integer greater than zero. In some examples, the structured query (or queries) for the m-best candidate actionable intents are provided to task flow processing module 736 with the corresponding candidate text representation(s).
  • Task flow processing module 736 is configured to receive the structured query (or queries) from natural language processing module 732 , complete the structured query, if necessary, and perform the actions required to “complete” the user's ultimate request.
  • the various procedures necessary to complete these tasks are provided in task flow models 754 .
  • task flow models 754 include procedures for obtaining additional information from the user and task flows for performing actions associated with the actionable intent.
  • task flow processing module 736 needs to initiate additional dialogue with the user in order to obtain additional information, and/or disambiguate potentially ambiguous utterances.
  • task flow processing module 736 invokes dialogue flow processing module 734 to engage in a dialogue with the user.
  • dialogue flow processing module 734 determines how (and/or when) to ask the user for the additional information and receives and processes the user responses. The questions are provided to and answers are received from the users through I/O processing module 728 .
  • dialogue flow processing module 734 presents dialogue output to the user via audio and/or visual output, and receives input from the user via spoken or physical (e.g., clicking) responses.
  • dialogue flow processing module 734 when task flow processing module 736 invokes dialogue flow processing module 734 to determine the “party size” and “date” information for the structured query associated with the domain “restaurant reservation,” dialogue flow processing module 734 generates questions such as “For how many people?” and “On which day?” to pass to the user. Once answers are received from the user, dialogue flow processing module 734 then populates the structured query with the missing information, or pass the information to task flow processing module 736 to complete the missing information from the structured query.
  • task flow processing module 736 proceeds to perform the ultimate task associated with the actionable intent. Accordingly, task flow processing module 736 executes the steps and instructions in the task flow model according to the specific parameters contained in the structured query.
  • the task flow model for the actionable intent of “restaurant reservation” includes steps and instructions for contacting a restaurant and actually requesting a reservation for a particular party size at a particular time.
  • task flow processing module 736 performs the steps of: (1) logging onto a server of the ABC Café or a restaurant reservation system such as OPENTABLE®, (2) entering the date, time, and party size information in a form on the website, (3) submitting the form, and (4) making a calendar entry for the reservation in the user's calendar.
  • task flow processing module 736 performs the steps of: (1) logging onto a server of the ABC Café or a restaurant reservation system such as OPENTABLE®, (2) entering the date, time, and party size information in a form on the website, (3) submitting the form, and (4) making a calendar entry for the reservation in the user's calendar.
  • task flow processing module 736 employs the assistance of service processing module 738 (“service processing module”) to complete a task requested in the user input or to provide an informational answer requested in the user input.
  • service processing module 738 acts on behalf of task flow processing module 736 to make a phone call, set a calendar entry, invoke a map search, invoke or interact with other user applications installed on the user device, and invoke or interact with third-party services (e.g., a restaurant reservation portal, a social networking website, a banking portal, etc.).
  • the protocols and application programming interfaces (API) required by each service are specified by a respective service model among service models 756 .
  • Service processing module 738 accesses the appropriate service model for a service and generates requests for the service in accordance with the protocols and APIs required by the service according to the service model.
  • service processing module 738 establishes a network connection with the online reservation service using the web address stored in the service model, and sends the necessary parameters of the reservation (e.g., time, date, party size) to the online reservation interface in a format according to the API of the online reservation service.
  • natural language processing module 732 , dialogue flow processing module 734 , and task flow processing module 736 are used collectively and iteratively to infer and define the user's intent, obtain information to further clarify and refine the user intent, and finally generate a response (i.e., an output to the user, or the completion of a task) to fulfill the user's intent.
  • the generated response is a dialogue response to the speech input that at least partially fulfills the user's intent. Further, in some examples, the generated response is output as a speech output.
  • the generated response is sent to speech synthesis processing module 740 (e.g., speech synthesizer) where it can be processed to synthesize the dialogue response in speech form.
  • the generated response is data content relevant to satisfying a user request in the speech input.
  • task flow processing module 736 receives multiple structured queries from natural language processing module 732 , task flow processing module 736 initially processes the first structured query of the received structured queries to attempt to complete the first structured query and/or execute one or more tasks or actions represented by the first structured query.
  • the first structured query corresponds to the highest ranked actionable intent.
  • the first structured query is selected from the received structured queries based on a combination of the corresponding speech recognition confidence scores and the corresponding intent confidence scores.
  • task flow processing module 736 can proceed to select and process a second structured query of the received structured queries that corresponds to a lower ranked actionable intent.
  • the second structured query is selected, for example, based on the speech recognition confidence score of the corresponding candidate text representation, the intent confidence score of the corresponding candidate actionable intent, a missing necessary parameter in the first structured query, or any combination thereof.
  • Speech synthesis processing module 740 is configured to synthesize speech outputs for presentation to the user. Speech synthesis processing module 740 synthesizes speech outputs based on text provided by the digital assistant. For example, the generated dialogue response is in the form of a text string. Speech synthesis processing module 740 converts the text string to an audible speech output. Speech synthesis processing module 740 uses any appropriate speech synthesis technique in order to generate speech outputs from text, including, but not limited, to concatenative synthesis, unit selection synthesis, diphone synthesis, domain-specific synthesis, formant synthesis, articulatory synthesis, hidden Markov model (HMM) based synthesis, and sinewave synthesis.
  • HMM hidden Markov model
  • speech synthesis processing module 740 is configured to synthesize individual words based on phonemic strings corresponding to the words. For example, a phonemic string is associated with a word in the generated dialogue response. The phonemic string is stored in metadata associated with the word. Speech synthesis processing module 740 is configured to directly process the phonemic string in the metadata to synthesize the word in speech form.
  • speech synthesis is performed on a remote device (e.g., the server system 108 ), and the synthesized speech is sent to the user device for output to the user. For example, this can occur in some implementations where outputs for a digital assistant are generated at a server system. And because server systems generally have more processing power or resources than a user device, it is possible to obtain higher quality speech outputs than would be practical with client-side synthesis.
  • FIGS. 8 A- 8 AF exemplary user interfaces for providing suggestions on an electronic device (e.g., device 104 , device 122 , device 200 , device 600 , or device 700 ), in accordance with some embodiments.
  • the user interfaces in these figures are used to illustrate the processes described below, including the processes in FIGS. 9 A- 9 B .
  • FIG. 8 A illustrates an electronic device 800 (e.g., device 104 , device 122 , device 200 , device 600 , or device 700 ).
  • electronic device 800 is a smartphone.
  • electronic device 800 can be a different type of electronic device, such as a wearable device (e.g., a smartwatch).
  • electronic device 800 has a display 801 , one or more input devices (e.g., touchscreen of display 801 , a button, a microphone), and a wireless communication radio.
  • the electronic device 800 includes a plurality of cameras.
  • the electronic device includes only one camera.
  • the electronic device includes one or more biometric sensors (e.g., biometric sensor 803 ) which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • biometric sensors e.g., biometric sensor 803
  • the electronic device 800 displays, on display 801 , a lock screen interface, such as the lock screen interface 804 , while the electronic device is in a locked state.
  • the lock screen interface 804 includes a suggestion affordance 806 and a notification 808 .
  • the suggestion affordance 806 is associated with an application named “Coffee” and the notification 808 is a message notification associated with a messaging application indicating that the electronic device has received a new message from a contact stored on the electronic device (“John Appleseed”).
  • an application e.g., third-party application
  • An application may specify the manner in which a suggestion affordance is displayed.
  • An application may specify the color of a suggestion affordance, for instance.
  • the electronic device 800 while in the locked state, operates in a secured manner.
  • the electronic device 800 does not display contents of a task suggestion associated with the suggestion affordance 806 or a message associated with the notification 808 .
  • the locked state further corresponds to restrictions on access to other data (including other applications) and/or limitations on permissible inputs.
  • the suggestion affordance 806 is displayed in a first manner and the notification 808 is displayed in a second manner.
  • suggestion affordance 806 is displayed using a first color and notification 808 is displayed using a second color different than the first color.
  • the suggestion affordance 806 may be displayed using a first shape and the notification 808 may be displayed using a second shape different than the first shape.
  • the electronic device while operating in the locked state, the electronic device authenticates a user of the electronic device.
  • a user may be authenticated, for instance, biometrically using biometric sensor 803 (e.g., facial recognition, fingerprint recognition) or in response to entry of a valid passcode (e.g., password, numerical passcode).
  • the electronic device 800 in response to authenticating the user, transitions to an unlocked state and displays lock screen interface 810 .
  • the electronic device 800 displays an animation indicating that the electronic device 800 is transitioning from the locked state to the unlocked state (e.g., lock indicator 805 transitions from locked to unlocked state).
  • the electronic device 800 while operating in the unlocked state, the electronic device 800 operates in an unsecured manner (e.g., secured data is accessible to the authenticated user).
  • the electronic device 800 displays contents of the task suggestion associated with the suggestion affordance 806 and the message associated with the notification 808 .
  • contents of the task suggestion associated with suggestion affordance include task indicator 812 indicating a task associated with the task suggestion and one or more parameters associated with the task.
  • the electronic device 800 While displaying the lock screen interface 810 , the electronic device 800 detects selection (e.g., activation) of suggestion affordance 806 . For example, as shown in FIG. 8 C , the selection is a tap gesture 816 on the suggestion affordance 806 . As will be described in more detail below, in response to detecting tap gesture 816 , the electronic device 800 selectively performs the task associated with the suggestion affordance 806 . If the task is a task of a first type (e.g., a background task), the electronic device 800 performs the task without requiring further user input. The electronic device 800 further may cease display of the suggestion affordance 806 , as illustrated in FIG. 8 H .
  • a first type e.g., a background task
  • Confirmation interface 820 includes task content 822 , confirmation affordance 824 , and cancel affordance 826 .
  • task content 822 includes one or more of application indicator 828 , application icon 830 , and task indicator 832 .
  • application indicator 828 indicates the application associated with the task.
  • Application indicator 828 includes a name of the application (e.g., “Coffee”) and/or an icon associated with the application.
  • Application icon 830 includes an icon (or other image) associated with the task and/or the application associated with the task.
  • Task indicator 832 indicates the task corresponding to the suggestion affordance (“Order”) and/or one or more parameters associated with the task (small, latte, Homestead Rd. Cupertino CA).
  • the electronic device 800 in response to selection of the cancel affordance 826 , the electronic device 800 ceases display of the confirmation interface 820 .
  • the application indicator 828 is implemented as an application affordance, and in response to selection of the application indicator 828 , the electronic device 800 opens the application associated with the task (e.g., “Coffee”).
  • the application icon 830 is implemented as an application affordance, and in response to selection of the application icon 830 , the electronic device 800 opens the application associated with the task.
  • opening an application includes preloading the application with one or more parameters.
  • suggestion affordance 806 is associated with a task for placing an order using a coffee application, and parameters associated with the task include a size of the coffee (e.g., small), a type of the coffee (e.g., latte), and a location for pickup of the order (Homestead Rd. location in Cupertino, CA).
  • opening the application in this manner includes inserting one or more parameters of the task on behalf of the user.
  • opening the application by way of selecting application indicator 828 or application icon 830 may cause the electronic device to open coffee application and present an interface (e.g., shopping cart interface) by which the user can confirm an order of a small latte at the Homestead Rd. location.
  • an interface e.g., shopping cart interface
  • parameters are preloaded such that the electronic device performs the task in response to an input confirming intent to perform the task. In this manner, the number of inputs required for a user to perform a particular task using an application may be reduced.
  • an application may specify the manner in which a confirmation affordance is displayed.
  • An application may specify the color of a confirmation affordance, for instance.
  • the electronic device 800 detects selection of the confirmation affordance 824 .
  • the selection is a tap gesture 836 on the confirmation affordance 824 .
  • the electronic device 800 performs the task.
  • the electronic device 800 optionally, displays a progress indicator 840 , indicating that the task is being performed.
  • display of the progress indicator 840 replaces display of the confirmation affordance 824 .
  • the electronic device 800 provides an output indicating whether the task was performed successfully.
  • the task is performed successfully, and as a result, the electronic device 800 displays a success indicator 842 , indicating that the task was successfully performed.
  • display of the success indicator 842 replaces display of the progress indicator 840 .
  • a predetermined amount of time after the task has been completed the electronic device replaces display of the confirmation interface 820 with lock screen interface 810 . As illustrated, because the task associated with suggestion affordance 806 was performed, suggestion affordance 806 is not included in lock screen interface 810 in FIG. 8 H .
  • the failure interface 844 includes a retry affordance 846 , a cancel affordance 848 , and application affordance 850 .
  • the failure interface further includes content 852 .
  • the electronic device 800 in response to selection of the retry affordance 846 , the electronic device 800 performs the task again.
  • the electronic device 800 ceases display of the failure interface 844 .
  • the electronic device 800 in response to selection of the application affordance 850 , the electronic device 800 opens an application associated with the task.
  • Content 852 may include information directed to the task, such as one or more parameters used to perform the task.
  • content 852 further specifies whether the task was performed successfully.
  • Content 852 may, for example, indicate that the electronic device failed to perform the task successfully (e.g., “There was a problem. Please try again.”).
  • the selection of suggestion affordance 806 is a swipe gesture 854 on the suggestion affordance 806 .
  • the electronic device 800 displaces (e.g., slides) the suggestion affordance 806 in a leftward direction to display (e.g., reveal) view affordance 856 and clear affordance 858 as shown in FIG. 8 K .
  • the electronic device 800 displays a confirmation interface, such as the confirmation interface 820 ( FIG. 8 D ).
  • the electronic device 800 ceases to display the suggestion affordance 806 .
  • the selection of suggestion affordance 806 is a swipe gesture 860 on the suggestion affordance 806 .
  • the electronic device 800 displaces (e.g., slides) the suggestion affordance 806 in a rightward direction to display (e.g., reveal) open affordance 862 as shown in FIG. 8 M .
  • the electronic device opens an application associated with the task of the suggestion affordance (e.g., “Coffee”).
  • the electronic device 800 displays, on display 801 , a search screen interface, such as the search screen interface 866 .
  • the search screen interface 866 includes suggested applications 868 and suggestion affordances 870 , 872 , 874 .
  • the suggestion affordance 870 is associated with a messaging application
  • suggestion affordance 872 is associated with a telephone application
  • suggestion affordance 874 is associated with a media playback application.
  • suggestion affordances optionally include a glyph (e.g., glyph 876 , 878 , 880 ) indicating a category of a task associated with the suggestion affordance. Categories specified in this manner may include “monetary,” “messages,” “phone,” “video,” and “media” in some examples.
  • Suggestion affordances e.g., suggestion affordance 806 of FIG. 8 A
  • suggestion affordance 870 is associated with a task for sending a text message and accordingly includes a messaging glyph 876 indicating that the task is associated with text messaging.
  • suggestion affordance 872 is associated with a task for initiating a phone call and accordingly includes a telephone glyph 878 indicating that the task is associated with telephone functionality.
  • suggestion affordance 874 is associated with a task for playback of a video and accordingly includes a playback glyph 880 indicating that the task is associated with media playback. It will be appreciated that any number of types of glyphs may be used, corresponding to any number of respective task categories.
  • FIGS. 8 N- 8 P illustrate various manners in which suggested applications and suggestion affordances may be displayed in a search screen interface, such as the search screen interface.
  • suggested applications and suggestion affordances may be displayed in respective portions of a search screen interface (e.g., portions 882 , 884 ).
  • suggested applications and suggestion affordances may be displayed in a same portion of a search screen interface (e.g., portion 886 ).
  • suggested applications and each suggestion affordance may be displayed in a respective portion of a search screen interface (e.g., portion 888 , 890 , 892 , 894 ).
  • the electronic device 800 while displaying the search screen interface 866 , the electronic device 800 detects selection of the suggestion affordance, such as the suggestion affordance 870 .
  • the task associated with suggestion affordance 870 is a task of a predetermined type (e.g., background task)
  • the electronic device performs (e.g., automatically performs) the task associated with the suggestion affordance 870 in response to selection of the affordance 870 with an input of a first type (e.g., tap gesture).
  • a first type e.g., tap gesture
  • the electronic device 800 displays a confirmation interface requesting confirmation of the task from a user.
  • the selection is a touch gesture 896 on the confirmation affordance 824 .
  • touch gesture 896 is a touch input satisfying a threshold intensity and/or threshold duration such that the touch gesture 896 may be differentiated from a tap gesture.
  • the electronic device 800 displays confirmation interface 898 .
  • Confirmation interface 898 includes confirmation affordance 802 A, cancel affordance 804 A, application indicator 806 A, and content 808 A.
  • selection of the cancel affordance 804 A causes the electronic device 800 to cease display of the confirmation interface 898 and/or forgo performing the task associated with suggestion affordance 870 .
  • application indicator 806 A indicates the application associated with the task.
  • Application indicator 806 A may include a name of the application (e.g., “Messages”) and/or an icon associated with the application.
  • Content 808 A may include information directed to the task, such as one or more parameters used to perform the task. For instance, content 808 A may specify that a recipient of a text message is a contact “Mom” and the text of the text message is “Good Morning”. In some examples, content 808 A may be implemented as an affordance.
  • the electronic device 800 While displaying the confirmation interface 898 , the electronic device 800 detects selection of the confirmation affordance 802 A. For example, as shown in FIG. 8 S , the selection is a tap gesture 810 A on the confirmation affordance 824 . In response to detecting the tap gesture 810 A, the electronic device 800 performs a task associated with suggestion affordance 870 . As shown in FIG. 8 T , in some examples, while performing the task, the electronic device 800 , optionally, displays a progress indicator 812 A, indicating that the task is being performed. In some examples, display of the progress indicator 812 A replaces display of the confirmation affordance 802 A and cancel affordance 804 A.
  • the electronic device 800 provides an output indicating whether the task was performed successfully.
  • the task is performed successfully, and as a result, the electronic device 800 displays a success indicator 814 A, indicating that the task was successfully performed (e.g., text message to “Mom” was successfully sent).
  • display of the success indicator 814 A replaces display of the progress indicator 812 A.
  • a predetermined amount of time after the task has been completed the electronic device replaces display of the confirmation interface 898 with search screen interface 866 . As illustrated in FIG. 8 V , because the task associated with suggestion affordance 870 was performed, suggestion affordance 870 is not included in search screen interface 866 .
  • the electronic device 800 while displaying the confirmation interface 898 , the electronic device 800 detects selection of content 808 A. For example, as shown in FIG. 8 W, the selection is a tap gesture 816 A on the content 808 A. In response to detecting the tap gesture 816 A, the electronic device 800 opens the application associated with the suggestion affordance 870 as shown in FIG. 8 X .
  • opening an application in this manner includes preloading the application with one or more parameters associated with the task.
  • a user may perform a task within an application using a reduced number of inputs.
  • the electronic device 800 opens a messaging application and preloads the messaging application with parameters specified by the suggestion affordance 870 .
  • the messaging application may be directed to a messaging interface 817 A for providing messages to the recipient “Mom”, and an input string “Good Morning” may be inserted into a message composition field 818 A of the messaging application.
  • the electronic device 800 While displaying the messaging interface 817 A, the electronic device 800 detects selection of a send affordance 820 A. For example, as shown in FIG. 8 Y , the selection is a tap gesture 822 A on the send affordance 820 A. In FIG. 8 Z , in response to detecting the tap gesture 822 A, the electronic device 800 sends the preloaded message (e.g., “Good Morning”) to the recipient “Mom”.
  • the preloaded message e.g., “Good Morning”
  • the electronic device 800 sends the preloaded message (e.g., “Good Morning”) to the recipient “Mom”.
  • the preloaded message e.g., “Good Morning”
  • the user sent a text message without having to select a recipient or input a message for the recipient.
  • an application may be opened without preloaded parameters.
  • the electronic device 800 displays, on display 801 , a search screen interface, such as the search screen interface 826 A.
  • the search screen interface 826 A includes suggested applications 282 A and suggestion affordances 830 A, 832 A.
  • the suggestion affordance 830 A is associated with a notes application and suggestion affordance 832 A is associated with a video telephony application.
  • suggestion affordance 830 A is associated with a task for opening the notes application.
  • tasks corresponding to the notes application may not correspond to a task category, and accordingly the suggestion affordance 830 A does not include a glyph.
  • Suggestion affordance 832 A is associated with a task for initiating a video call (e.g., Skype call) and accordingly includes a video glyph 836 A indicating that the task is associated with video call functionality.
  • the electronic device 800 While displaying the search screen interface 826 A, the electronic device 800 detects selection of the suggestion affordance 834 A. For example, as shown in FIG. 8 AA , the selection is a tap gesture 834 A on the suggestion affordance 834 A. In FIG. 8 AB , in response to detecting the tap gesture 834 A, the electronic device 800 opens the notes application associated with the suggestion affordance 830 A.
  • an electronic device displays interfaces, as described herein, depends on a type of the electronic device.
  • electronic device 800 may be implemented as a device with a relatively small display such that interfaces, such as lock screen interface 804 or search screen interface 866 , may not be practical for display. Accordingly, in some examples, electronic device 800 may display alternative interfaces to those previously described.
  • the electronic device 800 displays, on display 801 , home screen interface 850 A.
  • Home screen interface 850 A includes a suggestion affordance 852 A and a notification 854 A.
  • the suggestion affordance 852 A is associated with an application named “Coffee”
  • the notification 854 A is a calendar notification associated with a calendar application indicating that the user has an upcoming event (“Meeting”).
  • home screen interface 850 A is shown as including suggestion affordance 852 A, in some examples, home screen interface 850 A includes multiple suggestion affordances 852 A.
  • a swipe gesture e.g., upward swipe gesture, downward swipe gesture
  • the electronic device can display (e.g., reveal) one or more additional suggestion affordances.
  • the electronic device 800 While displaying home screen interface 850 A, the electronic device 800 detects selection of suggestion affordance 852 A. For example, as shown in FIG. 8 AD , the selection is a tap gesture 858 A on the suggestion affordance 852 A. As will be described in more detail below, in response to detecting tap gesture 858 A, the electronic device 800 displays a confirmation interface, such as confirmation interface 820 .
  • Confirmation interface 820 includes application indicator 861 A, task indicator 862 A, confirmation affordance 864 A, and cancel affordance 866 A.
  • application indicator 861 A indicates the application associated with the task.
  • Application indicator 861 A may include a name of the application (e.g., “Coffee”) and/or an icon associated with the application.
  • Task indicator 862 A indicates a task associated with the application and one or more parameters associated with the task (small, latte, oat milk).
  • the electronic device 800 in response to selection of the cancel affordance 866 A, the electronic device 800 ceases display of the confirmation interface 860 A. In some examples, while displaying the confirmation interface 860 A, the electronic device 800 detects selection of the confirmation affordance 864 A. For example, as shown in FIG. 8 AE , the selection is a tap gesture 868 A on the confirmation affordance 864 A. In response to detecting tap gesture 868 A, the electronic device 800 selectively performs the task. If the task is a task of a first type, the electronic device 800 performs the task without further user input, and optionally, replaces display of the confirmation interface 860 A with home screen interface 850 A as shown in FIG. 8 AF . Because the task associated with suggestion affordance 852 A was performed, suggestion interface 852 A is not displayed in home screen interface 850 A. If the task is a task of a second type, the electronic device 800 may request user confirmation of the task prior to performing the task, as described.
  • FIGS. 9 A- 9 B is a flow diagram illustrating method 900 for providing suggestions in accordance with some embodiments.
  • Method 900 is performed at a device (e.g., device 104 , device 122 , device 200 , device 600 , device 700 , device 800 ) with a display, one or more input devices (e.g., a touchscreen, a mic, a camera), and a wireless communication radio (e.g., a Bluetooth connection, WiFi connection, a mobile broadband connection such as a 4G LTE connection).
  • the display is a touch-sensitive display.
  • the display is not a touch sensitive display.
  • the electronic device includes a plurality of cameras. In some embodiments, the electronic device includes only one camera.
  • the device includes one or more biometric sensors which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • a camera such as an infrared camera, a thermographic camera, or a combination thereof.
  • displaying a user interface including a suggestion affordance and selectively requiring confirmation to perform a task in response to selection of the suggestion affordance provides a user with an easily recognizable and intuitive approach for performing tasks on the electronic device, thereby reducing the number of user inputs otherwise needed to perform such tasks.
  • displaying user interfaces in this manner enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • the electronic device determines a first set of candidate tasks ( 902 ) and identifies a task from the first set of candidate tasks ( 904 ). In some examples, the task is identified based on a determination that a context of the electronic device satisfies task suggestion criteria.
  • the electronic device determines, based on a first context of the electronic device (e.g., context data describing previous use of the electronic device), whether context criteria (e.g., task suggestion criteria) has been satisfied. In some examples, the electronic device determines whether task suggestions satisfy a confidence threshold for display of the suggestions. In some examples, in accordance with a determination that the context criteria have been satisfied (e.g., one or more task suggestions meet the confidence threshold), the electronic device determines a first set of candidate tasks. In some examples, the electronic device determines, based on a second context of the electronic device, whether heuristic criteria have been satisfied.
  • a first context of the electronic device e.g., context data describing previous use of the electronic device
  • context criteria e.g., task suggestion criteria
  • the electronic device determines whether task suggestions satisfy a confidence threshold for display of the suggestions. In some examples, in accordance with a determination that the context criteria have been satisfied (e.g., one or more task suggestions meet the confidence threshold), the electronic device determines a
  • the second context of the electronic device is indicative of previous use of the device and/or context data associated with the user (e.g., contacts, calendar, location).
  • determining whether the heuristic criteria have been met includes determining whether a set of conditions for a heuristic task suggestion have been met such that the heuristic task suggestion is provided in lieu of a suggested task.
  • the electronic device determines whether the context criteria have been satisfied and then determines whether the heuristic criteria have been satisfied.
  • the electronic device determines whether the heuristic criteria have been satisfied and then determines whether the context criteria have been satisfied.
  • the electronic device concurrently determines whether the context criteria and the heuristic criteria have been satisfied.
  • the electronic device determines a second set of candidate tasks different from the first set of candidate tasks and identifies a task from the second set of candidate tasks. In some examples, in accordance with a determination that the heuristic criteria have not been satisfied and the context criteria have been satisfied, the electronic device identifies a task from the first set of candidate tasks. In some examples, in accordance with a determination that the heuristic criteria have not been satisfied and the context criteria have not been satisfied, the electronic device forgoes determining the first set of candidate tasks and forgoes determining the second set of candidate tasks.
  • Providing heuristic task suggestions in this manner allows the electronic device to provide task suggestions based on user-specific context data in addition to context data of the electronic device, for instance, according to respective sets of conditions as set forth below. This allows the electronic device to provide a user with an salient task suggestions for performing tasks on the electronic device, thereby reducing the number of user inputs otherwise needed to perform such tasks.
  • providing heuristic task suggestions in this manner enhances the operability of the device and makes use of the electronic device more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • the electronic device determines whether the task is a task of a first type ( 906 ). In some examples, determining whether the task is a task of a first type includes determining whether the task is a background task (e.g., a task that may be performed without user confirmation and/or additional user input).
  • determining whether the task is a task of a first type includes determining whether one or more parameters associated with the task are valid.
  • parameters of a task are valid when each parameter required for a task is assigned a value within an allowable range or set of values for the parameter and, optionally, each optional parameter for a task has a value within an allowable range or set for the parameter, or is not assigned a value.
  • the electronic device displays, on a display of the electronic device, a user interface ( 804 , 810 , 866 , 826 A, 850 A) including a suggestion affordance ( 806 , 870 , 872 , 874 , 834 A, 854 A) associated with a task ( 908 ).
  • the user interface is a lock screen interface ( 804 , 810 ).
  • the user interface is a search screen interface ( 866 , 826 A).
  • the user interface is a digital assistant interface for dialog between a user and a digital assistant.
  • the suggestion affordance is an affordance that corresponds to a task suggestion provided by the electronic device, and in some instances, a digital assistant of the electronic device.
  • the suggestion is task-specific and/or parameter-specific.
  • task suggestions are provided based on context of the electronic device (e.g., location, WiFi connectivity, WiFi network identifier (e.g., SSID), usage history, time/day, headphones connectivity, etc.).
  • task suggestions are visually distinguishable from other notifications displayed by the electronic device in the user interface.
  • Providing task suggestions based on context of the electronic device allows the electronic device to provide salient task suggestions according to a user's previous usage of the electronic device and/or a current state of the electronic device. As a result, the number of inputs and amount of time needed to perform tasks on the electronic device are reduced, accelerating user interaction with the electronic device. This in turn reduces power usage and improves battery life of the device.
  • displaying, on the display, a user interface including a suggestion affordance associated with a task includes: in accordance with the task being a task of the first type, displaying the suggestion affordance with a glyph, and in accordance with the task being a task of the second type, displaying the suggestion affordance without a glyph.
  • the glyph is indicative of a type of the task (e.g., background vs. non-background, whether task requires user confirmation).
  • the glyph is an arrow indicating the task is requiring user confirmation.
  • the glyph is a dollar sign (or other currency symbol) indicating that the task is a transaction.
  • the glyph is circumscribed by a circle.
  • displaying, on the display, a user interface including a suggestion affordance associated with a task includes, in accordance with a determination that the task corresponds to a first set of tasks, displaying the suggestion affordance with a glyph of a first type ( 910 ).
  • the set of tasks is a category of tasks. Categories of tasks include message tasks, telephony tasks, video telephony tasks, and media tasks in some examples.
  • each set of tasks corresponds to one or more respective first party applications.
  • each set of tasks additionally includes tasks corresponding to one or more third party applications.
  • a suggestion affordance corresponding to the task includes a glyph identifying the category ( 876 , 878 , 880 , 836 A).
  • displaying, on the display, a user interface including a suggestion affordance associated with a task further includes, in accordance with a determination that the task corresponds to a second set of tasks different than the first set of tasks, displaying the suggestion affordance with a glyph of a second type different than the first type ( 912 ).
  • displaying, on the display, a user interface including a suggestion affordance associated with a task further includes, in accordance a determination that the task does not correspond to the first set of tasks and does not correspond to the second set of tasks, displaying the suggestion affordance ( 830 A) without a glyph. In some examples, if the task does not correspond to one or more predetermined categories of tasks, the suggestion affordance corresponding to the task is displayed without a glyph ( 914 ).
  • the user interface ( 804 , 810 ) includes a notification ( 808 ).
  • the notification may be a notification for an event, such as receipt of a text message.
  • the suggestion affordance ( 806 ) is displayed in a first manner and the notification ( 808 ) is displayed in a second manner different than the first manner.
  • the suggestion affordance and notification correspond to different colors, color schemes, and/or patterns.
  • the suggestion affordance and notification have different shapes and/or sizes.
  • Displaying notifications and suggestion affordances in different manners, as described herein, allows a user to easily distinguish notifications and suggestion affordances on a display of the electronic device, thereby reducing the amount of time needed to perform tasks. Reducing time in this manner enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • displaying a user interface includes, in accordance with a determination that the electronic device is in a locked state, displaying the suggestion affordance in a first visual state. In some examples, if the device is locked, the electronic device displays a reduced amount of information corresponding to the suggestion affordance. In some examples, displaying a user interface further includes, in accordance with a determination that the electronic device is not in a locked state, displaying the suggestion affordance in a second visual state different than the first visual state. In some examples, if the device is unlocked, the electronic device displays content corresponding to the suggestion affordance. Content displayed in this manner includes but is not limited to a name and/or icon of an application associated with the suggestion affordance, one or more parameters associated with task of the suggestion affordance, and, optionally a glyph indicating a category of the task of the suggestion affordance.
  • the electronic device detects, via one or more input devices, a first user input ( 816 , 834 A, 858 A) corresponding to a selection of the suggestion affordance ( 916 ).
  • the suggestion affordance is selected using a touch input, a gesture, or a combination thereof.
  • the suggestion affordance is selected using a voice input.
  • the touch input is an input of a first type, such as a press of a relatively short duration or low intensity.
  • the electronic device in response to detecting the first user input ( 918 ), performs the task ( 920 ). In some examples, performing the task includes causing the task to be performed by another electronic device. In some examples, the electronic device is a device of a first type (e.g., smart watch) and causes the task to be performed on a device of a second type (e.g., mobile phone).
  • a first type e.g., smart watch
  • a second type e.g., mobile phone
  • the electronic device in accordance with a determination that the task is a task of a second type different than the first type, displays a confirmation interface ( 820 , 898 , 860 A) including a confirmation affordance ( 922 ).
  • a task of the second type is a task that requires user confirmation and/or additional information from the user prior to performance of the task, such as a task corresponding to a transaction.
  • a task of the second type is a task to be performed by a device of a particular type, such as a smart watch.
  • the confirmation interface is displayed concurrently with the user interface.
  • the confirmation interface may, for instance, be overlaid on the user interface.
  • the confirmation interface is displayed over a first portion of the user interface and a second portion of the user interface is visually obscured (e.g., darkened, blurred).
  • Selectively requiring confirmation to perform a task in response to selection of a suggestion affordance allows the electronic device to quickly perform tasks of a first type and confirm user intent prior to performing tasks of a second type.
  • the user is provided with an intuitive and reliable approach for quickly and reliably performing tasks on the electronic device, thereby reducing the number of user inputs otherwise needed to perform such tasks and accelerating task performance.
  • Such benefits in turn reduce the amount of time needed to perform tasks and make the usage of the electronic device more efficient, which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • the electronic device while displaying the confirmation interface ( 926 ), the electronic device detects a second user input ( 836 , 810 A, 868 A) corresponding to a selection of the confirmation affordance ( 824 , 802 A, 864 A) ( 928 ).
  • the confirmation affordance is selected using a touch input, a gesture, or a combination thereof.
  • the confirmation affordance is selected using a voice input.
  • the electronic device in response to detecting the second user input, the electronic device performs the task ( 930 ). In some examples, while performing the task, the electronic device displays a first progress indicator ( 840 , 812 A) to indicate that the electronic device is performing the task.
  • the electronic device displays a second progress indicator ( 842 , 814 A) to indicate that the task was successfully performed.
  • the electronic device displays an interface including one or more visual objects specified by the application (e.g., a message or image stating “Thank you for your order”).
  • the electronic device provides a natural-language output to the user indicating the task was not performed successfully (e.g., “There was a problem. Try again,” and, optionally, displays an affordance ( 846 ) by which the user can initiate an additional attempt at performance of the task.
  • the confirmation interface includes an application affordance ( 828 , 850 ).
  • the application affordance is an affordance that indicates (e.g., identifies) an application and/or task associated with the suggestion affordance.
  • the application affordance is any portion of the confirmation interface other than the confirmation affordance and/or cancel affordance.
  • the electronic device detects a third user input corresponding to a selection of the application affordance ( 932 ).
  • the application affordance is selected using a touch input, a gesture, or a combination thereof.
  • the application affordance is selected using a voice input.
  • the electronic device in response to detecting the third user input, executes (e.g., launches, initiates) an application associated with the task ( 934 ).
  • the user selects a displayed icon and/or name of an application to launch the application corresponding to the task of the selection affordance.
  • the application is, optionally, preloaded with one or more parameters (e.g., subject and/or body of an email).
  • the suggestion affordance includes a visual indication of a parameter affecting performance of the task.
  • the suggestion affordance corresponds to a task to be performed using one or more specified parameters (e.g., order particular coffee size and type using a Starbucks app, send text with a specific message).
  • executing the application associated with the task includes preloading the application with the parameter.
  • the application is executed such that parameters of the task are entered on behalf of the user (e.g., order already in cart and user need only indicate intent to order, message inserted into message composition field and user need only indicate intent to send).
  • the confirmation interface includes a cancel affordance.
  • the electronic device detects a fourth user input corresponding to a selection of the cancel affordance.
  • the cancel affordance is selected using a touch input, a gesture, or a combination thereof.
  • the cancel affordance is selected using a voice input.
  • the electronic device in response to detecting the fourth user input, the electronic device forgoes performing the task. In some examples, the electronic device further ceases to display the confirmation interface in response to detecting the fourth user input.
  • the first user input is an input of a first type.
  • the electronic device while displaying the user interface, detects a user input of a second type corresponding to a selection of the suggestion affordance.
  • the suggestion affordance is selected using a touch input, a gesture, or a combination thereof.
  • the suggestion affordance is selected using a voice input.
  • the touch input is an input of a second type, such as a press of a relatively long duration or high intensity.
  • the input of the second type is different than the input of the first type.
  • the electronic device in response to detecting the user input of the second type, displays the confirmation interface.
  • method 900 optionally includes one or more of the characteristics of the various methods described with reference to methods 1100 , 1300 , 1500 , 1700 , and 1900 .
  • the operations in the methods described above are, optionally, implemented by running one or more functional modules in an information processing apparatus such as general purpose processors (e.g., as described with respect to FIGS. 2 A, 4 , and 6 A ) or application specific chips. Further, the operations described above with reference to FIGS. 8 A- 8 AF are, optionally, implemented by components depicted in FIGS. 2 A- 2 B . For example, displaying operation 908 , detecting operation 916 , performing operation 920 , and displaying operation 922 are, optionally, implemented by event sorter 270 , event recognizer 280 , and event handler 290 . Event monitor 271 in event sorter 270 detects a contact on touch-sensitive surface 604 (FIG.
  • event dispatcher module 274 delivers the event information to application 236 - 1 ( FIG. 2 B ).
  • a respective event recognizer 280 of application 236 - 1 compares the event information to respective event definitions 286 , and determines whether a first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as selection of an object on a user interface.
  • event recognizer 280 activates an event handler 290 associated with the detection of the event or sub-event.
  • Event handler 290 optionally utilizes or calls data updater 276 or object updater 277 to update the application internal state 292 .
  • event handler 290 accesses a respective GUI updater 278 to update what is displayed by the application.
  • GUI updater 278 accesses a respective GUI updater 278 to update what is displayed by the application.
  • FIGS. 10 A- 10 AJ illustrate exemplary user interfaces for providing voice shortcuts on an electronic device (e.g., device 104 , device 122 , device 200 , device 600 , or device 700 ), in accordance with some embodiments.
  • the user interfaces in these figures are used to illustrate the processes described below, including the processes in FIGS. 11 A- 11 B .
  • user interfaces described with reference to FIGS. 10 A- 10 AJ may be employed such that a user can associate tasks with respective user-specific phrases. These phrases may in turn be used to cause the electronic device to perform the associated tasks.
  • FIG. 10 A illustrates an electronic device 1000 (e.g., device 104 , device 122 , device 200 , device 600 , or device 700 ).
  • electronic device 1000 is a smartphone.
  • electronic device 1000 can be a different type of electronic device, such as a wearable device (e.g., a smartwatch).
  • electronic device 1000 has a display 1001 , one or more input devices (e.g., touchscreen of display 1001 , a button, a microphone), and a wireless communication radio.
  • the electronic device 1000 includes a plurality of cameras.
  • the electronic device includes only one camera.
  • the electronic device includes one or more biometric sensors (e.g., biometric sensor 1003 ) which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • biometric sensors e.g., biometric sensor 1003
  • the electronic device 1000 displays, on display 1001 , a settings interface 1004 .
  • the settings interface 1004 includes a candidate task portion 1006 and additional tasks affordance 1014 .
  • the candidate task portion 1006 includes candidate task affordances 1008 , 1010 , and 1012 .
  • the electronic device 1000 displays a global tasks interface, such as the global task interface 1018 A, as described with respect to FIG. 10 S below.
  • the electronic device 1000 in response to selection of a candidate task affordance, displays a task-specific interface.
  • the task-specific interface is associated with a task of the candidate task affordance in some examples.
  • the electronic device 1000 detects selection of the candidate task affordance 1008 .
  • the selection is a tap gesture 1016 on the candidate task affordance 1008 .
  • the electronic device 1000 displays the task-specific interface 1018 .
  • the task-specific interface 1018 may be associated with a task of the candidate task affordance 1008 (e.g., View Side of House Camera).
  • selecting a candidate task affordance initiates a voice shortcut generation process for a task corresponding to the candidate task affordance. Accordingly, selection of the candidate task affordance 1008 may initiate a voice shortcut generation process for a task of the candidate task affordance 1008 .
  • Task-specific interface 1018 includes task icon 1020 , task indicator 1022 , task descriptor 1024 , application indicator 1026 , candidate phrase 1028 , and record affordance 1030 .
  • task icon 1020 includes an icon or image corresponding to the task.
  • task indicator 1022 indicates a name and/or type of the task.
  • task descriptor 1024 includes a description of the task and/or indicates that a user may record a command or phrase to be linked with the task.
  • application indicator 1026 identifies an application corresponding to the task. The application indicator 1026 may, for instance, include a name of the application and/or an icon associated with the application.
  • Candidate phrase 1028 includes a suggested phrase that the user may elect to associate with the task.
  • the electronic device 1000 While displaying the task-specific interface 1018 , the electronic device 1000 detects selection of the record affordance 1030 . As shown in FIG. 10 C , selection of the record affordance 1030 is a tap gesture 1032 . In response to selection of the record affordance 1030 , the electronic device displays (e.g., replaces display of the task-specific interface 1018 with), on the display 1001 , a record interface 1034 .
  • record interface 1034 includes cancel affordance 1036 , return affordance 1038 , preview 1042 , and stop affordance 1044 .
  • the electronic device in response to selection of the cancel affordance 1036 , the electronic device ceases display of the record interface 1034 and, optionally, terminates the voice shortcut generation process.
  • the electronic device in response to selection of the return affordance, displays (e.g., replaces display of record interface 1038 with) task-specific interface 1018 .
  • the electronic device 1000 while displaying the record interface 1034 , receives, using an audio input device (e.g., microphone) of the electronic device 1000 , a natural-language speech input from a user.
  • a natural-language speech input from a user.
  • the electronic device 1000 while receiving the natural-language speech input, provides a live preview of the natural-language speech input, such as the live preview 1042 .
  • the live preview 1042 is, in some examples, a visual waveform indicative of one or more auditory characteristics of the natural-language speech input.
  • the electronic device 1000 can, optionally, display a prompt to the user including a candidate phrase, such as the candidate phrase 1046 (e.g., “View Side of House Live Stream”).
  • a candidate phrase such as the candidate phrase 1046 (e.g., “View Side of House Live Stream”).
  • the candidate phrase 1046 is the same as the candidate phrase 1028 ( FIG. 10 D ). In other examples, the candidate phrase 1046 is different than the candidate phrase 1028 .
  • the electronic device 1000 while receiving the natural-language speech input, performs speech-to-text translation (e.g., natural-language speech processing) on the natural-language speech input to provide a candidate phrase 1048 .
  • speech-to-text translation e.g., natural-language speech processing
  • the candidate phrase 1048 may be iteratively and/or continuously updated while the natural-language speech input is received.
  • the electronic device 1000 ensures that the candidate phrase is different than one or more predetermined phrases (e.g., “call 911”). By way of example, the electronic device 1000 determines whether a similarity between the candidate phrase and each of the one or more predetermined phrases exceeds a similarity threshold. If the similarity threshold is not met, the electronic device 1000 will notify the user that the provided candidate phrase is not sufficient and/or not permitted. The electronic device 1000 further may request that the user provide another natural-language speech input.
  • one or more predetermined phrases e.g., “call 911”.
  • the electronic device 1000 While displaying the record interface 1034 , the electronic device 1000 detects selection of the stop affordance 1044 . As shown in FIG. 10 G , selection of the stop affordance 1044 is a tap gesture 1050 . In response to selection of the stop affordance 1044 , the electronic device 1000 displays (e.g., replaces display of the record interface 1034 with), on the display 1001 , a completion interface 1052 , as shown in FIG. 10 H .
  • the completion interface 1052 includes a completion affordance 1054 , cancel affordance 1056 , task icon 1058 , task indicator 1060 , application indicator 1062 , candidate phrase 1064 , and edit affordance 1066 .
  • the electronic device 1000 in response to selection of the cancel affordance 1056 , the electronic device 1000 ceases display of the completion interface 1052 and, optionally, terminates the voice shortcut generation process.
  • task icon 1058 includes an icon or image corresponding to the task.
  • task indicator 1060 indicates a name and/or type of the task.
  • application indicator 1062 identifies an application corresponding to the task. The application indicator may, for instance, include a name of the application and/or an icon associated with the application.
  • Candidate phrase 1028 is a suggested phrase that the user may elect to associate with the task.
  • the electronic device 1000 while displaying the completion interface 1052 , the electronic device 1000 detects selection of the edit affordance 1066 . As shown in FIG. 10 I , selection of the edit affordance 1066 is a tap gesture 1068 . In response to selection of the edit affordance 1068 , the electronic device 1000 displays (e.g., replaces display of the completion interface 1052 with), on the display 1001 , an edit interface 1070 as shown in FIG. 10 J .
  • the edit interface 1070 includes completion affordance 1072 , cancel affordance 1074 , task icon 1076 , task indicator 1078 , candidate phrase ranking 1080 and re-record affordance 1088 .
  • the electronic device 1000 in response to selection of the cancel affordance 1056 , the electronic device 1000 ceases display of the edit interface 1070 and, optionally, terminates the voice shortcut generation process.
  • task icon 1076 includes an icon or image corresponding to the task.
  • task indicator 1078 indicates a name and/or type of the task.
  • the electronic device 1000 provides a candidate phrase (e.g., candidate phrase 1048 ) based on a natural-language speech input provided by a user.
  • providing the candidate phrase in this manner includes generating a plurality of candidate phrases (e.g., candidate phrases 1082 , 1084 , 1086 ) and selecting a candidate phrase associated with a highest score (e.g., text representation confidence score).
  • candidate phrase ranking 1080 includes a plurality of candidate phrases generated by the electronic device 1000 prior to selecting the candidate phrase associated with the highest score.
  • candidate phrase ranking 1080 includes a set (e.g., 3 ) of top ranking candidate phrases which are, optionally, listed according to the respective score of each candidate phrase. As illustrated in FIG. 10 J , for instance, candidate phrase ranking 1080 includes candidate phrases 1082 , 1084 , and 1086 .
  • Candidate phrase 1082 may correspond to candidate phrase 1064 in some examples.
  • the user may select a new (or same) candidate phrase from candidate phrases 1082 , 1084 , 1086 of the candidate phrase ranking 1080 .
  • the electronic device 1000 detects selection of candidate phrase 1080 while displaying the edit interface 1070 .
  • Selection of the candidate phrase 1080 is a tap gesture 1090 .
  • the electronic device 1000 selects the candidate phrase 1080 as the new (or same) candidate phrase.
  • the electronic device selects the candidate phrase 1080 as the new (or same) candidate phrase in response to selection of both the candidate phrase 1080 and completion affordance 1072 .
  • the candidate phrase ranking may not include a phrase intended or preferred by a user. Accordingly, in some examples, in response to selection of the re-record affordance 1088 , the electronic device 1000 displays (e.g., replaces display of the edit interface 1070 with) a record interface, such as the record interface 1034 , to allow a user can provide a new natural-language speech input, as described.
  • a record interface such as the record interface 1034
  • the electronic device 1000 while displaying the completion interface 1052 , the electronic device 1000 detects selection of the completion affordance 1054 . As shown in FIG. 10 L , selection of the completion affordance 1054 is a tap gesture 1092 . In response to selection of the completion affordance 1054 , the electronic device 1000 associates the candidate phrase with the task of the candidate task affordance 1008 . By associating the candidate phrase with the task in this manner, the user may provide (e.g., speak) the candidate phrase to a digital assistant of the electronic device to cause the device to perform the task associated with the candidate phrase.
  • Candidate phrases associated with respective tasks may be referred to as voice shortcuts herein.
  • the electronic device 1000 displays (e.g., replaces display of the completion interface 1052 with), on the display 1001 , the settings interface 1004 , as shown in FIG. 10 M .
  • the candidate task affordance 1008 is not included in the candidate task portion 1006 .
  • the candidate task portion 1006 instead includes a candidate task suggestion 1094 such that the candidate task portion 1006 includes at least a threshold number of candidate task affordances.
  • settings interface 1004 includes a user shortcuts affordance 1096 .
  • the electronic device 1000 detects selection of the user shortcuts affordance 1096 .
  • the selection of the user shortcuts affordance 1096 is a tap gesture 1098 .
  • the electronic device 1000 displays (e.g., replaces display of the settings interface 1004 with), on the display 1001 , the user shortcuts interface 1002 A, as shown in FIG. 10 O .
  • the user shortcuts interface 1002 A includes edit affordance 1004 A, return affordance 1006 A, shortcut affordance 1008 A, and additional tasks affordance 1010 A.
  • the electronic device 1000 displays settings interface 1004 ( FIG. 10 N ).
  • the electronic device 1000 displays an interface by which the voice shortcut associated with shortcut affordance 1008 A may be deleted.
  • the electronic device 1000 displays an interface including one or more candidate task affordances, such as the global task interface 1018 A of FIG. 10 S , described in further detail below.
  • the electronic device 1000 while displaying the user shortcuts interface 1002 A, the electronic device 1000 detects selection of shortcut affordance 1008 A. As shown in FIG. 10 P , the selection of the shortcut affordance 1008 A is a tap gesture 1004 A. In some examples, in response to selection of the shortcut affordance 1008 A, the electronic device 1000 displays (e.g., replaces display of the user shortcuts interface 1002 A with), on the display 1001 , the completion interface 1054 for the shortcut affordance 1008 A, as shown in FIG. 10 Q . Completion interface 1054 may include a delete affordance 1014 A. In response to selection of the delete affordance 1014 A, the electronic device 1000 deletes the voice shortcut associated with the task. Deleting a shortcut in this manner may include disassociating the voice shortcut from the task such that providing the voice shortcut to a digital assistant of the electronic device 1000 does not cause the electronic device 1000 to perform the task.
  • the electronic device 1000 while displaying the settings interface 1004 , the electronic device 1000 detects selection of the additional tasks affordance 1014 . As shown in FIG. 10 R , the selection of the additional tasks affordance 1014 is a tap gesture 1016 A. In some examples, in response to selection of the shortcut affordance 1014 , the electronic device 1000 displays (e.g., replaces display of the settings interface 1004 with), on the display 1001 , global task interface 1018 A, as shown in FIG. 10 S .
  • Global task interface 1018 A includes, for each of a plurality of applications, a respective set of candidate task affordances.
  • global task interface 1018 A includes a set of candidate task affordances 1020 A associated with an activity application, a set of candidate task affordances 1026 A associated with a calendar application, and a set of candidate task affordances 1036 A associated with a music application.
  • the set of candidate task affordances 1020 A can, optionally, include a “Start Workout” candidate task affordance 1022 A and a “View Daily Progress” candidate task affordance 1024 A.
  • the set of candidate task affordances 1026 A can, optionally, include a “Send Lunch invitation” candidate task affordance 1028 A, a “Schedule Meeting” candidate task affordance 1030 A, and a “Clear Events for a Day” candidate task affordance 1032 A.
  • the set of candidate task affordances 1036 A can, optionally, include a “Play Workout Playlist” candidate task affordance 1038 A and a “Start R&B Radio” candidate task affordance 1040 A.
  • candidate task affordances of the global task interface 1018 A are searchable.
  • the electronic device while displaying the global task interface 1018 A, the electronic device detects a swipe gesture on the display 1001 , such as the swipe gesture 1046 A of FIG. 10 T .
  • the electronic device slides the global task interface 1018 A in a downward direction to display (e.g., reveal) a search field 1048 A that may be used to search candidate task affordances of the global task interface 1018 A, as shown in FIG. 10 U .
  • each set of candidate task affordances displayed by the electronic device 1000 may be a subset of all available candidate task affordances for a respective application. Accordingly, the user may select an application task list affordance, such as application-specific task list affordances 1034 A, 1042 A, to reveal one or more additional candidate task affordances for an application corresponding to the application task list affordance. For example, while displaying the global task interface 1018 A, the electronic device 1000 detects selection of application task list affordance 1042 A. As shown in FIG. 10 V , the selection of application task list affordance 1042 A is a tap gesture 1050 A.
  • the electronic device 1000 in response to selection of the application task list affordance 1042 A, displays (e.g., replaces display of the global task interface 1018 A with), on the display 1001 , application task interface 1052 A, as shown in FIG. 10 W.
  • application task interface 1052 A includes a return affordance, which when selected, causes the electronic device 1000 to display the global task interface 1018 A, and candidate task affordances 1054 A- 1070 A.
  • the electronic device 1000 while displaying the settings interface 1004 , the electronic device 1000 detects a swipe gesture on the display 1001 , such as the swipe gesture 1074 A of FIG. 10 X . As shown in FIG. 10 Y , in response to the swipe gesture 1074 A, the electronic device 1000 slides the settings interface 1004 in an upward direction to display (e.g., reveal) various settings. The settings, when enabled, adjust the manner in which candidate task affordances and suggestion affordances, such as those described with reference to FIG. 8 A- 8 AF , are displayed by the electronic device 1000 .
  • settings interface 1004 includes a shortcut enablement setting 1076 A, which, when enabled, allows the electronic device 1000 to display candidate task affordances, as described herein.
  • settings interface 1004 includes a search suggestion enablement setting 1078 A, which, when enabled, allows the electronic device 1000 to display suggestion affordances on a search screen interface.
  • settings interface 1004 includes a lookup suggestion enablement setting 1080 A, which, when enabled, allows the electronic device 1000 to display suggestion affordances on lookup result screen interface.
  • settings interface 1004 includes a lock screen suggestion enablement setting 1082 A, which, when enabled, allows the electronic device 1000 to display suggestion affordances on a lock screen interface.
  • Settings interface 1004 further includes application affordances 1084 A and 1086 A, each of which is associated with a respective application.
  • the electronic device 1000 detects selection of the application affordance 1086 A. As shown in FIG. 10 Y , the selection of the application affordance 1086 A is a tap gesture 1088 A.
  • the electronic device 1000 displays (e.g., replaces display of the settings interface 1004 with), on the display 1001 , application settings interface 1090 A, as shown in FIG. 10 Z .
  • application settings interface 1090 A includes application user shortcut affordance 1092 A, which may correspond to a voice shortcut previously generated by the user, for instance, using a voice shortcut generation process described herein.
  • Application settings interface 1090 A further may include candidate task affordances 1094 A- 1098 A, each of which may correspond to a respective task associated with the application of application settings interface 1090 A.
  • application settings interface 1090 A further includes application task list affordance 1002 B.
  • the electronic device 1000 displays (e.g., replaces display of the application settings interface 1090 A with), on the display 1001 , an application task interface, such as the application task interface 1052 A ( FIG. 10 W).
  • application settings interface 1090 A further includes application suggestion enablement setting 1004 B, which, when enabled, allows the electronic device 1000 to display suggestion affordances associated with the application on a search screen interface, look up result screen interface and/or keyboard interface.
  • application settings interface 1090 A further includes application suggestion enablement setting 1006 B, which, when enabled, allows the electronic device 1000 to display suggestion affordances associated with the application on a lock screen interface.
  • application settings interface 1090 A further includes edit affordance 1010 B.
  • the electronic device 1000 detects selection of the edit affordance 1010 B. As shown in FIG. 10 AA , the selection of the edit affordance 1010 B is a tap gesture 1012 B.
  • the electronic device 1000 displays (e.g., replaces display of the application settings interface 1090 A with), on the display 1001 , application-specific edit interface 1014 B, as shown in FIG. 10 AB .
  • the application-specific edit interface 1014 B is displayed over a first portion of the application settings interface 1090 A and a second portion of the application settings interface 1090 A is visually obscured (e.g., darkened, blurred).
  • displaying the application settings interface 1090 A includes displaying a selection affordance (e.g., selection affordance 1020 B) for each application user shortcut affordance (e.g., application user shortcut affordance 1092 A) of the application settings interface 1090 A.
  • the electronic device 1000 detects selection of the selection affordance 1020 B, indicating a selection of corresponding application user shortcut affordance 1092 A and an intent by the user to delete application user shortcut affordance 1092 A.
  • a user may confirm deletion by selecting confirmation affordance 1018 B, or forgo deletion by selecting cancel affordance 1016 B.
  • the electronic device 1000 displays an application permissions interface 1022 B for a particular application.
  • the application permissions interface 1022 includes a suggestions permissions affordance 1026 B.
  • the electronic device 1000 detects selection of the suggestions permissions affordance 1026 B.
  • the selection of the suggestions permissions affordance 1026 B is a tap gesture 1032 B.
  • the electronic device 1000 displays (e.g., replaces display of the application-specific permissions interface 1022 B with), on the display 1001 , an application settings interface, such as the application settings interface 1034 B of FIG. 10 AD .
  • a voice shortcut generation process may be initiated using an application-specific settings interface.
  • application settings interface 1034 B may include a candidate task affordance 1038 B.
  • the electronic device 1000 detects selection of the candidate task affordance 1038 B. As shown in FIG. 10 AE , selection of the candidate task affordance 1038 B is a tap gesture 1050 B.
  • the electronic device 1000 displays a task-specific interface 1054 B associated with a task of the candidate task affordance 1038 B, as illustrated in FIG. 10 AF .
  • a user may thereafter generate a voice shortcut by providing a natural-language speech input (e.g., “Coffee Me”) to the electronic device, and in turn the electronic device provides a candidate phrase for association with the task (e.g., order large latte with oat milk from nearby coffee shop) of the candidate task affordance 1038 B, as described.
  • a voice shortcut for the task has been generated, the electronic device 1000 displays application settings interface 1034 B.
  • application settings interface 1034 B includes an application user shortcut affordance 1036 B.
  • the electronic device displays voice shortcuts associated with tasks of the application.
  • a voice shortcut generation process may be initiated using an application interface, such as a third party application interface.
  • an application interface such as a third party application interface.
  • a user may complete a task using an application (e.g., order coffee).
  • the application may display a task completion interface 1060 B including candidate task suggestion affordance 1062 B.
  • the electronic device in response to selection of candidate task suggestion affordance 1062 B, the electronic device initiates a voice shortcut generation process.
  • FIGS. 11 A- 11 B is a flow diagram illustrating a method for providing voice shortcuts in accordance with some embodiments.
  • Method 1100 is performed at a device (e.g., device 104 , device 122 , device 200 , device 600 , device 700 , device 1000 ) with a display, one or more input devices (e.g., a touchscreen, a mic, a camera), and a wireless communication radio (e.g., a Bluetooth connection, WiFi connection, a mobile broadband connection such as a 4G LTE connection).
  • the display is a touch-sensitive display.
  • the display is not a touch sensitive display.
  • the electronic device includes a plurality of cameras.
  • the electronic device includes only one camera.
  • the device includes one or more biometric sensors which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • providing candidate phrases based on a natural-language speech input and associating candidate phrases with respective tasks allows a user to accurately and efficiently generate user-specific voice shortcuts that can be used to perform tasks on the electronic device. For example, allowing a user to associate voice shortcuts with tasks in this manner allows a user to visually confirm that a desired voice shortcut has been selected and assigned to the correct task, thereby reducing the likelihood of an incorrect or unwanted association.
  • providing candidate phrases in the manner described provides for more efficient use of the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • the electronic device displays a plurality of candidate task affordances ( 1008 , 1010 , 1012 , 1038 B, 2006 ) including a candidate task affordance ( 1008 , 1038 B, 2006 ) associated with a task ( 1102 ).
  • the plurality of tasks are displayed in a settings interface or an application interface.
  • each task of the plurality of tasks is a task suggested, for instance, based on context of the electronic device.
  • the electronic device displays a plurality of candidate task affordances including a candidate task affordance associated with a task includes displaying an application interface ( 1034 B, 2060 ) including the plurality of candidate task affordances.
  • the application interface is an interface of a third party application ( 1062 B) including one or more affordances (corresponding to a respective one or more candidate tasks) that the user can select to cause display of the first user interface and thereby create a voice shortcut for the selected task.
  • the first user interface ( 1018 , 2066 ) is overlaid on the application interface.
  • the first user interface is overlaid over a portion of the application interface.
  • the first user interface is overlaid over the entirety of the application interface.
  • the one or more affordances correspond to one or more respective tasks and are displayed in response to completion of the one or more tasks.
  • the electronic device detects a set of inputs ( 1016 , 1032 ) including a first user input ( 1016 , 2064 ) corresponding to a selection of the candidate task affordance associated with the task ( 1104 ).
  • the electronic device in response to the first user input, displays a fourth interface ( 1018 , 2066 ) associated with the task.
  • the fourth user interface is an initial task-specific interface for generating a voice shortcut.
  • the interface specifies the task to associate with the voice shortcut ( 1022 ) and further includes an indication of the relevant application (e.g., name of application) ( 1026 ) and/or an icon associated with (e.g., donated by) the application ( 1020 , 1026 ).
  • the interface includes a cancel affordance. In response to selection of the cancel affordance, the electronic device returns to an immediately prior interface.
  • the interface includes a record affordance ( 1030 , 2074 ).
  • the electronic device In response to selection of the record affordance, the electronic device records a speech input while displaying a voice record interface ( 1034 , 2078 ).
  • the fourth interface includes a first suggested voice shortcut phrase ( 1028 ).
  • the electronic device displays a suggested voice shortcut that a user may adopt as the voice shortcut for the relevant task.
  • the electronic device in response to detecting the set of user inputs, displays a first interface ( 1034 , 2072 ) for generating a voice shortcut associated with the task ( 1106 ).
  • the first interface is a voice record interface.
  • the voice record interface includes a prompt ( 1046 ) for the user to record a phrase that will be used as the voice shortcut for initiating a task.
  • the voice record interface includes a live preview ( 1042 , 2082 ) of a natural-language speech input provided by the user.
  • the live preview is an audio waveform.
  • the electronic device while displaying the first interface ( 1108 ), receives (e.g., samples, obtains, captures), by the audio input device, a natural-language speech input ( 1110 ).
  • a natural-language speech input is a phrase spoken by a user of the device.
  • the electronic device receives a speech input for a predetermined of time and/or until a user selects a stop affordance ( 1044 , 2084 ).
  • the electronic device while receiving the natural-language speech input, provides (e.g., displays) a live (e.g., real-time) preview of the natural-language speech input.
  • the live preview is a waveform of the natural-language input and/or a real-time display of a speech-to-text translation of the natural-language input.
  • the live preview of the natural-language speech input is a visual waveform of the natural-language speech input.
  • the electronic device determines the candidate phrase based on the natural-language speech input. In some examples, determining the candidate phrase based on the natural-language speech input includes determining the candidate phrase using natural-language processing. In some examples, while the user provides the natural-language speech input, the electronic device uses natural-language processing to translate the natural-language speech input to text.
  • determining the candidate phrase based on the natural-language speech input includes providing the natural-language speech input to another electronic device and receiving a representation of the candidate phrase (e.g., text representation, vector representation) from the another electronic device.
  • the electronic device provides the natural-language speech input and/or a representation of the NL speech input to a server and the server returns one or more candidate phrases.
  • determining the candidate phrase based on the natural-language speech input includes determining whether the natural-language speech input satisfies phrase similarity criteria. In accordance with a determination that the natural-language speech input satisfies the phrase similarity criteria, the electronic device indicates (e.g., displays an indication) that the natural-language speech input satisfies the similarity criteria. In some examples, the electronic device ensures that the natural-language speech input is different than one or more predetermined phrases (e.g., “call 911”). In some examples, the electronic device ensures that the natural-language speech input is sufficiently different than the one or more predetermined phrases.
  • the electronic device may ensure that a similarity of a representation of the natural-language speech input and each of the one or more predetermined phrases does not exceed a similarity threshold. In some examples, if the natural-language speech input does not satisfy the similarity criteria, the electronic device will notify the user that the provided speech input is not sufficient and/or not permitted. The electronic device further may request that the user provide a new natural-language speech input. In some examples, the electronic device further compares the natural-language input to phrases associated with one or more stored voice shortcuts. In some examples, the electronic device instructs the user to provide a new natural-language speech input and/or requests confirmation that the user intends for the natural-language speech input to replace one or more other similarly phrased voice shortcuts. In some examples, replaced voice shortcuts are deleted.
  • the electronic device while displaying the first interface ( 1034 , ***), determines whether the natural-language speech input has been received within a threshold amount of time. In some examples, the electronic device, in accordance with a determination that the natural-language speech input has not been received within the threshold amount of time, displays, on the first interface, a second suggested voice shortcut phrase ( 1046 ) (“You could say something like ‘Show me side camera”). In some examples, the suggested voice shortcut provided on the first interface ( 1034 ) is the same as the suggested voice shortcut provided on the second interface ( 1028 ). In some examples, the suggested voice shortcuts of the first and second interfaces are different.
  • the electronic device displays, in the first interface ( 1034 ), a candidate phrase ( 1046 ), wherein the candidate phrase is based on the natural-language speech input ( 1120 ).
  • the candidate phrase is a speech-to-text translation of the natural-language speech input and is displayed while the natural-language input is received by the electronic device.
  • the electronic device displays the candidate phrase in response to the natural-language input and/or translates the natural-language speech input to text in real-time. Accordingly, in some examples, the electronic device continuously updates display of the candidate phrase while the natural-language is received by the electronic device.
  • the electronic device detects, via the touch-sensitive surface, a second user input ( 1092 , 2004 A) ( 1122 ).
  • the second user input is a selection of a completion affordance ( 1072 , 2092 ).
  • the second user input is selection of an affordance, such as a confirmation affordance of a completion interface ( 1054 , ***).
  • the electronic device in response to detection of the second user input, associates the candidate phrase with the task ( 1124 ). In some examples, the electronic device generates a voice shortcut such that recitation of the candidate phrase by the user to the digital assistant results in performance of the task.
  • associating the candidate phrase with the task includes associating the candidate phrase with a first action and associating the candidate phrase with a second action.
  • a voice shortcut corresponds to a multiple tasks.
  • the combination of tasks is suggested by the digital assistant and a user may assign a phrase to initiate performance of the combination of tasks.
  • the voice shortcut “secure house” may correspond to tasks for turning off lights and locking doors.
  • the electronic device receives, by the audio input device, a user speech input (e.g., natural-language speech input). In some examples, the electronic device determines whether the user speech input includes the candidate phrase. In some examples, the electronic device, in accordance with a determination that the user speech input includes the candidate phrase, performs the task. In some examples, the electronic device, in accordance with a determination that the user speech input does not include the candidate phrase, forgoes performing the task.
  • a user speech input e.g., natural-language speech input.
  • the electronic device after associating the candidate phrase with the task, displays a second interface including an edit affordance. In some examples, the electronic device displays the second interface at the end of the voice shortcut generation process. In some examples, the user may navigate to the voice shortcut in an interface ( 1004 A) listing one or more stored voice shortcuts ( 1008 A) and select the voice shortcut to cause display of the second interface.
  • the second user interface ( 1054 , 2090 ) includes a textual representation of the task ( 1060 , 2098 ), an indication of the task ( 1058 ), the candidate phrase ( 1064 , 2002 A), an edit affordance ( 1066 ) which when selected causes display of candidate shortcuts, a cancel affordance ( 1056 , 2094 ) which when selected causes the device to cancel the voice shortcut generation process, and a completion affordance ( 1054 , 2092 which when selected causes the electronic device to associate the candidate phrase with the task or maintain association of the candidate phrase with the task if already associated.
  • the electronic device detects a third user input indicating a selection of the edit affordance ( 1068 ).
  • the electronic device in response to detecting the third user input, displays a plurality of candidate phrase affordances ( 1082 , 1084 , 1086 ) including a first candidate phrase affordance corresponding to the candidate phrase and a second candidate phrase affordance corresponding to another candidate phrase.
  • the another candidate phrase is based on the natural-language speech input.
  • the electronic device in response to selection of the edit affordance, displays an edit interface ( 1070 ) including a plurality of candidate phrases.
  • a user may select one of the candidate phrases to associate with the task.
  • each of the plurality of candidate phrases are speech-to-text candidates generated, based on the natural-language speech input, using one or more NLP methodologies.
  • the NL speech input is provided to another device (e.g., back-end server), which returns one or more of the candidate phrases to the electronic device.
  • candidate phrases are generated on both the electronic device and a backend server, and the electronic device selects one or more of the “best” candidate phrases (e.g., candidate phrases associated with highest respective confidence scores).
  • the electronic device detects another set of inputs ( 1090 , 1092 ) including a fourth user input indicating a selection of the second candidate phrase affordance. In some examples, the electronic device, in response to detecting the another set of inputs, associates the another candidate phrase with the task. In some examples, a user selects a new candidate phrase to associate with the task such that providing the new candidate phrase causes performance of the task. In some examples, associating a new candidate task causes the electronic device to disassociate the previously associated candidate phrase from the task.
  • the electronic device after associating the candidate phrase with the task, detects a fifth input ( 1092 , 2004 A). In some examples, the electronic device, in response to detecting the fifth user input, displays another plurality of candidate task affordances, wherein the another plurality of candidate task affordances does not include the candidate task affordance associated with the task. In some examples, after creating a voice shortcut, the electronic device displays a settings interface ( 1004 ) listing candidate tasks suggested by the digital assistant and/or one or more applications. In some examples, if a task was previously suggested and a user created a shortcut for the task, the task is removed from the list of suggested tasks.
  • the electronic device provides the candidate phrase to another electronic device.
  • the generated voice shortcut is provided to a backend server for subsequent speech input matching.
  • the generated voice shortcut and the associated task are provided to the backend server.
  • inputs are provided from the electronic device to the backend server and the backend server determines whether the input corresponds to a voice shortcut. If the backend server determines the input corresponds to a voice shortcut, the electronic device performs the task. In some examples, providing each of the shortcut and the task to the server in this manner further allows for subsequent performance of the task on other electronic devices using the same shortcut.
  • method 1100 optionally includes one or more of the characteristics of the various methods described with reference to methods 900 , 1300 , 1500 , 1700 , and 1900 .
  • providing voice shortcuts as described in method 1200 can be applied to generate voice shortcuts for use as described in method 1300 .
  • these details are not repeated below.
  • the operations in the methods described above are, optionally, implemented by running one or more functional modules in an information processing apparatus such as general purpose processors (e.g., as described with respect to FIGS. 2 A, 4 , and 6 A ) or application specific chips. Further, the operations described above with reference to FIGS. 10 A- 10 AJ are, optionally, implemented by components depicted in FIGS. 2 A- 2 B . For example, displaying operation 1102 , detecting operation 1104 , displaying operation 1106 , receiving operation 1110 , displaying operation 1120 , detecting operation 1122 , and associating operation 1124 are, optionally, implemented by event sorter 270 , event recognizer 280 , and event handler 290 .
  • Event monitor 271 in event sorter 270 detects a contact on touch-sensitive surface 604 ( FIG. 6 A ), and event dispatcher module 274 delivers the event information to application 236 - 1 ( FIG. 2 B ).
  • a respective event recognizer 280 of application 236 - 1 compares the event information to respective event definitions 286 , and determines whether a first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as selection of an object on a user interface.
  • event recognizer 280 activates an event handler 290 associated with the detection of the event or sub-event.
  • Event handler 290 optionally utilizes or calls data updater 276 or object updater 277 to update the application internal state 292 . In some embodiments, event handler 290 accesses a respective GUI updater 278 to update what is displayed by the application. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in FIGS. 2 A- 2 B .
  • FIG. 12 is a block diagram illustrating a task suggestion system 1200 , according to various examples.
  • FIG. 12 is also used to illustrate one or more of the processes described below, including the method 1300 of FIG. 13 .
  • FIG. 12 illustrates a task suggestion system 1200 that may, for instance, be implemented on an electronic device described herein, including but not limited to devices 104 , 200 , 400 , and 600 ( FIGS. 1 , 2 A, 4 , and 6 A- 6 B ). It will be appreciated that while the task suggestion system 1200 is described herein as being implemented on a mobile device, the task suggestion system 1200 may be implemented on a device of any type, such as a phone, laptop computer, desktop computer, tablet, wearable device (e.g., smart watch), set-top box, television, home automation device (e.g., thermostat), or any combination or subcombination thereof.
  • wearable device e.g., smart watch
  • set-top box television
  • home automation device e.g., thermostat
  • the task suggestion system 1200 provides task suggestions based on context data of an electronic device. Task suggestions provided by the task suggestion system 1200 may in turn be used to provide suggestion affordances, such as those described with respect to FIGS. 8 A- 8 AF .
  • the task suggestion system 1200 is implemented as a probability model.
  • the model may include one or more stages, including but not limited to the first stage 1210 , second stage 1220 , and third stage 1230 , each of which is described in further detail below.
  • one or more of first stage 1210 , second stage 1220 , and third stage 1230 may be combined into a single stage and/or split into multiple stages.
  • the task suggestion system 1200 may include a first stage and a second stage, where the first stage implements the functionality of both first stage 1210 and second stage 1220 .
  • context data of the electronic device is indicative of a state or context of the electronic device.
  • context data may indicate various characteristics of the electronic device during a time at which a particular task was performed. For instance, for each task performed by the electronic device, context data may indicate a location of the electronic device, whether the electronic device was connected to a network (e.g., WiFi network), whether the electronic device was connected to one or more other devices (e.g., headphones), and/or a time, date, and/or weekday at which the task was performed. If the electronic device was connected to a network or device during performance of the task, the context data may further indicate a name and/or type of the network or device, respectively.
  • a network e.g., WiFi network
  • the context data may further indicate a name and/or type of the network or device, respectively.
  • Context data further may indicate whether a suggestion affordance associated with a task was previously presented to a user and the manner in which the user responded to the suggestion affordance. For instance, the context data may indicate whether the user ignored the task suggestion or used the task suggestion to perform a corresponding task.
  • the electronic device receives context data from applications during operation of the electronic device.
  • an application provides context data for a task while performing a task or after performing a task.
  • Context data provided in this manner may be indicative of a task and, optionally, one or more parameters associated with the task.
  • context data provided by an application further includes data indicative of the state of the electronic device while the task was performed, described above (e.g., location of the electronic device, whether the electronic device was connected to a network, etc.).
  • context data provided by an application does not include data indicative of the state of the electronic device while the task was performed, and in response to receipt of context data from an application, the electronic device obtains data indicative of the state of the electronic device.
  • context data is provided by applications using any of a plurality of context data donation mechanisms.
  • context data is received from applications in response to an API call which causes an application to return information regarding execution of the application.
  • a word processing application e.g., Notes, Word
  • a media playback application e.g., Music, Spotify
  • a current media item e.g., song
  • album e.g., album
  • playlist e.g., collection
  • context data is received from applications in response to an API call which causes an application to provide a data structure indicating (e.g., identifying) a task performed by an application.
  • the data structure may, for instance, include values for one or more parameters associated with the task.
  • the data structure is implemented as an intent object data structure. Additional exemplary description of operation with intent object data structures can be found in U.S. patent application Ser. No. 15/269,728, “APPLICATION INTEGRATION WITH A DIGITAL ASSISTANT,” filed Sep. 18, 2016, which is hereby incorporated by reference in its entirety.
  • context data is received from applications in response to an API call which causes an application to provide an application-specific (e.g., third-party application) data structure indicating a task performed by an application.
  • the application-specific data structure may, for instance, include values for one or more parameters associated with the task.
  • the application-specific data structure can, optionally, further indicate which parameter values of the task may be specified when providing task suggestions as well as which combinations of parameter values.
  • an application-specific data structure may explicitly reduce the number of permitted combinations.
  • the application-specific data structure indicates whether the task is a background task or a task requiring confirmation, as previously described with respect to FIGS. 8 A- 8 AF .
  • context data is provided by an application each time a task is performed on the electronic device.
  • Context data may, for instance, be provided while the task is performed or after the task is performed.
  • the electronic device detects that an application has been closed, and in response, employs one or more context data donation mechanisms to request context data from the application.
  • context data is selectively provided based on types of tasks.
  • context data may be provided in response to a user sending a text message or placing a call, but not in response to a user navigating to a web page using a browser or unlocking the electronic device.
  • context data is selectively provided based on context of the electronic device. For instance, context data may not be provided if a charge level of a battery of the electronic device is below a threshold charge level.
  • each type of context data (e.g., location of the electronic device, whether the electronic device is connected to a network, etc.) is associated with a respective context weight.
  • the context weights may be used, for instance, to influence the manner in which context data is used to determine probabilities.
  • types of context determined to be stronger predictors of user behavior may be associated with relatively large weights and/or types of context determined to be weaker predictors of user behavior may be associated with relatively small weights.
  • tasks performed by a user when the electronic device is at a particular location may be a better indicator of user behavior than tasks performed by a user on a particular a weekday.
  • location context data may be associated with a relatively large weight and weekday context data may be associated with a relatively small weight.
  • whether a user selected a suggestion affordance for a task may be associated with a relatively large weight as such context data may strongly indicate whether the user is likely to select subsequent suggestion affordances for the task.
  • context weights are determined by the electronic device.
  • weights are determined by another device using aggregated data.
  • anonymized context data may be provided by the electronic device and/or one or more other devices to a data aggregation server.
  • the data aggregation server may determine which types of context data are more discriminative and/or stronger predictors of user behavior.
  • the data aggregation server employs one or more machine learning techniques to determine which types of context data are relatively discriminative and/or stronger predictors of user behavior. Based on the determination, the data aggregation server may determine a weight for each type of context data and provide the weights to the electronic device.
  • a user may elect to forgo (e.g., opt out of) providing anonymized data to another device for determining context weights.
  • Anonymizing context data may include removing names of users, specific locations recorded by the electronic device, names of WiFi networks, and any other user-specific information.
  • Anonymized context data may, for instance, specify that a user performed a certain task 20% of the time when at a same location, but not specify which task or location.
  • the first stage 1210 performs task-specific modeling based on context data of the electronic device.
  • performing task-specific modeling includes determining one or more probabilities (e.g., task probabilities) for each of a plurality of tasks (e.g., one or more tasks previously performed by the electronic device and/or one or more tasks that may be performed by the electronic device).
  • Each task probability determined in this manner indicates a likelihood that a user will perform a task given a context of the electronic device.
  • determining task probabilities in this manner includes generating and/or updating one or more histograms based on the context data.
  • First stage 1210 may, for instance, generate a respective set of histograms for each task indicating probabilities that a user performs tasks given various contexts of the electronic device.
  • each histogram associated with a task corresponds to a single type of context.
  • a first histogram associated with a task for enabling a thermostat may be a location context histogram.
  • the location context histogram may indicate, for each of a plurality of locations in which the user has previously enabled a thermostat, a probability that a user enables a thermostat when at the location.
  • a second histogram associated with the task for enabling a thermostat may be a WiFi context histogram.
  • the WiFi context histogram may indicate, for each of a plurality of WiFi networks to which the electronic device has previously been connected, a probability that a user enables a thermostat when the electronic device is connected to the WiFi network.
  • context data of the electronic device may include any number of types of context. Accordingly, a task may be associated with any number of histograms.
  • first stage 1210 may determine a respective probability for each context type given the context (e.g., as indicated by each histogram associated with the task) and determine the task probability based on the probabilities for the context types.
  • determining task probabilities further may include adjusting context data using context weights.
  • each context type may be associated with a weight. Accordingly, prior to determining a task probability based on context probabilities, each context probability may be adjusted (e.g., multiplied) by a corresponding context weight.
  • task probabilities provided by first stage 1210 are parameter-independent. That is, task probabilities may be determined (e.g., histograms generated) for each task without consideration of specific parameter values used to perform the task.
  • the first stage 1210 can determine a probability of a user sending a text message given a particular context (e.g., at a particular time), but may forgo determining probabilities directed to the recipient of the text message or the contents (e.g., text, image) of the text message.
  • the first stage 1210 can determine a probability that a user will enable a thermostat when arriving at home, but forgo determining any probabilities directed to temperature thresholds of the thermostat.
  • first stage 1210 updates context data in response to performance of a task.
  • updating context data in this manner includes updating one or more histograms for the task performed.
  • performing parameter-specific modeling includes determining probabilities (e.g., parameter probabilities) for a set of parameters that indicate the likelihood a user selects a particular value for each parameter of the set of parameters given a task (e.g., tasks previously performed by the electronic device).
  • Parameter probabilities may indicate a likelihood that a user selects a particular value for a single parameter (and no other values) and/or may indicate a likelihood that a user selects particular values for multiple (e.g., a combination) of parameters.
  • second stage 1220 provides a set of tasks based on the context data.
  • the second stage 1220 identifies a plurality of tasks and ranks the tasks according to their respective task probabilities.
  • the second stage 1220 identifies one or more tasks previously performed by the electronic device.
  • the second stage 1220 may omit types of tasks that are determined to occur at a frequency exceeding a frequency threshold in some examples.
  • determining which of the identified tasks are associated with the N highest task probabilities includes determining which tasks are associated with the N highest task probabilities given any context of the electronic device.
  • determining which of the identified tasks are associated with the N highest task probabilities includes determining which tasks are associated with the N highest task probabilities for a current context of the electronic device.
  • determining parameter probabilities includes generating and/or updating one or more histograms based on the context, for instance, in real-time.
  • Second stage 1220 may, for instance, generate a respective set of histograms for each task indicating probabilities that a user selects a particular parameter value for a parameter given the task.
  • each histogram associated with a task corresponds to a single parameter.
  • each histogram may represent a distribution of values for a parameter used to perform a task over time.
  • the second stage 1220 determines parameter probabilities based on a current context of the electronic device. This may, for instance, reduce computational complexity required to provide parameter probabilities.
  • the second stage 1220 may determine that the electronic device is at a particular location. As a result, in determining parameter probabilities, the second stage 1220 may determine probabilities for parameter values that were previously used when the device was at the determined location.
  • the second stage 1220 may determine, based on context data, probabilities for one or more parameter values that may be used to send a text message.
  • the second stage 1220 may, for instance, determine based on context data (e.g., prior use of the electronic device) that there is a 20% that the recipient of a text message is a first contact and a 30% chance that the recipient of the text message is a second contact.
  • the second stage 1220 further may determine that there is a 40% chance that the text message includes a first payload (e.g., string, image) and a 55% chance that the text message includes a second payload.
  • the second stage 1220 may further determine probabilities for one or more combinations of parameters values.
  • the second stage 1220 may determine that there is a 20% chance that the recipient of the text message is the first contact and that the text message includes the first payload. The second stage 1220 may further determine that there is a 15% chance that the recipient of the text message is the first contact and that the text message includes the second payload. It will be appreciated that this example is not intended to be limiting and second stage 1220 can determine probabilities for any number and/or combination of parameter values.
  • second stage 1220 determines parameter probabilities periodically (e.g., every 7.5 minutes) and/or in response to an event, such as a change in context of the electronic device.
  • probabilities may be determined in response to a change in location or environment of the electronic device (e.g., the electronic device being moved from a house to a car), a change in charge level of the battery of the electronic device, a change in configuration of the electronic device (e.g., installation or deletion of an application), and/or a change in connectivity of the electronic device (e.g., connecting or disconnecting from a network).
  • third stage 1230 optionally, adjusts one or more probabilities.
  • third stage 1230 adjusts task probabilities. Task probabilities may be adjusted, for instance, based on a type of the task associated with the task probability. Additionally or alternatively, in some examples, third stage 1230 adjusts (e.g., increases, decreases) parameter probabilities. As an example, parameter probabilities associated with a relatively high number of parameters (e.g., 3 or more) may be increased and/or parameter probabilities of tasks having a relatively low number of parameters (e.g., 2 or less) may be decreased.
  • a relatively high number of parameters e.g., 3 or more
  • parameter probabilities of tasks having a relatively low number of parameters e.g., 2 or less
  • parameter probabilities for parameters of a first type may be increased and/or parameter probabilities for parameters of a second type not having the one or more particular types of parameters specified may be decreased.
  • parameter probabilities for relatively discriminative parameter types such as strings
  • parameter probabilities for relatively non-discriminative parameter types such as Booleans
  • parameter probabilities for parameters having relatively high entropy e.g., variation of values
  • parameter probabilities parameters having relatively low entropy as indicated by context data may be decreased.
  • the third stage 1220 determines a task probability and parameter probability for each task. In some examples, the third stage 1220 identifies a highest parameter probability for each task. In other examples, the third stage 1220 identifies several parameter probabilities for a task. In some examples, for the purposes of providing task suggestions, as set forth below, a task having multiple parameter probabilities may be treated as a separate task for each parameter probability (e.g., a task with a first set of parameter values is considered distinct from the task with a second set of parameter values). As described, each parameter probability may correspond to a single parameter value and/or may correspond to multiple parameter values.
  • the third stage 1230 determines, for each task, whether the task satisfies suggestion criteria based on a task probability and a parameter probability associated with the task.
  • determining whether a task satisfies suggestion criteria includes providing a joint probability for a task based on a task probability and a parameter probability for the task and determining whether the joint probability exceeds a probability threshold.
  • a joint probability is provided by multiplying a task probability and a parameter probability.
  • the third stage 1230 determines that the task associated with the joint probability satisfies suggestion criteria.
  • third stage 1230 provides the tasks (and corresponding parameter values) associated with the tasks as task suggestions.
  • third stage 1230 provides all tasks satisfying the suggestion criteria as task suggestions.
  • third stage 1230 provides a subset of the tasks satisfying the suggestion criteria as task suggestions. The third stage 1230 may, for instance, provide the task associated with the respective highest joint probability as a task suggestion.
  • the electronic device determines, for each of the task suggestions, whether to display a suggestion affordance corresponding to the task suggestion. In some examples, this includes determining whether the task suggestion satisfies first suggestion criteria and/or second suggestion criteria. In some examples, determining whether a task suggestion satisfies first suggestion criteria and/or second suggestion criteria includes determining whether a joint probability associated with the task suggestion satisfies first and second display thresholds, respectively.
  • a suggestion affordance corresponding to the task suggestion is displayed in a first user interface (e.g., search screen interface 866 of FIG. 8 N ). If a joint probability corresponding to a task suggestion satisfies a second display threshold, a suggestion affordance corresponding to the task suggestion is additionally or alternatively be displayed in a second user interface (e.g., lock screen interface 810 of FIG. 8 B ).
  • the first display threshold is the same as the probability threshold.
  • the second display threshold is greater than the first display threshold.
  • the electronic device selectively performs a task in response to selection of the suggestion affordance, as described with reference to FIGS. 8 A- 8 AF .
  • the task is a background task (e.g., a task that does not require user confirmation)
  • the electronic device performs the task, as described.
  • the task not a background task e.g., the task requires user confirmation and/or additional user input prior to task performance
  • the electronic device displays an interface requesting confirmation and/or additional input from the user.
  • a user may confirm performance of a task by selecting a confirmation affordance of the confirmation interface.
  • display of suggestion affordances may be modified in response to a change in context of the electronic device (e.g., change in location of electronic device, user connects device to or disconnects device from headphones).
  • the electronic device may cease display of one or more displayed suggestion affordances, display one or more new suggestion affordances, and/or display suggestion affordances in a new order.
  • Modifying display of suggestion affordances in this manner may include determining a new set of suggestions using the current context of the electronic device (e.g., in response to detecting a change in the context of the electronic device) and displaying one or more suggestion affordances for those task suggestions satisfying suggestion criteria and/or display criteria, as described (recall that in some examples, only a top scoring task suggestion is used for display of a suggestion affordance). Modifying display of suggestion affordances may further include ceasing display of suggestion affordances for task suggestions not satisfying the suggestion criteria and/or the display criteria in accordance with the context. In some examples, suggestion affordances are displayed in an order corresponding to context of the electronic device, and/or a ranking of respective joint probabilities associated with the suggestion affordances. Accordingly, a change in context of the electronic device may cause the electronic device to change an order in which suggestion affordances are displayed.
  • determining whether a task satisfies suggestion criteria further includes determining whether heuristic criteria have been met.
  • the third stage 1230 (or any other stage of the task suggestion system 1200 ) may determine whether one or more sets of predetermined conditions have been met. If so, the third stage 1230 provides a task suggestion for a task corresponding to each of the sets of predetermined conditions that have been met (e.g., heuristic task suggestion).
  • the electronic device may determine, based on a location of a user and a calendar of a user, that the user is going to be late to a meeting (e.g., the user will not be able to arrive on time). Accordingly, the electronic device may provide a heuristic task suggestion for the user to send a text message to the organizer of the meeting that the user will be late. The electronic device may in turn display a suggestion affordance corresponding to the heuristic task suggestion.
  • task suggestions provided in this manner have a joint probability of 100%, such that the task suggestions always satisfy thresholds for display.
  • task suggestions provided in this manner may have a joint probability of less than 100% if a user has failed to select a same type of task suggestion previously displayed by the electronic device.
  • joint probabilities of task suggestions provided in this manner may increase or decrease (e.g., decay) according to user behavior.
  • suggestion affordances for heuristic task suggestions are displayed in combination with suggestion affordances for task suggestions.
  • suggestion affordances for heuristic task suggestions are not displayed in combination with suggestion affordances for task suggestions.
  • display of a suggestion affordance for a heuristic task suggestion overrides (e.g., precludes) display of a suggestion affordance for a task suggestion.
  • heuristic task suggestions are provided based on a set of conditions (e.g., set of hard-coded rules) in addition to context data, heuristic task suggestions may allow the electronic device to provide task suggestions for tasks not previously provided by the electronic device.
  • the following table sets forth various sets of exemplary predetermined conditions that may be used to provide heuristic task suggestions. It will be appreciated that the sets are not intended to be limiting. Additionally, the table sets forth conditions that cause the electronic device to cease display of a suggestion affordance corresponding to a heuristic task suggestion. In some examples, the electronic device ceases display of the suggestion affordance in response to all of the conditions being met. In some examples, the electronic device ceases display of the suggestion affordance in response to any number of the conditions being met.
  • FIG. 13 illustrates method 1300 for providing suggestions, according to various examples.
  • Method 1300 is performed, for example, using one or more electronic devices implementing a task suggestion system, such as the task suggestion system 1200 of FIG. 12 .
  • method 1300 is performed using a client-server system (e.g., system 100 ), and the blocks of method 1300 are divided up in any manner between the server (e.g., DA server 106 ) and a client device.
  • the blocks of method 1300 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch).
  • client devices e.g., a mobile phone and a smart watch
  • method 1300 is performed using only a client device (e.g., user device 104 ) or only multiple client devices.
  • some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted.
  • additional steps may be performed in combination with the method 1300 .
  • suggestion affordances displayed by the electronic device can correspond to tasks identified based on context data of the electronic device, such as context data indicative of prior use of the electronic device by the user.
  • selectively providing suggestions in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • the electronic device includes one or more of a keyboard, mouse, microphone, display, and touch-sensitive surface.
  • the display is a touch-sensitive display. In other examples, the display is not a touch-sensitive display.
  • the electronic device receives context data associated with the electronic device.
  • receiving the context data includes determining a context of the electronic device while performing the task (e.g., determine a location of the device, whether the device is connected to WiFi network, etc.).
  • context data is indicative of a state of the electronic device given one or more conditions.
  • context data is indicative of various contextual aspects of the electronic device when each of a plurality of tasks was performed.
  • context data indicates a location of the electronic device, whether the device is connected to a network (e.g., WiFi network), and if so, a name (e.g., SSID) of the network, a time and/or day at which the task was performed, and whether headphones were connected.
  • determining a context of the electronic device includes determining a location of the electronic device, determining whether the electronic device is connected to a network, determining a time of day, or any combination thereof.
  • the context data indicates the manner in which the user responded to the suggestion (e.g., whether the user interacted with the suggestion, deleted the suggestion, ignored the suggestion, etc.).
  • each type of context data is assigned a score according to a respective weight (e.g., using dot multiplication).
  • the respective magnitudes of weights utilized in this manner are determined by a server using anonymized, aggregated data such that data is utilized in a privacy preserving manner.
  • context data is obtained from applications during use of the electronic device, for instance, using a number of data donation mechanisms.
  • context data is obtained from applications using an API call which causes an application to indicate what the user was doing at the time of the API call (e.g., if user is in a “notes” app, call returns an ID of the note and/or a name of the note).
  • receiving context data includes receiving a data structure (e.g., standardized intent object, third-party application intent object) corresponding to the task and one or more parameters associated with the task.
  • context data is obtained from applications using an API call which causes an application to donate a standardized data structure indicating a task performed by the application.
  • the data structure is an intent object.
  • context data is obtained from applications using an application-specific (e.g., third-party application) data structure indicating a task performed by the application.
  • the third-party data structure further indicates which parameters of a task may be predicted together and/or whether a task is a background task (e.g., a task that does not require additional input prior to performance of the task).
  • applications donate context data each time a user performs a task.
  • applications selectively donate context data, for instance, based on context of the electronic device (e.g., an application may forgo providing context data if a battery charge level of the device is below a threshold).
  • the electronic device determines, based on the context data, a task probability for a task.
  • the electronic device employs a multi-stage model to provide suggestions.
  • the electronic device determines a probability for each of a plurality of tasks indicating the likelihood that the user performs the task given particular context.
  • determining a task probability for a task includes generating, for each of a plurality of types of context, a histogram corresponding to the task based on the context data.
  • identifying task probabilities includes providing (e.g., generating) one or more histograms using the data provided by applications during use of the electronic device.
  • the histograms provided in this manner indicate patterns of user behavior.
  • each of the histograms may indicate a probability that a user takes a particular action given a particular context (e.g., a user selects a particular music app at an 80% rate when connecting to a particular WiFi network)).
  • the task probability is parameter-independent. That is, in some examples, the electronic device determines the task probability using context data associated with tasks irrespective of the parameters used to perform the tasks. In some examples, the task probability determined in this manner are parameter-specific.
  • the electronic device determines, based on the context data, a parameter probability for a parameter, wherein the parameter is associated with the task.
  • the electronic device determines a probability (e.g., conditional probability) for each a plurality of tasks indicating a likelihood that a user uses particular parameters for each task.
  • determining, based on the context data, a parameter probability for a parameter includes determining a current context of the electronic device and determining the parameter probability based on the current context of the electronic device (e.g., determining context of the electronic device and determining the parameter probability in accordance with the context of the electronic device (e.g., determine a location of the electronic device and determine the parameter probability with respect to the determined location)).
  • the electronic device maintains a list of the most recent N number (e.g., 100) of tasks for each task type. The electronic device may, for instance, track which parameters were previously used to perform each of the immediately previous N tasks.
  • the electronic device tracks only particular types of tasks (e.g., does not track easily accessible functions so as to ensure that suggestions ultimately provided by the electronic device are relatively highly discriminative and/or accelerating).
  • the electronic device identifies a subset of the plurality of tasks evaluated at the first stage ( 1210 ), and determines probabilities only for tasks of the subset of tasks.
  • the subset identified by the electronic device includes tasks associated with the highest probabilities as determined at the first stage.
  • the electronic device computes conditional probabilities using only currently relevant context data (i.e., for context signals currently satisfied by context of the electronic device (e.g., current location of the device and no other locations).
  • the electronic device determines probabilities in this manner periodically. In some examples, the electronic device determines probabilities in this manner in response to particular events (e.g., deletion of an application on the electronic device).
  • Determining probabilities e.g., task probabilities, parameter probabilities
  • Determining probabilities based on context of the electronic device ensures that task suggestions provided by the electronic device, as described herein, are provided based on previous usage of the electronic device by a user. This in turn ensures that the user is provided with salient task suggestions that correspond to typical usage of the electronic device and, as a result, provided with suggestions that have a relatively high likelihood of accelerating user behavior.
  • providing suggestions in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • the electronic device determines, based on the task probability and the parameter probability, whether the task satisfies suggestion criteria. In some examples, at the third stage ( 1230 ) of the model, the electronic device determines whether any of the identified tasks, given the context data and current context of the electronic device, satisfy a probabilistic threshold such that the electronic device should provide one or more of the tasks as a suggestion. In some examples, if more than one task satisfies the threshold, the electronic device selects only the highest scoring task. In some examples, tasks are scored using each of the probabilities of the first and second stages. In some examples, determining probabilities in this manner includes multiplying the probabilities.
  • the electronic device may multiply the probability for a task (i.e., as determined using the first stage of the model) with each of the probabilities for the task given respective parameters or combinations of parameters (i.e., as determined using the second stage of the model.
  • additional scoring adjustments are implemented to adjust probabilities. Such adjustments are based on a number of parameters (e.g., a higher number of parameters results in a higher score), parameter types (e.g., more discriminative parameters, such as a string, as opposed to a Boolean, result in a higher score), and parameter entropy over the course of event history as indicated by the context data (e.g., higher entropy (i.e., higher variation) results in a higher score).
  • different thresholds are used for display on different interfaces of the electronic device. If a first threshold is satisfied, the electronic device may display a suggestion on a search user interface ( 866 ), and if a second threshold is satisfied, the electronic device may additionally or alternatively display the suggestion on a locked screen interface ( 810 ).
  • the electronic device displays, on a display of the electronic device, a suggestion affordance corresponding to the task and the parameter. In some examples, if the probabilistic threshold is satisfied, the electronic device displays one or more suggestion affordances on the display. In some examples, suggestion affordances can be displayed in a number of interfaces—lock screen UI ( 810 ), search screen UI ( 866 ), and/or digital assistant UI ( 1604 ).
  • displaying the suggestion affordance corresponding to the task and the parameter includes, in accordance with a determination that the task satisfies a first set of suggestion criteria (e.g., first probabilistic threshold), displaying the suggestion affordance on a first user interface (( 810 ), and in accordance with a determination that the task satisfies a second set of suggestion criteria (e.g., second probabilistic threshold), displaying the suggestion affordance on a second user interface different from the first user interface ( 866 , 1604 ).
  • a first set of suggestion criteria e.g., first probabilistic threshold
  • second set of suggestion criteria e.g., second probabilistic threshold
  • the electronic device forgoes displaying the suggestion affordance.
  • the task probability is a first task probability
  • the task is a first task
  • the parameter probability is a first parameter
  • the parameter is a first parameter
  • the electronic device determines, based on the context data, a second task probability for a second task, determines, based on the context data, a parameter probability for a second parameter, the second parameter associated with the second task, and determines, based on the second task probability and the second parameter probability, whether the second task satisfies the suggestion criteria.
  • the selection affordance is a first selection affordance and determining whether the task satisfies suggestion criteria includes determining whether heuristic criteria have been satisfied. In some examples, in accordance with a determination that the heuristic criteria has been satisfied, the electronic device displays a second selection affordance corresponding to another task. In some examples, suggestions may be overridden according to one or more heuristics. In some examples, each heuristic is a rule (e.g., scripted and/or hard-coded rule) indicating a set of conditions that, when satisfied, cause the electronic device to specifies a suggestion corresponding to the conditions.
  • a rule e.g., scripted and/or hard-coded rule
  • each heuristic suggestion is considered to have a maximum probability (e.g., 100%) such that the heuristic is automatically considered as the best result, regardless of any other suggestions evaluated by the electronic device.
  • probabilities of heuristics decay if a user is presented with a suggestion for the heuristic and the user declines to perform a task associated with the suggestion.
  • heuristics are configured such that no two set of conditions can be simultaneously satisfied.
  • heuristics are suggestions of tasks that have not been performed by the electronic device and/or rely on context of the electronic device (e.g., text meeting organizer that user will be late based on traffic conditions).
  • the electronic device after displaying the suggestion affordance, the electronic device detects a first user input corresponding to a selection of the suggestion affordance, and in response to detecting the first user input, selectively performs the task.
  • the suggestion affordance ( 806 ) is selected using a touch input ( 816 ), a gesture, or a combination thereof.
  • the suggestion affordance is selected using a voice input.
  • the electronic device in response to selection of the suggestion affordance, the electronic device automatically performs the task, the electronic device launches an application associated with the task, and/or a the electronic device displays user interface by which the user can confirm performance of the task.
  • selectively performing the task includes, in accordance with a determination that the task is a task of a first type, performing the task, and in accordance with a determination that the task is a task of a second type, displaying a confirmation interface ( 820 ) including a confirmation affordance ( 824 ).
  • the operations described above with reference to FIG. 13 are optionally implemented by components depicted in FIGS. 1 - 4 , 6 A- 6 B, and 7 A- 7 C .
  • the operations of method 1900 may be implemented by any device (or component thereof) described herein, including but not limited to, devices 104 , 200 , 400 , 600 and 1200 . It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1 - 4 , 6 A- 6 B, and 7 A- 7 C .
  • FIG. 14 illustrates a sequence 1400 for performing a task, according to various examples.
  • FIG. 14 is also used to illustrate one or more of the processes described below, including the method 1500 of FIG. 15 .
  • one or more operations of the sequence 1400 are, optionally, combined, the order of operations is, optionally, changed, and/or some operations are, optionally, omitted.
  • additional operations may be performed in combination with the sequence 1400 .
  • the use of “sequence” is not intended to require a particular order of interactions unless otherwise indicated.
  • operations of the sequence 1400 can be performed using electronic device 1404 and server 1406 .
  • the electronic device 1404 may be any of devices 104 , 200 , 400 , and 600 ( FIGS. 1 , 2 A, 4 , and 6 A- 6 B ), and the server 1406 may be DA server 106 ( FIG. 1 ).
  • operations of the sequence 1400 may be performed using one or more alternative or additional devices.
  • one or more operations of the sequence 1400 described as being performed by the electronic device 1404 may be performed using multiple electronic devices.
  • operations of the process 1400 may be implemented to perform a task, for instance, in response to a natural-language speech input.
  • a natural-language speech input may be provided to an electronic device, and in particular to a digital assistant of an electronic device.
  • a determination is made as to whether the natural-language speech input includes a predetermined phrase (e.g., voice shortcut). The determination may be made by the electronic device and/or another device. If the natural-language speech input is determined to include a predetermined phrase, the electronic device performs a task associated with the predetermined phrase. If not, the natural-language speech input is processed using natural-language processing to determine a task associated with the natural-language speech input, and the electronic device performs the task determined using natural-language processing.
  • a predetermined phrase e.g., voice shortcut
  • the electronic device 1404 receives (e.g., via a microphone) a natural-language speech input.
  • the electronic device 1404 receives a natural-language speech input indicative of a request directed to the digital assistant of the electronic device 1404 .
  • the natural-language speech input may, for instance, include a voice trigger that may, for instance, activate the digital assistant.
  • the natural-language speech input can include any request that can be directed to the digital assistant.
  • the natural-language input “Get me directions to Starbucks,” may request that the digital assistant of the electronic device 1404 provide driving directions from a location of the electronic device to a nearest Starbucks location.
  • the natural-language speech input is received from another device, such as a device communicatively coupled to the electronic device (e.g., smart watch).
  • the natural-language speech input is provided over an ad-hoc connection between the electronic device and the other device.
  • the natural-language speech input is provided over a multi-hop network, such as the Internet.
  • the natural-language speech input includes a predetermined phrase (e.g., voice shortcut), such as those described with reference to FIGS. 10 A -LOAF.
  • a predetermined phrase may be associated with one or more tasks that, when provided to a digital assistant of the electronic device, cause the electronic device to perform one or more tasks associated with the phrase.
  • the electronic device 1404 provides the natural-language speech input to the server 1406 .
  • providing the natural-language speech input to the server 1406 includes providing a representation (e.g., text representation, spatial representation, audio representation) of the natural-language speech input to the server 1406 .
  • a text representation for instance, may be provided using a speech-to-text processing module, such as the STT processing module 730 in some examples.
  • the server 1406 receives the natural-language speech input from the electronic device 1404 and determines whether the natural-language speech input satisfies voice shortcut criteria.
  • determining whether the natural-language speech input satisfies voice shortcut criteria includes determining whether the natural-language speech input, or a text representation of the natural-language speech input, matches any of one or more predetermined phrases (e.g., voice shortcuts) associated with a user of the electronic device.
  • determining whether the natural-language speech input matches predetermined phrases includes determining whether the natural-language speech input exactly matches one or more predetermined phrases.
  • determining whether the natural-language speech input matches predetermined phrases includes determining whether a similarity between the natural-language speech input and each predetermined phrase exceeds a similarity threshold.
  • the server 1406 determines that the natural-language speech input satisfies voice shortcut criteria (e.g., the server 1406 determines the natural-language speech input matches a predetermined phrase), the server 1406 identifies a task associated with the matching predetermined phrase. In some examples, identifying a task in this manner includes determining values for one or more parameters of the task. By way of example, for a phrase “Coffee Time” corresponding to a task for ordering a coffee, the server 1406 may determine a size of the coffee, a type of the coffee, and/or a manner of payment for the transaction. Parameter values may be specified by the user (e.g., upon associating the phrase with the task), determined based on context of the electronic device (e.g., a location of the electronic device) and/or assigned default parameter values.
  • the server 1406 determines that the natural-language speech input does not satisfy voice shortcut criteria, the server 1406 , optionally, processes the natural-language speech input (or a textual representation thereof) using a natural language processing module, such as the natural language processing module 732 .
  • the electronic device 1404 provides an audio representation of the natural-language speech input, and processing the natural-language speech input using natural-language speech processing to determine a task includes providing one or more candidate text representations (e.g., text strings) of the natural-language speech input, for instance, using the STT processing module 730 .
  • Each of the candidate text representations may be associated with a speech recognition confidence score, and the candidate text representations may be ranked accordingly.
  • Determining the task may further includes providing one or more candidate intents based on the n-best (e.g., highest ranked) candidate text representations, for instance, using the natural language processing module 732 .
  • Each of the candidate intents may be associated with an intent confidence score, and the candidate intents may be ranked accordingly.
  • multiple candidate intents are identified for each candidate text representation.
  • a structured query (partial or complete) is generated for each candidate intent.
  • candidate tasks are determined based on the m-best (e.g., highest ranked) candidate intents, for instance, using the task flow processing module 736 .
  • the candidate tasks are identified based on the structured query for each of the m-best (e.g., highest ranked) candidate intents.
  • the structured queries may be implemented according to one or more task flows, such as task flows 754 , to determine tasks associated with the candidate intents.
  • a joint score may be assigned to each candidate task, for instance, based on confidence scores and/or context of the electronic device, and the task with the highest score may be selected as the task.
  • the electronic device 1404 receives a task from the server 1406 .
  • the task may have been a task associated with one or more predetermined phrases of the user, or may have been identified using natural-language processing.
  • the electronic device further receives one or more parameter values to be used in performing the received task.
  • the electronic device performs the task, and optionally, at operation 1435 provides an output (e.g., natural-language output) indicating whether the task was performed successfully.
  • the output may be provided by the digital assistant of the electronic device in some examples.
  • performing the task includes causing another device to perform the task.
  • the electronic device may, for instance, determine that the task is better suited for performance on another device and/or determine that the task must be performed on another device (e.g., the electronic device does not have a display and cannot perform a task requiring display of an interface). Accordingly, the electronic device may provide the task to another device and/or cause the other device to perform the task.
  • performing the task includes causing a third-party application to perform a task.
  • the voice shortcut “Close garage” may cause a third-party home automation application to close a garage door.
  • the third-party application provides a response indicating whether performance of the task was successful.
  • the output provided by the digital assistant of the third-party device is based on a response provided by an application.
  • a response provided by an application may include a natural-language expression, such as “The garage door was successfully closed.”
  • the electronic device, and in particular the digital assistant of the electronic device may receive the response and provide a natural-language output based on the natural-language expression of the response.
  • the natural-language output may be an audio output in some examples.
  • the electronic device may provide a natural-language output reciting “Home Automation says ‘The garage door was successfully closed.’”
  • Responses provided by applications in this manner may indicate whether tasks were successfully performed and/or provide other information to a user (e.g., current bus times in response to a request for a bus schedule).
  • performing the task provided by the server 1406 includes performing multiple tasks.
  • performing a task may include causing a first application to perform a first task and causing a second application to perform a second task different from the first task.
  • the electronic device determines whether the natural-language speech input satisfies voice shortcut criteria in lieu of, or in parallel to, the server 1406 .
  • FIG. 15 illustrates method 1500 for performing a task, according to various examples.
  • Method 1500 is performed, for example, using one or more electronic devices implementing a digital assistant.
  • method 1500 is performed using a client-server system (e.g., system 100 ), and the blocks of method 1500 are divided up in any manner between the server (e.g., DA server 106 ) and a client device.
  • the blocks of method 1500 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch).
  • client devices e.g., a mobile phone and a smart watch
  • method 1500 is performed using only a client device (e.g., user device 104 ) or only multiple client devices.
  • some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted.
  • additional steps may be performed in combination with the method 1500 .
  • performing tasks in response to natural-language speech inputs provides an intuitive and efficient approach for performing tasks on the electronic device.
  • one or more tasks may be performed in response to a natural-language speech input without any additional input from the user.
  • performing tasks in response to natural-language speech inputs in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • the electronic device includes one or more of a keyboard, mouse, microphone, display, and touch-sensitive surface.
  • the display is a touch-sensitive display. In other examples, the display is not a touch-sensitive display.
  • the electronic device receives a natural-language speech input (e.g., spoken utterance, 1606 ) ( 1410 ).
  • receiving a natural-language speech input includes receiving a representation of the natural-language speech input from a second electronic device (e.g., smart watch).
  • receiving a representation of the natural-language speech input from a second electronic device includes receiving the representation of the natural-language speech input over a multi-hop network.
  • the representation is received from a remote device, for instance, over a WiFi connection and/or the Internet.
  • the natural-language speech input includes a voice trigger (e.g., “Hey Siri”).
  • the electronic device determines whether the natural-language speech input satisfies voice shortcut criteria. In some examples, the electronic device determines whether the natural-language speech input matches one or more voice shortcuts associated with a user of the electronic device. In some examples, determining whether a match exists in this manner includes determining whether a match exists locally and/or remotely. For example, in some instances the electronic device determines whether a match exists. In another example, the electronic device provides the natural-language speech input, or a representation thereof, to a backend server ( 1406 ) ( 1415 ), and the backend server determines if a match exists ( 1420 ).
  • determining whether the natural-language speech input satisfies voice shortcut criteria includes providing a representation (e.g., textual representation, spatial representation, audio representation) of the natural-language speech input to another electronic device (e.g., backend server, such as a backend natural-language processing server) and receiving, from the another electronic device, at least one of a voice shortcut or a task ( 1425 ).
  • a representation e.g., textual representation, spatial representation, audio representation
  • another electronic device e.g., backend server, such as a backend natural-language processing server
  • both the electronic device and the backend server determine if a match exists and the electronic device evaluates both results to determine if a match exists.
  • the electronic device identifies a task associated with the voice shortcut and performs the task associated with the voice shortcut (e.g., either the electronic device or another device (e.g., backend server) determines a task associated with the voice shortcut) ( 1430 ).
  • performing the task associated with the voice shortcut includes causing a first application to perform a first task and causing a second application to perform a second task different than the first task.
  • a voice shortcut is associated with a plurality of tasks (e.g., a sequence of tasks) and the electronic device performs each of the plurality of tasks.
  • performing the task associated with the voice shortcut includes determining whether the task associated with the voice shortcut is a task of a first type; in accordance with a determination that the voice shortcut is a task of the first type, performing the task using the electronic device; and in accordance with a determination that the voice shortcut is a task of a second type different than the first type, causing the task to be performed using a third electronic device.
  • the electronic device determines whether the task is a task of a first type by determining whether the task may be performed by the electronic device or another device.
  • the electronic device identifies a task associated with the natural-language speech input and performs the task associated with the natural-language speech input ( 1430 ).
  • the electronic device performs natural-language processing to determine an intent and/or task.
  • a backend server performs natural-language processing and provides the task to the electronic device.
  • a task that is not a task of the first type is a task that is “better suited” for another device and/or cannot be performed by the electronic device.
  • a user may provide the voice shortcut “Play Game of Thrones” to the phone, and the phone, in turn, cause a TV to perform the task for the voice shortcut.
  • Performing natural-language processing on a natural-language speech input in the event that the speech input does not satisfy voice shortcut criteria ensures that commands provided to the electronic device by a user are handled even if the speech input does not correspond to a voice shortcut.
  • the electronic device may handle a broader range of commands and/or intents specified by a user. Accordingly, performing tasks in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • the electronic device provides a natural-language output indicating whether the task was successful ( 1435 ) ( 1616 , 1630 , 1662 , 1676 ).
  • performing the task includes causing a third-party application to perform the task and providing the natural-language output includes receiving a response from a third-party application and generating the natural-language output based on the response received from the third-party.
  • the third-party application provides a response indicating whether the task was successful.
  • the response explicitly indicates that the task was successfully performed or failed.
  • the response includes requested information (e.g., the task was to retrieve a bus schedule in response to a request for the same) ( 1688 ) and the return of the requested information implicitly indicates that the task was successful.
  • the natural-language output is an audio speech output.
  • the electronic device, and in particular, the digital assistant of the electronic device generates a natural-language input based on the response of the application and provides the generated natural-language output to the user.
  • FIGS. 1 - 4 , 6 A- 6 B, and 7 A- 7 C The operations described above with reference to FIG. 15 are optionally implemented by components depicted in FIGS. 1 - 4 , 6 A- 6 B, and 7 A- 7 C .
  • the operations of method 1900 may be implemented by any device (or component thereof) described herein, including but not limited to, devices 104 , 200 , 400 , 600 and 1400 . It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1 - 4 , 6 A- 6 B, and 7 A- 7 C .
  • FIGS. 16 A- 16 S illustrate exemplary user interfaces for performing a task on an electronic device (e.g., device 104 , device 122 , device 200 , device 600 , or device 700 ), in accordance with some embodiments.
  • the user interfaces in these figures are used to illustrate the processes described below, including the processes in FIG. 17 .
  • FIG. 16 A illustrates an electronic device 1600 (e.g., device 104 , device 122 , device 200 , device 600 , or device 700 ).
  • electronic device 1600 is a smartphone.
  • electronic device 1600 can be a different type of electronic device, such as a wearable device (e.g., a smartwatch).
  • electronic device 1600 has a display 1601 , one or more input devices (e.g., touchscreen of display 1601 , a button, a microphone), and a wireless communication radio.
  • the electronic device 1600 includes a plurality of cameras.
  • the electronic device includes only one camera.
  • the electronic device includes one or more biometric sensors (e.g., biometric sensor 1603 ) which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • biometric sensors e.g., biometric sensor 1603
  • the electronic device 1600 displays, on display 1601 , a digital assistant interface (e.g., conversational interface), such as the digital assistant interface 1604 . While displaying the digital assistant interface 1604 , the electronic device 1600 receives (e.g., obtains, captures) a natural-language input 1606 (e.g., “Hey Siri, order my groceries.”).
  • a natural-language input 1606 e.g., “Hey Siri, order my groceries.”.
  • the natural-language input 1606 is a natural-language speech input received, for instance, using an input device of the electronic device (e.g., microphone).
  • the digital assistant interface optionally includes a preview 1608 (e.g., live preview) of the natural-language input 1606 .
  • the electronic device 1600 in response to the natural-language input, performs a task.
  • the electronic device 1600 may determine whether the natural-language input matches a predetermined phrase, and if so, perform a task corresponding to the phrase. If the task does not corresponding to the phrase, natural-language processing may be used to determine a task associated with the natural-language input, and the electronic device 1600 may perform the task.
  • the electronic device requests confirmation of the task from a user. For instance, as illustrated in FIG. 16 B , once the electronic device 1600 identifies a task corresponding to the natural-language input, the electronic device 1600 can display a confirmation interface, such as the confirmation interface 1610 .
  • the confirmation interface 1610 includes a confirmation affordance 1612 , a cancel affordance 1614 , and an application affordance 1616 .
  • the confirmation interface further may include content 1618 associated with the task.
  • selection of the cancel affordance 1614 causes the electronic device 1600 to cease display of the confirmation interface 1610 and/or forgo performing the identified task.
  • selection of the application affordance 1616 causes the electronic device 1600 to open an application associated with the task.
  • Content 1618 may include information directed to the task, such as one or more parameters to be used to perform the task. As illustrated in FIG. 16 B , for instance, content 1618 may specify that the task is directed to ordering a set of grocery items included in the group “My Grocery List”, the number of items to be ordered, a delivery address, and a time window in which the delivery is to be made.
  • confirmation interface 1610 includes an icon (e.g., image, GIF) associated with the application of the task to help a user more readily identify the application performing the task.
  • icon e.g., image, GIF
  • the electronic device 1600 in response to selection of the confirmation affordance 1612 , for instance by user input 1620 , the electronic device 1600 performs the task. As illustrated in FIG. 16 C , in some examples, while the electronic device is performing the task, the electronic device 1600 , optionally, displays a progress indicator 1615 , indicating that the task is being performed. In some examples, display of the progress indicator 1615 replaces display of the confirmation affordance 1612 and the cancel affordance 1614 .
  • the electronic device 1600 provides an output indicating whether the task was performed successfully.
  • the task is performed successfully, and as a result, the electronic device 1600 displays a success indicator 1617 , indicating that the task was successfully performed.
  • display of the success indicator 1617 replaces display of the progress indicator 1615 .
  • the failure interface 1621 includes a retry affordance 1622 , a cancel affordance 1624 , and application affordances 1626 , 1628 .
  • the failure interface further includes content 1630 .
  • selection of the retry affordance 1622 causes the electronic device 1600 to perform the task again.
  • selection of the cancel affordance causes the electronic device 1600 to cease display of the failure interface 1620 .
  • selection of either the application affordance 1626 or application affordance 1628 causes the electronic device 1600 to open an application associated with the task.
  • Content 1630 may include information directed to the task, such as one or more parameters used to perform the task.
  • content 1630 is the same content as content 1618 .
  • content 1630 is different than content 1618 .
  • Content 1630 may, for example, indicate that the electronic device failed to perform the task successfully (e.g., “There was a problem. Please try again.”).
  • performing a task may include causing an application to perform the task, and optionally, receive a response from the application indicating whether the task was performed successfully.
  • the response provided by an application includes a natural-language expression that may in turn be used by the electronic device 1600 to indicate whether a task was successfully performed and/or provide additional information, from the application, to a user.
  • the electronic device 1600 displays, on display 1601 , a digital assistant interface (e.g., conversational interface), such as the digital assistant interface 1654 . While displaying the digital assistant interface 1654 , the electronic device 1600 receives (e.g., obtains, captures) a natural-language input 1656 (e.g., “Hey Siri, coffee me.”).
  • a natural-language input 1656 e.g., “Hey Siri, coffee me.”.
  • the natural-language input is a natural-language speech input received, for instance, using an input device of the electronic device (e.g., microphone).
  • the digital assistant interface optionally includes a preview 1658 (e.g., live preview) of the natural-language input.
  • the electronic device 1600 performs a task, as described (recall that the electronic device may confirm performance of the task with a user in some examples). For instance, if the natural-language input corresponds to (e.g., includes) a predetermined phrase, the electronic device 1600 can perform a task associated with the phrase, or if the natural-language input does not correspond to a predetermined phrase, the electronic device 1600 can perform a task associated with the natural-language input as determined by natural-language processing.
  • the electronic device 1600 receives a response from an application used to perform the task and, based on the response, provides an output indicating whether the task was performed successfully. In the example of FIG. 16 G , the task is performed successfully. Accordingly, the electronic device 1600 displays success interface 1660 . Success interface 1660 includes output 1662 , which in turn includes digital assistant response 1664 and application response 1666 , and application affordance 1670 . In some examples, application response 1666 is at least a portion of a response provided by the application following performance of the task. In some examples, application response 1666 includes content and/or one or more natural-language expressions. As illustrated in FIG.
  • application response 1666 includes natural-language expression 1668 (e.g., “Your latte will be ready in 20 min.”) indicating that the task was performed successfully and/or providing information related to the task.
  • Content of application response such as content 1670
  • digital assistant response 1664 indicates whether a task was performed successfully (e.g., “OK ordered.”).
  • the digital assistant response 1664 may, for instance, be used to clarify for a user that the application response 1666 includes information provided by the application (e.g., “The Coffee App says”).
  • selection of the content 1670 causes the electronic device 1600 to open the application associated with the task. As described, opening the application in this manner may cause the application to be preloaded with one or more parameters associated with the task.
  • failure interface 1674 includes output 1676 , which in turn includes digital assistant response 1678 and application response 1680 , and application affordance 1682 .
  • application response 1680 is at least a portion of a response provided by the application following performance of the task.
  • application response 1680 includes content and/or one or more natural-language expressions. As illustrated in FIG. 16 H , for instance, application response 1680 includes natural-language expression 1682 (e.g., “Your card balance is insufficient.
  • digital assistant response 1664 indicates whether a task was performed successfully (e.g., “Something went wrong.”). In some examples, the digital assistant response 1664 may, for instance, be used to clarify for a user that the application response 1666 includes information provided by the application (e.g., “The Coffee App says”). In some examples, selection of application affordance 1682 causes the electronic device 1600 to open the application associated with the task. As described, opening the application in this manner may cause the application to be preloaded with one or more parameters associated with the task.
  • providing responses received from applications in this manner allows a digital assistant to provide communication between an application and a user without requiring the user to open the application. For instance, in some examples, a user may request information from an electronic device that the user may otherwise have to open an application to retrieve.
  • a user may provide a natural-language input to the electronic device 1600 requesting information pertaining to a bus schedule.
  • the electronic device 1600 may cause an application corresponding to the task to retrieve the information and return the information in a response, as illustrated in FIG. 16 J .
  • the output provided by the electronic device 1600 e.g., output 1688
  • the digital assistant response 1690 and application response 1692 may include a digital assistant response and an application response, such as the digital assistant response 1690 and application response 1692 .
  • a user may exit from a digital assistant interface prior to a time at which the electronic device 1600 provides an output corresponding to a task. Accordingly, in some examples, outputs provided by the electronic device 1600 may be displayed on a lock screen interface. With reference to FIGS. 16 K- 16 L , the electronic device 1600 may display outputs corresponding to tasks on a lock screen interface when the electronic device 1600 is either in a locked state ( FIG. 16 K ) or an unlocked state ( FIG. 16 L ), respectively. As described, the electronic device 1600 may forgo displaying content when the electronic device 1600 is in the locked state.
  • an electronic device displays interfaces, as described herein, depends on a type of the electronic device.
  • electronic device 1600 may be implemented as a device with a relatively small display such that interfaces, such as digital assistant interface 1604 or digital assistant interface 1654 , may not be practical for display. Accordingly, in some examples, electronic device 1600 may display alternative interfaces to those previously described.
  • the electronic device 1600 displays, on display 1601 , a digital assistant interface (e.g., conversational interface), such as the digital assistant interface 1604 A. While displaying the digital assistant interface 1604 A, the electronic device 1600 receives (e.g., obtains, captures) a natural-language input 1606 A (e.g., “Hey Siri, coffee me.”).
  • a natural-language input 1606 A e.g., “Hey Siri, coffee me.”.
  • the natural-language input 1606 A is a natural-language speech input received, for instance, using an input device of the electronic device (e.g., microphone).
  • the digital assistant interface optionally includes a preview 1608 A (e.g., live preview) of the natural-language input 1606 A.
  • the electronic device 1600 displays a confirmation interface 1610 A requesting confirmation of a task associated with the natural-language input 1606 A.
  • the confirmation interface 1610 A includes a confirmation affordance 1612 A and a cancel affordance 1614 A.
  • the confirmation interface further may include content 1618 A associated with the task.
  • selection of the cancel affordance 1614 A causes the electronic device 1600 to cease display of the confirmation interface 1610 A and/or forgo performing the identified task (recall that in some examples performing a task may include causing another device to perform the task).
  • Content 1618 A may include information directed to the task, such as one or more parameters to be used to perform the task. As illustrated in FIG. 16 B , for instance, content 1618 A may specify that the task is directed to ordering a large latte coffee from a place of business located on Homestead Rd.
  • the electronic device 1600 in response to selection of the confirmation affordance 1612 A, for instance by user input 1620 A, the electronic device 1600 performs the task. As illustrated in FIG. 16 O , in some examples, while the electronic device 1600 is performing the task, the electronic device 1600 displays a progress indicator 1614 A, indicating that the task is being performed. In some examples, display of the progress indicator 1615 A replaces display of the confirmation affordance 1612 A and the cancel affordance 1614 A.
  • the electronic device 1600 provides an output indicating whether the task was performed successfully.
  • the task is performed successfully, and as a result, the electronic device 1600 displays a success indicator 1616 A, indicating that the task was successfully performed.
  • display of the success indicator 1616 A replaces display of the progress indicator 1615 A.
  • the failure interface 1620 A includes a retry affordance 1622 and a cancel affordance 1624 A.
  • the failure interface further includes content 1630 A.
  • selection of the retry affordance 1622 A causes the electronic device 1600 to perform the task again.
  • selection of the cancel affordance 1624 A causes the electronic device 1600 to cease display of the failure interface 1620 A.
  • Content 1630 A may include information directed to the task, such as one or more parameters used to perform the task.
  • content 1630 A is the same content as content 1618 A.
  • content 1630 A is different than content 1618 A.
  • Content 1630 A may, for example, indicate that the electronic device failed to perform the task successfully (e.g., “There was an error. Please try again.”).
  • the electronic device 1600 receives a natural-language input (e.g., “Hey Siri, coffee me.”), successfully performs a task corresponding to the natural-language input, and, in response, displays success interface 1660 A.
  • Success interface 1660 A includes output 1662 A, which in turn includes digital assistant response 1664 A and application response 1666 A.
  • application response 1666 A is at least a portion of a response provided by the application following performance of the task.
  • application response 1666 A includes content and/or one or more natural-language expressions. As illustrated in FIG.
  • application response 1666 A includes natural-language expression 1668 A (e.g., “Large latte ready in 20 min.”) indicating that the task was performed successfully and/or providing additional information related to the task.
  • Content of the application response such as content 1670 A, may include any type of content, such as images, videos, and/or interactive content (e.g., an interactive map). In this manner, an application may further specify additional information related to a task.
  • digital assistant response 1664 A indicates whether a task was performed successfully (e.g., “OK ordered.”). In some examples, the digital assistant response 1664 A may, for instance, be used to clarify for a user that the application response 1666 A includes information provided by the application (e.g., “The Coffee App says”).
  • failure interface 1674 A includes output 1676 A, which in turn includes digital assistant response 1678 A and application response 1680 A.
  • application response 1680 A is at least a portion of a response provided by the application following performance of the task.
  • application response 1680 A includes content and/or one or more natural-language expressions. As illustrated in FIG.
  • application response 1680 A includes natural-language expression 1682 A (e.g., “Continue on your phone.”) indicating that the task was not performed successfully and/or further providing additional information related to the task (e.g., that the current device is not capable of opening the application that performed the task).
  • digital assistant response 1664 A indicates whether a task was performed successfully (e.g., “Hmm, something went wrong.”).
  • the digital assistant response 1664 A may, for instance, be used to clarify that the application response 1666 A includes information provided by the application (e.g., “The Coffee App says”).
  • FIG. 17 illustrates method 1700 for performing a task using a digital assistant, according to various examples.
  • Method 1700 is performed, for example, using one or more electronic devices implementing the digital assistant.
  • method 1700 is performed using a client-server system (e.g., system 100 ), and the blocks of method 1700 are divided up in any manner between the server (e.g., DA server 106 ) and a client device.
  • the blocks of method 1700 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch).
  • client devices e.g., a mobile phone and a smart watch
  • method 1700 is performed using only a client device (e.g., user device 104 ) or only multiple client devices.
  • some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted.
  • additional steps may be performed in combination with the method 1700 .
  • Performing tasks and providing responses from applications as described herein allows the digital assistant perform tasks and provide task feedback to a user without a need for an application to be opened. Accordingly, a user can interact with an application without opening or otherwise directly accessing the application. As a result, the number of inputs and amount of time needed for the user to operate the electronic device are reduced (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • the electronic device includes one or more of a keyboard, mouse, microphone, display, and touch-sensitive surface.
  • the display is a touch-sensitive display. In other examples, the display is not a touch-sensitive display.
  • the electronic device receives, with a digital assistant, a natural-language speech input (e.g., spoken utterance) ( 1606 ).
  • a natural-language speech input e.g., spoken utterance
  • the electronic device determines a voice shortcut associated with the natural-language speech input.
  • the electronic device determines a task corresponding to the voice shortcut.
  • the task is a request for information from a third-party service.
  • the electronic device determines that the natural-language speech input is associated with a voice shortcut and determines a task associated with the voice shortcut.
  • the electronic device causes an application (e.g., first-party application, third-party application) to initiate performance of the task.
  • causing an application (e.g., first-party application, third-party application) to initiate performance of the task includes displaying a task performance animation.
  • the task performance animation includes rotating a circle object ( 1615 ) to indicate performance of the task is occurring.
  • causing an application (e.g., first-party application, third-party application) to initiate performance of the task includes prompting the user to confirm performance of the task.
  • the electronic device displays a confirmation interface ( 1610 , 1610 A) requesting that the user confirm performance of the task.
  • the confirmation interface includes an affordance ( 1612 , 1612 A) by which the user can confirm and, optionally, further includes a cancel affordance ( 1614 , 1614 A) by which the user can cause the electronic device to cease display of the confirmation interface and forgo performing the task.
  • the electronic device receives a response from the application, wherein the response is associated with the task.
  • the application provides a response ( 1666 , 1680 , 1692 ) indicating whether the task was successful.
  • the response explicitly indicates that the task was successfully performed or failed.
  • the response includes requested information (e.g., the task was to retrieve a bus schedule in response to a request for the same) and the return of the requested information implicitly indicates that the task was successful.
  • the electronic device displays an application user interface ( 1660 ) associated with the application.
  • the electronic device displays information associated with the application, and optionally, the task.
  • the electronic device displays a map that, when selected, causes execution of the relevant map application.
  • one or more aspects of the user interface is specified by the application.
  • the user interface is a string, graphic, animation, or a combination thereof.
  • an application such as a third-party application, provides content for display in the application user interface (e.g., a graphic reciting “Thank you” in response to a successful transaction).
  • the application user interface includes the output indicating whether the task was successfully performed.
  • the application user interface is displayed concurrently with the output.
  • the electronic device determines, based on the response, whether the task was successfully performed.
  • the electronic device provides an output indicating whether the task was successfully performed.
  • providing an output indicating whether the task was successfully performed includes, in accordance with a determination that the task was performed successfully, displaying an indication that the task was performed successfully and, in accordance with a determination that the task was not performed successfully, displaying an indication that the task was not performed successfully.
  • the electronic device displays a symbol (e.g., checkmark for success, “X” for failure) indicating whether the task was successfully performed.
  • the electronic device displays a checkmark ( 1616 ) to indicate that the task was performed successfully.
  • the electronic device displays an “X” indicating that the task failed.
  • the electronic device displays a message indicating that the task failed (e.g., “There was a problem. Please try again.”).
  • the electronic device generates a natural-language output based on the response and provides (e.g., outputs, displays), with the digital assistant, the natural-language output.
  • the electronic device displays a failure user interface ( 1620 ).
  • providing an output includes generating a natural-language output ( 1662 , 1676 ) based on the response and providing, with the digital assistant, the natural-language output.
  • providing e.g., outputting, displaying
  • the natural-language output includes providing an audio speech output.
  • providing the natural-language output includes displaying the natural-language output.
  • the natural-language output includes a reference to the application.
  • the natural-language output includes a name or nickname of an application.
  • the response includes a natural-language expression and the natural-language output includes the third-party natural language expression (e.g., 1666 , “Okay, ordered. Starbucks says ‘Your order will be ready in 5 minutes).
  • the response includes a natural-language expression ( 1668 , 1682 ) and the natural-language output includes at least a portion of the natural-language expression.
  • the natural-language output indicates that the task was not performed successfully by the application (e.g., “Something went wrong. Starbucks says ‘You have insufficient funds.’”). In some examples, the natural-language output indicates that the task was performed successfully by the application.
  • Providing outputs allows the digital assistant to provide feedback and/or other information from an application, for instance during the course of a dialog (e.g., conversational dialog) between a user and the digital assistant, in an intuitive and flexible manner.
  • the digital assistant may provide (e.g., relay) natural-language expressions from an application to the user such that the user can interact with the application without opening or otherwise directly accessing the application.
  • providing natural-language outputs in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • the failure user interface includes a retry affordance ( 1622 ).
  • the electronic device detects a user input corresponding to a selection of the retry affordance and, in response to detecting the user input corresponding to a selection of the retry affordance, causes the application to initiate performance of the task.
  • the failure user interface includes a cancel affordance ( 1624 ).
  • the electronic device detects a user input corresponding to a selection of the cancel affordance, and in response to the user input corresponding to a selection of the cancel affordance, ceases to display of the failure user interface.
  • the failure user interface includes an application launch affordance ( 1626 , 1628 ).
  • the electronic device detects a user input corresponding to a selection of the application launch affordance and, in response to the user input corresponding to a selection of the application launch affordance, launches (e.g., executes, opens) the application.
  • launches e.g., executes, opens
  • the user selects (1) the application launch affordance or (2) an icon associated with the application to launch the application.
  • the electronic device displays a task success animation.
  • the task success animation includes a shape (e.g., square, circle) being “checked off” ( 1616 ).
  • FIGS. 1 - 4 , 6 A- 6 B, and 7 A- 7 C The operations described above with reference to FIG. 17 are optionally implemented by components depicted in FIGS. 1 - 4 , 6 A- 6 B, and 7 A- 7 C .
  • the operations of method 1900 may be implemented by any device (or component thereof) described herein, including but not limited to, devices 104 , 200 , 400 , 600 and 1600 . It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1 - 4 , 6 A- 6 B, and 7 A- 7 C .
  • an electronic device may provide suggestions based on context of the electronic device. In some instances, however, it may be desirable to provide task suggestions using other types of information as well (e.g., user-specific information).
  • information indicating a user's progress in a queue e.g., TV show episode playlist
  • context data e.g., TV show episode playlist
  • the electronic device may receive information (e.g., user-specific information) from an application (e.g., media streaming application), such as a set of media items (e.g., content such as songs, videos, albums, playlists) identified by the application for the user.
  • the information may be received, for instance, in response to an API call provided to the application.
  • the application is a third-party application (e.g., Netflix).
  • the application is a remote application, such as a remote media prediction service communicatively coupled to the electronic device over a network such as the Internet.
  • the information may be received at any time prior to prediction of task suggestions.
  • the set of media items includes media items recommended for the user by the application. Items may be recommended based on prior media items accessed by the user. As an example, an application may recommend a current or next song in a playlist accessed by a user. In another example, an application may recommend items related to previously accessed media items, such as media items sharing a same category as the previously accessed media items. Categories may include, for instance, genre (e.g., hip-hop), decade (e.g., 90 's), activity (e.g., study, workout), mood (e.g., happy), holiday (e.g., Christmas).
  • genre e.g., hip-hop
  • decade e.g. 90 's
  • activity e.g., study, workout
  • mood e.g., happy
  • holiday e.g., Christmas
  • the set of media items is provided as a list of media items. In some examples, the set of media items is provided as a vector. In some examples, the set of media items is provided in combination with playback data describing one or more media items of the set of media items.
  • the playback data can, optionally, specify one or more aspects for playback of the media items. As an example, the playback data can specify a particular time in one or more of the media items (e.g., a time at which a user ceased playback of a media item). As another example, the playback data can specify a language for playback and/or whether subtitles are to be displayed. As yet another example, the playback data can indicate a resolution and/or bitrate for playback of the media item.
  • the electronic device can receive any number of sets of media items from any number of applications.
  • Sets of media items received in the manner described may be received periodically and/or in response to an event.
  • the electronic device requests one or more sets of media items prior to selectively providing task suggestions.
  • the electronic device determines whether to provide one or more task suggestions based the set of media items and/or context data of the electronic device, as described with reference to FIG. 12 .
  • the electronic device receives context data associated with the electronic device, and based on the set of media items and context data, determines one or more tasks. At least one of the one or more tasks may, for instance, correspond to playback of a media item of the set of media items. In some examples, one or more parameters of tasks corresponding to playback of a media item may be based on the playback data. By way of example, the task may correspond to playback of the media item at a particular time.
  • the electronic device determines whether any of the one or more tasks satisfy suggestion criteria, as described. For each of the one or more tasks satisfying the suggestion criteria, the electronic device provides a task suggestion and displays, on a display of the electronic device, a suggestion affordance corresponding to the task suggestion, as described.
  • the electronic device determines a task and selectively modifies the task using the one or more media items. For instance, in addition to receiving the set of media items, the electronic device receives context data and determines a task based on the context data. If the task corresponds to playback of a media item, the task may be modified to include a media item of the set of media items and/or a parameter of a media item of the plurality of media items. In some examples, the task is modified before determining whether the task satisfies suggestion criteria. In some examples, the task is modified after determining whether the task satisfies suggestion criteria.
  • FIGS. 18 A- 18 D illustrate exemplary user interfaces for providing media item suggestion affordances on an electronic device (e.g., device 104 , device 122 , device 200 , device 600 , or device 700 ), in accordance with some embodiments.
  • the user interfaces in these figures are used to illustrate the processes described below, including the processes in FIG. 19 .
  • FIG. 18 A illustrates an electronic device 1800 (e.g., device 104 , device 122 , device 200 , device 600 , or device 700 ).
  • electronic device 1800 is a smartphone.
  • electronic device 1800 can be a different type of electronic device, such as a wearable device (e.g., a smartwatch).
  • electronic device 1800 has a display 1801 , one or more input devices (e.g., touchscreen of display 1801 , a button, a microphone), and a wireless communication radio.
  • the electronic device 1800 includes a plurality of cameras.
  • the electronic device includes only one camera.
  • the electronic device includes one or more biometric sensors (e.g., biometric sensor 1803 ) which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • biometric sensors e.g., biometric sensor 1803
  • the electronic device 1800 displays, on display 1801 , a locked screen interface, such as the locked screen interface 1804 , while the electronic device is in an unlocked state.
  • the locked screen interface 1804 includes a suggestion affordance 1806 and a notification 1808 .
  • selection of the selection affordance 1806 causes the electronic device 1800 to selectively perform a task associated with the suggestion affordance, as described with respect to FIGS. 8 A- 8 AF .
  • Suggestion affordance 1806 corresponds to a task for playback of a media item (e.g., Episode 3 of Season 2 of Silicon Valley) in a media playback application (e.g., TV app).
  • selection of the notification 1808 causes the electronic device to open an application associated with the notification.
  • the electronic device 1800 in response to selection of the suggestion affordance 1806 , for instance by user input 1814 , the electronic device 1800 performs the task. As illustrated in FIG. 16 B , the electronic device 1800 initiates playback of the media item associated with suggestion affordance 1806 (e.g., Episode 3 of Season 2 of Silicon Valley).
  • the media item associated with suggestion affordance 1806 e.g., Episode 3 of Season 2 of Silicon Valley.
  • suggestion affordances may be displayed on a search screen and/or searchable using a searching function of the electronic device.
  • the electronic device 1800 displays a search interface 1820 . While displaying the search interface 1820 , in response to entry of a search string (e.g., “S”), the electronic device 1800 returns search results, including suggestion affordances 1822 , 1828 , 1832 , contact results 1834 , and mail results 1836 .
  • suggestion affordances are presented above all other results. Accordingly, suggestion affordances 1822 , 1828 , and 1832 are presented above contact results 1834 and mail results 1836 in the search interface 1820 .
  • suggestion affordances corresponding to tasks for playback of media items are displayed in a manner different than other suggestion affordances.
  • the suggestion affordance 1822 includes media icon 1824 and playback glyph 1826 .
  • icon 1824 may be relatively large relative to icons of other suggestion affordances (e.g., icon 1830 of suggestion affordance 1828 , icon 1834 of suggestion affordance 1832 ).
  • Icon 1824 further may include an image associated with the media item, such as a video frame.
  • Playback glyph 1826 may indicate that suggestion affordance 1822 corresponds to task corresponding to a media task category.
  • the electronic device 1800 in response to selection of the suggestion affordance 1822 , for instance by user input 1836 , the electronic device 1800 displays an expanded interface 1850 associated with suggestion affordance 1822 .
  • user input 1836 is a touch input of a predetermined type (e.g., touch input satisfying a threshold intensity or duration).
  • the expanded interface 1850 includes suggestion affordance 1838 , which in some examples, corresponds to suggestion interface 1822 .
  • suggestion affordance 1838 includes an icon 1840 that corresponds to icon 1824 and a playback glyph 1842 that corresponds to icon 1826 .
  • icon 1840 includes an image associated with the media item, such as a video frame.
  • icons 1822 and 1840 include a same image.
  • icon 1840 of suggestion affordance 1838 is larger than icon 1824 .
  • display of the expanded view interface 1850 causes one or more portions of the display of the electronic device 1800 to be blurred, darkened, and/or otherwise obscured.
  • FIG. 19 illustrates method 1900 for providing media item suggestions, according to various examples.
  • Method 1900 is performed, for example, using one or more electronic devices implementing a digital assistant.
  • method 1900 is performed using a client-server system (e.g., system 100 ), and the blocks of method 1900 are divided up in any manner between the server (e.g., DA server 106 ) and a client device.
  • the blocks of method 1900 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch).
  • client devices e.g., a mobile phone and a smart watch
  • method 1900 is performed using only a client device (e.g., user device 104 ) or only multiple client devices.
  • some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted.
  • additional steps may be performed in combination with the method 1900 .
  • suggestion affordances displayed by the electronic device can correspond to tasks identified based on media consumption and/or determined media preferences of the user.
  • selectively providing suggestions in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • the electronic device includes one or more of a keyboard, mouse, microphone, display, and touch-sensitive surface.
  • the display is a touch-sensitive display. In other examples, the display is not a touch-sensitive display.
  • the electronic device receives a plurality of media items from an application.
  • the electronic device requests the plurality of media items from the application (e.g., third-party application) using an API call.
  • the application in response to the API call, the application returns a list (e.g., vector) of upcoming media items recommended by the application for the user.
  • media items received in this manner can include albums, songs, TV shows, episodes (or playlists of any combination thereof.
  • receiving a plurality of media items from an application includes receiving a vector including the plurality of media items from the application.
  • each media item is a container that includes information about a respective media item or set of media items.
  • receiving a plurality of media items from an application includes, while displaying another application different from the application, receiving the plurality of media items.
  • the electronic device requests the plurality of media items from the application.
  • media items are requested/received at the time suggestions are predicted.
  • media items are requested/received when application is opened and/or closed by user.
  • the plurality of media items are received from a remote application (e.g., remote media prediction service).
  • the plurality of media items is received prior to an event causing the electronic device to selectively provide a prediction.
  • the electronic device receives context data associated with the electronic device.
  • the electronic device receives context information of the electronic device.
  • Context information received in this manner can include location of the electronic, time of day, day of week, etc.
  • the electronic device determines a task based on the plurality of media items and the context data.
  • the task is a task for playback of a media item of the plurality of media items.
  • the task specifies a particular playback time.
  • the task can specify that playback of a media item is initiated at a particular point in the media item (e.g., 1 : 02 ).
  • the electronic device generates a plurality of suggestions, as described. If one or more the suggested tasks correspond to a media item in the requested list, one or more tasks for playback of the respective media items are provided.
  • Determining tasks e.g., task probabilities, parameter probabilities
  • Determining tasks based on context of the electronic device and the plurality of media items ensures that task suggestions provided by the electronic device, as described herein, are provided based not only on previous usage of the electronic device by a user, but also intuitive and relevant predictions as to future behavior in the media domain. This in turn ensures that the user is provided with salient task suggestions that have a relatively high likelihood of accelerating user behavior.
  • providing suggestions in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • the electronic device determines whether the task satisfies suggestion criteria. In some examples, the electronic device determines whether any of the identified tasks, given the context data and current context of the electronic device, satisfy a probabilistic threshold such that the electronic device should provide one or more of the tasks as a suggestion.
  • the electronic device displays, on a display of the electronic device, a suggestion affordance ( 1806 ) corresponding to the task.
  • the electronic device forgoes displaying the suggestion affordance.
  • the task is a first task and the suggestion affordance is a first suggestion affordance.
  • the electronic device determines a second task based on the context data, determines whether the second task satisfies suggestion criteria, in accordance with a determination that the second task satisfies the suggestion criteria, displays, on the display, a second suggestion affordance corresponding to the second task, and in accordance with a determination that the second task does not satisfy the suggestion criteria, forgoes displaying the second suggestion affordance.
  • the application is a first application and the task is associated with the first application and the suggestion affordance is associated with a second application different than the first application.
  • the electronic device when generating a suggestion of a task for a media item, the electronic device simulates a replica of the application for the suggestion affordance. In this manner, the electronic device may display playback controls and/or a playlist for the suggestion without overwriting currently playing items and/or queues of the application. In some examples, if the user selects the suggestion, the electronic device will initiate playback of the application using the suggested media item(s).
  • a second electronic device determines, with the application (e.g., a remote media prediction service), one or more media items previously played on the electronic device, and generates the plurality of media items based on the determined one or more media items.
  • the electronic device determines one or more media items played back on any number of devices, for instance, associated with a same user. In this manner, media used to make suggestions is consistent across all devices of the user.
  • media items are received from a backend server communicatively coupled to the electronic device.
  • generating the plurality of media items includes identifying a category of at least one of the one or more media items previously played on the electronic device (e.g., genre, decade, activity, mood, holiday) and identifying a media item associated with the identified category.
  • the operations described above with reference to FIG. 19 are optionally implemented by components depicted in FIGS. 1 - 4 , 6 A- 6 B, and 7 A- 7 C .
  • the operations of method 1900 may be implemented by any device (or component thereof) described herein, including but not limited to, devices 104 , 200 , 400 , 600 and 1800 . It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1 - 4 , 6 A- 6 B, and 7 A- 7 C .
  • FIGS. 20 A- 20 N illustrate exemplary user interfaces for providing voice shortcuts on an electronic device (e.g., device 104 , device 122 , device 200 , device 600 , or device 700 ), in accordance with some embodiments.
  • the user interfaces in these figures are used to illustrate the processes described below, including the processes in FIGS. 11 A- 11 B .
  • user interfaces described with reference to FIGS. 20 A- 20 N may be employed such that a user can associate tasks with respective user-specific phrases. These phrases may in turn be used to cause the electronic device to perform the associated tasks.
  • FIG. 20 A illustrates an electronic device 2000 (e.g., device 104 , device 122 , device 200 , device 600 , or device 700 ).
  • electronic device 2000 is a smartphone.
  • electronic device 2000 can be a different type of electronic device, such as a wearable device (e.g., a smartwatch).
  • electronic device 2000 has a display 2001 , one or more input devices (e.g., touchscreen of display 2001 , a button, a microphone), and a wireless communication radio.
  • the electronic device 2000 includes a plurality of cameras.
  • the electronic device includes only one camera.
  • the electronic device includes one or more biometric sensors (e.g., biometric sensor 2003 ) which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • biometric sensors e.g., biometric sensor 2003
  • the electronic device 2000 displays, on display 2001 , a settings interface 2004 .
  • the settings interface 2004 includes a candidate task portion 2006 and additional tasks affordance 2014 .
  • the candidate task portion 2006 includes candidate task affordances 2008 , 2010 , and 2012 .
  • settings interface 2004 includes a user shortcuts affordance 2005 .
  • the electronic device 2000 while displaying the settings interface 2004 , the electronic device 2000 detects selection of the additional tasks affordance 2014 . As shown in FIG. 20 A , the selection of the additional tasks affordance 2014 is a tap gesture 2016 A. In some examples, in response to selection of the shortcut affordance 2014 , the electronic device 2000 displays (e.g., replaces display of the settings interface 2004 with), on the display 2001 , global task interface 2018 , as shown in FIG. 20 B .
  • Global task interface 2018 includes, for each of a plurality of applications, a respective set of candidate task affordances.
  • global task interface 2018 includes a set of candidate task affordances 2020 associated with an activity application, a set of candidate task affordances 2026 associated with a calendar application, and a set of candidate task affordances 2036 associated with a music application.
  • the set of candidate task affordances 2020 can, optionally, include a “Start Workout” candidate task affordance 2022 and a “View Daily Progress” candidate task affordance 2024 .
  • the set of candidate task affordances 2026 can, optionally, include a “Send Lunch invitation” candidate task affordance 2028 , a “Schedule Meeting” candidate task affordance 2030 , and a “Clear Events for a Day” candidate task affordance 2032 .
  • the set of candidate task affordances 2036 can, optionally, include a “Play Workout Playlist” candidate task affordance 2038 and a “Start R&B Radio” candidate task affordance 2040 .
  • each set of candidate task affordances displayed by the electronic device 2000 may be a subset of all available candidate task affordances for a respective application. Accordingly, the user may select an application task list affordance, such as application-specific task list affordances 2034 , 2042 , to reveal one or more additional candidate task affordances for an application corresponding to the application task list affordance. For example, while displaying the global task interface 2018 , the electronic device 2000 detects selection of application task list affordance 2042 . As shown in FIG. 20 C , the selection of application task list affordance 2042 is a tap gesture 2050 .
  • the electronic device 2000 displays (e.g., replaces display of the global task interface 2018 with), on the display 2001 , application task interface 2052 (for a respective application, e.g., music), as shown in FIG. 20 D .
  • application task interface 2052 includes a return affordance 2072 , which when selected, causes the electronic device 2000 to display the global task interface 2018 , a set of candidate task affordances 2046 associated with the application of the global task interface 2018 , and a set of candidate task affordances 2048 associated with the application of the global task interface 2018 .
  • the set of candidate task affordances 2046 corresponds to candidate tasks suggested (e.g., generated), for instance, based on context of the electronic device.
  • the set of candidate task affordances 2046 can, optionally, include a “Play Workout Playlist” candidate task affordance 2054 , a “Start R&B Radio” candidate task affordance 2056 , and a “Play Road Trip Playlist” candidate task affordance 2058 , each of which is suggested and/or ranked accordingly to context of the electronic device 2000 .
  • the set of candidate task affordances 2048 corresponds to candidate tasks for recently performed using the respective application.
  • the set of candidate task affordances 2048 can, optionally, include a “Play Sleep Sounds” candidate task affordance 2060 , a “Start jazz Radio” candidate task affordance 2061 , a “Play Dinner Playlist” candidate task affordance 2063 , a “Start Pop Radio” candidate task affordance 2065 , and a “Play Dance Party Playlist” candidate task affordance 2067 , each of which is suggested and/or ranked accordingly to tasks recently performed using the music application, and, optionally, one or more other applications.
  • a voice shortcut generation process may be initiated using an application interface, such as a third party application interface.
  • an application interface such as a third party application interface.
  • the application may display an application interface 2060 including a candidate task suggestion affordance 2062 .
  • the electronic device in response to selection of candidate task suggestion affordance 2062 , the electronic device initiates a voice shortcut generation process, as shown below in FIGS. 20 F- 20 K .
  • the electronic device displays (e.g., replaces display of the application interface 2060 with), on the display 2001 , a task-specific interface.
  • the task-specific interface is associated with a task of the selected candidate task affordance in some examples.
  • the task may be a task available to the user and/or recently performed by the user, for instance, using the application.
  • the electronic device 2000 detects selection of the candidate task affordance 2062 .
  • the selection is a tap gesture 2064 on the candidate task affordance 2062 .
  • the electronic device 2000 displays the task-specific interface 2066 .
  • the task-specific interface 2066 may be associated with a task of the candidate task affordance 2062 (e.g., Order large latte).
  • Task-specific interface 2066 includes task indicator 2068 , application indicator 2070 , candidate phrase 2072 , and record affordance 2074 .
  • task indicator 2068 indicates a name and/or type of the task.
  • task indicator 2068 includes a description of the task and/or indicates that a user may record a command or phrase to be linked with the task.
  • application indicator 2070 identifies an application corresponding to the task. The application indicator 2070 may, for instance, include a name of the application and/or an icon associated with the application.
  • Candidate phrase 2072 includes a suggested phrase that the user may elect to associate with the task.
  • the electronic device 2000 While displaying the task-specific interface 2066 , the electronic device 2000 detects selection of the record affordance 2074 . As shown in FIG. 20 G , selection of the record affordance 2074 is a tap gesture 2076 . In response to selection of the record affordance 2074 , the electronic device displays (e.g., replaces display of the task-specific interface 2066 with), on the display 2001 , a record interface 2078 .
  • record interface 2078 includes cancel affordance 2080 , preview 2082 , and stop affordance 2084 .
  • the electronic device in response to selection of the cancel affordance 2080 , the electronic device ceases display of the record interface 2078 and, optionally, terminates the voice shortcut generation process, thereafter returning operation to (e.g., displaying) the application.
  • the electronic device 2000 while displaying the record interface 2078 , receives, using an audio input device (e.g., microphone) of the electronic device 2000 , a natural-language speech input from a user.
  • a natural-language speech input from a user.
  • the electronic device 2000 while receiving the natural-language speech input, provides a live preview of the natural-language speech input, such as the live preview 2082 .
  • the live preview 2082 is, in some examples, a visual waveform indicative of one or more auditory characteristics of the natural-language speech input.
  • the electronic device 2000 while receiving the natural-language speech input, performs speech-to-text translation (e.g., natural-language speech processing) on the natural-language speech input to provide a candidate phrase 2086 . Because the speech-to-text translation is performed while the natural-language speech input is received, the candidate phrase 2086 may be iteratively and/or continuously updated while the natural-language speech input is received.
  • speech-to-text translation e.g., natural-language speech processing
  • the electronic device 2000 ensures that the candidate phrase is different than one or more predetermined phrases (e.g., “call 911”). By way of example, the electronic device 2000 determines whether a similarity between the candidate phrase and each of the one or more predetermined phrases exceeds a similarity threshold. If the similarity threshold is not met, the electronic device 2000 will notify the user that the provided candidate phrase is not sufficient and/or not permitted. The electronic device 2000 further may request that the user provide another natural-language speech input.
  • one or more predetermined phrases e.g., “call 911”.
  • the electronic device 2000 While displaying the record interface 2078 , the electronic device 2000 detects selection of the stop affordance 2084 . As shown in FIG. 20 I , selection of the stop affordance 2084 is a tap gesture 2088 . In response to selection of the stop affordance 2084 , the electronic device 2000 displays (e.g., replaces display of the record interface 2078 with), on the display 2001 , a completion interface 2090 , as shown in FIG. 20 J .
  • the completion interface 2090 includes a completion affordance 2092 , cancel affordance 2094 , task indicator 2096 , application indicator 2098 , candidate phrase 2002 A, and re-record affordance 2004 A.
  • the electronic device 2000 in response to selection of the cancel affordance 2094 , the electronic device 2000 ceases display of the completion interface 2090 and, optionally, terminates the voice shortcut generation process.
  • task indicator 2096 indicates a name and/or type of the task.
  • application indicator 2098 identifies the application corresponding to the task. The application indicator may, for instance, include a name of the application and/or an icon associated with the application.
  • Candidate phrase 2002 A is a suggested phrase that the user may elect to associate with the task.
  • the electronic device 2000 while displaying the completion interface 2090 , the electronic device 2000 detects selection of the completion affordance 2092 . As shown in FIG. 20 J , selection of the completion affordance 2092 is a tap gesture 2004 A. In response to selection of the completion affordance 2092 , the electronic device 2000 associates the candidate phrase with the task of the candidate task affordance 2062 . By associating the candidate phrase with the task in this manner, the user may provide (e.g., speak) the candidate phrase to a digital assistant of the electronic device to cause the device to perform the task associated with the candidate phrase.
  • Candidate phrases associated with respective tasks may be referred to as voice shortcuts herein.
  • the electronic device 2000 displays (e.g., replaces display of the completion interface 2090 with), on the display 2001 , the application interface 2060 , as shown in FIG. 20 K . Because the candidate task affordance 2062 has been associated with a candidate phrase, the candidate task affordance 2062 includes a phrase indicator 2006 A indicating the candidate phrase that has been associated with the task for the candidate task affordance 2062 .
  • a user may provide natural-language inputs using text inputs.
  • the user may, for instance, enable one or more accessibility features that enables text entry in addition to, or in lieu of, speech inputs.
  • text inputs may be used to associate tasks with a particular phrase and/or, subsequently, to cause the electronic device to perform one or more tasks associated with the phrase.
  • the electronic device in response to selection of the candidate task suggestion affordance 2062 , displays (e.g., replaces display of the application interface 2060 with), on the display 2001 , a task-specific interface.
  • a tap gesture e.g., tap gesture 2064
  • the electronic device 2000 displays the task-specific interface 2008 A.
  • the task-specific interface 2008 A may be associated with a task of the candidate task affordance 2062 (e.g., Order large latte).
  • Task-specific interface 2008 A includes task indicator 2010 A, application indicator 2012 A, candidate phrase 2014 A, and text entry affordance 2016 A.
  • task indicator 2010 A indicates a name and/or type of the task.
  • task indicator 2010 A includes a description of the task and/or indicates that a user may record a command or phrase to be linked with the task.
  • application indicator 2012 A identifies an application corresponding to the task.
  • the application indicator 2012 A may, for instance, include a name of the application and/or an icon associated with the application.
  • Candidate phrase 2014 A includes a suggested phrase that the user may elect to associate with the task.
  • the electronic device 2000 While displaying the task-specific interface 2008 A, the electronic device 2000 detects selection of the text entry affordance 2016 A. As shown in FIG. 20 L , selection of the text entry affordance 2016 A is a tap gesture 2018 A. In contrast to selection of the record affordance 2074 ( FIG. 20 F ), the electronic device 2000 , in response to selection of the record affordance 2074 , displays (e.g., replaces display of the task-specific interface 2008 A with), on the display 2001 , a text entry interface 2020 A.
  • text entry interface 2020 A includes cancel affordance 2022 A, preview 2024 A, and completion affordance 2026 A.
  • the electronic device 2000 in response to selection of the cancel affordance 2022 A, the electronic device 2000 ceases display of the text entry interface 2020 A and, optionally, terminates the shortcut generation process, thereafter returning operation to (e.g., displaying) the application.
  • the electronic device 2000 while displaying the text entry interface 2020 A, receives, using a text entry device (e.g., keyboard, soft keyboard) of the electronic device 2000 , a natural-language text input from a user. In some examples, while receiving the natural-language text input, the electronic device 2000 provides a preview of the natural-language text input, such as the preview 2024 A, displaying text the user has entered at a given time.
  • a text entry device e.g., keyboard, soft keyboard
  • the electronic device 2000 ensures that the candidate phrase is different than one or more predetermined phrases (e.g., “call 911”). By way of example, the electronic device 2000 determines whether a similarity between the phrase and each of the one or more predetermined phrases exceeds a similarity threshold. If the similarity threshold is not met, the electronic device 2000 will notify the user that the provided candidate phrase is not sufficient and/or not permitted. The electronic device 2000 further may request that the user provide another natural-language text input.
  • one or more predetermined phrases e.g., “call 911”.
  • the electronic device 2000 While displaying the text entry interface 2020 A, the electronic device 2000 detects selection of the completion affordance 2026 A. As shown in FIG. 20 M , selection of the completion affordance 2026 A is a tap gesture 2028 A. In response to selection of the completion affordance 2026 A, the electronic device 2000 displays (e.g., replaces display of the text entry interface 2020 A with), on the display 2001 , a completion interface 2028 A, as shown in FIG. 20 N .
  • the completion interface 2028 A includes a completion affordance 2030 A, cancel affordance 2032 A, task indicator 2034 A, application indicator 2036 A, phrase 2038 A, and reentry affordance 2040 A.
  • the electronic device 2000 in response to selection of the cancel affordance 2032 A, the electronic device 2000 ceases display of the completion interface 2030 A and, optionally, terminates the shortcut generation process.
  • task indicator 2034 A indicates a name and/or type of the task.
  • application indicator 2036 A identifies the application corresponding to the task. The application indicator may, for instance, include a name of the application and/or an icon associated with the application.
  • Phrase 2038 A is the phrase entered by the user during display of the text entry interface 2020 A that the user may elect to associate with the task.
  • the electronic device 2000 while displaying the completion interface 2028 A, the electronic device 2000 detects selection of the completion affordance 2030 A. As shown in FIG. 20 N , selection of the completion affordance 2030 A is a tap gesture 2042 A. In response to selection of the completion affordance 2030 A, the electronic device 2000 associates the phrase 2038 A with the task of the candidate task affordance 2062 . By associating the phrase 2038 A with the task in this manner, the user may provide (e.g., textually input) the phrase to a digital assistant of the electronic device to cause the device to perform the task associated with the phrase.
  • the electronic device 2000 displays (e.g., replaces display of the completion interface 2028 A with), on the display 2001 , the application interface 2060 , as shown in FIG. 20 K . Because the candidate task affordance 2062 has been associated with a phrase, the candidate task affordance 2062 includes a phrase indicator 2006 A indicating the phrase that has been associated with the task for the candidate task affordance 2062 .
  • FIGS. 21 A- 21 F illustrate exemplary user interfaces for performing a task using a digital assistant, in accordance with some embodiments.
  • the user interfaces in these figures are used to illustrate the processes described below, including the processes in FIGS. 11 A- 11 B .
  • user interfaces described with reference to FIGS. 21 A- 21 E may be employed such that a user can associate tasks with respective user-specific phrases. These phrases may in turn be used to cause the electronic device to perform the associated tasks.
  • FIG. 21 A illustrates an electronic device 2100 (e.g., device 104 , device 122 , device 200 , device 600 , or device 700 ).
  • electronic device 2100 is a smartphone.
  • electronic device 2100 can be a different type of electronic device, such as a wearable device (e.g., a smartwatch).
  • electronic device 2100 has a display 2101 , one or more input devices (e.g., touchscreen of display 2101 , a button, a microphone), and a wireless communication radio.
  • the electronic device 2100 includes a plurality of cameras.
  • the electronic device includes only one camera.
  • the electronic device includes one or more biometric sensors (e.g., biometric sensor 2103 ) which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • biometric sensors e.g., biometric sensor 2103
  • the electronic device 2100 displays, on display 2101 , a digital assistant interface (e.g., conversational interface), such as the digital assistant interface 2104 . While displaying the digital assistant interface 2104 , the electronic device 2100 receives (e.g., obtains, captures) a natural-language input 2106 (e.g., “Hey Siri, order my groceries.”).
  • a natural-language input 2106 e.g., “Hey Siri, order my groceries.”.
  • the natural-language input 2106 is a natural-language speech input received, for instance, using an input device of the electronic device (e.g., microphone).
  • the digital assistant interface optionally includes a preview 2108 (e.g., live preview) of the natural-language input 2106 .
  • the natural-language input 2106 is a text input, such as the natural-language text input 2109 of FIG. 21 B .
  • a text field 2111 is displayed in response to selection of a text entry affordance, and a user may enter the natural-language text input 2109 in the text field 2111 . Thereafter, a user may confirm entry of the natural-language text input 2109 for instance, by selecting a submit affordance 2142 . A user may select the submit affordance 2142 using a tap gesture 2144 in some examples.
  • the electronic device 2100 in response to the natural-language input, performs a task.
  • the electronic device 2100 may determine whether the natural-language input matches a predetermined phrase, and if so, perform a task corresponding to the phrase. If the task does not corresponding to the phrase, natural-language processing may be used to determine a task associated with the natural-language input, and the electronic device 2100 may perform the task.
  • the electronic device 2100 prior to performing the task, provides an output, such as the output 2132 .
  • the output 2132 is a natural-language output (e.g., natural-language speech output, natural-language text output) and includes information associated with the task.
  • the output 2132 may indicate that the electronic device is initiating performance of the task (e.g., “I'll handle that now”), and/or that the task requires confirmation (e.g., “You'll need to confirm.”).
  • the output 2132 further may request confirmation from the user (e.g., “Ready to order?”). The user may confirm the task using any form of user input, including a speech input or a touch input.
  • performing a task may include causing an application to perform the task.
  • the electronic device 2100 identifies an application to perform the task and confirms that the application is capable of performing the task.
  • the electronic device receives, from the application, a response indicating whether the application can successfully perform the task.
  • the response provided by an application includes a natural-language expression that may in turn be included in an output.
  • the application by way of the digital assistant, may indicate whether the application is capable of performing the task and/or provide additional information about performance of the task to a user.
  • the electronic device 2100 provides the output 2132 including a natural language expression 2134 received from the Grocery Store application (e.g., “It will be $58.31”).
  • the electronic device 2100 can display a confirmation interface, such as the confirmation interface 2110 , to request confirmation.
  • the confirmation interface 2110 includes a confirmation affordance 2112 , a cancel affordance 2114 , and an application affordance 2116 .
  • the confirmation interface further may include content 2118 associated with the task.
  • selection of the cancel affordance 2114 causes the electronic device 2100 to cease display of the confirmation interface 2110 and/or forgo performing the identified task.
  • selection of the application affordance 2116 causes the electronic device 2100 to open an application associated with the task. As described, opening the application in this manner may cause the application to be preloaded with one or more parameters associated with the task.
  • Content 2118 may include information directed to the task, such as one or more parameters to be used to perform the task.
  • content 2118 may specify that the task is directed to ordering a set of grocery items included in the group “My Grocery List”, the number of items to be ordered, a delivery address, and a time window in which the delivery is to be made.
  • confirmation interface 2110 includes an icon (e.g., image, GIF) associated with the application of the task to help a user more readily identify the application performing the task.
  • the electronic device 2100 in response to selection of the confirmation affordance 2112 , for instance by user input 2120 , the electronic device 2100 performs the task. As illustrated in FIG. 21 D , in some examples, while the electronic device is performing the task, the electronic device 2100 displays a progress indicator 2115 indicating that the task is being performed. In some examples, display of the progress indicator 2115 replaces display of the confirmation affordance 2112 and the cancel affordance 2114 .
  • the electronic device 2100 provides an output indicating whether the task was performed successfully.
  • the task is performed successfully, and as a result, the electronic device 2100 displays a success indicator 2117 , indicating that the task was successfully performed.
  • display of the success indicator 2117 replaces display of the progress indicator 2115 .
  • the failure interface 2121 includes a retry affordance 2122 , a cancel affordance 2124 , and application affordances 2126 , 2128 .
  • the failure interface further includes content 2130 .
  • selection of the retry affordance 2122 causes the electronic device 2100 to perform the task again.
  • selection of the cancel affordance causes the electronic device 2100 to cease display of the failure interface 2120 .
  • selection of either the application affordance 2126 or application affordance 2128 causes the electronic device 2100 to open an application associated with the task.
  • Content 2130 may include information directed to the task, such as one or more parameters used to perform the task.
  • content 2130 is the same content as content 2118 .
  • content 2130 is different than content 2118 .
  • Content 2130 may, for example, indicate that the electronic device failed to perform the task successfully (e.g., “There was a problem. Please try again.”).
  • the electronic device 2100 receives a response from the application indicating whether the task was performed successfully.
  • the response provided by an application optionally includes a natural-language expression that may in turn be used by the electronic device 2100 to indicate whether a task was successfully performed and/or provide additional information, from the application, to a user.
  • the electronic device 2100 receives a response from the Grocery Store application including the natural-language expression 2142 (e.g., “Open app to enter credit card information”), which is in turn provided in the output 2140 (e.g., “The Grocery Store says ‘Open app to enter credit card information’”).
  • FIGS. 22 A- 220 illustrate exemplary user interfaces for performing a set of tasks on an electronic device (e.g., device 104 , device 122 , device 200 , device 600 , device 700 ), in accordance with some embodiments.
  • the user interfaces in these figures are used to illustrate the processes described below, including the processes in FIG. 23 .
  • FIG. 22 A illustrates an electronic device 2200 (e.g., device 104 , device 122 , device 200 , device 600 , or device 700 ).
  • electronic device 2200 is a smartphone.
  • electronic device 2200 can be a different type of electronic device, such as a wearable device (e.g., a smartwatch).
  • electronic device 2200 has a display 2201 , one or more input devices (e.g., touchscreen of display 2201 , a button, a microphone), and a wireless communication radio.
  • the electronic device 2200 includes a plurality of cameras.
  • the electronic device includes only one camera.
  • the electronic device includes one or more biometric sensors (e.g., biometric sensor 2203 ) which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • biometric sensors e.g., biometric sensor 2203
  • the electronic device 2200 displays, on display 2201 , an application interface 2204 .
  • the application interface 2204 may correspond to a task management application in some examples.
  • the application interface 2204 includes a plurality of shortcut affordances, each of which may correspond to a respective set of tasks.
  • the application interface 2204 includes a shortcut affordance “Find ATMs”, “Create Note”, “Email me”, “Text Mom”, “Text Jane”, “Cookie Timer”, “Email John”, “Home ETA”, and “Work ETA”.
  • the electronic device 2200 while displaying the application interface 2204 , the electronic device 2200 detects selection of a shortcut affordance, such as shortcut affordance 2206 (“Home ETA”). As shown in FIG. 22 A , the selection of the shortcut affordance 2206 is a tap gesture 2208 . In some examples, in response to selection of the shortcut affordance 2206 , the electronic device 2200 displays (e.g., replaces display of the application interface 2204 with), on the display 2001 , shortcut-specific interface 2210 , as shown in FIG. 22 B .
  • a shortcut affordance such as shortcut affordance 2206 (“Home ETA”).
  • the selection of the shortcut affordance 2206 is a tap gesture 2208 .
  • the electronic device 2200 displays (e.g., replaces display of the application interface 2204 with), on the display 2001 , shortcut-specific interface 2210 , as shown in FIG. 22 B .
  • Shortcut-specific interface 2210 includes shortcut indicator 2211 , parameter 2212 , tasks 2214 - 2218 , search field 2222 , and execute affordance 2224 .
  • shortcut indicator 2211 indicates a name of the shortcut.
  • tasks 2214 - 2218 are tasks associated with the shortcut of the shortcut-specific interface 2210
  • parameter 2212 is a parameter for a task, such as the task 2216 .
  • the order in which each of the tasks are shown indicates the sequence in which the tasks are performed when the shortcut is performed.
  • each of the tasks includes a delete affordance 2219 , which when selected, causes the corresponding task to be removed (e.g., deleted) from the shortcut.
  • tasks may be added to a shortcut.
  • a user may input text into the search field 2222 to search for one or more tasks that may be associated with the shortcut. The user may thereafter set and/or adjust one or more parameter values for the task, as described below.
  • a user may modify the sequence of tasks associated with a shortcut.
  • the electronic device detects a selection of a task (e.g., with a touch gesture) and displacement of the task on the display 2201 (e.g., using a swipe gesture on the display 2201 ). Accordingly, a user may “drag and drop” tasks in the shortcut-specific interface to reorder the set of tasks.
  • the electronic device 2200 while displaying the shortcut-specific interface 2210 , the electronic device 2200 detects a swipe gesture on the display 2201 , such as the swipe gesture 2226 of FIG. 22 C . As shown in FIG. 22 D , in response to the swipe gesture 2226 , the electronic device 2200 slides the shortcut-specific interface 2210 in a direction corresponding to the swipe gesture 2226 (e.g., upward) to display (e.g., reveal) a portion of the shortcut-specific interface 2210 including one or more additional tasks (e.g., task 2220 ).
  • a swipe gesture on the display 2201 such as the swipe gesture 2226 of FIG. 22 C .
  • the electronic device 2200 slides the shortcut-specific interface 2210 in a direction corresponding to the swipe gesture 2226 (e.g., upward) to display (e.g., reveal) a portion of the shortcut-specific interface 2210 including one or more additional tasks (e.g., task 2220 ).
  • tasks are performed according to one or more parameters associated with the task, and in some examples, parameter values may assigned using the shortcut-specific interface 2210 .
  • the user may specify a street address value for the parameter 2212 that is to be used as a destination address when determining a travel time.
  • the electronic device 2200 may automatically include parameter 2212 in the shortcut-specific interface 2210 in response to addition of the task 2216 to the shortcut-specific interface 2210 .
  • a user may specify that a dynamic value (e.g., “current location”) as a source address when determining a travel time.
  • a user may specify one or more recipients for a task to send a message, for instance, by selecting the recipient affordance 2232 .
  • settings for a task may be configured using the shortcut-specific interface 2210 .
  • the electronic device 220 displays an interface (e.g., completion interface) associated with the task.
  • a user can elect to not have the interface shown during and/or after performance of the task (e.g., by toggling a “Show when run” setting, such as setting 2230 ).
  • the electronic device displays an interface for a task only when the task fails. In this manner, the electronic device 2200 indicates that the task failed and/or the cause of the failure.
  • a task may be performed only following performance of another task. For instance, one or more values for parameters of a task may be specified by another preceding task (e.g., dynamic values).
  • another preceding task e.g., dynamic values.
  • a user may specify that for a task to determine travel time, such as the task 2214 , the source address is the current location of the electronic device. Because the source address (i.e., current location of the electronic device) must be determined prior to determining the travel time, the electronic device may require that a task to determine a current location of the electronic device be determined prior to determining the travel time.
  • a task to send a message such as the task 2218 , may include one or more values that are determined based on the result of another tasks. As illustrated in FIG.
  • the message for the task 2218 includes dynamic values for “current location” and “time to home”, values determined by task 2214 (“get current location”) and task 2216 (“get travel time”), respectively.
  • the electronic device requires certain couplings and/or sequences of tasks according to a plurality of task sequence rules such that each task can be successfully performed.
  • a set of (e.g., one or more) tasks associated with a shortcut are performed by the electronic device in response to a user providing an input specifying the shortcut.
  • the electronic device 2200 displays, on display 2201 , a digital assistant interface (e.g., conversational interface), such as the digital assistant interface 2204 .
  • a digital assistant interface e.g., conversational interface
  • the electronic device 2200 receives (e.g., obtains, captures) a natural-language input 2206 (e.g., “Hey Siri, Home ETA.”).
  • the natural-language input 2206 is a natural-language speech input received, for instance, using an input device of the electronic device (e.g., microphone).
  • the digital assistant interface optionally includes a preview 2208 (e.g., live preview) of the natural-language input 2206 .
  • the natural-language input is a natural-language text input.
  • the natural-language input includes a shortcut corresponding to a set of tasks, and in response the electronic device 2200 performs (e.g., sequentially perform) each task of the set of tasks.
  • the electronic device 2200 in response to the input “Home ETA”, the electronic device 2200 begins to perform tasks associated with the “Home ETA” shortcut.
  • the “Home ETA” shortcut is associated with tasks including but not limited to “Get current location”, “Get travel time”, “Send Message”, and “Play Radio”.
  • the electronic device 2200 in response to the natural-language input 2206 , provides (e.g., displays) shortcut interface 2244 , which in turn includes output 2245 , application identifier 2246 , task identifier 2248 , and shortcut identifier 2250 .
  • output 2245 indicates that the electronic device has identified a shortcut based on the natural-language input 2206 and is initiating performance of the shortcut.
  • Application identifier 2246 indicates which application is performing the shortcut. If, for instance, tasks associated with the shortcut correspond to multiple applications, tasks of the shortcut are performed (e.g., caused to be performed) by a task management application.
  • the task management application causes one or more other applications to perform tasks corresponding to applications associated with the respective tasks.
  • Task identifier 2248 includes an icon corresponding to the shortcut and/or one or more specific tasks of the shortcut.
  • the shortcut identifier 2250 indicates which shortcut is being initiated.
  • the electronic device performs each task of the set of tasks associated with the “Home ETA” shortcut (e.g., “Get current location”, “Get travel time”, “Send Message”, and “Play Radio”), for instance, in a sequence corresponding to the sequence set forth in the shortcut-specific interface 2210 .
  • the electronic device 2200 first performs tasks 2214 and 2216 to determine a current location of the electronic device and a travel time to a destination address, respectively.
  • one or more tasks require confirmation prior to performing the task.
  • the electronic device 2200 can display a confirmation interface, such as the confirmation interface 2254 .
  • the confirmation interface 2254 includes a confirmation affordance 2260 , a cancel affordance 2258 , and an application affordance 2266 .
  • the confirmation interface 2254 further may include content 2256 associated with the task.
  • selection of the cancel affordance 2258 causes the electronic device 2200 to cease display of the confirmation interface 2254 and/or forgo performing the task 2218 (e.g., the electronic device moves on to the next task in the set of tasks).
  • selection of the application affordance 2266 causes the electronic device 2200 to open an application associated with the task.
  • Content 2256 includes information associated with the task, such as one or more parameters to be used to perform the task. As illustrated in FIG. 22 G , for instance, content 2256 specifies a recipient of the message and text of the message to be delivered. In particular, the text includes a location and a travel time, as determined by previous tasks 2214 and 2216 , respectively.
  • the electronic device 2200 in response to selection of the confirmation affordance 2260 , for instance by user input 2262 , the electronic device 2200 performs task 2218 .
  • the electronic device 200 provides a response indicating whether the task was performed successfully.
  • the task is performed successfully, and as a result, the electronic device 200 displays a response 2264 , indicating that the task was successfully performed.
  • performing a task includes causing an application to perform the task, and optionally, receiving a response from the application indicating whether the task was performed successfully.
  • responses provided by an application includes a natural-language expression (e.g., “message sent”) that may in turn be included in responses provided by the electronic device 2200 (e.g., “Shortcuts says: message sent”).
  • Completion interface 2270 includes output 2272 , application identifier 2274 , and content 2276 .
  • output 2272 indicates that the electronic device has initiated performance of task 2220 .
  • Application identifier 2274 indicates which application is associated with the task.
  • Content 2276 includes information associated with the task, such as one or more parameters to be used to perform the task (e.g., playback is for radio channel “News & Sports”).
  • the electronic device After performing all tasks of the set of tasks for a shortcut, the electronic device provides a completion indicator, such as the completion indicator 2280 (e.g., “That's done.”) signaling that all tasks of the set of tasks have been performed.
  • the electronic device 2200 indicates whether all tasks have been performed successfully, or whether one or more tasks were not performed successfully.
  • the electronic device 2200 indicates the failure to a user. As illustrated in FIG. 22 J , for example, task 2214 is not performed successfully, and as a result, the electronic device displays failure interface 2290 .
  • the failure interface 2290 includes failure indicator 2292 , application indicator 2294 , content 2296 , and application affordance 2298 .
  • failure indicator 2292 indicates an error occurred when performing a task (“Hmm. Something went wrong”). The failure indicator may specify a cause of the error in some examples.
  • selection of the application affordance 2298 causes the electronic device 1600 to open an application specified by the application indicator 2294 .
  • Content 2296 may include information directed to the task, such as one or more parameters used to perform the task and/or an indication as to the cause of the task failure.
  • Content 2296 may, for example, indicate that the electronic device failed to perform the task successfully (e.g., “Unable to determine current location.”).
  • performing a task may include causing an application to perform the task, and optionally, receive a response from the application indicating whether the task was performed successfully.
  • the response provided by an application includes a natural-language expression that may in turn be used by the electronic device 1600 to indicate whether a task was successfully performed and/or provide additional information, from the application, to a user.
  • a new interface is displayed in the digital assistant interface 2204 (e.g., conversational interface) while maintaining display of one or more previously displayed interfaces(e.g., display of confirmation interface 2254 is maintained during display of response interface 2270 ).
  • previously displayed interfaces may be scrolled in an upward directed such that the previously displayed interfaces are no longer displayed, but may be redisplayed in response to a scroll (e.g., swipe) gesture.
  • each time a new interface is displayed the electronic device 2200 ceases display of previous interfaces.
  • the electronic device 2200 ceases display of confirmation interface 2254 .
  • previously displayed interfaces may be redisplayed in response to a scroll gesture.
  • FIG. 23 illustrates method 2300 for performing a set of tasks using a digital assistant, according to various examples.
  • Method 2300 is performed, for example, using one or more electronic devices implementing the digital assistant.
  • method 2300 is performed using a client-server system (e.g., system 100 ), and the blocks of method 2300 are divided up in any manner between the server (e.g., DA server 106 ) and a client device.
  • the blocks of method 2300 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch).
  • client devices e.g., a mobile phone and a smart watch
  • method 2300 is performed using only a client device (e.g., user device 104 ) or only multiple client devices.
  • some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted.
  • additional steps may be performed in combination with the method 2300 .
  • Performing a set of tasks in response to user inputs including shortcuts provides an intuitive and efficient approach for sequentially performing one or more tasks on the electronic device.
  • one or more tasks may be performed in response to a single user input without any additional input from the user.
  • performing tasks in response to natural-language speech inputs in this manner decreases the number of inputs and amount of time needed for the user to successfully operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • the electronic device e.g., includes one or more of a keyboard, mouse, microphone, display, and touch-sensitive surface.
  • the display is a touch-sensitive display. In other examples, the display is not a touch-sensitive display.
  • the electronic device receives, using a digital assistant, a user input (e.g., natural-language input, speech input, text input) (e.g., 2240 ) including a shortcut (e.g., voice shortcut) (e.g., “Home ETA”).
  • a user input e.g., natural-language input, speech input, text input
  • a shortcut e.g., voice shortcut
  • receiving the user input includes receiving a voice input ( 2240 ) and generating a textual representation of the voice input.
  • generating a textual representation of the voice input includes performing a speech to text process on the voice input.
  • the textual representation is displayed in an interface, such as an interface associated with a digital assistant (e.g., conversational interface).
  • receiving the user input further includes receiving a request to modify the textual representation to provide a modified textual representation.
  • a user may select an edit affordance and edit the speech to text version of the voice input.
  • receiving the user input further includes selecting the modified textual representation as the user input.
  • the electronic device determines a set of tasks (e.g., 2214 , 2216 , 2218 , 2220 ) associated with the shortcut. In some examples, the electronic device determines whether the natural-language speech input matches one or more shortcuts (e.g., voice shortcut, text shortcut) associated with a user of the electronic device. In some examples, determining whether a match exists in this manner includes determining whether a match exists locally and/or remotely. For example, in some instances the electronic device determines whether a match exists. In another example, the electronic device provides user input, or a representation thereof, to a backend server, and the backend server determines if a match exists. In some examples, both the electronic device and the backend server determine if a match exists and the electronic device evaluates both results to determine if a match exists.
  • a set of tasks e.g., 2214 , 2216 , 2218 , 2220 .
  • the electronic device identifies a set (e.g., plurality) of tasks associated with the shortcut.
  • the set of tasks is an ordered set of tasks having a predefined sequence.
  • the sequence is user-defined and/or determined by the electronic device according to one or more sequencing rules.
  • each of the tasks is associated with a respective application. Accordingly, the set of tasks may be associated with any number of first-party and third-party applications.
  • a set of tasks is generated using a task management application configured to automate performance of a plurality of tasks.
  • one or more parameters of each task may be configured, for instance, using the task management application. By way of example, recipients and/or text of a text message may be configured.
  • a user may toggle whether a response indicating whether a task was successfully performed is displayed.
  • tasks of a first type require confirmation prior to being performed (e.g., 2218 ) and tasks of a second type do not require confirmation prior to being performed (e.g., 2220 ).
  • only responses associated with tasks of the second type may be selectively displayed.
  • performing the first task includes determining whether the first task is a task of a first type (e.g., a task requiring confirmation, such as a messaging task or a payment task); in accordance with a determination that the first task is a task of the first type: requesting confirmation to perform the task, receiving a user input indicating confirmation to perform the task (e.g., touch input, speech input), and in response to receiving the user input indicating confirmation to perform the task (in some examples, the user indicates confirmation by selecting a confirmation affordance and/or providing a speech input indicating confirmation), performing the task; and in accordance with a determination that the first task is not a task of the first type (e.g., a task not requiring confirmation, background task), performing the first task.
  • a first type e.g., a task requiring confirmation, such as a messaging task or a payment task
  • performing the first task includes determining whether the first task is a task of a first type (e.g., a task requiring confirmation, such as
  • performing the first task includes causing, using the digital assistant, the first task to be performed by a third-party application.
  • the digital assistant of the electronic device causes a third-party application to perform a task.
  • causing an application to perform a task in this manner includes providing an intent object to the application, which optionally includes one or more parameters (e.g., 2212 ) and/or parameter values.
  • the digital assistant may initiate music playback by instructing a third-party music streaming application to stream music.
  • the electronic device further in response to receiving the user input including the shortcut, provides a first response (e.g., 2264 , 2270 ) indicating whether the first task was successfully performed.
  • the electronic device provides a response indicating whether a performed task was performed successfully.
  • the response is visual (e.g., displayed), and/or auditory.
  • the response is a natural-language output (e.g., 2264 ) and/or a visual platter (e.g., 2270 ).
  • an application after performing a task, an application provides an application response (1) indicating whether the task was successfully performed by the application and/or (2) provides information regarding performance of the task (e.g., an answer to a query provided by a user), and the response includes the application response (e.g., 2264 ).
  • the application response is a natural-language expression (e.g., “Your ETA is 32 minutes”) and is included in the response (e.g., “Commute says ‘Your ETA is 32 minutes’”).
  • providing the first response includes providing an indication that the first task was performed successfully.
  • providing the first response includes receiving a natural-language expression from the first application; and providing an output including the natural-language expression (e.g., “Commute says: ‘Your current ETA is 32 minutes’”).
  • providing the first response includes displaying the first response.
  • the electronic device performs a second task of the set of tasks,
  • the second task is associated with a second application different than the first application in some examples.
  • the electronic device performs the second task after providing the first response.
  • the electronic device further in response to receiving the user input including the shortcut, after providing the first response, the electronic device provides a second response indicating whether the second task was successfully performed (e.g., 2264 , 2270 ).
  • providing the first response includes displaying the first response in an interface (e.g., conversational interface) associated with the digital assistant (e.g., 2264 ); and providing the second response includes displaying the second response in the interface associated with the digital assistant (e.g., 2270 ).
  • providing the second response includes ceasing display of the first response. In some examples, each time a new response is to be displayed, one or more previously displayed responses are no longer displayed. In some examples, the previously displayed responses are discarded (e.g., deleted from the conversational interface). In some examples, the previously displayed responses are scrolled off of the display but may be re-displayed in response to a scrolling input. In some examples, providing the second response further includes displaying the second response.
  • providing the second response includes displaying the second response while maintaining display of at least a portion of the first response.
  • previously displayed responses are scrolled, for instance in an upward direction to allow for subsequent responses to be displayed.
  • the electronic device provides an output (e.g., visual output, auditory output) indicating each task of the set of tasks has been performed (e.g., 2280 ). In some examples, the electronic device indicates when all tasks associated with a shortcut have been performed (e.g., “That's done.”).
  • an output e.g., visual output, auditory output
  • the electronic device indicates when all tasks associated with a shortcut have been performed (e.g., “That's done.”).
  • the electronic device performs a third task of the set of tasks.
  • the third task is associated with a third application in some examples.
  • the electronic device selectively provides a third response indicating whether the third task was successfully performed (e.g., 2214 ).
  • the electronic device may omit providing a response for a task.
  • responses are omitted for tasks of a predetermined type (e.g., determination of location) (e.g., 2214 ).
  • a user may indicate a response is not to be provided for a particular task, for instance, by toggling a display setting for the task (e.g., 2230 ).
  • the electronic device after providing the second response, performs a fourth task of the set of tasks, wherein performing the fourth task includes launching an application (e.g., launching a maps application to perform a task for getting directions).
  • performing a task includes launching an application (e.g., maps application).
  • launching an application in this manner includes causing an interface of the application to be displayed.
  • a computer-readable storage medium e.g., a non-transitory computer readable storage medium
  • the computer-readable storage medium storing one or more programs for execution by one or more processors of an electronic device, the one or more programs including instructions for performing any of the methods or processes described herein.
  • an electronic device e.g., a portable electronic device
  • an electronic device e.g., a portable electronic device
  • a processing unit configured to perform any of the methods or processes described herein.
  • an electronic device e.g., a portable electronic device
  • this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person.
  • personal information data can include demographic data, location-based data, telephone numbers, email addresses, twitter IDs, home addresses, data or records relating to a user's health or level of fitness (e.g., vital signs measurements, medication information, exercise information), date of birth, or any other identifying or personal information.
  • the present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users.
  • the personal information data can be used to deliver task suggestions that are of greater interest to the user.
  • use of such personal information data allows for accelerated and more efficient use of an electronic device by a user.
  • other uses for personal information data that benefit the user are also contemplated by the present disclosure.
  • health and fitness data may be used to provide insights into a user's general wellness, or may be used as positive feedback to individuals using technology to pursue wellness goals.
  • the present disclosure contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices.
  • such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure.
  • Such policies should be easily accessible by users, and should be updated as the collection and/or use of data changes.
  • Personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection/sharing should occur after receiving the informed consent of the users. Additionally, such entities should consider taking any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures.
  • policies and practices should be adapted for the particular types of personal information data being collected and/or accessed and adapted to applicable laws and standards, including jurisdiction-specific considerations. For instance, in the US, collection of or access to certain health data may be governed by federal and/or state laws, such as the Health Insurance Portability and Accountability Act (HIPAA); whereas health data in other countries may be subject to other regulations and policies and should be handled accordingly. Hence different privacy practices should be maintained for different personal data types in each country.
  • HIPAA Health Insurance Portability and Accountability Act
  • the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data.
  • the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services or anytime thereafter.
  • the present disclosure contemplates providing notifications relating to the access or use of personal information. For instance, a user may be notified upon downloading an application that their personal information data will be accessed and then reminded again just before personal information data is accessed by the application.
  • personal information data should be managed and handled in a way to minimize risks of unintentional or unauthorized access or use. Risk can be minimized by limiting the collection of data and deleting data once it is no longer needed.
  • data de-identification can be used to protect a user's privacy. De-identification may be facilitated, when appropriate, by removing specific identifiers (e.g., date of birth, etc.), controlling the amount or specificity of data stored (e.g., collecting location data at a city level rather than at an address level), controlling how data is stored (e.g., aggregating data across users), and/or other methods.
  • the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data.
  • task suggestions can be provided to a user by inferring likely previous usage of an electronic device based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to the electronic device, or publicly available information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Software Systems (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Quality & Reliability (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

Systems and processes for accelerating task performance are provided. An example method includes, at an electronic device including a display and one or more input devices, displaying, on the display, a user interface including a suggestion affordance associated with a task, detecting, via the one or more input devices, a first user input corresponding to a selection of the suggestion affordance, in response to detecting the first user input: in accordance with a determination that the task is a task of a first type, performing the task, and in accordance with a determination that the task is a task of a second type different than the first type, displaying a confirmation interface including a confirmation affordance.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This Application is a continuation of U.S. patent application Ser. No. 17/162,836, entitled “ACCELERATED TASK PERFORMANCE,” filed Jan. 29, 2021, which is a continuation of U.S. patent application Ser. No. 16/146,381, now U.S. Pat. No. 10,944,859, entitled “ACCELERATED TASK PERFORMANCE,” filed Sep. 28, 2018, which claims priority to U.S. Provisional Patent Application 62/679,972, entitled “ACCELERATED TASK PERFORMANCE,” filed Jun. 3, 2018, and to U.S. Provisional Patent Application 62/729,967, entitled “ACCELERATED TASK PERFORMANCE,” filed Sep. 11, 2018. The contents of each of these applications are incorporated herein by reference in their entireties.
  • FIELD
  • This relates generally to digital assistants and, more specifically, to accelerating task performance using a digital assistant.
  • BACKGROUND
  • Intelligent automated assistants (or digital assistants) can provide a beneficial interface between human users and electronic devices. Such assistants can allow users to interact with devices or systems using natural language in spoken and/or text forms. For example, a user can provide a speech input containing a user request to a digital assistant operating on an electronic device. The digital assistant can interpret the user's intent from the speech input, operationalize the user's intent into a task, and perform the task. In some systems, performing tasks in this manner may be constrained in the manner by which a task is identified. In some cases, however, a user may be limited to a particular set of commands such that the user cannot readily instruct a digital assistant to perform a task using natural-language speech inputs. Further, in many instances digital assistants fail to adapt based on previous user behavior and in turn lack a desirable optimization of user experience.
  • SUMMARY
  • Example methods are described herein. An example method includes, at an electronic device with a display and a touch-sensitive surface, displaying, on the display, a user interface including a suggestion affordance associated with a task, detecting, via the one or more input devices, a first user input corresponding to a selection of the suggestion affordance; in response to detecting the first user input: in accordance with a determination that the task is a task of a first type, performing the task; and in accordance with a determination that the task is a task of a second type different than the first type, displaying a confirmation interface including a confirmation affordance.
  • Example electronic devices are described herein. An example electronic device comprises one or more processors, a memory, and one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for: displaying, on the display, a user interface including a suggestion affordance associated with a task; detecting, via the one or more input devices, a first user input corresponding to a selection of the suggestion affordance; in response to detecting the first user input: in accordance with a determination that the task is a task of a first type, performing the task; and in accordance with a determination that the task is a task of a second type different than the first type, displaying a confirmation interface including a confirmation affordance.
  • An example electronic device includes means for displaying, on the display, a user interface including a suggestion affordance associated with a task, means for detecting, via the one or more input devices, a first user input corresponding to a selection of the suggestion affordance, means for, in response to detecting the first user input: in accordance with a determination that the task is a task of a first type, performing the task; and in accordance with a determination that the task is a task of a second type different than the first type, displaying a confirmation interface including a confirmation affordance.
  • Example non-transitory computer-readable media are disclosed herein. An example non-transitory computer-readable medium stores one or more programs comprising instructions, which when executed by one or more processors of an electronic device, cause the electronic device to: display, on the display, a user interface including a suggestion affordance associated with a task; detect, via the one or more input devices, a first user input corresponding to a selection of the suggestion affordance; in response to detecting the first user input: in accordance with a determination that the task is a task of a first type, perform the task; and in accordance with a determination that the task is a task of a second type different than the first type, display a confirmation interface including a confirmation affordance.
  • Displaying a user interface including a suggestion affordance and selectively requiring confirmation to perform a task in response to selection of the suggestion affordance provides a user with an easily recognizable and intuitive approach for performing tasks on the electronic device, thereby reducing the number of user inputs otherwise needed to perform such tasks. Thus, displaying user interfaces in this manner enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • An example method includes, at an electronic device having one or more processors, displaying a plurality of candidate task affordances including a candidate task affordance associated with a task, detecting a set of inputs including a first user input corresponding to a selection of the candidate task affordance associated with the task, in response to detecting the set of user inputs, displaying a first interface for generating a voice shortcut associated with the task, while displaying the first interface: receiving, by the audio input device, a natural-language speech input, and displaying, in the first interface, a candidate phrase, wherein the candidate phrase is based on the natural-language speech input, after displaying the candidate phrase, detecting, via the touch-sensitive surface, a second user input, and in response to detecting the second user input, associating the candidate phrase with the task.
  • An example non-transitory computer-readable storage medium stores one or more programs. The one or more programs comprise instructions, which when executed by one or more processors of an electronic device, cause the electronic device to display a plurality of candidate task affordances including a candidate task affordance associated with a task, detect a set of inputs including a first user input corresponding to a selection of the candidate task affordance associated with the task, in response to detecting the set of user inputs, display a first interface for generating a voice shortcut associated with the task, while displaying the first interface: receive, by the audio input device, a natural-language speech input, and display, in the first interface, a candidate phrase, wherein the candidate phrase is based on the natural-language speech input, after displaying the candidate phrase, detect, via the touch-sensitive surface, a second user input, and in response to detecting the second user input, associate the candidate phrase with the task.
  • An example electronic device comprises one or more processors, a memory, and one or more programs, where the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for displaying a plurality of candidate task affordances including a candidate task affordance associated with a task, detecting a set of inputs including a first user input corresponding to a selection of the candidate task affordance associated with the task, in response to detecting the set of user inputs, displaying a first interface for generating a voice shortcut associated with the task, while displaying the first interface: receiving, by the audio input device, a natural-language speech input, and displaying, in the first interface, a candidate phrase, wherein the candidate phrase is based on the natural-language speech input, after displaying the candidate phrase, detecting, via the touch-sensitive surface, a second user input, and in response to detecting the second user input, associating the candidate phrase with the task.
  • An example electronic device comprises means for displaying a plurality of candidate task affordances including a candidate task affordance associated with a task, means for detecting a set of inputs including a first user input corresponding to a selection of the candidate task affordance associated with the task, means for, in response to detecting the set of user inputs, displaying a first interface for generating a voice shortcut associated with the task, means for, while displaying the first interface: receiving, by the audio input device, a natural-language speech input, and displaying, in the first interface, a candidate phrase, wherein the candidate phrase is based on the natural-language speech input, means for, after displaying the candidate phrase, detecting, via the touch-sensitive surface, a second user input, and means for, in response to detecting the second user input, associating the candidate phrase with the task.
  • Providing candidate phrases based on a natural-language speech input and associating candidate phrases with respective tasks allows a user to accurately and efficiently generate user-specific voice shortcuts that can be used to perform tasks on the electronic device. For example, allowing a user to associate voice shortcuts with tasks in this manner allows a user to visually confirm that a desired voice shortcut has been selected and assigned to the correct task, thereby reducing the likelihood of an incorrect or unwanted association. Thus, providing candidate phrases in the manner described provides for more efficient use of the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • An example method includes, at an electronic device having one or more processors, receiving context data associated with the electronic device, determining, based on the context data, a task probability for a task, determining, based on the context data, a parameter probability for a parameter, wherein the parameter is associated with the task, determining, based on the task probability and the parameter probability, whether the task satisfies suggestion criteria, in accordance with a determination that the task satisfies the suggestion criteria, displaying, on the display, a suggestion affordance corresponding to the task and the parameter, and in accordance with a determination that the task does not satisfy the suggestion criteria, forgoing displaying the suggestion affordance.
  • An example non-transitory computer-readable storage medium stores one or more programs. The one or more programs comprise instructions, which when executed by one or more processors of an electronic device, cause the electronic device to receive context data associated with the electronic device, determine, based on the context data, a task probability for a task, determine, based on the context data, a parameter probability for a parameter, wherein the parameter is associated with the task, determine, based on the task probability and the parameter probability, whether the task satisfies suggestion criteria, in accordance with a determination that the task satisfies the suggestion criteria, display, on the display, a suggestion affordance corresponding to the task and the parameter, and in accordance with a determination that the task does not satisfy the suggestion criteria, forgo displaying the suggestion affordance.
  • An example electronic device comprises one or more processors, a memory, and one or more programs, where the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for receiving context data associated with the electronic device, determining, based on the context data, a task probability for a task, determining, based on the context data, a parameter probability for a parameter, wherein the parameter is associated with the task, determining, based on the task probability and the parameter probability, whether the task satisfies suggestion criteria, in accordance with a determination that the task satisfies the suggestion criteria, displaying, on the display, a suggestion affordance corresponding to the task and the parameter, and in accordance with a determination that the task does not satisfy the suggestion criteria, forgoing displaying the suggestion affordance.
  • An example electronic device comprises means for receiving context data associated with the electronic device, means for determining, based on the context data, a task probability for a task, means for determining, based on the context data, a parameter probability for a parameter, wherein the parameter is associated with the task, means for determining, based on the task probability and the parameter probability, whether the task satisfies suggestion criteria, means for, in accordance with a determination that the task satisfies the suggestion criteria, displaying, on the display, a suggestion affordance corresponding to the task and the parameter, and means for in accordance with a determination that the task does not satisfy the suggestion criteria, forgoing displaying the suggestion affordance.
  • Selectively providing suggestion affordances associated with tasks, as described herein, allows a user to efficiently and conveniently perform tasks relevant to the user on the electronic device. By way of example, suggestion affordances displayed by the electronic device can correspond to tasks identified based on context data of the electronic device, such as context data indicative of prior use of the electronic device by the user. Thus, selectively providing suggestions in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • An example method includes, at an electronic device having one or more processors, receiving a natural-language speech input, determining whether the natural-language speech input satisfies voice shortcut criteria, in accordance with a determination that the natural-language speech input satisfies the voice shortcut criteria: identifying a task associated with the voice shortcut, and performing the task associated with the voice shortcut, and in accordance with a determination that the natural-language speech input does not satisfy the voice shortcut criteria: identifying a task associated with the natural-language speech input, and performing the task associated with the natural-language speech input.
  • An example non-transitory computer-readable storage medium stores one or more programs. The one or more programs comprise instructions, which when executed by one or more processors of an electronic device, cause the electronic device to receive a natural-language speech input, determine whether the natural-language speech input satisfies voice shortcut criteria, in accordance with a determination that the natural-language speech input satisfies the voice shortcut criteria: identify a task associated with the voice shortcut, and perform the task associated with the voice shortcut, and in accordance with a determination that the natural-language speech input does not satisfy the voice shortcut criteria: identify a task associated with the natural-language speech input, and perform the task associated with the natural-language speech input.
  • An example electronic device comprises one or more processors, a memory, and one or more programs, where the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for receiving a natural-language speech input, determining whether the natural-language speech input satisfies voice shortcut criteria, in accordance with a determination that the natural-language speech input satisfies the voice shortcut criteria: identifying a task associated with the voice shortcut, and performing the task associated with the voice shortcut, and in accordance with a determination that the natural-language speech input does not satisfy the voice shortcut criteria: identifying a task associated with the natural-language speech input, and performing the task associated with the natural-language speech input.
  • An example electronic device comprises means for receiving a natural-language speech input, means for determining whether the natural-language speech input satisfies voice shortcut criteria, means for, in accordance with a determination that the natural-language speech input satisfies the voice shortcut criteria: identifying a task associated with the voice shortcut, and performing the task associated with the voice shortcut, and means for, in accordance with a determination that the natural-language speech input does not satisfy the voice shortcut criteria: identifying a task associated with the natural-language speech input, and performing the task associated with the natural-language speech input.
  • Performing tasks in response to natural-language speech inputs (e.g., voice shortcuts), as described herein, provides an intuitive and efficient approach for performing tasks on the electronic device. By way of example, one or more tasks may be performed in response to a natural-language speech input without any additional input from the user. Accordingly, performing tasks in response to natural-language speech inputs in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • An example method includes, at an electronic device having one or more processors, receiving, with a digital assistant, a natural-language speech input, determining a voice shortcut associated with the natural-language speech input, determining a task corresponding to the voice shortcut, causing an application to initiate performance of the task, receiving a response from the application, wherein the response is associated with the task, determining, based on the response, whether the task was successfully performed, and providing an output indicating whether the task was successfully performed.
  • An example non-transitory computer-readable storage medium stores one or more programs. The one or more programs comprise instructions, which when executed by one or more processors of an electronic device, cause the electronic device to receive, with a digital assistant, a natural-language speech input, determine a voice shortcut associated with the natural-language speech input, determine a task corresponding to the voice shortcut, cause an application to initiate performance of the task, receive a response from the application, wherein the response is associated with the task, determine, based on the response, whether the task was successfully performed, and provide an output indicating whether the task was successfully performed.
  • An example electronic device comprises one or more processors, a memory, and one or more programs, where the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for receiving, with a digital assistant, a natural-language speech input, determining a voice shortcut associated with the natural-language speech input, determining a task corresponding to the voice shortcut, causing an application to initiate performance of the task, receiving a response from the application, wherein the response is associated with the task, determining, based on the response, whether the task was successfully performed, and providing an output indicating whether the task was successfully performed.
  • An example electronic device comprises means for receiving, with a digital assistant, a natural-language speech input, means for determining a voice shortcut associated with the natural-language speech input, and means for determining a task corresponding to the voice shortcut, means for causing an application to initiate performance of the task, means for receiving a response from the application, wherein the response is associated with the task, means for determining, based on the response, whether the task was successfully performed, and means for providing an output indicating whether the task was successfully performed.
  • Providing an output, as described herein, allows the digital assistant to provide feedback and/or other information from an application, for instance during the course of a dialog (e.g., conversational dialog) between a user and the digital assistant, in an intuitive and flexible manner. By way of example, the digital assistant may provide (e.g., relay) natural-language expressions from an application to the user such that the user can interact with the application without opening or otherwise directly accessing the application. Accordingly, providing natural-language outputs in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • An example method includes receiving a plurality of media items from an application, receiving context data associated with the electronic device, determining a task based on the plurality of media items and the context data, determining whether the task satisfies suggestion criteria, in accordance with a determination that the task satisfies the suggestion criteria, displaying, on the display, a suggestion affordance corresponding to the task, and in accordance with a determination that the task does not satisfy the suggestion criteria, forgoing displaying the suggestion affordance.
  • An example electronic device comprises one or more processors, a memory, and one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for receiving a plurality of media items from an application, receiving context data associated with the electronic device, determining a task based on the plurality of media items and the context data, determining whether the task satisfies suggestion criteria, in accordance with a determination that the task satisfies the suggestion criteria, displaying, on the display, a suggestion affordance corresponding to the task, and in accordance with a determination that the task does not satisfy the suggestion criteria, forgoing displaying the suggestion affordance.
  • An example electronic device comprises means for receiving a plurality of media items from an application, means for receiving context data associated with the electronic device, means for determining a task based on the plurality of media items and the context data, means for determining whether the task satisfies suggestion criteria, means for, in accordance with a determination that the task satisfies the suggestion criteria, displaying, on the display, a suggestion affordance corresponding to the task, and means for, in accordance with a determination that the task does not satisfy the suggestion criteria, forgoing displaying the suggestion affordance.
  • An example non-transitory computer-readable medium stores one or more programs comprising instructions, which when executed by one or more processors of an electronic device, cause the electronic device to receive a plurality of media items from an application, receive context data associated with the electronic device, determine a task based on the plurality of media items and the context data, determine whether the task satisfies suggestion criteria, in accordance with a determination that the task satisfies the suggestion criteria, display, on the display, a suggestion affordance corresponding to the task, and in accordance with a determination that the task does not satisfy the suggestion criteria, forgo displaying the suggestion affordance.
  • Selectively providing suggestion affordances corresponding to tasks, as described herein, allows a user to efficiently and conveniently perform tasks relevant to the user on the electronic device. By way of example, suggestion affordances displayed by the electronic device can correspond to tasks identified based on media consumption and/or determined media preferences of the user. Thus, selectively providing suggestions in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • An example method includes receiving, using a digital assistant, a user input including a shortcut; and in response to receiving the user input including the shortcut: determining a set of tasks associated with the shortcut; performing a first task of the set of tasks, wherein the first task is associated with a first application; providing a first response indicating whether the first task was successfully performed; performing a second task of the set of tasks, wherein the second task is associated with a second application different than the first application; and after providing the first response, providing a second response indicating whether the second task was successfully performed.
  • An example electronic device comprises one or more processors, a memory, and one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for receiving, using a digital assistant, a user input including a shortcut; and in response to receiving the user input including the shortcut: determining a set of tasks associated with the shortcut; performing a first task of the set of tasks, wherein the first task is associated with a first application; providing a first response indicating whether the first task was successfully performed; performing a second task of the set of tasks, wherein the second task is associated with a second application different than the first application; and after providing the first response, providing a second response indicating whether the second task was successfully performed.
  • An example electronic device comprises means for receiving, using a digital assistant, a user input including a shortcut; and means for, in response to receiving the user input including the shortcut: determining a set of tasks associated with the shortcut; performing a first task of the set of tasks, wherein the first task is associated with a first application; providing a first response indicating whether the first task was successfully performed; performing a second task of the set of tasks, wherein the second task is associated with a second application different than the first application; and after providing the first response, providing a second response indicating whether the second task was successfully performed.
  • An example non-transitory computer-readable medium stores one or more programs comprising instructions, which when executed by one or more processors of an electronic device, cause the electronic device to receive, using a digital assistant, a user input including a shortcut; and in response to receiving the user input including the shortcut: determine a set of tasks associated with the shortcut; perform a first task of the set of tasks, wherein the first task is associated with a first application; provide a first response indicating whether the first task was successfully performed; perform a second task of the set of tasks, wherein the second task is associated with a second application different than the first application; and after providing the first response, provide a second response indicating whether the second task was successfully performed.
  • Performing a set of tasks in response to user inputs including shortcuts (e.g., voice shortcuts), as described herein, provides an intuitive and efficient approach for sequentially performing one or more tasks on the electronic device. By way of example, one or more tasks may be performed in response to a single user input without any additional input from the user. Accordingly, performing tasks in response to natural-language speech inputs in this manner decreases the number of inputs and amount of time needed for the user to successfully operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram illustrating a system and environment for implementing a digital assistant, according to various examples.
  • FIG. 2A is a block diagram illustrating a portable multifunction device implementing the client-side portion of a digital assistant, according to various examples.
  • FIG. 2B is a block diagram illustrating exemplary components for event handling, according to various examples.
  • FIG. 3 illustrates a portable multifunction device implementing the client-side portion of a digital assistant, according to various examples.
  • FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface, according to various examples.
  • FIG. 5A illustrates an exemplary user interface for a menu of applications on a portable multifunction device, according to various examples.
  • FIG. 5B illustrates an exemplary user interface for a multifunction device with a touch-sensitive surface that is separate from the display, according to various examples.
  • FIG. 6A illustrates a personal electronic device, according to various examples.
  • FIG. 6B is a block diagram illustrating a personal electronic device, according to various examples.
  • FIGS. 6C-6D illustrate exemplary components of a personal electronic device having a touch-sensitive display and intensity sensors in accordance with some embodiments.
  • FIGS. 6E-6H illustrate exemplary components and user interfaces of a personal electronic device in accordance with some embodiments.
  • FIG. 7A is a block diagram illustrating a digital assistant system or a server portion thereof, according to various examples.
  • FIG. 7B illustrates the functions of the digital assistant shown in FIG. 7A, according to various examples.
  • FIG. 7C illustrates a portion of an ontology, according to various examples.
  • FIGS. 8A-8AF illustrate exemplary user interfaces for providing suggestions, according to various examples.
  • FIGS. 9A-9B are a flow diagram illustrating a method of providing suggestions, according to various examples.
  • FIGS. 10A-10AJ illustrate exemplary user interfaces for providing voice shortcuts, according to various examples.
  • FIGS. 11A-11B are a flow diagram illustrating a method of providing voice shortcuts, according to various examples.
  • FIG. 12 is a block diagram illustrating a task suggestion system, according to various examples.
  • FIG. 13 is a flow diagram illustrating a method for providing suggestions, according to various examples.
  • FIG. 14 illustrates an exemplary sequence of operations for performing a task in a privacy preserving manner, according to various examples.
  • FIG. 15 is a flow diagram illustrating a method of performing tasks, according to various examples.
  • FIGS. 16A-16S illustrate exemplary user interfaces for performing a task using a digital assistant, according to various examples.
  • FIG. 17 is a flow diagram illustrating a method of performing a task using a digital assistant, according to various examples.
  • FIGS. 18A-18D illustrate exemplary user interfaces for providing media item suggestions, according to various examples.
  • FIG. 19 is a flow diagram illustrating a method of providing media item suggestions, according to various examples.
  • FIGS. 20A-20N illustrate exemplary user interfaces for providing voice shortcuts, according to various examples.
  • FIGS. 21A-21F illustrate exemplary user interfaces for performing a task using a digital assistant, according to various examples.
  • FIGS. 22A-220 illustrate exemplary user interfaces for performing a set of tasks using a digital assistant, according to various examples.
  • FIG. 23 is a flow diagram illustrating a method for performing a set of tasks using a digital assistant, according to various examples.
  • DETAILED DESCRIPTION
  • In the following description of examples, reference is made to the accompanying drawings in which are shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the various examples.
  • Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first input could be termed a second input, and, similarly, a second input could be termed a first input, without departing from the scope of the various described examples. The first input and the second input are both inputs and, in some cases, are separate and different inputs.
  • The terminology used in the description of the various described examples herein is for the purpose of describing particular examples only and is not intended to be limiting. As used in the description of the various described examples and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • The term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
  • 1 System and Environment
  • FIG. 1 illustrates a block diagram of system 100 according to various examples. In some examples, system 100 implements a digital assistant. The terms “digital assistant,” “virtual assistant,” “intelligent automated assistant,” or “automatic digital assistant” refer to any information processing system that interprets natural language input in spoken and/or textual form to infer user intent, and performs actions based on the inferred user intent. For example, to act on an inferred user intent, the system performs one or more of the following: identifying a task flow with steps and parameters designed to accomplish the inferred user intent, inputting specific requirements from the inferred user intent into the task flow; executing the task flow by invoking programs, methods, services, APIs, or the like; and generating output responses to the user in an audible (e.g., speech) and/or visual form.
  • Specifically, a digital assistant is capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry. Typically, the user request seeks either an informational answer or performance of a task by the digital assistant. A satisfactory response to the user request includes a provision of the requested informational answer, a performance of the requested task, or a combination of the two. For example, a user asks the digital assistant a question, such as “Where am I right now?” Based on the user's current location, the digital assistant answers, “You are in Central Park near the west gate.” The user also requests the performance of a task, for example, “Please invite my friends to my girlfriend's birthday party next week.” In response, the digital assistant can acknowledge the request by saying “Yes, right away,” and then send a suitable calendar invite on behalf of the user to each of the user's friends listed in the user's electronic address book. During performance of a requested task, the digital assistant sometimes interacts with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time. There are numerous other ways of interacting with a digital assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the digital assistant also provides responses in other visual or audio forms, e.g., as text, alerts, music, videos, animations, etc.
  • As shown in FIG. 1 , in some examples, a digital assistant is implemented according to a client-server model. The digital assistant includes client-side portion 102 (hereafter “DA client 102”) executed on user device 104 and server-side portion 106 (hereafter “DA server 106”) executed on server system 108. DA client 102 communicates with DA server 106 through one or more networks 110. DA client 102 provides client-side functionalities such as user-facing input and output processing and communication with DA server 106. DA server 106 provides server-side functionalities for any number of DA clients 102 each residing on a respective user device 104.
  • In some examples, DA server 106 includes client-facing I/O interface 112, one or more processing modules 114, data and models 116, and I/O interface to external services 118. The client-facing I/O interface 112 facilitates the client-facing input and output processing for DA server 106. One or more processing modules 114 utilize data and models 116 to process speech input and determine the user's intent based on natural language input. Further, one or more processing modules 114 perform task execution based on inferred user intent. In some examples, DA server 106 communicates with external services 120 through network(s) 110 for task completion or information acquisition. I/O interface to external services 118 facilitates such communications.
  • User device 104 can be any suitable electronic device. In some examples, user device 104 is a portable multifunctional device (e.g., device 200, described below with reference to FIG. 2A), a multifunctional device (e.g., device 400, described below with reference to FIG. 4 ), or a personal electronic device (e.g., device 600, described below with reference to FIGS. 6A-6B.) A portable multifunctional device is, for example, a mobile telephone that also contains other functions, such as PDA and/or music player functions. Specific examples of portable multifunction devices include the Apple Watch®, iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, California. Other examples of portable multifunction devices include, without limitation, earphones/headphones, speakers, and laptop or tablet computers. Further, in some examples, user device 104 is a non-portable multifunctional device. In particular, user device 104 is a desktop computer, a game console, a speaker, a television, or a television set-top box. In some examples, user device 104 includes a touch-sensitive surface (e.g., touch screen displays and/or touchpads). Further, user device 104 optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick. Various examples of electronic devices, such as multifunctional devices, are described below in greater detail.
  • Examples of communication network(s) 110 include local area networks (LAN) and wide area networks (WAN), e.g., the Internet. Communication network(s) 110 is implemented using any known network protocol, including various wired or wireless protocols, such as, for example, Ethernet, Universal Serial Bus (USB), FIREWIRE, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wi-Fi, voice over Internet Protocol (VoIP), Wi-MAX, or any other suitable communication protocol.
  • Server system 108 is implemented on one or more standalone data processing apparatus or a distributed network of computers. In some examples, server system 108 also employs various virtual devices and/or services of third-party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of server system 108.
  • In some examples, user device 104 communicates with DA server 106 via second user device 122. Second user device 122 is similar or identical to user device 104. For example, second user device 122 is similar to devices 200, 400, or 600 described below with reference to FIGS. 2A, 4, and 6A-6B. User device 104 is configured to communicatively couple to second user device 122 via a direct communication connection, such as Bluetooth, NFC, BTLE, or the like, or via a wired or wireless network, such as a local Wi-Fi network. In some examples, second user device 122 is configured to act as a proxy between user device 104 and DA server 106. For example, DA client 102 of user device 104 is configured to transmit information (e.g., a user request received at user device 104) to DA server 106 via second user device 122. DA server 106 processes the information and returns relevant data (e.g., data content responsive to the user request) to user device 104 via second user device 122.
  • In some examples, user device 104 is configured to communicate abbreviated requests for data to second user device 122 to reduce the amount of information transmitted from user device 104. Second user device 122 is configured to determine supplemental information to add to the abbreviated request to generate a complete request to transmit to DA server 106. This system architecture can advantageously allow user device 104 having limited communication capabilities and/or limited battery power (e.g., a watch or a similar compact electronic device) to access services provided by DA server 106 by using second user device 122, having greater communication capabilities and/or battery power (e.g., a mobile phone, laptop computer, tablet computer, or the like), as a proxy to DA server 106. While only two user devices 104 and 122 are shown in FIG. 1 , it should be appreciated that system 100, in some examples, includes any number and type of user devices configured in this proxy configuration to communicate with DA server system 106.
  • Although the digital assistant shown in FIG. 1 includes both a client-side portion (e.g., DA client 102) and a server-side portion (e.g., DA server 106), in some examples, the functions of a digital assistant are implemented as a standalone application installed on a user device. In addition, the divisions of functionalities between the client and server portions of the digital assistant can vary in different implementations. For instance, in some examples, the DA client is a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of the digital assistant to a backend server.
  • 2. Electronic Devices
  • Attention is now directed toward embodiments of electronic devices for implementing the client-side portion of a digital assistant. FIG. 2A is a block diagram illustrating portable multifunction device 200 with touch-sensitive display system 212 in accordance with some embodiments. Touch-sensitive display 212 is sometimes called a “touch screen” for convenience and is sometimes known as or called a “touch-sensitive display system.” Device 200 includes memory 202 (which optionally includes one or more computer-readable storage mediums), memory controller 222, one or more processing units (CPUs) 220, peripherals interface 218, RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, input/output (I/O) subsystem 206, other input control devices 216, and external port 224. Device 200 optionally includes one or more optical sensors 264. Device 200 optionally includes one or more contact intensity sensors 265 for detecting intensity of contacts on device 200 (e.g., a touch-sensitive surface such as touch-sensitive display system 212 of device 200). Device 200 optionally includes one or more tactile output generators 267 for generating tactile outputs on device 200 (e.g., generating tactile outputs on a touch-sensitive surface such as touch-sensitive display system 212 of device 200 or touchpad 455 of device 400). These components optionally communicate over one or more communication buses or signal lines 203.
  • As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).
  • As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.
  • It should be appreciated that device 200 is only one example of a portable multifunction device, and that device 200 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in FIG. 2A are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application-specific integrated circuits.
  • Memory 202 includes one or more computer-readable storage mediums. The computer-readable storage mediums are, for example, tangible and non-transitory. Memory 202 includes high-speed random access memory and also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 222 controls access to memory 202 by other components of device 200.
  • In some examples, a non-transitory computer-readable storage medium of memory 202 is used to store instructions (e.g., for performing aspects of processes described below) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In other examples, the instructions (e.g., for performing aspects of the processes described below) are stored on a non-transitory computer-readable storage medium of the server system 108 or are divided between the non-transitory computer-readable storage medium of memory 202 and the non-transitory computer-readable storage medium of server system 108.
  • Peripherals interface 218 is used to couple input and output peripherals of the device to CPU 220 and memory 202. The one or more processors 220 run or execute various software programs and/or sets of instructions stored in memory 202 to perform various functions for device 200 and to process data. In some embodiments, peripherals interface 218, CPU 220, and memory controller 222 are implemented on a single chip, such as chip 204. In some other embodiments, they are implemented on separate chips.
  • RF (radio frequency) circuitry 208 receives and sends RF signals, also called electromagnetic signals. RF circuitry 208 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 208 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 208 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 208 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
  • Audio circuitry 210, speaker 211, and microphone 213 provide an audio interface between a user and device 200. Audio circuitry 210 receives audio data from peripherals interface 218, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 211. Speaker 211 converts the electrical signal to human-audible sound waves. Audio circuitry 210 also receives electrical signals converted by microphone 213 from sound waves. Audio circuitry 210 converts the electrical signal to audio data and transmits the audio data to peripherals interface 218 for processing. Audio data are retrieved from and/or transmitted to memory 202 and/or RF circuitry 208 by peripherals interface 218. In some embodiments, audio circuitry 210 also includes a headset jack (e.g., 312, FIG. 3 ). The headset jack provides an interface between audio circuitry 210 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).
  • I/O subsystem 206 couples input/output peripherals on device 200, such as touch screen 212 and other input control devices 216, to peripherals interface 218. I/O subsystem 206 optionally includes display controller 256, optical sensor controller 258, depth camera controller 269, intensity sensor controller 259, haptic feedback controller 261, and one or more input controllers 260 for other input or control devices. The one or more input controllers 260 receive/send electrical signals from/to other input control devices 216. The other input control devices 216 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 260 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 308, FIG. 3 ) optionally include an up/down button for volume control of speaker 211 and/or microphone 213. The one or more buttons optionally include a push button (e.g., 306, FIG. 3 ).
  • A quick press of the push button optionally disengages a lock of touch screen 212 or optionally begins a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 306) optionally turns power to device 200 on or off. The functionality of one or more of the buttons is, optionally, user customizable. Touch screen 212 is used to implement virtual or soft buttons and one or more soft keyboards.
  • Touch-sensitive display 212 provides an input interface and an output interface between the device and a user. Display controller 256 receives and/or sends electrical signals from/to touch screen 212. Touch screen 212 displays visual output to the user. The visual output optionally includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output optionally corresponds to user-interface objects.
  • Touch screen 212 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 212 and display controller 256 (along with any associated modules and/or sets of instructions in memory 202) detect contact (and any movement or breaking of the contact) on touch screen 212 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 212. In an exemplary embodiment, a point of contact between touch screen 212 and the user corresponds to a finger of the user.
  • Touch screen 212 optionally uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies are used in other embodiments. Touch screen 212 and display controller 256 optionally detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 212. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, California.
  • A touch-sensitive display in some embodiments of touch screen 212 is, optionally, analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 212 displays visual output from device 200, whereas touch-sensitive touchpads do not provide visual output.
  • A touch-sensitive display in some embodiments of touch screen 212 is described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.
  • Touch screen 212 optionally has a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user optionally makes contact with touch screen 212 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
  • In some embodiments, in addition to the touch screen, device 200 optionally includes a touchpad for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is, optionally, a touch-sensitive surface that is separate from touch screen 212 or an extension of the touch-sensitive surface formed by the touch screen.
  • Device 200 also includes power system 262 for powering the various components. Power system 262 optionally includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
  • Device 200 optionally also includes one or more optical sensors 264. FIG. 2A shows an optical sensor coupled to optical sensor controller 258 in I/O subsystem 206. Optical sensor 264 includes charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors. Optical sensor 264 optionally receives light from the environment, projected through one or more lenses, and converts the light to data representing an image. In conjunction with imaging module 243 (also called a camera module), optical sensor 264 captures still images or video. In some embodiments, an optical sensor is located on the back of device 200, opposite touch screen display 212 on the front of the device so that the touch screen display is enabled for use as a viewfinder for still and/or video image acquisition. In some embodiments, an optical sensor is located on the front of the device so that the user's image is, optionally, obtained for video conferencing while the user views the other video conference participants on the touch screen display. In some embodiments, the position of optical sensor 264 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a single optical sensor 264 is used along with the touch screen display for both video conferencing and still and/or video image acquisition.
  • Device 200 optionally also includes one or more depth camera sensors 275. FIG. 2A shows a depth camera sensor coupled to depth camera controller 269 in I/O subsystem 206. Depth camera sensor 275 receives data from the environment to create a three dimensional model of an object (e.g., a face) within a scene from a viewpoint (e.g., a depth camera sensor). In some embodiments, in conjunction with imaging module 243 (also called a camera module), depth camera sensor 275 is optionally used to determine a depth map of different portions of an image captured by the imaging module 243. In some embodiments, a depth camera sensor is located on the front of device 200 so that the user's image with depth information is, optionally, obtained for video conferencing while the user views the other video conference participants on the touch screen display and to capture selfies with depth map data. In some embodiments, the depth camera sensor 275 is located on the back of device, or on the back and the front of the device 200. In some embodiments, the position of depth camera sensor 275 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a depth camera sensor 275 is used along with the touch screen display for both video conferencing and still and/or video image acquisition.
  • In some embodiments, a depth map (e.g., depth map image) contains information (e.g., values) that relates to the distance of objects in a scene from a viewpoint (e.g., a camera, an optical sensor, a depth camera sensor). In one embodiment of a depth map, each depth pixel defines the position in the viewpoint's Z-axis where its corresponding two-dimensional pixel is located. In some embodiments, a depth map is composed of pixels wherein each pixel is defined by a value (e.g., 0-255). For example, the “0” value represents pixels that are located at the most distant place in a “three dimensional” scene and the “255” value represents pixels that are located closest to a viewpoint (e.g., a camera, an optical sensor, a depth camera sensor) in the “three dimensional” scene. In other embodiments, a depth map represents the distance between an object in a scene and the plane of the viewpoint. In some embodiments, the depth map includes information about the relative depth of various features of an object of interest in view of the depth camera (e.g., the relative depth of eyes, nose, mouth, ears of a user's face). In some embodiments, the depth map includes information that enables the device to determine contours of the object of interest in a z direction.
  • Device 200 optionally also includes one or more contact intensity sensors 265. FIG. 2A shows a contact intensity sensor coupled to intensity sensor controller 259 in I/O subsystem 206. Contact intensity sensor 265 optionally includes one or more piezoresistive strain gauges, capacitive force sensors, electric force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other intensity sensors (e.g., sensors used to measure the force (or pressure) of a contact on a touch-sensitive surface). Contact intensity sensor 265 receives contact intensity information (e.g., pressure information or a proxy for pressure information) from the environment. In some embodiments, at least one contact intensity sensor is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212). In some embodiments, at least one contact intensity sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.
  • Device 200 optionally also includes one or more proximity sensors 266. FIG. 2A shows proximity sensor 266 coupled to peripherals interface 218. Alternately, proximity sensor 266 is, optionally, coupled to input controller 260 in I/O subsystem 206. Proximity sensor 266 optionally performs as described in U.S. patent application Ser. No. 11/241,839, “Proximity Detector In Handheld Device”; Ser. No. 11/240,788, “Proximity Detector In Handheld Device”; Ser. No. 11/620,702, “Using Ambient Light Sensor To Augment Proximity Sensor Output”; Ser. No. 11/586,862, “Automated Response To And Sensing Of User Activity In Portable Devices”; and Ser. No. 11/638,251, “Methods And Systems For Automatic Configuration Of Peripherals,” which are hereby incorporated by reference in their entirety. In some embodiments, the proximity sensor turns off and disables touch screen 212 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call).
  • Device 200 optionally also includes one or more tactile output generators 267. FIG. 2A shows a tactile output generator coupled to haptic feedback controller 261 in I/O subsystem 206. Tactile output generator 267 optionally includes one or more electroacoustic devices such as speakers or other audio components and/or electromechanical devices that convert energy into linear motion such as a motor, solenoid, electroactive polymer, piezoelectric actuator, electrostatic actuator, or other tactile output generating component (e.g., a component that converts electrical signals into tactile outputs on the device). Contact intensity sensor 265 receives tactile feedback generation instructions from haptic feedback module 233 and generates tactile outputs on device 200 that are capable of being sensed by a user of device 200. In some embodiments, at least one tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 200) or laterally (e.g., back and forth in the same plane as a surface of device 200). In some embodiments, at least one tactile output generator sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.
  • Device 200 optionally also includes one or more accelerometers 268. FIG. 2A shows accelerometer 268 coupled to peripherals interface 218. Alternately, accelerometer 268 is, optionally, coupled to an input controller 260 in I/O subsystem 206. Accelerometer 268 optionally performs as described in U.S. Patent Publication No. 20050190059, “Acceleration-based Theft Detection System for Portable Electronic Devices,” and U.S. Patent Publication No. 20060017692, “Methods And Apparatuses For Operating A Portable Device Based On An Accelerometer,” both of which are incorporated by reference herein in their entirety. In some embodiments, information is displayed on the touch screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers. Device 200 optionally includes, in addition to accelerometer(s) 268, a magnetometer and a GPS (or GLONASS or other global navigation system) receiver for obtaining information concerning the location and orientation (e.g., portrait or landscape) of device 200.
  • In some embodiments, the software components stored in memory 202 include operating system 226, communication module (or set of instructions) 228, contact/motion module (or set of instructions) 230, graphics module (or set of instructions) 232, text input module (or set of instructions) 234, Global Positioning System (GPS) module (or set of instructions) 235, Digital Assistant Client Module 229, and applications (or sets of instructions) 236. Further, memory 202 stores data and models, such as user data and models 231. Furthermore, in some embodiments, memory 202 (FIG. 2A) or 470 (FIG. 4 ) stores device/global internal state 257, as shown in FIGS. 2A and 4 . Device/global internal state 257 includes one or more of: active application state, indicating which applications, if any, are currently active; display state, indicating what applications, views or other information occupy various regions of touch screen display 212; sensor state, including information obtained from the device's various sensors and input control devices 216; and location information concerning the device's location and/or attitude.
  • Operating system 226 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
  • Communication module 228 facilitates communication with other devices over one or more external ports 224 and also includes various software components for handling data received by RF circuitry 208 and/or external port 224. External port 224 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.
  • Contact/motion module 230 optionally detects contact with touch screen 212 (in conjunction with display controller 256) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 230 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 230 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 230 and display controller 256 detect contact on a touchpad.
  • In some embodiments, contact/motion module 230 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 200). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).
  • Contact/motion module 230 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.
  • Graphics module 232 includes various known software components for rendering and displaying graphics on touch screen 212 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.
  • In some embodiments, graphics module 232 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 232 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 256.
  • Haptic feedback module 233 includes various software components for generating instructions used by tactile output generator(s) 267 to produce tactile outputs at one or more locations on device 200 in response to user interactions with device 200.
  • Text input module 234, which is optionally, a component of graphics module 232, provides soft keyboards for entering text in various applications (e.g., contacts 237, email 240, IM 241, browser 247, and any other application that needs text input).
  • GPS module 235 determines the location of the device and provides this information for use in various applications (e.g., to telephone 238 for use in location-based dialing; to camera 243 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
  • Digital assistant client module 229 includes various client-side digital assistant instructions to provide the client-side functionalities of the digital assistant. For example, digital assistant client module 229 is capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., microphone 213, accelerometer(s) 268, touch-sensitive display system 212, optical sensor(s) 229, other input control devices 216, etc.) of portable multifunction device 200. Digital assistant client module 229 is also capable of providing output in audio (e.g., speech output), visual, and/or tactile forms through various output interfaces (e.g., speaker 211, touch-sensitive display system 212, tactile output generator(s) 267, etc.) of portable multifunction device 200. For example, output is provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, digital assistant client module 229 communicates with DA server 106 using RF circuitry 208.
  • User data and models 231 include various data associated with the user (e.g., user-specific vocabulary data, user preference data, user-specified name pronunciations, data from the user's electronic address book, to-do lists, shopping lists, etc.) to provide the client-side functionalities of the digital assistant. Further, user data and models 231 include various models (e.g., speech recognition models, statistical language models, natural language processing models, ontology, task flow models, service models, etc.) for processing user input and determining user intent.
  • In some examples, digital assistant client module 229 utilizes the various sensors, subsystems, and peripheral devices of portable multifunction device 200 to gather additional information from the surrounding environment of the portable multifunction device 200 to establish a context associated with a user, the current user interaction, and/or the current user input. In some examples, digital assistant client module 229 provides the contextual information or a subset thereof with the user input to DA server 106 to help infer the user's intent. In some examples, the digital assistant also uses the contextual information to determine how to prepare and deliver outputs to the user. Contextual information is referred to as context data.
  • In some examples, the contextual information that accompanies the user input includes sensor information, e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, etc. In some examples, the contextual information can also include the physical state of the device, e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signals strength, etc. In some examples, information related to the software state of DA server 106, e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc., and of portable multifunction device 200 is provided to DA server 106 as contextual information associated with a user input.
  • In some examples, the digital assistant client module 229 selectively provides information (e.g., user data 231) stored on the portable multifunction device 200 in response to requests from DA server 106. In some examples, digital assistant client module 229 also elicits additional input from the user via a natural language dialogue or other user interfaces upon request by DA server 106. Digital assistant client module 229 passes the additional input to DA server 106 to help DA server 106 in intent deduction and/or fulfillment of the user's intent expressed in the user request.
  • A more detailed description of a digital assistant is described below with reference to FIGS. 7A-7C. It should be recognized that digital assistant client module 229 can include any number of the sub-modules of digital assistant module 726 described below.
  • Applications 236 optionally include the following modules (or sets of instructions), or a subset or superset thereof:
      • Contacts module 237 (sometimes called an address book or contact list);
      • Telephone module 238;
      • Video conference module 239;
      • E-mail client module 240;
      • Instant messaging (IM) module 241;
      • Workout support module 242;
      • Camera module 243 for still and/or video images;
      • Image management module 244;
      • Video player module;
      • Music player module;
      • Browser module 247;
      • Calendar module 248;
      • Widget modules 249, which optionally include one or more of: weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, dictionary widget 249-5, and other widgets obtained by the user, as well as user-created widgets 249-6;
      • Widget creator module 250 for making user-created widgets 249-6;
      • Search module 251;
      • Video and music player module 252, which merges video player module and music player module;
      • Notes module 253;
      • Map module 254; and/or
      • Online video module 255.
  • Examples of other applications 236 that are, optionally, stored in memory 202 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
  • In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, contacts module 237 are, optionally, used to manage an address book or contact list (e.g., stored in application internal state 292 of contacts module 237 in memory 202 or memory 470), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 238, video conference module 239, e-mail 240, or IM 241; and so forth.
  • In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, telephone module 238 are, optionally, used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 237, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies.
  • In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, optical sensor 264, optical sensor controller 258, contact/motion module 230, graphics module 232, text input module 234, contacts module 237, and telephone module 238, video conference module 239 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.
  • In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, e-mail client module 240 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 244, e-mail client module 240 makes it very easy to create and send e-mails with still or video images taken with camera module 243.
  • In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, the instant messaging module 241 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages optionally include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).
  • In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, map module 254, and music player module, workout support module 242 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data.
  • In conjunction with touch screen 212, display controller 256, optical sensor(s) 264, optical sensor controller 258, contact/motion module 230, graphics module 232, and image management module 244, camera module 243 includes executable instructions to capture still images or video (including a video stream) and store them into memory 202, modify characteristics of a still image or video, or delete a still image or video from memory 202.
  • In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and camera module 243, image management module 244 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
  • In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, browser module 247 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.
  • In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, e-mail client module 240, and browser module 247, calendar module 248 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.
  • In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, widget modules 249 are mini-applications that are, optionally, downloaded and used by a user (e.g., weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, and dictionary widget 249-5) or created by the user (e.g., user-created widget 249-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).
  • In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, the widget creator module 250 are, optionally, used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).
  • In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, search module 251 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 202 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.
  • In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, and browser module 247, video and music player module 252 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 212 or on an external, connected display via external port 224). In some embodiments, device 200 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).
  • In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, notes module 253 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.
  • In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, and browser module 247, map module 254 are, optionally, used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.
  • In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, text input module 234, e-mail client module 240, and browser module 247, online video module 255 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 224), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 241, rather than e-mail client module 240, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.
  • Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are, optionally, combined or otherwise rearranged in various embodiments. For example, video player module is optionally, combined with music player module into a single module (e.g., video and music player module 252, FIG. 2A). In some embodiments, memory 202 optionally stores a subset of the modules and data structures identified above. Furthermore, memory 202 optionally stores additional modules and data structures not described above.
  • In some embodiments, device 200 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 200, the number of physical input control devices (such as push buttons, dials, and the like) on device 200 is, optionally, reduced.
  • The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 200 to a main, home, or root menu from any user interface that is displayed on device 200. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.
  • FIG. 2B is a block diagram illustrating exemplary components for event handling in accordance with some embodiments. In some embodiments, memory 202 (FIG. 2A) or 470 (FIG. 4 ) includes event sorter 270 (e.g., in operating system 226) and a respective application 236-1 (e.g., any of the aforementioned applications 237-251, 255, 480-490).
  • Event sorter 270 receives event information and determines the application 236-1 and application view 291 of application 236-1 to which to deliver the event information. Event sorter 270 includes event monitor 271 and event dispatcher module 274. In some embodiments, application 236-1 includes application internal state 292, which indicates the current application view(s) displayed on touch-sensitive display 212 when the application is active or executing. In some embodiments, device/global internal state 257 is used by event sorter 270 to determine which application(s) is (are) currently active, and application internal state 292 is used by event sorter 270 to determine application views 291 to which to deliver event information.
  • In some embodiments, application internal state 292 includes additional information, such as one or more of: resume information to be used when application 236-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 236-1, a state queue for enabling the user to go back to a prior state or view of application 236-1, and a redo/undo queue of previous actions taken by the user.
  • Event monitor 271 receives event information from peripherals interface 218. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 212, as part of a multi-touch gesture). Peripherals interface 218 transmits information it receives from I/O subsystem 206 or a sensor, such as proximity sensor 266, accelerometer(s) 268, and/or microphone 213 (through audio circuitry 210). Information that peripherals interface 218 receives from I/O subsystem 206 includes information from touch-sensitive display 212 or a touch-sensitive surface.
  • In some embodiments, event monitor 271 sends requests to the peripherals interface 218 at predetermined intervals. In response, peripherals interface 218 transmits event information. In other embodiments, peripherals interface 218 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).
  • In some embodiments, event sorter 270 also includes a hit view determination module 272 and/or an active event recognizer determination module 273.
  • Hit view determination module 272 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 212 displays more than one view. Views are made up of controls and other elements that a user can see on the display.
  • Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected optionally correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is, optionally, called the hit view, and the set of events that are recognized as proper inputs are, optionally, determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.
  • Hit view determination module 272 receives information related to sub events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 272 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module 272, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.
  • Active event recognizer determination module 273 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 273 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 273 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.
  • Event dispatcher module 274 dispatches the event information to an event recognizer (e.g., event recognizer 280). In embodiments including active event recognizer determination module 273, event dispatcher module 274 delivers the event information to an event recognizer determined by active event recognizer determination module 273. In some embodiments, event dispatcher module 274 stores in an event queue the event information, which is retrieved by a respective event receiver 282.
  • In some embodiments, operating system 226 includes event sorter 270. Alternatively, application 236-1 includes event sorter 270. In yet other embodiments, event sorter 270 is a stand-alone module, or a part of another module stored in memory 202, such as contact/motion module 230.
  • In some embodiments, application 236-1 includes a plurality of event handlers 290 and one or more application views 291, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 291 of the application 236-1 includes one or more event recognizers 280. Typically, a respective application view 291 includes a plurality of event recognizers 280. In other embodiments, one or more of event recognizers 280 are part of a separate module, such as a user interface kit or a higher level object from which application 236-1 inherits methods and other properties. In some embodiments, a respective event handler 290 includes one or more of: data updater 276, object updater 277, GUI updater 278, and/or event data 279 received from event sorter 270. Event handler 290 utilizes or calls data updater 276, object updater 277, or GUI updater 278 to update the application internal state 292. Alternatively, one or more of the application views 291 include one or more respective event handlers 290. Also, in some embodiments, one or more of data updater 276, object updater 277, and GUI updater 278 are included in a respective application view 291.
  • A respective event recognizer 280 receives event information (e.g., event data 279) from event sorter 270 and identifies an event from the event information. Event recognizer 280 includes event receiver 282 and event comparator 284. In some embodiments, event recognizer 280 also includes at least a subset of: metadata 283, and event delivery instructions 288 (which optionally include sub-event delivery instructions).
  • Event receiver 282 receives event information from event sorter 270. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information optionally also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.
  • Event comparator 284 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 284 includes event definitions 286. Event definitions 286 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (287-1), event 2 (287-2), and others. In some embodiments, sub-events in an event (287) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (287-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (287-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 212, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 290.
  • In some embodiments, event definition 287 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 284 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 212, when a touch is detected on touch-sensitive display 212, event comparator 284 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 290, the event comparator uses the result of the hit test to determine which event handler 290 should be activated. For example, event comparator 284 selects an event handler associated with the sub-event and the object triggering the hit test.
  • In some embodiments, the definition for a respective event (287) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.
  • When a respective event recognizer 280 determines that the series of sub-events do not match any of the events in event definitions 286, the respective event recognizer 280 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.
  • In some embodiments, a respective event recognizer 280 includes metadata 283 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.
  • In some embodiments, a respective event recognizer 280 activates event handler 290 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 280 delivers event information associated with the event to event handler 290. Activating an event handler 290 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 280 throws a flag associated with the recognized event, and event handler 290 associated with the flag catches the flag and performs a predefined process.
  • In some embodiments, event delivery instructions 288 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.
  • In some embodiments, data updater 276 creates and updates data used in application 236-1. For example, data updater 276 updates the telephone number used in contacts module 237, or stores a video file used in video player module. In some embodiments, object updater 277 creates and updates objects used in application 236-1. For example, object updater 277 creates a new user-interface object or updates the position of a user-interface object. GUI updater 278 updates the GUI. For example, GUI updater 278 prepares display information and sends it to graphics module 232 for display on a touch-sensitive display.
  • In some embodiments, event handler(s) 290 includes or has access to data updater 276, object updater 277, and GUI updater 278. In some embodiments, data updater 276, object updater 277, and GUI updater 278 are included in a single module of a respective application 236-1 or application view 291. In other embodiments, they are included in two or more software modules.
  • It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 200 with input devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.
  • FIG. 3 illustrates a portable multifunction device 200 having a touch screen 212 in accordance with some embodiments. The touch screen optionally displays one or more graphics within user interface (UI) 300. In this embodiment, as well as others described below, a user is enabled to select one or more of the graphics by making a gesture on the graphics, for example, with one or more fingers 302 (not drawn to scale in the figure) or one or more styluses 303 (not drawn to scale in the figure). In some embodiments, selection of one or more graphics occurs when the user breaks contact with the one or more graphics. In some embodiments, the gesture optionally includes one or more taps, one or more swipes (from left to right, right to left, upward and/or downward), and/or a rolling of a finger (from right to left, left to right, upward and/or downward) that has made contact with device 200. In some implementations or circumstances, inadvertent contact with a graphic does not select the graphic. For example, a swipe gesture that sweeps over an application icon optionally does not select the corresponding application when the gesture corresponding to selection is a tap.
  • Device 200 optionally also includes one or more physical buttons, such as “home” or menu button 304. As described previously, menu button 304 is, optionally, used to navigate to any application 236 in a set of applications that are, optionally, executed on device 200. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 212.
  • In some embodiments, device 200 includes touch screen 212, menu button 304, push button 306 for powering the device on/off and locking the device, volume adjustment button(s) 308, subscriber identity module (SIM) card slot 310, headset jack 312, and docking/charging external port 224. Push button 306 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 200 also accepts verbal input for activation or deactivation of some functions through microphone 213. Device 200 also, optionally, includes one or more contact intensity sensors 265 for detecting intensity of contacts on touch screen 212 and/or one or more tactile output generators 267 for generating tactile outputs for a user of device 200.
  • FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments. Device 400 need not be portable. In some embodiments, device 400 is a laptop computer, a desktop computer, a tablet computer, a multimedia player device, a navigation device, an educational device (such as a child's learning toy), a gaming system, or a control device (e.g., a home or industrial controller). Device 400 typically includes one or more processing units (CPUs) 410, one or more network or other communications interfaces 460, memory 470, and one or more communication buses 420 for interconnecting these components. Communication buses 420 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. Device 400 includes input/output (I/O) interface 430 comprising display 440, which is typically a touch screen display. I/O interface 430 also optionally includes a keyboard and/or mouse (or other pointing device) 450 and touchpad 455, tactile output generator 457 for generating tactile outputs on device 400 (e.g., similar to tactile output generator(s) 267 described above with reference to FIG. 2A), sensors 459 (e.g., optical, acceleration, proximity, touch-sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 265 described above with reference to FIG. 2A). Memory 470 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM, or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 470 optionally includes one or more storage devices remotely located from CPU(s) 410. In some embodiments, memory 470 stores programs, modules, and data structures analogous to the programs, modules, and data structures stored in memory 202 of portable multifunction device 200 (FIG. 2A), or a subset thereof. Furthermore, memory 470 optionally stores additional programs, modules, and data structures not present in memory 202 of portable multifunction device 200. For example, memory 470 of device 400 optionally stores drawing module 480, presentation module 482, word processing module 484, website creation module 486, disk authoring module 488, and/or spreadsheet module 490, while memory 202 of portable multifunction device 200 (FIG. 2A) optionally does not store these modules.
  • Each of the above-identified elements in FIG. 4 is, optionally, stored in one or more of the previously mentioned memory devices. Each of the above-identified modules corresponds to a set of instructions for performing a function described above. The above-identified modules or programs (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are, optionally, combined or otherwise rearranged in various embodiments. In some embodiments, memory 470 optionally stores a subset of the modules and data structures identified above. Furthermore, memory 470 optionally stores additional modules and data structures not described above.
  • Attention is now directed towards embodiments of user interfaces that are, optionally, implemented on, for example, portable multifunction device 200.
  • FIG. 5A illustrates an exemplary user interface for a menu of applications on portable multifunction device 200 in accordance with some embodiments. Similar user interfaces are, optionally, implemented on device 400. In some embodiments, user interface 500 includes the following elements, or a subset or superset thereof:
  • Signal strength indicator(s) 502 for wireless communication(s), such as cellular and Wi-Fi signals;
      • Time 504;
      • Bluetooth indicator 505;
      • Battery status indicator 506;
      • Tray 508 with icons for frequently used applications, such as:
        • Icon 516 for telephone module 238, labeled “Phone,” which optionally includes an indicator 514 of the number of missed calls or voicemail messages;
        • Icon 518 for e-mail client module 240, labeled “Mail,” which optionally includes an indicator 510 of the number of unread e-mails;
        • Icon 520 for browser module 247, labeled “Browser;” and
        • Icon 522 for video and music player module 252, also referred to as iPod (trademark of Apple Inc.) module 252, labeled “iPod;” and
      • Icons for other applications, such as:
        • Icon 524 for IM module 241, labeled “Messages;”
        • Icon 526 for calendar module 248, labeled “Calendar;”
        • Icon 528 for image management module 244, labeled “Photos;”
        • Icon 530 for camera module 243, labeled “Camera;”
        • Icon 532 for online video module 255, labeled “Online Video;”
        • Icon 534 for stocks widget 249-2, labeled “Stocks;”
        • Icon 536 for map module 254, labeled “Maps;”
        • Icon 538 for weather widget 249-1, labeled “Weather;”
        • Icon 540 for alarm clock widget 249-4, labeled “Clock;”
        • Icon 542 for workout support module 242, labeled “Workout Support;”
        • Icon 544 for notes module 253, labeled “Notes;” and
        • Icon 546 for a settings application or module, labeled “Settings,” which provides access to settings for device 200 and its various applications 236.
  • It should be noted that the icon labels illustrated in FIG. 5A are merely exemplary. For example, icon 522 for video and music player module 252 is optionally labeled “Music” or “Music Player.” Other labels are, optionally, used for various application icons. In some embodiments, a label for a respective application icon includes a name of an application corresponding to the respective application icon. In some embodiments, a label for a particular application icon is distinct from a name of an application corresponding to the particular application icon.
  • FIG. 5B illustrates an exemplary user interface on a device (e.g., device 400, FIG. 4 ) with a touch-sensitive surface 551 (e.g., a tablet or touchpad 455, FIG. 4 ) that is separate from the display 550 (e.g., touch screen display 212). Device 400 also, optionally, includes one or more contact intensity sensors (e.g., one or more of sensors 457) for detecting intensity of contacts on touch-sensitive surface 551 and/or one or more tactile output generators 459 for generating tactile outputs for a user of device 400.
  • Although some of the examples that follow will be given with reference to inputs on touch screen display 212 (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in FIG. 5B. In some embodiments, the touch-sensitive surface (e.g., 551 in FIG. 5B) has a primary axis (e.g., 552 in FIG. 5B) that corresponds to a primary axis (e.g., 553 in FIG. 5B) on the display (e.g., 550). In accordance with these embodiments, the device detects contacts (e.g., 560 and 562 in FIG. 5B) with the touch-sensitive surface 551 at locations that correspond to respective locations on the display (e.g., in FIG. 5B, 560 corresponds to 568 and 562 corresponds to 570). In this way, user inputs (e.g., contacts 560 and 562, and movements thereof) detected by the device on the touch-sensitive surface (e.g., 551 in FIG. 5B) are used by the device to manipulate the user interface on the display (e.g., 550 in FIG. 5B) of the multifunction device when the touch-sensitive surface is separate from the display. It should be understood that similar methods are, optionally, used for other user interfaces described herein.
  • Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.
  • FIG. 6A illustrates exemplary personal electronic device 600. Device 600 includes body 602. In some embodiments, device 600 can include some or all of the features described with respect to devices 200 and 400 (e.g., FIGS. 2A-4 ). In some embodiments, device 600 has touch-sensitive display screen 604, hereafter touch screen 604. Alternatively, or in addition to touch screen 604, device 600 has a display and a touch-sensitive surface. As with devices 200 and 400, in some embodiments, touch screen 604 (or the touch-sensitive surface) optionally incudes one or more intensity sensors for detecting intensity of contacts (e.g., touches) being applied. The one or more intensity sensors of touch screen 604 (or the touch-sensitive surface) can provide output data that represents the intensity of touches. The user interface of device 600 responds to touches based on their intensity, meaning that touches of different intensities can invoke different user interface operations on device 600.
  • Exemplary techniques for detecting and processing touch intensity are found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, published as WIPO Publication No. WO/2013/169849, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, published as WIPO Publication No. WO/2014/105276, each of which is hereby incorporated by reference in their entirety.
  • In some embodiments, device 600 has one or more input mechanisms 606 and 608. Input mechanisms 606 and 608, if included, can be physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some embodiments, device 600 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 600 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms permit device 600 to be worn by a user.
  • FIG. 6B depicts exemplary personal electronic device 600. In some embodiments, device 600 optionally includes some or all of the components described with respect to FIGS. 2A, 2B, and 4 . Device 600 has bus 612 that operatively couples I/O section 614 with one or more computer processors 616 and memory 618. I/O section 614 is optionally connected to display 604, which can have touch-sensitive component 622 and, optionally, intensity sensor 624 (e.g., contact intensity sensor). In addition, I/O section 614 is optionally connected with communication unit 630 for receiving application and operating system data, using Wi-Fi, Bluetooth, near field communication (NFC), cellular, and/or other wireless communication techniques. Device 600 optionally includes input mechanisms 606 and/or 608. Input mechanism 606 is, optionally, a rotatable input device or a depressible and rotatable input device, for example. Input mechanism 608 is, optionally, a button, in some examples.
  • Input mechanism 608 is, optionally, a microphone, in some examples. Personal electronic device 600 optionally includes various sensors, such as GPS sensor 632, accelerometer 634, directional sensor 640 (e.g., compass), gyroscope 636, motion sensor 638, and/or a combination thereof, all of which are, optionally, operatively connected to I/O section 614.
  • Memory 618 of personal electronic device 600 can include one or more non-transitory computer-readable storage media, for storing computer-executable instructions, which, when executed by one or more computer processors 616, for example, cause the computer processors to perform the techniques and processes described below. The computer-executable instructions, for example, are also stored and/or transported within any non-transitory computer-readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In some examples, the storage medium is a non-transitory computer-readable storage medium. The non-transitory computer-readable storage medium any type of storage including but not limited to, magnetic, optical, and/or semiconductor storages. Examples of such storage include magnetic disks, optical discs based on CD, DVD, or Blu-ray technologies, as well as persistent solid-state memory such as flash, solid-state drives, and the like. Personal electronic device 600 is not limited to the components and configuration of FIG. 6B, but can include other or additional components in multiple configurations.
  • As used here, the term “affordance” refers to a user-interactive graphical user interface object that is, optionally, displayed on the display screen of devices 200, 400, 600, 800, 1000, 1600 and/or 1800 (FIGS. 2A, 4, and 6A-6B, FIGS. 8A-8AF, FIGS. 10A-10AJ, FIGS. 16A-16S, 18A-18D). For example, an image (e.g., icon), a button, and text (e.g., hyperlink) each optionally constitutes an affordance.
  • As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 455 in FIG. 4 or touch-sensitive surface 551 in FIG. 5B) while the cursor is over a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations that include a touch screen display (e.g., touch-sensitive display system 212 in FIG. 2A or touch screen 212 in FIG. 5A) that enables direct interaction with user interface elements on the touch screen display, a detected contact on the touch screen acts as a “focus selector” so that when an input (e.g., a press input by the contact) is detected on the touch screen display at a location of a particular user interface element (e.g., a button, window, slider, or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations, focus is moved from one region of a user interface to another region of the user interface without corresponding movement of a cursor or movement of a contact on a touch screen display (e.g., by using a tab key or arrow keys to move focus from one button to another button); in these implementations, the focus selector moves in accordance with movement of focus between different regions of the user interface. Without regard to the specific form taken by the focus selector, the focus selector is generally the user interface element (or contact on a touch screen display) that is controlled by the user so as to communicate the user's intended interaction with the user interface (e.g., by indicating, to the device, the element of the user interface with which the user is intending to interact). For example, the location of a focus selector (e.g., a cursor, a contact, or a selection box) over a respective button while a press input is detected on the touch-sensitive surface (e.g., a touchpad or touch screen) will indicate that the user is intending to activate the respective button (as opposed to other user interface elements shown on a display of the device).
  • As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds optionally includes a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.
  • FIG. 6C illustrates detecting a plurality of contacts 652A-652E on touch-sensitive display screen 604 with a plurality of intensity sensors 624A-624D. FIG. 6C additionally includes intensity diagrams that show the current intensity measurements of the intensity sensors 624A-624D relative to units of intensity. In this example, the intensity measurements of intensity sensors 624A and 624D are each 9 units of intensity, and the intensity measurements of intensity sensors 624B and 624C are each 7 units of intensity. In some implementations, an aggregate intensity is the sum of the intensity measurements of the plurality of intensity sensors 624A-624D, which in this example is 32 intensity units. In some embodiments, each contact is assigned a respective intensity that is a portion of the aggregate intensity. FIG. 6D illustrates assigning the aggregate intensity to contacts 652A-652E based on their distance from the center of force 654. In this example, each of contacts 652A, 652B, and 652E are assigned an intensity of contact of 8 intensity units of the aggregate intensity, and each of contacts 652C and 652D are assigned an intensity of contact of 4 intensity units of the aggregate intensity. More generally, in some implementations, each contact j is assigned a respective intensity Ij that is a portion of the aggregate intensity, A, in accordance with a predefined mathematical function, Ij=A·(Dj//ΣDi), where Dj is the distance of the respective contact j to the center of force, and ΣDi is the sum of the distances of all the respective contacts (e.g., i=1 to last) to the center of force. The operations described with reference to FIGS. 6C-6D can be performed using an electronic device similar or identical to device 104, 200, 400, or 600. In some embodiments, a characteristic intensity of a contact is based on one or more intensities of the contact. In some embodiments, the intensity sensors are used to determine a single characteristic intensity (e.g., a single characteristic intensity of a single contact). It should be noted that the intensity diagrams are not part of a displayed user interface, but are included in FIGS. 6C-6D to aid the reader.
  • In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface optionally receives a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location is, optionally, based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm is, optionally, applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.
  • The intensity of a contact on the touch-sensitive surface is, optionally, characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.
  • An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.
  • In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).
  • FIGS. 6E-6H illustrate detection of a gesture that includes a press input that corresponds to an increase in intensity of a contact 662 from an intensity below a light press intensity threshold (e.g., “ITL”) in FIG. 6E, to an intensity above a deep press intensity threshold (e.g., “ITD”) in FIG. 6H. The gesture performed with contact 662 is detected on touch-sensitive surface 660 while cursor 676 is displayed over application icon 672B corresponding to App 2, on a displayed user interface 670 that includes application icons 672A-672D displayed in predefined region 674. In some embodiments, the gesture is detected on touch-sensitive display 604. The intensity sensors detect the intensity of contacts on touch-sensitive surface 660. The device determines that the intensity of contact 662 peaked above the deep press intensity threshold (e.g., “ITD”). Contact 662 is maintained on touch-sensitive surface 660. In response to the detection of the gesture, and in accordance with contact 662 having an intensity that goes above the deep press intensity threshold (e.g., “ITD”) during the gesture, reduced-scale representations 678A-678C (e.g., thumbnails) of recently opened documents for App 2 are displayed, as shown in FIGS. 6F-6H. In some embodiments, the intensity, which is compared to the one or more intensity thresholds, is the characteristic intensity of a contact. It should be noted that the intensity diagram for contact 662 is not part of a displayed user interface, but is included in FIGS. 6E-6H to aid the reader.
  • In some embodiments, the display of representations 678A-678C includes an animation. For example, representation 678A is initially displayed in proximity of application icon 672B, as shown in FIG. 6F. As the animation proceeds, representation 678A moves upward and representation 678B is displayed in proximity of application icon 672B, as shown in FIG. 6G. Then, representations 678A moves upward, 678B moves upward toward representation 678A, and representation 678C is displayed in proximity of application icon 672B, as shown in FIG. 6H. Representations 678A-678C form an array above icon 672B. In some embodiments, the animation progresses in accordance with an intensity of contact 662, as shown in FIGS. 6F-6G, where the representations 678A-678C appear and move upwards as the intensity of contact 662 increases toward the deep press intensity threshold (e.g., “ITS”). In some embodiments, the intensity, on which the progress of the animation is based, is the characteristic intensity of the contact. The operations described with reference to FIGS. 6E-6H can be performed using an electronic device similar or identical to device 104, 200, 400, or 600.
  • In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).
  • For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.
  • As used herein, an “installed application” refers to a software application that has been downloaded onto an electronic device (e.g., devices 100, 200, 400, and/or 600) and is ready to be launched (e.g., become opened) on the device. In some embodiments, a downloaded application becomes an installed application by way of an installation program that extracts program portions from a downloaded package and integrates the extracted portions with the operating system of the computer system.
  • As used herein, the terms “open application” or “executing application” refer to a software application with retained state information (e.g., as part of device/global internal state 157 and/or application internal state 192). An open or executing application is, optionally, any one of the following types of applications:
      • an active application, which is currently displayed on a display screen of the device that the application is being used on;
      • a background application (or background processes), which is not currently displayed, but one or more processes for the application are being processed by one or more processors; and
      • a suspended or hibernated application, which is not running, but has state information that is stored in memory (volatile and non-volatile, respectively) and that can be used to resume execution of the application.
  • As used herein, the term “closed application” refers to software applications without retained state information (e.g., state information for closed applications is not stored in a memory of the device). Accordingly, closing an application includes stopping and/or removing application processes for the application and removing state information for the application from the memory of the device. Generally, opening a second application while in a first application does not close the first application. When the second application is displayed and the first application ceases to be displayed, the first application becomes a background application.
  • 3. Digital Assistant System
  • FIG. 7A illustrates a block diagram of digital assistant system 700 in accordance with various examples. In some examples, digital assistant system 700 is implemented on a standalone computer system. In some examples, digital assistant system 700 is distributed across multiple computers. In some examples, some of the modules and functions of the digital assistant are divided into a server portion and a client portion, where the client portion resides on one or more user devices (e.g., devices 104, 122, 200, 400, 600, 800, 1000, 1404, 1600, 1800) and communicates with the server portion (e.g., server system 108) through one or more networks, e.g., as shown in FIG. 1 . In some examples, digital assistant system 700 is an implementation of server system 108 (and/or DA server 106) shown in FIG. 1 . It should be noted that digital assistant system 700 is only one example of a digital assistant system, and that digital assistant system 700 can have more or fewer components than shown, can combine two or more components, or can have a different configuration or arrangement of the components. The various components shown in FIG. 7A are implemented in hardware, software instructions for execution by one or more processors, firmware, including one or more signal processing and/or application specific integrated circuits, or a combination thereof.
  • Digital assistant system 700 includes memory 702, one or more processors 704, input/output (I/O) interface 706, and network communications interface 708. These components can communicate with one another over one or more communication buses or signal lines 710.
  • In some examples, memory 702 includes a non-transitory computer-readable medium, such as high-speed random access memory and/or a non-volatile computer-readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices).
  • In some examples, I/O interface 706 couples input/output devices 716 of digital assistant system 700, such as displays, keyboards, touch screens, and microphones, to user interface module 722. I/O interface 706, in conjunction with user interface module 722, receives user inputs (e.g., voice input, keyboard inputs, touch inputs, etc.) and processes them accordingly. In some examples, e.g., when the digital assistant is implemented on a standalone user device, digital assistant system 700 includes any of the components and I/O communication interfaces described with respect to devices 200, 400, 600, 1200, and 1404 in FIGS. 2A, 4, 6A-6H, 12, and 14 respectively. In some examples, digital assistant system 700 represents the server portion of a digital assistant implementation, and can interact with the user through a client-side portion residing on a user device (e.g., devices 104, 200, 400, 600, 800, 1000, 1404, 1600, 1800).
  • In some examples, the network communications interface 708 includes wired communication port(s) 712 and/or wireless transmission and reception circuitry 714. The wired communication port(s) receives and send communication signals via one or more wired interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc. The wireless circuitry 714 receives and sends RF signals and/or optical signals from/to communications networks and other communications devices. The wireless communications use any of a plurality of communications standards, protocols, and technologies, such as GSM, EDGE, CDMA, TDMA, Bluetooth, Wi-Fi, VoIP, Wi-MAX, or any other suitable communication protocol. Network communications interface 708 enables communication between digital assistant system 700 with networks, such as the Internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN), and/or a metropolitan area network (MAN), and other devices.
  • In some examples, memory 702, or the computer-readable storage media of memory 702, stores programs, modules, instructions, and data structures including all or a subset of: operating system 718, communications module 720, user interface module 722, one or more applications 724, and digital assistant module 726. In particular, memory 702, or the computer-readable storage media of memory 702, stores instructions for performing the processes described below. One or more processors 704 execute these programs, modules, and instructions, and reads/writes from/to the data structures.
  • Operating system 718 (e.g., Darwin, RTXC, LINUX, UNIX, iOS, OS X, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communications between various hardware, firmware, and software components.
  • Communications module 720 facilitates communications between digital assistant system 700 with other devices over network communications interface 708. For example, communications module 720 communicates with RF circuitry 208 of electronic devices such as devices 200, 400, and 600 shown in FIGS. 2A, 4, 6A-6B, respectively. Communications module 720 also includes various components for handling data received by wireless circuitry 714 and/or wired communications port 712.
  • User interface module 722 receives commands and/or inputs from a user via I/O interface 706 (e.g., from a keyboard, touch screen, pointing device, controller, and/or microphone), and generate user interface objects on a display. User interface module 722 also prepares and delivers outputs (e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, light, etc.) to the user via the I/O interface 706 (e.g., through displays, audio channels, speakers, touch-pads, etc.).
  • Applications 724 include programs and/or modules that are configured to be executed by one or more processors 704. For example, if the digital assistant system is implemented on a standalone user device, applications 724 include user applications, such as games, a calendar application, a navigation application, or an email application. If digital assistant system 700 is implemented on a server, applications 724 include resource management applications, diagnostic applications, or scheduling applications, for example.
  • Memory 702 also stores digital assistant module 726 (or the server portion of a digital assistant). In some examples, digital assistant module 726 includes the following sub-modules, or a subset or superset thereof: input/output processing module 728, speech-to-text (STT) processing module 730, natural language processing module 732, dialogue flow processing module 734, task flow processing module 736, service processing module 738, and speech synthesis processing module 740. Each of these modules has access to one or more of the following systems or data and models of the digital assistant module 726, or a subset or superset thereof: ontology 760, vocabulary index 744, user data 748, task flow models 754, service models 756, and ASR systems 758.
  • In some examples, using the processing modules, data, and models implemented in digital assistant module 726, the digital assistant can perform at least some of the following: converting speech input into text; identifying a user's intent expressed in a natural language input received from the user; actively eliciting and obtaining information needed to fully infer the user's intent (e.g., by disambiguating words, games, intentions, etc.); determining the task flow for fulfilling the inferred intent; and executing the task flow to fulfill the inferred intent.
  • In some examples, as shown in FIG. 7B, I/O processing module 728 interacts with the user through I/O devices 716 in FIG. 7A or with a user device (e.g., devices 104, 200, 400, or 600) through network communications interface 708 in FIG. 7A to obtain user input (e.g., a speech input) and to provide responses (e.g., as speech outputs) to the user input. I/O processing module 728 optionally obtains contextual information associated with the user input from the user device, along with or shortly after the receipt of the user input. The contextual information includes user-specific data, vocabulary, and/or preferences relevant to the user input. In some examples, the contextual information also includes software and hardware states of the user device at the time the user request is received, and/or information related to the surrounding environment of the user at the time that the user request was received. In some examples, I/O processing module 728 also sends follow-up questions to, and receive answers from, the user regarding the user request. When a user request is received by I/O processing module 728 and the user request includes speech input, I/O processing module 728 forwards the speech input to STT processing module 730 (or speech recognizer) for speech-to-text conversions.
  • STT processing module 730 includes one or more ASR systems 758. The one or more ASR systems 758 can process the speech input that is received through I/O processing module 728 to produce a recognition result. Each ASR system 758 includes a front-end speech pre-processor. The front-end speech pre-processor extracts representative features from the speech input. For example, the front-end speech pre-processor performs a Fourier transform on the speech input to extract spectral features that characterize the speech input as a sequence of representative multi-dimensional vectors. Further, each ASR system 758 includes one or more speech recognition models (e.g., acoustic models and/or language models) and implements one or more speech recognition engines. Examples of speech recognition models include Hidden Markov Models, Gaussian-Mixture Models, Deep Neural Network Models, n-gram language models, and other statistical models. Examples of speech recognition engines include the dynamic time warping based engines and weighted finite-state transducers (WFST) based engines. The one or more speech recognition models and the one or more speech recognition engines are used to process the extracted representative features of the front-end speech pre-processor to produce intermediate recognitions results (e.g., phonemes, phonemic strings, and sub-words), and ultimately, text recognition results (e.g., words, word strings, or sequence of tokens). In some examples, the speech input is processed at least partially by a third-party service or on the user's device (e.g., device 104, 200, 400, or 600) to produce the recognition result. Once STT processing module 730 produces recognition results containing a text string (e.g., words, or sequence of words, or sequence of tokens), the recognition result is passed to natural language processing module 732 for intent deduction. In some examples, STT processing module 730 produces multiple candidate text representations of the speech input. Each candidate text representation is a sequence of words or tokens corresponding to the speech input. In some examples, each candidate text representation is associated with a speech recognition confidence score. Based on the speech recognition confidence scores, STT processing module 730 ranks the candidate text representations and provides the n-best (e.g., n highest ranked) candidate text representation(s) to natural language processing module 732 for intent deduction, where n is a predetermined integer greater than zero. For example, in one example, only the highest ranked (n=1) candidate text representation is passed to natural language processing module 732 for intent deduction. In another example, the five highest ranked (n=5) candidate text representations are passed to natural language processing module 732 for intent deduction.
  • More details on the speech-to-text processing are described in U.S. Utility application Ser. No. 13/236,942 for “Consolidating Speech Recognition Results,” filed on Sep. 20, 2011, the entire disclosure of which is incorporated herein by reference.
  • In some examples, STT processing module 730 includes and/or accesses a vocabulary of recognizable words via phonetic alphabet conversion module 731. Each vocabulary word is associated with one or more candidate pronunciations of the word represented in a speech recognition phonetic alphabet. In particular, the vocabulary of recognizable words includes a word that is associated with a plurality of candidate pronunciations. For example, the vocabulary includes the word “tomato” that is associated with the candidate pronunciations of
    Figure US20230388409A1-20231130-P00001
    and
    Figure US20230388409A1-20231130-P00002
    . Further, vocabulary words are associated with custom candidate pronunciations that are based on previous speech inputs from the user. Such custom candidate pronunciations are stored in STT processing module 730 and are associated with a particular user via the user's profile on the device. In some examples, the candidate pronunciations for words are determined based on the spelling of the word and one or more linguistic and/or phonetic rules. In some examples, the candidate pronunciations are manually generated, e.g., based on known canonical pronunciations.
  • In some examples, the candidate pronunciations are ranked based on the commonness of the candidate pronunciation. For example, the candidate pronunciation
    Figure US20230388409A1-20231130-P00001
    is ranked higher than
    Figure US20230388409A1-20231130-P00002
    , because the former is a more commonly used pronunciation (e.g., among all users, for users in a particular geographical region, or for any other appropriate subset of users). In some examples, candidate pronunciations are ranked based on whether the candidate pronunciation is a custom candidate pronunciation associated with the user. For example, custom candidate pronunciations are ranked higher than canonical candidate pronunciations. This can be useful for recognizing proper nouns having a unique pronunciation that deviates from canonical pronunciation. In some examples, candidate pronunciations are associated with one or more speech characteristics, such as geographic origin, nationality, or ethnicity. For example, the candidate pronunciation
    Figure US20230388409A1-20231130-P00001
    is associated with the United States, whereas the candidate pronunciation
    Figure US20230388409A1-20231130-P00002
    is associated with Great Britain. Further, the rank of the candidate pronunciation is based on one or more characteristics (e.g., geographic origin, nationality, ethnicity, etc.) of the user stored in the user's profile on the device. For example, it can be determined from the user's profile that the user is associated with the United States. Based on the user being associated with the United States, the candidate pronunciation
    Figure US20230388409A1-20231130-P00001
    (associated with the United States) is ranked higher than the candidate pronunciation
    Figure US20230388409A1-20231130-P00002
    (associated with Great Britain). In some examples, one of the ranked candidate pronunciations is selected as a predicted pronunciation (e.g., the most likely pronunciation).
  • When a speech input is received, STT processing module 730 is used to determine the phonemes corresponding to the speech input (e.g., using an acoustic model), and then attempt to determine words that match the phonemes (e.g., using a language model). For example, if STT processing module 730 first identifies the sequence of phonemes
    Figure US20230388409A1-20231130-P00001
    corresponding to a portion of the speech input, it can then determine, based on vocabulary index 744, that this sequence corresponds to the word “tomato.”
  • In some examples, STT processing module 730 uses approximate matching techniques to determine words in an utterance. Thus, for example, the STT processing module 730 determines that the sequence of phonemes
    Figure US20230388409A1-20231130-P00001
    corresponds to the word “tomato,” even if that particular sequence of phonemes is not one of the candidate sequence of phonemes for that word.
  • Natural language processing module 732 (“natural language processor”) of the digital assistant takes the n-best candidate text representation(s) (“word sequence(s)” or “token sequence(s)”) generated by STT processing module 730, and attempts to associate each of the candidate text representations with one or more “actionable intents” recognized by the digital assistant. An “actionable intent” (or “user intent”) represents a task that can be performed by the digital assistant, and can have an associated task flow implemented in task flow models 754. The associated task flow is a series of programmed actions and steps that the digital assistant takes in order to perform the task. The scope of a digital assistant's capabilities is dependent on the number and variety of task flows that have been implemented and stored in task flow models 754, or in other words, on the number and variety of “actionable intents” that the digital assistant recognizes. The effectiveness of the digital assistant, however, also dependents on the assistant's ability to infer the correct “actionable intent(s)” from the user request expressed in natural language.
  • In some examples, in addition to the sequence of words or tokens obtained from STT processing module 730, natural language processing module 732 also receives contextual information associated with the user request, e.g., from I/O processing module 728. The natural language processing module 732 optionally uses the contextual information to clarify, supplement, and/or further define the information contained in the candidate text representations received from STT processing module 730. The contextual information includes, for example, user preferences, hardware, and/or software states of the user device, sensor information collected before, during, or shortly after the user request, prior interactions (e.g., dialogue) between the digital assistant and the user, and the like. As described herein, contextual information is, in some examples, dynamic, and changes with time, location, content of the dialogue, and other factors.
  • In some examples, the natural language processing is based on, e.g., ontology 760. Ontology 760 is a hierarchical structure containing many nodes, each node representing either an “actionable intent” or a “property” relevant to one or more of the “actionable intents” or other “properties.” As noted above, an “actionable intent” represents a task that the digital assistant is capable of performing, i.e., it is “actionable” or can be acted on. A “property” represents a parameter associated with an actionable intent or a sub-aspect of another property. A linkage between an actionable intent node and a property node in ontology 760 defines how a parameter represented by the property node pertains to the task represented by the actionable intent node.
  • In some examples, ontology 760 is made up of actionable intent nodes and property nodes. Within ontology 760, each actionable intent node is linked to one or more property nodes either directly or through one or more intermediate property nodes. Similarly, each property node is linked to one or more actionable intent nodes either directly or through one or more intermediate property nodes. For example, as shown in FIG. 7C, ontology 760 includes a “restaurant reservation” node (i.e., an actionable intent node). Property nodes “restaurant,” “date/time” (for the reservation), and “party size” are each directly linked to the actionable intent node (i.e., the “restaurant reservation” node).
  • In addition, property nodes “cuisine,” “price range,” “phone number,” and “location” are sub-nodes of the property node “restaurant,” and are each linked to the “restaurant reservation” node (i.e., the actionable intent node) through the intermediate property node “restaurant.” For another example, as shown in FIG. 7C, ontology 760 also includes a “set reminder” node (i.e., another actionable intent node). Property nodes “date/time” (for setting the reminder) and “subject” (for the reminder) are each linked to the “set reminder” node. Since the property “date/time” is relevant to both the task of making a restaurant reservation and the task of setting a reminder, the property node “date/time” is linked to both the “restaurant reservation” node and the “set reminder” node in ontology 760.
  • An actionable intent node, along with its linked property nodes, is described as a “domain.” In the present discussion, each domain is associated with a respective actionable intent, and refers to the group of nodes (and the relationships there between) associated with the particular actionable intent. For example, ontology 760 shown in FIG. 7C includes an example of restaurant reservation domain 762 and an example of reminder domain 764 within ontology 760. The restaurant reservation domain includes the actionable intent node “restaurant reservation,” property nodes “restaurant,” “date/time,” and “party size,” and sub-property nodes “cuisine,” “price range,” “phone number,” and “location.” Reminder domain 764 includes the actionable intent node “set reminder,” and property nodes “subject” and “date/time.” In some examples, ontology 760 is made up of many domains. Each domain shares one or more property nodes with one or more other domains. For example, the “date/time” property node is associated with many different domains (e.g., a scheduling domain, a travel reservation domain, a movie ticket domain, etc.), in addition to restaurant reservation domain 762 and reminder domain 764.
  • While FIG. 7C illustrates two example domains within ontology 760, other domains include, for example, “find a movie,” “initiate a phone call,” “find directions,” “schedule a meeting,” “send a message,” and “provide an answer to a question,” “read a list,” “providing navigation instructions,” “provide instructions for a task” and so on. A “send a message” domain is associated with a “send a message” actionable intent node, and further includes property nodes such as “recipient(s),” “message type,” and “message body.” The property node “recipient” is further defined, for example, by the sub-property nodes such as “recipient name” and “message address.”
  • In some examples, ontology 760 includes all the domains (and hence actionable intents) that the digital assistant is capable of understanding and acting upon. In some examples, ontology 760 is modified, such as by adding or removing entire domains or nodes, or by modifying relationships between the nodes within the ontology 760.
  • In some examples, nodes associated with multiple related actionable intents are clustered under a “super domain” in ontology 760. For example, a “travel” super-domain includes a cluster of property nodes and actionable intent nodes related to travel. The actionable intent nodes related to travel includes “airline reservation,” “hotel reservation,” “car rental,” “get directions,” “find points of interest,” and so on. The actionable intent nodes under the same super domain (e.g., the “travel” super domain) have many property nodes in common. For example, the actionable intent nodes for “airline reservation,” “hotel reservation,” “car rental,” “get directions,” and “find points of interest” share one or more of the property nodes “start location,” “destination,” “departure date/time,” “arrival date/time,” and “party size.”
  • In some examples, each node in ontology 760 is associated with a set of words and/or phrases that are relevant to the property or actionable intent represented by the node. The respective set of words and/or phrases associated with each node are the so-called “vocabulary” associated with the node. The respective set of words and/or phrases associated with each node are stored in vocabulary index 744 in association with the property or actionable intent represented by the node. For example, returning to FIG. 7B, the vocabulary associated with the node for the property of “restaurant” includes words such as “food,” “drinks,” “cuisine,” “hungry,” “eat,” “pizza,” “fast food,” “meal,” and so on. For another example, the vocabulary associated with the node for the actionable intent of “initiate a phone call” includes words and phrases such as “call,” “phone,” “dial,” “ring,” “call this number,” “make a call to,” and so on. The vocabulary index 744 optionally includes words and phrases in different languages.
  • Natural language processing module 732 receives the candidate text representations (e.g., text string(s) or token sequence(s)) from STT processing module 730, and for each candidate representation, determines what nodes are implicated by the words in the candidate text representation. In some examples, if a word or phrase in the candidate text representation is found to be associated with one or more nodes in ontology 760 (via vocabulary index 744), the word or phrase “triggers” or “activates” those nodes. Based on the quantity and/or relative importance of the activated nodes, natural language processing module 732 selects one of the actionable intents as the task that the user intended the digital assistant to perform. In some examples, the domain that has the most “triggered” nodes is selected. In some examples, the domain having the highest confidence value (e.g., based on the relative importance of its various triggered nodes) is selected. In some examples, the domain is selected based on a combination of the number and the importance of the triggered nodes. In some examples, additional factors are considered in selecting the node as well, such as whether the digital assistant has previously correctly interpreted a similar request from a user.
  • User data 748 includes user-specific information, such as user-specific vocabulary, user preferences, user address, user's default and secondary languages, user's contact list, and other short-term or long-term information for each user. In some examples, natural language processing module 732 uses the user-specific information to supplement the information contained in the user input to further define the user intent. For example, for a user request “invite my friends to my birthday party,” natural language processing module 732 is able to access user data 748 to determine who the “friends” are and when and where the “birthday party” would be held, rather than requiring the user to provide such information explicitly in his/her request.
  • It should be recognized that in some examples, natural language processing module 732 is implemented using one or more machine learning mechanisms (e.g., neural networks). In particular, the one or more machine learning mechanisms are configured to receive a candidate text representation and contextual information associated with the candidate text representation. Based on the candidate text representation and the associated contextual information, the one or more machine learning mechanisms are configured to determine intent confidence scores over a set of candidate actionable intents. Natural language processing module 732 can select one or more candidate actionable intents from the set of candidate actionable intents based on the determined intent confidence scores. In some examples, an ontology (e.g., ontology 760) is also used to select the one or more candidate actionable intents from the set of candidate actionable intents.
  • Other details of searching an ontology based on a token string are described in U.S. Utility application Ser. No. 12/341,743 for “Method and Apparatus for Searching Using An Active Ontology,” filed Dec. 22, 2008, the entire disclosure of which is incorporated herein by reference.
  • In some examples, once natural language processing module 732 identifies an actionable intent (or domain) based on the user request, natural language processing module 732 generates a structured query to represent the identified actionable intent. In some examples, the structured query includes parameters for one or more nodes within the domain for the actionable intent, and at least some of the parameters are populated with the specific information and requirements specified in the user request. For example, the user says “Make me a dinner reservation at a sushi place at 7.” In this case, natural language processing module 732 is able to correctly identify the actionable intent to be “restaurant reservation” based on the user input. According to the ontology, a structured query for a “restaurant reservation” domain includes parameters such as {Cuisine}, {Time}, {Date}, {Party Size}, and the like. In some examples, based on the speech input and the text derived from the speech input using STT processing module 730, natural language processing module 732 generates a partial structured query for the restaurant reservation domain, where the partial structured query includes the parameters {Cuisine=“Sushi”} and {Time=“7 pm”}. However, in this example, the user's utterance contains insufficient information to complete the structured query associated with the domain. Therefore, other necessary parameters such as {Party Size} and {Date} are not specified in the structured query based on the information currently available. In some examples, natural language processing module 732 populates some parameters of the structured query with received contextual information. For example, in some examples, if the user requested a sushi restaurant “near me,” natural language processing module 732 populates a {location} parameter in the structured query with GPS coordinates from the user device.
  • In some examples, natural language processing module 732 identifies multiple candidate actionable intents for each candidate text representation received from STT processing module 730. Further, in some examples, a respective structured query (partial or complete) is generated for each identified candidate actionable intent. Natural language processing module 732 determines an intent confidence score for each candidate actionable intent and ranks the candidate actionable intents based on the intent confidence scores. In some examples, natural language processing module 732 passes the generated structured query (or queries), including any completed parameters, to task flow processing module 736 (“task flow processor”). In some examples, the structured query (or queries) for the m-best (e.g., m highest ranked) candidate actionable intents are provided to task flow processing module 736, where m is a predetermined integer greater than zero. In some examples, the structured query (or queries) for the m-best candidate actionable intents are provided to task flow processing module 736 with the corresponding candidate text representation(s).
  • Other details of inferring a user intent based on multiple candidate actionable intents determined from multiple candidate text representations of a speech input are described in U.S. Utility application Ser. No. 14/298,725 for “System and Method for Inferring User Intent From Speech Inputs,” filed Jun. 6, 2014, the entire disclosure of which is incorporated herein by reference.
  • Task flow processing module 736 is configured to receive the structured query (or queries) from natural language processing module 732, complete the structured query, if necessary, and perform the actions required to “complete” the user's ultimate request. In some examples, the various procedures necessary to complete these tasks are provided in task flow models 754. In some examples, task flow models 754 include procedures for obtaining additional information from the user and task flows for performing actions associated with the actionable intent.
  • As described above, in order to complete a structured query, task flow processing module 736 needs to initiate additional dialogue with the user in order to obtain additional information, and/or disambiguate potentially ambiguous utterances. When such interactions are necessary, task flow processing module 736 invokes dialogue flow processing module 734 to engage in a dialogue with the user. In some examples, dialogue flow processing module 734 determines how (and/or when) to ask the user for the additional information and receives and processes the user responses. The questions are provided to and answers are received from the users through I/O processing module 728. In some examples, dialogue flow processing module 734 presents dialogue output to the user via audio and/or visual output, and receives input from the user via spoken or physical (e.g., clicking) responses. Continuing with the example above, when task flow processing module 736 invokes dialogue flow processing module 734 to determine the “party size” and “date” information for the structured query associated with the domain “restaurant reservation,” dialogue flow processing module 734 generates questions such as “For how many people?” and “On which day?” to pass to the user. Once answers are received from the user, dialogue flow processing module 734 then populates the structured query with the missing information, or pass the information to task flow processing module 736 to complete the missing information from the structured query.
  • Once task flow processing module 736 has completed the structured query for an actionable intent, task flow processing module 736 proceeds to perform the ultimate task associated with the actionable intent. Accordingly, task flow processing module 736 executes the steps and instructions in the task flow model according to the specific parameters contained in the structured query. For example, the task flow model for the actionable intent of “restaurant reservation” includes steps and instructions for contacting a restaurant and actually requesting a reservation for a particular party size at a particular time. For example, using a structured query such as: {restaurant reservation, restaurant=ABC Café, date=3/12/2012, time=7 pm, party size=5}, task flow processing module 736 performs the steps of: (1) logging onto a server of the ABC Café or a restaurant reservation system such as OPENTABLE®, (2) entering the date, time, and party size information in a form on the website, (3) submitting the form, and (4) making a calendar entry for the reservation in the user's calendar.
  • In some examples, task flow processing module 736 employs the assistance of service processing module 738 (“service processing module”) to complete a task requested in the user input or to provide an informational answer requested in the user input. For example, service processing module 738 acts on behalf of task flow processing module 736 to make a phone call, set a calendar entry, invoke a map search, invoke or interact with other user applications installed on the user device, and invoke or interact with third-party services (e.g., a restaurant reservation portal, a social networking website, a banking portal, etc.). In some examples, the protocols and application programming interfaces (API) required by each service are specified by a respective service model among service models 756. Service processing module 738 accesses the appropriate service model for a service and generates requests for the service in accordance with the protocols and APIs required by the service according to the service model.
  • For example, if a restaurant has enabled an online reservation service, the restaurant submits a service model specifying the necessary parameters for making a reservation and the APIs for communicating the values of the necessary parameter to the online reservation service. When requested by task flow processing module 736, service processing module 738 establishes a network connection with the online reservation service using the web address stored in the service model, and sends the necessary parameters of the reservation (e.g., time, date, party size) to the online reservation interface in a format according to the API of the online reservation service.
  • In some examples, natural language processing module 732, dialogue flow processing module 734, and task flow processing module 736 are used collectively and iteratively to infer and define the user's intent, obtain information to further clarify and refine the user intent, and finally generate a response (i.e., an output to the user, or the completion of a task) to fulfill the user's intent. The generated response is a dialogue response to the speech input that at least partially fulfills the user's intent. Further, in some examples, the generated response is output as a speech output. In these examples, the generated response is sent to speech synthesis processing module 740 (e.g., speech synthesizer) where it can be processed to synthesize the dialogue response in speech form. In yet other examples, the generated response is data content relevant to satisfying a user request in the speech input.
  • In examples where task flow processing module 736 receives multiple structured queries from natural language processing module 732, task flow processing module 736 initially processes the first structured query of the received structured queries to attempt to complete the first structured query and/or execute one or more tasks or actions represented by the first structured query. In some examples, the first structured query corresponds to the highest ranked actionable intent. In other examples, the first structured query is selected from the received structured queries based on a combination of the corresponding speech recognition confidence scores and the corresponding intent confidence scores. In some examples, if task flow processing module 736 encounters an error during processing of the first structured query (e.g., due to an inability to determine a necessary parameter), the task flow processing module 736 can proceed to select and process a second structured query of the received structured queries that corresponds to a lower ranked actionable intent. The second structured query is selected, for example, based on the speech recognition confidence score of the corresponding candidate text representation, the intent confidence score of the corresponding candidate actionable intent, a missing necessary parameter in the first structured query, or any combination thereof.
  • Speech synthesis processing module 740 is configured to synthesize speech outputs for presentation to the user. Speech synthesis processing module 740 synthesizes speech outputs based on text provided by the digital assistant. For example, the generated dialogue response is in the form of a text string. Speech synthesis processing module 740 converts the text string to an audible speech output. Speech synthesis processing module 740 uses any appropriate speech synthesis technique in order to generate speech outputs from text, including, but not limited, to concatenative synthesis, unit selection synthesis, diphone synthesis, domain-specific synthesis, formant synthesis, articulatory synthesis, hidden Markov model (HMM) based synthesis, and sinewave synthesis. In some examples, speech synthesis processing module 740 is configured to synthesize individual words based on phonemic strings corresponding to the words. For example, a phonemic string is associated with a word in the generated dialogue response. The phonemic string is stored in metadata associated with the word. Speech synthesis processing module 740 is configured to directly process the phonemic string in the metadata to synthesize the word in speech form.
  • In some examples, instead of (or in addition to) using speech synthesis processing module 740, speech synthesis is performed on a remote device (e.g., the server system 108), and the synthesized speech is sent to the user device for output to the user. For example, this can occur in some implementations where outputs for a digital assistant are generated at a server system. And because server systems generally have more processing power or resources than a user device, it is possible to obtain higher quality speech outputs than would be practical with client-side synthesis.
  • Additional details on digital assistants can be found in the U.S. Utility application Ser. No. 12/987,982, entitled “Intelligent Automated Assistant,” filed Jan. 10, 2011, and U.S. Utility application Ser. No. 13/251,088, entitled “Generating and Processing Task Items That Represent Tasks to Perform,” filed Sep. 30, 2011, the entire disclosures of which are incorporated herein by reference.
  • 4. Accelerated Task Performance
  • FIGS. 8A-8AF exemplary user interfaces for providing suggestions on an electronic device (e.g., device 104, device 122, device 200, device 600, or device 700), in accordance with some embodiments. The user interfaces in these figures are used to illustrate the processes described below, including the processes in FIGS. 9A-9B.
  • FIG. 8A illustrates an electronic device 800 (e.g., device 104, device 122, device 200, device 600, or device 700). In the non-limiting exemplary embodiment illustrated in FIGS. 8A-8AF, electronic device 800 is a smartphone. In other embodiments, electronic device 800 can be a different type of electronic device, such as a wearable device (e.g., a smartwatch). In some examples, electronic device 800 has a display 801, one or more input devices (e.g., touchscreen of display 801, a button, a microphone), and a wireless communication radio. In some examples, the electronic device 800 includes a plurality of cameras. In some examples, the electronic device includes only one camera. In some examples, the electronic device includes one or more biometric sensors (e.g., biometric sensor 803) which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • In FIG. 8A, the electronic device 800 displays, on display 801, a lock screen interface, such as the lock screen interface 804, while the electronic device is in a locked state. The lock screen interface 804 includes a suggestion affordance 806 and a notification 808. As shown, the suggestion affordance 806 is associated with an application named “Coffee” and the notification 808 is a message notification associated with a messaging application indicating that the electronic device has received a new message from a contact stored on the electronic device (“John Appleseed”). In some examples, an application (e.g., third-party application) may specify the manner in which a suggestion affordance is displayed. An application may specify the color of a suggestion affordance, for instance. In some examples, while in the locked state, the electronic device 800 operates in a secured manner. By way of example, while operating in the locked state, the electronic device 800 does not display contents of a task suggestion associated with the suggestion affordance 806 or a message associated with the notification 808. In some embodiments, the locked state further corresponds to restrictions on access to other data (including other applications) and/or limitations on permissible inputs.
  • In some examples, the suggestion affordance 806 is displayed in a first manner and the notification 808 is displayed in a second manner. As an example, suggestion affordance 806 is displayed using a first color and notification 808 is displayed using a second color different than the first color. As another example, the suggestion affordance 806 may be displayed using a first shape and the notification 808 may be displayed using a second shape different than the first shape.
  • In some examples, while operating in the locked state, the electronic device authenticates a user of the electronic device. A user may be authenticated, for instance, biometrically using biometric sensor 803 (e.g., facial recognition, fingerprint recognition) or in response to entry of a valid passcode (e.g., password, numerical passcode). In some examples, in response to authenticating the user, the electronic device 800 transitions to an unlocked state and displays lock screen interface 810. In some examples, while displaying the lock screen interface 810, the electronic device 800 displays an animation indicating that the electronic device 800 is transitioning from the locked state to the unlocked state (e.g., lock indicator 805 transitions from locked to unlocked state).
  • In some examples, while operating in the unlocked state, the electronic device 800 operates in an unsecured manner (e.g., secured data is accessible to the authenticated user). By way of example, as illustrated in FIG. 8B, the electronic device 800 displays contents of the task suggestion associated with the suggestion affordance 806 and the message associated with the notification 808. As illustrated, contents of the task suggestion associated with suggestion affordance include task indicator 812 indicating a task associated with the task suggestion and one or more parameters associated with the task.
  • While displaying the lock screen interface 810, the electronic device 800 detects selection (e.g., activation) of suggestion affordance 806. For example, as shown in FIG. 8C, the selection is a tap gesture 816 on the suggestion affordance 806. As will be described in more detail below, in response to detecting tap gesture 816, the electronic device 800 selectively performs the task associated with the suggestion affordance 806. If the task is a task of a first type (e.g., a background task), the electronic device 800 performs the task without requiring further user input. The electronic device 800 further may cease display of the suggestion affordance 806, as illustrated in FIG. 8H.
  • With reference to FIG. 8D, if the task is a task of a second type different than the first type, the electronic device 800 displays a confirmation interface, such as confirmation interface 820. Confirmation interface 820 includes task content 822, confirmation affordance 824, and cancel affordance 826. In some examples, task content 822 includes one or more of application indicator 828, application icon 830, and task indicator 832. In some examples, application indicator 828 indicates the application associated with the task. Application indicator 828 includes a name of the application (e.g., “Coffee”) and/or an icon associated with the application. Application icon 830 includes an icon (or other image) associated with the task and/or the application associated with the task. Task indicator 832 indicates the task corresponding to the suggestion affordance (“Order”) and/or one or more parameters associated with the task (small, latte, Homestead Rd. Cupertino CA).
  • In some examples, in response to selection of the cancel affordance 826, the electronic device 800 ceases display of the confirmation interface 820. In some examples, the application indicator 828 is implemented as an application affordance, and in response to selection of the application indicator 828, the electronic device 800 opens the application associated with the task (e.g., “Coffee”). In some examples, the application icon 830 is implemented as an application affordance, and in response to selection of the application icon 830, the electronic device 800 opens the application associated with the task.
  • In some examples, opening an application includes preloading the application with one or more parameters. For instance, suggestion affordance 806 is associated with a task for placing an order using a coffee application, and parameters associated with the task include a size of the coffee (e.g., small), a type of the coffee (e.g., latte), and a location for pickup of the order (Homestead Rd. location in Cupertino, CA). Accordingly, in some examples, opening the application in this manner includes inserting one or more parameters of the task on behalf of the user. By way of example, opening the application by way of selecting application indicator 828 or application icon 830 may cause the electronic device to open coffee application and present an interface (e.g., shopping cart interface) by which the user can confirm an order of a small latte at the Homestead Rd. location. In some examples, parameters are preloaded such that the electronic device performs the task in response to an input confirming intent to perform the task. In this manner, the number of inputs required for a user to perform a particular task using an application may be reduced.
  • In some examples, an application (e.g., third-party application) may specify the manner in which a confirmation affordance is displayed. An application may specify the color of a confirmation affordance, for instance. In some examples, while displaying the confirmation interface 820, the electronic device 800 detects selection of the confirmation affordance 824. For example, as shown in FIG. 8E, the selection is a tap gesture 836 on the confirmation affordance 824. In response to detecting tap gesture 836, the electronic device 800 performs the task. In some examples, while performing the task, the electronic device 800, optionally, displays a progress indicator 840, indicating that the task is being performed. In some examples, display of the progress indicator 840 replaces display of the confirmation affordance 824.
  • Once task has been performed, the electronic device 800 provides an output indicating whether the task was performed successfully. In the example of FIG. 8G, the task is performed successfully, and as a result, the electronic device 800 displays a success indicator 842, indicating that the task was successfully performed. In some examples, display of the success indicator 842 replaces display of the progress indicator 840. In some examples, a predetermined amount of time after the task has been completed, the electronic device replaces display of the confirmation interface 820 with lock screen interface 810. As illustrated, because the task associated with suggestion affordance 806 was performed, suggestion affordance 806 is not included in lock screen interface 810 in FIG. 8H.
  • In the example of FIG. 8I, the task was not performed successfully, and as a result, the electronic device 800 displays a failure interface 844. The failure interface 844 includes a retry affordance 846, a cancel affordance 848, and application affordance 850. The failure interface further includes content 852. In some examples, in response to selection of the retry affordance 846, the electronic device 800 performs the task again. In some examples, in response to selection of the cancel affordance, the electronic device 800 ceases display of the failure interface 844. In some examples, in response to selection of the application affordance 850, the electronic device 800 opens an application associated with the task. Content 852 may include information directed to the task, such as one or more parameters used to perform the task. In some examples, content 852 further specifies whether the task was performed successfully. Content 852 may, for example, indicate that the electronic device failed to perform the task successfully (e.g., “There was a problem. Please try again.”).
  • In FIG. 8J, the selection of suggestion affordance 806 is a swipe gesture 854 on the suggestion affordance 806. In response to detecting the swipe gesture 854, the electronic device 800 displaces (e.g., slides) the suggestion affordance 806 in a leftward direction to display (e.g., reveal) view affordance 856 and clear affordance 858 as shown in FIG. 8K. In some examples, in response to selection of the view affordance 856, the electronic device 800 displays a confirmation interface, such as the confirmation interface 820 (FIG. 8D). In some examples, in response to selection of the clear affordance 858, the electronic device 800 ceases to display the suggestion affordance 806.
  • In FIG. 8L, the selection of suggestion affordance 806 is a swipe gesture 860 on the suggestion affordance 806. In response to detecting the swipe gesture 860, the electronic device 800 displaces (e.g., slides) the suggestion affordance 806 in a rightward direction to display (e.g., reveal) open affordance 862 as shown in FIG. 8M. In some examples, in response to selection of open affordance 862, the electronic device opens an application associated with the task of the suggestion affordance (e.g., “Coffee”).
  • In FIG. 8N, the electronic device 800 displays, on display 801, a search screen interface, such as the search screen interface 866. The search screen interface 866 includes suggested applications 868 and suggestion affordances 870, 872, 874. As shown, the suggestion affordance 870 is associated with a messaging application, suggestion affordance 872 is associated with a telephone application, and suggestion affordance 874 is associated with a media playback application.
  • In some examples, suggestion affordances optionally include a glyph (e.g., glyph 876, 878, 880) indicating a category of a task associated with the suggestion affordance. Categories specified in this manner may include “monetary,” “messages,” “phone,” “video,” and “media” in some examples. Suggestion affordances (e.g., suggestion affordance 806 of FIG. 8A) may be displayed without a glyph if, for instance, the task of the suggestion affordance does not correspond to a task category. In the example shown in FIG. 8N, suggestion affordance 870 is associated with a task for sending a text message and accordingly includes a messaging glyph 876 indicating that the task is associated with text messaging. As another example, suggestion affordance 872 is associated with a task for initiating a phone call and accordingly includes a telephone glyph 878 indicating that the task is associated with telephone functionality. As yet another example, suggestion affordance 874 is associated with a task for playback of a video and accordingly includes a playback glyph 880 indicating that the task is associated with media playback. It will be appreciated that any number of types of glyphs may be used, corresponding to any number of respective task categories.
  • FIGS. 8N-8P illustrate various manners in which suggested applications and suggestion affordances may be displayed in a search screen interface, such as the search screen interface. As illustrated in FIG. 8N, in at least one example, suggested applications and suggestion affordances may be displayed in respective portions of a search screen interface (e.g., portions 882, 884). As illustrated in FIG. 8O, in at least one example, suggested applications and suggestion affordances may be displayed in a same portion of a search screen interface (e.g., portion 886). As illustrated in FIG. 8P, in at least one example, suggested applications and each suggestion affordance may be displayed in a respective portion of a search screen interface (e.g., portion 888, 890, 892, 894).
  • In some examples, while displaying the search screen interface 866, the electronic device 800 detects selection of the suggestion affordance, such as the suggestion affordance 870. In some examples, because the task associated with suggestion affordance 870 is a task of a predetermined type (e.g., background task), the electronic device performs (e.g., automatically performs) the task associated with the suggestion affordance 870 in response to selection of the affordance 870 with an input of a first type (e.g., tap gesture). Additionally or alternatively, in response to selection of the affordance 870 with an input of a second type different than the first type, the electronic device 800 displays a confirmation interface requesting confirmation of the task from a user.
  • For example, as shown in FIG. 8Q, the selection is a touch gesture 896 on the confirmation affordance 824. In some examples, touch gesture 896 is a touch input satisfying a threshold intensity and/or threshold duration such that the touch gesture 896 may be differentiated from a tap gesture. As shown in FIG. 8R, in response to detecting touch gesture 896, the electronic device 800 displays confirmation interface 898. Confirmation interface 898 includes confirmation affordance 802A, cancel affordance 804A, application indicator 806A, and content 808A. In some examples, selection of the cancel affordance 804A causes the electronic device 800 to cease display of the confirmation interface 898 and/or forgo performing the task associated with suggestion affordance 870. In some examples, application indicator 806A indicates the application associated with the task. Application indicator 806A may include a name of the application (e.g., “Messages”) and/or an icon associated with the application. Content 808A may include information directed to the task, such as one or more parameters used to perform the task. For instance, content 808A may specify that a recipient of a text message is a contact “Mom” and the text of the text message is “Good Morning”. In some examples, content 808A may be implemented as an affordance.
  • While displaying the confirmation interface 898, the electronic device 800 detects selection of the confirmation affordance 802A. For example, as shown in FIG. 8S, the selection is a tap gesture 810A on the confirmation affordance 824. In response to detecting the tap gesture 810A, the electronic device 800 performs a task associated with suggestion affordance 870. As shown in FIG. 8T, in some examples, while performing the task, the electronic device 800, optionally, displays a progress indicator 812A, indicating that the task is being performed. In some examples, display of the progress indicator 812A replaces display of the confirmation affordance 802A and cancel affordance 804A.
  • Once task has been performed, the electronic device 800 provides an output indicating whether the task was performed successfully. In the example of FIG. 8U, the task is performed successfully, and as a result, the electronic device 800 displays a success indicator 814A, indicating that the task was successfully performed (e.g., text message to “Mom” was successfully sent). In some examples, display of the success indicator 814A replaces display of the progress indicator 812A. In some examples, a predetermined amount of time after the task has been completed, the electronic device replaces display of the confirmation interface 898 with search screen interface 866. As illustrated in FIG. 8V, because the task associated with suggestion affordance 870 was performed, suggestion affordance 870 is not included in search screen interface 866.
  • In some examples, while displaying the confirmation interface 898, the electronic device 800 detects selection of content 808A. For example, as shown in FIG. 8 W, the selection is a tap gesture 816A on the content 808A. In response to detecting the tap gesture 816A, the electronic device 800 opens the application associated with the suggestion affordance 870 as shown in FIG. 8X.
  • In some examples, opening an application in this manner includes preloading the application with one or more parameters associated with the task. In this manner, a user may perform a task within an application using a reduced number of inputs. By way of example, in response to selection of the content 808A associated with the suggestion affordance 870, the electronic device 800 opens a messaging application and preloads the messaging application with parameters specified by the suggestion affordance 870. In particular, the messaging application may be directed to a messaging interface 817A for providing messages to the recipient “Mom”, and an input string “Good Morning” may be inserted into a message composition field 818A of the messaging application.
  • While displaying the messaging interface 817A, the electronic device 800 detects selection of a send affordance 820A. For example, as shown in FIG. 8Y, the selection is a tap gesture 822A on the send affordance 820A. In FIG. 8Z, in response to detecting the tap gesture 822A, the electronic device 800 sends the preloaded message (e.g., “Good Morning”) to the recipient “Mom”. By preloading parameters in this manner, a user may open an application using a suggestion affordance and perform a task with fewer inputs than would otherwise be possible. In the aforementioned example, for instance, the user sent a text message without having to select a recipient or input a message for the recipient.
  • In some examples, an application may be opened without preloaded parameters. In FIG. 8AA, the electronic device 800 displays, on display 801, a search screen interface, such as the search screen interface 826A. The search screen interface 826A includes suggested applications 282A and suggestion affordances 830A, 832A. As shown, the suggestion affordance 830A is associated with a notes application and suggestion affordance 832A is associated with a video telephony application. Further, suggestion affordance 830A is associated with a task for opening the notes application. In some examples, tasks corresponding to the notes application may not correspond to a task category, and accordingly the suggestion affordance 830A does not include a glyph. Suggestion affordance 832A is associated with a task for initiating a video call (e.g., Skype call) and accordingly includes a video glyph 836A indicating that the task is associated with video call functionality.
  • While displaying the search screen interface 826A, the electronic device 800 detects selection of the suggestion affordance 834A. For example, as shown in FIG. 8AA, the selection is a tap gesture 834A on the suggestion affordance 834A. In FIG. 8AB, in response to detecting the tap gesture 834A, the electronic device 800 opens the notes application associated with the suggestion affordance 830A.
  • In some examples, the manner in which an electronic device displays interfaces, as described herein, depends on a type of the electronic device. In some examples, for instance, electronic device 800 may be implemented as a device with a relatively small display such that interfaces, such as lock screen interface 804 or search screen interface 866, may not be practical for display. Accordingly, in some examples, electronic device 800 may display alternative interfaces to those previously described.
  • With reference to FIG. 8AC, for instance, the electronic device 800 displays, on display 801, home screen interface 850A. Home screen interface 850A includes a suggestion affordance 852A and a notification 854A. As shown, the suggestion affordance 852A is associated with an application named “Coffee” and the notification 854A is a calendar notification associated with a calendar application indicating that the user has an upcoming event (“Meeting”).
  • It will be appreciated that while home screen interface 850A is shown as including suggestion affordance 852A, in some examples, home screen interface 850A includes multiple suggestion affordances 852A. For instance, in response to a user input, such as a swipe gesture (e.g., upward swipe gesture, downward swipe gesture), the electronic device can display (e.g., reveal) one or more additional suggestion affordances.
  • While displaying home screen interface 850A, the electronic device 800 detects selection of suggestion affordance 852A. For example, as shown in FIG. 8AD, the selection is a tap gesture 858A on the suggestion affordance 852A. As will be described in more detail below, in response to detecting tap gesture 858A, the electronic device 800 displays a confirmation interface, such as confirmation interface 820. Confirmation interface 820 includes application indicator 861A, task indicator 862A, confirmation affordance 864A, and cancel affordance 866A. In some examples, application indicator 861A indicates the application associated with the task. Application indicator 861A may include a name of the application (e.g., “Coffee”) and/or an icon associated with the application. Task indicator 862A indicates a task associated with the application and one or more parameters associated with the task (small, latte, oat milk).
  • In some examples, in response to selection of the cancel affordance 866A, the electronic device 800 ceases display of the confirmation interface 860A. In some examples, while displaying the confirmation interface 860A, the electronic device 800 detects selection of the confirmation affordance 864A. For example, as shown in FIG. 8AE, the selection is a tap gesture 868A on the confirmation affordance 864A. In response to detecting tap gesture 868A, the electronic device 800 selectively performs the task. If the task is a task of a first type, the electronic device 800 performs the task without further user input, and optionally, replaces display of the confirmation interface 860A with home screen interface 850A as shown in FIG. 8AF. Because the task associated with suggestion affordance 852A was performed, suggestion interface 852A is not displayed in home screen interface 850A. If the task is a task of a second type, the electronic device 800 may request user confirmation of the task prior to performing the task, as described.
  • FIGS. 9A-9B is a flow diagram illustrating method 900 for providing suggestions in accordance with some embodiments. Method 900 is performed at a device (e.g., device 104, device 122, device 200, device 600, device 700, device 800) with a display, one or more input devices (e.g., a touchscreen, a mic, a camera), and a wireless communication radio (e.g., a Bluetooth connection, WiFi connection, a mobile broadband connection such as a 4G LTE connection). In some embodiments, the display is a touch-sensitive display. In some embodiments, the display is not a touch sensitive display. In some embodiments, the electronic device includes a plurality of cameras. In some embodiments, the electronic device includes only one camera. In some examples, the device includes one or more biometric sensors which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof. Some operations in method 900 are, optionally, combined, the orders of some operations are, optionally, changed, and some operations are, optionally, omitted.
  • As described below, displaying a user interface including a suggestion affordance and selectively requiring confirmation to perform a task in response to selection of the suggestion affordance provides a user with an easily recognizable and intuitive approach for performing tasks on the electronic device, thereby reducing the number of user inputs otherwise needed to perform such tasks. Thus, displaying user interfaces in this manner enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • In some examples, the electronic device determines a first set of candidate tasks (902) and identifies a task from the first set of candidate tasks (904). In some examples, the task is identified based on a determination that a context of the electronic device satisfies task suggestion criteria.
  • In some examples, prior to displaying, on the display, a user interface, the electronic device determines, based on a first context of the electronic device (e.g., context data describing previous use of the electronic device), whether context criteria (e.g., task suggestion criteria) has been satisfied. In some examples, the electronic device determines whether task suggestions satisfy a confidence threshold for display of the suggestions. In some examples, in accordance with a determination that the context criteria have been satisfied (e.g., one or more task suggestions meet the confidence threshold), the electronic device determines a first set of candidate tasks. In some examples, the electronic device determines, based on a second context of the electronic device, whether heuristic criteria have been satisfied. In some examples, the second context of the electronic device is indicative of previous use of the device and/or context data associated with the user (e.g., contacts, calendar, location). In some examples, determining whether the heuristic criteria have been met includes determining whether a set of conditions for a heuristic task suggestion have been met such that the heuristic task suggestion is provided in lieu of a suggested task. In some examples, the electronic device determines whether the context criteria have been satisfied and then determines whether the heuristic criteria have been satisfied. In some examples, the electronic device determines whether the heuristic criteria have been satisfied and then determines whether the context criteria have been satisfied. In some examples, the electronic device concurrently determines whether the context criteria and the heuristic criteria have been satisfied. In some examples, in accordance with a determination that the heuristic criteria have been satisfied, the electronic device determines a second set of candidate tasks different from the first set of candidate tasks and identifies a task from the second set of candidate tasks. In some examples, in accordance with a determination that the heuristic criteria have not been satisfied and the context criteria have been satisfied, the electronic device identifies a task from the first set of candidate tasks. In some examples, in accordance with a determination that the heuristic criteria have not been satisfied and the context criteria have not been satisfied, the electronic device forgoes determining the first set of candidate tasks and forgoes determining the second set of candidate tasks.
  • Providing heuristic task suggestions in this manner allows the electronic device to provide task suggestions based on user-specific context data in addition to context data of the electronic device, for instance, according to respective sets of conditions as set forth below. This allows the electronic device to provide a user with an salient task suggestions for performing tasks on the electronic device, thereby reducing the number of user inputs otherwise needed to perform such tasks. Thus, providing heuristic task suggestions in this manner enhances the operability of the device and makes use of the electronic device more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • In some examples, the electronic device determines whether the task is a task of a first type (906). In some examples, determining whether the task is a task of a first type includes determining whether the task is a background task (e.g., a task that may be performed without user confirmation and/or additional user input).
  • In some examples, determining whether the task is a task of a first type includes determining whether one or more parameters associated with the task are valid. In some examples, parameters of a task are valid when each parameter required for a task is assigned a value within an allowable range or set of values for the parameter and, optionally, each optional parameter for a task has a value within an allowable range or set for the parameter, or is not assigned a value.
  • In some examples, the electronic device (104, 200, 600, 700, 800) displays, on a display of the electronic device, a user interface (804, 810, 866, 826A, 850A) including a suggestion affordance (806, 870, 872, 874, 834A, 854A) associated with a task (908). In some examples, the user interface is a lock screen interface (804, 810). In some examples, the user interface is a search screen interface (866, 826A). In some examples, the user interface is a digital assistant interface for dialog between a user and a digital assistant. In some examples, the suggestion affordance is an affordance that corresponds to a task suggestion provided by the electronic device, and in some instances, a digital assistant of the electronic device. In some examples, the suggestion is task-specific and/or parameter-specific. In some examples, task suggestions are provided based on context of the electronic device (e.g., location, WiFi connectivity, WiFi network identifier (e.g., SSID), usage history, time/day, headphones connectivity, etc.). In some examples, task suggestions are visually distinguishable from other notifications displayed by the electronic device in the user interface.
  • Providing task suggestions based on context of the electronic device allows the electronic device to provide salient task suggestions according to a user's previous usage of the electronic device and/or a current state of the electronic device. As a result, the number of inputs and amount of time needed to perform tasks on the electronic device are reduced, accelerating user interaction with the electronic device. This in turn reduces power usage and improves battery life of the device.
  • In some examples, displaying, on the display, a user interface including a suggestion affordance associated with a task includes: in accordance with the task being a task of the first type, displaying the suggestion affordance with a glyph, and in accordance with the task being a task of the second type, displaying the suggestion affordance without a glyph. In some examples, the glyph is indicative of a type of the task (e.g., background vs. non-background, whether task requires user confirmation). In some examples, the glyph is an arrow indicating the task is requiring user confirmation. In some examples, the glyph is a dollar sign (or other currency symbol) indicating that the task is a transaction. In some examples, the glyph is circumscribed by a circle.
  • In some examples, displaying, on the display, a user interface including a suggestion affordance associated with a task includes, in accordance with a determination that the task corresponds to a first set of tasks, displaying the suggestion affordance with a glyph of a first type (910). In some examples, the set of tasks is a category of tasks. Categories of tasks include message tasks, telephony tasks, video telephony tasks, and media tasks in some examples. In some examples, each set of tasks corresponds to one or more respective first party applications. In some examples, each set of tasks additionally includes tasks corresponding to one or more third party applications. In some examples, if the task is a task corresponding to a particular category of tasks, a suggestion affordance corresponding to the task includes a glyph identifying the category (876, 878, 880, 836A). In some examples, displaying, on the display, a user interface including a suggestion affordance associated with a task further includes, in accordance with a determination that the task corresponds to a second set of tasks different than the first set of tasks, displaying the suggestion affordance with a glyph of a second type different than the first type (912). In some examples, displaying, on the display, a user interface including a suggestion affordance associated with a task further includes, in accordance a determination that the task does not correspond to the first set of tasks and does not correspond to the second set of tasks, displaying the suggestion affordance (830A) without a glyph. In some examples, if the task does not correspond to one or more predetermined categories of tasks, the suggestion affordance corresponding to the task is displayed without a glyph (914).
  • In some examples, the user interface (804, 810) includes a notification (808). The notification may be a notification for an event, such as receipt of a text message. In some examples, the suggestion affordance (806) is displayed in a first manner and the notification (808) is displayed in a second manner different than the first manner. For instance, in some examples, the suggestion affordance and notification correspond to different colors, color schemes, and/or patterns. In some examples, the suggestion affordance and notification have different shapes and/or sizes.
  • Displaying notifications and suggestion affordances in different manners, as described herein, allows a user to easily distinguish notifications and suggestion affordances on a display of the electronic device, thereby reducing the amount of time needed to perform tasks. Reducing time in this manner enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • In some examples, displaying a user interface includes, in accordance with a determination that the electronic device is in a locked state, displaying the suggestion affordance in a first visual state. In some examples, if the device is locked, the electronic device displays a reduced amount of information corresponding to the suggestion affordance. In some examples, displaying a user interface further includes, in accordance with a determination that the electronic device is not in a locked state, displaying the suggestion affordance in a second visual state different than the first visual state. In some examples, if the device is unlocked, the electronic device displays content corresponding to the suggestion affordance. Content displayed in this manner includes but is not limited to a name and/or icon of an application associated with the suggestion affordance, one or more parameters associated with task of the suggestion affordance, and, optionally a glyph indicating a category of the task of the suggestion affordance.
  • In some examples, the electronic device detects, via one or more input devices, a first user input (816, 834A, 858A) corresponding to a selection of the suggestion affordance (916). In some examples, the suggestion affordance is selected using a touch input, a gesture, or a combination thereof. In some examples, the suggestion affordance is selected using a voice input. In some examples, the touch input is an input of a first type, such as a press of a relatively short duration or low intensity.
  • In some examples, in response to detecting the first user input (918), the electronic device, in accordance with a determination that the task is a task of a first type, performs the task (920). In some examples, performing the task includes causing the task to be performed by another electronic device. In some examples, the electronic device is a device of a first type (e.g., smart watch) and causes the task to be performed on a device of a second type (e.g., mobile phone).
  • In some examples, further in response to detecting the first user input (918), the electronic device, in accordance with a determination that the task is a task of a second type different than the first type, displays a confirmation interface (820, 898, 860A) including a confirmation affordance (922). In some examples, a task of the second type is a task that requires user confirmation and/or additional information from the user prior to performance of the task, such as a task corresponding to a transaction. In some examples, a task of the second type is a task to be performed by a device of a particular type, such as a smart watch. In some examples, the confirmation interface is displayed concurrently with the user interface. The confirmation interface may, for instance, be overlaid on the user interface. In some examples, the confirmation interface is displayed over a first portion of the user interface and a second portion of the user interface is visually obscured (e.g., darkened, blurred).
  • Selectively requiring confirmation to perform a task in response to selection of a suggestion affordance allows the electronic device to quickly perform tasks of a first type and confirm user intent prior to performing tasks of a second type. As a result, the user is provided with an intuitive and reliable approach for quickly and reliably performing tasks on the electronic device, thereby reducing the number of user inputs otherwise needed to perform such tasks and accelerating task performance. Such benefits in turn reduce the amount of time needed to perform tasks and make the usage of the electronic device more efficient, which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • In some examples, while displaying the confirmation interface (926), the electronic device detects a second user input (836, 810A, 868A) corresponding to a selection of the confirmation affordance (824, 802A, 864A) (928). In some examples, the confirmation affordance is selected using a touch input, a gesture, or a combination thereof. In some examples, the confirmation affordance is selected using a voice input. In some examples, in response to detecting the second user input, the electronic device performs the task (930). In some examples, while performing the task, the electronic device displays a first progress indicator (840, 812A) to indicate that the electronic device is performing the task. In some examples, if the electronic device successfully performs the task, the electronic device displays a second progress indicator (842, 814A) to indicate that the task was successfully performed. In some examples, following performance of a task and/or display of the second progress indicator, the electronic device displays an interface including one or more visual objects specified by the application (e.g., a message or image stating “Thank you for your order”). In some examples, if the electronic device does not successfully perform the task, the electronic device provides a natural-language output to the user indicating the task was not performed successfully (e.g., “There was a problem. Try again,” and, optionally, displays an affordance (846) by which the user can initiate an additional attempt at performance of the task.
  • In some examples, the confirmation interface includes an application affordance (828, 850). In some examples, the application affordance is an affordance that indicates (e.g., identifies) an application and/or task associated with the suggestion affordance. In some examples, the application affordance is any portion of the confirmation interface other than the confirmation affordance and/or cancel affordance. In some examples, the electronic device detects a third user input corresponding to a selection of the application affordance (932). In some examples, the application affordance is selected using a touch input, a gesture, or a combination thereof. In some examples, the application affordance is selected using a voice input. In some examples, in response to detecting the third user input, the electronic device executes (e.g., launches, initiates) an application associated with the task (934). In some examples, the user selects a displayed icon and/or name of an application to launch the application corresponding to the task of the selection affordance. In some examples, the application is, optionally, preloaded with one or more parameters (e.g., subject and/or body of an email).
  • In some examples, the suggestion affordance includes a visual indication of a parameter affecting performance of the task. In some examples, the suggestion affordance corresponds to a task to be performed using one or more specified parameters (e.g., order particular coffee size and type using a Starbucks app, send text with a specific message). In some examples, executing the application associated with the task includes preloading the application with the parameter. In some examples, the application is executed such that parameters of the task are entered on behalf of the user (e.g., order already in cart and user need only indicate intent to order, message inserted into message composition field and user need only indicate intent to send).
  • In some examples, the confirmation interface includes a cancel affordance. In some examples, the electronic device detects a fourth user input corresponding to a selection of the cancel affordance. In some examples, the cancel affordance is selected using a touch input, a gesture, or a combination thereof. In some examples, the cancel affordance is selected using a voice input. In some examples, in response to detecting the fourth user input, the electronic device forgoes performing the task. In some examples, the electronic device further ceases to display the confirmation interface in response to detecting the fourth user input.
  • In some examples, the first user input is an input of a first type. In some examples, the electronic device, while displaying the user interface, detects a user input of a second type corresponding to a selection of the suggestion affordance. In some examples, the suggestion affordance is selected using a touch input, a gesture, or a combination thereof. In some examples, the suggestion affordance is selected using a voice input. In some examples, the touch input is an input of a second type, such as a press of a relatively long duration or high intensity. In some examples, the input of the second type is different than the input of the first type. In some examples, in response to detecting the user input of the second type, the electronic device displays the confirmation interface.
  • Note that details of the processes described above with respect to method 900 (e.g., FIGS. 9A-9B) are also applicable in an analogous manner to the methods described below. For example, method 900 optionally includes one or more of the characteristics of the various methods described with reference to methods 1100, 1300, 1500, 1700, and 1900.
  • The operations in the methods described above are, optionally, implemented by running one or more functional modules in an information processing apparatus such as general purpose processors (e.g., as described with respect to FIGS. 2A, 4, and 6A) or application specific chips. Further, the operations described above with reference to FIGS. 8A-8AF are, optionally, implemented by components depicted in FIGS. 2A-2B. For example, displaying operation 908, detecting operation 916, performing operation 920, and displaying operation 922 are, optionally, implemented by event sorter 270, event recognizer 280, and event handler 290. Event monitor 271 in event sorter 270 detects a contact on touch-sensitive surface 604 (FIG. 6A), and event dispatcher module 274 delivers the event information to application 236-1 (FIG. 2B). A respective event recognizer 280 of application 236-1 compares the event information to respective event definitions 286, and determines whether a first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as selection of an object on a user interface. When a respective predefined event or sub-event is detected, event recognizer 280 activates an event handler 290 associated with the detection of the event or sub-event. Event handler 290 optionally utilizes or calls data updater 276 or object updater 277 to update the application internal state 292. In some embodiments, event handler 290 accesses a respective GUI updater 278 to update what is displayed by the application. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in FIGS. 2A-2B.
  • FIGS. 10A-10AJ illustrate exemplary user interfaces for providing voice shortcuts on an electronic device (e.g., device 104, device 122, device 200, device 600, or device 700), in accordance with some embodiments. The user interfaces in these figures are used to illustrate the processes described below, including the processes in FIGS. 11A-11B.
  • Generally, user interfaces described with reference to FIGS. 10A-10AJ may be employed such that a user can associate tasks with respective user-specific phrases. These phrases may in turn be used to cause the electronic device to perform the associated tasks.
  • FIG. 10A illustrates an electronic device 1000 (e.g., device 104, device 122, device 200, device 600, or device 700). In the non-limiting exemplary embodiment illustrated in FIGS. 10A-10AJ, electronic device 1000 is a smartphone. In other embodiments, electronic device 1000 can be a different type of electronic device, such as a wearable device (e.g., a smartwatch). In some examples, electronic device 1000 has a display 1001, one or more input devices (e.g., touchscreen of display 1001, a button, a microphone), and a wireless communication radio. In some examples, the electronic device 1000 includes a plurality of cameras. In some examples, the electronic device includes only one camera. In some examples, the electronic device includes one or more biometric sensors (e.g., biometric sensor 1003) which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • In FIG. 10A, the electronic device 1000 displays, on display 1001, a settings interface 1004. The settings interface 1004 includes a candidate task portion 1006 and additional tasks affordance 1014. The candidate task portion 1006 includes candidate task affordances 1008, 1010, and 1012. In some examples, in response to selection of the additional tasks affordance 1014, the electronic device 1000 displays a global tasks interface, such as the global task interface 1018A, as described with respect to FIG. 10S below.
  • In some examples, in response to selection of a candidate task affordance, the electronic device 1000 displays a task-specific interface. The task-specific interface is associated with a task of the candidate task affordance in some examples. By way of example, while displaying the settings interface 1004, the electronic device 1000 detects selection of the candidate task affordance 1008. In some examples, the selection is a tap gesture 1016 on the candidate task affordance 1008. As shown in FIG. 10B, in response to detecting tap gesture 1016, the electronic device 1000 displays the task-specific interface 1018. The task-specific interface 1018 may be associated with a task of the candidate task affordance 1008 (e.g., View Side of House Camera). In some examples, selecting a candidate task affordance initiates a voice shortcut generation process for a task corresponding to the candidate task affordance. Accordingly, selection of the candidate task affordance 1008 may initiate a voice shortcut generation process for a task of the candidate task affordance 1008.
  • Task-specific interface 1018 includes task icon 1020, task indicator 1022, task descriptor 1024, application indicator 1026, candidate phrase 1028, and record affordance 1030. In some examples, task icon 1020 includes an icon or image corresponding to the task. In some examples, task indicator 1022 indicates a name and/or type of the task. In some examples, task descriptor 1024 includes a description of the task and/or indicates that a user may record a command or phrase to be linked with the task. In some examples, application indicator 1026 identifies an application corresponding to the task. The application indicator 1026 may, for instance, include a name of the application and/or an icon associated with the application. Candidate phrase 1028 includes a suggested phrase that the user may elect to associate with the task.
  • While displaying the task-specific interface 1018, the electronic device 1000 detects selection of the record affordance 1030. As shown in FIG. 10C, selection of the record affordance 1030 is a tap gesture 1032. In response to selection of the record affordance 1030, the electronic device displays (e.g., replaces display of the task-specific interface 1018 with), on the display 1001, a record interface 1034.
  • With reference to FIG. 10D, record interface 1034 includes cancel affordance 1036, return affordance 1038, preview 1042, and stop affordance 1044. In some examples, in response to selection of the cancel affordance 1036, the electronic device ceases display of the record interface 1034 and, optionally, terminates the voice shortcut generation process. In some examples, in response to selection of the return affordance, the electronic device displays (e.g., replaces display of record interface 1038 with) task-specific interface 1018.
  • In some examples, while displaying the record interface 1034, the electronic device 1000 receives, using an audio input device (e.g., microphone) of the electronic device 1000, a natural-language speech input from a user. In some examples, while receiving the natural-language speech input, the electronic device 1000 provides a live preview of the natural-language speech input, such as the live preview 1042. As shown in FIG. 10D, the live preview 1042 is, in some examples, a visual waveform indicative of one or more auditory characteristics of the natural-language speech input.
  • With reference to FIG. 10E, if after initially displaying the record interface 1034, the user does not provide a natural-language speech input for a predetermined amount of time, the electronic device 1000 can, optionally, display a prompt to the user including a candidate phrase, such as the candidate phrase 1046 (e.g., “View Side of House Live Stream”). In some examples, the candidate phrase 1046 is the same as the candidate phrase 1028 (FIG. 10D). In other examples, the candidate phrase 1046 is different than the candidate phrase 1028.
  • In some examples, while receiving the natural-language speech input, the electronic device 1000 performs speech-to-text translation (e.g., natural-language speech processing) on the natural-language speech input to provide a candidate phrase 1048. As shown in FIGS. 10F-10G, because the speech-to-text translation is performed while the natural-language speech input is received, the candidate phrase 1048 may be iteratively and/or continuously updated while the natural-language speech input is received.
  • In some examples, the electronic device 1000 ensures that the candidate phrase is different than one or more predetermined phrases (e.g., “call 911”). By way of example, the electronic device 1000 determines whether a similarity between the candidate phrase and each of the one or more predetermined phrases exceeds a similarity threshold. If the similarity threshold is not met, the electronic device 1000 will notify the user that the provided candidate phrase is not sufficient and/or not permitted. The electronic device 1000 further may request that the user provide another natural-language speech input.
  • While displaying the record interface 1034, the electronic device 1000 detects selection of the stop affordance 1044. As shown in FIG. 10G, selection of the stop affordance 1044 is a tap gesture 1050. In response to selection of the stop affordance 1044, the electronic device 1000 displays (e.g., replaces display of the record interface 1034 with), on the display 1001, a completion interface 1052, as shown in FIG. 10H.
  • The completion interface 1052 includes a completion affordance 1054, cancel affordance 1056, task icon 1058, task indicator 1060, application indicator 1062, candidate phrase 1064, and edit affordance 1066. In some examples, in response to selection of the cancel affordance 1056, the electronic device 1000 ceases display of the completion interface 1052 and, optionally, terminates the voice shortcut generation process. In some examples, task icon 1058 includes an icon or image corresponding to the task. In some examples, task indicator 1060 indicates a name and/or type of the task. In some examples, application indicator 1062 identifies an application corresponding to the task. The application indicator may, for instance, include a name of the application and/or an icon associated with the application. Candidate phrase 1028 is a suggested phrase that the user may elect to associate with the task.
  • In some examples, while displaying the completion interface 1052, the electronic device 1000 detects selection of the edit affordance 1066. As shown in FIG. 10I, selection of the edit affordance 1066 is a tap gesture 1068. In response to selection of the edit affordance 1068, the electronic device 1000 displays (e.g., replaces display of the completion interface 1052 with), on the display 1001, an edit interface 1070 as shown in FIG. 10J.
  • The edit interface 1070 includes completion affordance 1072, cancel affordance 1074, task icon 1076, task indicator 1078, candidate phrase ranking 1080 and re-record affordance 1088. In some examples, in response to selection of the cancel affordance 1056, the electronic device 1000 ceases display of the edit interface 1070 and, optionally, terminates the voice shortcut generation process. In some examples, task icon 1076 includes an icon or image corresponding to the task. In some examples, task indicator 1078 indicates a name and/or type of the task.
  • As described, in some examples, the electronic device 1000 provides a candidate phrase (e.g., candidate phrase 1048) based on a natural-language speech input provided by a user. In some examples, providing the candidate phrase in this manner includes generating a plurality of candidate phrases (e.g., candidate phrases 1082, 1084, 1086) and selecting a candidate phrase associated with a highest score (e.g., text representation confidence score). In some examples, candidate phrase ranking 1080 includes a plurality of candidate phrases generated by the electronic device 1000 prior to selecting the candidate phrase associated with the highest score. In some examples, candidate phrase ranking 1080 includes a set (e.g., 3) of top ranking candidate phrases which are, optionally, listed according to the respective score of each candidate phrase. As illustrated in FIG. 10J, for instance, candidate phrase ranking 1080 includes candidate phrases 1082, 1084, and 1086. Candidate phrase 1082 may correspond to candidate phrase 1064 in some examples.
  • In some examples, the user may select a new (or same) candidate phrase from candidate phrases 1082, 1084, 1086 of the candidate phrase ranking 1080. As illustrated in FIG. 10K, for example, the electronic device 1000 detects selection of candidate phrase 1080 while displaying the edit interface 1070. Selection of the candidate phrase 1080 is a tap gesture 1090. In some examples, in response to selection of the candidate phrase 1080, the electronic device 1000 selects the candidate phrase 1080 as the new (or same) candidate phrase. In some examples, the electronic device selects the candidate phrase 1080 as the new (or same) candidate phrase in response to selection of both the candidate phrase 1080 and completion affordance 1072.
  • In some examples, the candidate phrase ranking may not include a phrase intended or preferred by a user. Accordingly, in some examples, in response to selection of the re-record affordance 1088, the electronic device 1000 displays (e.g., replaces display of the edit interface 1070 with) a record interface, such as the record interface 1034, to allow a user can provide a new natural-language speech input, as described.
  • In some examples, while displaying the completion interface 1052, the electronic device 1000 detects selection of the completion affordance 1054. As shown in FIG. 10L, selection of the completion affordance 1054 is a tap gesture 1092. In response to selection of the completion affordance 1054, the electronic device 1000 associates the candidate phrase with the task of the candidate task affordance 1008. By associating the candidate phrase with the task in this manner, the user may provide (e.g., speak) the candidate phrase to a digital assistant of the electronic device to cause the device to perform the task associated with the candidate phrase. Candidate phrases associated with respective tasks may be referred to as voice shortcuts herein. In some examples, further in response to selection of the completion affordance 1054, the electronic device 1000 displays (e.g., replaces display of the completion interface 1052 with), on the display 1001, the settings interface 1004, as shown in FIG. 10M.
  • In some examples, because the task of the candidate task affordance 1008 is assigned to a task, the candidate task affordance 1008 is not included in the candidate task portion 1006. In some examples, the candidate task portion 1006 instead includes a candidate task suggestion 1094 such that the candidate task portion 1006 includes at least a threshold number of candidate task affordances.
  • In some examples, if one or more candidate task affordances are associated with a respective task, settings interface 1004 includes a user shortcuts affordance 1096. In some examples, while displaying the settings interface 1004, the electronic device 1000 detects selection of the user shortcuts affordance 1096. As shown in FIG. 10N, the selection of the user shortcuts affordance 1096 is a tap gesture 1098. In some examples, in response to selection of the user shortcuts affordance 1096, the electronic device 1000 displays (e.g., replaces display of the settings interface 1004 with), on the display 1001, the user shortcuts interface 1002A, as shown in FIG. 10O.
  • The user shortcuts interface 1002A includes edit affordance 1004A, return affordance 1006A, shortcut affordance 1008A, and additional tasks affordance 1010A. In some examples, in response to selection of the return affordance 1006A, the electronic device 1000 displays settings interface 1004 (FIG. 10N). In some examples, in response to selection of edit affordance 1004A, the electronic device 1000 displays an interface by which the voice shortcut associated with shortcut affordance 1008A may be deleted. In some examples, in response to selection of additional tasks affordance 1010A, the electronic device 1000 displays an interface including one or more candidate task affordances, such as the global task interface 1018A of FIG. 10S, described in further detail below.
  • In some examples, while displaying the user shortcuts interface 1002A, the electronic device 1000 detects selection of shortcut affordance 1008A. As shown in FIG. 10P, the selection of the shortcut affordance 1008A is a tap gesture 1004A. In some examples, in response to selection of the shortcut affordance 1008A, the electronic device 1000 displays (e.g., replaces display of the user shortcuts interface 1002A with), on the display 1001, the completion interface 1054 for the shortcut affordance 1008A, as shown in FIG. 10Q. Completion interface 1054 may include a delete affordance 1014A. In response to selection of the delete affordance 1014A, the electronic device 1000 deletes the voice shortcut associated with the task. Deleting a shortcut in this manner may include disassociating the voice shortcut from the task such that providing the voice shortcut to a digital assistant of the electronic device 1000 does not cause the electronic device 1000 to perform the task.
  • In some examples, while displaying the settings interface 1004, the electronic device 1000 detects selection of the additional tasks affordance 1014. As shown in FIG. 10R, the selection of the additional tasks affordance 1014 is a tap gesture 1016A. In some examples, in response to selection of the shortcut affordance 1014, the electronic device 1000 displays (e.g., replaces display of the settings interface 1004 with), on the display 1001, global task interface 1018A, as shown in FIG. 10S.
  • Global task interface 1018A includes, for each of a plurality of applications, a respective set of candidate task affordances. By way of example, global task interface 1018A includes a set of candidate task affordances 1020A associated with an activity application, a set of candidate task affordances 1026A associated with a calendar application, and a set of candidate task affordances 1036A associated with a music application. The set of candidate task affordances 1020A can, optionally, include a “Start Workout” candidate task affordance 1022A and a “View Daily Progress” candidate task affordance 1024A. The set of candidate task affordances 1026A can, optionally, include a “Send Lunch invitation” candidate task affordance 1028A, a “Schedule Meeting” candidate task affordance 1030A, and a “Clear Events for a Day” candidate task affordance 1032A. The set of candidate task affordances 1036A can, optionally, include a “Play Workout Playlist” candidate task affordance 1038A and a “Start R&B Radio” candidate task affordance 1040A.
  • In some examples, candidate task affordances of the global task interface 1018A are searchable. By way of example, while displaying the global task interface 1018A, the electronic device detects a swipe gesture on the display 1001, such as the swipe gesture 1046A of FIG. 10T. In response to the swipe gesture 1046A, the electronic device slides the global task interface 1018A in a downward direction to display (e.g., reveal) a search field 1048A that may be used to search candidate task affordances of the global task interface 1018A, as shown in FIG. 10U.
  • In some examples, each set of candidate task affordances displayed by the electronic device 1000 may be a subset of all available candidate task affordances for a respective application. Accordingly, the user may select an application task list affordance, such as application-specific task list affordances 1034A, 1042A, to reveal one or more additional candidate task affordances for an application corresponding to the application task list affordance. For example, while displaying the global task interface 1018A, the electronic device 1000 detects selection of application task list affordance 1042A. As shown in FIG. 10V, the selection of application task list affordance 1042A is a tap gesture 1050A. In some examples, in response to selection of the application task list affordance 1042A, the electronic device 1000 displays (e.g., replaces display of the global task interface 1018A with), on the display 1001, application task interface 1052A, as shown in FIG. 10 W. As shown, application task interface 1052A includes a return affordance, which when selected, causes the electronic device 1000 to display the global task interface 1018A, and candidate task affordances 1054A-1070A.
  • In some examples, while displaying the settings interface 1004, the electronic device 1000 detects a swipe gesture on the display 1001, such as the swipe gesture 1074A of FIG. 10X. As shown in FIG. 10Y, in response to the swipe gesture 1074A, the electronic device 1000 slides the settings interface 1004 in an upward direction to display (e.g., reveal) various settings. The settings, when enabled, adjust the manner in which candidate task affordances and suggestion affordances, such as those described with reference to FIG. 8A-8AF, are displayed by the electronic device 1000. For example, settings interface 1004 includes a shortcut enablement setting 1076A, which, when enabled, allows the electronic device 1000 to display candidate task affordances, as described herein. As another example, settings interface 1004 includes a search suggestion enablement setting 1078A, which, when enabled, allows the electronic device 1000 to display suggestion affordances on a search screen interface. As another example, settings interface 1004 includes a lookup suggestion enablement setting 1080A, which, when enabled, allows the electronic device 1000 to display suggestion affordances on lookup result screen interface. As yet another example, settings interface 1004 includes a lock screen suggestion enablement setting 1082A, which, when enabled, allows the electronic device 1000 to display suggestion affordances on a lock screen interface.
  • Settings interface 1004 further includes application affordances 1084A and 1086A, each of which is associated with a respective application. In some examples, while displaying the settings interface 1004, the electronic device 1000 detects selection of the application affordance 1086A. As shown in FIG. 10Y, the selection of the application affordance 1086A is a tap gesture 1088A. In some examples, in response to selection of the application affordance 1086A, the electronic device 1000 displays (e.g., replaces display of the settings interface 1004 with), on the display 1001, application settings interface 1090A, as shown in FIG. 10Z.
  • In some examples, application settings interface 1090A includes application user shortcut affordance 1092A, which may correspond to a voice shortcut previously generated by the user, for instance, using a voice shortcut generation process described herein. Application settings interface 1090A further may include candidate task affordances 1094A-1098A, each of which may correspond to a respective task associated with the application of application settings interface 1090A. In some examples, application settings interface 1090A further includes application task list affordance 1002B. In some examples, in response to selection of application task list affordance 1002B, the electronic device 1000 displays (e.g., replaces display of the application settings interface 1090A with), on the display 1001, an application task interface, such as the application task interface 1052A (FIG. 10 W). In some examples, application settings interface 1090A further includes application suggestion enablement setting 1004B, which, when enabled, allows the electronic device 1000 to display suggestion affordances associated with the application on a search screen interface, look up result screen interface and/or keyboard interface. In some examples, application settings interface 1090A further includes application suggestion enablement setting 1006B, which, when enabled, allows the electronic device 1000 to display suggestion affordances associated with the application on a lock screen interface.
  • In some examples, application settings interface 1090A further includes edit affordance 1010B. In some examples, while application settings interface 1090A, the electronic device 1000 detects selection of the edit affordance 1010B. As shown in FIG. 10AA, the selection of the edit affordance 1010B is a tap gesture 1012B. In some examples, in response to selection of the edit affordance 1010B, the electronic device 1000 displays (e.g., replaces display of the application settings interface 1090A with), on the display 1001, application-specific edit interface 1014B, as shown in FIG. 10AB. In some examples, the application-specific edit interface 1014B is displayed over a first portion of the application settings interface 1090A and a second portion of the application settings interface 1090A is visually obscured (e.g., darkened, blurred).
  • In some examples, displaying the application settings interface 1090A includes displaying a selection affordance (e.g., selection affordance 1020B) for each application user shortcut affordance (e.g., application user shortcut affordance 1092A) of the application settings interface 1090A. In an example operation, the electronic device 1000 detects selection of the selection affordance 1020B, indicating a selection of corresponding application user shortcut affordance 1092A and an intent by the user to delete application user shortcut affordance 1092A. In some examples, a user may confirm deletion by selecting confirmation affordance 1018B, or forgo deletion by selecting cancel affordance 1016B.
  • In FIG. 10AC, the electronic device 1000 displays an application permissions interface 1022B for a particular application. The application permissions interface 1022 includes a suggestions permissions affordance 1026B. While displaying the application permissions interface 1022, the electronic device 1000 detects selection of the suggestions permissions affordance 1026B. As shown in FIG. 10AC, the selection of the suggestions permissions affordance 1026B is a tap gesture 1032B. In some examples, in response to selection of the suggestions permissions affordance 1026B, the electronic device 1000 displays (e.g., replaces display of the application-specific permissions interface 1022B with), on the display 1001, an application settings interface, such as the application settings interface 1034B of FIG. 10AD.
  • In some examples, a voice shortcut generation process may be initiated using an application-specific settings interface. Accordingly, in some examples, application settings interface 1034B may include a candidate task affordance 1038B. In some examples, while displaying the application settings interface 1034B, the electronic device 1000 detects selection of the candidate task affordance 1038B. As shown in FIG. 10AE, selection of the candidate task affordance 1038B is a tap gesture 1050B. In response to selection of the candidate suggestion affordance 1038B, the electronic device 1000 displays a task-specific interface 1054B associated with a task of the candidate task affordance 1038B, as illustrated in FIG. 10AF.
  • With reference to FIGS. AF-AH, a user may thereafter generate a voice shortcut by providing a natural-language speech input (e.g., “Coffee Me”) to the electronic device, and in turn the electronic device provides a candidate phrase for association with the task (e.g., order large latte with oat milk from nearby coffee shop) of the candidate task affordance 1038B, as described. Once a voice shortcut for the task has been generated, the electronic device 1000 displays application settings interface 1034B. As illustrated in FIG. 10AI, application settings interface 1034B includes an application user shortcut affordance 1036B. In some examples, in response to selection of the application-specific user shortcut affordance 1036B, the electronic device displays voice shortcuts associated with tasks of the application.
  • In some examples, a voice shortcut generation process may be initiated using an application interface, such as a third party application interface. As illustrated in FIG. 10AJ, for instance, a user may complete a task using an application (e.g., order coffee). In response, the application may display a task completion interface 1060B including candidate task suggestion affordance 1062B. In some examples, in response to selection of candidate task suggestion affordance 1062B, the electronic device initiates a voice shortcut generation process.
  • FIGS. 11A-11B is a flow diagram illustrating a method for providing voice shortcuts in accordance with some embodiments. Method 1100 is performed at a device (e.g., device 104, device 122, device 200, device 600, device 700, device 1000) with a display, one or more input devices (e.g., a touchscreen, a mic, a camera), and a wireless communication radio (e.g., a Bluetooth connection, WiFi connection, a mobile broadband connection such as a 4G LTE connection). In some embodiments, the display is a touch-sensitive display. In some embodiments, the display is not a touch sensitive display. In some embodiments, the electronic device includes a plurality of cameras. In some embodiments, the electronic device includes only one camera. In some examples, the device includes one or more biometric sensors which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof. Some operations in method 1100 are, optionally, combined, the orders of some operations are, optionally, changed, and some operations are, optionally, omitted.
  • As described below, providing candidate phrases based on a natural-language speech input and associating candidate phrases with respective tasks allows a user to accurately and efficiently generate user-specific voice shortcuts that can be used to perform tasks on the electronic device. For example, allowing a user to associate voice shortcuts with tasks in this manner allows a user to visually confirm that a desired voice shortcut has been selected and assigned to the correct task, thereby reducing the likelihood of an incorrect or unwanted association. Thus, providing candidate phrases in the manner described provides for more efficient use of the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • In some examples, the electronic device (104, 200, 600, 700, 1000) displays a plurality of candidate task affordances (1008, 1010, 1012, 1038B, 2006) including a candidate task affordance (1008, 1038B, 2006) associated with a task (1102). In some examples, the plurality of tasks are displayed in a settings interface or an application interface. In some examples, each task of the plurality of tasks is a task suggested, for instance, based on context of the electronic device.
  • In some examples, the electronic device displays a plurality of candidate task affordances including a candidate task affordance associated with a task includes displaying an application interface (1034B, 2060) including the plurality of candidate task affordances. In some examples, the application interface is an interface of a third party application (1062B) including one or more affordances (corresponding to a respective one or more candidate tasks) that the user can select to cause display of the first user interface and thereby create a voice shortcut for the selected task. In some examples, the first user interface (1018, 2066) is overlaid on the application interface. In some examples, the first user interface is overlaid over a portion of the application interface. In some examples, the first user interface is overlaid over the entirety of the application interface. In some examples, the one or more affordances correspond to one or more respective tasks and are displayed in response to completion of the one or more tasks.
  • In some examples, the electronic device detects a set of inputs (1016, 1032) including a first user input (1016, 2064) corresponding to a selection of the candidate task affordance associated with the task (1104).
  • In some examples, the electronic device, in response to the first user input, displays a fourth interface (1018, 2066) associated with the task. In some examples, the fourth user interface is an initial task-specific interface for generating a voice shortcut. In some examples, the interface specifies the task to associate with the voice shortcut (1022) and further includes an indication of the relevant application (e.g., name of application) (1026) and/or an icon associated with (e.g., donated by) the application (1020, 1026). In some examples, the interface includes a cancel affordance. In response to selection of the cancel affordance, the electronic device returns to an immediately prior interface. In some examples, the interface includes a record affordance (1030, 2074). In response to selection of the record affordance, the electronic device records a speech input while displaying a voice record interface (1034, 2078). In some examples, the fourth interface includes a first suggested voice shortcut phrase (1028). In some examples, the electronic device displays a suggested voice shortcut that a user may adopt as the voice shortcut for the relevant task.
  • In some examples, in response to detecting the set of user inputs, the electronic device displays a first interface (1034, 2072) for generating a voice shortcut associated with the task (1106). In some examples, the first interface is a voice record interface. In some examples, the voice record interface includes a prompt (1046) for the user to record a phrase that will be used as the voice shortcut for initiating a task. In some examples, the voice record interface includes a live preview (1042, 2082) of a natural-language speech input provided by the user. In some examples, the live preview is an audio waveform.
  • In some examples, while displaying the first interface (1108), the electronic device receives (e.g., samples, obtains, captures), by the audio input device, a natural-language speech input (1110). In some examples, the natural-language speech input is a phrase spoken by a user of the device. In some examples, the electronic device receives a speech input for a predetermined of time and/or until a user selects a stop affordance (1044, 2084).
  • In some examples, while receiving the natural-language speech input, the electronic device provides (e.g., displays) a live (e.g., real-time) preview of the natural-language speech input. In some examples, the live preview is a waveform of the natural-language input and/or a real-time display of a speech-to-text translation of the natural-language input. In some examples, the live preview of the natural-language speech input is a visual waveform of the natural-language speech input.
  • In some examples, in response to receiving the natural-language speech input, the electronic device determines the candidate phrase based on the natural-language speech input. In some examples, determining the candidate phrase based on the natural-language speech input includes determining the candidate phrase using natural-language processing. In some examples, while the user provides the natural-language speech input, the electronic device uses natural-language processing to translate the natural-language speech input to text.
  • In some examples, determining the candidate phrase based on the natural-language speech input includes providing the natural-language speech input to another electronic device and receiving a representation of the candidate phrase (e.g., text representation, vector representation) from the another electronic device. In some examples, the electronic device provides the natural-language speech input and/or a representation of the NL speech input to a server and the server returns one or more candidate phrases.
  • In some examples, determining the candidate phrase based on the natural-language speech input includes determining whether the natural-language speech input satisfies phrase similarity criteria. In accordance with a determination that the natural-language speech input satisfies the phrase similarity criteria, the electronic device indicates (e.g., displays an indication) that the natural-language speech input satisfies the similarity criteria. In some examples, the electronic device ensures that the natural-language speech input is different than one or more predetermined phrases (e.g., “call 911”). In some examples, the electronic device ensures that the natural-language speech input is sufficiently different than the one or more predetermined phrases. By way of example, the electronic device may ensure that a similarity of a representation of the natural-language speech input and each of the one or more predetermined phrases does not exceed a similarity threshold. In some examples, if the natural-language speech input does not satisfy the similarity criteria, the electronic device will notify the user that the provided speech input is not sufficient and/or not permitted. The electronic device further may request that the user provide a new natural-language speech input. In some examples, the electronic device further compares the natural-language input to phrases associated with one or more stored voice shortcuts. In some examples, the electronic device instructs the user to provide a new natural-language speech input and/or requests confirmation that the user intends for the natural-language speech input to replace one or more other similarly phrased voice shortcuts. In some examples, replaced voice shortcuts are deleted.
  • In some examples, the electronic device, while displaying the first interface (1034, ***), determines whether the natural-language speech input has been received within a threshold amount of time. In some examples, the electronic device, in accordance with a determination that the natural-language speech input has not been received within the threshold amount of time, displays, on the first interface, a second suggested voice shortcut phrase (1046) (“You could say something like ‘Show me side camera”). In some examples, the suggested voice shortcut provided on the first interface (1034) is the same as the suggested voice shortcut provided on the second interface (1028). In some examples, the suggested voice shortcuts of the first and second interfaces are different.
  • In some examples, further while displaying the first interface, the electronic device displays, in the first interface (1034), a candidate phrase (1046), wherein the candidate phrase is based on the natural-language speech input (1120). In some examples, the candidate phrase is a speech-to-text translation of the natural-language speech input and is displayed while the natural-language input is received by the electronic device. In some examples, the electronic device displays the candidate phrase in response to the natural-language input and/or translates the natural-language speech input to text in real-time. Accordingly, in some examples, the electronic device continuously updates display of the candidate phrase while the natural-language is received by the electronic device.
  • In some examples, after displaying the candidate phrase, the electronic device detects, via the touch-sensitive surface, a second user input (1092, 2004A) (1122). In some examples, the second user input is a selection of a completion affordance (1072, 2092). In some examples, the second user input is selection of an affordance, such as a confirmation affordance of a completion interface (1054, ***).
  • In some examples, in response to detection of the second user input, the electronic device associates the candidate phrase with the task (1124). In some examples, the electronic device generates a voice shortcut such that recitation of the candidate phrase by the user to the digital assistant results in performance of the task.
  • In some examples, associating the candidate phrase with the task includes associating the candidate phrase with a first action and associating the candidate phrase with a second action. In some examples, a voice shortcut corresponds to a multiple tasks. In some examples the combination of tasks is suggested by the digital assistant and a user may assign a phrase to initiate performance of the combination of tasks. By way of example, the voice shortcut “secure house” may correspond to tasks for turning off lights and locking doors.
  • In some examples, the electronic device receives, by the audio input device, a user speech input (e.g., natural-language speech input). In some examples, the electronic device determines whether the user speech input includes the candidate phrase. In some examples, the electronic device, in accordance with a determination that the user speech input includes the candidate phrase, performs the task. In some examples, the electronic device, in accordance with a determination that the user speech input does not include the candidate phrase, forgoes performing the task.
  • In some examples, the electronic device, after associating the candidate phrase with the task, displays a second interface including an edit affordance. In some examples, the electronic device displays the second interface at the end of the voice shortcut generation process. In some examples, the user may navigate to the voice shortcut in an interface (1004A) listing one or more stored voice shortcuts (1008A) and select the voice shortcut to cause display of the second interface. In some examples, the second user interface (1054, 2090) includes a textual representation of the task (1060, 2098), an indication of the task (1058), the candidate phrase (1064, 2002A), an edit affordance (1066) which when selected causes display of candidate shortcuts, a cancel affordance (1056, 2094) which when selected causes the device to cancel the voice shortcut generation process, and a completion affordance (1054, 2092 which when selected causes the electronic device to associate the candidate phrase with the task or maintain association of the candidate phrase with the task if already associated.
  • In some examples, the electronic device detects a third user input indicating a selection of the edit affordance (1068). In some examples, the electronic device, in response to detecting the third user input, displays a plurality of candidate phrase affordances (1082, 1084, 1086) including a first candidate phrase affordance corresponding to the candidate phrase and a second candidate phrase affordance corresponding to another candidate phrase. In some examples, the another candidate phrase is based on the natural-language speech input. In some examples, the electronic device, in response to selection of the edit affordance, displays an edit interface (1070) including a plurality of candidate phrases. In some examples, a user may select one of the candidate phrases to associate with the task. In some examples, each of the plurality of candidate phrases are speech-to-text candidates generated, based on the natural-language speech input, using one or more NLP methodologies. In some examples, the NL speech input is provided to another device (e.g., back-end server), which returns one or more of the candidate phrases to the electronic device. In some examples, candidate phrases are generated on both the electronic device and a backend server, and the electronic device selects one or more of the “best” candidate phrases (e.g., candidate phrases associated with highest respective confidence scores).
  • In some examples, the electronic device, detects another set of inputs (1090, 1092) including a fourth user input indicating a selection of the second candidate phrase affordance. In some examples, the electronic device, in response to detecting the another set of inputs, associates the another candidate phrase with the task. In some examples, a user selects a new candidate phrase to associate with the task such that providing the new candidate phrase causes performance of the task. In some examples, associating a new candidate task causes the electronic device to disassociate the previously associated candidate phrase from the task.
  • In some examples, the electronic device, after associating the candidate phrase with the task, detects a fifth input (1092, 2004A). In some examples, the electronic device, in response to detecting the fifth user input, displays another plurality of candidate task affordances, wherein the another plurality of candidate task affordances does not include the candidate task affordance associated with the task. In some examples, after creating a voice shortcut, the electronic device displays a settings interface (1004) listing candidate tasks suggested by the digital assistant and/or one or more applications. In some examples, if a task was previously suggested and a user created a shortcut for the task, the task is removed from the list of suggested tasks.
  • In some examples, the electronic device provides the candidate phrase to another electronic device. In some examples, the generated voice shortcut is provided to a backend server for subsequent speech input matching. In some examples, the generated voice shortcut and the associated task are provided to the backend server. In some examples, inputs are provided from the electronic device to the backend server and the backend server determines whether the input corresponds to a voice shortcut. If the backend server determines the input corresponds to a voice shortcut, the electronic device performs the task. In some examples, providing each of the shortcut and the task to the server in this manner further allows for subsequent performance of the task on other electronic devices using the same shortcut.
  • Note that details of the processes described above with respect to method 1100 (e.g., FIGS. 11A-11B) are also applicable in an analogous manner to the methods described below. For example, method 1100 optionally includes one or more of the characteristics of the various methods described with reference to methods 900, 1300, 1500, 1700, and 1900. For example, providing voice shortcuts as described in method 1200 can be applied to generate voice shortcuts for use as described in method 1300. For brevity, these details are not repeated below.
  • The operations in the methods described above are, optionally, implemented by running one or more functional modules in an information processing apparatus such as general purpose processors (e.g., as described with respect to FIGS. 2A, 4, and 6A) or application specific chips. Further, the operations described above with reference to FIGS. 10A-10AJ are, optionally, implemented by components depicted in FIGS. 2A-2B. For example, displaying operation 1102, detecting operation 1104, displaying operation 1106, receiving operation 1110, displaying operation 1120, detecting operation 1122, and associating operation 1124 are, optionally, implemented by event sorter 270, event recognizer 280, and event handler 290. Event monitor 271 in event sorter 270 detects a contact on touch-sensitive surface 604 (FIG. 6A), and event dispatcher module 274 delivers the event information to application 236-1 (FIG. 2B). A respective event recognizer 280 of application 236-1 compares the event information to respective event definitions 286, and determines whether a first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as selection of an object on a user interface. When a respective predefined event or sub-event is detected, event recognizer 280 activates an event handler 290 associated with the detection of the event or sub-event. Event handler 290 optionally utilizes or calls data updater 276 or object updater 277 to update the application internal state 292. In some embodiments, event handler 290 accesses a respective GUI updater 278 to update what is displayed by the application. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in FIGS. 2A-2B.
  • FIG. 12 is a block diagram illustrating a task suggestion system 1200, according to various examples. FIG. 12 is also used to illustrate one or more of the processes described below, including the method 1300 of FIG. 13 .
  • FIG. 12 illustrates a task suggestion system 1200 that may, for instance, be implemented on an electronic device described herein, including but not limited to devices 104, 200, 400, and 600 (FIGS. 1, 2A, 4, and 6A-6B). It will be appreciated that while the task suggestion system 1200 is described herein as being implemented on a mobile device, the task suggestion system 1200 may be implemented on a device of any type, such as a phone, laptop computer, desktop computer, tablet, wearable device (e.g., smart watch), set-top box, television, home automation device (e.g., thermostat), or any combination or subcombination thereof.
  • Generally, the task suggestion system 1200 provides task suggestions based on context data of an electronic device. Task suggestions provided by the task suggestion system 1200 may in turn be used to provide suggestion affordances, such as those described with respect to FIGS. 8A-8AF. In some examples, the task suggestion system 1200 is implemented as a probability model. The model may include one or more stages, including but not limited to the first stage 1210, second stage 1220, and third stage 1230, each of which is described in further detail below. In some examples, one or more of first stage 1210, second stage 1220, and third stage 1230 may be combined into a single stage and/or split into multiple stages. By way of example, in an alternative implementation, the task suggestion system 1200 may include a first stage and a second stage, where the first stage implements the functionality of both first stage 1210 and second stage 1220.
  • In some examples, context data of the electronic device is indicative of a state or context of the electronic device. By way of example, context data may indicate various characteristics of the electronic device during a time at which a particular task was performed. For instance, for each task performed by the electronic device, context data may indicate a location of the electronic device, whether the electronic device was connected to a network (e.g., WiFi network), whether the electronic device was connected to one or more other devices (e.g., headphones), and/or a time, date, and/or weekday at which the task was performed. If the electronic device was connected to a network or device during performance of the task, the context data may further indicate a name and/or type of the network or device, respectively. Context data further may indicate whether a suggestion affordance associated with a task was previously presented to a user and the manner in which the user responded to the suggestion affordance. For instance, the context data may indicate whether the user ignored the task suggestion or used the task suggestion to perform a corresponding task.
  • In some examples, the electronic device receives context data from applications during operation of the electronic device. In some examples, an application provides context data for a task while performing a task or after performing a task. Context data provided in this manner may be indicative of a task and, optionally, one or more parameters associated with the task. In some examples, context data provided by an application further includes data indicative of the state of the electronic device while the task was performed, described above (e.g., location of the electronic device, whether the electronic device was connected to a network, etc.). In other examples, context data provided by an application does not include data indicative of the state of the electronic device while the task was performed, and in response to receipt of context data from an application, the electronic device obtains data indicative of the state of the electronic device.
  • In some examples, context data is provided by applications using any of a plurality of context data donation mechanisms. In at least one example, context data is received from applications in response to an API call which causes an application to return information regarding execution of the application. By way of example, a word processing application (e.g., Notes, Word) may return an identifier (e.g., numerical ID, name) of a word processing document accessed by a user. As another example, a media playback application (e.g., Music, Spotify) may return an identifier of a current media item (e.g., song), album, playlist, collection, and one or more media items suggested by the media playback application for the user.
  • In some examples, context data is received from applications in response to an API call which causes an application to provide a data structure indicating (e.g., identifying) a task performed by an application. The data structure may, for instance, include values for one or more parameters associated with the task. In some examples, the data structure is implemented as an intent object data structure. Additional exemplary description of operation with intent object data structures can be found in U.S. patent application Ser. No. 15/269,728, “APPLICATION INTEGRATION WITH A DIGITAL ASSISTANT,” filed Sep. 18, 2016, which is hereby incorporated by reference in its entirety.
  • In some examples, context data is received from applications in response to an API call which causes an application to provide an application-specific (e.g., third-party application) data structure indicating a task performed by an application. The application-specific data structure may, for instance, include values for one or more parameters associated with the task. The application-specific data structure can, optionally, further indicate which parameter values of the task may be specified when providing task suggestions as well as which combinations of parameter values. Thus, while a task having M parameters may have as many as 2M−1 permitted combinations of parameters, an application-specific data structure may explicitly reduce the number of permitted combinations. In some examples, the application-specific data structure indicates whether the task is a background task or a task requiring confirmation, as previously described with respect to FIGS. 8A-8AF.
  • In some examples, context data is provided by an application each time a task is performed on the electronic device. Context data may, for instance, be provided while the task is performed or after the task is performed. For instance, in some examples, the electronic device detects that an application has been closed, and in response, employs one or more context data donation mechanisms to request context data from the application.
  • In some examples, context data is selectively provided based on types of tasks. By way of example, context data may be provided in response to a user sending a text message or placing a call, but not in response to a user navigating to a web page using a browser or unlocking the electronic device. In some examples, context data is selectively provided based on context of the electronic device. For instance, context data may not be provided if a charge level of a battery of the electronic device is below a threshold charge level.
  • In some examples, each type of context data (e.g., location of the electronic device, whether the electronic device is connected to a network, etc.) is associated with a respective context weight. The context weights may be used, for instance, to influence the manner in which context data is used to determine probabilities. As an example, types of context determined to be stronger predictors of user behavior may be associated with relatively large weights and/or types of context determined to be weaker predictors of user behavior may be associated with relatively small weights. By way of example, tasks performed by a user when the electronic device is at a particular location may be a better indicator of user behavior than tasks performed by a user on a particular a weekday. Accordingly, location context data may be associated with a relatively large weight and weekday context data may be associated with a relatively small weight. As another example, whether a user selected a suggestion affordance for a task may be associated with a relatively large weight as such context data may strongly indicate whether the user is likely to select subsequent suggestion affordances for the task.
  • In some examples, context weights are determined by the electronic device. In other examples, weights are determined by another device using aggregated data. For instance, in some examples, anonymized context data may be provided by the electronic device and/or one or more other devices to a data aggregation server. In turn, the data aggregation server may determine which types of context data are more discriminative and/or stronger predictors of user behavior. In some examples, the data aggregation server employs one or more machine learning techniques to determine which types of context data are relatively discriminative and/or stronger predictors of user behavior. Based on the determination, the data aggregation server may determine a weight for each type of context data and provide the weights to the electronic device. In some examples, a user may elect to forgo (e.g., opt out of) providing anonymized data to another device for determining context weights.
  • By ensuring that context data used by the data aggregation server is anonymized, privacy of users of electronic devices may be preserved. Anonymizing context data may include removing names of users, specific locations recorded by the electronic device, names of WiFi networks, and any other user-specific information. Anonymized context data may, for instance, specify that a user performed a certain task 20% of the time when at a same location, but not specify which task or location.
  • In an example operation, the first stage 1210 performs task-specific modeling based on context data of the electronic device. In some examples, performing task-specific modeling includes determining one or more probabilities (e.g., task probabilities) for each of a plurality of tasks (e.g., one or more tasks previously performed by the electronic device and/or one or more tasks that may be performed by the electronic device). Each task probability determined in this manner indicates a likelihood that a user will perform a task given a context of the electronic device.
  • In some examples, determining task probabilities in this manner includes generating and/or updating one or more histograms based on the context data. First stage 1210 may, for instance, generate a respective set of histograms for each task indicating probabilities that a user performs tasks given various contexts of the electronic device. In some examples, each histogram associated with a task corresponds to a single type of context. As an example, a first histogram associated with a task for enabling a thermostat may be a location context histogram. The location context histogram may indicate, for each of a plurality of locations in which the user has previously enabled a thermostat, a probability that a user enables a thermostat when at the location. A second histogram associated with the task for enabling a thermostat may be a WiFi context histogram. The WiFi context histogram may indicate, for each of a plurality of WiFi networks to which the electronic device has previously been connected, a probability that a user enables a thermostat when the electronic device is connected to the WiFi network. It will be appreciated that context data of the electronic device may include any number of types of context. Accordingly, a task may be associated with any number of histograms.
  • In some examples, to determine a task probability for a task given a particular context, first stage 1210 may determine a respective probability for each context type given the context (e.g., as indicated by each histogram associated with the task) and determine the task probability based on the probabilities for the context types.
  • In some examples, determining task probabilities further may include adjusting context data using context weights. As described, each context type may be associated with a weight. Accordingly, prior to determining a task probability based on context probabilities, each context probability may be adjusted (e.g., multiplied) by a corresponding context weight.
  • In some examples, task probabilities provided by first stage 1210 are parameter-independent. That is, task probabilities may be determined (e.g., histograms generated) for each task without consideration of specific parameter values used to perform the task. As an example, the first stage 1210 can determine a probability of a user sending a text message given a particular context (e.g., at a particular time), but may forgo determining probabilities directed to the recipient of the text message or the contents (e.g., text, image) of the text message. As another example, the first stage 1210 can determine a probability that a user will enable a thermostat when arriving at home, but forgo determining any probabilities directed to temperature thresholds of the thermostat.
  • In some examples, first stage 1210 updates context data in response to performance of a task. In some examples, updating context data in this manner includes updating one or more histograms for the task performed.
  • Generally, the second stage 1220 performs parameter-specific modeling based on context data of the electronic device. In some examples, performing parameter-specific modeling includes determining probabilities (e.g., parameter probabilities) for a set of parameters that indicate the likelihood a user selects a particular value for each parameter of the set of parameters given a task (e.g., tasks previously performed by the electronic device). Parameter probabilities may indicate a likelihood that a user selects a particular value for a single parameter (and no other values) and/or may indicate a likelihood that a user selects particular values for multiple (e.g., a combination) of parameters.
  • For example, during operation, second stage 1220 provides a set of tasks based on the context data. In some examples, to provide the set of tasks, the second stage 1220 identifies a plurality of tasks and ranks the tasks according to their respective task probabilities. In some examples, the second stage 1220 identifies one or more tasks previously performed by the electronic device. The second stage 1220 may omit types of tasks that are determined to occur at a frequency exceeding a frequency threshold in some examples.
  • Thereafter, the second stage 1220 determines which of the identified tasks are associated with the N (e.g., N=10) highest respective task probabilities (as determined by first stage 1210) and provides the N tasks associated with the N highest ranking task probabilities as the set of tasks. In some examples, determining which of the identified tasks are associated with the N highest task probabilities includes determining which tasks are associated with the N highest task probabilities given any context of the electronic device. In other examples, determining which of the identified tasks are associated with the N highest task probabilities includes determining which tasks are associated with the N highest task probabilities for a current context of the electronic device.
  • In some examples, once second stage 1220 has identified a set of tasks, second stage 1220 determines parameter probabilities for each task of the set of tasks based on the context data. In some examples, second stage 1220 determines parameter probabilities using a subset of the context data of the electronic device. As an example, the second stage 1220 may determine parameter probabilities using context data received within a threshold amount of time (e.g., prior 30 days). As another example, second stage 1220 may determine parameter probabilities for a given task using context data corresponding to the most recent N (e.g., N=100) instances in which each task of the set of tasks was performed. For instance, in an example in which second stage 1220 determines parameter probabilities for a task directed to sending a text message, the second stage 1220 determines parameter probabilities for the task using context data corresponding to the last N instances in which the electronic device sent a text message.
  • In some examples, determining parameter probabilities includes generating and/or updating one or more histograms based on the context, for instance, in real-time. Second stage 1220 may, for instance, generate a respective set of histograms for each task indicating probabilities that a user selects a particular parameter value for a parameter given the task. In some examples, each histogram associated with a task corresponds to a single parameter. Thus, each histogram may represent a distribution of values for a parameter used to perform a task over time.
  • In some examples, the second stage 1220 determines parameter probabilities based on a current context of the electronic device. This may, for instance, reduce computational complexity required to provide parameter probabilities. By way of example, during operation, the second stage 1220 may determine that the electronic device is at a particular location. As a result, in determining parameter probabilities, the second stage 1220 may determine probabilities for parameter values that were previously used when the device was at the determined location.
  • In an example operation, the second stage 1220 may determine, based on context data, probabilities for one or more parameter values that may be used to send a text message. The second stage 1220 may, for instance, determine based on context data (e.g., prior use of the electronic device) that there is a 20% that the recipient of a text message is a first contact and a 30% chance that the recipient of the text message is a second contact. The second stage 1220 further may determine that there is a 40% chance that the text message includes a first payload (e.g., string, image) and a 55% chance that the text message includes a second payload. In some examples, the second stage 1220 may further determine probabilities for one or more combinations of parameters values. The second stage 1220 may determine that there is a 20% chance that the recipient of the text message is the first contact and that the text message includes the first payload. The second stage 1220 may further determine that there is a 15% chance that the recipient of the text message is the first contact and that the text message includes the second payload. It will be appreciated that this example is not intended to be limiting and second stage 1220 can determine probabilities for any number and/or combination of parameter values.
  • In some examples, second stage 1220 determines parameter probabilities periodically (e.g., every 7.5 minutes) and/or in response to an event, such as a change in context of the electronic device. By way of example, probabilities may be determined in response to a change in location or environment of the electronic device (e.g., the electronic device being moved from a house to a car), a change in charge level of the battery of the electronic device, a change in configuration of the electronic device (e.g., installation or deletion of an application), and/or a change in connectivity of the electronic device (e.g., connecting or disconnecting from a network).
  • In some examples, once task probabilities and parameter probabilities have been determined by the first stage 1210 and second stage 1220, respectively, third stage 1230, optionally, adjusts one or more probabilities. In some examples, third stage 1230 adjusts task probabilities. Task probabilities may be adjusted, for instance, based on a type of the task associated with the task probability. Additionally or alternatively, in some examples, third stage 1230 adjusts (e.g., increases, decreases) parameter probabilities. As an example, parameter probabilities associated with a relatively high number of parameters (e.g., 3 or more) may be increased and/or parameter probabilities of tasks having a relatively low number of parameters (e.g., 2 or less) may be decreased. As another example, parameter probabilities for parameters of a first type may be increased and/or parameter probabilities for parameters of a second type not having the one or more particular types of parameters specified may be decreased. In particular, parameter probabilities for relatively discriminative parameter types, such as strings, may be increased, and/or parameter probabilities for relatively non-discriminative parameter types, such as Booleans, may be decreased. As yet another example, parameter probabilities for parameters having relatively high entropy (e.g., variation of values) as indicated by context data may be increased and/or parameter probabilities parameters having relatively low entropy as indicated by context data may be decreased.
  • Once probabilities have been adjusted, the third stage 1220 determines a task probability and parameter probability for each task. In some examples, the third stage 1220 identifies a highest parameter probability for each task. In other examples, the third stage 1220 identifies several parameter probabilities for a task. In some examples, for the purposes of providing task suggestions, as set forth below, a task having multiple parameter probabilities may be treated as a separate task for each parameter probability (e.g., a task with a first set of parameter values is considered distinct from the task with a second set of parameter values). As described, each parameter probability may correspond to a single parameter value and/or may correspond to multiple parameter values.
  • In some examples, after probabilities have (optionally) been adjusted, the third stage 1230 determines, for each task, whether the task satisfies suggestion criteria based on a task probability and a parameter probability associated with the task.
  • In some examples, determining whether a task satisfies suggestion criteria includes providing a joint probability for a task based on a task probability and a parameter probability for the task and determining whether the joint probability exceeds a probability threshold. In some examples, a joint probability is provided by multiplying a task probability and a parameter probability. In some examples, if third stage 1230 determines that a joint probability exceeds the probability threshold, the third stage 1230 determines that the task associated with the joint probability satisfies suggestion criteria.
  • In some examples, once third stage 1230 has determined (e.g., identified) tasks that satisfy suggestion criteria, third stage 1230 provides the tasks (and corresponding parameter values) associated with the tasks as task suggestions. In some examples, third stage 1230 provides all tasks satisfying the suggestion criteria as task suggestions. In other examples, third stage 1230 provides a subset of the tasks satisfying the suggestion criteria as task suggestions. The third stage 1230 may, for instance, provide the task associated with the respective highest joint probability as a task suggestion.
  • In turn, the electronic device determines, for each of the task suggestions, whether to display a suggestion affordance corresponding to the task suggestion. In some examples, this includes determining whether the task suggestion satisfies first suggestion criteria and/or second suggestion criteria. In some examples, determining whether a task suggestion satisfies first suggestion criteria and/or second suggestion criteria includes determining whether a joint probability associated with the task suggestion satisfies first and second display thresholds, respectively.
  • If, for instance, a joint probability for a task suggestion satisfies the first display threshold, a suggestion affordance corresponding to the task suggestion is displayed in a first user interface (e.g., search screen interface 866 of FIG. 8N). If a joint probability corresponding to a task suggestion satisfies a second display threshold, a suggestion affordance corresponding to the task suggestion is additionally or alternatively be displayed in a second user interface (e.g., lock screen interface 810 of FIG. 8B). In some examples, the first display threshold is the same as the probability threshold. In some examples, the second display threshold is greater than the first display threshold.
  • If a user subsequently selects a suggestion affordance, the electronic device selectively performs a task in response to selection of the suggestion affordance, as described with reference to FIGS. 8A-8AF. If the task is a background task (e.g., a task that does not require user confirmation), the electronic device performs the task, as described. If the task not a background task (e.g., the task requires user confirmation and/or additional user input prior to task performance), the electronic device displays an interface requesting confirmation and/or additional input from the user. In some examples, a user may confirm performance of a task by selecting a confirmation affordance of the confirmation interface.
  • In some examples, display of suggestion affordances may be modified in response to a change in context of the electronic device (e.g., change in location of electronic device, user connects device to or disconnects device from headphones). By way of example, in response to a change in context, the electronic device may cease display of one or more displayed suggestion affordances, display one or more new suggestion affordances, and/or display suggestion affordances in a new order. Modifying display of suggestion affordances in this manner may include determining a new set of suggestions using the current context of the electronic device (e.g., in response to detecting a change in the context of the electronic device) and displaying one or more suggestion affordances for those task suggestions satisfying suggestion criteria and/or display criteria, as described (recall that in some examples, only a top scoring task suggestion is used for display of a suggestion affordance). Modifying display of suggestion affordances may further include ceasing display of suggestion affordances for task suggestions not satisfying the suggestion criteria and/or the display criteria in accordance with the context. In some examples, suggestion affordances are displayed in an order corresponding to context of the electronic device, and/or a ranking of respective joint probabilities associated with the suggestion affordances. Accordingly, a change in context of the electronic device may cause the electronic device to change an order in which suggestion affordances are displayed.
  • In some examples, determining whether a task satisfies suggestion criteria further includes determining whether heuristic criteria have been met. For example, the third stage 1230 (or any other stage of the task suggestion system 1200) may determine whether one or more sets of predetermined conditions have been met. If so, the third stage 1230 provides a task suggestion for a task corresponding to each of the sets of predetermined conditions that have been met (e.g., heuristic task suggestion). By way of example, the electronic device may determine, based on a location of a user and a calendar of a user, that the user is going to be late to a meeting (e.g., the user will not be able to arrive on time). Accordingly, the electronic device may provide a heuristic task suggestion for the user to send a text message to the organizer of the meeting that the user will be late. The electronic device may in turn display a suggestion affordance corresponding to the heuristic task suggestion.
  • In some examples, task suggestions provided in this manner have a joint probability of 100%, such that the task suggestions always satisfy thresholds for display. In some examples, task suggestions provided in this manner may have a joint probability of less than 100% if a user has failed to select a same type of task suggestion previously displayed by the electronic device. Thus, joint probabilities of task suggestions provided in this manner may increase or decrease (e.g., decay) according to user behavior.
  • In some examples, suggestion affordances for heuristic task suggestions are displayed in combination with suggestion affordances for task suggestions. In other examples, suggestion affordances for heuristic task suggestions are not displayed in combination with suggestion affordances for task suggestions. For instance, in some examples, display of a suggestion affordance for a heuristic task suggestion overrides (e.g., precludes) display of a suggestion affordance for a task suggestion.
  • In some examples, only a single set of predetermined conditions may be met at a given time such that only a single heuristic task suggestion is provided at any given time. Because, in some examples, heuristic task suggestions are provided based on a set of conditions (e.g., set of hard-coded rules) in addition to context data, heuristic task suggestions may allow the electronic device to provide task suggestions for tasks not previously provided by the electronic device.
  • The following table sets forth various sets of exemplary predetermined conditions that may be used to provide heuristic task suggestions. It will be appreciated that the sets are not intended to be limiting. Additionally, the table sets forth conditions that cause the electronic device to cease display of a suggestion affordance corresponding to a heuristic task suggestion. In some examples, the electronic device ceases display of the suggestion affordance in response to all of the conditions being met. In some examples, the electronic device ceases display of the suggestion affordance in response to any number of the conditions being met.
  • Conditions Condition(s)
    for Suggestion Suggested Task to Withdraw
    Movie ticket Enable a do Do not disturb
    added to digital not disturb mode mode is enabled;
    wallet on device on the electronic user does not
    and/or user is device (the select the
    located at suggestion affordance
    theater affordance may within a
    be displayed a predetermined
    predetermined amount of
    amount of time time; the user
    before the event) has ignored
    same or similar
    suggestions a
    threshold number
    of times
    User calendar Initiate call or send User has contacted
    indicates that predetermined the relevant
    user appears to message to contact (e.g., call,
    be at risk of being relevant contact message); user has
    late to an event (e.g., meeting ignored same or
    organizer); a similar suggestions
    message may a threshold
    optionally number of times;
    indicate an the user is at the
    estimated time location of the
    of arrival for event
    the user
    User misses call Call contact User has contacted
    from a contact of corresponding the contact;
    a particular type to missed call. user has ignored
    (e.g., contact same or similar
    frequently suggestions a
    called) threshold number
    of times; the
    user is at the
    location of the
    event
    User calendar Reserve ride- User is determined
    indicates that booking for to be traveling
    the user has an user using the to destination;
    upcoming event location of the user has contacted
    at a particular user as a pickup ride-booking
    address, and the location and service (e.g.,
    user has specified address driver)
    previously used as the destination
    a ride-booking
    application
    (e.g., Lyft)
    Current day is Initiate call or User has contacted
    the birthday send the contact;
    of a user contact predetermined user has ignored
    message to same or similar
    relevant contact suggestions
    a threshold
    number of
    times; window
    has elapsed
    (e.g., date
    has changed)
    User calendar Open Calendar user has ignored
    indicates that application same or similar
    the user has an suggestions a
    upcoming event threshold number
    and the description of times; window
    of the event in has elapsed (e.g.,
    the calendar date has changed)
    includes at least a
    threshold amount
    of information
    (e.g., address,
    phone number,
    notes, etc.)
    User as an Reserve ride- User books ride;
    upcoming flight booking for user user contacts
    (e.g., as indicated using the location ride-booking
    by calendar of the user as service; user
    application, a pickup is determined
    traveling location and to be traveling
    application, the relevant to airport
    electronic passport airport as the
    application) destination
    URL is copied by Open URL in User accesses
    user using copy browser URL; user
    function (e.g., onto pastes URL into
    device clipboard) browser; user
    has copied other
    content
    User calendar Call telephone User initiates
    indicates user number in phone call;
    has an upcoming calendar entry event time has
    meeting, the passed; user
    calendar entry has ignored same
    includes a telephone or similar
    number for calling suggestions a
    into the meeting, threshold number
    and/or the user is of times
    not located at a
    specified location
    of the meeting
    User calendar Generate alarm a User sets alarm
    indicates user predetermined for earlier time
    has unusually amount of than normal;
    early meeting time prior to user has ignored
    (e.g., scheduled event. same or similar
    time is earlier than suggestions a
    normal threshold
    events for user) number of
    times
    Potential event Generate calendar Predetermined
    detected in entry for amount of
    messaging detected event time has elapsed
    application (e.g., after event
    using natural- detected
    language
    processing)
    User calendar Enable a do User calls
    indicates not disturb contact
    user has an mode on the associated with
    event and/or electronic device event; event time
    user is located (the suggestion has passed; user
    at a location affordance may has ignored same
    associated with the be displayed a or similar
    event predetermined suggestions a
    amount of time threshold number
    before the event) of times
    Event is Enable a do Do not disturb
    determined to not disturb mode is enabled;
    be at an event mode on the user ignores
    of one or more electronic device suggestion
    predetermined (the suggestion affordance for a
    types (e.g., movie, affordance may predetermined
    meal, meeting) be displayed a amount of time;
    predetermined user has ignored
    amount of time same or similar
    before the event) suggestions a
    threshold number
    of times;
    event time passes
    Predetermined Enable a do not Do not disturb
    (e.g., favorite) disturb mode on mode is enabled;
    contact of user is the electronic user ignores
    attending event device (the suggestion
    of user suggestion affordance for a
    affordance may predetermined
    be displayed a amount of time;
    predetermined user has ignored
    amount of time same or similar
    before the suggestions a
    event) threshold number
    of times; event
    time passes
    Telephone Call phone User called telephone
    number is number number; use
    copied by user pasted telephone
    using copy number into
    function (e.g., phone application,
    onto device user has copied
    clipboard) other content
    User is currently Start workout User has starts
    at a gym other workout;
    location and user has ignored
    previously has same or similar
    been at the gym suggestions
    location and a threshold
    started a workout number of
    a threshold times (may
    number of times represent after
    predetermined
    amount of time
    (e.g., 10 days));
    A user has been Call driver User is
    paired with a determined
    driver on a ride- to be in car
    booking (e.g., traveling to
    application destination)
    User calendar Download User downloads
    indicates the media (e.g., media; user has
    user has an music, videos) ignored same or
    upcoming flight to device for similar suggestions
    offline access a threshold
    number of times
    User calendar Open user has ignored
    indicates entry attachment same or similar
    for upcoming suggestions a
    event includes an threshold number
    attachment of times
    User is at a Present playlist User does not
    particular location for playback have required
    and previously has subscription;
    played music at the headphones not
    location a threshold connected; user
    number of times; plays music; user
    optionally has ignored same
    headphones or similar
    are connected suggestions a
    to device threshold number
    of times (may
    represent after
    predetermined
    amount of time
    (e.g., 10 days))
  • FIG. 13 illustrates method 1300 for providing suggestions, according to various examples. Method 1300 is performed, for example, using one or more electronic devices implementing a task suggestion system, such as the task suggestion system 1200 of FIG. 12 . In some examples, method 1300 is performed using a client-server system (e.g., system 100), and the blocks of method 1300 are divided up in any manner between the server (e.g., DA server 106) and a client device. In other examples, the blocks of method 1300 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of method 1300 are described herein as being performed by particular devices of a client-server system, it will be appreciated that method 1300 is not so limited. In other examples, method 1300 is performed using only a client device (e.g., user device 104) or only multiple client devices. In method 1300, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the method 1300.
  • As described below, selectively providing suggestion affordances associated with tasks, as described herein, allows a user to efficiently and conveniently perform tasks relevant to the user on the electronic device. By way of example, suggestion affordances displayed by the electronic device can correspond to tasks identified based on context data of the electronic device, such as context data indicative of prior use of the electronic device by the user. Thus, selectively providing suggestions in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • In some examples, the electronic device includes one or more of a keyboard, mouse, microphone, display, and touch-sensitive surface. In some examples, the display is a touch-sensitive display. In other examples, the display is not a touch-sensitive display.
  • At block 1305, the electronic device (e.g., device 104, 200, 400, 600, or another device implementing the task suggestion system 1200) receives context data associated with the electronic device. In some examples, receiving the context data includes determining a context of the electronic device while performing the task (e.g., determine a location of the device, whether the device is connected to WiFi network, etc.). In some examples, context data is indicative of a state of the electronic device given one or more conditions. In some examples, context data is indicative of various contextual aspects of the electronic device when each of a plurality of tasks was performed. In some examples, context data indicates a location of the electronic device, whether the device is connected to a network (e.g., WiFi network), and if so, a name (e.g., SSID) of the network, a time and/or day at which the task was performed, and whether headphones were connected. In some examples, determining a context of the electronic device includes determining a location of the electronic device, determining whether the electronic device is connected to a network, determining a time of day, or any combination thereof. In some examples, if a task has been previously presented to the user as a suggested task (e.g., using a suggestion affordance), the context data indicates the manner in which the user responded to the suggestion (e.g., whether the user interacted with the suggestion, deleted the suggestion, ignored the suggestion, etc.).
  • In some examples, each type of context data is assigned a score according to a respective weight (e.g., using dot multiplication). In some examples, the respective magnitudes of weights utilized in this manner are determined by a server using anonymized, aggregated data such that data is utilized in a privacy preserving manner.
  • In some examples, context data is obtained from applications during use of the electronic device, for instance, using a number of data donation mechanisms. In some examples, context data is obtained from applications using an API call which causes an application to indicate what the user was doing at the time of the API call (e.g., if user is in a “notes” app, call returns an ID of the note and/or a name of the note). In some examples, receiving context data includes receiving a data structure (e.g., standardized intent object, third-party application intent object) corresponding to the task and one or more parameters associated with the task. In some examples, context data is obtained from applications using an API call which causes an application to donate a standardized data structure indicating a task performed by the application. In some examples, the data structure is an intent object. In some examples, context data is obtained from applications using an application-specific (e.g., third-party application) data structure indicating a task performed by the application. In some examples, the third-party data structure further indicates which parameters of a task may be predicted together and/or whether a task is a background task (e.g., a task that does not require additional input prior to performance of the task). In some examples, applications donate context data each time a user performs a task. In some examples, applications selectively donate context data, for instance, based on context of the electronic device (e.g., an application may forgo providing context data if a battery charge level of the device is below a threshold).
  • At block 1310, the electronic device determines, based on the context data, a task probability for a task. In some examples, using context data, the electronic device employs a multi-stage model to provide suggestions. In some examples, at the first stage (1210) of the model, the electronic device determines a probability for each of a plurality of tasks indicating the likelihood that the user performs the task given particular context. In some examples, determining a task probability for a task includes generating, for each of a plurality of types of context, a histogram corresponding to the task based on the context data. In some examples, identifying task probabilities includes providing (e.g., generating) one or more histograms using the data provided by applications during use of the electronic device. In some examples, the histograms provided in this manner indicate patterns of user behavior. By way of example, each of the histograms may indicate a probability that a user takes a particular action given a particular context (e.g., a user selects a particular music app at an 80% rate when connecting to a particular WiFi network)). In some examples, the task probability is parameter-independent. That is, in some examples, the electronic device determines the task probability using context data associated with tasks irrespective of the parameters used to perform the tasks. In some examples, the task probability determined in this manner are parameter-specific.
  • At block 1315, the electronic device determines, based on the context data, a parameter probability for a parameter, wherein the parameter is associated with the task. In some examples, at the second stage (1220) of the model, the electronic device determines a probability (e.g., conditional probability) for each a plurality of tasks indicating a likelihood that a user uses particular parameters for each task. In some examples, determining, based on the context data, a parameter probability for a parameter includes determining a current context of the electronic device and determining the parameter probability based on the current context of the electronic device (e.g., determining context of the electronic device and determining the parameter probability in accordance with the context of the electronic device (e.g., determine a location of the electronic device and determine the parameter probability with respect to the determined location)). In some examples, the electronic device maintains a list of the most recent N number (e.g., 100) of tasks for each task type. The electronic device may, for instance, track which parameters were previously used to perform each of the immediately previous N tasks. In some examples, the electronic device tracks only particular types of tasks (e.g., does not track easily accessible functions so as to ensure that suggestions ultimately provided by the electronic device are relatively highly discriminative and/or accelerating). In some examples, the electronic device identifies a subset of the plurality of tasks evaluated at the first stage (1210), and determines probabilities only for tasks of the subset of tasks. In some examples, the subset identified by the electronic device includes tasks associated with the highest probabilities as determined at the first stage. In some examples, the electronic device computes conditional probabilities using only currently relevant context data (i.e., for context signals currently satisfied by context of the electronic device (e.g., current location of the device and no other locations). In this manner, the computational demands required to implement the second stage of the model are reduced—only highly scoring tasks from the first stage are considered, and only for contextual signals that currently apply. Accordingly, usage of the device may be more efficient, thereby reducing the amount of time and power required to provide task suggestions. In some examples, the electronic device determines probabilities in this manner periodically. In some examples, the electronic device determines probabilities in this manner in response to particular events (e.g., deletion of an application on the electronic device).
  • Determining probabilities (e.g., task probabilities, parameter probabilities) based on context of the electronic device ensures that task suggestions provided by the electronic device, as described herein, are provided based on previous usage of the electronic device by a user. This in turn ensures that the user is provided with salient task suggestions that correspond to typical usage of the electronic device and, as a result, provided with suggestions that have a relatively high likelihood of accelerating user behavior. Thus, providing suggestions in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • At block 1320, the electronic device determines, based on the task probability and the parameter probability, whether the task satisfies suggestion criteria. In some examples, at the third stage (1230) of the model, the electronic device determines whether any of the identified tasks, given the context data and current context of the electronic device, satisfy a probabilistic threshold such that the electronic device should provide one or more of the tasks as a suggestion. In some examples, if more than one task satisfies the threshold, the electronic device selects only the highest scoring task. In some examples, tasks are scored using each of the probabilities of the first and second stages. In some examples, determining probabilities in this manner includes multiplying the probabilities. By way of example, the electronic device may multiply the probability for a task (i.e., as determined using the first stage of the model) with each of the probabilities for the task given respective parameters or combinations of parameters (i.e., as determined using the second stage of the model. In some examples, additional scoring adjustments are implemented to adjust probabilities. Such adjustments are based on a number of parameters (e.g., a higher number of parameters results in a higher score), parameter types (e.g., more discriminative parameters, such as a string, as opposed to a Boolean, result in a higher score), and parameter entropy over the course of event history as indicated by the context data (e.g., higher entropy (i.e., higher variation) results in a higher score). In some examples, different thresholds are used for display on different interfaces of the electronic device. If a first threshold is satisfied, the electronic device may display a suggestion on a search user interface (866), and if a second threshold is satisfied, the electronic device may additionally or alternatively display the suggestion on a locked screen interface (810).
  • At block 1325, in accordance with a determination that the task satisfies the suggestion criteria, the electronic device displays, on a display of the electronic device, a suggestion affordance corresponding to the task and the parameter. In some examples, if the probabilistic threshold is satisfied, the electronic device displays one or more suggestion affordances on the display. In some examples, suggestion affordances can be displayed in a number of interfaces—lock screen UI (810), search screen UI (866), and/or digital assistant UI (1604). In some examples, displaying the suggestion affordance corresponding to the task and the parameter includes, in accordance with a determination that the task satisfies a first set of suggestion criteria (e.g., first probabilistic threshold), displaying the suggestion affordance on a first user interface ((810), and in accordance with a determination that the task satisfies a second set of suggestion criteria (e.g., second probabilistic threshold), displaying the suggestion affordance on a second user interface different from the first user interface (866, 1604).
  • At block 1330, in accordance with a determination that the task does not satisfy the suggestion criteria, the electronic device forgoes displaying the suggestion affordance.
  • In some examples, the task probability is a first task probability, the task is a first task, the parameter probability is a first parameter, and the parameter is a first parameter. In some examples, the electronic device determines, based on the context data, a second task probability for a second task, determines, based on the context data, a parameter probability for a second parameter, the second parameter associated with the second task, and determines, based on the second task probability and the second parameter probability, whether the second task satisfies the suggestion criteria.
  • In some examples, the selection affordance is a first selection affordance and determining whether the task satisfies suggestion criteria includes determining whether heuristic criteria have been satisfied. In some examples, in accordance with a determination that the heuristic criteria has been satisfied, the electronic device displays a second selection affordance corresponding to another task. In some examples, suggestions may be overridden according to one or more heuristics. In some examples, each heuristic is a rule (e.g., scripted and/or hard-coded rule) indicating a set of conditions that, when satisfied, cause the electronic device to specifies a suggestion corresponding to the conditions. In some examples, each heuristic suggestion is considered to have a maximum probability (e.g., 100%) such that the heuristic is automatically considered as the best result, regardless of any other suggestions evaluated by the electronic device. In some examples, probabilities of heuristics decay if a user is presented with a suggestion for the heuristic and the user declines to perform a task associated with the suggestion. In some examples, heuristics are configured such that no two set of conditions can be simultaneously satisfied. In some examples, heuristics are suggestions of tasks that have not been performed by the electronic device and/or rely on context of the electronic device (e.g., text meeting organizer that user will be late based on traffic conditions).
  • In some examples, after displaying the suggestion affordance, the electronic device detects a first user input corresponding to a selection of the suggestion affordance, and in response to detecting the first user input, selectively performs the task. In some examples, the suggestion affordance (806) is selected using a touch input (816), a gesture, or a combination thereof. In some examples, the suggestion affordance is selected using a voice input. In some examples, in response to selection of the suggestion affordance, the electronic device automatically performs the task, the electronic device launches an application associated with the task, and/or a the electronic device displays user interface by which the user can confirm performance of the task. In some examples, selectively performing the task includes, in accordance with a determination that the task is a task of a first type, performing the task, and in accordance with a determination that the task is a task of a second type, displaying a confirmation interface (820) including a confirmation affordance (824).
  • The operations described above with reference to FIG. 13 are optionally implemented by components depicted in FIGS. 1-4, 6A-6B, and 7A-7C. For example, the operations of method 1900 may be implemented by any device (or component thereof) described herein, including but not limited to, devices 104, 200, 400, 600 and 1200. It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1-4, 6A-6B, and 7A-7C.
  • FIG. 14 illustrates a sequence 1400 for performing a task, according to various examples. FIG. 14 is also used to illustrate one or more of the processes described below, including the method 1500 of FIG. 15 . In some examples, one or more operations of the sequence 1400 are, optionally, combined, the order of operations is, optionally, changed, and/or some operations are, optionally, omitted. In some examples, additional operations may be performed in combination with the sequence 1400. Further, the use of “sequence” is not intended to require a particular order of interactions unless otherwise indicated.
  • As described herein, operations of the sequence 1400 can be performed using electronic device 1404 and server 1406. The electronic device 1404 may be any of devices 104, 200, 400, and 600 (FIGS. 1, 2A, 4, and 6A-6B), and the server 1406 may be DA server 106 (FIG. 1 ). It will be appreciated that in some examples, operations of the sequence 1400 may be performed using one or more alternative or additional devices. By way of example, one or more operations of the sequence 1400 described as being performed by the electronic device 1404 may be performed using multiple electronic devices.
  • Generally, operations of the process 1400 may be implemented to perform a task, for instance, in response to a natural-language speech input. As described in further detail below, a natural-language speech input may be provided to an electronic device, and in particular to a digital assistant of an electronic device. In response, a determination is made as to whether the natural-language speech input includes a predetermined phrase (e.g., voice shortcut). The determination may be made by the electronic device and/or another device. If the natural-language speech input is determined to include a predetermined phrase, the electronic device performs a task associated with the predetermined phrase. If not, the natural-language speech input is processed using natural-language processing to determine a task associated with the natural-language speech input, and the electronic device performs the task determined using natural-language processing.
  • At operation 1410, the electronic device 1404 receives (e.g., via a microphone) a natural-language speech input. In some examples, the electronic device 1404 receives a natural-language speech input indicative of a request directed to the digital assistant of the electronic device 1404. The natural-language speech input may, for instance, include a voice trigger that may, for instance, activate the digital assistant. In some examples, the natural-language speech input can include any request that can be directed to the digital assistant. By way of example, the natural-language input “Get me directions to Starbucks,” may request that the digital assistant of the electronic device 1404 provide driving directions from a location of the electronic device to a nearest Starbucks location.
  • In some examples, the natural-language speech input is received from another device, such as a device communicatively coupled to the electronic device (e.g., smart watch). In some examples, the natural-language speech input is provided over an ad-hoc connection between the electronic device and the other device. In other examples, the natural-language speech input is provided over a multi-hop network, such as the Internet.
  • In some examples, the natural-language speech input includes a predetermined phrase (e.g., voice shortcut), such as those described with reference to FIGS. 10A-LOAF. As described, a predetermined phrase may be associated with one or more tasks that, when provided to a digital assistant of the electronic device, cause the electronic device to perform one or more tasks associated with the phrase.
  • At operation 1415, the electronic device 1404 provides the natural-language speech input to the server 1406. In some examples, providing the natural-language speech input to the server 1406 includes providing a representation (e.g., text representation, spatial representation, audio representation) of the natural-language speech input to the server 1406. A text representation, for instance, may be provided using a speech-to-text processing module, such as the STT processing module 730 in some examples.
  • At operation 1420, the server 1406 receives the natural-language speech input from the electronic device 1404 and determines whether the natural-language speech input satisfies voice shortcut criteria. In some examples, determining whether the natural-language speech input satisfies voice shortcut criteria includes determining whether the natural-language speech input, or a text representation of the natural-language speech input, matches any of one or more predetermined phrases (e.g., voice shortcuts) associated with a user of the electronic device. In some examples, determining whether the natural-language speech input matches predetermined phrases includes determining whether the natural-language speech input exactly matches one or more predetermined phrases. In other examples, determining whether the natural-language speech input matches predetermined phrases includes determining whether a similarity between the natural-language speech input and each predetermined phrase exceeds a similarity threshold.
  • If the server 1406 determines that the natural-language speech input satisfies voice shortcut criteria (e.g., the server 1406 determines the natural-language speech input matches a predetermined phrase), the server 1406 identifies a task associated with the matching predetermined phrase. In some examples, identifying a task in this manner includes determining values for one or more parameters of the task. By way of example, for a phrase “Coffee Time” corresponding to a task for ordering a coffee, the server 1406 may determine a size of the coffee, a type of the coffee, and/or a manner of payment for the transaction. Parameter values may be specified by the user (e.g., upon associating the phrase with the task), determined based on context of the electronic device (e.g., a location of the electronic device) and/or assigned default parameter values.
  • If the server 1406 determines that the natural-language speech input does not satisfy voice shortcut criteria, the server 1406, optionally, processes the natural-language speech input (or a textual representation thereof) using a natural language processing module, such as the natural language processing module 732. In some examples, the electronic device 1404 provides an audio representation of the natural-language speech input, and processing the natural-language speech input using natural-language speech processing to determine a task includes providing one or more candidate text representations (e.g., text strings) of the natural-language speech input, for instance, using the STT processing module 730. Each of the candidate text representations may be associated with a speech recognition confidence score, and the candidate text representations may be ranked accordingly. In other examples, the electronic device 1404 provides a text representation of the natural-language speech input, and the text representation is provided as a candidate text representation, where n=1. Text representations provided as candidate text representations in this manner may be assigned a maximum speech recognition confidence score, or any other speech recognition confidence score.
  • Determining the task may further includes providing one or more candidate intents based on the n-best (e.g., highest ranked) candidate text representations, for instance, using the natural language processing module 732. Each of the candidate intents may be associated with an intent confidence score, and the candidate intents may be ranked accordingly. In some examples, multiple candidate intents are identified for each candidate text representation. Further, in some examples, a structured query (partial or complete) is generated for each candidate intent. Thereafter, candidate tasks are determined based on the m-best (e.g., highest ranked) candidate intents, for instance, using the task flow processing module 736. In some examples, the candidate tasks are identified based on the structured query for each of the m-best (e.g., highest ranked) candidate intents. By way of example, as described, the structured queries may be implemented according to one or more task flows, such as task flows 754, to determine tasks associated with the candidate intents. A joint score may be assigned to each candidate task, for instance, based on confidence scores and/or context of the electronic device, and the task with the highest score may be selected as the task.
  • At operation 1425, the electronic device 1404 receives a task from the server 1406. As described, the task may have been a task associated with one or more predetermined phrases of the user, or may have been identified using natural-language processing. In some examples, the electronic device further receives one or more parameter values to be used in performing the received task.
  • At operation 1430, the electronic device performs the task, and optionally, at operation 1435 provides an output (e.g., natural-language output) indicating whether the task was performed successfully. The output may be provided by the digital assistant of the electronic device in some examples.
  • In some examples, performing the task includes causing another device to perform the task. The electronic device may, for instance, determine that the task is better suited for performance on another device and/or determine that the task must be performed on another device (e.g., the electronic device does not have a display and cannot perform a task requiring display of an interface). Accordingly, the electronic device may provide the task to another device and/or cause the other device to perform the task.
  • In some examples, performing the task includes causing a third-party application to perform a task. By way of example, the voice shortcut “Close garage” may cause a third-party home automation application to close a garage door. In some examples, the third-party application provides a response indicating whether performance of the task was successful.
  • In some examples, the output provided by the digital assistant of the third-party device is based on a response provided by an application. By way of example, a response provided by an application may include a natural-language expression, such as “The garage door was successfully closed.” The electronic device, and in particular the digital assistant of the electronic device, may receive the response and provide a natural-language output based on the natural-language expression of the response. The natural-language output may be an audio output in some examples. For instance, the electronic device may provide a natural-language output reciting “Home Automation says ‘The garage door was successfully closed.’” Responses provided by applications in this manner may indicate whether tasks were successfully performed and/or provide other information to a user (e.g., current bus times in response to a request for a bus schedule).
  • In some examples, performing the task provided by the server 1406 includes performing multiple tasks. By way of example, performing a task may include causing a first application to perform a first task and causing a second application to perform a second task different from the first task.
  • While description is made herein with respect to the natural-language speech input being provided to the server 1406 (operation 1415), in some examples, the electronic device determines whether the natural-language speech input satisfies voice shortcut criteria in lieu of, or in parallel to, the server 1406.
  • FIG. 15 illustrates method 1500 for performing a task, according to various examples. Method 1500 is performed, for example, using one or more electronic devices implementing a digital assistant. In some examples, method 1500 is performed using a client-server system (e.g., system 100), and the blocks of method 1500 are divided up in any manner between the server (e.g., DA server 106) and a client device. In other examples, the blocks of method 1500 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of method 1500 are described herein as being performed by particular devices of a client-server system, it will be appreciated that method 1500 is not so limited. In other examples, method 1500 is performed using only a client device (e.g., user device 104) or only multiple client devices. In method 1500, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the method 1500.
  • As described below, performing tasks in response to natural-language speech inputs (e.g., voice shortcuts), as described herein, provides an intuitive and efficient approach for performing tasks on the electronic device. By way of example, one or more tasks may be performed in response to a natural-language speech input without any additional input from the user. Accordingly, performing tasks in response to natural-language speech inputs in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • In some examples, the electronic device includes one or more of a keyboard, mouse, microphone, display, and touch-sensitive surface. In some examples, the display is a touch-sensitive display. In other examples, the display is not a touch-sensitive display.
  • At block 1505, the electronic device receives a natural-language speech input (e.g., spoken utterance, 1606) (1410). In some examples, receiving a natural-language speech input includes receiving a representation of the natural-language speech input from a second electronic device (e.g., smart watch). In some examples, receiving a representation of the natural-language speech input from a second electronic device includes receiving the representation of the natural-language speech input over a multi-hop network. In some examples, the representation is received from a remote device, for instance, over a WiFi connection and/or the Internet. In some examples, the natural-language speech input includes a voice trigger (e.g., “Hey Siri”).
  • At block 1510, the electronic device determines whether the natural-language speech input satisfies voice shortcut criteria. In some examples, the electronic device determines whether the natural-language speech input matches one or more voice shortcuts associated with a user of the electronic device. In some examples, determining whether a match exists in this manner includes determining whether a match exists locally and/or remotely. For example, in some instances the electronic device determines whether a match exists. In another example, the electronic device provides the natural-language speech input, or a representation thereof, to a backend server (1406) (1415), and the backend server determines if a match exists (1420). In some examples, determining whether the natural-language speech input satisfies voice shortcut criteria includes providing a representation (e.g., textual representation, spatial representation, audio representation) of the natural-language speech input to another electronic device (e.g., backend server, such as a backend natural-language processing server) and receiving, from the another electronic device, at least one of a voice shortcut or a task (1425). In some examples, both the electronic device and the backend server determine if a match exists and the electronic device evaluates both results to determine if a match exists.
  • At block 1515, in accordance with a determination that the natural-language speech input satisfies the voice shortcut criteria (e.g., if the natural-language speech input matches a voice shortcut), the electronic device identifies a task associated with the voice shortcut and performs the task associated with the voice shortcut (e.g., either the electronic device or another device (e.g., backend server) determines a task associated with the voice shortcut) (1430). In some examples, performing the task associated with the voice shortcut includes causing a first application to perform a first task and causing a second application to perform a second task different than the first task. In some examples, if the electronic device determines that a match exists between the natural-language speech input and a voice shortcut, the electronic device identifies a task associated with the voice shortcut and performs the task. In some examples, a voice shortcut is associated with a plurality of tasks (e.g., a sequence of tasks) and the electronic device performs each of the plurality of tasks. In some examples, performing the task associated with the voice shortcut includes determining whether the task associated with the voice shortcut is a task of a first type; in accordance with a determination that the voice shortcut is a task of the first type, performing the task using the electronic device; and in accordance with a determination that the voice shortcut is a task of a second type different than the first type, causing the task to be performed using a third electronic device. In some examples, the electronic device determines whether the task is a task of a first type by determining whether the task may be performed by the electronic device or another device.
  • At block 1520, in accordance with a determination that the natural-language speech input does not satisfy the voice shortcut criteria (e.g., if the natural-language speech input does not match a voice shortcut), the electronic device identifies a task associated with the natural-language speech input and performs the task associated with the natural-language speech input (1430). In some examples, the electronic device performs natural-language processing to determine an intent and/or task. In some examples, a backend server performs natural-language processing and provides the task to the electronic device. In some examples, a task that is not a task of the first type is a task that is “better suited” for another device and/or cannot be performed by the electronic device. By way of example, a user may provide the voice shortcut “Play Game of Thrones” to the phone, and the phone, in turn, cause a TV to perform the task for the voice shortcut.
  • Performing natural-language processing on a natural-language speech input in the event that the speech input does not satisfy voice shortcut criteria ensures that commands provided to the electronic device by a user are handled even if the speech input does not correspond to a voice shortcut. In this manner, the electronic device may handle a broader range of commands and/or intents specified by a user. Accordingly, performing tasks in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • In some examples, the electronic device provides a natural-language output indicating whether the task was successful (1435) (1616, 1630, 1662, 1676). In some examples, performing the task includes causing a third-party application to perform the task and providing the natural-language output includes receiving a response from a third-party application and generating the natural-language output based on the response received from the third-party. In some examples, when a task is performed using a third-party application, the third-party application provides a response indicating whether the task was successful. In some examples, the response explicitly indicates that the task was successfully performed or failed. In some examples, the response includes requested information (e.g., the task was to retrieve a bus schedule in response to a request for the same) (1688) and the return of the requested information implicitly indicates that the task was successful. In some examples, the natural-language output is an audio speech output. In some examples, the electronic device, and in particular, the digital assistant of the electronic device, generates a natural-language input based on the response of the application and provides the generated natural-language output to the user.
  • The operations described above with reference to FIG. 15 are optionally implemented by components depicted in FIGS. 1-4, 6A-6B, and 7A-7C. For example, the operations of method 1900 may be implemented by any device (or component thereof) described herein, including but not limited to, devices 104, 200, 400, 600 and 1400. It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1-4, 6A-6B, and 7A-7C.
  • FIGS. 16A-16S illustrate exemplary user interfaces for performing a task on an electronic device (e.g., device 104, device 122, device 200, device 600, or device 700), in accordance with some embodiments. The user interfaces in these figures are used to illustrate the processes described below, including the processes in FIG. 17 .
  • FIG. 16A illustrates an electronic device 1600 (e.g., device 104, device 122, device 200, device 600, or device 700). In the non-limiting exemplary embodiment illustrated in FIGS. 16A-16S, electronic device 1600 is a smartphone. In other embodiments, electronic device 1600 can be a different type of electronic device, such as a wearable device (e.g., a smartwatch). In some examples, electronic device 1600 has a display 1601, one or more input devices (e.g., touchscreen of display 1601, a button, a microphone), and a wireless communication radio. In some examples, the electronic device 1600 includes a plurality of cameras. In some examples, the electronic device includes only one camera. In some examples, the electronic device includes one or more biometric sensors (e.g., biometric sensor 1603) which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • In FIG. 16A, the electronic device 1600 displays, on display 1601, a digital assistant interface (e.g., conversational interface), such as the digital assistant interface 1604. While displaying the digital assistant interface 1604, the electronic device 1600 receives (e.g., obtains, captures) a natural-language input 1606 (e.g., “Hey Siri, order my groceries.”). In some examples, the natural-language input 1606 is a natural-language speech input received, for instance, using an input device of the electronic device (e.g., microphone). As shown in FIG. 16A, in some examples in which the natural-language input 1606 is a natural-language speech input, the digital assistant interface optionally includes a preview 1608 (e.g., live preview) of the natural-language input 1606.
  • In some examples, in response to the natural-language input, the electronic device 1600 performs a task. By way of example, as described with reference to FIG. 14 , the electronic device 1600 may determine whether the natural-language input matches a predetermined phrase, and if so, perform a task corresponding to the phrase. If the task does not corresponding to the phrase, natural-language processing may be used to determine a task associated with the natural-language input, and the electronic device 1600 may perform the task.
  • In some examples, prior to performing the task, the electronic device requests confirmation of the task from a user. For instance, as illustrated in FIG. 16B, once the electronic device 1600 identifies a task corresponding to the natural-language input, the electronic device 1600 can display a confirmation interface, such as the confirmation interface 1610. The confirmation interface 1610 includes a confirmation affordance 1612, a cancel affordance 1614, and an application affordance 1616. The confirmation interface further may include content 1618 associated with the task. In some examples, selection of the cancel affordance 1614 causes the electronic device 1600 to cease display of the confirmation interface 1610 and/or forgo performing the identified task. In some examples, selection of the application affordance 1616 causes the electronic device 1600 to open an application associated with the task. As described, opening the application in this manner may cause the application to be preloaded with one or more parameters associated with the task. Content 1618 may include information directed to the task, such as one or more parameters to be used to perform the task. As illustrated in FIG. 16B, for instance, content 1618 may specify that the task is directed to ordering a set of grocery items included in the group “My Grocery List”, the number of items to be ordered, a delivery address, and a time window in which the delivery is to be made. Optionally, confirmation interface 1610 includes an icon (e.g., image, GIF) associated with the application of the task to help a user more readily identify the application performing the task.
  • In some examples, in response to selection of the confirmation affordance 1612, for instance by user input 1620, the electronic device 1600 performs the task. As illustrated in FIG. 16C, in some examples, while the electronic device is performing the task, the electronic device 1600, optionally, displays a progress indicator 1615, indicating that the task is being performed. In some examples, display of the progress indicator 1615 replaces display of the confirmation affordance 1612 and the cancel affordance 1614.
  • Once task has been performed, the electronic device 1600 provides an output indicating whether the task was performed successfully. In the example of FIG. 16D, the task is performed successfully, and as a result, the electronic device 1600 displays a success indicator 1617, indicating that the task was successfully performed. In some examples, display of the success indicator 1617 replaces display of the progress indicator 1615.
  • In the example of FIG. 16E, the task is not performed successfully, and as a result, the electronic device displays failure interface 1621. The failure interface 1621 includes a retry affordance 1622, a cancel affordance 1624, and application affordances 1626, 1628. The failure interface further includes content 1630. In some examples, selection of the retry affordance 1622 causes the electronic device 1600 to perform the task again. In some examples, selection of the cancel affordance causes the electronic device 1600 to cease display of the failure interface 1620. In some examples, selection of either the application affordance 1626 or application affordance 1628 causes the electronic device 1600 to open an application associated with the task. As described, opening the application in this manner may cause the application to be preloaded with one or more parameters associated with the task. Content 1630 may include information directed to the task, such as one or more parameters used to perform the task. In some examples, content 1630 is the same content as content 1618. In some examples, content 1630 is different than content 1618. Content 1630 may, for example, indicate that the electronic device failed to perform the task successfully (e.g., “There was a problem. Please try again.”).
  • In some examples, performing a task may include causing an application to perform the task, and optionally, receive a response from the application indicating whether the task was performed successfully. In some examples, as illustrated in FIGS. 16F-16L below, the response provided by an application includes a natural-language expression that may in turn be used by the electronic device 1600 to indicate whether a task was successfully performed and/or provide additional information, from the application, to a user.
  • With reference to FIG. 16F, the electronic device 1600 displays, on display 1601, a digital assistant interface (e.g., conversational interface), such as the digital assistant interface 1654. While displaying the digital assistant interface 1654, the electronic device 1600 receives (e.g., obtains, captures) a natural-language input 1656 (e.g., “Hey Siri, coffee me.”). In some examples, the natural-language input is a natural-language speech input received, for instance, using an input device of the electronic device (e.g., microphone). As shown in FIG. 16F, in some examples in which the natural-language input is a natural-language speech input, the digital assistant interface optionally includes a preview 1658 (e.g., live preview) of the natural-language input.
  • In response to the natural-language input 1656, the electronic device 1600 performs a task, as described (recall that the electronic device may confirm performance of the task with a user in some examples). For instance, if the natural-language input corresponds to (e.g., includes) a predetermined phrase, the electronic device 1600 can perform a task associated with the phrase, or if the natural-language input does not correspond to a predetermined phrase, the electronic device 1600 can perform a task associated with the natural-language input as determined by natural-language processing.
  • In some examples, once the task has been performed, the electronic device 1600 receives a response from an application used to perform the task and, based on the response, provides an output indicating whether the task was performed successfully. In the example of FIG. 16G, the task is performed successfully. Accordingly, the electronic device 1600 displays success interface 1660. Success interface 1660 includes output 1662, which in turn includes digital assistant response 1664 and application response 1666, and application affordance 1670. In some examples, application response 1666 is at least a portion of a response provided by the application following performance of the task. In some examples, application response 1666 includes content and/or one or more natural-language expressions. As illustrated in FIG. 16G, for instance, application response 1666 includes natural-language expression 1668 (e.g., “Your latte will be ready in 20 min.”) indicating that the task was performed successfully and/or providing information related to the task. Content of application response, such as content 1670, may include any type of content, such as images, videos, and/or interactive content (e.g., an interactive map). In this manner, an application may specify additional information related to the task. In some examples, digital assistant response 1664 indicates whether a task was performed successfully (e.g., “OK ordered.”). In some examples, the digital assistant response 1664 may, for instance, be used to clarify for a user that the application response 1666 includes information provided by the application (e.g., “The Coffee App says”). In some examples, selection of the content 1670 causes the electronic device 1600 to open the application associated with the task. As described, opening the application in this manner may cause the application to be preloaded with one or more parameters associated with the task.
  • In the example of FIG. 16H, the task is not performed successfully (e.g., the electronic device 1600 failed to perform the task). Accordingly, the electronic device displays failure interface 1674. Failure interface 1674 includes output 1676, which in turn includes digital assistant response 1678 and application response 1680, and application affordance 1682. In some examples, application response 1680 is at least a portion of a response provided by the application following performance of the task. In some examples, application response 1680 includes content and/or one or more natural-language expressions. As illustrated in FIG. 16H, for instance, application response 1680 includes natural-language expression 1682 (e.g., “Your card balance is insufficient. Open the app to continue.”) indicating that the task was not performed successfully and/or further providing additional information related to the task. In some examples, digital assistant response 1664 indicates whether a task was performed successfully (e.g., “Something went wrong.”). In some examples, the digital assistant response 1664 may, for instance, be used to clarify for a user that the application response 1666 includes information provided by the application (e.g., “The Coffee App says”). In some examples, selection of application affordance 1682 causes the electronic device 1600 to open the application associated with the task. As described, opening the application in this manner may cause the application to be preloaded with one or more parameters associated with the task.
  • In some examples, providing responses received from applications in this manner allows a digital assistant to provide communication between an application and a user without requiring the user to open the application. For instance, in some examples, a user may request information from an electronic device that the user may otherwise have to open an application to retrieve.
  • With reference to FIG. 16I for example, a user may provide a natural-language input to the electronic device 1600 requesting information pertaining to a bus schedule. In turn, the electronic device 1600 may cause an application corresponding to the task to retrieve the information and return the information in a response, as illustrated in FIG. 16J. As described, the output provided by the electronic device 1600 (e.g., output 1688) may include a digital assistant response and an application response, such as the digital assistant response 1690 and application response 1692.
  • In some examples, a user may exit from a digital assistant interface prior to a time at which the electronic device 1600 provides an output corresponding to a task. Accordingly, in some examples, outputs provided by the electronic device 1600 may be displayed on a lock screen interface. With reference to FIGS. 16K-16L, the electronic device 1600 may display outputs corresponding to tasks on a lock screen interface when the electronic device 1600 is either in a locked state (FIG. 16K) or an unlocked state (FIG. 16L), respectively. As described, the electronic device 1600 may forgo displaying content when the electronic device 1600 is in the locked state.
  • In some examples, the manner in which an electronic device displays interfaces, as described herein, depends on a type of the electronic device. In some examples, for instance, electronic device 1600 may be implemented as a device with a relatively small display such that interfaces, such as digital assistant interface 1604 or digital assistant interface 1654, may not be practical for display. Accordingly, in some examples, electronic device 1600 may display alternative interfaces to those previously described.
  • With reference to FIG. 16M, for instance, the electronic device 1600 displays, on display 1601, a digital assistant interface (e.g., conversational interface), such as the digital assistant interface 1604A. While displaying the digital assistant interface 1604A, the electronic device 1600 receives (e.g., obtains, captures) a natural-language input 1606A (e.g., “Hey Siri, coffee me.”). In some examples, the natural-language input 1606A is a natural-language speech input received, for instance, using an input device of the electronic device (e.g., microphone). As shown in FIG. 16M, in some examples in which the natural-language input 1608A is a natural-language speech input, the digital assistant interface optionally includes a preview 1608A (e.g., live preview) of the natural-language input 1606A.
  • In FIG. 16N, in response to the natural-language input 1606A, the electronic device 1600 displays a confirmation interface 1610A requesting confirmation of a task associated with the natural-language input 1606A. The confirmation interface 1610A includes a confirmation affordance 1612A and a cancel affordance 1614A. The confirmation interface further may include content 1618A associated with the task. In some examples, selection of the cancel affordance 1614A causes the electronic device 1600 to cease display of the confirmation interface 1610A and/or forgo performing the identified task (recall that in some examples performing a task may include causing another device to perform the task). Content 1618A may include information directed to the task, such as one or more parameters to be used to perform the task. As illustrated in FIG. 16B, for instance, content 1618A may specify that the task is directed to ordering a large latte coffee from a place of business located on Homestead Rd.
  • In some examples, in response to selection of the confirmation affordance 1612A, for instance by user input 1620A, the electronic device 1600 performs the task. As illustrated in FIG. 16O, in some examples, while the electronic device 1600 is performing the task, the electronic device 1600 displays a progress indicator 1614A, indicating that the task is being performed. In some examples, display of the progress indicator 1615A replaces display of the confirmation affordance 1612A and the cancel affordance 1614A.
  • Once task has been performed, the electronic device 1600 provides an output indicating whether the task was performed successfully. In the example of FIG. 16P, the task is performed successfully, and as a result, the electronic device 1600 displays a success indicator 1616A, indicating that the task was successfully performed. In some examples, display of the success indicator 1616A replaces display of the progress indicator 1615A.
  • In the example of FIG. 16Q, the task is not performed successfully, and as a result, the electronic device displays failure interface 1620A. The failure interface 1620A includes a retry affordance 1622 and a cancel affordance 1624A. The failure interface further includes content 1630A. In some examples, selection of the retry affordance 1622A causes the electronic device 1600 to perform the task again. In some examples, selection of the cancel affordance 1624A causes the electronic device 1600 to cease display of the failure interface 1620A. Content 1630A may include information directed to the task, such as one or more parameters used to perform the task. In some examples, content 1630A is the same content as content 1618A. In some examples, content 1630A is different than content 1618A. Content 1630A may, for example, indicate that the electronic device failed to perform the task successfully (e.g., “There was an error. Please try again.”).
  • In the example depicted in FIG. 16R, the electronic device 1600 receives a natural-language input (e.g., “Hey Siri, coffee me.”), successfully performs a task corresponding to the natural-language input, and, in response, displays success interface 1660A. Success interface 1660A includes output 1662A, which in turn includes digital assistant response 1664A and application response 1666A. In some examples, application response 1666A is at least a portion of a response provided by the application following performance of the task. In some examples, application response 1666A includes content and/or one or more natural-language expressions. As illustrated in FIG. 16R, for instance, application response 1666A includes natural-language expression 1668A (e.g., “Large latte ready in 20 min.”) indicating that the task was performed successfully and/or providing additional information related to the task. Content of the application response, such as content 1670A, may include any type of content, such as images, videos, and/or interactive content (e.g., an interactive map). In this manner, an application may further specify additional information related to a task. In some examples, digital assistant response 1664A indicates whether a task was performed successfully (e.g., “OK ordered.”). In some examples, the digital assistant response 1664A may, for instance, be used to clarify for a user that the application response 1666A includes information provided by the application (e.g., “The Coffee App says”).
  • In the example of FIG. 16S, a task is not performed successfully (e.g., the electronic device 1600 failed to perform the task). Accordingly, the electronic device displays failure interface 1674A. Failure interface 1674A includes output 1676A, which in turn includes digital assistant response 1678A and application response 1680A. In some examples, application response 1680A is at least a portion of a response provided by the application following performance of the task. In some examples, application response 1680A includes content and/or one or more natural-language expressions. As illustrated in FIG. 16S, for instance, application response 1680A includes natural-language expression 1682A (e.g., “Continue on your phone.”) indicating that the task was not performed successfully and/or further providing additional information related to the task (e.g., that the current device is not capable of opening the application that performed the task). In some examples, digital assistant response 1664A indicates whether a task was performed successfully (e.g., “Hmm, something went wrong.”). In some examples, the digital assistant response 1664A may, for instance, be used to clarify that the application response 1666A includes information provided by the application (e.g., “The Coffee App says”).
  • FIG. 17 illustrates method 1700 for performing a task using a digital assistant, according to various examples. Method 1700 is performed, for example, using one or more electronic devices implementing the digital assistant. In some examples, method 1700 is performed using a client-server system (e.g., system 100), and the blocks of method 1700 are divided up in any manner between the server (e.g., DA server 106) and a client device. In other examples, the blocks of method 1700 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of method 1700 are described herein as being performed by particular devices of a client-server system, it will be appreciated that method 1700 is not so limited. In other examples, method 1700 is performed using only a client device (e.g., user device 104) or only multiple client devices. In method 1700, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the method 1700.
  • Performing tasks and providing responses from applications as described herein, allows the digital assistant perform tasks and provide task feedback to a user without a need for an application to be opened. Accordingly, a user can interact with an application without opening or otherwise directly accessing the application. As a result, the number of inputs and amount of time needed for the user to operate the electronic device are reduced (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • In some examples, the electronic device includes one or more of a keyboard, mouse, microphone, display, and touch-sensitive surface. In some examples, the display is a touch-sensitive display. In other examples, the display is not a touch-sensitive display.
  • At block 1705, the electronic device receives, with a digital assistant, a natural-language speech input (e.g., spoken utterance) (1606).
  • At block 1710, the electronic device determines a voice shortcut associated with the natural-language speech input.
  • At block 1715, the electronic device determines a task corresponding to the voice shortcut. In some examples, the task is a request for information from a third-party service. In some examples, the electronic device determines that the natural-language speech input is associated with a voice shortcut and determines a task associated with the voice shortcut.
  • At block 1720, the electronic device causes an application (e.g., first-party application, third-party application) to initiate performance of the task. In some examples, causing an application (e.g., first-party application, third-party application) to initiate performance of the task includes displaying a task performance animation. In some examples, the task performance animation includes rotating a circle object (1615) to indicate performance of the task is occurring. In some examples, causing an application (e.g., first-party application, third-party application) to initiate performance of the task includes prompting the user to confirm performance of the task. In some examples, once a task has been determined, the electronic device displays a confirmation interface (1610, 1610A) requesting that the user confirm performance of the task. In some examples, the confirmation interface includes an affordance (1612, 1612A) by which the user can confirm and, optionally, further includes a cancel affordance (1614, 1614A) by which the user can cause the electronic device to cease display of the confirmation interface and forgo performing the task.
  • At block 1725, the electronic device receives a response from the application, wherein the response is associated with the task. In some examples, when a task is performed using an application, such as a third-party application, the application provides a response (1666, 1680, 1692) indicating whether the task was successful. In some examples, the response explicitly indicates that the task was successfully performed or failed. In some examples, the response includes requested information (e.g., the task was to retrieve a bus schedule in response to a request for the same) and the return of the requested information implicitly indicates that the task was successful.
  • In some examples, after receiving the response, the electronic device displays an application user interface (1660) associated with the application. In some examples, after causing an application to perform a task, the electronic device displays information associated with the application, and optionally, the task. By way of example, for a task of retrieving directions to a particular location, the electronic device displays a map that, when selected, causes execution of the relevant map application. In some examples, one or more aspects of the user interface is specified by the application. In some examples, the user interface is a string, graphic, animation, or a combination thereof. In some examples, an application, such as a third-party application, provides content for display in the application user interface (e.g., a graphic reciting “Thank you” in response to a successful transaction). In some examples, the application user interface includes the output indicating whether the task was successfully performed. In some examples, the application user interface is displayed concurrently with the output.
  • At block 1730, the electronic device determines, based on the response, whether the task was successfully performed.
  • At block 1735, the electronic device provides an output indicating whether the task was successfully performed. In some examples, providing an output indicating whether the task was successfully performed includes, in accordance with a determination that the task was performed successfully, displaying an indication that the task was performed successfully and, in accordance with a determination that the task was not performed successfully, displaying an indication that the task was not performed successfully. In some examples, the electronic device displays a symbol (e.g., checkmark for success, “X” for failure) indicating whether the task was successfully performed. In some examples, the electronic device displays a checkmark (1616) to indicate that the task was performed successfully. In some examples, the electronic device displays an “X” indicating that the task failed. In some examples, the electronic device displays a message indicating that the task failed (e.g., “There was a problem. Please try again.”). In some examples, the electronic device generates a natural-language output based on the response and provides (e.g., outputs, displays), with the digital assistant, the natural-language output. In some examples, further in accordance with a determination that the task was not performed successfully, the electronic device displays a failure user interface (1620).
  • In some examples, providing an output includes generating a natural-language output (1662, 1676) based on the response and providing, with the digital assistant, the natural-language output. In some examples, providing (e.g., outputting, displaying) the natural-language output includes providing an audio speech output. In some examples, providing the natural-language output includes displaying the natural-language output. In some examples, the natural-language output includes a reference to the application. In some examples, the natural-language output includes a name or nickname of an application. In some examples, the response includes a natural-language expression and the natural-language output includes the third-party natural language expression (e.g., 1666, “Okay, ordered. Starbucks says ‘Your order will be ready in 5 minutes). In some examples, the response includes a natural-language expression (1668, 1682) and the natural-language output includes at least a portion of the natural-language expression. In some examples, the natural-language output indicates that the task was not performed successfully by the application (e.g., “Something went wrong. Starbucks says ‘You have insufficient funds.’”). In some examples, the natural-language output indicates that the task was performed successfully by the application.
  • Providing outputs, as described herein, allows the digital assistant to provide feedback and/or other information from an application, for instance during the course of a dialog (e.g., conversational dialog) between a user and the digital assistant, in an intuitive and flexible manner. By way of example, the digital assistant may provide (e.g., relay) natural-language expressions from an application to the user such that the user can interact with the application without opening or otherwise directly accessing the application. Accordingly, providing natural-language outputs in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • In some examples, the failure user interface includes a retry affordance (1622). In some examples, the electronic device detects a user input corresponding to a selection of the retry affordance and, in response to detecting the user input corresponding to a selection of the retry affordance, causes the application to initiate performance of the task.
  • In some examples, the failure user interface includes a cancel affordance (1624). In some examples, the electronic device detects a user input corresponding to a selection of the cancel affordance, and in response to the user input corresponding to a selection of the cancel affordance, ceases to display of the failure user interface.
  • In some examples, the failure user interface includes an application launch affordance (1626, 1628). In some examples, the electronic device detects a user input corresponding to a selection of the application launch affordance and, in response to the user input corresponding to a selection of the application launch affordance, launches (e.g., executes, opens) the application. In some examples, the user selects (1) the application launch affordance or (2) an icon associated with the application to launch the application.
  • In some examples, further in accordance with a determination that the task was performed successfully, the electronic device displays a task success animation. In some examples, the task success animation includes a shape (e.g., square, circle) being “checked off” (1616).
  • The operations described above with reference to FIG. 17 are optionally implemented by components depicted in FIGS. 1-4, 6A-6B, and 7A-7C. For example, the operations of method 1900 may be implemented by any device (or component thereof) described herein, including but not limited to, devices 104, 200, 400, 600 and 1600. It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1-4, 6A-6B, and 7A-7C.
  • As described with respect to FIG. 12 , an electronic device may provide suggestions based on context of the electronic device. In some instances, however, it may be desirable to provide task suggestions using other types of information as well (e.g., user-specific information). By way of example, information indicating a user's progress in a queue (e.g., TV show episode playlist) may be used in combination with context data to provide task suggestions, as described in further detail below.
  • In an example operation, the electronic device may receive information (e.g., user-specific information) from an application (e.g., media streaming application), such as a set of media items (e.g., content such as songs, videos, albums, playlists) identified by the application for the user. The information may be received, for instance, in response to an API call provided to the application. In some examples, the application is a third-party application (e.g., Netflix). In some examples, the application is a remote application, such as a remote media prediction service communicatively coupled to the electronic device over a network such as the Internet. The information may be received at any time prior to prediction of task suggestions.
  • In some examples, the set of media items includes media items recommended for the user by the application. Items may be recommended based on prior media items accessed by the user. As an example, an application may recommend a current or next song in a playlist accessed by a user. In another example, an application may recommend items related to previously accessed media items, such as media items sharing a same category as the previously accessed media items. Categories may include, for instance, genre (e.g., hip-hop), decade (e.g., 90's), activity (e.g., study, workout), mood (e.g., happy), holiday (e.g., Christmas).
  • In some examples, the set of media items is provided as a list of media items. In some examples, the set of media items is provided as a vector. In some examples, the set of media items is provided in combination with playback data describing one or more media items of the set of media items. The playback data can, optionally, specify one or more aspects for playback of the media items. As an example, the playback data can specify a particular time in one or more of the media items (e.g., a time at which a user ceased playback of a media item). As another example, the playback data can specify a language for playback and/or whether subtitles are to be displayed. As yet another example, the playback data can indicate a resolution and/or bitrate for playback of the media item.
  • While description is made herein with respect to the electronic device receiving a set of media items from an application, it will be appreciated that the electronic device can receive any number of sets of media items from any number of applications. Sets of media items received in the manner described (e.g., in response to an API call) may be received periodically and/or in response to an event. In some examples, the electronic device requests one or more sets of media items prior to selectively providing task suggestions.
  • In some examples, once the electronic device has received the set of media items, the electronic device determines whether to provide one or more task suggestions based the set of media items and/or context data of the electronic device, as described with reference to FIG. 12 .
  • As an example, in addition to receiving the set of media items, the electronic device receives context data associated with the electronic device, and based on the set of media items and context data, determines one or more tasks. At least one of the one or more tasks may, for instance, correspond to playback of a media item of the set of media items. In some examples, one or more parameters of tasks corresponding to playback of a media item may be based on the playback data. By way of example, the task may correspond to playback of the media item at a particular time.
  • Thereafter, the electronic device determines whether any of the one or more tasks satisfy suggestion criteria, as described. For each of the one or more tasks satisfying the suggestion criteria, the electronic device provides a task suggestion and displays, on a display of the electronic device, a suggestion affordance corresponding to the task suggestion, as described.
  • As another example, the electronic device determines a task and selectively modifies the task using the one or more media items. For instance, in addition to receiving the set of media items, the electronic device receives context data and determines a task based on the context data. If the task corresponds to playback of a media item, the task may be modified to include a media item of the set of media items and/or a parameter of a media item of the plurality of media items. In some examples, the task is modified before determining whether the task satisfies suggestion criteria. In some examples, the task is modified after determining whether the task satisfies suggestion criteria.
  • FIGS. 18A-18D illustrate exemplary user interfaces for providing media item suggestion affordances on an electronic device (e.g., device 104, device 122, device 200, device 600, or device 700), in accordance with some embodiments. The user interfaces in these figures are used to illustrate the processes described below, including the processes in FIG. 19 .
  • FIG. 18A illustrates an electronic device 1800 (e.g., device 104, device 122, device 200, device 600, or device 700). In the non-limiting exemplary embodiment illustrated in FIGS. 18A-18D, electronic device 1800 is a smartphone. In other embodiments, electronic device 1800 can be a different type of electronic device, such as a wearable device (e.g., a smartwatch). In some examples, electronic device 1800 has a display 1801, one or more input devices (e.g., touchscreen of display 1801, a button, a microphone), and a wireless communication radio. In some examples, the electronic device 1800 includes a plurality of cameras. In some examples, the electronic device includes only one camera. In some examples, the electronic device includes one or more biometric sensors (e.g., biometric sensor 1803) which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • In FIG. 18A, the electronic device 1800 displays, on display 1801, a locked screen interface, such as the locked screen interface 1804, while the electronic device is in an unlocked state. The locked screen interface 1804 includes a suggestion affordance 1806 and a notification 1808. In some examples, selection of the selection affordance 1806 causes the electronic device 1800 to selectively perform a task associated with the suggestion affordance, as described with respect to FIGS. 8A-8AF. Suggestion affordance 1806 corresponds to a task for playback of a media item (e.g., Episode 3 of Season 2 of Silicon Valley) in a media playback application (e.g., TV app). In some examples, selection of the notification 1808 causes the electronic device to open an application associated with the notification.
  • In some examples, in response to selection of the suggestion affordance 1806, for instance by user input 1814, the electronic device 1800 performs the task. As illustrated in FIG. 16B, the electronic device 1800 initiates playback of the media item associated with suggestion affordance 1806 (e.g., Episode 3 of Season 2 of Silicon Valley).
  • In some examples, suggestion affordances may be displayed on a search screen and/or searchable using a searching function of the electronic device. In FIG. 18C, for example, the electronic device 1800 displays a search interface 1820. While displaying the search interface 1820, in response to entry of a search string (e.g., “S”), the electronic device 1800 returns search results, including suggestion affordances 1822, 1828, 1832, contact results 1834, and mail results 1836. In some examples, suggestion affordances are presented above all other results. Accordingly, suggestion affordances 1822, 1828, and 1832 are presented above contact results 1834 and mail results 1836 in the search interface 1820.
  • In some examples, suggestion affordances corresponding to tasks for playback of media items are displayed in a manner different than other suggestion affordances. As illustrated in FIG. 18C, for instance, the suggestion affordance 1822 includes media icon 1824 and playback glyph 1826. In some examples, icon 1824 may be relatively large relative to icons of other suggestion affordances (e.g., icon 1830 of suggestion affordance 1828, icon 1834 of suggestion affordance 1832). Icon 1824 further may include an image associated with the media item, such as a video frame. Playback glyph 1826 may indicate that suggestion affordance 1822 corresponds to task corresponding to a media task category.
  • In some examples, in response to selection of the suggestion affordance 1822, for instance by user input 1836, the electronic device 1800 displays an expanded interface 1850 associated with suggestion affordance 1822. In some examples, user input 1836 is a touch input of a predetermined type (e.g., touch input satisfying a threshold intensity or duration). With reference to FIG. 18D, the expanded interface 1850 includes suggestion affordance 1838, which in some examples, corresponds to suggestion interface 1822. In some examples, suggestion affordance 1838 includes an icon 1840 that corresponds to icon 1824 and a playback glyph 1842 that corresponds to icon 1826. In some examples, icon 1840 includes an image associated with the media item, such as a video frame. In some examples icons 1822 and 1840 include a same image. In some examples, icon 1840 of suggestion affordance 1838 is larger than icon 1824. In some examples, display of the expanded view interface 1850 causes one or more portions of the display of the electronic device 1800 to be blurred, darkened, and/or otherwise obscured.
  • FIG. 19 illustrates method 1900 for providing media item suggestions, according to various examples. Method 1900 is performed, for example, using one or more electronic devices implementing a digital assistant. In some examples, method 1900 is performed using a client-server system (e.g., system 100), and the blocks of method 1900 are divided up in any manner between the server (e.g., DA server 106) and a client device. In other examples, the blocks of method 1900 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of method 1900 are described herein as being performed by particular devices of a client-server system, it will be appreciated that method 1900 is not so limited. In other examples, method 1900 is performed using only a client device (e.g., user device 104) or only multiple client devices. In method 1900, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the method 1900.
  • As described below, selectively providing suggestion affordances corresponding to tasks, as described herein, allows a user to efficiently and conveniently perform tasks relevant to the user on the electronic device. By way of example, suggestion affordances displayed by the electronic device can correspond to tasks identified based on media consumption and/or determined media preferences of the user. Thus, selectively providing suggestions in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • In some examples, the electronic device includes one or more of a keyboard, mouse, microphone, display, and touch-sensitive surface. In some examples, the display is a touch-sensitive display. In other examples, the display is not a touch-sensitive display.
  • At block 1905, the electronic device receives a plurality of media items from an application. In some examples, the electronic device requests the plurality of media items from the application (e.g., third-party application) using an API call. In some examples, in response to the API call, the application returns a list (e.g., vector) of upcoming media items recommended by the application for the user. In some examples, media items received in this manner can include albums, songs, TV shows, episodes (or playlists of any combination thereof. In some examples, receiving a plurality of media items from an application includes receiving a vector including the plurality of media items from the application. In some examples, each media item is a container that includes information about a respective media item or set of media items. In some examples, receiving a plurality of media items from an application includes, while displaying another application different from the application, receiving the plurality of media items. In some examples, prior to receiving a plurality of media items from an application, the electronic device requests the plurality of media items from the application. In some examples, media items are requested/received at the time suggestions are predicted. In some examples, media items are requested/received when application is opened and/or closed by user. In some examples, the plurality of media items are received from a remote application (e.g., remote media prediction service). In some examples, the plurality of media items is received prior to an event causing the electronic device to selectively provide a prediction.
  • At block 1910, the electronic device receives context data associated with the electronic device. In some examples, the electronic device receives context information of the electronic device. Context information received in this manner can include location of the electronic, time of day, day of week, etc.
  • At block 1915, the electronic device determines a task based on the plurality of media items and the context data. In some examples, the task is a task for playback of a media item of the plurality of media items. In some examples, the task specifies a particular playback time. In some examples, the task can specify that playback of a media item is initiated at a particular point in the media item (e.g., 1:02). In some examples, the electronic device generates a plurality of suggestions, as described. If one or more the suggested tasks correspond to a media item in the requested list, one or more tasks for playback of the respective media items are provided.
  • Determining tasks (e.g., task probabilities, parameter probabilities) based on context of the electronic device and the plurality of media items ensures that task suggestions provided by the electronic device, as described herein, are provided based not only on previous usage of the electronic device by a user, but also intuitive and relevant predictions as to future behavior in the media domain. This in turn ensures that the user is provided with salient task suggestions that have a relatively high likelihood of accelerating user behavior. Thus, providing suggestions in this manner decreases the number of inputs and amount of time needed for the user to operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • At block 1920, the electronic device determines whether the task satisfies suggestion criteria. In some examples, the electronic device determines whether any of the identified tasks, given the context data and current context of the electronic device, satisfy a probabilistic threshold such that the electronic device should provide one or more of the tasks as a suggestion.
  • At block 1925, in accordance with a determination that the task satisfies the suggestion criteria, the electronic device displays, on a display of the electronic device, a suggestion affordance (1806) corresponding to the task.
  • At block 1930, in accordance with a determination that the task does not satisfy the suggestion criteria, the electronic device forgoes displaying the suggestion affordance.
  • In some examples, the task is a first task and the suggestion affordance is a first suggestion affordance. In some examples, the electronic device determines a second task based on the context data, determines whether the second task satisfies suggestion criteria, in accordance with a determination that the second task satisfies the suggestion criteria, displays, on the display, a second suggestion affordance corresponding to the second task, and in accordance with a determination that the second task does not satisfy the suggestion criteria, forgoes displaying the second suggestion affordance.
  • In some examples, the application is a first application and the task is associated with the first application and the suggestion affordance is associated with a second application different than the first application. In some examples, when generating a suggestion of a task for a media item, the electronic device simulates a replica of the application for the suggestion affordance. In this manner, the electronic device may display playback controls and/or a playlist for the suggestion without overwriting currently playing items and/or queues of the application. In some examples, if the user selects the suggestion, the electronic device will initiate playback of the application using the suggested media item(s).
  • In some examples, a second electronic device determines, with the application (e.g., a remote media prediction service), one or more media items previously played on the electronic device, and generates the plurality of media items based on the determined one or more media items. In some examples, the electronic device determines one or more media items played back on any number of devices, for instance, associated with a same user. In this manner, media used to make suggestions is consistent across all devices of the user. In some examples, media items are received from a backend server communicatively coupled to the electronic device. In some examples, generating the plurality of media items includes identifying a category of at least one of the one or more media items previously played on the electronic device (e.g., genre, decade, activity, mood, holiday) and identifying a media item associated with the identified category.
  • The operations described above with reference to FIG. 19 are optionally implemented by components depicted in FIGS. 1-4, 6A-6B, and 7A-7C. For example, the operations of method 1900 may be implemented by any device (or component thereof) described herein, including but not limited to, devices 104, 200, 400, 600 and 1800. It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1-4, 6A-6B, and 7A-7C.
  • FIGS. 20A-20N illustrate exemplary user interfaces for providing voice shortcuts on an electronic device (e.g., device 104, device 122, device 200, device 600, or device 700), in accordance with some embodiments. The user interfaces in these figures are used to illustrate the processes described below, including the processes in FIGS. 11A-11B.
  • Generally, user interfaces described with reference to FIGS. 20A-20N may be employed such that a user can associate tasks with respective user-specific phrases. These phrases may in turn be used to cause the electronic device to perform the associated tasks.
  • FIG. 20A illustrates an electronic device 2000 (e.g., device 104, device 122, device 200, device 600, or device 700). In the non-limiting exemplary embodiment illustrated in FIGS. 20A-20N, electronic device 2000 is a smartphone. In other embodiments, electronic device 2000 can be a different type of electronic device, such as a wearable device (e.g., a smartwatch). In some examples, electronic device 2000 has a display 2001, one or more input devices (e.g., touchscreen of display 2001, a button, a microphone), and a wireless communication radio. In some examples, the electronic device 2000 includes a plurality of cameras. In some examples, the electronic device includes only one camera. In some examples, the electronic device includes one or more biometric sensors (e.g., biometric sensor 2003) which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • In FIG. 20A, the electronic device 2000 displays, on display 2001, a settings interface 2004. The settings interface 2004 includes a candidate task portion 2006 and additional tasks affordance 2014. The candidate task portion 2006 includes candidate task affordances 2008, 2010, and 2012. In some examples, if one or more candidate task affordances are associated with a respective task, settings interface 2004 includes a user shortcuts affordance 2005.
  • In some examples, while displaying the settings interface 2004, the electronic device 2000 detects selection of the additional tasks affordance 2014. As shown in FIG. 20A, the selection of the additional tasks affordance 2014 is a tap gesture 2016A. In some examples, in response to selection of the shortcut affordance 2014, the electronic device 2000 displays (e.g., replaces display of the settings interface 2004 with), on the display 2001, global task interface 2018, as shown in FIG. 20B.
  • Global task interface 2018 includes, for each of a plurality of applications, a respective set of candidate task affordances. By way of example, global task interface 2018 includes a set of candidate task affordances 2020 associated with an activity application, a set of candidate task affordances 2026 associated with a calendar application, and a set of candidate task affordances 2036 associated with a music application. The set of candidate task affordances 2020 can, optionally, include a “Start Workout” candidate task affordance 2022 and a “View Daily Progress” candidate task affordance 2024. The set of candidate task affordances 2026 can, optionally, include a “Send Lunch invitation” candidate task affordance 2028, a “Schedule Meeting” candidate task affordance 2030, and a “Clear Events for a Day” candidate task affordance 2032. The set of candidate task affordances 2036 can, optionally, include a “Play Workout Playlist” candidate task affordance 2038 and a “Start R&B Radio” candidate task affordance 2040.
  • In some examples, each set of candidate task affordances displayed by the electronic device 2000 may be a subset of all available candidate task affordances for a respective application. Accordingly, the user may select an application task list affordance, such as application-specific task list affordances 2034, 2042, to reveal one or more additional candidate task affordances for an application corresponding to the application task list affordance. For example, while displaying the global task interface 2018, the electronic device 2000 detects selection of application task list affordance 2042. As shown in FIG. 20C, the selection of application task list affordance 2042 is a tap gesture 2050.
  • In some examples, in response to selection of the application task list affordance 2042, the electronic device 2000 displays (e.g., replaces display of the global task interface 2018 with), on the display 2001, application task interface 2052 (for a respective application, e.g., music), as shown in FIG. 20D. As shown, application task interface 2052 includes a return affordance 2072, which when selected, causes the electronic device 2000 to display the global task interface 2018, a set of candidate task affordances 2046 associated with the application of the global task interface 2018, and a set of candidate task affordances 2048 associated with the application of the global task interface 2018.
  • In some examples, the set of candidate task affordances 2046 corresponds to candidate tasks suggested (e.g., generated), for instance, based on context of the electronic device. For example, the set of candidate task affordances 2046 can, optionally, include a “Play Workout Playlist” candidate task affordance 2054, a “Start R&B Radio” candidate task affordance 2056, and a “Play Road Trip Playlist” candidate task affordance 2058, each of which is suggested and/or ranked accordingly to context of the electronic device 2000.
  • In some examples, the set of candidate task affordances 2048 corresponds to candidate tasks for recently performed using the respective application. For example, the set of candidate task affordances 2048 can, optionally, include a “Play Sleep Sounds” candidate task affordance 2060, a “Start Jazz Radio” candidate task affordance 2061, a “Play Dinner Playlist” candidate task affordance 2063, a “Start Pop Radio” candidate task affordance 2065, and a “Play Dance Party Playlist” candidate task affordance 2067, each of which is suggested and/or ranked accordingly to tasks recently performed using the music application, and, optionally, one or more other applications.
  • In some examples, a voice shortcut generation process may be initiated using an application interface, such as a third party application interface. As illustrated in FIG. 20E, for instance, during use of an application, the application may display an application interface 2060 including a candidate task suggestion affordance 2062. In some examples, in response to selection of candidate task suggestion affordance 2062, the electronic device initiates a voice shortcut generation process, as shown below in FIGS. 20F-20K.
  • For example, in response to selection of the candidate task suggestion affordance 2062, the electronic device displays (e.g., replaces display of the application interface 2060 with), on the display 2001, a task-specific interface. The task-specific interface is associated with a task of the selected candidate task affordance in some examples. The task may be a task available to the user and/or recently performed by the user, for instance, using the application. By way of example, while displaying the application interface 2060, the electronic device 2000 detects selection of the candidate task affordance 2062. In some examples, the selection is a tap gesture 2064 on the candidate task affordance 2062. As shown in FIG. 20F, in response to detecting tap gesture 2064, the electronic device 2000 displays the task-specific interface 2066. The task-specific interface 2066 may be associated with a task of the candidate task affordance 2062 (e.g., Order large latte).
  • Task-specific interface 2066 includes task indicator 2068, application indicator 2070, candidate phrase 2072, and record affordance 2074. In some examples, task indicator 2068 indicates a name and/or type of the task. In some examples, task indicator 2068 includes a description of the task and/or indicates that a user may record a command or phrase to be linked with the task. In some examples, application indicator 2070 identifies an application corresponding to the task. The application indicator 2070 may, for instance, include a name of the application and/or an icon associated with the application. Candidate phrase 2072 includes a suggested phrase that the user may elect to associate with the task.
  • While displaying the task-specific interface 2066, the electronic device 2000 detects selection of the record affordance 2074. As shown in FIG. 20G, selection of the record affordance 2074 is a tap gesture 2076. In response to selection of the record affordance 2074, the electronic device displays (e.g., replaces display of the task-specific interface 2066 with), on the display 2001, a record interface 2078.
  • With reference to FIG. 20H, record interface 2078 includes cancel affordance 2080, preview 2082, and stop affordance 2084. In some examples, in response to selection of the cancel affordance 2080, the electronic device ceases display of the record interface 2078 and, optionally, terminates the voice shortcut generation process, thereafter returning operation to (e.g., displaying) the application.
  • In some examples, while displaying the record interface 2078, the electronic device 2000 receives, using an audio input device (e.g., microphone) of the electronic device 2000, a natural-language speech input from a user. In some examples, while receiving the natural-language speech input, the electronic device 2000 provides a live preview of the natural-language speech input, such as the live preview 2082. As shown in FIG. 20H, the live preview 2082 is, in some examples, a visual waveform indicative of one or more auditory characteristics of the natural-language speech input.
  • In some examples, while receiving the natural-language speech input, the electronic device 2000 performs speech-to-text translation (e.g., natural-language speech processing) on the natural-language speech input to provide a candidate phrase 2086. Because the speech-to-text translation is performed while the natural-language speech input is received, the candidate phrase 2086 may be iteratively and/or continuously updated while the natural-language speech input is received.
  • In some examples, the electronic device 2000 ensures that the candidate phrase is different than one or more predetermined phrases (e.g., “call 911”). By way of example, the electronic device 2000 determines whether a similarity between the candidate phrase and each of the one or more predetermined phrases exceeds a similarity threshold. If the similarity threshold is not met, the electronic device 2000 will notify the user that the provided candidate phrase is not sufficient and/or not permitted. The electronic device 2000 further may request that the user provide another natural-language speech input.
  • While displaying the record interface 2078, the electronic device 2000 detects selection of the stop affordance 2084. As shown in FIG. 20I, selection of the stop affordance 2084 is a tap gesture 2088. In response to selection of the stop affordance 2084, the electronic device 2000 displays (e.g., replaces display of the record interface 2078 with), on the display 2001, a completion interface 2090, as shown in FIG. 20J.
  • The completion interface 2090 includes a completion affordance 2092, cancel affordance 2094, task indicator 2096, application indicator 2098, candidate phrase 2002A, and re-record affordance 2004A. In some examples, in response to selection of the cancel affordance 2094, the electronic device 2000 ceases display of the completion interface 2090 and, optionally, terminates the voice shortcut generation process. In some examples, task indicator 2096 indicates a name and/or type of the task. In some examples, application indicator 2098 identifies the application corresponding to the task. The application indicator may, for instance, include a name of the application and/or an icon associated with the application. Candidate phrase 2002A is a suggested phrase that the user may elect to associate with the task.
  • In some examples, while displaying the completion interface 2090, the electronic device 2000 detects selection of the completion affordance 2092. As shown in FIG. 20J, selection of the completion affordance 2092 is a tap gesture 2004A. In response to selection of the completion affordance 2092, the electronic device 2000 associates the candidate phrase with the task of the candidate task affordance 2062. By associating the candidate phrase with the task in this manner, the user may provide (e.g., speak) the candidate phrase to a digital assistant of the electronic device to cause the device to perform the task associated with the candidate phrase. Candidate phrases associated with respective tasks may be referred to as voice shortcuts herein. In some examples, further in response to selection of the completion affordance 2092, the electronic device 2000 displays (e.g., replaces display of the completion interface 2090 with), on the display 2001, the application interface 2060, as shown in FIG. 20K. Because the candidate task affordance 2062 has been associated with a candidate phrase, the candidate task affordance 2062 includes a phrase indicator 2006A indicating the candidate phrase that has been associated with the task for the candidate task affordance 2062.
  • In some examples, a user may provide natural-language inputs using text inputs. The user may, for instance, enable one or more accessibility features that enables text entry in addition to, or in lieu of, speech inputs. In some examples, text inputs may be used to associate tasks with a particular phrase and/or, subsequently, to cause the electronic device to perform one or more tasks associated with the phrase.
  • By way of example, as described with respect to FIG. 20E, in response to selection of the candidate task suggestion affordance 2062, the electronic device displays (e.g., replaces display of the application interface 2060 with), on the display 2001, a task-specific interface. As shown in FIG. 20L, in response to detecting a tap gesture (e.g., tap gesture 2064), the electronic device 2000 displays the task-specific interface 2008A. The task-specific interface 2008A may be associated with a task of the candidate task affordance 2062 (e.g., Order large latte).
  • Task-specific interface 2008A includes task indicator 2010A, application indicator 2012A, candidate phrase 2014A, and text entry affordance 2016A. In some examples, task indicator 2010A indicates a name and/or type of the task. In some examples, task indicator 2010A includes a description of the task and/or indicates that a user may record a command or phrase to be linked with the task. In some examples, application indicator 2012A identifies an application corresponding to the task. The application indicator 2012A may, for instance, include a name of the application and/or an icon associated with the application. Candidate phrase 2014A includes a suggested phrase that the user may elect to associate with the task.
  • While displaying the task-specific interface 2008A, the electronic device 2000 detects selection of the text entry affordance 2016A. As shown in FIG. 20L, selection of the text entry affordance 2016A is a tap gesture 2018A. In contrast to selection of the record affordance 2074 (FIG. 20F), the electronic device 2000, in response to selection of the record affordance 2074, displays (e.g., replaces display of the task-specific interface 2008A with), on the display 2001, a text entry interface 2020A.
  • With reference to FIG. 20M, text entry interface 2020A includes cancel affordance 2022A, preview 2024A, and completion affordance 2026A. In some examples, in response to selection of the cancel affordance 2022A, the electronic device 2000 ceases display of the text entry interface 2020A and, optionally, terminates the shortcut generation process, thereafter returning operation to (e.g., displaying) the application.
  • In some examples, while displaying the text entry interface 2020A, the electronic device 2000 receives, using a text entry device (e.g., keyboard, soft keyboard) of the electronic device 2000, a natural-language text input from a user. In some examples, while receiving the natural-language text input, the electronic device 2000 provides a preview of the natural-language text input, such as the preview 2024A, displaying text the user has entered at a given time.
  • In some examples, the electronic device 2000 ensures that the candidate phrase is different than one or more predetermined phrases (e.g., “call 911”). By way of example, the electronic device 2000 determines whether a similarity between the phrase and each of the one or more predetermined phrases exceeds a similarity threshold. If the similarity threshold is not met, the electronic device 2000 will notify the user that the provided candidate phrase is not sufficient and/or not permitted. The electronic device 2000 further may request that the user provide another natural-language text input.
  • While displaying the text entry interface 2020A, the electronic device 2000 detects selection of the completion affordance 2026A. As shown in FIG. 20M, selection of the completion affordance 2026A is a tap gesture 2028A. In response to selection of the completion affordance 2026A, the electronic device 2000 displays (e.g., replaces display of the text entry interface 2020A with), on the display 2001, a completion interface 2028A, as shown in FIG. 20N.
  • The completion interface 2028A includes a completion affordance 2030A, cancel affordance 2032A, task indicator 2034A, application indicator 2036A, phrase 2038A, and reentry affordance 2040A. In some examples, in response to selection of the cancel affordance 2032A, the electronic device 2000 ceases display of the completion interface 2030A and, optionally, terminates the shortcut generation process. In some examples, task indicator 2034A indicates a name and/or type of the task. In some examples, application indicator 2036A identifies the application corresponding to the task. The application indicator may, for instance, include a name of the application and/or an icon associated with the application. Phrase 2038A is the phrase entered by the user during display of the text entry interface 2020A that the user may elect to associate with the task.
  • In some examples, while displaying the completion interface 2028A, the electronic device 2000 detects selection of the completion affordance 2030A. As shown in FIG. 20N, selection of the completion affordance 2030A is a tap gesture 2042A. In response to selection of the completion affordance 2030A, the electronic device 2000 associates the phrase 2038A with the task of the candidate task affordance 2062. By associating the phrase 2038A with the task in this manner, the user may provide (e.g., textually input) the phrase to a digital assistant of the electronic device to cause the device to perform the task associated with the phrase. In some examples, further in response to selection of the completion affordance 2030A, the electronic device 2000 displays (e.g., replaces display of the completion interface 2028A with), on the display 2001, the application interface 2060, as shown in FIG. 20K. Because the candidate task affordance 2062 has been associated with a phrase, the candidate task affordance 2062 includes a phrase indicator 2006A indicating the phrase that has been associated with the task for the candidate task affordance 2062.
  • FIGS. 21A-21F illustrate exemplary user interfaces for performing a task using a digital assistant, in accordance with some embodiments. The user interfaces in these figures are used to illustrate the processes described below, including the processes in FIGS. 11A-11B.
  • Generally, user interfaces described with reference to FIGS. 21A-21E may be employed such that a user can associate tasks with respective user-specific phrases. These phrases may in turn be used to cause the electronic device to perform the associated tasks.
  • FIG. 21A illustrates an electronic device 2100 (e.g., device 104, device 122, device 200, device 600, or device 700). In the non-limiting exemplary embodiment illustrated in FIGS. 21A-21E, electronic device 2100 is a smartphone. In other embodiments, electronic device 2100 can be a different type of electronic device, such as a wearable device (e.g., a smartwatch). In some examples, electronic device 2100 has a display 2101, one or more input devices (e.g., touchscreen of display 2101, a button, a microphone), and a wireless communication radio. In some examples, the electronic device 2100 includes a plurality of cameras. In some examples, the electronic device includes only one camera. In some examples, the electronic device includes one or more biometric sensors (e.g., biometric sensor 2103) which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • In FIG. 21A, the electronic device 2100 displays, on display 2101, a digital assistant interface (e.g., conversational interface), such as the digital assistant interface 2104. While displaying the digital assistant interface 2104, the electronic device 2100 receives (e.g., obtains, captures) a natural-language input 2106 (e.g., “Hey Siri, order my groceries.”). In some examples, the natural-language input 2106 is a natural-language speech input received, for instance, using an input device of the electronic device (e.g., microphone). As shown in FIG. 21A, in some examples in which the natural-language input 2106 is a natural-language speech input, the digital assistant interface optionally includes a preview 2108 (e.g., live preview) of the natural-language input 2106.
  • In other examples, the natural-language input 2106 is a text input, such as the natural-language text input 2109 of FIG. 21B. In some examples, a text field 2111 is displayed in response to selection of a text entry affordance, and a user may enter the natural-language text input 2109 in the text field 2111. Thereafter, a user may confirm entry of the natural-language text input 2109 for instance, by selecting a submit affordance 2142. A user may select the submit affordance 2142 using a tap gesture 2144 in some examples.
  • In some examples, in response to the natural-language input, the electronic device 2100 performs a task. By way of example, as described with reference to FIG. 14 , the electronic device 2100 may determine whether the natural-language input matches a predetermined phrase, and if so, perform a task corresponding to the phrase. If the task does not corresponding to the phrase, natural-language processing may be used to determine a task associated with the natural-language input, and the electronic device 2100 may perform the task.
  • In some examples, prior to performing the task, the electronic device 2100 provides an output, such as the output 2132. In some examples, the output 2132 is a natural-language output (e.g., natural-language speech output, natural-language text output) and includes information associated with the task. By way of example, the output 2132 may indicate that the electronic device is initiating performance of the task (e.g., “I'll handle that now”), and/or that the task requires confirmation (e.g., “You'll need to confirm.”). In some examples, the output 2132 further may request confirmation from the user (e.g., “Ready to order?”). The user may confirm the task using any form of user input, including a speech input or a touch input.
  • In some examples, performing a task may include causing an application to perform the task. Accordingly, in some examples, prior to performing the task, the electronic device 2100 identifies an application to perform the task and confirms that the application is capable of performing the task. Optionally, in response to the confirmation, the electronic device receives, from the application, a response indicating whether the application can successfully perform the task. In some examples, the response provided by an application includes a natural-language expression that may in turn be included in an output. In this manner, the application, by way of the digital assistant, may indicate whether the application is capable of performing the task and/or provide additional information about performance of the task to a user. In the example illustrated in FIG. 21C, for instance, the electronic device 2100 provides the output 2132 including a natural language expression 2134 received from the Grocery Store application (e.g., “It will be $58.31”).
  • In some examples, the electronic device 2100 can display a confirmation interface, such as the confirmation interface 2110, to request confirmation. The confirmation interface 2110 includes a confirmation affordance 2112, a cancel affordance 2114, and an application affordance 2116. The confirmation interface further may include content 2118 associated with the task. In some examples, selection of the cancel affordance 2114 causes the electronic device 2100 to cease display of the confirmation interface 2110 and/or forgo performing the identified task. In some examples, selection of the application affordance 2116 causes the electronic device 2100 to open an application associated with the task. As described, opening the application in this manner may cause the application to be preloaded with one or more parameters associated with the task. Content 2118 may include information directed to the task, such as one or more parameters to be used to perform the task. As illustrated in FIG. 21C, for instance, content 2118 may specify that the task is directed to ordering a set of grocery items included in the group “My Grocery List”, the number of items to be ordered, a delivery address, and a time window in which the delivery is to be made. Optionally, confirmation interface 2110 includes an icon (e.g., image, GIF) associated with the application of the task to help a user more readily identify the application performing the task.
  • In some examples, in response to selection of the confirmation affordance 2112, for instance by user input 2120, the electronic device 2100 performs the task. As illustrated in FIG. 21D, in some examples, while the electronic device is performing the task, the electronic device 2100 displays a progress indicator 2115 indicating that the task is being performed. In some examples, display of the progress indicator 2115 replaces display of the confirmation affordance 2112 and the cancel affordance 2114.
  • Once task has been performed, the electronic device 2100 provides an output indicating whether the task was performed successfully. In the example of FIG. 21E, the task is performed successfully, and as a result, the electronic device 2100 displays a success indicator 2117, indicating that the task was successfully performed. In some examples, display of the success indicator 2117 replaces display of the progress indicator 2115.
  • In the example of FIG. 21F, the task is not performed successfully, and as a result, the electronic device displays failure interface 2121. The failure interface 2121 includes a retry affordance 2122, a cancel affordance 2124, and application affordances 2126, 2128. The failure interface further includes content 2130. In some examples, selection of the retry affordance 2122 causes the electronic device 2100 to perform the task again. In some examples, selection of the cancel affordance causes the electronic device 2100 to cease display of the failure interface 2120. In some examples, selection of either the application affordance 2126 or application affordance 2128 causes the electronic device 2100 to open an application associated with the task. As described, opening the application in this manner may cause the application to be preloaded with one or more parameters associated with the task. Content 2130 may include information directed to the task, such as one or more parameters used to perform the task. In some examples, content 2130 is the same content as content 2118. In some examples, content 2130 is different than content 2118. Content 2130 may, for example, indicate that the electronic device failed to perform the task successfully (e.g., “There was a problem. Please try again.”).
  • In some examples, after causing an application to perform a task, the electronic device 2100 receives a response from the application indicating whether the task was performed successfully. In some examples, the response provided by an application optionally includes a natural-language expression that may in turn be used by the electronic device 2100 to indicate whether a task was successfully performed and/or provide additional information, from the application, to a user. In the example illustrated in FIG. 21F, the electronic device 2100 receives a response from the Grocery Store application including the natural-language expression 2142 (e.g., “Open app to enter credit card information”), which is in turn provided in the output 2140 (e.g., “The Grocery Store says ‘Open app to enter credit card information’”).
  • FIGS. 22A-220 illustrate exemplary user interfaces for performing a set of tasks on an electronic device (e.g., device 104, device 122, device 200, device 600, device 700), in accordance with some embodiments. The user interfaces in these figures are used to illustrate the processes described below, including the processes in FIG. 23 .
  • FIG. 22A illustrates an electronic device 2200 (e.g., device 104, device 122, device 200, device 600, or device 700). In the non-limiting exemplary embodiment illustrated in FIGS. 22A-220 , electronic device 2200 is a smartphone. In other embodiments, electronic device 2200 can be a different type of electronic device, such as a wearable device (e.g., a smartwatch). In some examples, electronic device 2200 has a display 2201, one or more input devices (e.g., touchscreen of display 2201, a button, a microphone), and a wireless communication radio. In some examples, the electronic device 2200 includes a plurality of cameras. In some examples, the electronic device includes only one camera. In some examples, the electronic device includes one or more biometric sensors (e.g., biometric sensor 2203) which, optionally, include a camera, such as an infrared camera, a thermographic camera, or a combination thereof.
  • In FIG. 22A, the electronic device 2200 displays, on display 2201, an application interface 2204. The application interface 2204 may correspond to a task management application in some examples. As shown, the application interface 2204 includes a plurality of shortcut affordances, each of which may correspond to a respective set of tasks. By way of example, the application interface 2204 includes a shortcut affordance “Find ATMs”, “Create Note”, “Email me”, “Text Mom”, “Text Jane”, “Cookie Timer”, “Email John”, “Home ETA”, and “Work ETA”.
  • In some examples, while displaying the application interface 2204, the electronic device 2200 detects selection of a shortcut affordance, such as shortcut affordance 2206 (“Home ETA”). As shown in FIG. 22A, the selection of the shortcut affordance 2206 is a tap gesture 2208. In some examples, in response to selection of the shortcut affordance 2206, the electronic device 2200 displays (e.g., replaces display of the application interface 2204 with), on the display 2001, shortcut-specific interface 2210, as shown in FIG. 22B.
  • Shortcut-specific interface 2210 includes shortcut indicator 2211, parameter 2212, tasks 2214-2218, search field 2222, and execute affordance 2224. In some examples, shortcut indicator 2211 indicates a name of the shortcut. In some examples, tasks 2214-2218 are tasks associated with the shortcut of the shortcut-specific interface 2210, and parameter 2212 is a parameter for a task, such as the task 2216. In some examples, the order in which each of the tasks are shown indicates the sequence in which the tasks are performed when the shortcut is performed. In some examples, each of the tasks includes a delete affordance 2219, which when selected, causes the corresponding task to be removed (e.g., deleted) from the shortcut.
  • In some examples, tasks may be added to a shortcut. By way of example, a user may input text into the search field 2222 to search for one or more tasks that may be associated with the shortcut. The user may thereafter set and/or adjust one or more parameter values for the task, as described below.
  • In some examples, a user may modify the sequence of tasks associated with a shortcut. By way of example, while displaying the shortcut-specific interface 2210, the electronic device detects a selection of a task (e.g., with a touch gesture) and displacement of the task on the display 2201 (e.g., using a swipe gesture on the display 2201). Accordingly, a user may “drag and drop” tasks in the shortcut-specific interface to reorder the set of tasks.
  • In some examples, while displaying the shortcut-specific interface 2210, the electronic device 2200 detects a swipe gesture on the display 2201, such as the swipe gesture 2226 of FIG. 22C. As shown in FIG. 22D, in response to the swipe gesture 2226, the electronic device 2200 slides the shortcut-specific interface 2210 in a direction corresponding to the swipe gesture 2226 (e.g., upward) to display (e.g., reveal) a portion of the shortcut-specific interface 2210 including one or more additional tasks (e.g., task 2220).
  • In some examples, tasks are performed according to one or more parameters associated with the task, and in some examples, parameter values may assigned using the shortcut-specific interface 2210. By way of example, for the task 2216 in which a travel time is determined, the user may specify a street address value for the parameter 2212 that is to be used as a destination address when determining a travel time. In some examples, because a destination address is required to determine a travel time, the electronic device 2200 may automatically include parameter 2212 in the shortcut-specific interface 2210 in response to addition of the task 2216 to the shortcut-specific interface 2210. As another example, a user may specify that a dynamic value (e.g., “current location”) as a source address when determining a travel time. As yet another example, a user may specify one or more recipients for a task to send a message, for instance, by selecting the recipient affordance 2232.
  • In some examples, settings for a task may be configured using the shortcut-specific interface 2210. For instance, when performing particular tasks, the electronic device 220 displays an interface (e.g., completion interface) associated with the task. For some tasks, such as the task 2218, a user can elect to not have the interface shown during and/or after performance of the task (e.g., by toggling a “Show when run” setting, such as setting 2230). In some examples, the electronic device displays an interface for a task only when the task fails. In this manner, the electronic device 2200 indicates that the task failed and/or the cause of the failure.
  • In some examples, a task may be performed only following performance of another task. For instance, one or more values for parameters of a task may be specified by another preceding task (e.g., dynamic values). By way of example, a user may specify that for a task to determine travel time, such as the task 2214, the source address is the current location of the electronic device. Because the source address (i.e., current location of the electronic device) must be determined prior to determining the travel time, the electronic device may require that a task to determine a current location of the electronic device be determined prior to determining the travel time. As another example, a task to send a message, such as the task 2218, may include one or more values that are determined based on the result of another tasks. As illustrated in FIG. 22D, for instance, the message for the task 2218 includes dynamic values for “current location” and “time to home”, values determined by task 2214 (“get current location”) and task 2216 (“get travel time”), respectively. As a result of such task dependencies, in some examples, the electronic device requires certain couplings and/or sequences of tasks according to a plurality of task sequence rules such that each task can be successfully performed.
  • As described, in some examples, a set of (e.g., one or more) tasks associated with a shortcut are performed by the electronic device in response to a user providing an input specifying the shortcut. As illustrated in FIG. 22E, the electronic device 2200 displays, on display 2201, a digital assistant interface (e.g., conversational interface), such as the digital assistant interface 2204. While displaying the digital assistant interface 2204, the electronic device 2200 receives (e.g., obtains, captures) a natural-language input 2206 (e.g., “Hey Siri, Home ETA.”). In some examples, the natural-language input 2206 is a natural-language speech input received, for instance, using an input device of the electronic device (e.g., microphone). As shown in FIG. 22E, in some examples in which the natural-language input 2206 is a natural-language speech input, the digital assistant interface optionally includes a preview 2208 (e.g., live preview) of the natural-language input 2206. In other examples, the natural-language input is a natural-language text input.
  • In some examples, the natural-language input includes a shortcut corresponding to a set of tasks, and in response the electronic device 2200 performs (e.g., sequentially perform) each task of the set of tasks. As an example, in response to the input “Home ETA”, the electronic device 2200 begins to perform tasks associated with the “Home ETA” shortcut. As described, the “Home ETA” shortcut is associated with tasks including but not limited to “Get current location”, “Get travel time”, “Send Message”, and “Play Radio”.
  • As illustrated in FIG. 22F, in response to the natural-language input 2206, the electronic device 2200 provides (e.g., displays) shortcut interface 2244, which in turn includes output 2245, application identifier 2246, task identifier 2248, and shortcut identifier 2250. In some examples, output 2245 indicates that the electronic device has identified a shortcut based on the natural-language input 2206 and is initiating performance of the shortcut. Application identifier 2246 indicates which application is performing the shortcut. If, for instance, tasks associated with the shortcut correspond to multiple applications, tasks of the shortcut are performed (e.g., caused to be performed) by a task management application. In some examples, the task management application causes one or more other applications to perform tasks corresponding to applications associated with the respective tasks. If a shortcut is associated with only a single task, or, more generally, if all tasks associated with the shortcut correspond to a single application, the application corresponding to the task(s) performs the shortcut. Task identifier 2248 includes an icon corresponding to the shortcut and/or one or more specific tasks of the shortcut. In some examples, the shortcut identifier 2250 indicates which shortcut is being initiated.
  • Thereafter, as illustrated in FIGS. 22G-221 , the electronic device performs each task of the set of tasks associated with the “Home ETA” shortcut (e.g., “Get current location”, “Get travel time”, “Send Message”, and “Play Radio”), for instance, in a sequence corresponding to the sequence set forth in the shortcut-specific interface 2210. For example, the electronic device 2200 first performs tasks 2214 and 2216 to determine a current location of the electronic device and a travel time to a destination address, respectively.
  • In some examples, one or more tasks, such as the task 2218, require confirmation prior to performing the task. Accordingly, for tasks requiring confirmation, the electronic device 2200 can display a confirmation interface, such as the confirmation interface 2254. The confirmation interface 2254 includes a confirmation affordance 2260, a cancel affordance 2258, and an application affordance 2266. The confirmation interface 2254 further may include content 2256 associated with the task. In some examples, selection of the cancel affordance 2258 causes the electronic device 2200 to cease display of the confirmation interface 2254 and/or forgo performing the task 2218 (e.g., the electronic device moves on to the next task in the set of tasks). In some examples, selection of the application affordance 2266 causes the electronic device 2200 to open an application associated with the task. As described, opening the application in this manner may cause the application to be preloaded with one or more parameters associated with the task. Content 2256 includes information associated with the task, such as one or more parameters to be used to perform the task. As illustrated in FIG. 22G, for instance, content 2256 specifies a recipient of the message and text of the message to be delivered. In particular, the text includes a location and a travel time, as determined by previous tasks 2214 and 2216, respectively.
  • In some examples, in response to selection of the confirmation affordance 2260, for instance by user input 2262, the electronic device 2200 performs task 2218. Once task 2218 has been performed, the electronic device 200 provides a response indicating whether the task was performed successfully. In the example of FIG. 22H, the task is performed successfully, and as a result, the electronic device 200 displays a response 2264, indicating that the task was successfully performed. As described, in some examples, performing a task includes causing an application to perform the task, and optionally, receiving a response from the application indicating whether the task was performed successfully. In some examples, responses provided by an application includes a natural-language expression (e.g., “message sent”) that may in turn be included in responses provided by the electronic device 2200 (e.g., “Shortcuts says: message sent”).
  • After performing task 2218, the electronic device performs a next task in the set of tasks associated with the shortcut “Home ETA”, task 2220, directed to initiating radio playback. In response to performing the task 2220, the electronic device displays completion interface 2270. Completion interface 2270 includes output 2272, application identifier 2274, and content 2276. In some examples, output 2272 indicates that the electronic device has initiated performance of task 2220. Application identifier 2274 indicates which application is associated with the task. Content 2276 includes information associated with the task, such as one or more parameters to be used to perform the task (e.g., playback is for radio channel “News & Sports”).
  • After performing all tasks of the set of tasks for a shortcut, the electronic device provides a completion indicator, such as the completion indicator 2280 (e.g., “That's done.”) signaling that all tasks of the set of tasks have been performed. In some examples, the electronic device 2200 indicates whether all tasks have been performed successfully, or whether one or more tasks were not performed successfully.
  • In some examples, if a task is not performed successfully, the electronic device 2200 indicates the failure to a user. As illustrated in FIG. 22J, for example, task 2214 is not performed successfully, and as a result, the electronic device displays failure interface 2290. The failure interface 2290 includes failure indicator 2292, application indicator 2294, content 2296, and application affordance 2298. In some examples, failure indicator 2292 indicates an error occurred when performing a task (“Hmm. Something went wrong”). The failure indicator may specify a cause of the error in some examples. In some examples, selection of the application affordance 2298 causes the electronic device 1600 to open an application specified by the application indicator 2294. Content 2296 may include information directed to the task, such as one or more parameters used to perform the task and/or an indication as to the cause of the task failure. Content 2296 may, for example, indicate that the electronic device failed to perform the task successfully (e.g., “Unable to determine current location.”).
  • In some examples, performing a task may include causing an application to perform the task, and optionally, receive a response from the application indicating whether the task was performed successfully. In some examples, as illustrated in FIGS. 16F-16L below, the response provided by an application includes a natural-language expression that may in turn be used by the electronic device 1600 to indicate whether a task was successfully performed and/or provide additional information, from the application, to a user.
  • As shown in FIGS. 22F-22J, for each task performed by the electronic device 2200, a new interface is displayed in the digital assistant interface 2204 (e.g., conversational interface) while maintaining display of one or more previously displayed interfaces(e.g., display of confirmation interface 2254 is maintained during display of response interface 2270). As additional interfaces are displayed, previously displayed interfaces may be scrolled in an upward directed such that the previously displayed interfaces are no longer displayed, but may be redisplayed in response to a scroll (e.g., swipe) gesture.
  • As illustrated in FIGS. 22K-220 , in some examples, each time a new interface is displayed, the electronic device 2200 ceases display of previous interfaces. By way of example, in response to display of completion interface 2270 the electronic device 2200 ceases display of confirmation interface 2254. In some examples, previously displayed interfaces may be redisplayed in response to a scroll gesture.
  • FIG. 23 illustrates method 2300 for performing a set of tasks using a digital assistant, according to various examples. Method 2300 is performed, for example, using one or more electronic devices implementing the digital assistant. In some examples, method 2300 is performed using a client-server system (e.g., system 100), and the blocks of method 2300 are divided up in any manner between the server (e.g., DA server 106) and a client device. In other examples, the blocks of method 2300 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of method 2300 are described herein as being performed by particular devices of a client-server system, it will be appreciated that method 2300 is not so limited. In other examples, method 2300 is performed using only a client device (e.g., user device 104) or only multiple client devices. In method 2300, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the method 2300.
  • Performing a set of tasks in response to user inputs including shortcuts (e.g., voice shortcuts, text shortcuts), as described herein, provides an intuitive and efficient approach for sequentially performing one or more tasks on the electronic device. By way of example, one or more tasks may be performed in response to a single user input without any additional input from the user. Accordingly, performing tasks in response to natural-language speech inputs in this manner decreases the number of inputs and amount of time needed for the user to successfully operate the electronic device (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device), which, additionally, reduces power usage and improves battery life of the device.
  • In some examples, the electronic device (e.g., includes one or more of a keyboard, mouse, microphone, display, and touch-sensitive surface. In some examples, the display is a touch-sensitive display. In other examples, the display is not a touch-sensitive display.
  • At block 2305, the electronic device (e.g., device 104, device 122, device 200, device 600, device 700, device 2200) receives, using a digital assistant, a user input (e.g., natural-language input, speech input, text input) (e.g., 2240) including a shortcut (e.g., voice shortcut) (e.g., “Home ETA”). In some examples, receiving the user input includes receiving a voice input (2240) and generating a textual representation of the voice input. In some examples, generating a textual representation of the voice input includes performing a speech to text process on the voice input. In some examples, the textual representation is displayed in an interface, such as an interface associated with a digital assistant (e.g., conversational interface). In some examples, receiving the user input further includes receiving a request to modify the textual representation to provide a modified textual representation. As an example, a user may select an edit affordance and edit the speech to text version of the voice input. In some examples, receiving the user input further includes selecting the modified textual representation as the user input.
  • At block 2310, in response to receiving the user input including the shortcut, the electronic device determines a set of tasks (e.g., 2214, 2216, 2218, 2220) associated with the shortcut. In some examples, the electronic device determines whether the natural-language speech input matches one or more shortcuts (e.g., voice shortcut, text shortcut) associated with a user of the electronic device. In some examples, determining whether a match exists in this manner includes determining whether a match exists locally and/or remotely. For example, in some instances the electronic device determines whether a match exists. In another example, the electronic device provides user input, or a representation thereof, to a backend server, and the backend server determines if a match exists. In some examples, both the electronic device and the backend server determine if a match exists and the electronic device evaluates both results to determine if a match exists.
  • In some examples, the electronic device identifies a set (e.g., plurality) of tasks associated with the shortcut. In some examples, the set of tasks is an ordered set of tasks having a predefined sequence. In some examples, the sequence is user-defined and/or determined by the electronic device according to one or more sequencing rules. In some examples, each of the tasks is associated with a respective application. Accordingly, the set of tasks may be associated with any number of first-party and third-party applications. In some examples, a set of tasks is generated using a task management application configured to automate performance of a plurality of tasks. In some examples, one or more parameters of each task may be configured, for instance, using the task management application. By way of example, recipients and/or text of a text message may be configured. As another example, a user may toggle whether a response indicating whether a task was successfully performed is displayed. In some examples, tasks of a first type require confirmation prior to being performed (e.g., 2218) and tasks of a second type do not require confirmation prior to being performed (e.g., 2220). In some examples, only responses associated with tasks of the second type may be selectively displayed.
  • At block 2315, further in response to receiving the user input including the shortcut, the electronic device performs a first task of the set of tasks. The task is associated with a first application in some examples. In some examples, performing the first task includes determining whether the first task is a task of a first type (e.g., a task requiring confirmation, such as a messaging task or a payment task); in accordance with a determination that the first task is a task of the first type: requesting confirmation to perform the task, receiving a user input indicating confirmation to perform the task (e.g., touch input, speech input), and in response to receiving the user input indicating confirmation to perform the task (in some examples, the user indicates confirmation by selecting a confirmation affordance and/or providing a speech input indicating confirmation), performing the task; and in accordance with a determination that the first task is not a task of the first type (e.g., a task not requiring confirmation, background task), performing the first task.
  • In some examples, performing the first task includes causing, using the digital assistant, the first task to be performed by a third-party application. In some examples, the digital assistant of the electronic device causes a third-party application to perform a task. In some examples, causing an application to perform a task in this manner includes providing an intent object to the application, which optionally includes one or more parameters (e.g., 2212) and/or parameter values. By way of example, the digital assistant may initiate music playback by instructing a third-party music streaming application to stream music.
  • At block 2320, further in response to receiving the user input including the shortcut, the electronic device provides a first response (e.g., 2264, 2270) indicating whether the first task was successfully performed. In some examples, the electronic device provides a response indicating whether a performed task was performed successfully. In some examples, the response is visual (e.g., displayed), and/or auditory. In some examples, the response is a natural-language output (e.g., 2264) and/or a visual platter (e.g., 2270). In some examples, after performing a task, an application provides an application response (1) indicating whether the task was successfully performed by the application and/or (2) provides information regarding performance of the task (e.g., an answer to a query provided by a user), and the response includes the application response (e.g., 2264). In some examples, the application response is a natural-language expression (e.g., “Your ETA is 32 minutes”) and is included in the response (e.g., “Commute says ‘Your ETA is 32 minutes’”). In some examples providing the first response includes providing an indication that the first task was performed successfully. In some examples, providing the first response includes receiving a natural-language expression from the first application; and providing an output including the natural-language expression (e.g., “Commute says: ‘Your current ETA is 32 minutes’”). In some examples, providing the first response includes displaying the first response.
  • At block 2325, further in response to receiving the user input including the shortcut, the electronic device performs a second task of the set of tasks, The second task is associated with a second application different than the first application in some examples. In some examples, the electronic device performs the second task after providing the first response.
  • At block 2330, further in response to receiving the user input including the shortcut, after providing the first response, the electronic device provides a second response indicating whether the second task was successfully performed (e.g., 2264, 2270). In some examples, providing the first response includes displaying the first response in an interface (e.g., conversational interface) associated with the digital assistant (e.g., 2264); and providing the second response includes displaying the second response in the interface associated with the digital assistant (e.g., 2270).
  • In some examples, providing the second response includes ceasing display of the first response. In some examples, each time a new response is to be displayed, one or more previously displayed responses are no longer displayed. In some examples, the previously displayed responses are discarded (e.g., deleted from the conversational interface). In some examples, the previously displayed responses are scrolled off of the display but may be re-displayed in response to a scrolling input. In some examples, providing the second response further includes displaying the second response.
  • In some examples, providing the second response includes displaying the second response while maintaining display of at least a portion of the first response. In some examples, as each response is displayed by the electronic device, previously displayed responses are scrolled, for instance in an upward direction to allow for subsequent responses to be displayed.
  • In some examples, the electronic device provides an output (e.g., visual output, auditory output) indicating each task of the set of tasks has been performed (e.g., 2280). In some examples, the electronic device indicates when all tasks associated with a shortcut have been performed (e.g., “That's done.”).
  • In some examples, the electronic device performs a third task of the set of tasks. The third task is associated with a third application in some examples. In some examples, after providing the second response, the electronic device selectively provides a third response indicating whether the third task was successfully performed (e.g., 2214). In some examples, the electronic device may omit providing a response for a task. In some examples, responses are omitted for tasks of a predetermined type (e.g., determination of location) (e.g., 2214). In some examples, a user may indicate a response is not to be provided for a particular task, for instance, by toggling a display setting for the task (e.g., 2230).
  • In some examples, after providing the second response, the electronic device performs a fourth task of the set of tasks, wherein performing the fourth task includes launching an application (e.g., launching a maps application to perform a task for getting directions). In some examples, performing a task includes launching an application (e.g., maps application). In some examples, launching an application in this manner includes causing an interface of the application to be displayed.
  • In accordance with some implementations, a computer-readable storage medium (e.g., a non-transitory computer readable storage medium) is provided, the computer-readable storage medium storing one or more programs for execution by one or more processors of an electronic device, the one or more programs including instructions for performing any of the methods or processes described herein.
  • In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises means for performing any of the methods or processes described herein.
  • In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises a processing unit configured to perform any of the methods or processes described herein.
  • In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises one or more processors and memory storing one or more programs for execution by the one or more processors, the one or more programs including instructions for performing any of the methods or processes described herein.
  • The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Others skilled in the art are thereby enabled to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.
  • Although the disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the claims.
  • As described above, one aspect of the present technology is the gathering and use of data available from various sources to accelerate user behavior using task suggestions. The present disclosure contemplates that in some instances, this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, twitter IDs, home addresses, data or records relating to a user's health or level of fitness (e.g., vital signs measurements, medication information, exercise information), date of birth, or any other identifying or personal information.
  • The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. For example, the personal information data can be used to deliver task suggestions that are of greater interest to the user. Accordingly, use of such personal information data allows for accelerated and more efficient use of an electronic device by a user. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure. For instance, health and fitness data may be used to provide insights into a user's general wellness, or may be used as positive feedback to individuals using technology to pursue wellness goals.
  • The present disclosure contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. Such policies should be easily accessible by users, and should be updated as the collection and/or use of data changes. Personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection/sharing should occur after receiving the informed consent of the users. Additionally, such entities should consider taking any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices. In addition, policies and practices should be adapted for the particular types of personal information data being collected and/or accessed and adapted to applicable laws and standards, including jurisdiction-specific considerations. For instance, in the US, collection of or access to certain health data may be governed by federal and/or state laws, such as the Health Insurance Portability and Accountability Act (HIPAA); whereas health data in other countries may be subject to other regulations and policies and should be handled accordingly. Hence different privacy practices should be maintained for different personal data types in each country.
  • Despite the foregoing, the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of context data received by the electronic device (such as context data described with reference to FIG. 12 ), the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services or anytime thereafter. In addition to providing “opt in” and “opt out” options, the present disclosure contemplates providing notifications relating to the access or use of personal information. For instance, a user may be notified upon downloading an application that their personal information data will be accessed and then reminded again just before personal information data is accessed by the application.
  • Moreover, it is the intent of the present disclosure that personal information data should be managed and handled in a way to minimize risks of unintentional or unauthorized access or use. Risk can be minimized by limiting the collection of data and deleting data once it is no longer needed. In addition, and when applicable, including in certain health related applications, data de-identification can be used to protect a user's privacy. De-identification may be facilitated, when appropriate, by removing specific identifiers (e.g., date of birth, etc.), controlling the amount or specificity of data stored (e.g., collecting location data at a city level rather than at an address level), controlling how data is stored (e.g., aggregating data across users), and/or other methods.
  • Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, task suggestions can be provided to a user by inferring likely previous usage of an electronic device based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to the electronic device, or publicly available information.

Claims (22)

1. (canceled)
2. An electronic device, comprising:
a display;
one or more processors;
a memory; and
one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for:
displaying a plurality of voice shortcut affordances;
detecting a first user input corresponding to a selection of a first voice shortcut affordance of the plurality of voice shortcut affordances, wherein the first voice shortcut affordance corresponds to a first voice shortcut;
in response to detecting the first user input, displaying a first interface including a set of respective task affordances for a set of tasks associated with the first voice shortcut; and
while displaying the first interface:
detecting a first set of inputs that requests to update a first task of the set of tasks; and
in response to detecting the first set of inputs, updating the display of the respective task affordance for the first task.
3. The electronic device of claim 2, the one or more programs further including instructions for:
while displaying the first interface:
detecting a second set of inputs that requests to add a second task; and
in response to detecting the second set of inputs, displaying a second respective task affordance for the second task.
4. The electronic device of claim 2, wherein:
the set of respective task affordances includes a third respective task affordance for a third task of the set of tasks; and
when the first set of inputs is detected, the respective task affordance for the first task and the third respective task affordance for the third task are concurrently displayed in a first order; and
updating the display of the respective task affordance for the first task includes concurrently displaying the respective task affordance for the first task and the third respective task affordance for the third task in a second order different from the first order.
5. The electronic device of claim 2, wherein updating the display of the respective task affordance for the first task includes removing the respective task affordance for the first task.
6. The electronic device of claim 2, the one or more programs further including instructions for:
while displaying the first interface:
detecting a third set of inputs that requests to search for one or more tasks to add to the set of tasks; and
in response to detecting the third set of inputs, displaying a second set of respective task affordances for the searched one or more tasks.
7. The electronic device of claim 2, wherein displaying the first interface further includes displaying an execute affordance, and wherein selection of the execute affordance causes the set of tasks associated with the first voice shortcut to be performed.
8. The electronic device of claim 2, wherein displaying the first interface including the set of respective task affordances for the set of tasks associated with the first voice shortcut includes displaying the set of respective task affordances in a respective order that indicates a sequence in which the set of tasks are performed when the first voice shortcut is performed.
9. The electronic device of claim 2, wherein updating the first task includes updating one or more parameter values of one or more parameters of the first task, wherein the first task is performed according to the one or more parameters when the first voice shortcut is performed.
10. The electronic device of claim 2, the one or more programs further including instructions for:
detecting a natural language input, wherein the natural language input includes a request associated with the first voice shortcut;
in response to detecting the natural language input, displaying a second interface; and
while displaying the second interface:
initiating performance of the set of tasks associated with the first voice shortcut; and
displaying a second set of outputs that corresponds to the performance of the set of tasks.
11. The electronic device of claim 10, wherein the natural language input further includes a request to initiate a digital assistant.
12. The electronic device of claim 10, the one or more programs further including instructions for:
while displaying the second interface, displaying text corresponding to the detected natural language input.
13. The electronic device of claim 10, the one or more programs further including instructions for:
prior to initiating performance of the set of tasks associated with the first voice shortcut:
displaying, in the second interface, a first set of outputs indicating that the electronic device has identified the first voice shortcut and is initiating performance of the set of tasks associated with the first voice shortcut.
14. The electronic device of claim 10, wherein displaying the second set of outputs includes displaying one or more indications that the set of tasks was successfully performed.
15. The electronic device of claim 10, wherein displaying the second set of outputs includes:
in accordance with a determination that the first task requires a confirmation prior to performing the first task, displaying a confirmation interface that comprises:
content indicating one or more parameters associated with the first task;
a confirmation affordance;
a cancel affordance; and
a first application affordance.
16. The electronic device of claim 15, the one or more programs further including instructions for:
in response to detecting a selection of the first application affordance:
opening a first application associated with the first application affordance, wherein the first application is preloaded with the one or more parameters associated with the first task.
17. The electronic device of claim 15, the one or more programs further including instructions for:
in response to detecting a selection of the confirmation affordance, causing the first task to be performed.
18. The electronic device of claim 15, the one or more programs further including instructions for:
in response to detecting a selection of the cancel affordance:
forgoing performing the first task; and
initiating performance of a second task of the set of tasks associated with the first voice shortcut.
19. The electronic device of claim 10, wherein displaying the second set of outputs includes:
in accordance with a determination that the first task was not successfully performed, displaying a failure interface that includes:
content indicating that the electronic device failed to perform the first task; and
a second application affordance.
20. The electronic device of claim 14, wherein:
initiating performance of the set of tasks associated with the first voice shortcut includes causing one or more applications to perform the set of tasks; and
displaying one or more indications that the set of tasks was successfully performed includes receiving the one or more indications from the one or more applications.
21. A method, comprising:
at an electronic device with a display:
displaying a plurality of voice shortcut affordances;
detecting a first user input corresponding to a selection of a first voice shortcut affordance of the plurality of voice shortcut affordances, wherein the first voice shortcut affordance corresponds to a first voice shortcut;
in response to detecting the first user input, displaying a first interface including a set of respective task affordances for a set of tasks associated with the first voice shortcut; and
while displaying the first interface:
detecting a first set of inputs that requests to update a first task of the set of tasks; and
in response to detecting the first set of inputs, updating the display of the respective task affordance for the first task.
22. A non-transitory computer-readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of an electronic device with a display, cause the electronic device to:
display a plurality of voice shortcut affordances;
detect a first user input corresponding to a selection of a first voice shortcut affordance of the plurality of voice shortcut affordances, wherein the first voice shortcut affordance corresponds to a first voice shortcut;
in response to detecting the first user input, display a first interface including a set of respective task affordances for a set of tasks associated with the first voice shortcut; and
while displaying the first interface:
detect a first set of inputs that requests to update a first task of the set of tasks; and
in response to detecting the first set of inputs, update the display of the respective task affordance for the first task.
US18/204,884 2018-06-03 2023-06-01 Accelerated task performance Pending US20230388409A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/204,884 US20230388409A1 (en) 2018-06-03 2023-06-01 Accelerated task performance

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862679972P 2018-06-03 2018-06-03
US201862729967P 2018-09-11 2018-09-11
US16/146,381 US10944859B2 (en) 2018-06-03 2018-09-28 Accelerated task performance
US17/162,836 US20210152684A1 (en) 2018-06-03 2021-01-29 Accelerated task performance
US18/204,884 US20230388409A1 (en) 2018-06-03 2023-06-01 Accelerated task performance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/162,836 Continuation US20210152684A1 (en) 2018-06-03 2021-01-29 Accelerated task performance

Publications (1)

Publication Number Publication Date
US20230388409A1 true US20230388409A1 (en) 2023-11-30

Family

ID=68693389

Family Applications (6)

Application Number Title Priority Date Filing Date
US16/146,883 Active US11076039B2 (en) 2018-06-03 2018-09-28 Accelerated task performance
US16/146,381 Active US10944859B2 (en) 2018-06-03 2018-09-28 Accelerated task performance
US16/146,963 Active US10496705B1 (en) 2018-06-03 2018-09-28 Accelerated task performance
US16/146,978 Active US10504518B1 (en) 2018-06-03 2018-09-28 Accelerated task performance
US17/162,836 Abandoned US20210152684A1 (en) 2018-06-03 2021-01-29 Accelerated task performance
US18/204,884 Pending US20230388409A1 (en) 2018-06-03 2023-06-01 Accelerated task performance

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US16/146,883 Active US11076039B2 (en) 2018-06-03 2018-09-28 Accelerated task performance
US16/146,381 Active US10944859B2 (en) 2018-06-03 2018-09-28 Accelerated task performance
US16/146,963 Active US10496705B1 (en) 2018-06-03 2018-09-28 Accelerated task performance
US16/146,978 Active US10504518B1 (en) 2018-06-03 2018-09-28 Accelerated task performance
US17/162,836 Abandoned US20210152684A1 (en) 2018-06-03 2021-01-29 Accelerated task performance

Country Status (1)

Country Link
US (6) US11076039B2 (en)

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318108B2 (en) 2010-01-18 2016-04-19 Apple Inc. Intelligent automated assistant
US8977255B2 (en) 2007-04-03 2015-03-10 Apple Inc. Method and system for operating a multi-function portable electronic device using voice-activation
US8676904B2 (en) 2008-10-02 2014-03-18 Apple Inc. Electronic devices with voice command and contextual data processing capabilities
US10706373B2 (en) 2011-06-03 2020-07-07 Apple Inc. Performing actions associated with task items that represent tasks to perform
US10276170B2 (en) 2010-01-18 2019-04-30 Apple Inc. Intelligent automated assistant
US10417037B2 (en) 2012-05-15 2019-09-17 Apple Inc. Systems and methods for integrating third party services with a digital assistant
KR20240132105A (en) 2013-02-07 2024-09-02 애플 인크. Voice trigger for a digital assistant
US10652394B2 (en) 2013-03-14 2020-05-12 Apple Inc. System and method for processing voicemail
US10748529B1 (en) 2013-03-15 2020-08-18 Apple Inc. Voice activated device for use with a voice-based digital assistant
US10176167B2 (en) 2013-06-09 2019-01-08 Apple Inc. System and method for inferring user intent from speech inputs
KR101772152B1 (en) 2013-06-09 2017-08-28 애플 인크. Device, method, and graphical user interface for enabling conversation persistence across two or more instances of a digital assistant
DE112014003653B4 (en) 2013-08-06 2024-04-18 Apple Inc. Automatically activate intelligent responses based on activities from remote devices
US10482461B2 (en) 2014-05-29 2019-11-19 Apple Inc. User interface for payments
CN110797019B (en) 2014-05-30 2023-08-29 苹果公司 Multi-command single speech input method
US10170123B2 (en) 2014-05-30 2019-01-01 Apple Inc. Intelligent assistant for home automation
US9715875B2 (en) 2014-05-30 2017-07-25 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
US9338493B2 (en) 2014-06-30 2016-05-10 Apple Inc. Intelligent automated assistant for TV user interactions
TWD178887S (en) * 2014-09-01 2016-10-11 蘋果公司 Portion of graphical user interface for a display screen
US9886953B2 (en) 2015-03-08 2018-02-06 Apple Inc. Virtual assistant activation
US10460227B2 (en) 2015-05-15 2019-10-29 Apple Inc. Virtual assistant in a communication session
US10200824B2 (en) 2015-05-27 2019-02-05 Apple Inc. Systems and methods for proactively identifying and surfacing relevant content on a touch-sensitive device
US20160378747A1 (en) 2015-06-29 2016-12-29 Apple Inc. Virtual assistant for media playback
US10671428B2 (en) 2015-09-08 2020-06-02 Apple Inc. Distributed personal assistant
US10740384B2 (en) 2015-09-08 2020-08-11 Apple Inc. Intelligent automated assistant for media search and playback
US10331312B2 (en) 2015-09-08 2019-06-25 Apple Inc. Intelligent automated assistant in a media environment
US10747498B2 (en) 2015-09-08 2020-08-18 Apple Inc. Zero latency digital assistant
US11587559B2 (en) 2015-09-30 2023-02-21 Apple Inc. Intelligent device identification
US10691473B2 (en) 2015-11-06 2020-06-23 Apple Inc. Intelligent automated assistant in a messaging environment
US10956666B2 (en) 2015-11-09 2021-03-23 Apple Inc. Unconventional virtual assistant interactions
US11263617B2 (en) 2015-12-04 2022-03-01 Apple Inc. Method, non-transitory computer-readable medium, and mobile device for location-based graphical user interfaces
US10223066B2 (en) 2015-12-23 2019-03-05 Apple Inc. Proactive assistance based on dialog communication between devices
US10021051B2 (en) 2016-01-01 2018-07-10 Google Llc Methods and apparatus for determining non-textual reply content for inclusion in a reply to an electronic communication
US10586535B2 (en) 2016-06-10 2020-03-10 Apple Inc. Intelligent digital assistant in a multi-tasking environment
DK201670540A1 (en) 2016-06-11 2018-01-08 Apple Inc Application integration with a digital assistant
DK179415B1 (en) 2016-06-11 2018-06-14 Apple Inc Intelligent device arbitration and control
WO2018133307A1 (en) * 2017-01-20 2018-07-26 华为技术有限公司 Method and terminal for implementing voice control
DK180048B1 (en) 2017-05-11 2020-02-04 Apple Inc. MAINTAINING THE DATA PROTECTION OF PERSONAL INFORMATION
US10726832B2 (en) 2017-05-11 2020-07-28 Apple Inc. Maintaining privacy of personal information
DK201770428A1 (en) 2017-05-12 2019-02-18 Apple Inc. Low-latency intelligent automated assistant
DK179496B1 (en) 2017-05-12 2019-01-15 Apple Inc. USER-SPECIFIC Acoustic Models
DK179745B1 (en) 2017-05-12 2019-05-01 Apple Inc. SYNCHRONIZATION AND TASK DELEGATION OF A DIGITAL ASSISTANT
DK201770411A1 (en) 2017-05-15 2018-12-20 Apple Inc. Multi-modal interfaces
US20180336892A1 (en) 2017-05-16 2018-11-22 Apple Inc. Detecting a trigger of a digital assistant
US20180336275A1 (en) 2017-05-16 2018-11-22 Apple Inc. Intelligent automated assistant for media exploration
US11416817B2 (en) * 2017-06-02 2022-08-16 Apple Inc. Event extraction systems and methods
US10818288B2 (en) 2018-03-26 2020-10-27 Apple Inc. Natural assistant interaction
US11941649B2 (en) 2018-04-20 2024-03-26 Open Text Corporation Data processing systems and methods for controlling an automated survey system
US10928918B2 (en) 2018-05-07 2021-02-23 Apple Inc. Raise to speak
US11145294B2 (en) 2018-05-07 2021-10-12 Apple Inc. Intelligent automated assistant for delivering content from user experiences
US11687537B2 (en) 2018-05-18 2023-06-27 Open Text Corporation Data processing system for automatic presetting of controls in an evaluation operator interface
US10892996B2 (en) 2018-06-01 2021-01-12 Apple Inc. Variable latency device coordination
DK179822B1 (en) 2018-06-01 2019-07-12 Apple Inc. Voice interaction at a primary device to access call functionality of a companion device
DK201870355A1 (en) 2018-06-01 2019-12-16 Apple Inc. Virtual assistant operation in multi-device environments
DK180639B1 (en) 2018-06-01 2021-11-04 Apple Inc DISABILITY OF ATTENTION-ATTENTIVE VIRTUAL ASSISTANT
US11076039B2 (en) 2018-06-03 2021-07-27 Apple Inc. Accelerated task performance
JP7017476B2 (en) * 2018-06-21 2022-02-08 トヨタ自動車株式会社 Information providing equipment, information providing system, information providing method, and program
US10811014B1 (en) * 2018-06-28 2020-10-20 Amazon Technologies, Inc. Contact list reconciliation and permissioning
US11281439B2 (en) * 2018-07-25 2022-03-22 Avaya Inc. System and method for creating a contextualized after call workflow
KR20200027753A (en) * 2018-09-05 2020-03-13 삼성전자주식회사 Electronic Device and the Method for Operating Task corresponding to Shortened Command
US11462215B2 (en) 2018-09-28 2022-10-04 Apple Inc. Multi-modal inputs for voice commands
KR102619973B1 (en) * 2018-11-28 2024-01-02 삼성전자주식회사 Electronic device for scheduling a plurality of tasks and operating method thereof
CN109788360A (en) * 2018-12-12 2019-05-21 百度在线网络技术(北京)有限公司 Voice-based TV control method and device
US11315590B2 (en) * 2018-12-21 2022-04-26 S&P Global Inc. Voice and graphical user interface
KR20210110650A (en) * 2018-12-28 2021-09-08 구글 엘엘씨 Supplement your automatic assistant with voice input based on selected suggestions
US11024310B2 (en) * 2018-12-31 2021-06-01 Sling Media Pvt. Ltd. Voice control for media content search and selection
US11194796B2 (en) * 2019-02-14 2021-12-07 Microsoft Technology Licensing, Llc Intuitive voice search
US11687316B2 (en) * 2019-02-28 2023-06-27 Qualcomm Incorporated Audio based image capture settings
US11438435B2 (en) * 2019-03-01 2022-09-06 Microsoft Technology Licensing, Llc User interaction and task management using multiple devices
US11348573B2 (en) 2019-03-18 2022-05-31 Apple Inc. Multimodality in digital assistant systems
US11003419B2 (en) 2019-03-19 2021-05-11 Spotify Ab Refinement of voice query interpretation
US11468881B2 (en) * 2019-03-29 2022-10-11 Samsung Electronics Co., Ltd. Method and system for semantic intelligent task learning and adaptive execution
US11973894B2 (en) * 2019-04-30 2024-04-30 Apple Inc. Utilizing context information with an electronic device
US11307752B2 (en) 2019-05-06 2022-04-19 Apple Inc. User configurable task triggers
DK201970509A1 (en) 2019-05-06 2021-01-15 Apple Inc Spoken notifications
US11140099B2 (en) 2019-05-21 2021-10-05 Apple Inc. Providing message response suggestions
DK180129B1 (en) * 2019-05-31 2020-06-02 Apple Inc. User activity shortcut suggestions
DK201970511A1 (en) 2019-05-31 2021-02-15 Apple Inc Voice identification in digital assistant systems
US11227599B2 (en) 2019-06-01 2022-01-18 Apple Inc. Methods and user interfaces for voice-based control of electronic devices
US11269952B1 (en) 2019-07-08 2022-03-08 Meta Platforms, Inc. Text to music selection system
US11210339B1 (en) 2019-08-29 2021-12-28 Facebook, Inc. Transient contextual music streaming
US10911504B1 (en) 2019-08-29 2021-02-02 Facebook, Inc. Social media music streaming
CN110634483B (en) * 2019-09-03 2021-06-18 北京达佳互联信息技术有限公司 Man-machine interaction method and device, electronic equipment and storage medium
US10992605B2 (en) * 2019-09-09 2021-04-27 PAG Financial International LLC Systems and methods for operating a mobile application using a conversation interface
US11157167B2 (en) 2019-09-09 2021-10-26 PAG Financial International LLC Systems and methods for operating a mobile application using a communication tool
US11416125B2 (en) * 2019-09-13 2022-08-16 Oracle International Corporation Runtime-generated dashboard for ordered set of heterogenous experiences
US11775581B1 (en) 2019-09-18 2023-10-03 Meta Platforms, Inc. Systems and methods for feature-based music selection
USD941324S1 (en) 2019-09-25 2022-01-18 Facebook, Inc. Display screen with a graphical user interface for music fetching
US11416544B2 (en) 2019-09-25 2022-08-16 Meta Platforms, Inc. Systems and methods for digitally fetching music content
USD941325S1 (en) * 2019-09-25 2022-01-18 Facebook, Inc. Display screen with a graphical user interface for music fetching
US12045637B2 (en) * 2019-10-01 2024-07-23 Google Llc Providing assistive user interfaces using execution blocks
US11948076B2 (en) * 2019-10-25 2024-04-02 Sony Group Corporation Media rendering device control based on trained network model
CN111163260B (en) * 2019-12-20 2021-11-19 维沃移动通信有限公司 Camera starting method and electronic equipment
US11615395B2 (en) * 2019-12-23 2023-03-28 Capital One Services, Llc Authentication for third party digital wallet provisioning
US11488594B2 (en) * 2020-01-31 2022-11-01 Walmart Apollo, Llc Automatically rectifying in real-time anomalies in natural language processing systems
US11893060B2 (en) * 2020-02-06 2024-02-06 Naver Corporation Latent question reformulation and information accumulation for multi-hop machine reading
US11057519B1 (en) * 2020-02-07 2021-07-06 Open Text Holdings, Inc. Artificial intelligence based refinement of automatic control setting in an operator interface using localized transcripts
JPWO2021171851A1 (en) * 2020-02-27 2021-09-02
DK202070633A1 (en) 2020-04-10 2021-11-12 Apple Inc User interfaces for enabling an activity
US11749282B1 (en) * 2020-05-05 2023-09-05 Amazon Technologies, Inc. Goal-oriented dialog system
US11038934B1 (en) 2020-05-11 2021-06-15 Apple Inc. Digital assistant hardware abstraction
KR102534036B1 (en) * 2020-05-11 2023-05-17 애플 인크. Providing relevant data items based on context
KR102419905B1 (en) * 2020-05-11 2022-07-18 애플 인크. Provision of relevant data items based on context
US11061543B1 (en) 2020-05-11 2021-07-13 Apple Inc. Providing relevant data items based on context
US11442607B2 (en) 2020-05-11 2022-09-13 Apple Inc. Task shortcut user interface
US11755276B2 (en) 2020-05-12 2023-09-12 Apple Inc. Reducing description length based on confidence
US12045437B2 (en) 2020-05-22 2024-07-23 Apple Inc. Digital assistant user interfaces and response modes
US11665118B2 (en) 2020-06-25 2023-05-30 Kpn Innovations, Llc. Methods and systems for generating a virtual assistant in a messaging user interface
US11490204B2 (en) 2020-07-20 2022-11-01 Apple Inc. Multi-device audio adjustment coordination
US11438683B2 (en) 2020-07-21 2022-09-06 Apple Inc. User identification using headphones
KR20220023639A (en) 2020-08-21 2022-03-02 삼성전자주식회사 Electronic apparatus and method for controlling thereof
US11829720B2 (en) 2020-09-01 2023-11-28 Apple Inc. Analysis and validation of language models
KR102222770B1 (en) * 2020-11-04 2021-03-04 신고은 Apparatus for transmitting message and method thereof
US11783827B2 (en) 2020-11-06 2023-10-10 Apple Inc. Determining suggested subsequent user actions during digital assistant interaction
US11947783B2 (en) * 2021-01-25 2024-04-02 Google Llc Undoing application operation(s) via user interaction(s) with an automated assistant
EP4264460A1 (en) 2021-01-25 2023-10-25 Apple Inc. Implementation of biometric authentication
US11756574B2 (en) 2021-03-11 2023-09-12 Apple Inc. Multiple state digital assistant for continuous dialog
EP4099142A4 (en) * 2021-04-19 2023-07-05 Samsung Electronics Co., Ltd. Electronic device and operating method thereof
USD1029024S1 (en) * 2021-04-23 2024-05-28 Joiint Inc. Display screen with a transitional graphical user interface
US12067983B2 (en) * 2021-05-06 2024-08-20 University Of South Carolina Robust useful and general task-oriented virtual assistants
US20220366338A1 (en) * 2021-05-13 2022-11-17 At&T Intellectual Property I, L.P. Contextual presentation of multiple steps in performing a task
US12086383B2 (en) 2021-05-15 2024-09-10 Apple Inc. Contextual action predictions
US11942090B2 (en) 2021-06-04 2024-03-26 Apple Inc. Accessory device based authentication for digital assistant requests
CN113434061A (en) * 2021-06-07 2021-09-24 深圳市爱都科技有限公司 Method and device for realizing application entry in dial plate, intelligent watch and storage medium
US11881217B2 (en) * 2021-06-30 2024-01-23 International Business Machines Corporation Solution guided response generation for dialog systems
US12074956B2 (en) 2021-12-08 2024-08-27 Samsung Electronics Co., Ltd. Electronic device and method for operating thereof
US20230230595A1 (en) * 2022-01-18 2023-07-20 Zoom Video Communication, Inc. Sidebar assistant for notetaking in sidebars during virtual meetings
US20230367777A1 (en) * 2022-05-10 2023-11-16 Apple Inc. Systems and methods for providing search interface with contextual suggestions
US11995457B2 (en) * 2022-06-03 2024-05-28 Apple Inc. Digital assistant integration with system interface
US20240020091A1 (en) * 2022-07-12 2024-01-18 Google Llc Assistant adaptation of graphical user interface to guide interaction with user in fulfilling user request

Family Cites Families (2608)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222525B1 (en) 1992-03-05 2001-04-24 Brad A. Armstrong Image controllers with sheet connected sensors
US7835989B1 (en) 1992-12-09 2010-11-16 Discovery Communications, Inc. Electronic book alternative delivery systems
US8073695B1 (en) 1992-12-09 2011-12-06 Adrea, LLC Electronic book with voice emulation features
US6311157B1 (en) 1992-12-31 2001-10-30 Apple Computer, Inc. Assigning meanings to utterances in a speech recognition system
US6594688B2 (en) 1993-10-01 2003-07-15 Collaboration Properties, Inc. Dedicated echo canceler for a workstation
JP2813728B2 (en) 1993-11-01 1998-10-22 インターナショナル・ビジネス・マシーンズ・コーポレイション Personal communication device with zoom / pan function
US5901287A (en) 1996-04-01 1999-05-04 The Sabre Group Inc. Information aggregation and synthesization system
US7113958B1 (en) 1996-08-12 2006-09-26 Battelle Memorial Institute Three-dimensional display of document set
US6199076B1 (en) 1996-10-02 2001-03-06 James Logan Audio program player including a dynamic program selection controller
US7787647B2 (en) 1997-01-13 2010-08-31 Micro Ear Technology, Inc. Portable system for programming hearing aids
US7321783B2 (en) 1997-04-25 2008-01-22 Minerva Industries, Inc. Mobile entertainment and communication device
US6026233A (en) 1997-05-27 2000-02-15 Microsoft Corporation Method and apparatus for presenting and selecting options to modify a programming language statement
US7046813B1 (en) 1997-09-25 2006-05-16 Fumio Denda Auditory sense training method and sound processing method for auditory sense training
US7663607B2 (en) 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
US7614008B2 (en) 2004-07-30 2009-11-03 Apple Inc. Operation of a computer with touch screen interface
US9292111B2 (en) 1998-01-26 2016-03-22 Apple Inc. Gesturing with a multipoint sensing device
US8479122B2 (en) 2004-07-30 2013-07-02 Apple Inc. Gestures for touch sensitive input devices
US7840912B2 (en) 2006-01-30 2010-11-23 Apple Inc. Multi-touch gesture dictionary
US6963871B1 (en) 1998-03-25 2005-11-08 Language Analysis Systems, Inc. System and method for adaptive multi-cultural searching and matching of personal names
US6424983B1 (en) 1998-05-26 2002-07-23 Global Information Research And Technologies, Llc Spelling and grammar checking system
US7711672B2 (en) 1998-05-28 2010-05-04 Lawrence Au Semantic network methods to disambiguate natural language meaning
US7526466B2 (en) 1998-05-28 2009-04-28 Qps Tech Limited Liability Company Method and system for analysis of intended meaning of natural language
US6742003B2 (en) 2001-04-30 2004-05-25 Microsoft Corporation Apparatus and accompanying methods for visualizing clusters of data and hierarchical cluster classifications
WO2000021232A2 (en) 1998-10-02 2000-04-13 International Business Machines Corporation Conversational browser and conversational systems
US6163794A (en) 1998-10-23 2000-12-19 General Magic Network system extensible by users
US6321092B1 (en) 1998-11-03 2001-11-20 Signal Soft Corporation Multiple input data management for wireless location-based applications
US7447637B1 (en) 1998-12-23 2008-11-04 Eastern Investments, Llc System and method of processing speech within a graphic user interface
US7319957B2 (en) 2004-02-11 2008-01-15 Tegic Communications, Inc. Handwriting and voice input with automatic correction
US7712053B2 (en) 1998-12-04 2010-05-04 Tegic Communications, Inc. Explicit character filtering of ambiguous text entry
US8938688B2 (en) 1998-12-04 2015-01-20 Nuance Communications, Inc. Contextual prediction of user words and user actions
US7881936B2 (en) 1998-12-04 2011-02-01 Tegic Communications, Inc. Multimodal disambiguation of speech recognition
US7679534B2 (en) 1998-12-04 2010-03-16 Tegic Communications, Inc. Contextual prediction of user words and user actions
US6842877B2 (en) 1998-12-18 2005-01-11 Tangis Corporation Contextual responses based on automated learning techniques
FR2787902B1 (en) 1998-12-23 2004-07-30 France Telecom MODEL AND METHOD FOR IMPLEMENTING A RATIONAL DIALOGUE AGENT, SERVER AND MULTI-AGENT SYSTEM FOR IMPLEMENTATION
GB2347239B (en) 1999-02-22 2003-09-24 Nokia Mobile Phones Ltd A communication terminal having a predictive editor application
GB9904662D0 (en) 1999-03-01 1999-04-21 Canon Kk Natural language search method and apparatus
US7596606B2 (en) 1999-03-11 2009-09-29 Codignotto John D Message publishing system for publishing messages from identified, authorized senders
US7761296B1 (en) 1999-04-02 2010-07-20 International Business Machines Corporation System and method for rescoring N-best hypotheses of an automatic speech recognition system
US7558381B1 (en) 1999-04-22 2009-07-07 Agere Systems Inc. Retrieval of deleted voice messages in voice messaging system
US7030863B2 (en) 2000-05-26 2006-04-18 America Online, Incorporated Virtual keyboard system with automatic correction
US7821503B2 (en) 2003-04-09 2010-10-26 Tegic Communications, Inc. Touch screen and graphical user interface
EP1192716B1 (en) 1999-05-27 2009-09-23 Tegic Communications, Inc. Keyboard system with automatic correction
EP1224569A4 (en) 1999-05-28 2005-08-10 Sehda Inc Phrase-based dialogue modeling with particular application to creating recognition grammars for voice-controlled user interfaces
US20140098247A1 (en) 1999-06-04 2014-04-10 Ip Holdings, Inc. Home Automation And Smart Home Control Using Mobile Devices And Wireless Enabled Electrical Switches
US7711565B1 (en) 1999-06-10 2010-05-04 Gazdzinski Robert F “Smart” elevator system and method
US8065155B1 (en) 1999-06-10 2011-11-22 Gazdzinski Robert F Adaptive advertising apparatus and methods
AUPQ138199A0 (en) 1999-07-02 1999-07-29 Telstra R & D Management Pty Ltd A search system
US7743188B2 (en) 1999-08-12 2010-06-22 Palm, Inc. Method and apparatus for accessing a contacts database and telephone services
US7451177B1 (en) 1999-08-12 2008-11-11 Avintaquin Capital, Llc System for and method of implementing a closed loop response architecture for electronic commerce
US7925610B2 (en) 1999-09-22 2011-04-12 Google Inc. Determining a meaning of a knowledge item using document-based information
US6789231B1 (en) 1999-10-05 2004-09-07 Microsoft Corporation Method and system for providing alternatives for text derived from stochastic input sources
US7176372B2 (en) 1999-10-19 2007-02-13 Medialab Solutions Llc Interactive digital music recorder and player
US7447635B1 (en) 1999-10-19 2008-11-04 Sony Corporation Natural language interface control system
US8392188B1 (en) 1999-11-05 2013-03-05 At&T Intellectual Property Ii, L.P. Method and system for building a phonotactic model for domain independent speech recognition
US7050977B1 (en) 1999-11-12 2006-05-23 Phoenix Solutions, Inc. Speech-enabled server for internet website and method
US7725307B2 (en) 1999-11-12 2010-05-25 Phoenix Solutions, Inc. Query engine for processing voice based queries including semantic decoding
US9076448B2 (en) 1999-11-12 2015-07-07 Nuance Communications, Inc. Distributed real time speech recognition system
US7392185B2 (en) 1999-11-12 2008-06-24 Phoenix Solutions, Inc. Speech based learning/training system using semantic decoding
US7412643B1 (en) 1999-11-23 2008-08-12 International Business Machines Corporation Method and apparatus for linking representation and realization data
US7337389B1 (en) 1999-12-07 2008-02-26 Microsoft Corporation System and method for annotating an electronic document independently of its content
US7434177B1 (en) 1999-12-20 2008-10-07 Apple Inc. User interface for providing consolidation and access
US8271287B1 (en) 2000-01-14 2012-09-18 Alcatel Lucent Voice command remote control system
GB2360106B (en) 2000-02-21 2004-09-22 Ac Properties Bv Ordering playable works
EP1275042A2 (en) 2000-03-06 2003-01-15 Kanisa Inc. A system and method for providing an intelligent multi-step dialog with a user
US6757362B1 (en) 2000-03-06 2004-06-29 Avaya Technology Corp. Personal virtual assistant
US8024415B2 (en) 2001-03-16 2011-09-20 Microsoft Corporation Priorities generation and management
US8645137B2 (en) 2000-03-16 2014-02-04 Apple Inc. Fast, language-independent method for user authentication by voice
US7187947B1 (en) 2000-03-28 2007-03-06 Affinity Labs, Llc System and method for communicating selected information to an electronic device
US7478129B1 (en) 2000-04-18 2009-01-13 Helen Jeanne Chemtob Method and apparatus for providing group interaction via communications networks
CN100520768C (en) 2000-04-24 2009-07-29 微软公司 Computer-aided reading system and method with cross-languige reading wizard
WO2001084535A2 (en) 2000-05-02 2001-11-08 Dragon Systems, Inc. Error correction in speech recognition
FR2809509B1 (en) 2000-05-26 2003-09-12 Bull Sa SYSTEM AND METHOD FOR INTERNATIONALIZING THE CONTENT OF TAGGED DOCUMENTS IN A COMPUTER SYSTEM
US7080315B1 (en) 2000-06-28 2006-07-18 International Business Machines Corporation Method and apparatus for coupling a visual browser to a voice browser
US7672952B2 (en) 2000-07-13 2010-03-02 Novell, Inc. System and method of semantic correlation of rich content
US7389225B1 (en) 2000-10-18 2008-06-17 Novell, Inc. Method and mechanism for superpositioning state vectors in a semantic abstract
US7139709B2 (en) 2000-07-20 2006-11-21 Microsoft Corporation Middleware layer between speech related applications and engines
JP2002041276A (en) 2000-07-24 2002-02-08 Sony Corp Interactive operation-supporting system, interactive operation-supporting method and recording medium
US7853664B1 (en) 2000-07-31 2010-12-14 Landmark Digital Services Llc Method and system for purchasing pre-recorded music
US6915294B1 (en) 2000-08-18 2005-07-05 Firstrain, Inc. Method and apparatus for searching network resources
WO2002017069A1 (en) 2000-08-21 2002-02-28 Yahoo! Inc. Method and system of interpreting and presenting web content using a voice browser
US6836759B1 (en) 2000-08-22 2004-12-28 Microsoft Corporation Method and system of handling the selection of alternates for recognized words
US7287009B1 (en) 2000-09-14 2007-10-23 Raanan Liebermann System and a method for carrying out personal and business transactions
US7457750B2 (en) 2000-10-13 2008-11-25 At&T Corp. Systems and methods for dynamic re-configurable speech recognition
WO2005122401A2 (en) 2004-06-04 2005-12-22 Keyless Systems Ltd Systems to enhance data entry in mobile and fixed environment
US7369993B1 (en) 2000-11-02 2008-05-06 At&T Corp. System and method of pattern recognition in very high-dimensional space
US6915262B2 (en) 2000-11-30 2005-07-05 Telesector Resources Group, Inc. Methods and apparatus for performing speech recognition and using speech recognition results
US7016847B1 (en) 2000-12-08 2006-03-21 Ben Franklin Patent Holdings L.L.C. Open architecture for a voice user interface
ATE379807T1 (en) 2000-12-11 2007-12-15 Microsoft Corp METHOD AND SYSTEM FOR MANAGING MULTIPLE NETWORK EQUIPMENT
US7607083B2 (en) 2000-12-12 2009-10-20 Nec Corporation Test summarization using relevance measures and latent semantic analysis
US6973427B2 (en) 2000-12-26 2005-12-06 Microsoft Corporation Method for adding phonetic descriptions to a speech recognition lexicon
US7257537B2 (en) 2001-01-12 2007-08-14 International Business Machines Corporation Method and apparatus for performing dialog management in a computer conversational interface
US8213910B2 (en) 2001-02-09 2012-07-03 Harris Technology, Llc Telephone using a connection network for processing data remotely from the telephone
US7171365B2 (en) 2001-02-16 2007-01-30 International Business Machines Corporation Tracking time using portable recorders and speech recognition
US7290039B1 (en) 2001-02-27 2007-10-30 Microsoft Corporation Intent based processing
US7277853B1 (en) 2001-03-02 2007-10-02 Mindspeed Technologies, Inc. System and method for a endpoint detection of speech for improved speech recognition in noisy environments
US7366979B2 (en) 2001-03-09 2008-04-29 Copernicus Investments, Llc Method and apparatus for annotating a document
EP1490790A2 (en) 2001-03-13 2004-12-29 Intelligate Ltd. Dynamic natural language understanding
WO2002073598A1 (en) 2001-03-14 2002-09-19 At & T Corp. Method for automated sentence planning in a task classification system
US7209880B1 (en) 2001-03-20 2007-04-24 At&T Corp. Systems and methods for dynamic re-configurable speech recognition
JP2002358092A (en) 2001-06-01 2002-12-13 Sony Corp Voice synthesizing system
US20020194003A1 (en) 2001-06-05 2002-12-19 Mozer Todd F. Client-server security system and method
US7328250B2 (en) 2001-06-29 2008-02-05 Nokia, Inc. Apparatus and method for handling electronic mail
US20050134578A1 (en) 2001-07-13 2005-06-23 Universal Electronics Inc. System and methods for interacting with a control environment
US7987151B2 (en) 2001-08-10 2011-07-26 General Dynamics Advanced Info Systems, Inc. Apparatus and method for problem solving using intelligent agents
US7920682B2 (en) 2001-08-21 2011-04-05 Byrne William J Dynamic interactive voice interface
US7774388B1 (en) 2001-08-31 2010-08-10 Margaret Runchey Model of everything with UR-URL combination identity-identifier-addressing-indexing method, means, and apparatus
US7953447B2 (en) 2001-09-05 2011-05-31 Vocera Communications, Inc. Voice-controlled communications system and method using a badge application
US8121649B2 (en) 2001-09-05 2012-02-21 Vocera Communications, Inc. Voice-controlled communications system and method having an access device
US7103848B2 (en) 2001-09-13 2006-09-05 International Business Machines Corporation Handheld electronic book reader with annotation and usage tracking capabilities
CN100339809C (en) 2001-09-21 2007-09-26 联想(新加坡)私人有限公司 Input apparatus, computer apparatus, method for identifying input object, method for identifying input object in keyboard, and computer program
US7403938B2 (en) 2001-09-24 2008-07-22 Iac Search & Media, Inc. Natural language query processing
US7324947B2 (en) 2001-10-03 2008-01-29 Promptu Systems Corporation Global speech user interface
US7167832B2 (en) 2001-10-15 2007-01-23 At&T Corp. Method for dialog management
US7345671B2 (en) 2001-10-22 2008-03-18 Apple Inc. Method and apparatus for use of rotational user inputs
US7312785B2 (en) 2001-10-22 2007-12-25 Apple Inc. Method and apparatus for accelerated scrolling
ITFI20010199A1 (en) 2001-10-22 2003-04-22 Riccardo Vieri SYSTEM AND METHOD TO TRANSFORM TEXTUAL COMMUNICATIONS INTO VOICE AND SEND THEM WITH AN INTERNET CONNECTION TO ANY TELEPHONE SYSTEM
US7913185B1 (en) 2001-10-25 2011-03-22 Adobe Systems Incorporated Graphical insertion of JavaScript pop-up menus
US7359671B2 (en) 2001-10-30 2008-04-15 Unwired Technology Llc Multiple channel wireless communication system
US20030101054A1 (en) 2001-11-27 2003-05-29 Ncc, Llc Integrated system and method for electronic speech recognition and transcription
US7447624B2 (en) 2001-11-27 2008-11-04 Sun Microsystems, Inc. Generation of localized software applications
US7483832B2 (en) 2001-12-10 2009-01-27 At&T Intellectual Property I, L.P. Method and system for customizing voice translation of text to speech
US7490039B1 (en) 2001-12-13 2009-02-10 Cisco Technology, Inc. Text to speech system and method having interactive spelling capabilities
US7103542B2 (en) 2001-12-14 2006-09-05 Ben Franklin Patent Holding Llc Automatically improving a voice recognition system
WO2004002044A2 (en) 2002-02-01 2003-12-31 John Fairweather A system for exchanging binary data
US20030191629A1 (en) 2002-02-04 2003-10-09 Shinichi Yoshizawa Interface apparatus and task control method for assisting in the operation of a device using recognition technology
US8374879B2 (en) 2002-02-04 2013-02-12 Microsoft Corporation Systems and methods for managing interactions from multiple speech-enabled applications
US9374451B2 (en) 2002-02-04 2016-06-21 Nokia Technologies Oy System and method for multimodal short-cuts to digital services
US7272377B2 (en) 2002-02-07 2007-09-18 At&T Corp. System and method of ubiquitous language translation for wireless devices
US8249880B2 (en) 2002-02-14 2012-08-21 Intellisist, Inc. Real-time display of system instructions
AU2003216329A1 (en) 2002-02-15 2003-09-09 Mathsoft Engineering And Education, Inc. Linguistic support for a regognizer of mathematical expressions
US7009663B2 (en) 2003-12-17 2006-03-07 Planar Systems, Inc. Integrated optical light sensitive active matrix liquid crystal display
US7221287B2 (en) 2002-03-05 2007-05-22 Triangle Software Llc Three-dimensional traffic report
JP4039086B2 (en) 2002-03-05 2008-01-30 ソニー株式会社 Information processing apparatus and information processing method, information processing system, recording medium, and program
US7360158B1 (en) 2002-03-28 2008-04-15 At&T Mobility Ii Llc Interactive education tool
JP2003295882A (en) 2002-04-02 2003-10-15 Canon Inc Text structure for speech synthesis, speech synthesizing method, speech synthesizer and computer program therefor
US7707221B1 (en) 2002-04-03 2010-04-27 Yahoo! Inc. Associating and linking compact disc metadata
US7359493B1 (en) 2002-04-11 2008-04-15 Aol Llc, A Delaware Limited Liability Company Bulk voicemail
US7043474B2 (en) 2002-04-15 2006-05-09 International Business Machines Corporation System and method for measuring image similarity based on semantic meaning
US7073193B2 (en) 2002-04-16 2006-07-04 Microsoft Corporation Media content descriptions
US7869998B1 (en) 2002-04-23 2011-01-11 At&T Intellectual Property Ii, L.P. Voice-enabled dialog system
US8135115B1 (en) 2006-11-22 2012-03-13 Securus Technologies, Inc. System and method for multi-channel recording
US7490034B2 (en) 2002-04-30 2009-02-10 Microsoft Corporation Lexicon with sectionalized data and method of using the same
US7221937B2 (en) 2002-05-06 2007-05-22 Research In Motion Limited Event reminder method
US7380203B2 (en) 2002-05-14 2008-05-27 Microsoft Corporation Natural input recognition tool
US7436947B2 (en) 2002-05-14 2008-10-14 Avaya Inc. Method and apparatus for automatic notification and response based on communication flow expressions
US7493560B1 (en) 2002-05-20 2009-02-17 Oracle International Corporation Definition links in online documentation
US8611919B2 (en) 2002-05-23 2013-12-17 Wounder Gmbh., Llc System, method, and computer program product for providing location based services and mobile e-commerce
US7546382B2 (en) 2002-05-28 2009-06-09 International Business Machines Corporation Methods and systems for authoring of mixed-initiative multi-modal interactions and related browsing mechanisms
US7398209B2 (en) 2002-06-03 2008-07-08 Voicebox Technologies, Inc. Systems and methods for responding to natural language speech utterance
US7680649B2 (en) 2002-06-17 2010-03-16 International Business Machines Corporation System, method, program product, and networking use for recognizing words and their parts of speech in one or more natural languages
US8219608B2 (en) 2002-06-20 2012-07-10 Koninklijke Philips Electronics N.V. Scalable architecture for web services
US7568151B2 (en) 2002-06-27 2009-07-28 Microsoft Corporation Notification of activity around documents
US7079713B2 (en) 2002-06-28 2006-07-18 Microsoft Corporation Method and system for displaying and linking ink objects with recognized text and objects
AU2003280474A1 (en) 2002-06-28 2004-01-19 Conceptual Speech, Llc Multi-phoneme streamer and knowledge representation speech recognition system and method
US7656393B2 (en) 2005-03-04 2010-02-02 Apple Inc. Electronic device having display and surrounding touch sensitive bezel for user interface and control
US7693720B2 (en) 2002-07-15 2010-04-06 Voicebox Technologies, Inc. Mobile systems and methods for responding to natural language speech utterance
US6876727B2 (en) 2002-07-24 2005-04-05 Sbc Properties, Lp Voice over IP method for developing interactive voice response system
US7535997B1 (en) 2002-07-29 2009-05-19 At&T Intellectual Property I, L.P. Systems and methods for silent message delivery
US7027842B2 (en) 2002-09-24 2006-04-11 Bellsouth Intellectual Property Corporation Apparatus and method for providing hands-free operation of a device
US7328155B2 (en) 2002-09-25 2008-02-05 Toyota Infotechnology Center Co., Ltd. Method and system for speech recognition using grammar weighted based upon location information
US7467087B1 (en) 2002-10-10 2008-12-16 Gillick Laurence S Training and using pronunciation guessers in speech recognition
US7373612B2 (en) 2002-10-21 2008-05-13 Battelle Memorial Institute Multidimensional structured data visualization method and apparatus, text visualization method and apparatus, method and apparatus for visualizing and graphically navigating the world wide web, method and apparatus for visualizing hierarchies
US7386799B1 (en) 2002-11-21 2008-06-10 Forterra Systems, Inc. Cinematic techniques in avatar-centric communication during a multi-user online simulation
US7783486B2 (en) 2002-11-22 2010-08-24 Roy Jonathan Rosser Response generator for mimicking human-computer natural language conversation
US7298930B1 (en) 2002-11-29 2007-11-20 Ricoh Company, Ltd. Multimodal access of meeting recordings
EP2017828A1 (en) 2002-12-10 2009-01-21 Kirusa, Inc. Techniques for disambiguating speech input using multimodal interfaces
US7386449B2 (en) 2002-12-11 2008-06-10 Voice Enabling Systems Technology Inc. Knowledge-based flexible natural speech dialogue system
US7353139B1 (en) 2002-12-13 2008-04-01 Garmin Ltd. Portable apparatus with performance monitoring and audio entertainment features
FR2848688A1 (en) 2002-12-17 2004-06-18 France Telecom Text language identifying device for linguistic analysis of text, has analyzing unit to analyze chain characters of words extracted from one text, where each chain is completed so that each time chains are found in word
JP3974511B2 (en) 2002-12-19 2007-09-12 インターナショナル・ビジネス・マシーンズ・コーポレーション Computer system for generating data structure for information retrieval, method therefor, computer-executable program for generating data structure for information retrieval, computer-executable program for generating data structure for information retrieval Stored computer-readable storage medium, information retrieval system, and graphical user interface system
AU2002353389A1 (en) 2002-12-20 2004-07-14 Nokia Corporation Method and device for organizing user provided information with meta-information
US8661112B2 (en) 2002-12-20 2014-02-25 Nuance Communications, Inc. Customized interactive voice response menus
JP2004205605A (en) 2002-12-24 2004-07-22 Yamaha Corp Speech and musical piece reproducing device and sequence data format
US7703091B1 (en) 2002-12-31 2010-04-20 Emc Corporation Methods and apparatus for installing agents in a managed network
US7003464B2 (en) 2003-01-09 2006-02-21 Motorola, Inc. Dialog recognition and control in a voice browser
US7593868B2 (en) 2003-01-29 2009-09-22 Innovation Interactive Llc Systems and methods for providing contextual advertising information via a communication network
US7617094B2 (en) 2003-02-28 2009-11-10 Palo Alto Research Center Incorporated Methods, apparatus, and products for identifying a conversation
US7805299B2 (en) 2004-03-01 2010-09-28 Coifman Robert E Method and apparatus for improving the transcription accuracy of speech recognition software
WO2004079720A1 (en) 2003-03-01 2004-09-16 Robert E Coifman Method and apparatus for improving the transcription accuracy of speech recognition software
US7809565B2 (en) 2003-03-01 2010-10-05 Coifman Robert E Method and apparatus for improving the transcription accuracy of speech recognition software
US7529671B2 (en) 2003-03-04 2009-05-05 Microsoft Corporation Block synchronous decoding
US8064753B2 (en) 2003-03-05 2011-11-22 Freeman Alan D Multi-feature media article and method for manufacture of same
JP4828091B2 (en) 2003-03-05 2011-11-30 ヒューレット・パッカード・カンパニー Clustering method program and apparatus
US7835504B1 (en) 2003-03-16 2010-11-16 Palm, Inc. Telephone number parsing and linking
US8244712B2 (en) 2003-03-18 2012-08-14 Apple Inc. Localized viewing of file system names
US7613797B2 (en) 2003-03-19 2009-11-03 Unisys Corporation Remote discovery and system architecture
US7496498B2 (en) 2003-03-24 2009-02-24 Microsoft Corporation Front-end architecture for a multi-lingual text-to-speech system
US8745541B2 (en) 2003-03-25 2014-06-03 Microsoft Corporation Architecture for controlling a computer using hand gestures
US7394947B2 (en) 2003-04-08 2008-07-01 The Penn State Research Foundation System and method for automatic linguistic indexing of images by a statistical modeling approach
US7941009B2 (en) 2003-04-08 2011-05-10 The Penn State Research Foundation Real-time computerized annotation of pictures
US20050266884A1 (en) 2003-04-22 2005-12-01 Voice Genesis, Inc. Methods and systems for conducting remote communications
US7711550B1 (en) 2003-04-29 2010-05-04 Microsoft Corporation Methods and system for recognizing names in a computer-generated document and for providing helpful actions associated with recognized names
US7669134B1 (en) 2003-05-02 2010-02-23 Apple Inc. Method and apparatus for displaying information during an instant messaging session
US7421393B1 (en) 2004-03-01 2008-09-02 At&T Corp. System for developing a dialog manager using modular spoken-dialog components
US7407384B2 (en) 2003-05-29 2008-08-05 Robert Bosch Gmbh System, method and device for language education through a voice portal server
US7493251B2 (en) 2003-05-30 2009-02-17 Microsoft Corporation Using source-channel models for word segmentation
US7496230B2 (en) 2003-06-05 2009-02-24 International Business Machines Corporation System and method for automatic natural language translation of embedded text regions in images during information transfer
WO2004110099A2 (en) 2003-06-06 2004-12-16 Gn Resound A/S A hearing aid wireless network
US7720683B1 (en) 2003-06-13 2010-05-18 Sensory, Inc. Method and apparatus of specifying and performing speech recognition operations
KR100634496B1 (en) 2003-06-16 2006-10-13 삼성전자주식회사 Input language recognition method and apparatus and method and apparatus for automatically interchanging input language modes employing the same
US7559026B2 (en) 2003-06-20 2009-07-07 Apple Inc. Video conferencing system having focus control
US7827047B2 (en) 2003-06-24 2010-11-02 At&T Intellectual Property I, L.P. Methods and systems for assisting scheduling with automation
US7757182B2 (en) 2003-06-25 2010-07-13 Microsoft Corporation Taskbar media player
US7634732B1 (en) 2003-06-26 2009-12-15 Microsoft Corporation Persona menu
US7363586B1 (en) 2003-06-26 2008-04-22 Microsoft Corporation Component localization
US7739588B2 (en) 2003-06-27 2010-06-15 Microsoft Corporation Leveraging markup language data for semantically labeling text strings and data and for providing actions based on semantically labeled text strings and data
US7580551B1 (en) 2003-06-30 2009-08-25 The Research Foundation Of State University Of Ny Method and apparatus for analyzing and/or comparing handwritten and/or biometric samples
AU2003304306A1 (en) 2003-07-01 2005-01-21 Nokia Corporation Method and device for operating a user-input area on an electronic display device
US20080097937A1 (en) 2003-07-10 2008-04-24 Ali Hadjarian Distributed method for integrating data mining and text categorization techniques
US8373660B2 (en) 2003-07-14 2013-02-12 Matt Pallakoff System and method for a portable multimedia client
US7757173B2 (en) 2003-07-18 2010-07-13 Apple Inc. Voice menu system
KR100811232B1 (en) 2003-07-18 2008-03-07 엘지전자 주식회사 Turn-by-turn navigation system ? next guidance way
US20080101584A1 (en) 2003-08-01 2008-05-01 Mitel Networks Corporation Method of providing context aware announcements
US7386438B1 (en) 2003-08-04 2008-06-10 Google Inc. Identifying language attributes through probabilistic analysis
US7386110B2 (en) 2003-08-14 2008-06-10 Hewlett-Packard Development Company, L.P. Directory assistance utilizing a personalized cache
WO2005024781A1 (en) 2003-08-29 2005-03-17 Johnson Controls Technology Company System and method of operating a speech recognition system in a vehicle
US8311835B2 (en) 2003-08-29 2012-11-13 Microsoft Corporation Assisted multi-modal dialogue
US7475010B2 (en) 2003-09-03 2009-01-06 Lingospot, Inc. Adaptive and scalable method for resolving natural language ambiguities
US7539619B1 (en) 2003-09-05 2009-05-26 Spoken Translation Ind. Speech-enabled language translation system and method enabling interactive user supervision of translation and speech recognition accuracy
US7475015B2 (en) 2003-09-05 2009-01-06 International Business Machines Corporation Semantic language modeling and confidence measurement
US20050054381A1 (en) 2003-09-05 2005-03-10 Samsung Electronics Co., Ltd. Proactive user interface
US7337108B2 (en) 2003-09-10 2008-02-26 Microsoft Corporation System and method for providing high-quality stretching and compression of a digital audio signal
JP4663223B2 (en) 2003-09-11 2011-04-06 パナソニック株式会社 Arithmetic processing unit
AU2003260819A1 (en) 2003-09-12 2005-04-06 Nokia Corporation Method and device for handling missed calls in a mobile communications environment
US7418392B1 (en) 2003-09-25 2008-08-26 Sensory, Inc. System and method for controlling the operation of a device by voice commands
US7460652B2 (en) 2003-09-26 2008-12-02 At&T Intellectual Property I, L.P. VoiceXML and rule engine based switchboard for interactive voice response (IVR) services
US20060008256A1 (en) 2003-10-01 2006-01-12 Khedouri Robert K Audio visual player apparatus and system and method of content distribution using the same
US7386440B2 (en) 2003-10-01 2008-06-10 International Business Machines Corporation Method, system, and apparatus for natural language mixed-initiative dialogue processing
EP1881443B1 (en) 2003-10-03 2009-04-08 Asahi Kasei Kogyo Kabushiki Kaisha Data processing unit, method and control program
US7318020B1 (en) 2003-10-08 2008-01-08 Microsoft Corporation Methods and systems for external localization
US7620894B1 (en) 2003-10-08 2009-11-17 Apple Inc. Automatic, dynamic user interface configuration
US7383170B2 (en) 2003-10-10 2008-06-03 At&T Knowledge Ventures, L.P. System and method for analyzing automatic speech recognition performance data
US7487092B2 (en) 2003-10-17 2009-02-03 International Business Machines Corporation Interactive debugging and tuning method for CTTS voice building
US7409347B1 (en) 2003-10-23 2008-08-05 Apple Inc. Data-driven global boundary optimization
US7643990B1 (en) 2003-10-23 2010-01-05 Apple Inc. Global boundary-centric feature extraction and associated discontinuity metrics
US7669177B2 (en) 2003-10-24 2010-02-23 Microsoft Corporation System and method for preference application installation and execution
US7292726B2 (en) 2003-11-10 2007-11-06 Microsoft Corporation Recognition of electronic ink with late strokes
US7584092B2 (en) 2004-11-15 2009-09-01 Microsoft Corporation Unsupervised learning of paraphrase/translation alternations and selective application thereof
US7561069B2 (en) 2003-11-12 2009-07-14 Legalview Assets, Limited Notification systems and methods enabling a response to change particulars of delivery or pickup
JP4516527B2 (en) 2003-11-12 2010-08-04 本田技研工業株式会社 Voice recognition device
US7841533B2 (en) 2003-11-13 2010-11-30 Metrologic Instruments, Inc. Method of capturing and processing digital images of an object within the field of view (FOV) of a hand-supportable digitial image capture and processing system
US7779356B2 (en) 2003-11-26 2010-08-17 Griesmer James P Enhanced data tip system and method
US20090018918A1 (en) 2004-11-04 2009-01-15 Manyworlds Inc. Influence-based Social Network Advertising
US7292978B2 (en) * 2003-12-04 2007-11-06 Toyota Infotechnology Center Co., Ltd. Shortcut names for use in a speech recognition system
JP4533845B2 (en) 2003-12-05 2010-09-01 株式会社ケンウッド Audio device control apparatus, audio device control method, and program
US7689412B2 (en) 2003-12-05 2010-03-30 Microsoft Corporation Synonymous collocation extraction using translation information
US7412388B2 (en) 2003-12-12 2008-08-12 International Business Machines Corporation Language-enhanced programming tools
US7427024B1 (en) 2003-12-17 2008-09-23 Gazdzinski Mark J Chattel management apparatus and methods
US7356748B2 (en) 2003-12-19 2008-04-08 Telefonaktiebolaget Lm Ericsson (Publ) Partial spectral loss concealment in transform codecs
EP1699042B1 (en) 2003-12-26 2010-02-17 Kabushiki Kaisha Kenwood Device control device, method and program
US7404143B2 (en) 2003-12-26 2008-07-22 Microsoft Corporation Server-based single roundtrip spell checking
US7401300B2 (en) 2004-01-09 2008-07-15 Nokia Corporation Adaptive user interface input device
US8160883B2 (en) 2004-01-10 2012-04-17 Microsoft Corporation Focus tracking in dialogs
US7552055B2 (en) 2004-01-10 2009-06-23 Microsoft Corporation Dialog component re-use in recognition systems
US8281339B1 (en) 2004-01-12 2012-10-02 United Video Properties, Inc. Customizable flip and browse overlays in an interactive television system
US7660715B1 (en) 2004-01-12 2010-02-09 Avaya Inc. Transparent monitoring and intervention to improve automatic adaptation of speech models
US7359851B2 (en) 2004-01-14 2008-04-15 Clairvoyance Corporation Method of identifying the language of a textual passage using short word and/or n-gram comparisons
US7707039B2 (en) 2004-02-15 2010-04-27 Exbiblio B.V. Automatic modification of web pages
EP1560200B8 (en) 2004-01-29 2009-08-05 Harman Becker Automotive Systems GmbH Method and system for spoken dialogue interface
CA2640927C (en) 2004-01-30 2012-01-17 Research In Motion Limited Contact query data system and method
US7610258B2 (en) 2004-01-30 2009-10-27 Microsoft Corporation System and method for exposing a child list
US7596499B2 (en) 2004-02-02 2009-09-29 Panasonic Corporation Multilingual text-to-speech system with limited resources
US7542971B2 (en) 2004-02-02 2009-06-02 Fuji Xerox Co., Ltd. Systems and methods for collaborative note-taking
JP4262113B2 (en) 2004-02-13 2009-05-13 シチズン電子株式会社 Backlight
US7721226B2 (en) 2004-02-18 2010-05-18 Microsoft Corporation Glom widget
US7433876B2 (en) 2004-02-23 2008-10-07 Radar Networks, Inc. Semantic web portal and platform
US8654936B1 (en) 2004-02-24 2014-02-18 At&T Intellectual Property I, L.P. Home control, monitoring and communication system using remote voice commands
KR100462292B1 (en) 2004-02-26 2004-12-17 엔에이치엔(주) A method for providing search results list based on importance information and a system thereof
US20050195094A1 (en) 2004-03-05 2005-09-08 White Russell W. System and method for utilizing a bicycle computer to monitor athletic performance
US7693715B2 (en) 2004-03-10 2010-04-06 Microsoft Corporation Generating large units of graphonemes with mutual information criterion for letter to sound conversion
US7711129B2 (en) 2004-03-11 2010-05-04 Apple Inc. Method and system for approximating graphic equalizers using dynamic filter order reduction
US7983835B2 (en) 2004-11-03 2011-07-19 Lagassey Paul J Modular intelligent transportation system
US7478033B2 (en) 2004-03-16 2009-01-13 Google Inc. Systems and methods for translating Chinese pinyin to Chinese characters
JP4587160B2 (en) 2004-03-26 2010-11-24 キヤノン株式会社 Signal processing apparatus and method
US7409337B1 (en) 2004-03-30 2008-08-05 Microsoft Corporation Natural language processing interface
US7716216B1 (en) 2004-03-31 2010-05-11 Google Inc. Document ranking based on semantic distance between terms in a document
US7747601B2 (en) 2006-08-14 2010-06-29 Inquira, Inc. Method and apparatus for identifying and classifying query intent
US8713418B2 (en) 2004-04-12 2014-04-29 Google Inc. Adding value to a rendered document
US7496512B2 (en) 2004-04-13 2009-02-24 Microsoft Corporation Refining of segmental boundaries in speech waveforms using contextual-dependent models
US7623119B2 (en) 2004-04-21 2009-11-24 Nokia Corporation Graphical functions by gestures
WO2005103951A1 (en) 2004-04-23 2005-11-03 Novauris Technologies Limited Tree index based method for accessing automatic directory
JP4296598B2 (en) 2004-04-30 2009-07-15 カシオ計算機株式会社 Communication terminal device and communication terminal processing program
US7657844B2 (en) 2004-04-30 2010-02-02 International Business Machines Corporation Providing accessibility compliance within advanced componentry
US7447665B2 (en) 2004-05-10 2008-11-04 Kinetx, Inc. System and method of self-learning conceptual mapping to organize and interpret data
EP1751936A1 (en) 2004-05-14 2007-02-14 Philips Intellectual Property & Standards GmbH Method for transmitting messages from a sender to a recipient, a messaging system and message converting means
US7366461B1 (en) 2004-05-17 2008-04-29 Wendell Brown Method and apparatus for improving the quality of a recorded broadcast audio program
US7778830B2 (en) 2004-05-19 2010-08-17 International Business Machines Corporation Training speaker-dependent, phrase-based speech grammars using an unsupervised automated technique
US8130929B2 (en) 2004-05-25 2012-03-06 Galileo Processing, Inc. Methods for obtaining complex data in an interactive voice response system
CN100524457C (en) 2004-05-31 2009-08-05 国际商业机器公司 Device and method for text-to-speech conversion and corpus adjustment
US7873149B2 (en) 2004-06-01 2011-01-18 Verizon Business Global Llc Systems and methods for gathering information
US8060138B2 (en) 2004-06-02 2011-11-15 Research In Motion Limited Handheld electronic device and associated method employing a multiple-axis input device and providing a learning function in a text disambiguation environment
US8095364B2 (en) 2004-06-02 2012-01-10 Tegic Communications, Inc. Multimodal disambiguation of speech recognition
US7673340B1 (en) 2004-06-02 2010-03-02 Clickfox Llc System and method for analyzing system user behavior
US8224649B2 (en) 2004-06-02 2012-07-17 International Business Machines Corporation Method and apparatus for remote command, control and diagnostics of systems using conversational or audio interface
EP1756539A1 (en) 2004-06-04 2007-02-28 Philips Intellectual Property & Standards GmbH Performance prediction for an interactive speech recognition system
US7472065B2 (en) 2004-06-04 2008-12-30 International Business Machines Corporation Generating paralinguistic phenomena via markup in text-to-speech synthesis
US7730482B2 (en) 2004-06-08 2010-06-01 Covia Labs, Inc. Method and system for customized programmatic dynamic creation of interoperability content
WO2005122145A1 (en) 2004-06-08 2005-12-22 Metaphor Solutions, Inc. Speech recognition dialog management
US7565104B1 (en) 2004-06-16 2009-07-21 Wendell Brown Broadcast audio program guide
US8321786B2 (en) 2004-06-17 2012-11-27 Apple Inc. Routine and interface for correcting electronic text
GB0413743D0 (en) 2004-06-19 2004-07-21 Ibm Method and system for approximate string matching
US20070214133A1 (en) 2004-06-23 2007-09-13 Edo Liberty Methods for filtering data and filling in missing data using nonlinear inference
US8099395B2 (en) 2004-06-24 2012-01-17 Oracle America, Inc. System level identity object
US7720674B2 (en) 2004-06-29 2010-05-18 Sap Ag Systems and methods for processing natural language queries
JP4416643B2 (en) 2004-06-29 2010-02-17 キヤノン株式会社 Multimodal input method
US7505795B1 (en) 2004-07-07 2009-03-17 Advanced Micro Devices, Inc. Power save management with customized range for user configuration and tuning value based upon recent usage
US7823123B2 (en) 2004-07-13 2010-10-26 The Mitre Corporation Semantic system for integrating software components
JP4652737B2 (en) 2004-07-14 2011-03-16 インターナショナル・ビジネス・マシーンズ・コーポレーション Word boundary probability estimation device and method, probabilistic language model construction device and method, kana-kanji conversion device and method, and unknown word model construction method,
US8036893B2 (en) 2004-07-22 2011-10-11 Nuance Communications, Inc. Method and system for identifying and correcting accent-induced speech recognition difficulties
US7936861B2 (en) 2004-07-23 2011-05-03 At&T Intellectual Property I, L.P. Announcement system and method of use
US7603349B1 (en) 2004-07-29 2009-10-13 Yahoo! Inc. User interfaces for search systems using in-line contextual queries
US7725318B2 (en) 2004-07-30 2010-05-25 Nice Systems Inc. System and method for improving the accuracy of audio searching
US7653883B2 (en) 2004-07-30 2010-01-26 Apple Inc. Proximity detector in handheld device
US8381135B2 (en) 2004-07-30 2013-02-19 Apple Inc. Proximity detector in handheld device
US7831601B2 (en) 2004-08-04 2010-11-09 International Business Machines Corporation Method for automatically searching for documents related to calendar and email entries
US7508324B2 (en) 2004-08-06 2009-03-24 Daniel Suraqui Finger activated reduced keyboard and a method for performing text input
US7724242B2 (en) 2004-08-06 2010-05-25 Touchtable, Inc. Touch driven method and apparatus to integrate and display multiple image layers forming alternate depictions of same subject matter
US7728821B2 (en) 2004-08-06 2010-06-01 Touchtable, Inc. Touch detecting interactive display
JP4563106B2 (en) 2004-08-09 2010-10-13 アルパイン株式会社 In-vehicle device and audio output method thereof
US7869999B2 (en) 2004-08-11 2011-01-11 Nuance Communications, Inc. Systems and methods for selecting from multiple phonectic transcriptions for text-to-speech synthesis
US8117542B2 (en) 2004-08-16 2012-02-14 Microsoft Corporation User interface for displaying selectable software functionality controls that are contextually relevant to a selected object
US7895531B2 (en) 2004-08-16 2011-02-22 Microsoft Corporation Floating command object
US7912699B1 (en) 2004-08-23 2011-03-22 At&T Intellectual Property Ii, L.P. System and method of lattice-based search for spoken utterance retrieval
US20060048055A1 (en) 2004-08-25 2006-03-02 Jun Wu Fault-tolerant romanized input method for non-roman characters
US7853574B2 (en) 2004-08-26 2010-12-14 International Business Machines Corporation Method of generating a context-inferenced search query and of sorting a result of the query
US7477238B2 (en) 2004-08-31 2009-01-13 Research In Motion Limited Handheld electronic device with text disambiguation
US20080294651A1 (en) 2004-09-14 2008-11-27 Hiroaki Masuyama Drawing Device for Relationship Diagram of Documents Arranging the Documents in Chronolgical Order
US20060059424A1 (en) 2004-09-15 2006-03-16 Petri Jonah W Real-time data localization
US7319385B2 (en) 2004-09-17 2008-01-15 Nokia Corporation Sensor data sharing
US7447360B2 (en) 2004-09-22 2008-11-04 Microsoft Corporation Analyzing tabular structures in expression recognition
US7716056B2 (en) 2004-09-27 2010-05-11 Robert Bosch Corporation Method and system for interactive conversational dialogue for cognitively overloaded device users
US7177714B2 (en) * 2004-09-28 2007-02-13 Siemens Technology-To-Business Center, Llc Method and apparatus for determining and representing continuous resource loading profiles and overload probability functions for complex discrete manufacturing
US8107401B2 (en) 2004-09-30 2012-01-31 Avaya Inc. Method and apparatus for providing a virtual assistant to a communication participant
KR100754385B1 (en) 2004-09-30 2007-08-31 삼성전자주식회사 Apparatus and method for object localization, tracking, and separation using audio and video sensors
US7603381B2 (en) 2004-09-30 2009-10-13 Microsoft Corporation Contextual action publishing
US7936863B2 (en) 2004-09-30 2011-05-03 Avaya Inc. Method and apparatus for providing communication tasks in a workflow
US8744852B1 (en) 2004-10-01 2014-06-03 Apple Inc. Spoken interfaces
US7756871B2 (en) 2004-10-13 2010-07-13 Hewlett-Packard Development Company, L.P. Article extraction
US7543232B2 (en) 2004-10-19 2009-06-02 International Business Machines Corporation Intelligent web based help system
US7693719B2 (en) 2004-10-29 2010-04-06 Microsoft Corporation Providing personalized voice font for text-to-speech applications
US7735012B2 (en) 2004-11-04 2010-06-08 Apple Inc. Audio user interface for computing devices
KR101087483B1 (en) 2004-11-04 2011-11-28 엘지전자 주식회사 Method and apparatus for controlling output of audio signal for route guidance in navigation system
US7885844B1 (en) 2004-11-16 2011-02-08 Amazon Technologies, Inc. Automatically generating task recommendations for human task performers
JP4604178B2 (en) 2004-11-22 2010-12-22 独立行政法人産業技術総合研究所 Speech recognition apparatus and method, and program
WO2006056822A1 (en) 2004-11-23 2006-06-01 Nokia Corporation Processing a message received from a mobile cellular network
US7702500B2 (en) 2004-11-24 2010-04-20 Blaedow Karen R Method and apparatus for determining the meaning of natural language
US7376645B2 (en) 2004-11-29 2008-05-20 The Intellection Group, Inc. Multimodal natural language query system and architecture for processing voice and proximity-based queries
JP4297442B2 (en) 2004-11-30 2009-07-15 富士通株式会社 Handwritten information input device
US20080255837A1 (en) 2004-11-30 2008-10-16 Jonathan Kahn Method for locating an audio segment within an audio file
US8498865B1 (en) 2004-11-30 2013-07-30 Vocera Communications, Inc. Speech recognition system and method using group call statistics
US7630900B1 (en) 2004-12-01 2009-12-08 Tellme Networks, Inc. Method and system for selecting grammars based on geographic information associated with a caller
US8214214B2 (en) 2004-12-03 2012-07-03 Phoenix Solutions, Inc. Emotion detection device and method for use in distributed systems
US7636657B2 (en) 2004-12-09 2009-12-22 Microsoft Corporation Method and apparatus for automatic grammar generation from data entries
US7853445B2 (en) 2004-12-10 2010-12-14 Deception Discovery Technologies LLC Method and system for the automatic recognition of deceptive language
US8275618B2 (en) 2004-12-22 2012-09-25 Nuance Communications, Inc. Mobile dictation correction user interface
WO2006069381A2 (en) 2004-12-22 2006-06-29 Enterprise Integration Group Turn-taking confidence
US7483692B2 (en) 2004-12-28 2009-01-27 Sony Ericsson Mobile Communications Ab System and method of predicting user input to a mobile terminal
US7818672B2 (en) 2004-12-30 2010-10-19 Microsoft Corporation Floating action buttons
US7987244B1 (en) 2004-12-30 2011-07-26 At&T Intellectual Property Ii, L.P. Network repository for voice fonts
US7444589B2 (en) 2004-12-30 2008-10-28 At&T Intellectual Property I, L.P. Automated patent office documentation
US8478589B2 (en) 2005-01-05 2013-07-02 At&T Intellectual Property Ii, L.P. Library of existing spoken dialog data for use in generating new natural language spoken dialog systems
US7593782B2 (en) 2005-01-07 2009-09-22 Apple Inc. Highly portable media device
US7363227B2 (en) 2005-01-10 2008-04-22 Herman Miller, Inc. Disruption of speech understanding by adding a privacy sound thereto
US8069422B2 (en) 2005-01-10 2011-11-29 Samsung Electronics, Co., Ltd. Contextual task recommendation system and method for determining user's context and suggesting tasks
US7418389B2 (en) 2005-01-11 2008-08-26 Microsoft Corporation Defining atom units between phone and syllable for TTS systems
US20080189099A1 (en) 2005-01-12 2008-08-07 Howard Friedman Customizable Delivery of Audio Information
US7337170B2 (en) 2005-01-18 2008-02-26 International Business Machines Corporation System and method for planning and generating queries for multi-dimensional analysis using domain models and data federation
US8150872B2 (en) 2005-01-24 2012-04-03 The Intellection Group, Inc. Multimodal natural language query system for processing and analyzing voice and proximity-based queries
US7873654B2 (en) 2005-01-24 2011-01-18 The Intellection Group, Inc. Multimodal natural language query system for processing and analyzing voice and proximity-based queries
US8228299B1 (en) 2005-01-27 2012-07-24 Singleton Technology, Llc Transaction automation and archival system using electronic contract and disclosure units
US7508373B2 (en) 2005-01-28 2009-03-24 Microsoft Corporation Form factor and input method for language input
US7734569B2 (en) 2005-02-03 2010-06-08 Strands, Inc. Recommender system for identifying a new set of media items responsive to an input set of media items and knowledge base metrics
GB0502259D0 (en) 2005-02-03 2005-03-09 British Telecomm Document searching tool and method
US8200495B2 (en) 2005-02-04 2012-06-12 Vocollect, Inc. Methods and systems for considering information about an expected response when performing speech recognition
US7895039B2 (en) 2005-02-04 2011-02-22 Vocollect, Inc. Methods and systems for optimizing model adaptation for a speech recognition system
US7813481B1 (en) 2005-02-18 2010-10-12 At&T Mobility Ii Llc Conversation recording with real-time notification for users of communication terminals
JP4911028B2 (en) 2005-02-24 2012-04-04 富士ゼロックス株式会社 Word translation device, translation method, and translation program
US7634413B1 (en) 2005-02-25 2009-12-15 Apple Inc. Bitrate constrained variable bitrate audio encoding
US7412389B2 (en) 2005-03-02 2008-08-12 Yang George L Document animation system
WO2005057425A2 (en) 2005-03-07 2005-06-23 Linguatec Sprachtechnologien Gmbh Hybrid machine translation system
US7676026B1 (en) 2005-03-08 2010-03-09 Baxtech Asia Pte Ltd Desktop telephony system
US7814514B2 (en) 2005-03-10 2010-10-12 Panasonic Corporation Digital broadcast receiving apparatus configured for use with copy control information
JP4404211B2 (en) 2005-03-14 2010-01-27 富士ゼロックス株式会社 Multilingual translation memory, translation method and translation program
US7706510B2 (en) 2005-03-16 2010-04-27 Research In Motion System and method for personalized text-to-voice synthesis
US20060218506A1 (en) 2005-03-23 2006-09-28 Edward Srenger Adaptive menu for a user interface
US7565380B1 (en) 2005-03-24 2009-07-21 Netlogic Microsystems, Inc. Memory optimized pattern searching
US7925525B2 (en) 2005-03-25 2011-04-12 Microsoft Corporation Smart reminders
EP1865404A4 (en) 2005-03-28 2012-09-05 Panasonic Corp User interface system
JP2008545995A (en) 2005-03-28 2008-12-18 レサック テクノロジーズ、インコーポレーテッド Hybrid speech synthesizer, method and application
US7721301B2 (en) 2005-03-31 2010-05-18 Microsoft Corporation Processing files from a mobile device using voice commands
US7664558B2 (en) 2005-04-01 2010-02-16 Apple Inc. Efficient techniques for modifying audio playback rates
GB2424969A (en) 2005-04-04 2006-10-11 Messagelabs Ltd Training an anti-spam filter
US20090058860A1 (en) 2005-04-04 2009-03-05 Mor (F) Dynamics Pty Ltd. Method for Transforming Language Into a Visual Form
US20080120342A1 (en) 2005-04-07 2008-05-22 Iofy Corporation System and Method for Providing Data to be Used in a Presentation on a Device
US20080120311A1 (en) 2005-04-07 2008-05-22 Iofy Corporation Device and Method for Protecting Unauthorized Data from being used in a Presentation on a Device
US20080140702A1 (en) 2005-04-07 2008-06-12 Iofy Corporation System and Method for Correlating a First Title with a Second Title
GB0507036D0 (en) 2005-04-07 2005-05-11 Ibm Method and system for language identification
US20080120330A1 (en) 2005-04-07 2008-05-22 Iofy Corporation System and Method for Linking User Generated Data Pertaining to Sequential Content
US20080120312A1 (en) 2005-04-07 2008-05-22 Iofy Corporation System and Method for Creating a New Title that Incorporates a Preexisting Title
US20080119953A1 (en) 2005-04-07 2008-05-22 Iofy Corporation Device and System for Utilizing an Information Unit to Present Content and Metadata on a Device
US20080120196A1 (en) 2005-04-07 2008-05-22 Iofy Corporation System and Method for Offering a Title for Sale Over the Internet
US20080141180A1 (en) 2005-04-07 2008-06-12 Iofy Corporation Apparatus and Method for Utilizing an Information Unit to Provide Navigation Features on a Device
GB0507148D0 (en) 2005-04-08 2005-05-18 Ibm Method and apparatus for multimodal voice and web services
US9471566B1 (en) 2005-04-14 2016-10-18 Oracle America, Inc. Method and apparatus for converting phonetic language input to written language output
US20080195601A1 (en) 2005-04-14 2008-08-14 The Regents Of The University Of California Method For Information Retrieval
US7516123B2 (en) 2005-04-14 2009-04-07 International Business Machines Corporation Page rank for the semantic web query
US8260617B2 (en) 2005-04-18 2012-09-04 Nuance Communications, Inc. Automating input when testing voice-enabled applications
US7627481B1 (en) 2005-04-19 2009-12-01 Apple Inc. Adapting masking thresholds for encoding a low frequency transient signal in audio data
US7996589B2 (en) 2005-04-22 2011-08-09 Microsoft Corporation Auto-suggest lists and handwritten input
US7584093B2 (en) 2005-04-25 2009-09-01 Microsoft Corporation Method and system for generating spelling suggestions
US7684990B2 (en) 2005-04-29 2010-03-23 Nuance Communications, Inc. Method and apparatus for multiple value confirmation and correction in spoken dialog systems
DK2227042T3 (en) 2005-05-03 2012-03-19 Oticon As System and method for sharing network resources between hearing aids
US8046374B1 (en) 2005-05-06 2011-10-25 Symantec Corporation Automatic training of a database intrusion detection system
US7606580B2 (en) 2005-05-11 2009-10-20 Aol Llc Personalized location information for mobile devices
US8117540B2 (en) 2005-05-18 2012-02-14 Neuer Wall Treuhand Gmbh Method and device incorporating improved text input mechanism
US7886233B2 (en) 2005-05-23 2011-02-08 Nokia Corporation Electronic text input involving word completion functionality for predicting word candidates for partial word inputs
FR2886445A1 (en) 2005-05-30 2006-12-01 France Telecom METHOD, DEVICE AND COMPUTER PROGRAM FOR SPEECH RECOGNITION
US7539882B2 (en) 2005-05-30 2009-05-26 Rambus Inc. Self-powered devices and methods
US8041570B2 (en) 2005-05-31 2011-10-18 Robert Bosch Corporation Dialogue management using scripts
CA2610269C (en) 2005-06-01 2016-02-02 Loquendo S.P.A. Method of adapting a neural network of an automatic speech recognition device
US7580576B2 (en) 2005-06-02 2009-08-25 Microsoft Corporation Stroke localization and binding to electronic document
US8024195B2 (en) 2005-06-27 2011-09-20 Sensory, Inc. Systems and methods of performing speech recognition using historical information
US7538685B1 (en) 2005-06-28 2009-05-26 Avaya Inc. Use of auditory feedback and audio queues in the realization of a personal virtual assistant
US8396456B2 (en) 2005-06-28 2013-03-12 Avaya Integrated Cabinet Solutions Inc. Visual voicemail management
GB0513225D0 (en) 2005-06-29 2005-08-03 Ibm Method and system for building and contracting a linguistic dictionary
US7542967B2 (en) 2005-06-30 2009-06-02 Microsoft Corporation Searching an index of media content
US7826945B2 (en) 2005-07-01 2010-11-02 You Zhang Automobile speech-recognition interface
US7885390B2 (en) 2005-07-01 2011-02-08 Soleo Communications, Inc. System and method for multi-modal personal communication services
US7433869B2 (en) 2005-07-01 2008-10-07 Ebrary, Inc. Method and apparatus for document clustering and document sketching
US7881283B2 (en) 2005-07-13 2011-02-01 Research In Motion Limited Customizability of event notification on telephony-enabled devices
US9094636B1 (en) 2005-07-14 2015-07-28 Zaxcom, Inc. Systems and methods for remotely controlling local audio devices in a virtual wireless multitrack recording system
US7912720B1 (en) 2005-07-20 2011-03-22 At&T Intellectual Property Ii, L.P. System and method for building emotional machines
US7809572B2 (en) 2005-07-20 2010-10-05 Panasonic Corporation Voice quality change portion locating apparatus
US7613264B2 (en) 2005-07-26 2009-11-03 Lsi Corporation Flexible sampling-rate encoder
US20090048821A1 (en) 2005-07-27 2009-02-19 Yahoo! Inc. Mobile language interpreter with text to speech
US7571092B1 (en) 2005-07-29 2009-08-04 Sun Microsystems, Inc. Method and apparatus for on-demand localization of files
US8694322B2 (en) 2005-08-05 2014-04-08 Microsoft Corporation Selective confirmation for execution of a voice activated user interface
US7640160B2 (en) 2005-08-05 2009-12-29 Voicebox Technologies, Inc. Systems and methods for responding to natural language speech utterance
US7844037B2 (en) 2005-08-08 2010-11-30 Palm, Inc. Method and device for enabling message responses to incoming phone calls
CA2618623C (en) 2005-08-09 2015-01-06 Mobilevoicecontrol, Inc. Control center for a voice controlled wireless communication device system
US7362738B2 (en) 2005-08-09 2008-04-22 Deere & Company Method and system for delivering information to a user
US7620549B2 (en) 2005-08-10 2009-11-17 Voicebox Technologies, Inc. System and method of supporting adaptive misrecognition in conversational speech
EP1934828A4 (en) 2005-08-19 2008-10-08 Gracenote Inc Method and system to control operation of a playback device
US7949529B2 (en) 2005-08-29 2011-05-24 Voicebox Technologies, Inc. Mobile systems and methods of supporting natural language human-machine interactions
US8078551B2 (en) 2005-08-31 2011-12-13 Intuview Ltd. Decision-support expert system and methods for real-time exploitation of documents in non-english languages
EP1934971A4 (en) 2005-08-31 2010-10-27 Voicebox Technologies Inc Dynamic speech sharpening
US8265939B2 (en) 2005-08-31 2012-09-11 Nuance Communications, Inc. Hierarchical methods and apparatus for extracting user intent from spoken utterances
US7443316B2 (en) 2005-09-01 2008-10-28 Motorola, Inc. Entering a character into an electronic device
US8677377B2 (en) 2005-09-08 2014-03-18 Apple Inc. Method and apparatus for building an intelligent automated assistant
GB2430101A (en) 2005-09-09 2007-03-14 Mitsubishi Electric Inf Tech Applying metadata for video navigation
US8819659B2 (en) 2005-09-14 2014-08-26 Millennial Media, Inc. Mobile search service instant activation
US7378963B1 (en) 2005-09-20 2008-05-27 Begault Durand R Reconfigurable auditory-visual display
US8275399B2 (en) 2005-09-21 2012-09-25 Buckyball Mobile Inc. Dynamic context-data tag cloud
US7788590B2 (en) 2005-09-26 2010-08-31 Microsoft Corporation Lightweight reference user interface
US8270933B2 (en) 2005-09-26 2012-09-18 Zoomsafer, Inc. Safety features for portable electronic device
US7505784B2 (en) 2005-09-26 2009-03-17 Barbera Melvin A Safety features for portable electronic device
US7992085B2 (en) 2005-09-26 2011-08-02 Microsoft Corporation Lightweight reference user interface
US9009046B1 (en) 2005-09-27 2015-04-14 At&T Intellectual Property Ii, L.P. System and method for disambiguating multiple intents in a natural language dialog system
US7693716B1 (en) 2005-09-27 2010-04-06 At&T Intellectual Property Ii, L.P. System and method of developing a TTS voice
US7711562B1 (en) 2005-09-27 2010-05-04 At&T Intellectual Property Ii, L.P. System and method for testing a TTS voice
JP5120826B2 (en) 2005-09-29 2013-01-16 独立行政法人産業技術総合研究所 Pronunciation diagnosis apparatus, pronunciation diagnosis method, recording medium, and pronunciation diagnosis program
JP4908094B2 (en) 2005-09-30 2012-04-04 株式会社リコー Information processing system, information processing method, and information processing program
US7633076B2 (en) 2005-09-30 2009-12-15 Apple Inc. Automated response to and sensing of user activity in portable devices
US7577522B2 (en) 2005-12-05 2009-08-18 Outland Research, Llc Spatially associated personal reminder system and method
US7930168B2 (en) 2005-10-04 2011-04-19 Robert Bosch Gmbh Natural language processing of disfluent sentences
CN100483399C (en) 2005-10-09 2009-04-29 株式会社东芝 Training transliteration model, segmentation statistic model and automatic transliterating method and device
WO2007044806A2 (en) 2005-10-11 2007-04-19 Aol Llc Ordering of conversations based on monitored recipient user interaction with corresponding electronic messages
US8401163B1 (en) 2005-10-18 2013-03-19 Callwave Communications, Llc Methods and systems for call processing and for providing call progress status over a network
US7707032B2 (en) 2005-10-20 2010-04-27 National Cheng Kung University Method and system for matching speech data
WO2007045908A1 (en) 2005-10-21 2007-04-26 Sfx Technologies Limited Improvements to audio devices
US20070094024A1 (en) 2005-10-22 2007-04-26 International Business Machines Corporation System and method for improving text input in a shorthand-on-keyboard interface
US8688148B2 (en) 2005-10-25 2014-04-01 Qualcomm Incorporated Dynamic resource matching system
US7395959B2 (en) 2005-10-27 2008-07-08 International Business Machines Corporation Hands free contact database information entry at a communication device
US7792253B2 (en) 2005-10-27 2010-09-07 International Business Machines Corporation Communications involving devices having different communication modes
US7778632B2 (en) 2005-10-28 2010-08-17 Microsoft Corporation Multi-modal device capable of automated actions
KR100755678B1 (en) 2005-10-28 2007-09-05 삼성전자주식회사 Apparatus and method for detecting named entity
US9026915B1 (en) 2005-10-31 2015-05-05 At&T Intellectual Property Ii, L.P. System and method for creating a presentation using natural language
US7936339B2 (en) 2005-11-01 2011-05-03 Leapfrog Enterprises, Inc. Method and system for invoking computer functionality by interaction with dynamically generated interface regions of a writing surface
US7640158B2 (en) 2005-11-08 2009-12-29 Multimodal Technologies, Inc. Automatic detection and application of editing patterns in draft documents
US20070112572A1 (en) 2005-11-15 2007-05-17 Fail Keith W Method and apparatus for assisting vision impaired individuals with selecting items from a list
US7676463B2 (en) 2005-11-15 2010-03-09 Kroll Ontrack, Inc. Information exploration systems and method
US8175874B2 (en) 2005-11-17 2012-05-08 Shaul Shimhi Personalized voice activity detection
US8042048B2 (en) 2005-11-17 2011-10-18 Att Knowledge Ventures, L.P. System and method for home automation
WO2007062398A2 (en) 2005-11-22 2007-05-31 Walker Digital, Llc Systems, products and processes for conducting instant lottery games
CA2631485A1 (en) 2005-11-30 2007-06-07 Linguacomm Enterprises Inc. Interactive language education system and method
US8209182B2 (en) 2005-11-30 2012-06-26 University Of Southern California Emotion recognition system
TWI298844B (en) 2005-11-30 2008-07-11 Delta Electronics Inc User-defines speech-controlled shortcut module and method
DE102005057406A1 (en) 2005-11-30 2007-06-06 Valenzuela, Carlos Alberto, Dr.-Ing. Method for recording a sound source with time-variable directional characteristics and for playback and system for carrying out the method
US8055707B2 (en) 2005-11-30 2011-11-08 Alcatel Lucent Calendar interface for digital communications
TW200611546A (en) 2005-12-02 2006-04-01 Univ Chang Gung Mobile phone providing remotely activated and touch power-on and voice response system
US7953580B2 (en) 2005-12-05 2011-05-31 Ericsson Ab Method and a system relating to network management
KR100810500B1 (en) 2005-12-08 2008-03-07 한국전자통신연구원 Method for enhancing usability in a spoken dialog system
US7461043B2 (en) 2005-12-14 2008-12-02 Siemens Aktiengesellschaft Methods and apparatus to abstract events in software applications or services
GB2433403B (en) 2005-12-16 2009-06-24 Emil Ltd A text editing apparatus and method
DE102005061365A1 (en) 2005-12-21 2007-06-28 Siemens Ag Background applications e.g. home banking system, controlling method for use over e.g. user interface, involves associating transactions and transaction parameters over universal dialog specification, and universally operating applications
US8234494B1 (en) 2005-12-21 2012-07-31 At&T Intellectual Property Ii, L.P. Speaker-verification digital signatures
US7996228B2 (en) 2005-12-22 2011-08-09 Microsoft Corporation Voice initiated network operations
US7657849B2 (en) 2005-12-23 2010-02-02 Apple Inc. Unlocking a device by performing gestures on an unlock image
US7685144B1 (en) 2005-12-29 2010-03-23 Google Inc. Dynamically autocompleting a data entry
US7599918B2 (en) 2005-12-29 2009-10-06 Microsoft Corporation Dynamic search with implicit user intention mining
TWI302265B (en) 2005-12-30 2008-10-21 High Tech Comp Corp Moving determination apparatus
US7890330B2 (en) 2005-12-30 2011-02-15 Alpine Electronics Inc. Voice recording tool for creating database used in text to speech synthesis system
US7673238B2 (en) 2006-01-05 2010-03-02 Apple Inc. Portable media device with video acceleration capabilities
US7684991B2 (en) 2006-01-05 2010-03-23 Alpine Electronics, Inc. Digital audio file search method and apparatus using text-to-speech processing
US8006180B2 (en) 2006-01-10 2011-08-23 Mircrosoft Corporation Spell checking in network browser based applications
JP2007183864A (en) 2006-01-10 2007-07-19 Fujitsu Ltd File retrieval method and system therefor
WO2007080559A2 (en) 2006-01-16 2007-07-19 Zlango Ltd. Iconic communication
JP4241736B2 (en) 2006-01-19 2009-03-18 株式会社東芝 Speech processing apparatus and method
FR2896603B1 (en) 2006-01-20 2008-05-02 Thales Sa METHOD AND DEVICE FOR EXTRACTING INFORMATION AND TRANSFORMING THEM INTO QUALITATIVE DATA OF A TEXTUAL DOCUMENT
US9600568B2 (en) 2006-01-23 2017-03-21 Veritas Technologies Llc Methods and systems for automatic evaluation of electronic discovery review and productions
US9275129B2 (en) 2006-01-23 2016-03-01 Symantec Corporation Methods and systems to efficiently find similar and near-duplicate emails and files
US7929805B2 (en) 2006-01-31 2011-04-19 The Penn State Research Foundation Image-based CAPTCHA generation system
IL174107A0 (en) 2006-02-01 2006-08-01 Grois Dan Method and system for advertising by means of a search engine over a data network
US7818291B2 (en) 2006-02-03 2010-10-19 The General Electric Company Data object access system and method using dedicated task object
US8352183B2 (en) 2006-02-04 2013-01-08 Microsoft Corporation Maps for social networking and geo blogs
ATE440334T1 (en) 2006-02-10 2009-09-15 Harman Becker Automotive Sys SYSTEM FOR VOICE-CONTROLLED SELECTION OF AN AUDIO FILE AND METHOD THEREOF
US7836437B2 (en) 2006-02-10 2010-11-16 Microsoft Corporation Semantic annotations for virtual objects
US20090222270A2 (en) 2006-02-14 2009-09-03 Ivc Inc. Voice command interface device
US9101279B2 (en) 2006-02-15 2015-08-11 Virtual Video Reality By Ritchey, Llc Mobile user borne brain activity data and surrounding environment data correlation system
US7541940B2 (en) 2006-02-16 2009-06-02 International Business Machines Corporation Proximity-based task alerts
EP2527990B1 (en) 2006-02-17 2020-01-15 Google LLC Using distributed models for machine translation
KR100764174B1 (en) 2006-03-03 2007-10-08 삼성전자주식회사 Apparatus for providing voice dialogue service and method for operating the apparatus
US7983910B2 (en) 2006-03-03 2011-07-19 International Business Machines Corporation Communicating across voice and text channels with emotion preservation
US9250703B2 (en) 2006-03-06 2016-02-02 Sony Computer Entertainment Inc. Interface with gaze detection and voice input
CN1984207B (en) 2006-03-07 2010-05-12 华为技术有限公司 Method and apparatus for charging in PoC service
US8532678B2 (en) 2006-03-08 2013-09-10 Tomtom International B.V. Portable GPS navigation device
EP1835488B1 (en) 2006-03-17 2008-11-19 Svox AG Text to speech synthesis
US7752152B2 (en) 2006-03-17 2010-07-06 Microsoft Corporation Using predictive user models for language modeling on a personal device with user behavior models based on statistical modeling
DE102006037156A1 (en) 2006-03-22 2007-09-27 Volkswagen Ag Interactive operating device and method for operating the interactive operating device
JP4734155B2 (en) 2006-03-24 2011-07-27 株式会社東芝 Speech recognition apparatus, speech recognition method, and speech recognition program
US20070233806A1 (en) 2006-03-29 2007-10-04 Mehrzad Asadi Method and system for conducting an internet search using a mobile radio terminal
US8018431B1 (en) 2006-03-29 2011-09-13 Amazon Technologies, Inc. Page turner for handheld electronic book reader device
US7930183B2 (en) 2006-03-29 2011-04-19 Microsoft Corporation Automatic identification of dialog timing problems for an interactive speech dialog application using speech log data indicative of cases of barge-in and timing problems
US7724696B1 (en) 2006-03-29 2010-05-25 Amazon Technologies, Inc. Predictive reader power management
US7283072B1 (en) 2006-03-30 2007-10-16 International Business Machines Corporation Methods of creating a dictionary for data compression
JP4551961B2 (en) 2006-03-31 2010-09-29 パイオニア株式会社 VOICE INPUT SUPPORT DEVICE, ITS METHOD, ITS PROGRAM, RECORDING MEDIUM RECORDING THE PROGRAM, AND NAVIGATION DEVICE
US7756708B2 (en) 2006-04-03 2010-07-13 Google Inc. Automatic language model update
EP2005319B1 (en) 2006-04-04 2017-01-11 Johnson Controls Technology Company System and method for extraction of meta data from a digital media storage device for media selection in a vehicle
US7777717B2 (en) 2006-04-05 2010-08-17 Research In Motion Limited Handheld electronic device and method for performing spell checking during text entry and for integrating the output from such spell checking into the output from disambiguation
US7797629B2 (en) 2006-04-05 2010-09-14 Research In Motion Limited Handheld electronic device and method for performing optimized spell checking during text entry by providing a sequentially ordered series of spell-check algorithms
US8510109B2 (en) 2007-08-22 2013-08-13 Canyon Ip Holdings Llc Continuous speech transcription performance indication
US7996769B2 (en) 2006-04-05 2011-08-09 Research In Motion Limited Handheld electronic device and method for performing spell checking during text entry and for providing a spell-check learning feature
US7693717B2 (en) 2006-04-12 2010-04-06 Custom Speech Usa, Inc. Session file modification with annotation using speech recognition or text to speech
US7707027B2 (en) 2006-04-13 2010-04-27 Nuance Communications, Inc. Identification and rejection of meaningless input during natural language classification
ATE448638T1 (en) 2006-04-13 2009-11-15 Fraunhofer Ges Forschung AUDIO SIGNAL DECORRELATOR
US8046363B2 (en) 2006-04-13 2011-10-25 Lg Electronics Inc. System and method for clustering documents
US8077153B2 (en) 2006-04-19 2011-12-13 Microsoft Corporation Precise selection techniques for multi-touch screens
US7475063B2 (en) 2006-04-19 2009-01-06 Google Inc. Augmenting queries with synonyms selected using language statistics
WO2007127695A2 (en) 2006-04-25 2007-11-08 Elmo Weber Frank Prefernce based automatic media summarization
KR100771626B1 (en) 2006-04-25 2007-10-31 엘지전자 주식회사 Terminal device and method for inputting instructions thereto
US20070255554A1 (en) 2006-04-26 2007-11-01 Lucent Technologies Inc. Language translation service for text message communications
US8214213B1 (en) 2006-04-27 2012-07-03 At&T Intellectual Property Ii, L.P. Speech recognition based on pronunciation modeling
US9020804B2 (en) 2006-05-10 2015-04-28 Xerox Corporation Method for aligning sentences at the word level enforcing selective contiguity constraints
US8331574B2 (en) 2006-05-10 2012-12-11 Koninklijke Philips Electronics N.V. Automatic external defibrillator with enhanced clarity of audible prompts
US20090183070A1 (en) 2006-05-11 2009-07-16 David Robbins Multimodal communication and command control systems and related methods
WO2007132286A1 (en) 2006-05-12 2007-11-22 Nokia Corporation An adaptive user interface
CN101075228B (en) 2006-05-15 2012-05-23 松下电器产业株式会社 Method and apparatus for named entity recognition in natural language
US7779353B2 (en) 2006-05-19 2010-08-17 Microsoft Corporation Error checking web documents
US20070276651A1 (en) 2006-05-23 2007-11-29 Motorola, Inc. Grammar adaptation through cooperative client and server based speech recognition
US7596765B2 (en) 2006-05-23 2009-09-29 Sony Ericsson Mobile Communications Ab Sound feedback on menu navigation
US7831423B2 (en) 2006-05-25 2010-11-09 Multimodal Technologies, Inc. Replacing text representing a concept with an alternate written form of the concept
US20070280445A1 (en) 2006-06-05 2007-12-06 Roy Shkedi Method for Interacting Via an Internet Accessible Address-Book Using a Visual Interface Phone Device
US20100257160A1 (en) 2006-06-07 2010-10-07 Yu Cao Methods & apparatus for searching with awareness of different types of information
US7523108B2 (en) 2006-06-07 2009-04-21 Platformation, Inc. Methods and apparatus for searching with awareness of geography and languages
US7483894B2 (en) 2006-06-07 2009-01-27 Platformation Technologies, Inc Methods and apparatus for entity search
TW200801988A (en) 2006-06-08 2008-01-01 George Ko Concurrent multilingual translation system
US7853577B2 (en) 2006-06-09 2010-12-14 Ebay Inc. Shopping context engine
US20080010273A1 (en) 2006-06-12 2008-01-10 Metacarta, Inc. Systems and methods for hierarchical organization and presentation of geographic search results
US7774202B2 (en) 2006-06-12 2010-08-10 Lockheed Martin Corporation Speech activated control system and related methods
US8332218B2 (en) 2006-06-13 2012-12-11 Nuance Communications, Inc. Context-based grammars for automated speech recognition
US20080141125A1 (en) 2006-06-23 2008-06-12 Firooz Ghassabian Combined data entry systems
WO2008001485A1 (en) 2006-06-26 2008-01-03 Nec Corporation Language model generating system, language model generating method, and language model generating program
JP4675840B2 (en) 2006-06-29 2011-04-27 三菱電機株式会社 Remote controller and home appliance
US7548895B2 (en) 2006-06-30 2009-06-16 Microsoft Corporation Communication-prompted user assistance
US7586423B2 (en) 2006-06-30 2009-09-08 Research In Motion Limited Handheld electronic device and method for dual-mode disambiguation of text input
US20080000103A1 (en) 2006-07-01 2008-01-03 Rastegar Jahangir S Shoes having deployable traction elements
US8279171B2 (en) 2006-07-06 2012-10-02 Panasonic Corporation Voice input device
US8050500B1 (en) 2006-07-06 2011-11-01 Senapps, LLC Recognition method and system
US20080010387A1 (en) 2006-07-07 2008-01-10 Bryce Allen Curtis Method for defining a Wiki page layout using a Wiki page
WO2008008730A2 (en) 2006-07-08 2008-01-17 Personics Holdings Inc. Personal audio assistant device and method
EP1879000A1 (en) 2006-07-10 2008-01-16 Harman Becker Automotive Systems GmbH Transmission of text messages by navigation systems
JP2008021002A (en) 2006-07-11 2008-01-31 Fuji Xerox Co Ltd Web server device, display information voice synthesis device, and program
US7747445B2 (en) 2006-07-12 2010-06-29 Nuance Communications, Inc. Distinguishing among different types of abstractions consisting of plurality of commands specified by particular sequencing and or timing or no timing and sequencing using voice commands
US7756710B2 (en) 2006-07-13 2010-07-13 Sri International Method and apparatus for error correction in speech recognition applications
US20080016575A1 (en) 2006-07-14 2008-01-17 Motorola, Inc. Method and system of auto message deletion using expiration
TWI312103B (en) 2006-07-17 2009-07-11 Asia Optical Co Inc Image pickup systems and methods
US20080013751A1 (en) 2006-07-17 2008-01-17 Per Hiselius Volume dependent audio frequency gain profile
US20080022208A1 (en) 2006-07-18 2008-01-24 Creative Technology Ltd System and method for personalizing the user interface of audio rendering devices
JP2008026381A (en) 2006-07-18 2008-02-07 Konica Minolta Business Technologies Inc Image forming device
US20080042970A1 (en) 2006-07-24 2008-02-21 Yih-Shiuan Liang Associating a region on a surface with a sound or with another region
US8234120B2 (en) 2006-07-26 2012-07-31 Nuance Communications, Inc. Performing a safety analysis for user-defined voice commands to ensure that the voice commands do not cause speech recognition ambiguities
US20080027726A1 (en) 2006-07-28 2008-01-31 Eric Louis Hansen Text to audio mapping, and animation of the text
US8135047B2 (en) 2006-07-31 2012-03-13 Qualcomm Incorporated Systems and methods for including an identifier with a packet associated with a speech signal
JP4728905B2 (en) 2006-08-02 2011-07-20 クラリオン株式会社 Spoken dialogue apparatus and spoken dialogue program
KR100883652B1 (en) 2006-08-03 2009-02-18 삼성전자주식회사 Method and apparatus for speech/silence interval identification using dynamic programming, and speech recognition system thereof
WO2008019080A1 (en) 2006-08-04 2008-02-14 Jps Communications, Inc. Voice modulation recognition in a radio-to-sip adapter
US8106742B2 (en) 2006-08-04 2012-01-31 Tegic Communications, Inc. Remotely controlling one or more client devices detected over a wireless network using a mobile device
US20080034044A1 (en) 2006-08-04 2008-02-07 International Business Machines Corporation Electronic mail reader capable of adapting gender and emotions of sender
US20080046948A1 (en) 2006-08-07 2008-02-21 Apple Computer, Inc. Creation, management and delivery of personalized media items
US20080040339A1 (en) 2006-08-07 2008-02-14 Microsoft Corporation Learning question paraphrases from log data
US8134481B2 (en) 2006-08-11 2012-03-13 Honda Motor Co., Ltd. Method and system for receiving and sending navigational data via a wireless messaging service on a navigation system
US7796980B1 (en) 2006-08-11 2010-09-14 Sprint Communications Company L.P. Remote mobile voice control of digital/personal video recorder
US7646296B2 (en) 2006-08-11 2010-01-12 Honda Motor Co., Ltd. Method and system for receiving and sending navigational data via a wireless messaging service on a navigation system
KR100753838B1 (en) 2006-08-11 2007-08-31 한국전자통신연구원 Method and apparatus for supporting a adaptive driving
KR20080015567A (en) 2006-08-16 2008-02-20 삼성전자주식회사 Voice-enabled file information announcement system and method for portable device
KR100764649B1 (en) 2006-08-18 2007-10-08 삼성전자주식회사 Apparatus and method for controlling media player in portable terminal
DE102006039126A1 (en) 2006-08-21 2008-03-06 Robert Bosch Gmbh Method for speech recognition and speech reproduction
WO2008024797A2 (en) 2006-08-21 2008-02-28 Pinger, Inc. Graphical user interface for managing voice messages
US20080059200A1 (en) 2006-08-22 2008-03-06 Accenture Global Services Gmbh Multi-Lingual Telephonic Service
US20080052262A1 (en) 2006-08-22 2008-02-28 Serhiy Kosinov Method for personalized named entity recognition
US20080059190A1 (en) 2006-08-22 2008-03-06 Microsoft Corporation Speech unit selection using HMM acoustic models
US7970216B2 (en) 2006-08-24 2011-06-28 Dell Products L.P. Methods and apparatus for reducing storage size
US20100174544A1 (en) 2006-08-28 2010-07-08 Mark Heifets System, method and end-user device for vocal delivery of textual data
KR101036965B1 (en) 2006-08-30 2011-05-25 닛본 덴끼 가부시끼가이샤 Voice mixing method, multipoint conference server using the method, and program
US20080055194A1 (en) 2006-08-31 2008-03-06 Motorola, Inc. Method and system for context based user interface information presentation and positioning
US9552349B2 (en) 2006-08-31 2017-01-24 International Business Machines Corporation Methods and apparatus for performing spelling corrections using one or more variant hash tables
US9071701B2 (en) 2006-08-31 2015-06-30 Qualcomm Incorporated Using wireless characteristic to trigger generation of position fix
US8402499B2 (en) 2006-08-31 2013-03-19 Accenture Global Services Gmbh Voicemail interface system and method
US8239480B2 (en) 2006-08-31 2012-08-07 Sony Ericsson Mobile Communications Ab Methods of searching using captured portions of digital audio content and additional information separate therefrom and related systems and computer program products
US20080077393A1 (en) 2006-09-01 2008-03-27 Yuqing Gao Virtual keyboard adaptation for multilingual input
US7881928B2 (en) 2006-09-01 2011-02-01 International Business Machines Corporation Enhanced linguistic transformation
US7689408B2 (en) 2006-09-01 2010-03-30 Microsoft Corporation Identifying language of origin for words using estimates of normalized appearance frequency
JP4666648B2 (en) 2006-09-01 2011-04-06 本田技研工業株式会社 Voice response system, voice response program
US8170790B2 (en) 2006-09-05 2012-05-01 Garmin Switzerland Gmbh Apparatus for switching navigation device mode
US7683886B2 (en) 2006-09-05 2010-03-23 Research In Motion Limited Disambiguated text message review function
US8564544B2 (en) 2006-09-06 2013-10-22 Apple Inc. Touch screen device, method, and graphical user interface for customizing display of content category icons
US7996792B2 (en) 2006-09-06 2011-08-09 Apple Inc. Voicemail manager for portable multifunction device
US8253695B2 (en) 2006-09-06 2012-08-28 Apple Inc. Email client for a portable multifunction device
US7771320B2 (en) 2006-09-07 2010-08-10 Nike, Inc. Athletic performance sensing and/or tracking systems and methods
US8589869B2 (en) 2006-09-07 2013-11-19 Wolfram Alpha Llc Methods and systems for determining a formula
JP2008064687A (en) 2006-09-08 2008-03-21 Toyota Motor Corp Travel information guiding device
TWI322610B (en) 2006-09-08 2010-03-21 Htc Corp Handheld electronic device
US9318108B2 (en) 2010-01-18 2016-04-19 Apple Inc. Intelligent automated assistant
US8374874B2 (en) 2006-09-11 2013-02-12 Nuance Communications, Inc. Establishing a multimodal personality for a multimodal application in dependence upon attributes of user interaction
US9892650B2 (en) 2006-09-11 2018-02-13 Houghton Mifflin Harcourt Publishing Company Recovery of polled data after an online test platform failure
US8036766B2 (en) 2006-09-11 2011-10-11 Apple Inc. Intelligent audio mixing among media playback and at least one other non-playback application
US8564543B2 (en) 2006-09-11 2013-10-22 Apple Inc. Media player with imaged based browsing
US20080071544A1 (en) 2006-09-14 2008-03-20 Google Inc. Integrating Voice-Enabled Local Search and Contact Lists
US20100278453A1 (en) 2006-09-15 2010-11-04 King Martin T Capture and display of annotations in paper and electronic documents
US20100004931A1 (en) 2006-09-15 2010-01-07 Bin Ma Apparatus and method for speech utterance verification
US8027837B2 (en) 2006-09-15 2011-09-27 Apple Inc. Using non-speech sounds during text-to-speech synthesis
US8407229B2 (en) 2006-09-19 2013-03-26 Iac Search & Media, Inc. Systems and methods for aggregating search results
US20080076972A1 (en) 2006-09-21 2008-03-27 Apple Inc. Integrated sensors for tracking performance metrics
US7865282B2 (en) 2006-09-22 2011-01-04 General Motors Llc Methods of managing communications for an in-vehicle telematics system
JP4393494B2 (en) 2006-09-22 2010-01-06 株式会社東芝 Machine translation apparatus, machine translation method, and machine translation program
US20080077384A1 (en) 2006-09-22 2008-03-27 International Business Machines Corporation Dynamically translating a software application to a user selected target language that is not natively provided by the software application
US20080084974A1 (en) 2006-09-25 2008-04-10 International Business Machines Corporation Method and system for interactively synthesizing call center responses using multi-language text-to-speech synthesizers
KR100813170B1 (en) 2006-09-27 2008-03-17 삼성전자주식회사 Method and system for semantic event indexing by analyzing user annotation of digital photos
US7649454B2 (en) 2006-09-28 2010-01-19 Ektimisi Semiotics Holdings, Llc System and method for providing a task reminder based on historical travel information
US7528713B2 (en) 2006-09-28 2009-05-05 Ektimisi Semiotics Holdings, Llc Apparatus and method for providing a task reminder based on travel history
US8014308B2 (en) 2006-09-28 2011-09-06 Microsoft Corporation Hardware architecture for cloud services
US7930197B2 (en) 2006-09-28 2011-04-19 Microsoft Corporation Personal data mining
US8214208B2 (en) 2006-09-28 2012-07-03 Reqall, Inc. Method and system for sharing portable voice profiles
JP2008090545A (en) 2006-09-29 2008-04-17 Toshiba Corp Voice interaction device and method
US7831432B2 (en) 2006-09-29 2010-11-09 International Business Machines Corporation Audio menus describing media contents of media players
US7885222B2 (en) 2006-09-29 2011-02-08 Advanced Micro Devices, Inc. Task scheduler responsive to connectivity prerequisites
US20080082338A1 (en) 2006-09-29 2008-04-03 O'neil Michael P Systems and methods for secure voice identification and medical device interface
US7945470B1 (en) 2006-09-29 2011-05-17 Amazon Technologies, Inc. Facilitating performance of submitted tasks by mobile task performers
JP2008092269A (en) 2006-10-02 2008-04-17 Matsushita Electric Ind Co Ltd Hands-free communication device
US7673251B1 (en) 2006-10-02 2010-03-02 Adobe Systems, Incorporated Panel presentation
US20080082390A1 (en) 2006-10-02 2008-04-03 International Business Machines Corporation Methods for Generating Auxiliary Data Operations for a Role Based Personalized Business User Workplace
US7801721B2 (en) 2006-10-02 2010-09-21 Google Inc. Displaying original text in a user interface with translated text
EP1909263B1 (en) 2006-10-02 2009-01-28 Harman Becker Automotive Systems GmbH Exploitation of language identification of media file data in speech dialog systems
US7937075B2 (en) 2006-10-06 2011-05-03 At&T Intellectual Property I, L.P. Mode changing of a mobile communications device and vehicle settings when the mobile communications device is in proximity to a vehicle
JP2008096541A (en) 2006-10-06 2008-04-24 Canon Inc Speech processing device and control method therefor
US8024193B2 (en) 2006-10-10 2011-09-20 Apple Inc. Methods and apparatus related to pruning for concatenative text-to-speech synthesis
US8145473B2 (en) 2006-10-10 2012-03-27 Abbyy Software Ltd. Deep model statistics method for machine translation
CN101162153A (en) 2006-10-11 2008-04-16 丁玉国 Voice controlled vehicle mounted GPS guidance system and method for realizing same
US20080091426A1 (en) 2006-10-12 2008-04-17 Rod Rempel Adaptive context for automatic speech recognition systems
US8041568B2 (en) 2006-10-13 2011-10-18 Google Inc. Business listing search
US7793228B2 (en) 2006-10-13 2010-09-07 Apple Inc. Method, system, and graphical user interface for text entry with partial word display
US8073681B2 (en) 2006-10-16 2011-12-06 Voicebox Technologies, Inc. System and method for a cooperative conversational voice user interface
US7697922B2 (en) 2006-10-18 2010-04-13 At&T Intellectual Property I., L.P. Event notification systems and related methods
US20080098480A1 (en) 2006-10-20 2008-04-24 Hewlett-Packard Development Company Lp Information association
US20080096533A1 (en) 2006-10-24 2008-04-24 Kallideas Spa Virtual Assistant With Real-Time Emotions
WO2008050225A2 (en) 2006-10-24 2008-05-02 Edgetech America, Inc. Method for spell-checking location-bound words within a document
US8972268B2 (en) 2008-04-15 2015-03-03 Facebook, Inc. Enhanced speech-to-speech translation system and methods for adding a new word
US20080124695A1 (en) 2006-10-26 2008-05-29 Cary Michael Myers Non-intrusive audio book
US8204739B2 (en) 2008-04-15 2012-06-19 Mobile Technologies, Llc System and methods for maintaining speech-to-speech translation in the field
US8255216B2 (en) 2006-10-30 2012-08-28 Nuance Communications, Inc. Speech recognition of character sequences
JP2008116298A (en) 2006-11-02 2008-05-22 Denso Corp Vehicle-mounted apparatus and system for emergency reporting
US8037179B2 (en) 2006-11-02 2011-10-11 Storz Endoskop Produktions Gmbh Device control system employing extensible markup language for defining information resources
US9471333B2 (en) 2006-11-03 2016-10-18 Conceptual Speech, Llc Contextual speech-recognition user-interface driven system and method
US20080109222A1 (en) 2006-11-04 2008-05-08 Edward Liu Advertising using extracted context sensitive information and data of interest from voice/audio transmissions and recordings
US7873517B2 (en) 2006-11-09 2011-01-18 Volkswagen Of America, Inc. Motor vehicle with a speech interface
US9329753B2 (en) 2006-11-10 2016-05-03 Blackberry Limited Handheld electronic device having selectable language indicator and menus for language selection and method therefor
US9355568B2 (en) 2006-11-13 2016-05-31 Joyce S. Stone Systems and methods for providing an electronic reader having interactive and educational features
US8718538B2 (en) 2006-11-13 2014-05-06 Joseph Harb Real-time remote purchase-list capture system
US20080114841A1 (en) 2006-11-14 2008-05-15 Lambert Daniel T System and method for interfacing with event management software
US20080114604A1 (en) 2006-11-15 2008-05-15 Motorola, Inc. Method and system for a user interface using higher order commands
US7904298B2 (en) 2006-11-17 2011-03-08 Rao Ashwin P Predictive speech-to-text input
CN101193460B (en) 2006-11-20 2011-09-28 松下电器产业株式会社 Sound detection device and method
US8090194B2 (en) 2006-11-21 2012-01-03 Mantis Vision Ltd. 3D geometric modeling and motion capture using both single and dual imaging
US8010338B2 (en) 2006-11-27 2011-08-30 Sony Ericsson Mobile Communications Ab Dynamic modification of a messaging language
US20080126075A1 (en) 2006-11-27 2008-05-29 Sony Ericsson Mobile Communications Ab Input prediction
US8055502B2 (en) 2006-11-28 2011-11-08 General Motors Llc Voice dialing using a rejection reference
US8600760B2 (en) 2006-11-28 2013-12-03 General Motors Llc Correcting substitution errors during automatic speech recognition by accepting a second best when first best is confusable
US20080126093A1 (en) 2006-11-28 2008-05-29 Nokia Corporation Method, Apparatus and Computer Program Product for Providing a Language Based Interactive Multimedia System
JP2008134949A (en) 2006-11-29 2008-06-12 Fujitsu Ltd Portable terminal device and method for displaying schedule preparation screen
US8571862B2 (en) 2006-11-30 2013-10-29 Ashwin P. Rao Multimodal interface for input of text
US8355915B2 (en) 2006-11-30 2013-01-15 Rao Ashwin P Multimodal speech recognition system
US9830912B2 (en) 2006-11-30 2017-11-28 Ashwin P Rao Speak and touch auto correction interface
US8676802B2 (en) 2006-11-30 2014-03-18 Oracle Otc Subsidiary Llc Method and system for information retrieval with clustering
WO2008069139A1 (en) 2006-11-30 2008-06-12 National Institute Of Advanced Industrial Science And Technology Speech recognition system and speech recognition system program
GB0623915D0 (en) 2006-11-30 2007-01-10 Ibm Phonetic decoding and concatentive speech synthesis
EP1939860B1 (en) 2006-11-30 2009-03-18 Harman Becker Automotive Systems GmbH Interactive speech recognition system
US20080129520A1 (en) 2006-12-01 2008-06-05 Apple Computer, Inc. Electronic device with enhanced audio feedback
US8001400B2 (en) 2006-12-01 2011-08-16 Apple Inc. Power consumption management for functional preservation in a battery-powered electronic device
US8045808B2 (en) 2006-12-04 2011-10-25 Trend Micro Incorporated Pure adversarial approach for identifying text content in images
US20080133245A1 (en) 2006-12-04 2008-06-05 Sehda, Inc. Methods for speech-to-speech translation
EP2095250B1 (en) 2006-12-05 2014-11-12 Nuance Communications, Inc. Wireless server based text to speech email
US7676249B2 (en) 2006-12-05 2010-03-09 Research In Motion Limited Alert methods and apparatus for call appointments in a calendar application based on communication conditions of a mobile station
US8208624B2 (en) 2006-12-05 2012-06-26 Hewlett-Packard Development Company, L.P. Hearing aid compatible mobile phone
US8311590B2 (en) 2006-12-05 2012-11-13 Hewlett-Packard Development Company, L.P. System and method for improved loudspeaker functionality
US8099287B2 (en) 2006-12-05 2012-01-17 Nuance Communications, Inc. Automatically providing a user with substitutes for potentially ambiguous user-defined speech commands
US20080140413A1 (en) 2006-12-07 2008-06-12 Jonathan Travis Millman Synchronization of audio to reading
US20080140652A1 (en) 2006-12-07 2008-06-12 Jonathan Travis Millman Authoring tool
US7831246B1 (en) 2006-12-08 2010-11-09 At&T Mobility Ii, Llc Mobile merchant
US8032510B2 (en) 2008-03-03 2011-10-04 Yahoo! Inc. Social aspects of content aggregation, syndication, sharing, and updating
US7630972B2 (en) 2007-01-05 2009-12-08 Yahoo! Inc. Clustered search processing
US9522332B2 (en) 2006-12-13 2016-12-20 Voodoo Gaming Llc Video games including real-life attributes and/or fantasy team settings
US7783644B1 (en) 2006-12-13 2010-08-24 Google Inc. Query-independent entity importance in books
US8731610B2 (en) 2006-12-13 2014-05-20 Samsung Electronics Co., Ltd. Method for adaptive user interface in mobile devices
WO2008071231A1 (en) 2006-12-13 2008-06-19 Phonak Ag Method and system for hearing device fitting
US7646297B2 (en) 2006-12-15 2010-01-12 At&T Intellectual Property I, L.P. Context-detected auto-mode switching
US20080146290A1 (en) 2006-12-18 2008-06-19 Motorola, Inc. Changing a mute state of a voice call from a bluetooth headset
US7552045B2 (en) 2006-12-18 2009-06-23 Nokia Corporation Method, apparatus and computer program product for providing flexible text based language identification
US8204182B2 (en) 2006-12-19 2012-06-19 Nuance Communications, Inc. Dialect translator for a speech application environment extended for interactive text exchanges
US20080147411A1 (en) 2006-12-19 2008-06-19 International Business Machines Corporation Adaptation of a speech processing system from external input that is not directly related to sounds in an operational acoustic environment
KR101405284B1 (en) 2006-12-20 2014-06-10 삼성전자 주식회사 Image forming apparatus and multilingual keyboard indicia method thereof
GB0625642D0 (en) 2006-12-21 2007-01-31 Symbian Software Ltd Mobile sensor feedback
US20080154600A1 (en) 2006-12-21 2008-06-26 Nokia Corporation System, Method, Apparatus and Computer Program Product for Providing Dynamic Vocabulary Prediction for Speech Recognition
EP1936606B1 (en) 2006-12-21 2011-10-05 Harman Becker Automotive Systems GmbH Multi-stage speech recognition
US7991724B2 (en) 2006-12-21 2011-08-02 Support Machines Ltd. Method and a computer program product for providing a response to a statement of a user
US8630855B2 (en) 2006-12-22 2014-01-14 Anthony Oddo Call system and method
US8010367B2 (en) 2006-12-22 2011-08-30 Nuance Communications, Inc. Spoken free-form passwords for light-weight speaker verification using standard speech recognition engines
CN101563682A (en) 2006-12-22 2009-10-21 日本电气株式会社 Sentence rephrasing method, program, and system
US20080154577A1 (en) 2006-12-26 2008-06-26 Sehda,Inc. Chunk-based statistical machine translation system
US20080154612A1 (en) 2006-12-26 2008-06-26 Voice Signal Technologies, Inc. Local storage and use of search results for voice-enabled mobile communications devices
JP4867654B2 (en) 2006-12-28 2012-02-01 日産自動車株式会社 Speech recognition apparatus and speech recognition method
US20080163119A1 (en) 2006-12-28 2008-07-03 Samsung Electronics Co., Ltd. Method for providing menu and multimedia device using the same
US8019271B1 (en) 2006-12-29 2011-09-13 Nextel Communications, Inc. Methods and systems for presenting information on mobile devices
US7865817B2 (en) 2006-12-29 2011-01-04 Amazon Technologies, Inc. Invariant referencing in digital works
EP1939759A1 (en) 2006-12-29 2008-07-02 Vodafone Holding GmbH Method for providing content to a mobile device, gateway for providing content and mobile device
WO2009017280A1 (en) 2007-07-30 2009-02-05 Lg Electronics Inc. Display device and speaker system for the display device
US8493330B2 (en) 2007-01-03 2013-07-23 Apple Inc. Individual channel phase delay scheme
US8019050B2 (en) 2007-01-03 2011-09-13 Motorola Solutions, Inc. Method and apparatus for providing feedback of vocal quality to a user
DK2109934T3 (en) 2007-01-04 2016-08-15 Cvf Llc CUSTOMIZED SELECTION OF AUDIO PROFILE IN SOUND SYSTEM
US20080167876A1 (en) 2007-01-04 2008-07-10 International Business Machines Corporation Methods and computer program products for providing paraphrasing in a text-to-speech system
US8060824B2 (en) 2007-01-05 2011-11-15 Starz Entertainment Llc User interface for a multimedia service
US7889184B2 (en) 2007-01-05 2011-02-15 Apple Inc. Method, system and graphical user interface for displaying hyperlink information
US7889185B2 (en) 2007-01-05 2011-02-15 Apple Inc. Method, system, and graphical user interface for activating hyperlinks
US8074172B2 (en) 2007-01-05 2011-12-06 Apple Inc. Method, system, and graphical user interface for providing word recommendations
US7957955B2 (en) 2007-01-05 2011-06-07 Apple Inc. Method and system for providing word recommendations for text input
US8712781B2 (en) 2007-01-05 2014-04-29 Johnson Controls Technology Company System and method for customized prompting
WO2008085742A2 (en) 2007-01-07 2008-07-17 Apple Inc. Portable multifunction device, method and graphical user interface for interacting with user input elements in displayed content
US8553856B2 (en) 2007-01-07 2013-10-08 Apple Inc. Voicemail systems and methods
US8391844B2 (en) 2007-01-07 2013-03-05 Apple Inc. Voicemail systems and methods
US7978176B2 (en) 2007-01-07 2011-07-12 Apple Inc. Portrait-landscape rotation heuristics for a portable multifunction device
FR2911201A1 (en) 2007-01-08 2008-07-11 Sagem Comm Written text editing method for correcting spelling error, involves calculating difference between apparition frequency of one n-gram in text and in language using n-gram by n-gram technique
GB2445670A (en) 2007-01-09 2008-07-16 Spinvox Ltd Network based speech to text message conversion system
AU2008204404B2 (en) 2007-01-09 2013-05-30 Spinvox Limited Detection of unanswered call in order to give calling party the option to alternatively dictate a text message for delivery to the called party
US8056070B2 (en) 2007-01-10 2011-11-08 Goller Michael D System and method for modifying and updating a speech recognition program
US20080165994A1 (en) 2007-01-10 2008-07-10 Magnadyne Corporation Bluetooth enabled hearing aid
US20080172698A1 (en) 2007-01-12 2008-07-17 Berger Adam L Performing support functions on a portable device
KR100799195B1 (en) 2007-01-12 2008-01-29 삼성전자주식회사 Apparatus and method for connecting emergency call in portable terminal
US7912724B1 (en) 2007-01-18 2011-03-22 Adobe Systems Incorporated Audio comparison using phoneme matching
KR100837166B1 (en) 2007-01-20 2008-06-11 엘지전자 주식회사 Method of displaying an information in electronic device and the electronic device thereof
KR100883657B1 (en) 2007-01-26 2009-02-18 삼성전자주식회사 Method and apparatus for searching a music using speech recognition
US7707226B1 (en) 2007-01-29 2010-04-27 Aol Inc. Presentation of content items based on dynamic monitoring of real-time context
JP5270841B2 (en) 2007-01-29 2013-08-21 株式会社タイトー Lesson program, storage medium
JP2008185805A (en) 2007-01-30 2008-08-14 Internatl Business Mach Corp <Ibm> Technology for creating high quality synthesis voice
US20080186196A1 (en) 2007-02-01 2008-08-07 Sony Ericsson Mobile Communications Ab Non-time based snooze
US20080189606A1 (en) 2007-02-02 2008-08-07 Michal Rybak Handheld electronic device including predictive accent mechanism, and associated method
US20110047605A1 (en) 2007-02-06 2011-02-24 Vidoop, Llc System And Method For Authenticating A User To A Computer System
WO2008096310A1 (en) 2007-02-06 2008-08-14 Nuance Communications Austria Gmbh Method and system for creating or updating entries in a speech recognition lexicon
US7873710B2 (en) 2007-02-06 2011-01-18 5O9, Inc. Contextual data communication platform
US7818176B2 (en) 2007-02-06 2010-10-19 Voicebox Technologies, Inc. System and method for selecting and presenting advertisements based on natural language processing of voice-based input
US20080186960A1 (en) 2007-02-06 2008-08-07 Access Systems Americas, Inc. System and method of controlling media streams in an electronic device
US7912700B2 (en) 2007-02-08 2011-03-22 Microsoft Corporation Context based word prediction
US9465791B2 (en) 2007-02-09 2016-10-11 International Business Machines Corporation Method and apparatus for automatic detection of spelling errors in one or more documents
US8078978B2 (en) 2007-10-19 2011-12-13 Google Inc. Method and system for predicting text
US20080195630A1 (en) 2007-02-13 2008-08-14 Amadeus S.A.S. Web service interrogation method and apparatus
US7941133B2 (en) 2007-02-14 2011-05-10 At&T Intellectual Property I, L.P. Methods, systems, and computer program products for schedule management based on locations of wireless devices
JP4890289B2 (en) 2007-02-14 2012-03-07 ヤフー株式会社 Remote control character input control method, server, and remote control character input control program
US7853240B2 (en) 2007-02-15 2010-12-14 Research In Motion Limited Emergency number selection for mobile communications device
US20080201434A1 (en) 2007-02-16 2008-08-21 Microsoft Corporation Context-Sensitive Searches and Functionality for Instant Messaging Applications
US20080201000A1 (en) 2007-02-20 2008-08-21 Nokia Corporation Contextual grouping of media items
US20080204379A1 (en) 2007-02-22 2008-08-28 Microsoft Corporation Display with integrated audio transducer device
WO2008103925A1 (en) 2007-02-22 2008-08-28 Personics Holdings Inc. Method and device for sound detection and audio control
US7912828B2 (en) 2007-02-23 2011-03-22 Apple Inc. Pattern searching methods and apparatuses
US7801728B2 (en) 2007-02-26 2010-09-21 Nuance Communications, Inc. Document session replay for multimodal applications
US8112402B2 (en) 2007-02-26 2012-02-07 Microsoft Corporation Automatic disambiguation based on a reference resource
US7797265B2 (en) 2007-02-26 2010-09-14 Siemens Corporation Document clustering that applies a locality sensitive hashing function to a feature vector to obtain a limited set of candidate clusters
US7840409B2 (en) 2007-02-27 2010-11-23 Nuance Communications, Inc. Ordering recognition results produced by an automatic speech recognition engine for a multimodal application
US7822608B2 (en) 2007-02-27 2010-10-26 Nuance Communications, Inc. Disambiguating a speech recognition grammar in a multimodal application
US7826872B2 (en) 2007-02-28 2010-11-02 Sony Ericsson Mobile Communications Ab Audio nickname tag associated with PTT user
US8457959B2 (en) 2007-03-01 2013-06-04 Edward C. Kaiser Systems and methods for implicitly interpreting semantically redundant communication modes
CN101663629B (en) 2007-03-01 2012-10-03 拉姆伯斯公司 Optimized power supply for an electronic system
US20080215678A1 (en) 2007-03-01 2008-09-04 Coletrane Candice L Bookmarking URLs From An Instant Messaging Session
JP5511372B2 (en) 2007-03-02 2014-06-04 パナソニック株式会社 Adaptive excitation vector quantization apparatus and adaptive excitation vector quantization method
JP2008217468A (en) 2007-03-05 2008-09-18 Mitsubishi Electric Corp Information processor and menu item generation program
US20080221866A1 (en) 2007-03-06 2008-09-11 Lalitesh Katragadda Machine Learning For Transliteration
US20110054894A1 (en) 2007-03-07 2011-03-03 Phillips Michael S Speech recognition through the collection of contact information in mobile dictation application
US20090030685A1 (en) 2007-03-07 2009-01-29 Cerra Joseph P Using speech recognition results based on an unstructured language model with a navigation system
US20080221884A1 (en) 2007-03-07 2008-09-11 Cerra Joseph P Mobile environment speech processing facility
SE530911C2 (en) 2007-03-07 2008-10-14 Hexaformer Ab Transformer arrangement
US8886540B2 (en) 2007-03-07 2014-11-11 Vlingo Corporation Using speech recognition results based on an unstructured language model in a mobile communication facility application
US20110060587A1 (en) 2007-03-07 2011-03-10 Phillips Michael S Command and control utilizing ancillary information in a mobile voice-to-speech application
US8838457B2 (en) 2007-03-07 2014-09-16 Vlingo Corporation Using results of unstructured language model based speech recognition to control a system-level function of a mobile communications facility
US8886545B2 (en) 2007-03-07 2014-11-11 Vlingo Corporation Dealing with switch latency in speech recognition
US20080221900A1 (en) 2007-03-07 2008-09-11 Cerra Joseph P Mobile local search environment speech processing facility
US8635243B2 (en) 2007-03-07 2014-01-21 Research In Motion Limited Sending a communications header with voice recording to send metadata for use in speech recognition, formatting, and search mobile search application
US8949266B2 (en) 2007-03-07 2015-02-03 Vlingo Corporation Multiple web-based content category searching in mobile search application
US20080219641A1 (en) 2007-03-09 2008-09-11 Barry Sandrew Apparatus and method for synchronizing a secondary audio track to the audio track of a video source
GB0704772D0 (en) 2007-03-12 2007-04-18 Mongoose Ventures Ltd Aural similarity measuring system for text
US8924844B2 (en) 2007-03-13 2014-12-30 Visual Cues Llc Object annotation
US7801729B2 (en) 2007-03-13 2010-09-21 Sensory, Inc. Using multiple attributes to create a voice search playlist
US20080256613A1 (en) 2007-03-13 2008-10-16 Grover Noel J Voice print identification portal
US7945851B2 (en) 2007-03-14 2011-05-17 Nuance Communications, Inc. Enabling dynamic voiceXML in an X+V page of a multimodal application
JP4466666B2 (en) 2007-03-14 2010-05-26 日本電気株式会社 Minutes creation method, apparatus and program thereof
US20080229218A1 (en) 2007-03-14 2008-09-18 Joon Maeng Systems and methods for providing additional information for objects in electronic documents
US8219406B2 (en) 2007-03-15 2012-07-10 Microsoft Corporation Speech-centric multimodal user interface design in mobile technology
JP4793291B2 (en) 2007-03-15 2011-10-12 パナソニック株式会社 Remote control device
US8144920B2 (en) 2007-03-15 2012-03-27 Microsoft Corporation Automated location estimation using image analysis
US8626930B2 (en) 2007-03-15 2014-01-07 Apple Inc. Multimedia content filtering
US8886537B2 (en) 2007-03-20 2014-11-11 Nuance Communications, Inc. Method and system for text-to-speech synthesis with personalized voice
US8515757B2 (en) 2007-03-20 2013-08-20 Nuance Communications, Inc. Indexing digitized speech with words represented in the digitized speech
CN101636784B (en) 2007-03-20 2011-12-28 富士通株式会社 Speech recognition system, and speech recognition method
JP2008236448A (en) 2007-03-22 2008-10-02 Clarion Co Ltd Sound signal processing device, hands-free calling device, sound signal processing method, and control program
JP2008233678A (en) 2007-03-22 2008-10-02 Honda Motor Co Ltd Voice interaction apparatus, voice interaction method, and program for voice interaction
US8909532B2 (en) 2007-03-23 2014-12-09 Nuance Communications, Inc. Supporting multi-lingual user interaction with a multimodal application
US8126484B2 (en) 2007-03-26 2012-02-28 Qualcomm, Incorporated Apparatus and methods of sharing contact information between mobile communication devices using short message service
US8498628B2 (en) 2007-03-27 2013-07-30 Iocast Llc Content delivery system and method
JP2008271481A (en) 2007-03-27 2008-11-06 Brother Ind Ltd Telephone apparatus
US8702433B2 (en) 2007-03-28 2014-04-22 Breakthrough Performancetech, Llc Systems and methods for computerized interactive training
US20080244446A1 (en) 2007-03-29 2008-10-02 Lefevre John Disambiguation of icons and other media in text-based applications
US7797269B2 (en) 2007-03-29 2010-09-14 Nokia Corporation Method and apparatus using a context sensitive dictionary
JP2008250375A (en) 2007-03-29 2008-10-16 Toshiba Corp Character input device, method, and program
TWI502380B (en) 2007-03-29 2015-10-01 Nokia Corp Method, apparatus, server, system and computer program product for use with predictive text input
EP2045798B1 (en) 2007-03-29 2014-12-03 Panasonic Intellectual Property Corporation of America Keyword extracting device
WO2008120036A1 (en) 2007-03-29 2008-10-09 Nokia Corporation Method at a central server for managing a translation dictionary and a translation server system
JP4713532B2 (en) 2007-03-29 2011-06-29 株式会社エヌ・ティ・ティ・ドコモ Communication terminal and program thereof
US8775931B2 (en) 2007-03-30 2014-07-08 Blackberry Limited Spell check function that applies a preference to a spell check algorithm based upon extensive user selection of spell check results generated by the algorithm, and associated handheld electronic device
US8650030B2 (en) 2007-04-02 2014-02-11 Google Inc. Location based responses to telephone requests
US20080247529A1 (en) 2007-04-03 2008-10-09 Microsoft Corporation Incoming Call Classification And Disposition
US8977255B2 (en) 2007-04-03 2015-03-10 Apple Inc. Method and system for operating a multi-function portable electronic device using voice-activation
US8131556B2 (en) 2007-04-03 2012-03-06 Microsoft Corporation Communications using different modalities
US7920902B2 (en) 2007-04-04 2011-04-05 Carroll David W Mobile personal audio device
US8032472B2 (en) 2007-04-04 2011-10-04 Tuen Solutions Limited Liability Company Intelligent agent for distributed services for mobile devices
US7809610B2 (en) 2007-04-09 2010-10-05 Platformation, Inc. Methods and apparatus for freshness and completeness of information
CN105117376B (en) 2007-04-10 2018-07-10 谷歌有限责任公司 Multi-mode input method editor
DK1981253T3 (en) 2007-04-10 2011-10-03 Oticon As User interfaces for a communication device
US20080253577A1 (en) 2007-04-13 2008-10-16 Apple Inc. Multi-channel sound panner
US20100142740A1 (en) 2007-04-16 2010-06-10 Gn Resound A/S Hearing aid wireless communication adaptor
US7848924B2 (en) 2007-04-17 2010-12-07 Nokia Corporation Method, apparatus and computer program product for providing voice conversion using temporal dynamic features
JP4412504B2 (en) 2007-04-17 2010-02-10 本田技研工業株式会社 Speech recognition apparatus, speech recognition method, and speech recognition program
KR100769156B1 (en) 2007-04-20 2007-10-22 주식회사 서비전자 Home network system and control method thereof
JP5243730B2 (en) 2007-04-24 2013-07-24 株式会社エヌ・ティ・ティ・ドコモ Search support system, search support method
US7953600B2 (en) 2007-04-24 2011-05-31 Novaspeech Llc System and method for hybrid speech synthesis
JP2008268684A (en) 2007-04-24 2008-11-06 Seiko Instruments Inc Voice reproducing device, electronic dictionary, voice reproducing method, and voice reproducing program
US20080270151A1 (en) 2007-04-26 2008-10-30 Bd Metrics Method and system for developing an audience of buyers and obtaining their behavioral preferences to promote commerce on a communication network
KR100819928B1 (en) 2007-04-26 2008-04-08 (주)부성큐 Apparatus for speech recognition of wireless terminal and method of thereof
US8457946B2 (en) 2007-04-26 2013-06-04 Microsoft Corporation Recognition architecture for generating Asian characters
JP4769223B2 (en) 2007-04-26 2011-09-07 旭化成株式会社 Text phonetic symbol conversion dictionary creation device, recognition vocabulary dictionary creation device, and speech recognition device
US8695074B2 (en) 2007-04-26 2014-04-08 Microsoft Corporation Pre-authenticated calling for voice applications
US7983915B2 (en) 2007-04-30 2011-07-19 Sonic Foundry, Inc. Audio content search engine
US20080270344A1 (en) 2007-04-30 2008-10-30 Yurick Steven J Rich media content search engine
US8005664B2 (en) 2007-04-30 2011-08-23 Tachyon Technologies Pvt. Ltd. System, method to generate transliteration and method for generating decision tree to obtain transliteration
US7912289B2 (en) 2007-05-01 2011-03-22 Microsoft Corporation Image text replacement
US20080273672A1 (en) 2007-05-03 2008-11-06 Microsoft Corporation Automated attendant grammar tuning
US7899666B2 (en) 2007-05-04 2011-03-01 Expert System S.P.A. Method and system for automatically extracting relations between concepts included in text
US8032383B1 (en) 2007-05-04 2011-10-04 Foneweb, Inc. Speech controlled services and devices using internet
US9292807B2 (en) 2007-05-10 2016-03-22 Microsoft Technology Licensing, Llc Recommending actions based on context
TWI336048B (en) 2007-05-11 2011-01-11 Delta Electronics Inc Input system for mobile search and method therefor
KR20090001716A (en) 2007-05-14 2009-01-09 이병수 System for operating of growing intelligence form cyber secretary and method thereof
EP2156330B1 (en) 2007-05-15 2015-03-18 TiVo Inc. Multimedia content search and recording scheduling system
US8538757B2 (en) 2007-05-17 2013-09-17 Redstart Systems, Inc. System and method of a list commands utility for a speech recognition command system
US8886521B2 (en) 2007-05-17 2014-11-11 Redstart Systems, Inc. System and method of dictation for a speech recognition command system
US8150699B2 (en) 2007-05-17 2012-04-03 Redstart Systems, Inc. Systems and methods of a structured grammar for a speech recognition command system
US8620652B2 (en) 2007-05-17 2013-12-31 Microsoft Corporation Speech recognition macro runtime
EP2168378A1 (en) 2007-05-18 2010-03-31 Giacomo Poretti System and method to consume web content using television set
US8700005B1 (en) 2007-05-21 2014-04-15 Amazon Technologies, Inc. Notification of a user device to perform an action
US20080294981A1 (en) 2007-05-21 2008-11-27 Advancis.Com, Inc. Page clipping tool for digital publications
EG25474A (en) 2007-05-21 2012-01-11 Sherikat Link Letatweer Elbarmaguey At Sae Method for translitering and suggesting arabic replacement for a given user input
US20080294517A1 (en) 2007-05-25 2008-11-27 Gregory Howard Hill Customized image based calendar, method and system
WO2008146456A1 (en) 2007-05-28 2008-12-04 Panasonic Corporation Information search support method and information search support device
US8189880B2 (en) 2007-05-29 2012-05-29 Microsoft Corporation Interactive photo annotation based on face clustering
US8831941B2 (en) 2007-05-29 2014-09-09 At&T Intellectual Property Ii, L.P. System and method for tracking fraudulent electronic transactions using voiceprints of uncommon words
US8762143B2 (en) 2007-05-29 2014-06-24 At&T Intellectual Property Ii, L.P. Method and apparatus for identifying acoustic background environments based on time and speed to enhance automatic speech recognition
TWI338269B (en) 2007-05-31 2011-03-01 Univ Nat Taiwan Teaching materials generation methods and systems, and machine readable medium thereof
US8494137B2 (en) 2007-05-31 2013-07-23 Centurylink Intellectual Property Llc System and method for pre-call messaging
US8285206B2 (en) 2007-06-01 2012-10-09 Research In Motion Limited Proximity-dependent events
US20090027334A1 (en) 2007-06-01 2009-01-29 Cybernet Systems Corporation Method for controlling a graphical user interface for touchscreen-enabled computer systems
JP2008299221A (en) 2007-06-01 2008-12-11 Fujitsu Ten Ltd Speech detection device
US8055708B2 (en) 2007-06-01 2011-11-08 Microsoft Corporation Multimedia spaces
US8204238B2 (en) 2007-06-08 2012-06-19 Sensory, Inc Systems and methods of sonic communication
US8004493B2 (en) 2007-06-08 2011-08-23 Apple Inc. Methods and systems for providing sensory information to devices and peripherals
US8135577B2 (en) 2007-06-09 2012-03-13 Apple Inc. Braille support
CN101325756B (en) 2007-06-11 2013-02-13 英华达(上海)电子有限公司 Apparatus for identifying mobile phone voice and method for activating mobile phone voice identification
US20080312928A1 (en) 2007-06-12 2008-12-18 Robert Patrick Goebel Natural language speech recognition calculator
KR20080109322A (en) 2007-06-12 2008-12-17 엘지전자 주식회사 Method and apparatus for providing services by comprehended user's intuited intension
WO2008151624A1 (en) 2007-06-13 2008-12-18 Widex A/S Hearing aid system establishing a conversation group among hearing aids used by different users
WO2008151623A1 (en) 2007-06-13 2008-12-18 Widex A/S A system and a method for establishing a conversation group among a number of hearing aids
US20080313335A1 (en) 2007-06-15 2008-12-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Communicator establishing aspects with context identifying
US8059101B2 (en) 2007-06-22 2011-11-15 Apple Inc. Swipe gestures for touch screen keyboards
US8527262B2 (en) 2007-06-22 2013-09-03 International Business Machines Corporation Systems and methods for automatic semantic role labeling of high morphological text for natural language processing applications
JP4970160B2 (en) 2007-06-22 2012-07-04 アルパイン株式会社 In-vehicle system and current location mark point guidance method
US8027834B2 (en) 2007-06-25 2011-09-27 Nuance Communications, Inc. Technique for training a phonetic decision tree with limited phonetic exceptional terms
JP2010531492A (en) 2007-06-25 2010-09-24 グーグル・インコーポレーテッド Word probability determination
US7689421B2 (en) 2007-06-27 2010-03-30 Microsoft Corporation Voice persona service for embedding text-to-speech features into software programs
US8090621B1 (en) 2007-06-27 2012-01-03 Amazon Technologies, Inc. Method and system for associating feedback with recommendation rules
US9794605B2 (en) 2007-06-28 2017-10-17 Apple Inc. Using time-stamped event entries to facilitate synchronizing data streams
US8041438B2 (en) 2007-06-28 2011-10-18 Apple Inc. Data-driven media management within an electronic device
US8190627B2 (en) 2007-06-28 2012-05-29 Microsoft Corporation Machine assisted query formulation
US8260809B2 (en) 2007-06-28 2012-09-04 Microsoft Corporation Voice-based search processing
US8065624B2 (en) 2007-06-28 2011-11-22 Panasonic Corporation Virtual keypad systems and methods
US7861008B2 (en) 2007-06-28 2010-12-28 Apple Inc. Media management and routing within an electronic device
US9632561B2 (en) 2007-06-28 2017-04-25 Apple Inc. Power-gating media decoders to reduce power consumption
US7962344B2 (en) 2007-06-29 2011-06-14 Microsoft Corporation Depicting a speech user interface via graphical elements
US8019606B2 (en) 2007-06-29 2011-09-13 Microsoft Corporation Identification and selection of a software application via speech
KR100930802B1 (en) 2007-06-29 2009-12-09 엔에이치엔(주) Browser control method and system using images
US8290775B2 (en) 2007-06-29 2012-10-16 Microsoft Corporation Pronunciation correction of text-to-speech systems between different spoken languages
JP4424382B2 (en) 2007-07-04 2010-03-03 ソニー株式会社 Content reproduction apparatus and content automatic reception method
US7617074B2 (en) 2007-07-06 2009-11-10 Microsoft Corporation Suppressing repeated events and storing diagnostic information
US8219399B2 (en) 2007-07-11 2012-07-10 Garmin Switzerland Gmbh Automated speech recognition (ASR) tiling
US8306235B2 (en) 2007-07-17 2012-11-06 Apple Inc. Method and apparatus for using a sound sensor to adjust the audio output for a device
DE102007033472A1 (en) 2007-07-18 2009-01-29 Siemens Ag Method for speech recognition
US7890493B2 (en) 2007-07-20 2011-02-15 Google Inc. Translating a search query into multiple languages
CN101354746B (en) 2007-07-23 2011-08-31 夏普株式会社 Device and method for extracting character image
ITFI20070177A1 (en) 2007-07-26 2009-01-27 Riccardo Vieri SYSTEM FOR THE CREATION AND SETTING OF AN ADVERTISING CAMPAIGN DERIVING FROM THE INSERTION OF ADVERTISING MESSAGES WITHIN AN EXCHANGE OF MESSAGES AND METHOD FOR ITS FUNCTIONING.
JP2009036999A (en) 2007-08-01 2009-02-19 Infocom Corp Interactive method using computer, interactive system, computer program and computer-readable storage medium
CN101802812B (en) 2007-08-01 2015-07-01 金格软件有限公司 Automatic context sensitive language correction and enhancement using an internet corpus
US9342496B2 (en) 2007-08-06 2016-05-17 Apple Inc. Auto-completion of names
TW200907695A (en) 2007-08-06 2009-02-16 jian-qiang Peng System and method of fast opening network link service
US20090043583A1 (en) 2007-08-08 2009-02-12 International Business Machines Corporation Dynamic modification of voice selection based on user specific factors
US7983919B2 (en) 2007-08-09 2011-07-19 At&T Intellectual Property Ii, L.P. System and method for performing speech synthesis with a cache of phoneme sequences
US7983478B2 (en) 2007-08-10 2011-07-19 Microsoft Corporation Hidden markov model based handwriting/calligraphy generation
US8321222B2 (en) 2007-08-14 2012-11-27 Nuance Communications, Inc. Synthesis by generation and concatenation of multi-form segments
JP2009048245A (en) 2007-08-14 2009-03-05 Konami Digital Entertainment:Kk Input reception device, area control method and program
US8478598B2 (en) 2007-08-17 2013-07-02 International Business Machines Corporation Apparatus, system, and method for voice chat transcription
JP4987623B2 (en) 2007-08-20 2012-07-25 株式会社東芝 Apparatus and method for interacting with user by voice
KR101490687B1 (en) 2007-08-20 2015-02-06 삼성전자주식회사 Method and apparatus for sharing secret information between devices in home network
US8335829B1 (en) 2007-08-22 2012-12-18 Canyon IP Holdings, LLC Facilitating presentation by mobile device of additional content for a word or phrase upon utterance thereof
US7788276B2 (en) 2007-08-22 2010-08-31 Yahoo! Inc. Predictive stemming for web search with statistical machine translation models
US7983902B2 (en) 2007-08-23 2011-07-19 Google Inc. Domain dictionary creation by detection of new topic words using divergence value comparison
US20090055186A1 (en) 2007-08-23 2009-02-26 International Business Machines Corporation Method to voice id tag content to ease reading for visually impaired
US7917355B2 (en) 2007-08-23 2011-03-29 Google Inc. Word detection
KR101359715B1 (en) 2007-08-24 2014-02-10 삼성전자주식회사 Method and apparatus for providing mobile voice web
US8126274B2 (en) 2007-08-30 2012-02-28 Microsoft Corporation Visual language modeling for image classification
US8190359B2 (en) 2007-08-31 2012-05-29 Proxpro, Inc. Situation-aware personal information management for a mobile device
US20090058823A1 (en) 2007-09-04 2009-03-05 Apple Inc. Virtual Keyboards in Multi-Language Environment
US8683378B2 (en) 2007-09-04 2014-03-25 Apple Inc. Scrolling techniques for user interfaces
US8826132B2 (en) 2007-09-04 2014-09-02 Apple Inc. Methods and systems for navigating content on a portable device
US8683197B2 (en) 2007-09-04 2014-03-25 Apple Inc. Method and apparatus for providing seamless resumption of video playback
US20090106397A1 (en) 2007-09-05 2009-04-23 O'keefe Sean Patrick Method and apparatus for interactive content distribution
US9812023B2 (en) 2007-09-10 2017-11-07 Excalibur Ip, Llc Audible metadata
US20090070109A1 (en) 2007-09-12 2009-03-12 Microsoft Corporation Speech-to-Text Transcription for Personal Communication Devices
US20090076825A1 (en) 2007-09-13 2009-03-19 Bionica Corporation Method of enhancing sound for hearing impaired individuals
US8661340B2 (en) 2007-09-13 2014-02-25 Apple Inc. Input methods for device having multi-language environment
US20090074214A1 (en) 2007-09-13 2009-03-19 Bionica Corporation Assistive listening system with plug in enhancement platform and communication port to download user preferred processing algorithms
US8171117B2 (en) 2007-09-14 2012-05-01 Ricoh Co. Ltd. Workflow manager for a distributed system
JP4990077B2 (en) 2007-09-14 2012-08-01 株式会社日立製作所 Navigation device
KR100920267B1 (en) 2007-09-17 2009-10-05 한국전자통신연구원 System for voice communication analysis and method thereof
US8706476B2 (en) 2007-09-18 2014-04-22 Ariadne Genomics, Inc. Natural language processing method by analyzing primitive sentences, logical clauses, clause types and verbal blocks
KR100919225B1 (en) 2007-09-19 2009-09-28 한국전자통신연구원 The method and apparatus for post-processing conversation error using multilevel check in voice conversation system
US8583438B2 (en) 2007-09-20 2013-11-12 Microsoft Corporation Unnatural prosody detection in speech synthesis
ATE509345T1 (en) 2007-09-21 2011-05-15 Boeing Co VOICED VEHICLE CONTROLS
US8042053B2 (en) 2007-09-24 2011-10-18 Microsoft Corporation Method for making digital documents browseable
US20090083035A1 (en) 2007-09-25 2009-03-26 Ritchie Winson Huang Text pre-processing for text-to-speech generation
US8069051B2 (en) 2007-09-25 2011-11-29 Apple Inc. Zero-gap playback using predictive mixing
US20090079622A1 (en) 2007-09-26 2009-03-26 Broadcom Corporation Sharing of gps information between mobile devices
JP5360597B2 (en) 2007-09-28 2013-12-04 日本電気株式会社 Data classification method and data classification device
US9053089B2 (en) 2007-10-02 2015-06-09 Apple Inc. Part-of-speech tagging using latent analogy
US8923491B2 (en) 2007-10-03 2014-12-30 At&T Intellectual Property I, L.P. System and method for connecting to addresses received in spoken communications
TWI360761B (en) 2007-10-03 2012-03-21 Inventec Corp An electronic apparatus and a method for automatic
US8165886B1 (en) * 2007-10-04 2012-04-24 Great Northern Research LLC Speech interface system and method for control and interaction with applications on a computing system
US7995732B2 (en) 2007-10-04 2011-08-09 At&T Intellectual Property I, Lp Managing audio in a multi-source audio environment
US8515095B2 (en) 2007-10-04 2013-08-20 Apple Inc. Reducing annoyance by managing the acoustic noise produced by a device
US8462959B2 (en) 2007-10-04 2013-06-11 Apple Inc. Managing acoustic noise produced by a device
US8595642B1 (en) 2007-10-04 2013-11-26 Great Northern Research, LLC Multiple shell multi faceted graphical user interface
US8036901B2 (en) 2007-10-05 2011-10-11 Sensory, Incorporated Systems and methods of performing speech recognition using sensory inputs of human position
IL186505A0 (en) 2007-10-08 2008-01-20 Excelang Ltd Grammar checker
WO2009049049A1 (en) 2007-10-09 2009-04-16 Language Analytics Llc Method and system for adaptive transliteration
US8139763B2 (en) 2007-10-10 2012-03-20 Spansion Llc Randomized RSA-based cryptographic exponentiation resistant to side channel and fault attacks
US20090097634A1 (en) 2007-10-16 2009-04-16 Ullas Balan Nambiar Method and System for Call Processing
US8594996B2 (en) 2007-10-17 2013-11-26 Evri Inc. NLP-based entity recognition and disambiguation
JP2009098490A (en) 2007-10-18 2009-05-07 Kddi Corp Device for editing speech recognition result, speech recognition device and computer program
US8209384B2 (en) 2007-10-23 2012-06-26 Yahoo! Inc. Persistent group-based instant messaging
US20090112677A1 (en) 2007-10-24 2009-04-30 Rhett Randolph L Method for automatically developing suggested optimal work schedules from unsorted group and individual task lists
US8606562B2 (en) 2007-10-25 2013-12-10 Blackberry Limited Disambiguated text message retype function
US8000972B2 (en) 2007-10-26 2011-08-16 Sony Corporation Remote controller with speech recognition
US8280885B2 (en) 2007-10-29 2012-10-02 Cornell University System and method for automatically summarizing fine-grained opinions in digital text
US7840447B2 (en) 2007-10-30 2010-11-23 Leonard Kleinrock Pricing and auctioning of bundled items among multiple sellers and buyers
US20090112572A1 (en) 2007-10-30 2009-04-30 Karl Ola Thorn System and method for input of text to an application operating on a device
JP2009110300A (en) 2007-10-30 2009-05-21 Nippon Telegr & Teleph Corp <Ntt> Information home appliance network control device, information home appliance network control system, information home appliance network control method, and program
US9063979B2 (en) 2007-11-01 2015-06-23 Ebay, Inc. Analyzing event streams of user sessions
US7983997B2 (en) 2007-11-02 2011-07-19 Florida Institute For Human And Machine Cognition, Inc. Interactive complex task teaching system that allows for natural language input, recognizes a user's intent, and automatically performs tasks in document object model (DOM) nodes
US8065152B2 (en) 2007-11-08 2011-11-22 Demand Media, Inc. Platform for enabling voice commands to resolve phoneme based domain name registrations
CN101179754A (en) 2007-11-08 2008-05-14 深圳市戴文科技有限公司 Interactive service implementing method and mobile terminal
US20090125299A1 (en) 2007-11-09 2009-05-14 Jui-Chang Wang Speech recognition system
DE102008051756A1 (en) 2007-11-12 2009-05-14 Volkswagen Ag Multimodal user interface of a driver assistance system for entering and presenting information
JP4926004B2 (en) 2007-11-12 2012-05-09 株式会社リコー Document processing apparatus, document processing method, and document processing program
US20090125602A1 (en) 2007-11-14 2009-05-14 International Business Machines Corporation Automatic priority adjustment for incoming emails
US7890525B2 (en) 2007-11-14 2011-02-15 International Business Machines Corporation Foreign language abbreviation translation in an instant messaging system
US8112280B2 (en) 2007-11-19 2012-02-07 Sensory, Inc. Systems and methods of performing speech recognition with barge-in for use in a bluetooth system
US8294669B2 (en) 2007-11-19 2012-10-23 Palo Alto Research Center Incorporated Link target accuracy in touch-screen mobile devices by layout adjustment
US8620662B2 (en) 2007-11-20 2013-12-31 Apple Inc. Context-aware unit selection
US20150046537A1 (en) 2007-11-21 2015-02-12 Vdoqwest, Inc., A Delaware Corporation Retrieving video annotation metadata using a p2p network and copyright free indexes
US20110246471A1 (en) 2010-04-06 2011-10-06 Selim Shlomo Rakib Retrieving video annotation metadata using a p2p network
CN101448340B (en) 2007-11-26 2011-12-07 联想(北京)有限公司 Mobile terminal state detection method and system and mobile terminal
US8213999B2 (en) 2007-11-27 2012-07-03 Htc Corporation Controlling method and system for handheld communication device and recording medium using the same
TWI373708B (en) 2007-11-27 2012-10-01 Htc Corp Power management method for handheld electronic device
US8190596B2 (en) 2007-11-28 2012-05-29 International Business Machines Corporation Method for assembly of personalized enterprise information integrators over conjunctive queries
WO2009069199A1 (en) 2007-11-28 2009-06-04 Fujitsu Limited Metallic pipe managed by wireless ic tag, and the wireless ic tag
JP2009134409A (en) 2007-11-29 2009-06-18 Sony Ericsson Mobilecommunications Japan Inc Reminder device, reminder method, reminder program, and portable terminal device
US7805286B2 (en) 2007-11-30 2010-09-28 Bose Corporation System and method for sound system simulation
US8543622B2 (en) 2007-12-07 2013-09-24 Patrick Giblin Method and system for meta-tagging media content and distribution
EP2068537B1 (en) 2007-12-07 2011-07-13 Research In Motion Limited System and method for event-dependent state activation for a mobile communication device
JP5493267B2 (en) 2007-12-11 2014-05-14 大日本印刷株式会社 Product search device and product search method
US8140335B2 (en) 2007-12-11 2012-03-20 Voicebox Technologies, Inc. System and method for providing a natural language voice user interface in an integrated voice navigation services environment
US8385588B2 (en) 2007-12-11 2013-02-26 Eastman Kodak Company Recording audio metadata for stored images
US9767681B2 (en) 2007-12-12 2017-09-19 Apple Inc. Handheld electronic devices with remote control functionality and gesture recognition
US8275607B2 (en) 2007-12-12 2012-09-25 Microsoft Corporation Semi-supervised part-of-speech tagging
US20090158423A1 (en) 2007-12-14 2009-06-18 Symbol Technologies, Inc. Locking mobile device cradle
US8086676B2 (en) 2007-12-17 2011-12-27 Smooth Productions Inc. Contact aggregator
WO2009078256A1 (en) 2007-12-18 2009-06-25 Nec Corporation Pronouncing fluctuation rule extraction device, pronunciation fluctuation rule extraction method and pronunciation fluctation rule extraction program
KR101300839B1 (en) 2007-12-18 2013-09-10 삼성전자주식회사 Voice query extension method and system
US8145196B2 (en) 2007-12-18 2012-03-27 Apple Inc. Creation and management of voicemail greetings for mobile communication devices
US10002189B2 (en) 2007-12-20 2018-06-19 Apple Inc. Method and apparatus for searching using an active ontology
US8095680B2 (en) 2007-12-20 2012-01-10 Telefonaktiebolaget Lm Ericsson (Publ) Real-time network transport protocol interface method and apparatus
US20090164937A1 (en) 2007-12-20 2009-06-25 Alden Alviar Scroll Apparatus and Method for Manipulating Data on an Electronic Device Display
WO2009079736A1 (en) 2007-12-21 2009-07-02 Bce Inc. Method and apparatus for interrupting an active telephony session to deliver information to a subscriber
US8019604B2 (en) 2007-12-21 2011-09-13 Motorola Mobility, Inc. Method and apparatus for uniterm discovery and voice-to-voice search on mobile device
JP5239328B2 (en) 2007-12-21 2013-07-17 ソニー株式会社 Information processing apparatus and touch motion recognition method
US20090164301A1 (en) 2007-12-21 2009-06-25 Yahoo! Inc. Targeted Ad System Using Metadata
CN101188644A (en) 2007-12-26 2008-05-28 中国工商银行股份有限公司 Bank voice service method and system
US8219407B1 (en) 2007-12-27 2012-07-10 Great Northern Research, LLC Method for processing the output of a speech recognizer
KR20090071077A (en) 2007-12-27 2009-07-01 엘지전자 주식회사 Navigation apparatus and method for providing information of tbt(turn-by-turn position)
US8583416B2 (en) 2007-12-27 2013-11-12 Fluential, Llc Robust information extraction from utterances
US20090172108A1 (en) 2007-12-28 2009-07-02 Surgo Systems and methods for a telephone-accessible message communication system
US8373549B2 (en) 2007-12-31 2013-02-12 Apple Inc. Tactile feedback in an electronic device
US9330720B2 (en) 2008-01-03 2016-05-03 Apple Inc. Methods and apparatus for altering audio output signals
US20090177966A1 (en) 2008-01-06 2009-07-09 Apple Inc. Content Sheet for Media Player
US8405621B2 (en) 2008-01-06 2013-03-26 Apple Inc. Variable rate media playback methods for electronic devices with touch interfaces
US7609179B2 (en) 2008-01-08 2009-10-27 International Business Machines Corporation Method for compressed data with reduced dictionary sizes by coding value prefixes
US8478578B2 (en) 2008-01-09 2013-07-02 Fluential, Llc Mobile speech-to-speech interpretation system
US20090204243A1 (en) 2008-01-09 2009-08-13 8 Figure, Llc Method and apparatus for creating customized text-to-speech podcasts and videos incorporating associated media
US8232973B2 (en) 2008-01-09 2012-07-31 Apple Inc. Method, device, and graphical user interface providing word recommendations for text input
JP2009186989A (en) 2008-01-10 2009-08-20 Brother Ind Ltd Voice interactive device and voice interactive program
US7870133B2 (en) 2008-01-14 2011-01-11 Infosys Technologies Ltd. Method for semantic based storage and retrieval of information
US10176827B2 (en) 2008-01-15 2019-01-08 Verint Americas Inc. Active lab
EP2081185B1 (en) 2008-01-16 2014-11-26 Nuance Communications, Inc. Speech recognition on large lists using fragments
US20090187950A1 (en) 2008-01-18 2009-07-23 At&T Knowledge Ventures, L.P. Audible menu system
US20090187577A1 (en) 2008-01-20 2009-07-23 Aviv Reznik System and Method Providing Audio-on-Demand to a User's Personal Online Device as Part of an Online Audio Community
ITPO20080002A1 (en) 2008-01-22 2009-07-23 Riccardo Vieri SYSTEM AND METHOD FOR THE CONTEXTUAL ADVERTISING GENERATION DURING THE SENDING OF SMS, ITS DEVICE AND INTERFACE.
US8175882B2 (en) 2008-01-25 2012-05-08 International Business Machines Corporation Method and system for accent correction
US20120284015A1 (en) 2008-01-28 2012-11-08 William Drewes Method for Increasing the Accuracy of Subject-Specific Statistical Machine Translation (SMT)
US20090192782A1 (en) 2008-01-28 2009-07-30 William Drewes Method for increasing the accuracy of statistical machine translation (SMT)
US8223988B2 (en) 2008-01-29 2012-07-17 Qualcomm Incorporated Enhanced blind source separation algorithm for highly correlated mixtures
US9154606B2 (en) 2008-01-30 2015-10-06 Google Inc. Notification of mobile device events
CN101500041A (en) 2008-01-30 2009-08-05 中兴通讯股份有限公司 Call control method and apparatus
CN101499156A (en) 2008-01-31 2009-08-05 上海亿动信息技术有限公司 Control method and device for publishing advertisements based on multi-advertisement information publishing device
US7840581B2 (en) 2008-02-01 2010-11-23 Realnetworks, Inc. Method and system for improving the quality of deep metadata associated with media content
KR20090085376A (en) 2008-02-04 2009-08-07 삼성전자주식회사 Service method and apparatus for using speech synthesis of text message
US8000956B2 (en) 2008-02-08 2011-08-16 Xerox Corporation Semantic compatibility checking for automatic correction and discovery of named entities
US10269024B2 (en) 2008-02-08 2019-04-23 Outbrain Inc. Systems and methods for identifying and measuring trends in consumer content demand within vertically associated websites and related content
KR101334066B1 (en) 2008-02-11 2013-11-29 이점식 Self-evolving Artificial Intelligent cyber robot system and offer method
US8195656B2 (en) 2008-02-13 2012-06-05 Yahoo, Inc. Social network search
US8099289B2 (en) 2008-02-13 2012-01-17 Sensory, Inc. Voice interface and search for electronic devices including bluetooth headsets and remote systems
US20090210391A1 (en) 2008-02-14 2009-08-20 Hall Stephen G Method and system for automated search for, and retrieval and distribution of, information
JP2009193448A (en) 2008-02-15 2009-08-27 Oki Electric Ind Co Ltd Dialog system, method, and program
JP2009193457A (en) 2008-02-15 2009-08-27 Oki Electric Ind Co Ltd Information retrieval device, method and program
JP2009193532A (en) 2008-02-18 2009-08-27 Oki Electric Ind Co Ltd Dialogue management device, method, and program, and consciousness extraction system
US8165884B2 (en) 2008-02-15 2012-04-24 Microsoft Corporation Layered prompting: self-calibrating instructional prompting for verbal interfaces
EP2094032A1 (en) 2008-02-19 2009-08-26 Deutsche Thomson OHG Audio signal, method and apparatus for encoding or transmitting the same and method and apparatus for processing the same
EP2243303A1 (en) 2008-02-20 2010-10-27 Koninklijke Philips Electronics N.V. Audio device and method of operation therefor
US20090215466A1 (en) 2008-02-22 2009-08-27 Darcy Ahl Mobile phone based system for disabling a cell phone while traveling
US8065143B2 (en) 2008-02-22 2011-11-22 Apple Inc. Providing text input using speech data and non-speech data
US8706474B2 (en) 2008-02-23 2014-04-22 Fair Isaac Corporation Translation of entity names based on source document publication date, and frequency and co-occurrence of the entity names
US8015144B2 (en) 2008-02-26 2011-09-06 Microsoft Corporation Learning transportation modes from raw GPS data
JP4433061B2 (en) 2008-02-27 2010-03-17 株式会社デンソー Driving support system
US8068604B2 (en) 2008-12-19 2011-11-29 Computer Product Introductions Corporation Method and system for event notifications
JP2009205579A (en) 2008-02-29 2009-09-10 Toshiba Corp Speech translation device and program
US20090221274A1 (en) 2008-02-29 2009-09-03 Venkatakrishnan Poornima System, method and device for enabling alternative call handling routines for incoming calls
EP2096840B1 (en) 2008-02-29 2012-07-04 Research In Motion Limited Visual event notification on a handheld communications device
US9049255B2 (en) 2008-02-29 2015-06-02 Blackberry Limited Visual event notification on a handheld communications device
US8205157B2 (en) 2008-03-04 2012-06-19 Apple Inc. Methods and graphical user interfaces for conducting searches on a portable multifunction device
US8201109B2 (en) 2008-03-04 2012-06-12 Apple Inc. Methods and graphical user interfaces for editing on a portable multifunction device
US8650507B2 (en) 2008-03-04 2014-02-11 Apple Inc. Selecting of text using gestures
US20090228273A1 (en) 2008-03-05 2009-09-10 Microsoft Corporation Handwriting-based user interface for correction of speech recognition errors
US20090228439A1 (en) 2008-03-07 2009-09-10 Microsoft Corporation Intent-aware search
US8255224B2 (en) 2008-03-07 2012-08-28 Google Inc. Voice recognition grammar selection based on context
US8380512B2 (en) 2008-03-10 2013-02-19 Yahoo! Inc. Navigation using a search engine and phonetic voice recognition
US8364486B2 (en) 2008-03-12 2013-01-29 Intelligent Mechatronic Systems Inc. Speech understanding method and system
US20090235280A1 (en) 2008-03-12 2009-09-17 Xerox Corporation Event extraction system for electronic messages
US20090234655A1 (en) 2008-03-13 2009-09-17 Jason Kwon Mobile electronic device with active speech recognition
CN101246020B (en) 2008-03-14 2011-05-25 深圳市凯立德科技股份有限公司 Voice broadcasting device and navigation system using the same and its method
US20090235176A1 (en) 2008-03-14 2009-09-17 Madhavi Jayanthi Social interaction system for facilitating display of current location of friends and location of businesses of interest
US20090234638A1 (en) 2008-03-14 2009-09-17 Microsoft Corporation Use of a Speech Grammar to Recognize Instant Message Input
US7958136B1 (en) 2008-03-18 2011-06-07 Google Inc. Systems and methods for identifying similar documents
JP2009223840A (en) 2008-03-19 2009-10-01 Fujitsu Ltd Schedule management program, schedule management device and schedule management method
CN101547396B (en) 2008-03-24 2012-07-04 展讯通信(上海)有限公司 Method for quickly reporting position in emergency calling process
US20090239552A1 (en) 2008-03-24 2009-09-24 Yahoo! Inc. Location-based opportunistic recommendations
AU2009227944B2 (en) 2008-03-25 2014-09-11 E-Lane Systems Inc. Multi-participant, mixed-initiative voice interaction system
US20110035434A1 (en) 2008-03-27 2011-02-10 Markport Limited Processing of messaging service attributes in communication systems
US8615388B2 (en) 2008-03-28 2013-12-24 Microsoft Corporation Intra-language statistical machine translation
US20090248456A1 (en) 2008-03-28 2009-10-01 Passkey International, Inc. Notifications and reports in a reservation system
EP2107553B1 (en) 2008-03-31 2011-05-18 Harman Becker Automotive Systems GmbH Method for determining barge-in
US7472061B1 (en) 2008-03-31 2008-12-30 International Business Machines Corporation Systems and methods for building a native language phoneme lexicon having native pronunciations of non-native words derived from non-native pronunciations
US8417298B2 (en) 2008-04-01 2013-04-09 Apple Inc. Mounting structures for portable electronic devices
US20090249198A1 (en) 2008-04-01 2009-10-01 Yahoo! Inc. Techniques for input recogniton and completion
TWI446780B (en) 2008-04-03 2014-07-21 Hon Hai Prec Ind Co Ltd Communication apparatus and method
US8312376B2 (en) 2008-04-03 2012-11-13 Microsoft Corporation Bookmark interpretation service
US20090253457A1 (en) 2008-04-04 2009-10-08 Apple Inc. Audio signal processing for certification enhancement in a handheld wireless communications device
US8996376B2 (en) 2008-04-05 2015-03-31 Apple Inc. Intelligent text-to-speech conversion
KR101491581B1 (en) 2008-04-07 2015-02-24 삼성전자주식회사 Correction System for spelling error and method thereof
US8958848B2 (en) 2008-04-08 2015-02-17 Lg Electronics Inc. Mobile terminal and menu control method thereof
US20110093272A1 (en) 2008-04-08 2011-04-21 Ntt Docomo, Inc Media process server apparatus and media process method therefor
KR20090107365A (en) 2008-04-08 2009-10-13 엘지전자 주식회사 Mobile terminal and its menu control method
KR20090107364A (en) 2008-04-08 2009-10-13 엘지전자 주식회사 Mobile terminal and its menu control method
US7889101B2 (en) 2008-04-14 2011-02-15 Alpine Electronics, Inc Method and apparatus for generating location based reminder message for navigation system
JP4656177B2 (en) 2008-04-14 2011-03-23 トヨタ自動車株式会社 Navigation device, operation unit display method
US8046222B2 (en) 2008-04-16 2011-10-25 Google Inc. Segmenting words using scaled probabilities
US8490050B2 (en) 2008-04-17 2013-07-16 Microsoft Corporation Automatic generation of user interfaces
US8433778B1 (en) 2008-04-22 2013-04-30 Marvell International Ltd Device configuration
US8407049B2 (en) 2008-04-23 2013-03-26 Cogi, Inc. Systems and methods for conversation enhancement
US8972432B2 (en) 2008-04-23 2015-03-03 Google Inc. Machine translation using information retrieval
US8666824B2 (en) 2008-04-23 2014-03-04 Dell Products L.P. Digital media content location and purchasing system
US8121837B2 (en) 2008-04-24 2012-02-21 Nuance Communications, Inc. Adjusting a speech engine for a mobile computing device based on background noise
US8249858B2 (en) 2008-04-24 2012-08-21 International Business Machines Corporation Multilingual administration of enterprise data with default target languages
US8082148B2 (en) 2008-04-24 2011-12-20 Nuance Communications, Inc. Testing a grammar used in speech recognition for reliability in a plurality of operating environments having different background noise
US8594995B2 (en) 2008-04-24 2013-11-26 Nuance Communications, Inc. Multilingual asynchronous communications of speech messages recorded in digital media files
US8249857B2 (en) 2008-04-24 2012-08-21 International Business Machines Corporation Multilingual administration of enterprise data with user selected target language translation
US8693698B2 (en) 2008-04-30 2014-04-08 Qualcomm Incorporated Method and apparatus to reduce non-linear distortion in mobile computing devices
US8521512B2 (en) 2008-04-30 2013-08-27 Deep Sky Concepts, Inc Systems and methods for natural language communication with a computer
US20090274376A1 (en) 2008-05-05 2009-11-05 Yahoo! Inc. Method for efficiently building compact models for large multi-class text classification
US8400405B2 (en) 2008-05-09 2013-03-19 Research In Motion Limited Handheld electronic device and associated method enabling text input in a language employing non-roman characters
US8254829B1 (en) 2008-05-09 2012-08-28 Sprint Communications Company L.P. Network media service with track delivery adapted to a user cadence
US8219115B1 (en) 2008-05-12 2012-07-10 Google Inc. Location based reminders
US20130275899A1 (en) 2010-01-18 2013-10-17 Apple Inc. Application Gateway for Providing Different User Interfaces for Limited Distraction and Non-Limited Distraction Contexts
US10496753B2 (en) 2010-01-18 2019-12-03 Apple Inc. Automatically adapting user interfaces for hands-free interaction
US20140365895A1 (en) 2008-05-13 2014-12-11 Apple Inc. Device and method for generating user interfaces from a template
US8174503B2 (en) 2008-05-17 2012-05-08 David H. Cain Touch-based authentication of a mobile device through user generated pattern creation
US8131267B2 (en) 2008-05-19 2012-03-06 Tbm, Llc Interactive voice access and retrieval of information
DE102008024258A1 (en) 2008-05-20 2009-11-26 Siemens Aktiengesellschaft A method for classifying and removing unwanted portions from a speech recognition utterance
US8285344B2 (en) 2008-05-21 2012-10-09 DP Technlogies, Inc. Method and apparatus for adjusting audio for a user environment
US10203861B2 (en) 2008-05-21 2019-02-12 Please Don't Go, LLC. Messaging window overlay for a browser
US20090292987A1 (en) 2008-05-22 2009-11-26 International Business Machines Corporation Formatting selected content of an electronic document based on analyzed formatting
CN101281745B (en) 2008-05-23 2011-08-10 深圳市北科瑞声科技有限公司 Interactive system for vehicle-mounted voice
US8082498B2 (en) 2008-05-27 2011-12-20 Appfolio, Inc. Systems and methods for automatic spell checking of dynamically generated web pages
US8589161B2 (en) 2008-05-27 2013-11-19 Voicebox Technologies, Inc. System and method for an integrated, multi-modal, multi-device natural language voice services environment
US9305548B2 (en) 2008-05-27 2016-04-05 Voicebox Technologies Corporation System and method for an integrated, multi-modal, multi-device natural language voice services environment
US20130100268A1 (en) 2008-05-27 2013-04-25 University Health Network Emergency detection and response system and method
US20090326938A1 (en) 2008-05-28 2009-12-31 Nokia Corporation Multiword text correction
US8694355B2 (en) 2008-05-30 2014-04-08 Sri International Method and apparatus for automated assistance with task management
US8473279B2 (en) 2008-05-30 2013-06-25 Eiman Al-Shammari Lemmatizing, stemming, and query expansion method and system
US8126435B2 (en) 2008-05-30 2012-02-28 Hewlett-Packard Development Company, L.P. Techniques to manage vehicle communications
US8233366B2 (en) 2008-06-02 2012-07-31 Apple Inc. Context-based error indication methods and apparatus
US20090298529A1 (en) 2008-06-03 2009-12-03 Symbol Technologies, Inc. Audio HTML (aHTML): Audio Access to Web/Data
KR101631496B1 (en) * 2008-06-03 2016-06-17 삼성전자주식회사 Robot apparatus and method for registrating contracted commander thereof
JP5377889B2 (en) 2008-06-05 2013-12-25 日本放送協会 Language processing apparatus and program
JP5136228B2 (en) 2008-06-05 2013-02-06 日本電気株式会社 Work environment automatic save and restore system, work environment auto save and restore method, and work environment auto save and restore program
US8831948B2 (en) 2008-06-06 2014-09-09 At&T Intellectual Property I, L.P. System and method for synthetically generated speech describing media content
US8140326B2 (en) 2008-06-06 2012-03-20 Fuji Xerox Co., Ltd. Systems and methods for reducing speech intelligibility while preserving environmental sounds
US8180630B2 (en) 2008-06-06 2012-05-15 Zi Corporation Of Canada, Inc. Systems and methods for an automated personalized dictionary generator for portable devices
TWM348993U (en) 2008-06-06 2009-01-11 Ming-Ying Chen Smart voice-controlled device to control home appliance with infrared controller
US8464150B2 (en) 2008-06-07 2013-06-11 Apple Inc. Automatic language identification for dynamic text processing
US9626363B2 (en) 2008-06-08 2017-04-18 Apple Inc. System and method for placeshifting media playback
KR100988397B1 (en) 2008-06-09 2010-10-19 엘지전자 주식회사 Mobile terminal and text correcting method in the same
US20090306967A1 (en) 2008-06-09 2009-12-10 J.D. Power And Associates Automatic Sentiment Analysis of Surveys
US8219397B2 (en) 2008-06-10 2012-07-10 Nuance Communications, Inc. Data processing system for autonomously building speech identification and tagging data
DE602008005428D1 (en) 2008-06-11 2011-04-21 Exb Asset Man Gmbh Apparatus and method with improved text input mechanism
US20090313564A1 (en) 2008-06-12 2009-12-17 Apple Inc. Systems and methods for adjusting playback of media files based on previous usage
KR101513615B1 (en) 2008-06-12 2015-04-20 엘지전자 주식회사 Mobile terminal and voice recognition method
US8527876B2 (en) 2008-06-12 2013-09-03 Apple Inc. System and methods for adjusting graphical representations of media files based on previous usage
US20090313020A1 (en) 2008-06-12 2009-12-17 Nokia Corporation Text-to-speech user interface control
US8140330B2 (en) 2008-06-13 2012-03-20 Robert Bosch Gmbh System and method for detecting repeated patterns in dialog systems
US20090313023A1 (en) 2008-06-17 2009-12-17 Ralph Jones Multilingual text-to-speech system
US9510044B1 (en) 2008-06-18 2016-11-29 Gracenote, Inc. TV content segmentation, categorization and identification and time-aligned applications
DE102008028885A1 (en) 2008-06-18 2009-12-31 Epcos Ag Method for tuning a resonance frequency of a piezoelectric component
EP2304660A4 (en) 2008-06-19 2013-11-27 Wize Technologies Inc System and method for aggregating and summarizing product/topic sentiment
US8838075B2 (en) 2008-06-19 2014-09-16 Intelligent Mechatronic Systems Inc. Communication system with voice mail access and call by spelling functionality
GB2462800A (en) 2008-06-20 2010-02-24 New Voice Media Ltd Monitoring a conversation between an agent and a customer and performing real time analytics on the audio signal for determining future handling of the call
US9081590B2 (en) 2008-06-24 2015-07-14 Microsoft Technology Licensing, Llc Multimodal input using scratchpad graphical user interface to edit speech text input with keyboard input
WO2009156438A1 (en) 2008-06-24 2009-12-30 Llinxx Method and system for entering an expression
US8300801B2 (en) 2008-06-26 2012-10-30 Centurylink Intellectual Property Llc System and method for telephone based noise cancellation
WO2009156978A1 (en) 2008-06-26 2009-12-30 Intuitive User Interfaces Ltd System and method for intuitive user interaction
US8423288B2 (en) 2009-11-30 2013-04-16 Apple Inc. Dynamic alerts for calendar events
US8364481B2 (en) 2008-07-02 2013-01-29 Google Inc. Speech recognition with parallel recognition tasks
US20100005085A1 (en) 2008-07-03 2010-01-07 Oracle International Corporation Creating relationship maps from enterprise application system data
EP2311030A1 (en) 2008-07-03 2011-04-20 Mobiter Dicta Oy Method and device for converting speech
KR101059631B1 (en) 2008-07-04 2011-08-25 야후! 인크. Translator with Automatic Input / Output Interface and Its Interfacing Method
US8478592B2 (en) 2008-07-08 2013-07-02 Nuance Communications, Inc. Enhancing media playback with speech recognition
JP4710931B2 (en) 2008-07-09 2011-06-29 ソニー株式会社 Learning device, learning method, and program
US8781833B2 (en) 2008-07-17 2014-07-15 Nuance Communications, Inc. Speech recognition semantic classification training
US8521761B2 (en) 2008-07-18 2013-08-27 Google Inc. Transliteration for query expansion
US8166019B1 (en) 2008-07-21 2012-04-24 Sprint Communications Company L.P. Providing suggested actions in response to textual communications
JP5791861B2 (en) 2008-07-25 2015-10-07 シャープ株式会社 Information processing apparatus and information processing method
US8386485B2 (en) 2008-07-31 2013-02-26 George Mason Intellectual Properties, Inc. Case-based framework for collaborative semantic search
US20100030549A1 (en) 2008-07-31 2010-02-04 Lee Michael M Mobile device having human language translation capability with positional feedback
US8041848B2 (en) 2008-08-04 2011-10-18 Apple Inc. Media processing method and device
US8589149B2 (en) 2008-08-05 2013-11-19 Nuance Communications, Inc. Probability-based approach to recognition of user-entered data
JP4577428B2 (en) 2008-08-11 2010-11-10 ソニー株式会社 Display device, display method, and program
KR100998566B1 (en) 2008-08-11 2010-12-07 엘지전자 주식회사 Method And Apparatus Of Translating Language Using Voice Recognition
JPWO2010018796A1 (en) 2008-08-11 2012-01-26 旭化成株式会社 Exception word dictionary creation device, exception word dictionary creation method and program, and speech recognition device and speech recognition method
US8170969B2 (en) 2008-08-13 2012-05-01 Siemens Aktiengesellschaft Automated computation of semantic similarity of pairs of named entity phrases using electronic document corpora as background knowledge
US8805110B2 (en) 2008-08-19 2014-08-12 Digimarc Corporation Methods and systems for content processing
US8520979B2 (en) 2008-08-19 2013-08-27 Digimarc Corporation Methods and systems for content processing
JP5459214B2 (en) 2008-08-20 2014-04-02 日本電気株式会社 Language model creation device, language model creation method, speech recognition device, speech recognition method, program, and recording medium
US20100050064A1 (en) 2008-08-22 2010-02-25 At & T Labs, Inc. System and method for selecting a multimedia presentation to accompany text
US8112269B2 (en) 2008-08-25 2012-02-07 Microsoft Corporation Determining utility of a question
US20110144901A1 (en) 2008-08-29 2011-06-16 Zhanyong Wang Method for Playing Voice Guidance and Navigation Device Using the Same
US8117136B2 (en) 2008-08-29 2012-02-14 Hewlett-Packard Development Company, L.P. Relationship management on a mobile computing device
US20100057435A1 (en) 2008-08-29 2010-03-04 Kent Justin R System and method for speech-to-speech translation
US8442248B2 (en) 2008-09-03 2013-05-14 Starkey Laboratories, Inc. Systems and methods for managing wireless communication links for hearing assistance devices
US20100063961A1 (en) 2008-09-05 2010-03-11 Fotonauts, Inc. Reverse Tagging of Images in System for Managing and Sharing Digital Images
US8768702B2 (en) 2008-09-05 2014-07-01 Apple Inc. Multi-tiered voice feedback in an electronic device
US20100063825A1 (en) 2008-09-05 2010-03-11 Apple Inc. Systems and Methods for Memory Management and Crossfading in an Electronic Device
US8098262B2 (en) 2008-09-05 2012-01-17 Apple Inc. Arbitrary fractional pixel movement
US8380959B2 (en) 2008-09-05 2013-02-19 Apple Inc. Memory management system and method
US8116749B2 (en) 2008-09-08 2012-02-14 Proctor Jr James Arthur Protocol for anonymous wireless communication
US8290971B2 (en) 2008-09-09 2012-10-16 Applied Systems, Inc. Method and apparatus for remotely displaying a list by determining a quantity of data to send based on the list size and the display control size
US8898568B2 (en) 2008-09-09 2014-11-25 Apple Inc. Audio user interface
JP2010066519A (en) 2008-09-11 2010-03-25 Brother Ind Ltd Voice interactive device, voice interactive method, and voice interactive program
CN101673274A (en) 2008-09-12 2010-03-17 深圳富泰宏精密工业有限公司 Film subtitle retrieval system and method
US8756519B2 (en) 2008-09-12 2014-06-17 Google Inc. Techniques for sharing content on a web page
US8929877B2 (en) 2008-09-12 2015-01-06 Digimarc Corporation Methods and systems for content processing
US8259082B2 (en) 2008-09-12 2012-09-04 At&T Intellectual Property I, L.P. Multimodal portable communication interface for accessing video content
US8239201B2 (en) 2008-09-13 2012-08-07 At&T Intellectual Property I, L.P. System and method for audibly presenting selected text
US20100071003A1 (en) 2008-09-14 2010-03-18 Modu Ltd. Content personalization
US8335778B2 (en) 2008-09-17 2012-12-18 Oracle International Corporation System and method for semantic search in an enterprise application
US8775154B2 (en) 2008-09-18 2014-07-08 Xerox Corporation Query translation through dictionary adaptation
US8326622B2 (en) 2008-09-23 2012-12-04 International Business Machines Corporation Dialog filtering for filling out a form
US20100077350A1 (en) 2008-09-25 2010-03-25 Microsoft Corporation Combining elements in presentation of content
JP2010078979A (en) 2008-09-26 2010-04-08 Nec Infrontia Corp Voice recording device, recorded voice retrieval method, and program
US20100082327A1 (en) 2008-09-29 2010-04-01 Apple Inc. Systems and methods for mapping phonemes for text to speech synthesis
US8396714B2 (en) 2008-09-29 2013-03-12 Apple Inc. Systems and methods for concatenation of words in text to speech synthesis
US8712776B2 (en) 2008-09-29 2014-04-29 Apple Inc. Systems and methods for selective text to speech synthesis
US8352268B2 (en) 2008-09-29 2013-01-08 Apple Inc. Systems and methods for selective rate of speech and speech preferences for text to speech synthesis
US8352272B2 (en) 2008-09-29 2013-01-08 Apple Inc. Systems and methods for text to speech synthesis
US20100082328A1 (en) 2008-09-29 2010-04-01 Apple Inc. Systems and methods for speech preprocessing in text to speech synthesis
US8583418B2 (en) 2008-09-29 2013-11-12 Apple Inc. Systems and methods of detecting language and natural language strings for text to speech synthesis
CN104317262B (en) 2008-09-29 2017-09-12 费希尔-罗斯蒙特系统公司 The efficient design of the element of Process Control System and configuration
US8355919B2 (en) 2008-09-29 2013-01-15 Apple Inc. Systems and methods for text normalization for text to speech synthesis
US8798956B2 (en) 2008-09-30 2014-08-05 Apple Inc. Method and apparatus for surface sensing input device
JP2010086230A (en) 2008-09-30 2010-04-15 Sony Corp Information processing apparatus, information processing method and program
US8401178B2 (en) 2008-09-30 2013-03-19 Apple Inc. Multiple microphone switching and configuration
US9077526B2 (en) 2008-09-30 2015-07-07 Apple Inc. Method and system for ensuring sequential playback of digital media
US8411953B2 (en) 2008-09-30 2013-04-02 International Business Machines Corporation Tagging images by determining a set of similar pre-tagged images and extracting prominent tags from that set
US8676904B2 (en) 2008-10-02 2014-03-18 Apple Inc. Electronic devices with voice command and contextual data processing capabilities
US20100255858A1 (en) 2008-10-02 2010-10-07 Juhasz Paul R Dead Zone for Wireless Communication Device
US8285545B2 (en) 2008-10-03 2012-10-09 Volkswagen Ag Voice command acquisition system and method
US9200913B2 (en) 2008-10-07 2015-12-01 Telecommunication Systems, Inc. User interface for predictive traffic
US9442648B2 (en) 2008-10-07 2016-09-13 Blackberry Limited Portable electronic device and method of controlling same
US8380497B2 (en) 2008-10-15 2013-02-19 Qualcomm Incorporated Methods and apparatus for noise estimation
US8543913B2 (en) 2008-10-16 2013-09-24 International Business Machines Corporation Identifying and using textual widgets
US20100114887A1 (en) 2008-10-17 2010-05-06 Google Inc. Textual Disambiguation Using Social Connections
US20100131899A1 (en) 2008-10-17 2010-05-27 Darwin Ecosystem Llc Scannable Cloud
US8364487B2 (en) 2008-10-21 2013-01-29 Microsoft Corporation Speech recognition system with display information
US8670546B2 (en) 2008-10-22 2014-03-11 At&T Intellectual Property I, L.P. Systems and methods for providing a personalized communication processing service
US8724829B2 (en) 2008-10-24 2014-05-13 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for coherence detection
US8577685B2 (en) 2008-10-24 2013-11-05 At&T Intellectual Property I, L.P. System and method for targeted advertising
US8218397B2 (en) 2008-10-24 2012-07-10 Qualcomm Incorporated Audio source proximity estimation using sensor array for noise reduction
US8190437B2 (en) 2008-10-24 2012-05-29 Nuance Communications, Inc. Speaker verification methods and apparatus
US8645123B2 (en) 2008-10-27 2014-02-04 Microsoft Corporation Image-based semantic distance
US8412529B2 (en) 2008-10-29 2013-04-02 Verizon Patent And Licensing Inc. Method and system for enhancing verbal communication sessions
JP5230358B2 (en) 2008-10-31 2013-07-10 キヤノン株式会社 Information search device, information search method, program, and storage medium
TWI487385B (en) 2008-10-31 2015-06-01 Chi Mei Comm Systems Inc Volume adjusting device and adjusting method of the same
KR101543221B1 (en) 2008-10-31 2015-08-12 에스케이플래닛 주식회사 - Method Apparatus and System for Providing Muti User-Multi Service
EP2353108A4 (en) 2008-11-04 2018-01-03 Strossle International AB Method and system for analyzing text
US8122094B1 (en) 2008-11-05 2012-02-21 Kotab Dominic M Methods for performing an action relating to the scheduling of an event by performing one or more actions based on a response to a message
US8122353B2 (en) 2008-11-07 2012-02-21 Yahoo! Inc. Composing a message in an online textbox using a non-latin script
US20100205628A1 (en) 2009-02-12 2010-08-12 Davis Bruce L Media processing methods and arrangements
WO2010054373A2 (en) 2008-11-10 2010-05-14 Google Inc. Multisensory speech detection
US8249870B2 (en) 2008-11-12 2012-08-21 Massachusetts Institute Of Technology Semi-automatic speech transcription
KR20100053149A (en) 2008-11-12 2010-05-20 삼성전자주식회사 Apparatus and method for scheduling considering each attendees' context in mobile communicatiion terminal
US8386261B2 (en) 2008-11-14 2013-02-26 Vocollect Healthcare Systems, Inc. Training/coaching system for a voice-enabled work environment
US8832319B2 (en) 2008-11-18 2014-09-09 Amazon Technologies, Inc. Synchronization of digital content
US8584031B2 (en) 2008-11-19 2013-11-12 Apple Inc. Portable touch screen device, method, and graphical user interface for using emoji characters
US8108214B2 (en) 2008-11-19 2012-01-31 Robert Bosch Gmbh System and method for recognizing proper names in dialog systems
US8296124B1 (en) 2008-11-21 2012-10-23 Google Inc. Method and apparatus for detecting incorrectly translated text in a document
US20100128701A1 (en) 2008-11-24 2010-05-27 Qualcomm Incorporated Beacon transmission for participation in peer-to-peer formation and discovery
US9202455B2 (en) 2008-11-24 2015-12-01 Qualcomm Incorporated Systems, methods, apparatus, and computer program products for enhanced active noise cancellation
US8442824B2 (en) 2008-11-26 2013-05-14 Nuance Communications, Inc. Device, system, and method of liveness detection utilizing voice biometrics
US20100131498A1 (en) 2008-11-26 2010-05-27 General Electric Company Automated healthcare information composition and query enhancement
US8140328B2 (en) 2008-12-01 2012-03-20 At&T Intellectual Property I, L.P. User intention based on N-best list of recognition hypotheses for utterances in a dialog
US20100138680A1 (en) 2008-12-02 2010-06-03 At&T Mobility Ii Llc Automatic display and voice command activation with hand edge sensing
US8489599B2 (en) 2008-12-02 2013-07-16 Palo Alto Research Center Incorporated Context and activity-driven content delivery and interaction
US8117036B2 (en) 2008-12-03 2012-02-14 At&T Intellectual Property I, L.P. Non-disruptive side conversation information retrieval
US8073693B2 (en) 2008-12-04 2011-12-06 At&T Intellectual Property I, L.P. System and method for pronunciation modeling
US8589157B2 (en) 2008-12-05 2013-11-19 Microsoft Corporation Replying to text messages via automated voice search techniques
JP5257311B2 (en) 2008-12-05 2013-08-07 ソニー株式会社 Information processing apparatus and information processing method
US8054180B1 (en) 2008-12-08 2011-11-08 Amazon Technologies, Inc. Location aware reminders
US20100185949A1 (en) 2008-12-09 2010-07-22 Denny Jaeger Method for using gesture objects for computer control
EP2196989B1 (en) 2008-12-10 2012-06-27 Nuance Communications, Inc. Grammar and template-based speech recognition of spoken utterances
US20100153448A1 (en) 2008-12-12 2010-06-17 International Business Machines Corporation Persistent search notification
US8121842B2 (en) 2008-12-12 2012-02-21 Microsoft Corporation Audio output of a document from mobile device
US8208609B2 (en) 2008-12-15 2012-06-26 Centurylink Intellectual Property Llc System and method for voice activated dialing from a home phone
US8160881B2 (en) 2008-12-15 2012-04-17 Microsoft Corporation Human-assisted pronunciation generation
US8618958B2 (en) 2008-12-16 2013-12-31 Mitsubishi Electric Corporation Navigation device
US8447588B2 (en) 2008-12-18 2013-05-21 Palo Alto Research Center Incorporated Region-matching transducers for natural language processing
US9323854B2 (en) 2008-12-19 2016-04-26 Intel Corporation Method, apparatus and system for location assisted translation
JP5579195B2 (en) 2008-12-22 2014-08-27 グーグル インコーポレイテッド Asynchronous distributed deduplication for replicated content addressable storage clusters
US8635068B2 (en) 2008-12-23 2014-01-21 At&T Intellectual Property I, L.P. System and method for recognizing speech with dialect grammars
JP5326892B2 (en) 2008-12-26 2013-10-30 富士通株式会社 Information processing apparatus, program, and method for generating acoustic model
CA2748695C (en) 2008-12-31 2017-11-07 Bce Inc. System and method for unlocking a device
US8447609B2 (en) 2008-12-31 2013-05-21 Intel Corporation Adjustment of temporal acoustical characteristics
US8456420B2 (en) 2008-12-31 2013-06-04 Intel Corporation Audible list traversal
KR101543326B1 (en) 2009-01-05 2015-08-10 삼성전자주식회사 System on chip and driving method thereof
TW201027515A (en) 2009-01-06 2010-07-16 High Tech Comp Corp Electronic event-recording device and method thereof
EP2205010A1 (en) 2009-01-06 2010-07-07 BRITISH TELECOMMUNICATIONS public limited company Messaging
US8332205B2 (en) 2009-01-09 2012-12-11 Microsoft Corporation Mining transliterations for out-of-vocabulary query terms
US20100324895A1 (en) 2009-01-15 2010-12-23 K-Nfb Reading Technology, Inc. Synchronization for document narration
US10088976B2 (en) 2009-01-15 2018-10-02 Em Acquisition Corp., Inc. Systems and methods for multiple voice document narration
US20100180218A1 (en) 2009-01-15 2010-07-15 International Business Machines Corporation Editing metadata in a social network
EP2211336B1 (en) 2009-01-23 2014-10-08 Harman Becker Automotive Systems GmbH Improved speech input using navigation information
US8213911B2 (en) 2009-01-28 2012-07-03 Virtual Hold Technology Llc Mobile communication device for establishing automated call back
US8200489B1 (en) 2009-01-29 2012-06-12 The United States Of America As Represented By The Secretary Of The Navy Multi-resolution hidden markov model using class specific features
US20100197359A1 (en) 2009-01-30 2010-08-05 Harris Technology, Llc Automatic Detection of Wireless Phone
US8862252B2 (en) 2009-01-30 2014-10-14 Apple Inc. Audio user interface for displayless electronic device
US9070282B2 (en) 2009-01-30 2015-06-30 Altorr Corp. Smartphone control of electrical devices
US20110307491A1 (en) 2009-02-04 2011-12-15 Fisk Charles M Digital photo organizing and tagging method
US9489131B2 (en) 2009-02-05 2016-11-08 Apple Inc. Method of presenting a web page for accessibility browsing
US8254972B2 (en) 2009-02-13 2012-08-28 Sony Mobile Communications Ab Device and method for handling messages
US8428758B2 (en) 2009-02-16 2013-04-23 Apple Inc. Dynamic audio ducking
US8032602B2 (en) 2009-02-18 2011-10-04 International Business Machines Corporation Prioritization of recipient email messages
WO2010096193A2 (en) 2009-02-18 2010-08-26 Exbiblio B.V. Identifying a document by performing spectral analysis on the contents of the document
US8326637B2 (en) 2009-02-20 2012-12-04 Voicebox Technologies, Inc. System and method for processing multi-modal device interactions in a natural language voice services environment
WO2010099352A1 (en) 2009-02-25 2010-09-02 Miri Systems, Llc Payment system and method
US9646603B2 (en) 2009-02-27 2017-05-09 Longsand Limited Various apparatus and methods for a speech recognition system
EP2224705B1 (en) 2009-02-27 2012-02-01 Research In Motion Limited Mobile wireless communications device with speech to text conversion and related method
US9280971B2 (en) 2009-02-27 2016-03-08 Blackberry Limited Mobile wireless communications device with speech to text conversion and related methods
US8155630B2 (en) 2009-02-27 2012-04-10 Research In Motion Limited Communications system providing mobile device notification based upon personal interest information and calendar events
US20100223131A1 (en) 2009-02-27 2010-09-02 Research In Motion Limited Communications system providing mobile device notification based upon contact web pages and related methods
KR101041039B1 (en) 2009-02-27 2011-06-14 고려대학교 산학협력단 Method and Apparatus for space-time voice activity detection using audio and video information
US8280434B2 (en) 2009-02-27 2012-10-02 Research In Motion Limited Mobile wireless communications device for hearing and/or speech impaired user
US9171284B2 (en) 2009-03-02 2015-10-27 Microsoft Technology Licensing, Llc Techniques to restore communications sessions for applications having conversation and meeting environments
US8239333B2 (en) 2009-03-03 2012-08-07 Microsoft Corporation Media tag recommendation technologies
US20100229100A1 (en) 2009-03-03 2010-09-09 Sprint Spectrum L.P. Methods and Systems for Storing and Accessing Application History
US8805439B2 (en) 2009-03-05 2014-08-12 Lg Electronics Inc. Mobile terminal and method for controlling the same
WO2010100937A1 (en) 2009-03-06 2010-09-10 シャープ株式会社 Bookmark using device, bookmark creation device, bookmark sharing system, control method, control program, and recording medium
US8605039B2 (en) 2009-03-06 2013-12-10 Zimpl Ab Text input
US20100225809A1 (en) 2009-03-09 2010-09-09 Sony Corporation And Sony Electronics Inc. Electronic book with enhanced features
US8380507B2 (en) 2009-03-09 2013-02-19 Apple Inc. Systems and methods for determining the language to use for speech generated by a text to speech engine
US8165321B2 (en) 2009-03-10 2012-04-24 Apple Inc. Intelligent clip mixing
WO2010105246A2 (en) 2009-03-12 2010-09-16 Exbiblio B.V. Accessing resources based on capturing information from a rendered document
US8417526B2 (en) 2009-03-13 2013-04-09 Adacel, Inc. Speech recognition learning system and method
US8286106B2 (en) 2009-03-13 2012-10-09 Oracle America, Inc. System and method for interacting with status information on a touch screen device
US8255830B2 (en) 2009-03-16 2012-08-28 Apple Inc. Methods and graphical user interfaces for editing on a multifunction device with a touch screen display
US20100235780A1 (en) 2009-03-16 2010-09-16 Westerman Wayne C System and Method for Identifying Words Based on a Sequence of Keyboard Events
WO2010105428A1 (en) 2009-03-19 2010-09-23 Google Inc. Input method editor
JP2010224194A (en) 2009-03-23 2010-10-07 Sony Corp Speech recognition device and speech recognition method, language model generating device and language model generating method, and computer program
JP5419136B2 (en) 2009-03-24 2014-02-19 アルパイン株式会社 Audio output device
KR101078864B1 (en) 2009-03-26 2011-11-02 한국과학기술원 The query/document topic category transition analysis system and method and the query expansion based information retrieval system and method
US9189472B2 (en) 2009-03-30 2015-11-17 Touchtype Limited System and method for inputting text into small screen devices
GB201016385D0 (en) 2010-09-29 2010-11-10 Touchtype Ltd System and method for inputting text into electronic devices
US10191654B2 (en) 2009-03-30 2019-01-29 Touchtype Limited System and method for inputting text into electronic devices
GB0905457D0 (en) 2009-03-30 2009-05-13 Touchtype Ltd System and method for inputting text into electronic devices
US20100250599A1 (en) 2009-03-30 2010-09-30 Nokia Corporation Method and apparatus for integration of community-provided place data
US9424246B2 (en) 2009-03-30 2016-08-23 Touchtype Ltd. System and method for inputting text into electronic devices
US8798255B2 (en) 2009-03-31 2014-08-05 Nice Systems Ltd Methods and apparatus for deep interaction analysis
US8166032B2 (en) 2009-04-09 2012-04-24 MarketChorus, Inc. System and method for sentiment-based text classification and relevancy ranking
US8805823B2 (en) 2009-04-14 2014-08-12 Sri International Content processing systems and methods
KR101537706B1 (en) 2009-04-16 2015-07-20 엘지전자 주식회사 Mobile terminal and control method thereof
US8209174B2 (en) 2009-04-17 2012-06-26 Saudi Arabian Oil Company Speaker verification system
US20110065456A1 (en) 2009-04-20 2011-03-17 Brennan Joseph P Cellular device deactivation system
US9761219B2 (en) 2009-04-21 2017-09-12 Creative Technology Ltd System and method for distributed text-to-speech synthesis and intelligibility
US8660970B1 (en) 2009-04-23 2014-02-25 The Boeing Company Passive learning and autonomously interactive system for leveraging user knowledge in networked environments
KR101581883B1 (en) 2009-04-30 2016-01-11 삼성전자주식회사 Appratus for detecting voice using motion information and method thereof
EP2426598B1 (en) 2009-04-30 2017-06-21 Samsung Electronics Co., Ltd. Apparatus and method for user intention inference using multimodal information
KR101032792B1 (en) 2009-04-30 2011-05-06 주식회사 코오롱 Polyester fabric for airbag and manufacturing method thereof
EP2428028A4 (en) 2009-05-08 2014-07-02 Obdedge Llc Systems, methods, and devices for policy-based control and monitoring of use of mobile devices by vehicle operators
US9298823B2 (en) 2009-05-08 2016-03-29 International Business Machines Corporation Identifying core content based on citations
WO2010131256A1 (en) 2009-05-13 2010-11-18 Rajesh Mehra A keyboard for linguistic scripts
US20100293460A1 (en) 2009-05-14 2010-11-18 Budelli Joe G Text selection method and system based on gestures
US8583511B2 (en) 2009-05-19 2013-11-12 Bradley Marshall Hendrickson Systems and methods for storing customer purchasing and preference data and enabling a customer to pre-register orders and events
US8498857B2 (en) 2009-05-19 2013-07-30 Tata Consultancy Services Limited System and method for rapid prototyping of existing speech recognition solutions in different languages
KR101577607B1 (en) 2009-05-22 2015-12-15 삼성전자주식회사 Apparatus and method for language expression using context and intent awareness
WO2010138775A1 (en) 2009-05-27 2010-12-02 Geodelic, Inc. Location discovery system and method
WO2010135837A1 (en) 2009-05-28 2010-12-02 Intelligent Mechatronic Systems Inc Communication system with personal information management and remote vehicle monitoring and control features
US8369822B2 (en) 2009-05-28 2013-02-05 At&T Intellectual Property I, Lp Systems and methods for providing emergency callback procedures
US20120310652A1 (en) 2009-06-01 2012-12-06 O'sullivan Daniel Adaptive Human Computer Interface (AAHCI)
EP2259252B1 (en) 2009-06-02 2012-08-01 Nuance Communications, Inc. Speech recognition method for selecting a combination of list elements via a speech input
US8095119B2 (en) 2009-06-02 2012-01-10 Microsoft Corporation In-call contact information display
US10241644B2 (en) 2011-06-03 2019-03-26 Apple Inc. Actionable reminder entries
US10540976B2 (en) 2009-06-05 2020-01-21 Apple Inc. Contextual voice commands
US10241752B2 (en) 2011-09-30 2019-03-26 Apple Inc. Interface for a virtual digital assistant
US9858925B2 (en) 2009-06-05 2018-01-02 Apple Inc. Using context information to facilitate processing of commands in a virtual assistant
US10706373B2 (en) 2011-06-03 2020-07-07 Apple Inc. Performing actions associated with task items that represent tasks to perform
US8560313B2 (en) 2010-05-13 2013-10-15 General Motors Llc Transient noise rejection for speech recognition
US20120327009A1 (en) 2009-06-07 2012-12-27 Apple Inc. Devices, methods, and graphical user interfaces for accessibility using a touch-sensitive surface
KR101562792B1 (en) 2009-06-10 2015-10-23 삼성전자주식회사 Apparatus and method for providing goal predictive interface
US8412531B2 (en) 2009-06-10 2013-04-02 Microsoft Corporation Touch anywhere to speak
JP2010287063A (en) 2009-06-11 2010-12-24 Zenrin Datacom Co Ltd Information provision device, information provision system and program
US8484027B1 (en) 2009-06-12 2013-07-09 Skyreader Media Inc. Method for live remote narration of a digital book
US20130219333A1 (en) 2009-06-12 2013-08-22 Adobe Systems Incorporated Extensible Framework for Facilitating Interaction with Devices
US8290777B1 (en) 2009-06-12 2012-10-16 Amazon Technologies, Inc. Synchronizing the playing and displaying of digital content
US8533622B2 (en) 2009-06-17 2013-09-10 Microsoft Corporation Integrating digital book and zoom interface displays
US8306238B2 (en) 2009-06-17 2012-11-06 Sony Ericsson Mobile Communications Ab Method and circuit for controlling an output of an audio signal of a battery-powered device
US10353967B2 (en) 2009-06-22 2019-07-16 Microsoft Technology Licensing, Llc Assigning relevance weights based on temporal dynamics
US20100324709A1 (en) 2009-06-22 2010-12-23 Tree Of Life Publishing E-book reader with voice annotation
US9215212B2 (en) 2009-06-22 2015-12-15 Citrix Systems, Inc. Systems and methods for providing a visualizer for rules of an application firewall
US20100330909A1 (en) 2009-06-25 2010-12-30 Blueant Wireless Pty Limited Voice-enabled walk-through pairing of telecommunications devices
US11012732B2 (en) 2009-06-25 2021-05-18 DISH Technologies L.L.C. Voice enabled media presentation systems and methods
US20100332236A1 (en) 2009-06-25 2010-12-30 Blueant Wireless Pty Limited Voice-triggered operation of electronic devices
US8219930B2 (en) 2009-06-26 2012-07-10 Verizon Patent And Licensing Inc. Radial menu display systems and methods
US9754224B2 (en) 2009-06-26 2017-09-05 International Business Machines Corporation Action based to-do list
US8527278B2 (en) 2009-06-29 2013-09-03 Abraham Ben David Intelligent home automation
US20100332224A1 (en) 2009-06-30 2010-12-30 Nokia Corporation Method and apparatus for converting text to audio and tactile output
US9431006B2 (en) 2009-07-02 2016-08-30 Apple Inc. Methods and apparatuses for automatic speech recognition
US20110002487A1 (en) 2009-07-06 2011-01-06 Apple Inc. Audio Channel Assignment for Audio Output in a Movable Device
US8943423B2 (en) 2009-07-07 2015-01-27 International Business Machines Corporation User interface indicators for changed user interface elements
KR101083540B1 (en) 2009-07-08 2011-11-14 엔에이치엔(주) System and method for transforming vernacular pronunciation with respect to hanja using statistical method
US8344847B2 (en) 2009-07-09 2013-01-01 Medtronic Minimed, Inc. Coordination of control commands in a medical device system having at least one therapy delivery device and at least one wireless controller device
US8892439B2 (en) 2009-07-15 2014-11-18 Microsoft Corporation Combination and federation of local and remote speech recognition
US20110016421A1 (en) 2009-07-20 2011-01-20 Microsoft Corporation Task oriented user interface platform
US20110016150A1 (en) 2009-07-20 2011-01-20 Engstroem Jimmy System and method for tagging multiple digital images
US8213962B2 (en) 2009-07-21 2012-07-03 Verizon Patent And Licensing Inc. Vehicle computer link to mobile phone
US7953679B2 (en) 2009-07-22 2011-05-31 Xerox Corporation Scalable indexing for layout based document retrieval and ranking
CA2761700C (en) 2009-07-24 2014-12-02 Research In Motion Limited Method and apparatus for a touch-sensitive display
US8239129B2 (en) 2009-07-27 2012-08-07 Robert Bosch Gmbh Method and system for improving speech recognition accuracy by use of geographic information
US9489577B2 (en) 2009-07-27 2016-11-08 Cxense Asa Visual similarity for video content
US9117448B2 (en) 2009-07-27 2015-08-25 Cisco Technology, Inc. Method and system for speech recognition using social networks
US20110029616A1 (en) 2009-07-29 2011-02-03 Guanming Wang Unified auto-reply to an email coming from unified messaging service
US8875219B2 (en) 2009-07-30 2014-10-28 Blackberry Limited Apparatus and method for controlled sharing of personal information
JP2011033874A (en) 2009-08-03 2011-02-17 Alpine Electronics Inc Device for multilingual voice recognition, multilingual voice recognition dictionary creation method
US8340312B2 (en) 2009-08-04 2012-12-25 Apple Inc. Differential mode noise cancellation with active real-time control for microphone-speaker combinations used in two way audio communications
US8160877B1 (en) 2009-08-06 2012-04-17 Narus, Inc. Hierarchical real-time speaker recognition for biometric VoIP verification and targeting
US20110047072A1 (en) 2009-08-07 2011-02-24 Visa U.S.A. Inc. Systems and Methods for Propensity Analysis and Validation
US8233919B2 (en) 2009-08-09 2012-07-31 Hntb Holdings Ltd. Intelligently providing user-specific transportation-related information
JP5201599B2 (en) 2009-08-11 2013-06-05 Necカシオモバイルコミュニケーションズ株式会社 Terminal device and program
US20110040707A1 (en) 2009-08-12 2011-02-17 Ford Global Technologies, Llc Intelligent music selection in vehicles
US8768313B2 (en) 2009-08-17 2014-07-01 Digimarc Corporation Methods and systems for image or audio recognition processing
US8626133B2 (en) 2009-08-19 2014-01-07 Cisco Technology, Inc. Matching a location of a contact with a task location
US8654952B2 (en) 2009-08-20 2014-02-18 T-Mobile Usa, Inc. Shareable applications on telecommunications devices
US9277021B2 (en) 2009-08-21 2016-03-01 Avaya Inc. Sending a user associated telecommunication address
EP2341450A1 (en) 2009-08-21 2011-07-06 Mikko Kalervo Väänänen Method and means for data searching and language translation
KR101496649B1 (en) 2009-08-21 2015-03-02 삼성전자주식회사 Method and apparatus for sharing fuction of external device
JP2011045005A (en) 2009-08-24 2011-03-03 Fujitsu Toshiba Mobile Communications Ltd Cellular phone
SG178344A1 (en) 2009-08-25 2012-03-29 Univ Nanyang Tech A method and system for reconstructing speech from an input signal comprising whispers
US20110054647A1 (en) 2009-08-26 2011-03-03 Nokia Corporation Network service for an audio interface unit
JP2011048671A (en) 2009-08-27 2011-03-10 Kyocera Corp Input device and control method of input device
CN101996631B (en) 2009-08-28 2014-12-03 国际商业机器公司 Method and device for aligning texts
US20110238407A1 (en) 2009-08-31 2011-09-29 O3 Technologies, Llc Systems and methods for speech-to-speech translation
EP2473916A4 (en) 2009-09-02 2013-07-10 Stanford Res Inst Int Method and apparatus for exploiting human feedback in an intelligent automated assistant
US8451238B2 (en) 2009-09-02 2013-05-28 Amazon Technologies, Inc. Touch-screen user interface
US8624851B2 (en) 2009-09-02 2014-01-07 Amazon Technologies, Inc. Touch-screen user interface
US9031834B2 (en) 2009-09-04 2015-05-12 Nuance Communications, Inc. Speech enhancement techniques on the power spectrum
US8675084B2 (en) 2009-09-04 2014-03-18 Apple Inc. Systems and methods for remote camera control
TW201110108A (en) 2009-09-04 2011-03-16 Chunghwa Telecom Co Ltd Voice noise elimination method for microphone array
US20120265535A1 (en) 2009-09-07 2012-10-18 Donald Ray Bryant-Rich Personal voice operated reminder system
US8560300B2 (en) 2009-09-09 2013-10-15 International Business Machines Corporation Error correction using fact repositories
US8788267B2 (en) 2009-09-10 2014-07-22 Mitsubishi Electric Research Laboratories, Inc. Multi-purpose contextual control
US8321527B2 (en) 2009-09-10 2012-11-27 Tribal Brands System and method for tracking user location and associated activity and responsively providing mobile device updates
US20110066468A1 (en) 2009-09-11 2011-03-17 Internationl Business Machines Corporation Dynamic event planning through location awareness
WO2011032060A1 (en) 2009-09-11 2011-03-17 Telenav, Inc. Location based system with contextual contact manager mechanism and method of operation thereof
US10587833B2 (en) 2009-09-16 2020-03-10 Disney Enterprises, Inc. System and method for automated network search and companion display of result relating to audio-video metadata
US8972878B2 (en) 2009-09-21 2015-03-03 Avaya Inc. Screen icon manipulation by context and frequency of Use
US9015148B2 (en) 2009-09-21 2015-04-21 Microsoft Corporation Suggesting related search queries during web browsing
US8768308B2 (en) 2009-09-29 2014-07-01 Deutsche Telekom Ag Apparatus and method for creating and managing personal schedules via context-sensing and actuation
US9111538B2 (en) 2009-09-30 2015-08-18 T-Mobile Usa, Inc. Genius button secondary commands
KR20110036385A (en) 2009-10-01 2011-04-07 삼성전자주식회사 Apparatus for analyzing intention of user and method thereof
TW201113741A (en) 2009-10-01 2011-04-16 Htc Corp Lock-state switching method, electronic apparatus and computer program product
US20110083079A1 (en) 2009-10-02 2011-04-07 International Business Machines Corporation Apparatus, system, and method for improved type-ahead functionality in a type-ahead field based on activity of a user within a user interface
US9338274B2 (en) 2009-10-02 2016-05-10 Blackberry Limited Method of interacting with electronic devices in a locked state and handheld electronic device configured to permit interaction when in a locked state
JP5473520B2 (en) 2009-10-06 2014-04-16 キヤノン株式会社 Input device and control method thereof
US7809550B1 (en) 2009-10-08 2010-10-05 Joan Barry Barrows System for reading chinese characters in seconds
US20110087685A1 (en) 2009-10-09 2011-04-14 Microsoft Corporation Location-based service middleware
CN101673544B (en) 2009-10-10 2012-07-04 上海电虹软件有限公司 Cross monitoring method and system based on voiceprint recognition and location tracking
US8335689B2 (en) 2009-10-14 2012-12-18 Cogi, Inc. Method and system for efficient management of speech transcribers
US8510103B2 (en) 2009-10-15 2013-08-13 Paul Angott System and method for voice recognition
US8611876B2 (en) 2009-10-15 2013-12-17 Larry Miller Configurable phone with interactive voice response engine
US8255217B2 (en) 2009-10-16 2012-08-28 At&T Intellectual Property I, Lp Systems and methods for creating and using geo-centric language models
US8451112B2 (en) 2009-10-19 2013-05-28 Qualcomm Incorporated Methods and apparatus for estimating departure time based on known calendar events
US8332748B1 (en) 2009-10-22 2012-12-11 Google Inc. Multi-directional auto-complete menu
US8554537B2 (en) 2009-10-23 2013-10-08 Samsung Electronics Co., Ltd Method and device for transliteration
US8326624B2 (en) 2009-10-26 2012-12-04 International Business Machines Corporation Detecting and communicating biometrics of recorded voice during transcription process
US9197736B2 (en) 2009-12-31 2015-11-24 Digimarc Corporation Intuitive computing methods and systems
US20110099507A1 (en) 2009-10-28 2011-04-28 Google Inc. Displaying a collection of interactive elements that trigger actions directed to an item
US8386574B2 (en) 2009-10-29 2013-02-26 Xerox Corporation Multi-modality classification for one-class classification in social networks
US8315617B2 (en) 2009-10-31 2012-11-20 Btpatent Llc Controlling mobile device functions
US8832205B2 (en) 2009-11-02 2014-09-09 Lextine Software, Llc System and method for extracting calendar events from free-form email
US20120137367A1 (en) 2009-11-06 2012-05-31 Cataphora, Inc. Continuous anomaly detection based on behavior modeling and heterogeneous information analysis
WO2011055410A1 (en) 2009-11-06 2011-05-12 株式会社 東芝 Voice recognition device
US8321209B2 (en) 2009-11-10 2012-11-27 Research In Motion Limited System and method for low overhead frequency domain voice authentication
US9502025B2 (en) 2009-11-10 2016-11-22 Voicebox Technologies Corporation System and method for providing a natural language content dedication service
US8527859B2 (en) 2009-11-10 2013-09-03 Dulcetta, Inc. Dynamic audio playback of soundtracks for electronic visual works
US20110111724A1 (en) 2009-11-10 2011-05-12 David Baptiste Method and apparatus for combating distracted driving
US9171541B2 (en) 2009-11-10 2015-10-27 Voicebox Technologies Corporation System and method for hybrid processing in a natural language voice services environment
US8358747B2 (en) 2009-11-10 2013-01-22 International Business Machines Corporation Real time automatic caller speech profiling
US8682649B2 (en) 2009-11-12 2014-03-25 Apple Inc. Sentiment prediction from textual data
CN102860039B (en) 2009-11-12 2016-10-19 罗伯特·亨利·弗莱特 Hands-free phone and/or microphone array and use their method and system
US8732180B2 (en) 2009-11-12 2014-05-20 Apple Inc. Recommending media items
US20130166303A1 (en) 2009-11-13 2013-06-27 Adobe Systems Incorporated Accessing media data using metadata repository
US8712759B2 (en) 2009-11-13 2014-04-29 Clausal Computing Oy Specializing disambiguation of a natural language expression
KR20110052863A (en) 2009-11-13 2011-05-19 삼성전자주식회사 Mobile device and method for generating control signal thereof
TWI391915B (en) 2009-11-17 2013-04-01 Inst Information Industry Method and apparatus for builiding phonetic variation models and speech recognition
KR101595029B1 (en) 2009-11-18 2016-02-17 엘지전자 주식회사 Mobile terminal and method for controlling the same
US8358752B2 (en) 2009-11-19 2013-01-22 At&T Mobility Ii Llc User profile based speech to text conversion for visual voice mail
US8630971B2 (en) 2009-11-20 2014-01-14 Indian Institute Of Science System and method of using Multi Pattern Viterbi Algorithm for joint decoding of multiple patterns
US8358749B2 (en) 2009-11-21 2013-01-22 At&T Intellectual Property I, L.P. System and method to search a media content database based on voice input data
KR101960835B1 (en) 2009-11-24 2019-03-21 삼성전자주식회사 Schedule Management System Using Interactive Robot and Method Thereof
US20110153330A1 (en) 2009-11-27 2011-06-23 i-SCROLL System and method for rendering text synchronized audio
US8731901B2 (en) 2009-12-02 2014-05-20 Content Savvy, Inc. Context aware back-transliteration and translation of names and common phrases using web resources
CN102741842A (en) 2009-12-04 2012-10-17 Tivo有限公司 Multifunction multimedia device
US8396888B2 (en) 2009-12-04 2013-03-12 Google Inc. Location-based searching using a search area that corresponds to a geographical location of a computing device
US8224300B2 (en) 2009-12-11 2012-07-17 Alpine Electronics, Inc. Method and apparatus to enhance navigation user experience for a smart phone device
KR101622111B1 (en) 2009-12-11 2016-05-18 삼성전자 주식회사 Dialog system and conversational method thereof
US8812990B2 (en) 2009-12-11 2014-08-19 Nokia Corporation Method and apparatus for presenting a first person world view of content
US8543917B2 (en) 2009-12-11 2013-09-24 Nokia Corporation Method and apparatus for presenting a first-person world view of content
US9766089B2 (en) 2009-12-14 2017-09-19 Nokia Technologies Oy Method and apparatus for correlating and navigating between a live image and a prerecorded panoramic image
US20110144857A1 (en) 2009-12-14 2011-06-16 Theodore Charles Wingrove Anticipatory and adaptive automobile hmi
US8892443B2 (en) 2009-12-15 2014-11-18 At&T Intellectual Property I, L.P. System and method for combining geographic metadata in automatic speech recognition language and acoustic models
KR101211796B1 (en) 2009-12-16 2012-12-13 포항공과대학교 산학협력단 Apparatus for foreign language learning and method for providing foreign language learning service
US8341037B2 (en) 2009-12-18 2012-12-25 Apple Inc. Mixed source media playback
US9100809B2 (en) 2009-12-21 2015-08-04 Julia Olincy Olincy Automatic response option mobile system for responding to incoming texts or calls or both
US8385982B2 (en) 2009-12-21 2013-02-26 At&T Intellectual Property I, L.P. Controlling use of a communications device in accordance with motion of the device
US20110154193A1 (en) 2009-12-21 2011-06-23 Nokia Corporation Method and Apparatus for Text Input
US8805711B2 (en) 2009-12-22 2014-08-12 International Business Machines Corporation Two-layer data architecture for reservation management systems
EP3091535B1 (en) 2009-12-23 2023-10-11 Google LLC Multi-modal input on an electronic device
KR20110072847A (en) 2009-12-23 2011-06-29 삼성전자주식회사 Dialog management system or method for processing information seeking dialog
US20110161309A1 (en) 2009-12-29 2011-06-30 Lx1 Technology Limited Method Of Sorting The Result Set Of A Search Engine
US8479107B2 (en) 2009-12-31 2013-07-02 Nokia Corporation Method and apparatus for fluid graphical user interface
US8988356B2 (en) 2009-12-31 2015-03-24 Google Inc. Touch sensor and touchscreen user input combination
US8494852B2 (en) 2010-01-05 2013-07-23 Google Inc. Word-level correction of speech input
US20110167350A1 (en) 2010-01-06 2011-07-07 Apple Inc. Assist Features For Content Display Device
US8600743B2 (en) 2010-01-06 2013-12-03 Apple Inc. Noise profile determination for voice-related feature
WO2011082521A1 (en) 2010-01-06 2011-07-14 Zoran Corporation Method and apparatus for voice controlled operation of a media player
US8311838B2 (en) 2010-01-13 2012-11-13 Apple Inc. Devices and methods for identifying a prompt corresponding to a voice input in a sequence of prompts
US8381107B2 (en) 2010-01-13 2013-02-19 Apple Inc. Adaptive audio feedback system and method
US8334842B2 (en) 2010-01-15 2012-12-18 Microsoft Corporation Recognizing user intent in motion capture system
US20110179372A1 (en) 2010-01-15 2011-07-21 Bradford Allen Moore Automatic Keyboard Layout Determination
US10276170B2 (en) 2010-01-18 2019-04-30 Apple Inc. Intelligent automated assistant
US10705794B2 (en) 2010-01-18 2020-07-07 Apple Inc. Automatically adapting user interfaces for hands-free interaction
US10553209B2 (en) 2010-01-18 2020-02-04 Apple Inc. Systems and methods for hands-free notification summaries
US10679605B2 (en) 2010-01-18 2020-06-09 Apple Inc. Hands-free list-reading by intelligent automated assistant
US20110179002A1 (en) 2010-01-19 2011-07-21 Dell Products L.P. System and Method for a Vector-Space Search Engine
US8417575B2 (en) 2010-01-19 2013-04-09 Apple Inc. On-device offline purchases using credits
US8301121B2 (en) 2010-01-22 2012-10-30 Sony Ericsson Mobile Communications Ab Regulating alerts generated by communication terminals responsive to sensed movement
US8626511B2 (en) 2010-01-22 2014-01-07 Google Inc. Multi-dimensional disambiguation of voice commands
US20110184736A1 (en) 2010-01-26 2011-07-28 Benjamin Slotznick Automated method of recognizing inputted information items and selecting information items
US20110184768A1 (en) 2010-01-27 2011-07-28 Norton Kenneth S Automatically determine suggested meeting locations based on previously booked calendar events
JP5633042B2 (en) 2010-01-28 2014-12-03 本田技研工業株式会社 Speech recognition apparatus, speech recognition method, and speech recognition robot
US8406745B1 (en) 2010-01-28 2013-03-26 Sprint Communications Company L.P. Synchronization of voice mail greeting and email auto-reply by a wireless communication device
US20120330662A1 (en) 2010-01-29 2012-12-27 Nec Corporation Input supporting system, method and program
US8600967B2 (en) 2010-02-03 2013-12-03 Apple Inc. Automatic organization of browsing histories
US8687777B1 (en) 2010-02-03 2014-04-01 Tal Lavian Systems and methods for visual presentation and selection of IVR menu
US8645287B2 (en) 2010-02-04 2014-02-04 Microsoft Corporation Image tagging based upon cross domain context
US8886541B2 (en) 2010-02-04 2014-11-11 Sony Corporation Remote controller with position actuatated voice transmission
US8751218B2 (en) 2010-02-09 2014-06-10 Siemens Aktiengesellschaft Indexing content at semantic level
US8179370B1 (en) 2010-02-09 2012-05-15 Google Inc. Proximity based keystroke resolution
US9413869B2 (en) 2010-02-10 2016-08-09 Qualcomm Incorporated Mobile device having plurality of input modes
US8402018B2 (en) 2010-02-12 2013-03-19 Korea Advanced Institute Of Science And Technology Semantic search system using semantic ranking scheme
US8782556B2 (en) 2010-02-12 2014-07-15 Microsoft Corporation User-centric soft keyboard predictive technologies
US8812056B2 (en) 2010-02-12 2014-08-19 Christopher D. Higginbotham Voice-based command driven computer implemented method
US9965165B2 (en) 2010-02-19 2018-05-08 Microsoft Technology Licensing, Llc Multi-finger gestures
WO2011105996A1 (en) 2010-02-23 2011-09-01 Hewlett-Packard Development Company, L.P. Skipping through electronic content on an electronic device
US9665344B2 (en) 2010-02-24 2017-05-30 GM Global Technology Operations LLC Multi-modal input system for a voice-based menu and content navigation service
US8682667B2 (en) 2010-02-25 2014-03-25 Apple Inc. User profiling for selecting user specific voice input processing information
US9710556B2 (en) 2010-03-01 2017-07-18 Vcvc Iii Llc Content recommendation based on collections of entities
US20120066303A1 (en) 2010-03-03 2012-03-15 Waldeck Technology, Llc Synchronized group location updates
US20110218855A1 (en) 2010-03-03 2011-09-08 Platformation, Inc. Offering Promotions Based on Query Analysis
US8502837B2 (en) 2010-03-04 2013-08-06 Research In Motion Limited System and method for activating components on an electronic device using orientation data
US8903847B2 (en) 2010-03-05 2014-12-02 International Business Machines Corporation Digital media voice tags in social networks
US8948515B2 (en) 2010-03-08 2015-02-03 Sightera Technologies Ltd. Method and system for classifying one or more images
KR101477530B1 (en) 2010-03-12 2014-12-30 뉘앙스 커뮤니케이션즈, 인코포레이티드 Multimodal text input system, such as for use with touch screens on mobile phones
US8521513B2 (en) 2010-03-12 2013-08-27 Microsoft Corporation Localization for interactive voice response systems
US20110228913A1 (en) 2010-03-16 2011-09-22 Telcordia Technologies, Inc. Automatic extraction of information from ongoing voice communication system and methods
US8374864B2 (en) 2010-03-17 2013-02-12 Cisco Technology, Inc. Correlation of transcribed text with corresponding audio
WO2011116309A1 (en) 2010-03-19 2011-09-22 Digimarc Corporation Intuitive computing methods and systems
US9323756B2 (en) 2010-03-22 2016-04-26 Lenovo (Singapore) Pte. Ltd. Audio book and e-book synchronization
US8554280B2 (en) 2010-03-23 2013-10-08 Ebay Inc. Free-form entries during payment processes
US20110239111A1 (en) 2010-03-24 2011-09-29 Avaya Inc. Spell checker interface
US20110238676A1 (en) 2010-03-25 2011-09-29 Palm, Inc. System and method for data capture, storage, and retrieval
WO2011119168A1 (en) 2010-03-26 2011-09-29 Nuance Communications, Inc. Context based voice activity detection sensitivity
US9378202B2 (en) 2010-03-26 2016-06-28 Virtuoz Sa Semantic clustering
US8428759B2 (en) 2010-03-26 2013-04-23 Google Inc. Predictive pre-recording of audio for voice input
US8296380B1 (en) 2010-04-01 2012-10-23 Kel & Partners LLC Social media based messaging systems and methods
US8930176B2 (en) 2010-04-01 2015-01-06 Microsoft Corporation Interactive multilingual word-alignment techniques
US20110242007A1 (en) 2010-04-01 2011-10-06 Gray Theodore W E-Book with User-Manipulatable Graphical Objects
BR112012025683A2 (en) 2010-04-07 2016-07-05 Max Value Solutions Intl Llc Method and System for Name Pronunciation Guide Services
US8448084B2 (en) 2010-04-08 2013-05-21 Twitter, Inc. User interface mechanics
KR101369810B1 (en) 2010-04-09 2014-03-05 이초강 Empirical Context Aware Computing Method For Robot
US8810684B2 (en) 2010-04-09 2014-08-19 Apple Inc. Tagging images in a mobile communications device using a contacts list
US9086735B2 (en) 2010-04-12 2015-07-21 Google Inc. Extension framework for input method editor
JP5315289B2 (en) 2010-04-12 2013-10-16 トヨタ自動車株式会社 Operating system and operating method
US8140567B2 (en) 2010-04-13 2012-03-20 Microsoft Corporation Measuring entity extraction complexity
US8265928B2 (en) 2010-04-14 2012-09-11 Google Inc. Geotagged environmental audio for enhanced speech recognition accuracy
US8756233B2 (en) 2010-04-16 2014-06-17 Video Semantics Semantic segmentation and tagging engine
US8595014B2 (en) 2010-04-19 2013-11-26 Qualcomm Incorporated Providing audible navigation system direction updates during predetermined time windows so as to minimize impact on conversations
WO2011133543A1 (en) 2010-04-21 2011-10-27 Proteus Biomedical, Inc. Diagnostic system and method
US20110260829A1 (en) 2010-04-21 2011-10-27 Research In Motion Limited Method of providing security on a portable electronic device having a touch-sensitive display
US20110264495A1 (en) 2010-04-22 2011-10-27 Apple Inc. Aggregation of tagged media item information
US20110264999A1 (en) 2010-04-23 2011-10-27 Research In Motion Limited Electronic device including touch-sensitive input device and method of controlling same
US8452037B2 (en) 2010-05-05 2013-05-28 Apple Inc. Speaker clip
US8380504B1 (en) 2010-05-06 2013-02-19 Sprint Communications Company L.P. Generation of voice profiles
US8756571B2 (en) 2010-05-07 2014-06-17 Hewlett-Packard Development Company, L.P. Natural language text instructions
US8938436B2 (en) 2010-05-10 2015-01-20 Verizon Patent And Licensing Inc. System for and method of providing reusable software service information based on natural language queries
JP2011238022A (en) 2010-05-11 2011-11-24 Panasonic Corp Method for grasping use of terminal and content and content use system
US20110279368A1 (en) 2010-05-12 2011-11-17 Microsoft Corporation Inferring user intent to engage a motion capture system
US20110283189A1 (en) 2010-05-12 2011-11-17 Rovi Technologies Corporation Systems and methods for adjusting media guide interaction modes
US9015139B2 (en) 2010-05-14 2015-04-21 Rovi Guides, Inc. Systems and methods for performing a search based on a media content snapshot image
US8392186B2 (en) 2010-05-18 2013-03-05 K-Nfb Reading Technology, Inc. Audio synchronization for document narration with user-selected playback
US8745091B2 (en) 2010-05-18 2014-06-03 Integro, Inc. Electronic document classification
US8694313B2 (en) 2010-05-19 2014-04-08 Google Inc. Disambiguation of contact information using historical data
US8522283B2 (en) 2010-05-20 2013-08-27 Google Inc. Television remote control data transfer
US9552355B2 (en) 2010-05-20 2017-01-24 Xerox Corporation Dynamic bi-phrases for statistical machine translation
US9236047B2 (en) 2010-05-21 2016-01-12 Microsoft Technology Licensing, Llc Voice stream augmented note taking
WO2011143827A1 (en) 2010-05-21 2011-11-24 Google Inc. Input method editor
US8606579B2 (en) 2010-05-24 2013-12-10 Microsoft Corporation Voice print identification for identifying speakers
JP2011250027A (en) 2010-05-25 2011-12-08 Panasonic Electric Works Co Ltd Remote control device and information communication system
US9569549B1 (en) 2010-05-25 2017-02-14 Amazon Technologies, Inc. Location based recommendation and tagging of media content items
US8468012B2 (en) 2010-05-26 2013-06-18 Google Inc. Acoustic model adaptation using geographic information
JP2013533996A (en) 2010-05-31 2013-08-29 バイドゥ オンライン ネットワーク テクノロジー(ペキン) カンパニー リミテッド Method and apparatus used for mixed input of English and other characters
US8639516B2 (en) 2010-06-04 2014-01-28 Apple Inc. User-specific noise suppression for voice quality improvements
EP2397972B1 (en) 2010-06-08 2015-01-07 Vodafone Holding GmbH Smart card with microphone
US8458115B2 (en) 2010-06-08 2013-06-04 Microsoft Corporation Mining topic-related aspects from user generated content
US8954425B2 (en) 2010-06-08 2015-02-10 Microsoft Corporation Snippet extraction and ranking
US20110306426A1 (en) 2010-06-10 2011-12-15 Microsoft Corporation Activity Participation Based On User Intent
US20110307810A1 (en) 2010-06-11 2011-12-15 Isreal Hilerio List integration
US8234111B2 (en) 2010-06-14 2012-07-31 Google Inc. Speech and noise models for speech recognition
US20120136572A1 (en) 2010-06-17 2012-05-31 Norton Kenneth S Distance and Location-Aware Reminders in a Calendar System
US20110314003A1 (en) 2010-06-17 2011-12-22 Microsoft Corporation Template concatenation for capturing multiple concepts in a voice query
WO2011160140A1 (en) 2010-06-18 2011-12-22 Susan Bennett System and method of semantic based searching
US9009592B2 (en) 2010-06-22 2015-04-14 Microsoft Technology Licensing, Llc Population of lists and tasks from captured voice and audio content
EP2400373A1 (en) 2010-06-22 2011-12-28 Vodafone Holding GmbH Inputting symbols into an electronic device having a touch-screen
US8375320B2 (en) 2010-06-22 2013-02-12 Microsoft Corporation Context-based task generation
US8655901B1 (en) 2010-06-23 2014-02-18 Google Inc. Translation-based query pattern mining
US8581844B2 (en) 2010-06-23 2013-11-12 Google Inc. Switching between a first operational mode and a second operational mode using a natural motion gesture
US11068657B2 (en) 2010-06-28 2021-07-20 Skyscanner Limited Natural language question answering system and method based on deep semantics
US8250071B1 (en) 2010-06-30 2012-08-21 Amazon Technologies, Inc. Disambiguation of term meaning
JP5323770B2 (en) 2010-06-30 2013-10-23 日本放送協会 User instruction acquisition device, user instruction acquisition program, and television receiver
US8411874B2 (en) 2010-06-30 2013-04-02 Google Inc. Removing noise from audio
CN101894547A (en) 2010-06-30 2010-11-24 北京捷通华声语音技术有限公司 Speech synthesis method and system
EP2402867B1 (en) 2010-07-02 2018-08-22 Accenture Global Services Limited A computer-implemented method, a computer program product and a computer system for image processing
US20120005602A1 (en) 2010-07-02 2012-01-05 Nokia Corporation Methods and apparatuses for facilitating task switching
US8885978B2 (en) 2010-07-05 2014-11-11 Apple Inc. Operating a device to capture high dynamic range images
US20120010886A1 (en) 2010-07-06 2012-01-12 Javad Razavilar Language Identification
US8848882B2 (en) 2010-07-07 2014-09-30 Verizon Patent And Licensing Inc. System for and method of measuring caller interactions during a call session
US8249556B2 (en) 2010-07-13 2012-08-21 Google Inc. Securing a mobile computing device
US9104670B2 (en) 2010-07-21 2015-08-11 Apple Inc. Customized search or acquisition of digital media assets
US8260247B2 (en) 2010-07-21 2012-09-04 Research In Motion Limited Portable electronic device and method of operation
US9786159B2 (en) 2010-07-23 2017-10-10 Tivo Solutions Inc. Multi-function remote control device
DK2596647T3 (en) 2010-07-23 2016-02-15 Sonova Ag Hearing system and method for operating a hearing system
US8861925B1 (en) 2010-07-28 2014-10-14 Intuit Inc. Methods and systems for audio-visual synchronization
KR101699720B1 (en) 2010-08-03 2017-01-26 삼성전자주식회사 Apparatus for voice command recognition and method thereof
BRPI1004128A2 (en) 2010-08-04 2012-04-10 Magneti Marelli Sist S Automotivos Ind E Com Ltda Setting Top Level Key Parameters for Biodiesel Logic Sensor
US8775156B2 (en) 2010-08-05 2014-07-08 Google Inc. Translating languages in response to device motion
US9349368B1 (en) 2010-08-05 2016-05-24 Google Inc. Generating an audio notification based on detection of a triggering event
US8731939B1 (en) 2010-08-06 2014-05-20 Google Inc. Routing queries based on carrier phrase registration
US8473289B2 (en) 2010-08-06 2013-06-25 Google Inc. Disambiguating input based on context
US8402533B2 (en) 2010-08-06 2013-03-19 Google Inc. Input to locked computing device
US8359020B2 (en) 2010-08-06 2013-01-22 Google Inc. Automatically monitoring for voice input based on context
WO2012019637A1 (en) 2010-08-09 2012-02-16 Jadhav, Shubhangi Mahadeo Visual music playlist creation and visual music track exploration
CN101951553B (en) 2010-08-17 2012-10-10 深圳市车音网科技有限公司 Navigation method and system based on speech command
US9788075B2 (en) 2010-08-27 2017-10-10 Intel Corporation Techniques for augmenting a digital on-screen graphic
US8719006B2 (en) 2010-08-27 2014-05-06 Apple Inc. Combined statistical and rule-based part-of-speech tagging for text-to-speech synthesis
WO2012030838A1 (en) 2010-08-30 2012-03-08 Honda Motor Co., Ltd. Belief tracking and action selection in spoken dialog systems
US8478519B2 (en) 2010-08-30 2013-07-02 Google Inc. Providing results to parameterless search queries
US9800721B2 (en) 2010-09-07 2017-10-24 Securus Technologies, Inc. Multi-party conversation analyzer and logger
US20120059655A1 (en) 2010-09-08 2012-03-08 Nuance Communications, Inc. Methods and apparatus for providing input to a speech-enabled application program
US8341142B2 (en) 2010-09-08 2012-12-25 Nuance Communications, Inc. Methods and apparatus for searching the Internet
US8700987B2 (en) 2010-09-09 2014-04-15 Sony Corporation Annotating E-books / E-magazines with application results and function calls
US9538229B2 (en) 2010-09-15 2017-01-03 Verizon Patent And Licensing Inc. Media experience for touch screen devices
US8560229B1 (en) 2010-09-15 2013-10-15 Google Inc. Sensor based activity detection
US20120068937A1 (en) 2010-09-16 2012-03-22 Sony Ericsson Mobile Communications Ab Quick input language/virtual keyboard/ language dictionary change on a touch screen device
US20120078635A1 (en) 2010-09-24 2012-03-29 Apple Inc. Voice control system
KR20120031722A (en) 2010-09-27 2012-04-04 삼성전자주식회사 Apparatus and method for generating dynamic response
US8594997B2 (en) 2010-09-27 2013-11-26 Sap Ag Context-aware conversational user interface
US8719014B2 (en) 2010-09-27 2014-05-06 Apple Inc. Electronic device with text error correction based on voice recognition data
CN101937194B (en) 2010-09-27 2012-12-19 鸿富锦精密工业(深圳)有限公司 Intelligence control system with learning function and method thereof
CN102436456B (en) 2010-09-29 2016-03-30 国际商业机器公司 For the method and apparatus of classifying to named entity
US10037319B2 (en) 2010-09-29 2018-07-31 Touchtype Limited User input prediction
US20120084248A1 (en) 2010-09-30 2012-04-05 Microsoft Corporation Providing suggestions based on user intent
US8812321B2 (en) 2010-09-30 2014-08-19 At&T Intellectual Property I, L.P. System and method for combining speech recognition outputs from a plurality of domain-specific speech recognizers via machine learning
US8644519B2 (en) 2010-09-30 2014-02-04 Apple Inc. Electronic devices with improved audio
US8606293B2 (en) 2010-10-05 2013-12-10 Qualcomm Incorporated Mobile device location estimation using environmental information
US20120084634A1 (en) 2010-10-05 2012-04-05 Sony Corporation Method and apparatus for annotating text
US9679256B2 (en) 2010-10-06 2017-06-13 The Chancellor, Masters And Scholars Of The University Of Cambridge Automated assessment of examination scripts
US10900799B2 (en) 2010-10-12 2021-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for determining a destination location from a communication
GB2513114A (en) 2010-10-15 2014-10-22 Intelligent Mechatronic Sys Implicit association and polymorphism driven human machine interaction
JP5572059B2 (en) 2010-10-21 2014-08-13 京セラ株式会社 Display device
US20120108221A1 (en) 2010-10-28 2012-05-03 Microsoft Corporation Augmenting communication sessions with applications
KR101417975B1 (en) 2010-10-29 2014-07-09 안후이 유에스티씨 아이플라이텍 캄파니 리미티드 Method and system for endpoint automatic detection of audio record
US20120110456A1 (en) 2010-11-01 2012-05-03 Microsoft Corporation Integrated voice command modal user interface
US8660531B2 (en) 2010-11-03 2014-02-25 Blackberry Limited Access to locked functions
US20120116770A1 (en) 2010-11-08 2012-05-10 Ming-Fu Chen Speech data retrieving and presenting device
EP2451141B1 (en) 2010-11-09 2018-11-07 BlackBerry Limited Methods and apparatus to display mobile device contents
MY177511A (en) 2010-11-16 2020-09-17 Shardul Suresh Shroff System and method for providing virtual arbitration
US10144440B2 (en) 2010-11-17 2018-12-04 General Electric Company Methods and systems for data communications
US20120124126A1 (en) 2010-11-17 2012-05-17 Microsoft Corporation Contextual and task focused computing
US9484018B2 (en) 2010-11-23 2016-11-01 At&T Intellectual Property I, L.P. System and method for building and evaluating automatic speech recognition via an application programmer interface
US8938216B2 (en) 2010-11-24 2015-01-20 Cisco Technology, Inc. Geographical location information/signal quality-context based recording and playback of multimedia data from a conference session
US8489625B2 (en) 2010-11-29 2013-07-16 Microsoft Corporation Mobile query suggestions with time-location awareness
US9105008B2 (en) 2010-11-29 2015-08-11 Yahoo! Inc. Detecting controversial events
JP5652913B2 (en) 2010-12-03 2015-01-14 アイシン・エィ・ダブリュ株式会社 In-vehicle terminal
US8312096B2 (en) 2010-12-08 2012-11-13 Google Inc. Priority inbox notifications and synchronization for mobile messaging application
US9135241B2 (en) 2010-12-08 2015-09-15 At&T Intellectual Property I, L.P. System and method for learning latent representations for natural language tasks
US9244606B2 (en) 2010-12-20 2016-01-26 Apple Inc. Device, method, and graphical user interface for navigation of concurrently open software applications
US8666726B2 (en) 2010-12-21 2014-03-04 Nuance Communications, Inc. Sample clustering to reduce manual transcriptions in speech recognition system
US20120158422A1 (en) 2010-12-21 2012-06-21 General Electric Company Methods and systems for scheduling appointments in healthcare systems
US20120158293A1 (en) 2010-12-21 2012-06-21 General Electric Company Methods and systems for dynamically providing users with appointment reminders
US8532377B2 (en) 2010-12-22 2013-09-10 Xerox Corporation Image ranking based on abstract concepts
US20130035086A1 (en) 2010-12-22 2013-02-07 Logitech Europe S.A. Remote control system for providing content suggestions
US8838449B2 (en) 2010-12-23 2014-09-16 Microsoft Corporation Word-dependent language model
JP2012142744A (en) 2010-12-28 2012-07-26 Sanyo Electric Co Ltd Communication device
TWI413105B (en) 2010-12-30 2013-10-21 Ind Tech Res Inst Multi-lingual text-to-speech synthesis system and method
KR101828273B1 (en) 2011-01-04 2018-02-14 삼성전자주식회사 Apparatus and method for voice command recognition based on combination of dialog models
US8626681B1 (en) 2011-01-04 2014-01-07 Google Inc. Training a probabilistic spelling checker from structured data
US8589950B2 (en) 2011-01-05 2013-11-19 Blackberry Limited Processing user input events in a web browser
WO2012092709A1 (en) 2011-01-05 2012-07-12 Google Inc. Method and system for facilitating text input
US9183843B2 (en) 2011-01-07 2015-11-10 Nuance Communications, Inc. Configurable speech recognition system using multiple recognizers
JP5712618B2 (en) 2011-01-07 2015-05-07 サクサ株式会社 Telephone system
WO2012092654A1 (en) 2011-01-07 2012-07-12 Research In Motion Limited System and method for controlling mobile communication devices
US9953653B2 (en) 2011-01-07 2018-04-24 Nuance Communications, Inc. Configurable speech recognition system using multiple recognizers
US8689116B2 (en) 2011-01-14 2014-04-01 Apple Inc. Email user interface
US20120192096A1 (en) 2011-01-25 2012-07-26 Research In Motion Limited Active command line driven user interface
US8666895B2 (en) 2011-01-31 2014-03-04 Bank Of America Corporation Single action mobile transaction device
US8943054B2 (en) 2011-01-31 2015-01-27 Social Resolve, Llc Social media content management system and method
AU2012212517A1 (en) 2011-02-04 2013-08-22 Google Inc. Posting to social networks by voice
US8862612B2 (en) 2011-02-11 2014-10-14 Sony Corporation Direct search launch on a second display
US10631246B2 (en) 2011-02-14 2020-04-21 Microsoft Technology Licensing, Llc Task switching on mobile devices
US9916420B2 (en) 2011-02-18 2018-03-13 Nuance Communications, Inc. Physician and clinical documentation specialist workflow integration
US8694335B2 (en) 2011-02-18 2014-04-08 Nuance Communications, Inc. Methods and apparatus for applying user corrections to medical fact extraction
KR101178310B1 (en) 2011-02-24 2012-08-29 포항공과대학교 산학협력단 Method of managing communication and system for the same
US10145960B2 (en) 2011-02-24 2018-12-04 Ford Global Technologies, Llc System and method for cell phone restriction
CN102651217A (en) 2011-02-25 2012-08-29 株式会社东芝 Method and equipment for voice synthesis and method for training acoustic model used in voice synthesis
US8688453B1 (en) 2011-02-28 2014-04-01 Nuance Communications, Inc. Intent mining via analysis of utterances
US20120221552A1 (en) 2011-02-28 2012-08-30 Nokia Corporation Method and apparatus for providing an active search user interface element
US9632677B2 (en) 2011-03-02 2017-04-25 The Boeing Company System and method for navigating a 3-D environment using a multi-input interface
US8972275B2 (en) 2011-03-03 2015-03-03 Brightedge Technologies, Inc. Optimization of social media engagement
EP2498250B1 (en) 2011-03-07 2021-05-05 Accenture Global Services Limited Client and server system for natural language-based control of a digital network of devices
US9081760B2 (en) 2011-03-08 2015-07-14 At&T Intellectual Property I, L.P. System and method for building diverse language models
US20120233266A1 (en) 2011-03-11 2012-09-13 Microsoft Corporation Peer-to-peer group with renegotiation of group owner
CN202092650U (en) 2011-03-14 2011-12-28 深圳市车乐数码科技有限公司 Vehicle-mounted multimedia device with keys and voice navigation function
US8849931B2 (en) 2011-03-15 2014-09-30 Idt Messaging, Llc Linking context-based information to text messages
US8606090B2 (en) 2011-03-17 2013-12-10 Sony Corporation Sport program chaptering
US9262612B2 (en) 2011-03-21 2016-02-16 Apple Inc. Device access using voice authentication
US8862255B2 (en) 2011-03-23 2014-10-14 Audible, Inc. Managing playback of synchronized content
US20120246064A1 (en) 2011-03-23 2012-09-27 Ebay, Inc. Customer refunds using payment service providers
US9202465B2 (en) 2011-03-25 2015-12-01 General Motors Llc Speech recognition dependent on text message content
US8766793B2 (en) 2011-03-25 2014-07-01 Microsoft Corporation Contextually-appropriate task reminders
US9171546B1 (en) 2011-03-29 2015-10-27 Google Inc. Performing functions based on commands in context of telephonic communication
CN202035047U (en) 2011-03-29 2011-11-09 张磊 Mobile terminal capable of extracting address information for navigation
US9154555B2 (en) 2011-03-30 2015-10-06 Paypal, Inc. Device specific remote disabling of applications
US9280535B2 (en) 2011-03-31 2016-03-08 Infosys Limited Natural language querying with cascaded conditional random fields
WO2012135226A1 (en) 2011-03-31 2012-10-04 Microsoft Corporation Augmented conversational understanding architecture
US9842168B2 (en) 2011-03-31 2017-12-12 Microsoft Technology Licensing, Llc Task driven user intents
US9337999B2 (en) 2011-04-01 2016-05-10 Intel Corporation Application usage continuum across platforms
US9098488B2 (en) 2011-04-03 2015-08-04 Microsoft Technology Licensing, Llc Translation of multilingual embedded phrases
US20120252367A1 (en) 2011-04-04 2012-10-04 Meditalk Devices, Llc Auditory Speech Module For Medical Devices
US8914275B2 (en) 2011-04-06 2014-12-16 Microsoft Corporation Text prediction
CN102137193A (en) 2011-04-13 2011-07-27 深圳凯虹移动通信有限公司 Mobile communication terminal and communication control method thereof
US9292877B2 (en) 2011-04-13 2016-03-22 Longsand Limited Methods and systems for generating concept-based hash tags
EP2702473A1 (en) 2011-04-25 2014-03-05 Veveo, Inc. System and method for an intelligent personal timeline assistant
US9444692B2 (en) 2011-04-26 2016-09-13 Openet Telecom Ltd. Systems, devices and methods of crowd-sourcing across multiple domains
TW201246055A (en) 2011-05-03 2012-11-16 Htc Corp Handheld electronic device and method for accessing bookmark
GB2504256B (en) 2011-05-04 2019-12-25 Blackberry Ltd Methods for adjusting a presentation of graphical data displayed on a graphical user interface
US8150385B1 (en) 2011-05-09 2012-04-03 Loment, Inc. Automated reply messages among end user communication devices
US8171137B1 (en) 2011-05-09 2012-05-01 Google Inc. Transferring application state across devices
KR101233561B1 (en) 2011-05-12 2013-02-14 엔에이치엔(주) Speech recognition system and method based on word-level candidate generation
US9418661B2 (en) 2011-05-12 2016-08-16 Johnson Controls Technology Company Vehicle voice recognition systems and methods
US9064006B2 (en) 2012-08-23 2015-06-23 Microsoft Technology Licensing, Llc Translating natural language utterances to keyword search queries
US20120290291A1 (en) 2011-05-13 2012-11-15 Gabriel Lee Gilbert Shelley Input processing for character matching and predicted word matching
WO2012158469A2 (en) 2011-05-13 2012-11-22 Plimpton David Calendar-based search engine
US8793624B2 (en) 2011-05-18 2014-07-29 Google Inc. Control of a device using gestures
US8972240B2 (en) 2011-05-19 2015-03-03 Microsoft Corporation User-modifiable word lattice display for editing documents and search queries
US8914290B2 (en) 2011-05-20 2014-12-16 Vocollect, Inc. Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment
US8954329B2 (en) 2011-05-23 2015-02-10 Nuance Communications, Inc. Methods and apparatus for acoustic disambiguation by insertion of disambiguating textual information
US20120304124A1 (en) 2011-05-23 2012-11-29 Microsoft Corporation Context aware input engine
US8731936B2 (en) 2011-05-26 2014-05-20 Microsoft Corporation Energy-efficient unobtrusive identification of a speaker
US10672399B2 (en) 2011-06-03 2020-06-02 Apple Inc. Switching between text data and audio data based on a mapping
US9268857B2 (en) 2011-06-03 2016-02-23 Facebook, Inc. Suggesting search results to users before receiving any search query from the users
US10057736B2 (en) 2011-06-03 2018-08-21 Apple Inc. Active transport based notifications
JP5463385B2 (en) 2011-06-03 2014-04-09 アップル インコーポレイテッド Automatic creation of mapping between text data and audio data
US8781841B1 (en) 2011-06-07 2014-07-15 Cisco Technology, Inc. Name recognition of virtual meeting participants
US20120317498A1 (en) 2011-06-07 2012-12-13 Research In Motion Limited Electronic communication device and method for displaying icons
US8732319B2 (en) 2011-06-10 2014-05-20 Qualcomm Incorporated Context awareness proximity-based establishment of wireless communication connection
WO2012170817A1 (en) 2011-06-10 2012-12-13 Google Inc. Augmenting statistical machine translation with linguistic knowledge
US20120316875A1 (en) 2011-06-10 2012-12-13 Red Shift Company, Llc Hosted speech handling
US20130158977A1 (en) 2011-06-14 2013-06-20 Andrew Senior System and Method for Evaluating Speech Exposure
US20120321112A1 (en) 2011-06-16 2012-12-20 Apple Inc. Selecting a digital stream based on an audio sample
US20120324391A1 (en) 2011-06-16 2012-12-20 Microsoft Corporation Predictive word completion
US20120329529A1 (en) 2011-06-21 2012-12-27 GreatCall, Inc. Gesture activate help process and system
CN104011712B (en) 2011-06-24 2018-04-24 谷歌有限责任公司 To being evaluated across the query translation of language inquiry suggestion
US10984387B2 (en) 2011-06-28 2021-04-20 Microsoft Technology Licensing, Llc Automatic task extraction and calendar entry
US20130006633A1 (en) 2011-07-01 2013-01-03 Qualcomm Incorporated Learning speech models for mobile device users
DE112011105407T5 (en) 2011-07-05 2014-04-30 Mitsubishi Electric Corporation Speech recognition device and navigation device
DE102011078642A1 (en) 2011-07-05 2013-01-10 Robert Bosch Gmbh Method for checking an m out of n code
US8209183B1 (en) 2011-07-07 2012-06-26 Google Inc. Systems and methods for correction of text from different input types, sources, and contexts
US8682670B2 (en) 2011-07-07 2014-03-25 International Business Machines Corporation Statistical enhancement of speech output from a statistical text-to-speech synthesis system
US20130010575A1 (en) 2011-07-07 2013-01-10 International Business Machines Corporation Systems and methods of managing electronic calendar applications
US20130018659A1 (en) 2011-07-12 2013-01-17 Google Inc. Systems and Methods for Speech Command Processing
CA2747153A1 (en) 2011-07-19 2013-01-19 Suleman Kaheer Natural language processing dialog system for obtaining goods, services or information
US20130024576A1 (en) 2011-07-22 2013-01-24 Microsoft Corporation Proximity-Based Detection
US20130031476A1 (en) 2011-07-25 2013-01-31 Coin Emmett Voice activated virtual assistant
US8781810B2 (en) 2011-07-25 2014-07-15 Xerox Corporation System and method for productive generation of compound words in statistical machine translation
US8732028B2 (en) 2011-07-26 2014-05-20 Expose Retail Strategies Inc. Scheduling of order processing for remotely ordered goods
US9009041B2 (en) 2011-07-26 2015-04-14 Nuance Communications, Inc. Systems and methods for improving the accuracy of a transcription using auxiliary data such as personal data
EP2551784A1 (en) 2011-07-28 2013-01-30 Roche Diagnostics GmbH Method of controlling the display of a dataset
US9292112B2 (en) 2011-07-28 2016-03-22 Hewlett-Packard Development Company, L.P. Multimodal interface
WO2013013290A1 (en) 2011-07-28 2013-01-31 Research In Motion Limited Methods and devices for facilitating communications
US20130030913A1 (en) 2011-07-29 2013-01-31 Guangyu Zhu Deriving Ads Ranking of Local Advertisers based on Distance and Aggregate User Activities
CN102905499B (en) 2011-07-29 2015-12-09 纬创资通股份有限公司 Vertical card module and electronic installation
US20130030789A1 (en) 2011-07-29 2013-01-31 Reginald Dalce Universal Language Translator
US20130031162A1 (en) 2011-07-29 2013-01-31 Myxer, Inc. Systems and methods for media selection based on social metadata
US20130035117A1 (en) 2011-08-04 2013-02-07 GM Global Technology Operations LLC System and method for restricting driver mobile device feature usage while vehicle is in motion
US9417754B2 (en) 2011-08-05 2016-08-16 P4tents1, LLC User interface system, method, and computer program product
ES2958183T3 (en) 2011-08-05 2024-02-05 Samsung Electronics Co Ltd Control procedure for electronic devices based on voice and motion recognition, and electronic device that applies the same
WO2013022218A2 (en) 2011-08-05 2013-02-14 Samsung Electronics Co., Ltd. Electronic apparatus and method for providing user interface thereof
US8595015B2 (en) 2011-08-08 2013-11-26 Verizon New Jersey Inc. Audio communication assessment
CN102929710B (en) 2011-08-09 2017-10-27 中兴通讯股份有限公司 A kind of method and mobile terminal for calling application module
US8706472B2 (en) 2011-08-11 2014-04-22 Apple Inc. Method for disambiguating multiple readings in language conversion
WO2013022135A1 (en) 2011-08-11 2013-02-14 Lg Electronics Inc. Electronic device and method of controlling the same
US8589160B2 (en) 2011-08-19 2013-11-19 Dolbey & Company, Inc. Systems and methods for providing an electronic dictation interface
US20130055099A1 (en) 2011-08-22 2013-02-28 Rose Yao Unified Messaging System with Integration of Call Log Data
US8943071B2 (en) 2011-08-23 2015-01-27 At&T Intellectual Property I, L.P. Automatic sort and propagation associated with electronic documents
US9195768B2 (en) 2011-08-26 2015-11-24 Amazon Technologies, Inc. Remote browsing session management
US20130054706A1 (en) 2011-08-29 2013-02-28 Mary Graham Modulation of Visual Notification Parameters Based on Message Activity and Notification Value
US8994660B2 (en) 2011-08-29 2015-03-31 Apple Inc. Text correction processing
US20130055147A1 (en) 2011-08-29 2013-02-28 Salesforce.Com, Inc. Configuration, generation, and presentation of custom graphical user interface components for a virtual cloud-based application
US8819012B2 (en) 2011-08-30 2014-08-26 International Business Machines Corporation Accessing anchors in voice site content
US8554729B2 (en) 2011-08-31 2013-10-08 Google Inc. System and method for synchronization of actions in the background of an application
US8914288B2 (en) 2011-09-01 2014-12-16 At&T Intellectual Property I, L.P. System and method for advanced turn-taking for interactive spoken dialog systems
WO2013033910A1 (en) 2011-09-09 2013-03-14 Google Inc. User interface for translation webpage
US9596084B2 (en) 2011-09-09 2017-03-14 Facebook, Inc. Initializing camera subsystem for face detection based on sensor inputs
US20130066832A1 (en) 2011-09-12 2013-03-14 Microsoft Corporation Application state synchronization
US20130073346A1 (en) 2011-09-16 2013-03-21 David Chun Identifying companies most closely related to a given company
US20130073286A1 (en) 2011-09-20 2013-03-21 Apple Inc. Consolidating Speech Recognition Results
US8798995B1 (en) 2011-09-23 2014-08-05 Amazon Technologies, Inc. Key word determinations from voice data
US9129606B2 (en) 2011-09-23 2015-09-08 Microsoft Technology Licensing, Llc User query history expansion for improving language model adaptation
US8812301B2 (en) 2011-09-26 2014-08-19 Xerox Corporation Linguistically-adapted structural query annotation
US20130080251A1 (en) 2011-09-26 2013-03-28 Accenture Global Services Limited Product registration and tracking system
US8768707B2 (en) 2011-09-27 2014-07-01 Sensory Incorporated Background speech recognition assistant using speaker verification
US8996381B2 (en) 2011-09-27 2015-03-31 Sensory, Incorporated Background speech recognition assistant
US8762156B2 (en) 2011-09-28 2014-06-24 Apple Inc. Speech recognition repair using contextual information
AU2012316484A1 (en) 2011-09-30 2014-04-17 Apple Inc. Automatically adapting user interfaces for hands-free interaction
AU2015203483A1 (en) 2011-09-30 2015-07-16 Apple Inc. Using context information to facilitate processing of commands in a virtual assistant
US8452597B2 (en) 2011-09-30 2013-05-28 Google Inc. Systems and methods for continual speech recognition and detection in mobile computing devices
AU2012232977A1 (en) 2011-09-30 2013-04-18 Apple Inc. Using context information to facilitate processing of commands in a virtual assistant
US8468022B2 (en) 2011-09-30 2013-06-18 Google Inc. Voice control for asynchronous notifications
US8340975B1 (en) 2011-10-04 2012-12-25 Theodore Alfred Rosenberger Interactive speech recognition device and system for hands-free building control
US8386926B1 (en) 2011-10-06 2013-02-26 Google Inc. Network-based custom dictionary, auto-correction and text entry preferences
WO2013052867A2 (en) 2011-10-07 2013-04-11 Rogers Henk B Media tagging
US9640175B2 (en) 2011-10-07 2017-05-02 Microsoft Technology Licensing, Llc Pronunciation learning from user correction
US8738363B2 (en) 2011-10-13 2014-05-27 Xerox Corporation System and method for suggestion mining
US9021565B2 (en) 2011-10-13 2015-04-28 At&T Intellectual Property I, L.P. Authentication techniques utilizing a computing device
US20130097566A1 (en) 2011-10-17 2013-04-18 Carl Fredrik Alexander BERGLUND System and method for displaying items on electronic devices
KR101873741B1 (en) 2011-10-26 2018-07-03 엘지전자 주식회사 Mobile terminal and method for controlling the same
US8738376B1 (en) 2011-10-28 2014-05-27 Nuance Communications, Inc. Sparse maximum a posteriori (MAP) adaptation
US9223948B2 (en) 2011-11-01 2015-12-29 Blackberry Limited Combined passcode and activity launch modifier
US20130111330A1 (en) 2011-11-01 2013-05-02 Research In Motion Limited Accelerated compositing of fixed position elements on an electronic device
WO2013063697A1 (en) 2011-11-02 2013-05-10 Research In Motion Limited System and method for enabling voice and video communications using a messaging application
US8996350B1 (en) 2011-11-02 2015-03-31 Dub Software Group, Inc. System and method for automatic document management
US20130110943A1 (en) 2011-11-02 2013-05-02 Apple Inc. Notification and reminder generation, distribution, and storage system
US9471666B2 (en) 2011-11-02 2016-10-18 Salesforce.Com, Inc. System and method for supporting natural language queries and requests against a user's personal data cloud
CN103093334A (en) 2011-11-04 2013-05-08 周超然 Method of activity notice text recognition and transforming automatically into calendar term
JP5681611B2 (en) 2011-11-09 2015-03-11 株式会社日立製作所 Navigation system, navigation apparatus, method, and server
US9711137B2 (en) 2011-11-10 2017-07-18 At&T Intellectual Property I, Lp Network-based background expert
US8972263B2 (en) 2011-11-18 2015-03-03 Soundhound, Inc. System and method for performing dual mode speech recognition
CN103135916A (en) 2011-11-30 2013-06-05 英特尔公司 Intelligent graphical interface in handheld wireless device
KR101830656B1 (en) 2011-12-02 2018-02-21 엘지전자 주식회사 Mobile terminal and control method for the same
US9214157B2 (en) 2011-12-06 2015-12-15 At&T Intellectual Property I, L.P. System and method for machine-mediated human-human conversation
KR101193668B1 (en) 2011-12-06 2012-12-14 위준성 Foreign language acquisition and learning service providing method based on context-aware using smart device
US9323746B2 (en) 2011-12-06 2016-04-26 At&T Intellectual Property I, L.P. System and method for collaborative language translation
US9082402B2 (en) 2011-12-08 2015-07-14 Sri International Generic virtual personal assistant platform
US9646313B2 (en) 2011-12-13 2017-05-09 Microsoft Technology Licensing, Llc Gesture-based tagging to view related content
US20130159847A1 (en) 2011-12-14 2013-06-20 International Business Machines Corporation Dynamic Personal Dictionaries for Enhanced Collaboration
EP2792173B1 (en) 2011-12-14 2019-04-10 RealNetworks, Inc. Customizable media auto-reply systems and methods
US8622836B2 (en) 2011-12-22 2014-01-07 Igt Use of wireless signal strength to determine connection
JP2013134430A (en) 2011-12-27 2013-07-08 Toyota Motor Corp Device, method, and program for processing command
US8996729B2 (en) 2012-04-12 2015-03-31 Nokia Corporation Method and apparatus for synchronizing tasks performed by multiple devices
US9094534B2 (en) 2011-12-29 2015-07-28 Apple Inc. Device, method, and graphical user interface for configuring and implementing restricted interactions with a user interface
JP5790509B2 (en) 2012-01-05 2015-10-07 富士通株式会社 Image reproduction apparatus, image reproduction program, and image reproduction method
JP5887937B2 (en) 2012-01-06 2016-03-16 株式会社リコー Output control system, output control method, output control device, and output control program
JP5547216B2 (en) 2012-01-06 2014-07-09 株式会社東芝 Electronic device and display control method
US9547832B2 (en) 2012-01-10 2017-01-17 Oracle International Corporation Identifying individual intentions and determining responses to individual intentions
US8825020B2 (en) 2012-01-12 2014-09-02 Sensory, Incorporated Information access and device control using mobile phones and audio in the home environment
US8812302B2 (en) 2012-01-17 2014-08-19 Google Inc. Techniques for inserting diacritical marks to text input via a user device
US20130204813A1 (en) 2012-01-20 2013-08-08 Fluential, Llc Self-learning, context aware virtual assistants, systems and methods
US9099098B2 (en) 2012-01-20 2015-08-04 Qualcomm Incorporated Voice activity detection in presence of background noise
US20130197914A1 (en) 2012-01-26 2013-08-01 Microtechnologies Llc D/B/A Microtech Voice activated audio control system and associated method of use
EP2807454A4 (en) 2012-01-26 2015-08-19 Telecomm Systems Inc Navigational lane guidance
JP5682578B2 (en) 2012-01-27 2015-03-11 日本電気株式会社 Speech recognition result correction support system, speech recognition result correction support method, and speech recognition result correction support program
US8626748B2 (en) 2012-02-03 2014-01-07 International Business Machines Corporation Combined word tree text visualization system
US8995960B2 (en) 2012-02-10 2015-03-31 Dedo Interactive, Inc. Mobile device authentication
CN102629246B (en) 2012-02-10 2017-06-27 百纳(武汉)信息技术有限公司 Recognize the server and browser voice command identification method of browser voice command
US10209954B2 (en) 2012-02-14 2019-02-19 Microsoft Technology Licensing, Llc Equal access to speech and touch input
JP2013167806A (en) 2012-02-16 2013-08-29 Toshiba Corp Information notification supporting device, information notification supporting method, and program
US9064497B2 (en) 2012-02-22 2015-06-23 Htc Corporation Method and apparatus for audio intelligibility enhancement and computing apparatus
US9042867B2 (en) 2012-02-24 2015-05-26 Agnitio S.L. System and method for speaker recognition on mobile devices
EP2631758B1 (en) 2012-02-24 2016-11-02 BlackBerry Limited Touchscreen keyboard providing word predictions in partitions of the touchscreen keyboard in proximate association with candidate letters
US8543398B1 (en) 2012-02-29 2013-09-24 Google Inc. Training an automatic speech recognition system using compressed word frequencies
US10984337B2 (en) 2012-02-29 2021-04-20 Microsoft Technology Licensing, Llc Context-based search query formation
US10134385B2 (en) 2012-03-02 2018-11-20 Apple Inc. Systems and methods for name pronunciation
US20130235987A1 (en) 2012-03-06 2013-09-12 Jose Arroniz-Escobar Automatic machine to machine distribution of subscriber contact information
US9639174B2 (en) 2012-03-09 2017-05-02 Paypal, Inc. Mobile device display content based on shaking the device
SG11201404678RA (en) 2012-03-14 2014-09-26 Nec Corp Term synonym acquisition method and term synonym acquisition apparatus
US9576593B2 (en) 2012-03-15 2017-02-21 Regents Of The University Of Minnesota Automated verbal fluency assessment
US9223497B2 (en) 2012-03-16 2015-12-29 Blackberry Limited In-context word prediction and word correction
EP2639792A1 (en) 2012-03-16 2013-09-18 France Télécom Voice control of applications by associating user input with action-context idendifier pairs
JP5870790B2 (en) 2012-03-19 2016-03-01 富士通株式会社 Sentence proofreading apparatus and proofreading method
JP2013200423A (en) 2012-03-23 2013-10-03 Toshiba Corp Voice interaction support device, method and program
JP5965175B2 (en) 2012-03-27 2016-08-03 ヤフー株式会社 Response generation apparatus, response generation method, and response generation program
US8681950B2 (en) 2012-03-28 2014-03-25 Interactive Intelligence, Inc. System and method for fingerprinting datasets
WO2013144759A1 (en) 2012-03-29 2013-10-03 Telmap Ltd. Location-based assistance for personal planning
US8346563B1 (en) 2012-04-10 2013-01-01 Artificial Solutions Ltd. System and methods for delivering advanced natural language interaction applications
US8892419B2 (en) 2012-04-10 2014-11-18 Artificial Solutions Iberia SL System and methods for semiautomatic generation and tuning of natural language interaction applications
US20130275117A1 (en) 2012-04-11 2013-10-17 Morgan H. Winer Generalized Phonetic Transliteration Engine
US9685160B2 (en) 2012-04-16 2017-06-20 Htc Corporation Method for offering suggestion during conversation, electronic device using the same, and non-transitory storage medium
US9223537B2 (en) 2012-04-18 2015-12-29 Next It Corporation Conversation user interface
US20130282709A1 (en) 2012-04-18 2013-10-24 Yahoo! Inc. Method and system for query suggestion
US9117449B2 (en) 2012-04-26 2015-08-25 Nuance Communications, Inc. Embedded system for construction of small footprint speech recognition with user-definable constraints
TWI511537B (en) 2012-04-27 2015-12-01 Wistron Corp Smart tv system, smart tv, mobile device and input operation method thereof
CN102682771B (en) 2012-04-27 2013-11-20 厦门思德电子科技有限公司 Multi-speech control method suitable for cloud platform
US20130289991A1 (en) 2012-04-30 2013-10-31 International Business Machines Corporation Application of Voice Tags in a Social Media Context
KR101946364B1 (en) 2012-05-01 2019-02-11 엘지전자 주식회사 Mobile device for having at least one microphone sensor and method for controlling the same
US9423870B2 (en) 2012-05-08 2016-08-23 Google Inc. Input determination method
US8732560B2 (en) 2012-05-08 2014-05-20 Infineon Technologies Ag Method and device for correction of ternary stored binary data
WO2013169842A2 (en) 2012-05-09 2013-11-14 Yknots Industries Llc Device, method, and graphical user interface for selecting object within a group of objects
US8725808B2 (en) 2012-05-10 2014-05-13 Intel Mobile Communications GmbH Method for transferring data between a first device and a second device
US9746916B2 (en) 2012-05-11 2017-08-29 Qualcomm Incorporated Audio user interaction recognition and application interface
JP5996262B2 (en) 2012-05-11 2016-09-21 シャープ株式会社 CHARACTER INPUT DEVICE, ELECTRONIC DEVICE, CONTROL METHOD, CONTROL PROGRAM, AND RECORDING MEDIUM
US9002768B2 (en) 2012-05-12 2015-04-07 Mikhail Fedorov Human-computer interface system
US8897822B2 (en) 2012-05-13 2014-11-25 Wavemarket, Inc. Auto responder
US9280610B2 (en) 2012-05-14 2016-03-08 Apple Inc. Crowd sourcing information to fulfill user requests
US10417037B2 (en) 2012-05-15 2019-09-17 Apple Inc. Systems and methods for integrating third party services with a digital assistant
US20130308922A1 (en) 2012-05-15 2013-11-21 Microsoft Corporation Enhanced video discovery and productivity through accessibility
US20130307855A1 (en) 2012-05-16 2013-11-21 Mathew J. Lamb Holographic story telling
TWI466101B (en) 2012-05-18 2014-12-21 Asustek Comp Inc Method and system for speech recognition
US20120296638A1 (en) 2012-05-18 2012-11-22 Ashish Patwa Method and system for quickly recognizing and responding to user intents and questions from natural language input using intelligent hierarchical processing and personalized adaptive semantic interface
US9247306B2 (en) 2012-05-21 2016-01-26 Intellectual Ventures Fund 83 Llc Forming a multimedia product using video chat
US8484573B1 (en) 2012-05-23 2013-07-09 Google Inc. Predictive virtual keyboard
US9406084B2 (en) 2012-05-23 2016-08-02 Specialty's Café & Bakery, Inc. Methods for submitting a food order remotely
US8850037B2 (en) 2012-05-24 2014-09-30 Fmr Llc Communication session transfer between devices
US9173074B2 (en) 2012-05-27 2015-10-27 Qualcomm Incorporated Personal hub presence and response
US20130325436A1 (en) 2012-05-29 2013-12-05 Wright State University Large Scale Distributed Syntactic, Semantic and Lexical Language Models
KR20130133629A (en) 2012-05-29 2013-12-09 삼성전자주식회사 Method and apparatus for executing voice command in electronic device
US9307293B2 (en) 2012-05-30 2016-04-05 Palo Alto Research Center Incorporated Collaborative video application for remote servicing
US9620128B2 (en) 2012-05-31 2017-04-11 Elwha Llc Speech recognition adaptation systems based on adaptation data
US20130325447A1 (en) 2012-05-31 2013-12-05 Elwha LLC, a limited liability corporation of the State of Delaware Speech recognition adaptation systems based on adaptation data
US8768693B2 (en) 2012-05-31 2014-07-01 Yahoo! Inc. Automatic tag extraction from audio annotated photos
US9123338B1 (en) 2012-06-01 2015-09-01 Google Inc. Background audio identification for speech disambiguation
US10156455B2 (en) 2012-06-05 2018-12-18 Apple Inc. Context-aware voice guidance
US8725823B2 (en) 2012-06-05 2014-05-13 Forget You Not, LLC Location-based communications
US8515750B1 (en) 2012-06-05 2013-08-20 Google Inc. Realtime acoustic adaptation using stability measures
US10019994B2 (en) 2012-06-08 2018-07-10 Apple Inc. Systems and methods for recognizing textual identifiers within a plurality of words
WO2013185107A1 (en) 2012-06-08 2013-12-12 Spotify Ab Systems and methods for recognizing ambiguity in metadata
US20130332159A1 (en) 2012-06-08 2013-12-12 Apple Inc. Using fan throttling to enhance dictation accuracy
US9002380B2 (en) 2012-06-08 2015-04-07 Apple Inc. Proximity-based notifications in a mobile device
US9674331B2 (en) 2012-06-08 2017-06-06 Apple Inc. Transmitting data from an automated assistant to an accessory
US20130332168A1 (en) 2012-06-08 2013-12-12 Samsung Electronics Co., Ltd. Voice activated search and control for applications
US9721563B2 (en) 2012-06-08 2017-08-01 Apple Inc. Name recognition system
US9916514B2 (en) 2012-06-11 2018-03-13 Amazon Technologies, Inc. Text recognition driven functionality
WO2013185329A1 (en) 2012-06-14 2013-12-19 Nokia Corporation Method and apparatus for associating interest tags with media items based on social diffusions among users
US9734839B1 (en) 2012-06-20 2017-08-15 Amazon Technologies, Inc. Routing natural language commands to the appropriate applications
US20140012574A1 (en) 2012-06-21 2014-01-09 Maluuba Inc. Interactive timeline for presenting and organizing tasks
US20130346347A1 (en) 2012-06-22 2013-12-26 Google Inc. Method to Predict a Communicative Action that is Most Likely to be Executed Given a Context
US8606577B1 (en) 2012-06-25 2013-12-10 Google Inc. Visual confirmation of voice recognized text input
US20130346068A1 (en) 2012-06-25 2013-12-26 Apple Inc. Voice-Based Image Tagging and Searching
WO2014000081A1 (en) 2012-06-26 2014-01-03 Research In Motion Limited Methods and apparatus to detect and add impact events to a calendar program
US20140006153A1 (en) 2012-06-27 2014-01-02 Infosys Limited System for making personalized offers for business facilitation of an entity and methods thereof
CN102801853B (en) 2012-06-27 2017-02-15 宇龙计算机通信科技(深圳)有限公司 Mobile phone and method for automatically triggering task execution
KR101961139B1 (en) 2012-06-28 2019-03-25 엘지전자 주식회사 Mobile terminal and method for recognizing voice thereof
US9495129B2 (en) 2012-06-29 2016-11-15 Apple Inc. Device, method, and user interface for voice-activated navigation and browsing of a document
JP5852930B2 (en) 2012-06-29 2016-02-03 Kddi株式会社 Input character estimation apparatus and program
US9996628B2 (en) 2012-06-29 2018-06-12 Verisign, Inc. Providing audio-activated resource access for user devices based on speaker voiceprint
US20140006012A1 (en) 2012-07-02 2014-01-02 Microsoft Corporation Learning-Based Processing of Natural Language Questions
US9536528B2 (en) 2012-07-03 2017-01-03 Google Inc. Determining hotword suitability
US9064493B2 (en) 2012-07-09 2015-06-23 Nuance Communications, Inc. Detecting potential significant errors in speech recognition results
CN103544140A (en) 2012-07-12 2014-01-29 国际商业机器公司 Data processing method, display method and corresponding devices
US20140019460A1 (en) 2012-07-12 2014-01-16 Yahoo! Inc. Targeted search suggestions
US9053708B2 (en) 2012-07-18 2015-06-09 International Business Machines Corporation System, method and program product for providing automatic speech recognition (ASR) in a shared resource environment
US9658746B2 (en) 2012-07-20 2017-05-23 Nook Digital, Llc Accessible reading mode techniques for electronic devices
US9953584B2 (en) 2012-07-24 2018-04-24 Nook Digital, Llc Lighting techniques for display devices
US9179250B2 (en) 2012-07-25 2015-11-03 Aro, Inc. Recommendation agent using a routine model determined from mobile device data
US8589911B1 (en) 2012-07-26 2013-11-19 Google Inc. Intent fulfillment
JP2014026629A (en) 2012-07-26 2014-02-06 Panasonic Corp Input device and input support method
US8442821B1 (en) 2012-07-27 2013-05-14 Google Inc. Multi-frame prediction for hybrid neural network/hidden Markov models
US8990343B2 (en) 2012-07-30 2015-03-24 Google Inc. Transferring a state of an application from a first computing device to a second computing device
US9465833B2 (en) 2012-07-31 2016-10-11 Veveo, Inc. Disambiguating user intent in conversational interaction system for large corpus information retrieval
US8831957B2 (en) 2012-08-01 2014-09-09 Google Inc. Speech recognition models based on location indicia
US20140035823A1 (en) 2012-08-01 2014-02-06 Apple Inc. Dynamic Context-Based Language Determination
US9390174B2 (en) 2012-08-08 2016-07-12 Google Inc. Search result ranking and presentation
CN104704797B (en) 2012-08-10 2018-08-10 纽昂斯通讯公司 Virtual protocol communication for electronic equipment
US20140052791A1 (en) 2012-08-14 2014-02-20 International Business Machines Corporation Task Based Filtering of Unwanted Electronic Communications
US10163058B2 (en) 2012-08-14 2018-12-25 Sri International Method, system and device for inferring a mobile user's current context and proactively providing assistance
US9292487B1 (en) 2012-08-16 2016-03-22 Amazon Technologies, Inc. Discriminative language model pruning
KR101922464B1 (en) 2012-08-16 2018-11-27 삼성전자주식회사 Method for transmitting and receiving message and an electronic device thereof
US9497515B2 (en) 2012-08-16 2016-11-15 Nuance Communications, Inc. User interface for entertainment systems
EP2803004A1 (en) 2012-08-16 2014-11-19 Nuance Communications, Inc. User interface for entertainment systems
WO2014029099A1 (en) 2012-08-24 2014-02-27 Microsoft Corporation I-vector based clustering training data in speech recognition
US9229924B2 (en) 2012-08-24 2016-01-05 Microsoft Technology Licensing, Llc Word detection and domain dictionary recommendation
JP5936698B2 (en) 2012-08-27 2016-06-22 株式会社日立製作所 Word semantic relation extraction device
US9026425B2 (en) 2012-08-28 2015-05-05 Xerox Corporation Lexical and phrasal feature domain adaptation in statistical machine translation
WO2014033350A1 (en) 2012-08-28 2014-03-06 Nokia Corporation Discovery method and apparatuses and system for discovery
US9049295B1 (en) 2012-08-28 2015-06-02 West Corporation Intelligent interactive voice response system for processing customer communications
JP6393021B2 (en) 2012-08-28 2018-09-19 京セラ株式会社 Electronic device, control method, and control program
KR102081925B1 (en) 2012-08-29 2020-02-26 엘지전자 주식회사 display device and speech search method thereof
US9218333B2 (en) 2012-08-31 2015-12-22 Microsoft Technology Licensing, Llc Context sensitive auto-correction
US8826415B2 (en) 2012-09-04 2014-09-02 Apple Inc. Automated device access
US9536049B2 (en) 2012-09-07 2017-01-03 Next It Corporation Conversational virtual healthcare assistant
US9325809B1 (en) 2012-09-07 2016-04-26 Mindmeld, Inc. Audio recall during voice conversations
US9576574B2 (en) 2012-09-10 2017-02-21 Apple Inc. Context-sensitive handling of interruptions by intelligent digital assistant
US20140074466A1 (en) 2012-09-10 2014-03-13 Google Inc. Answering questions using environmental context
US20150088523A1 (en) 2012-09-10 2015-03-26 Google Inc. Systems and Methods for Designing Voice Applications
US20140074470A1 (en) 2012-09-11 2014-03-13 Google Inc. Phonetic pronunciation
US20140074472A1 (en) 2012-09-12 2014-03-13 Chih-Hung Lin Voice control system with portable voice control device
US20140078065A1 (en) 2012-09-15 2014-03-20 Ahmet Akkok Predictive Keyboard With Suppressed Keys
US9081482B1 (en) 2012-09-18 2015-07-14 Google Inc. Text input suggestion ranking
JP6057637B2 (en) 2012-09-18 2017-01-11 株式会社アイ・オー・データ機器 Portable information terminal device, function switching method, and function switching program
US9547647B2 (en) 2012-09-19 2017-01-17 Apple Inc. Voice-based media searching
US9105268B2 (en) 2012-09-19 2015-08-11 24/7 Customer, Inc. Method and apparatus for predicting intent in IVR using natural language queries
US10042603B2 (en) 2012-09-20 2018-08-07 Samsung Electronics Co., Ltd. Context aware service provision method and apparatus of user device
US9076450B1 (en) 2012-09-21 2015-07-07 Amazon Technologies, Inc. Directed audio for speech recognition
US8983383B1 (en) 2012-09-25 2015-03-17 Rawles Llc Providing hands-free service to multiple devices
US9092415B2 (en) 2012-09-25 2015-07-28 Rovi Guides, Inc. Systems and methods for automatic program recommendations based on user interactions
US8983836B2 (en) 2012-09-26 2015-03-17 International Business Machines Corporation Captioning using socially derived acoustic profiles
JP2014072586A (en) 2012-09-27 2014-04-21 Sharp Corp Display device, display method, television receiver, program, and recording medium
US8498864B1 (en) 2012-09-27 2013-07-30 Google Inc. Methods and systems for predicting a text
US20140087711A1 (en) 2012-09-27 2014-03-27 Aegis Mobility, Inc. Mobile device context incorporating near field communications
US10096316B2 (en) 2013-11-27 2018-10-09 Sri International Sharing intents to provide virtual assistance in a multi-person dialog
US20140095171A1 (en) 2012-10-01 2014-04-03 Nuance Communications, Inc. Systems and methods for providing a voice agent user interface
US20140095172A1 (en) 2012-10-01 2014-04-03 Nuance Communications, Inc. Systems and methods for providing a voice agent user interface
US10276157B2 (en) 2012-10-01 2019-04-30 Nuance Communications, Inc. Systems and methods for providing a voice agent user interface
US9230560B2 (en) 2012-10-08 2016-01-05 Nant Holdings Ip, Llc Smart home automation systems and methods
US8606568B1 (en) 2012-10-10 2013-12-10 Google Inc. Evaluating pronouns in context
JP6066471B2 (en) 2012-10-12 2017-01-25 本田技研工業株式会社 Dialog system and utterance discrimination method for dialog system
US8843845B2 (en) 2012-10-16 2014-09-23 Google Inc. Multi-gesture text input prediction
JP2016502175A (en) 2012-10-22 2016-01-21 ヴィド スケール インコーポレイテッド User presence detection on mobile devices
US9305439B2 (en) 2012-10-25 2016-04-05 Google Inc. Configurable indicator on computing device
US8527276B1 (en) 2012-10-25 2013-09-03 Google Inc. Speech synthesis using deep neural networks
US20140122086A1 (en) 2012-10-26 2014-05-01 Microsoft Corporation Augmenting speech recognition with depth imaging
KR101967917B1 (en) 2012-10-30 2019-08-13 삼성전자주식회사 Apparatas and method for recognizing a voice in an electronic device
US10304465B2 (en) 2012-10-30 2019-05-28 Google Technology Holdings LLC Voice control user interface for low power mode
US9734151B2 (en) 2012-10-31 2017-08-15 Tivo Solutions Inc. Method and system for voice based media search
WO2014071043A1 (en) 2012-10-31 2014-05-08 DoWhatILikeBest, LLC Favorite and serendipitous event correlation and notification
US9093069B2 (en) 2012-11-05 2015-07-28 Nuance Communications, Inc. Privacy-sensitive speech model creation via aggregation of multiple user models
JP6018881B2 (en) 2012-11-07 2016-11-02 株式会社日立製作所 Navigation device and navigation method
KR20140060995A (en) 2012-11-13 2014-05-21 삼성전자주식회사 Rejection message providing method based on a situation and electronic device supporting the same
US9247387B2 (en) 2012-11-13 2016-01-26 International Business Machines Corporation Proximity based reminders
US9275642B2 (en) 2012-11-13 2016-03-01 Unified Computer Intelligence Corporation Voice-operated internet-ready ubiquitous computing device and method thereof
US9235321B2 (en) 2012-11-14 2016-01-12 Facebook, Inc. Animation sequence associated with content item
KR101709187B1 (en) 2012-11-14 2017-02-23 한국전자통신연구원 Spoken Dialog Management System Based on Dual Dialog Management using Hierarchical Dialog Task Library
US9798799B2 (en) 2012-11-15 2017-10-24 Sri International Vehicle personal assistant that interprets spoken natural language input based upon vehicle context
US9032219B2 (en) 2012-11-16 2015-05-12 Nuance Communications, Inc. Securing speech recognition data
JP2014102669A (en) 2012-11-20 2014-06-05 Toshiba Corp Information processor, information processing method and program
US10551928B2 (en) 2012-11-20 2020-02-04 Samsung Electronics Company, Ltd. GUI transitions on wearable electronic device
US8965754B2 (en) 2012-11-20 2015-02-24 International Business Machines Corporation Text prediction using environment hints
CA2892614C (en) 2012-11-22 2021-06-08 8303142 Canada Inc. System and method for managing several mobile devices simultaneously
WO2014142702A1 (en) 2013-03-15 2014-09-18 Obschestvo S Ogranichennoy Otvetstvennostiyu "Speaktoit" Selective speech recognition for chat and digital personal assistant systems
US20140146200A1 (en) 2012-11-28 2014-05-29 Research In Motion Limited Entries to an electronic calendar
RU2530268C2 (en) 2012-11-28 2014-10-10 Общество с ограниченной ответственностью "Спиктуит" Method for user training of information dialogue system
AU2013352236B2 (en) 2012-11-29 2018-08-02 Edsense, L.L.C. System and method for displaying multiple applications
US9589149B2 (en) 2012-11-30 2017-03-07 Microsoft Technology Licensing, Llc Combining personalization and privacy locally on devices
JP2014109889A (en) 2012-11-30 2014-06-12 Toshiba Corp Content retrieval device, content retrieval method and control program
US9549323B2 (en) 2012-12-03 2017-01-17 Samsung Electronics Co., Ltd. Method and mobile terminal for controlling screen lock
US9819786B2 (en) 2012-12-05 2017-11-14 Facebook, Inc. Systems and methods for a symbol-adaptable keyboard
US9026429B2 (en) 2012-12-05 2015-05-05 Facebook, Inc. Systems and methods for character string auto-suggestion based on degree of difficulty
US20140164476A1 (en) 2012-12-06 2014-06-12 At&T Intellectual Property I, Lp Apparatus and method for providing a virtual assistant
US9244905B2 (en) 2012-12-06 2016-01-26 Microsoft Technology Licensing, Llc Communication context based predictive-text suggestion
US8930181B2 (en) 2012-12-06 2015-01-06 Prashant Parikh Automatic dynamic contextual data entry completion
US20140163951A1 (en) 2012-12-07 2014-06-12 Xerox Corporation Hybrid adaptation of named entity recognition
KR102091003B1 (en) * 2012-12-10 2020-03-19 삼성전자 주식회사 Method and apparatus for providing context aware service using speech recognition
US9697827B1 (en) 2012-12-11 2017-07-04 Amazon Technologies, Inc. Error reduction in speech processing
US20140164532A1 (en) 2012-12-11 2014-06-12 Nuance Communications, Inc. Systems and methods for virtual agent participation in multiparty conversation
US9148394B2 (en) 2012-12-11 2015-09-29 Nuance Communications, Inc. Systems and methods for user interface presentation of virtual agent
US9117450B2 (en) 2012-12-12 2015-08-25 Nuance Communications, Inc. Combining re-speaking, partial agent transcription and ASR for improved accuracy / human guided ASR
US9190057B2 (en) 2012-12-12 2015-11-17 Amazon Technologies, Inc. Speech model retrieval in distributed speech recognition systems
KR102014778B1 (en) 2012-12-14 2019-08-27 엘지전자 주식회사 Digital device for providing text messaging service and the method for controlling the same
US9141660B2 (en) 2012-12-17 2015-09-22 International Business Machines Corporation Intelligent evidence classification and notification in a deep question answering system
WO2014098477A1 (en) 2012-12-18 2014-06-26 삼성전자 주식회사 Method and device for controlling home device remotely in home network system
US9070366B1 (en) 2012-12-19 2015-06-30 Amazon Technologies, Inc. Architecture for multi-domain utterance processing
US9098467B1 (en) 2012-12-19 2015-08-04 Rawles Llc Accepting voice commands based on user identity
US8645138B1 (en) 2012-12-20 2014-02-04 Google Inc. Two-pass decoding for speech recognition of search and action requests
US8977555B2 (en) 2012-12-20 2015-03-10 Amazon Technologies, Inc. Identification of utterance subjects
WO2014096506A1 (en) 2012-12-21 2014-06-26 Nokia Corporation Method, apparatus, and computer program product for personalizing speech recognition
KR20140082157A (en) 2012-12-24 2014-07-02 한국전자통신연구원 Apparatus for speech recognition using multiple acoustic model and method thereof
JP2014126600A (en) 2012-12-25 2014-07-07 Panasonic Corp Voice recognition device, voice recognition method and television
JP2014124332A (en) 2012-12-26 2014-07-07 Daiichi Shokai Co Ltd Game machine
US8571851B1 (en) 2012-12-31 2013-10-29 Google Inc. Semantic interpretation using user gaze order
CN103020047A (en) 2012-12-31 2013-04-03 威盛电子股份有限公司 Method for revising voice response and natural language dialogue system
KR101892734B1 (en) 2013-01-04 2018-08-28 한국전자통신연구원 Method and apparatus for correcting error of recognition in speech recognition system
KR20140089862A (en) 2013-01-07 2014-07-16 삼성전자주식회사 display apparatus and method for controlling the display apparatus
KR20140093303A (en) 2013-01-07 2014-07-28 삼성전자주식회사 display apparatus and method for controlling the display apparatus
US20140195233A1 (en) 2013-01-08 2014-07-10 Spansion Llc Distributed Speech Recognition System
DE112013006384T5 (en) 2013-01-09 2015-09-24 Mitsubishi Electric Corporation Speech recognition device and display method
US20140198047A1 (en) 2013-01-14 2014-07-17 Nuance Communications, Inc. Reducing error rates for touch based keyboards
US9292489B1 (en) 2013-01-16 2016-03-22 Google Inc. Sub-lexical language models with word level pronunciation lexicons
US8731912B1 (en) 2013-01-16 2014-05-20 Google Inc. Delaying audio notifications
US8942674B2 (en) 2013-01-18 2015-01-27 Blackberry Limited Responding to incoming calls
US20140203939A1 (en) 2013-01-21 2014-07-24 Rtc Inc. Control and monitoring of light-emitting-diode (led) bulbs
US9047274B2 (en) 2013-01-21 2015-06-02 Xerox Corporation Machine translation-driven authoring system and method
US9148499B2 (en) 2013-01-22 2015-09-29 Blackberry Limited Method and system for automatically identifying voice tags through user operation
US9530409B2 (en) 2013-01-23 2016-12-27 Blackberry Limited Event-triggered hands-free multitasking for media playback
US9165566B2 (en) 2013-01-24 2015-10-20 Microsoft Technology Licensing, Llc Indefinite speech inputs
DE102013001219B4 (en) 2013-01-25 2019-08-29 Inodyn Newmedia Gmbh Method and system for voice activation of a software agent from a standby mode
JP6251958B2 (en) 2013-01-28 2017-12-27 富士通株式会社 Utterance analysis device, voice dialogue control device, method, and program
JP2014150323A (en) 2013-01-31 2014-08-21 Sharp Corp Character input device
KR20140098947A (en) 2013-01-31 2014-08-11 삼성전자주식회사 User terminal, advertisement providing system and method thereof
US10055091B2 (en) 2013-02-01 2018-08-21 Microsoft Technology Licensing, Llc Autosave and manual save modes for software applications
US8694315B1 (en) 2013-02-05 2014-04-08 Visa International Service Association System and method for authentication using speaker verification techniques and fraud model
US20140218372A1 (en) 2013-02-05 2014-08-07 Apple Inc. Intelligent digital assistant in a desktop environment
KR20240132105A (en) 2013-02-07 2024-09-02 애플 인크. Voice trigger for a digital assistant
US20140223481A1 (en) 2013-02-07 2014-08-07 United Video Properties, Inc. Systems and methods for updating a search request
US10078437B2 (en) 2013-02-20 2018-09-18 Blackberry Limited Method and apparatus for responding to a notification via a capacitive physical keyboard
US20140236986A1 (en) 2013-02-21 2014-08-21 Apple Inc. Natural language document search
US9734819B2 (en) 2013-02-21 2017-08-15 Google Technology Holdings LLC Recognizing accented speech
US9621619B2 (en) 2013-02-21 2017-04-11 International Business Machines Corporation Enhanced notification for relevant communications
US20140245140A1 (en) 2013-02-22 2014-08-28 Next It Corporation Virtual Assistant Transfer between Smart Devices
US9484023B2 (en) 2013-02-22 2016-11-01 International Business Machines Corporation Conversion of non-back-off language models for efficient speech decoding
US9894312B2 (en) 2013-02-22 2018-02-13 The Directv Group, Inc. Method and system for controlling a user receiving device using voice commands
KR101383552B1 (en) 2013-02-25 2014-04-10 미디어젠(주) Speech recognition method of sentence having multiple instruction
US9330659B2 (en) 2013-02-25 2016-05-03 Microsoft Technology Licensing, Llc Facilitating development of a spoken natural language interface
US9172747B2 (en) 2013-02-25 2015-10-27 Artificial Solutions Iberia SL System and methods for virtual assistant networks
US9865266B2 (en) 2013-02-25 2018-01-09 Nuance Communications, Inc. Method and apparatus for automated speaker parameters adaptation in a deployed speaker verification system
US9280981B2 (en) 2013-02-27 2016-03-08 Blackberry Limited Method and apparatus for voice control of a mobile device
US10354677B2 (en) 2013-02-28 2019-07-16 Nuance Communications, Inc. System and method for identification of intent segment(s) in caller-agent conversations
US9218819B1 (en) 2013-03-01 2015-12-22 Google Inc. Customizing actions based on contextual data and voice-based inputs
US9251467B2 (en) 2013-03-03 2016-02-02 Microsoft Technology Licensing, Llc Probabilistic parsing
US9460715B2 (en) 2013-03-04 2016-10-04 Amazon Technologies, Inc. Identification using audio signatures and additional characteristics
US9554050B2 (en) 2013-03-04 2017-01-24 Apple Inc. Mobile device using images and location for reminders
US9293129B2 (en) 2013-03-05 2016-03-22 Microsoft Technology Licensing, Llc Speech recognition assisted evaluation on text-to-speech pronunciation issue detection
KR101952179B1 (en) 2013-03-05 2019-05-22 엘지전자 주식회사 Mobile terminal and control method for the mobile terminal
US9454957B1 (en) 2013-03-05 2016-09-27 Amazon Technologies, Inc. Named entity resolution in spoken language processing
US10795528B2 (en) 2013-03-06 2020-10-06 Nuance Communications, Inc. Task assistant having multiple visual displays
CN104038621A (en) 2013-03-06 2014-09-10 三星电子(中国)研发中心 Device and method for managing event information in communication terminal
US9496968B2 (en) 2013-03-08 2016-11-15 Google Inc. Proximity detection by mobile devices
US9990611B2 (en) 2013-03-08 2018-06-05 Baydin, Inc. Systems and methods for incorporating calendar functionality into electronic messages
US9112984B2 (en) 2013-03-12 2015-08-18 Nuance Communications, Inc. Methods and apparatus for detecting a voice command
EP2946383B1 (en) 2013-03-12 2020-02-26 Nuance Communications, Inc. Methods and apparatus for detecting a voice command
US9129013B2 (en) 2013-03-12 2015-09-08 Nuance Communications, Inc. Methods and apparatus for entity detection
US11393461B2 (en) 2013-03-12 2022-07-19 Cerence Operating Company Methods and apparatus for detecting a voice command
US9076459B2 (en) 2013-03-12 2015-07-07 Intermec Ip, Corp. Apparatus and method to classify sound to detect speech
US10229697B2 (en) 2013-03-12 2019-03-12 Google Technology Holdings LLC Apparatus and method for beamforming to obtain voice and noise signals
US9361885B2 (en) 2013-03-12 2016-06-07 Nuance Communications, Inc. Methods and apparatus for detecting a voice command
US9477753B2 (en) 2013-03-12 2016-10-25 International Business Machines Corporation Classifier-based system combination for spoken term detection
US10219100B2 (en) 2013-03-13 2019-02-26 Aliphcom Determining proximity for devices interacting with media devices
US9282423B2 (en) 2013-03-13 2016-03-08 Aliphcom Proximity and interface controls of media devices for media presentations
US9135248B2 (en) 2013-03-13 2015-09-15 Arris Technology, Inc. Context demographic determination system
US20140274005A1 (en) 2013-03-13 2014-09-18 Aliphcom Intelligent connection management in wireless devices
US9378739B2 (en) 2013-03-13 2016-06-28 Nuance Communications, Inc. Identifying corresponding positions in different representations of a textual work
US20140278349A1 (en) 2013-03-14 2014-09-18 Microsoft Corporation Language Model Dictionaries for Text Predictions
KR20140112910A (en) 2013-03-14 2014-09-24 삼성전자주식회사 Input controlling Method and Electronic Device supporting the same
US9733821B2 (en) 2013-03-14 2017-08-15 Apple Inc. Voice control to diagnose inadvertent activation of accessibility features
US9189196B2 (en) 2013-03-14 2015-11-17 Google Inc. Compartmentalized self registration of external devices
US20140267599A1 (en) 2013-03-14 2014-09-18 360Brandvision, Inc. User interaction with a holographic poster via a secondary mobile device
US10572476B2 (en) 2013-03-14 2020-02-25 Apple Inc. Refining a search based on schedule items
US9886160B2 (en) 2013-03-15 2018-02-06 Google Llc Managing audio at the tab level for user notification and control
US20140267933A1 (en) * 2013-03-15 2014-09-18 Toshiba America Information Systems, Inc. Electronic Device with Embedded Macro-Command Functionality
WO2014144579A1 (en) 2013-03-15 2014-09-18 Apple Inc. System and method for updating an adaptive speech recognition model
US9299041B2 (en) 2013-03-15 2016-03-29 Business Objects Software Ltd. Obtaining data from unstructured data for a structured data collection
WO2014143959A2 (en) 2013-03-15 2014-09-18 Bodhi Technology Ventures Llc Volume control for mobile device using a wireless device
US9201865B2 (en) 2013-03-15 2015-12-01 Bao Tran Automated assistance for user request that determines semantics by domain, task, and parameter
AU2014233517B2 (en) 2013-03-15 2017-05-25 Apple Inc. Training an at least partial voice command system
US9176649B2 (en) 2013-03-15 2015-11-03 American Megatrends, Inc. Method and apparatus of remote management of computer system using voice and gesture based input
US9378065B2 (en) 2013-03-15 2016-06-28 Advanced Elemental Technologies, Inc. Purposeful computing
CA2910621C (en) 2013-03-15 2023-10-17 Adityo Prakash Systems and methods for facilitating integrated behavioral support
CN105431809B (en) 2013-03-15 2018-12-18 谷歌有限责任公司 Dummy keyboard for International Language inputs
US9558743B2 (en) 2013-03-15 2017-01-31 Google Inc. Integration of semantic context information
US9189157B2 (en) 2013-03-15 2015-11-17 Blackberry Limited Method and apparatus for word prediction selection
US10638198B2 (en) 2013-03-15 2020-04-28 Ebay Inc. Shoppable video
CN112230878B (en) 2013-03-15 2024-09-27 苹果公司 Context-dependent processing of interrupts
CN105190607B (en) 2013-03-15 2018-11-30 苹果公司 Pass through the user training of intelligent digital assistant
US9479499B2 (en) 2013-03-21 2016-10-25 Tencent Technology (Shenzhen) Company Limited Method and apparatus for identity authentication via mobile capturing code
JP6221301B2 (en) 2013-03-28 2017-11-01 富士通株式会社 Audio processing apparatus, audio processing system, and audio processing method
US20140297288A1 (en) 2013-03-29 2014-10-02 Orange Telephone voice personal assistant
JP2014203207A (en) 2013-04-03 2014-10-27 ソニー株式会社 Information processing unit, information processing method, and computer program
US9300718B2 (en) 2013-04-09 2016-03-29 Avaya Inc. System and method for keyword-based notification and delivery of content
CN103198831A (en) 2013-04-10 2013-07-10 威盛电子股份有限公司 Voice control method and mobile terminal device
WO2014169269A1 (en) 2013-04-12 2014-10-16 Nant Holdings Ip, Llc Virtual teller systems and methods
US9875494B2 (en) 2013-04-16 2018-01-23 Sri International Using intents to analyze and personalize a user's dialog experience with a virtual personal assistant
US8825474B1 (en) 2013-04-16 2014-09-02 Google Inc. Text suggestion output using past interaction data
US20150193392A1 (en) 2013-04-17 2015-07-09 Google Inc. User Interface for Quickly Checking Agenda and Creating New Events
US9760644B2 (en) 2013-04-17 2017-09-12 Google Inc. Embedding event creation link in a document
NL2010662C2 (en) 2013-04-18 2014-10-21 Bosch Gmbh Robert Remote maintenance.
US10445115B2 (en) 2013-04-18 2019-10-15 Verint Americas Inc. Virtual assistant focused user interfaces
US9177318B2 (en) 2013-04-22 2015-11-03 Palo Alto Research Center Incorporated Method and apparatus for customizing conversation agents based on user characteristics using a relevance score for automatic statements, and a response prediction function
CN103280217B (en) 2013-05-02 2016-05-04 锤子科技(北京)有限公司 A kind of audio recognition method of mobile terminal and device thereof
US9384751B2 (en) 2013-05-06 2016-07-05 Honeywell International Inc. User authentication of voice controlled devices
KR20140132246A (en) 2013-05-07 2014-11-17 삼성전자주식회사 Object selection method and object selection apparatus
US9223898B2 (en) 2013-05-08 2015-12-29 Facebook, Inc. Filtering suggested structured queries on online social networks
US9923849B2 (en) 2013-05-09 2018-03-20 Ebay Inc. System and method for suggesting a phrase based on a context
US9489625B2 (en) 2013-05-10 2016-11-08 Sri International Rapid development of virtual personal assistant applications
US9081411B2 (en) 2013-05-10 2015-07-14 Sri International Rapid development of virtual personal assistant applications
US20140337751A1 (en) 2013-05-13 2014-11-13 Microsoft Corporation Automatic creation of calendar items
KR101825963B1 (en) 2013-05-16 2018-02-06 인텔 코포레이션 Techniques for natural user interface input based on context
US9495266B2 (en) 2013-05-16 2016-11-15 Advantest Corporation Voice recognition virtual test engineering assistant
KR101334342B1 (en) 2013-05-16 2013-11-29 주식회사 네오패드 Apparatus and method for inputting character
US9432499B2 (en) 2013-05-18 2016-08-30 Loralee Hajdu Peripheral specific selection of automated response messages
WO2014189486A1 (en) 2013-05-20 2014-11-27 Intel Corporation Natural human-computer interaction for virtual personal assistant systems
US20150199077A1 (en) 2013-05-23 2015-07-16 Google Inc. Scheduling and viewing a calender event using time zones based on a user's location at event time
US20140350933A1 (en) 2013-05-24 2014-11-27 Samsung Electronics Co., Ltd. Voice recognition apparatus and control method thereof
US20140351760A1 (en) 2013-05-24 2014-11-27 Google Inc. Order-independent text input
US9747900B2 (en) 2013-05-24 2017-08-29 Google Technology Holdings LLC Method and apparatus for using image data to aid voice recognition
US20140358523A1 (en) 2013-05-30 2014-12-04 Wright State University Topic-specific sentiment extraction
US20140358519A1 (en) 2013-06-03 2014-12-04 Xerox Corporation Confidence-driven rewriting of source texts for improved translation
US9286029B2 (en) 2013-06-06 2016-03-15 Honda Motor Co., Ltd. System and method for multimodal human-vehicle interaction and belief tracking
WO2014197334A2 (en) 2013-06-07 2014-12-11 Apple Inc. System and method for user-specified pronunciation of words for speech synthesis and recognition
US9582608B2 (en) 2013-06-07 2017-02-28 Apple Inc. Unified ranking with entropy-weighted information for phrase-based semantic auto-completion
KR101995660B1 (en) 2013-06-07 2019-07-02 애플 인크. Intelligent automated assistant
WO2014197336A1 (en) 2013-06-07 2014-12-11 Apple Inc. System and method for detecting errors in interactions with a voice-based digital assistant
WO2014197335A1 (en) 2013-06-08 2014-12-11 Apple Inc. Interpreting and acting upon commands that involve sharing information with remote devices
US10176167B2 (en) 2013-06-09 2019-01-08 Apple Inc. System and method for inferring user intent from speech inputs
KR101772152B1 (en) 2013-06-09 2017-08-28 애플 인크. Device, method, and graphical user interface for enabling conversation persistence across two or more instances of a digital assistant
KR20140144104A (en) 2013-06-10 2014-12-18 삼성전자주식회사 Electronic apparatus and Method for providing service thereof
US9449600B2 (en) 2013-06-11 2016-09-20 Plantronics, Inc. Character data entry
US9892115B2 (en) 2013-06-11 2018-02-13 Facebook, Inc. Translation training with cross-lingual multi-media support
US9508040B2 (en) 2013-06-12 2016-11-29 Microsoft Technology Licensing, Llc Predictive pre-launch for applications
EP3008964B1 (en) 2013-06-13 2019-09-25 Apple Inc. System and method for emergency calls initiated by voice command
US9728184B2 (en) 2013-06-18 2017-08-08 Microsoft Technology Licensing, Llc Restructuring deep neural network acoustic models
US9437186B1 (en) 2013-06-19 2016-09-06 Amazon Technologies, Inc. Enhanced endpoint detection for speech recognition
US20140379334A1 (en) 2013-06-20 2014-12-25 Qnx Software Systems Limited Natural language understanding automatic speech recognition post processing
KR20140147587A (en) 2013-06-20 2014-12-30 한국전자통신연구원 A method and apparatus to detect speech endpoint using weighted finite state transducer
KR102160767B1 (en) 2013-06-20 2020-09-29 삼성전자주식회사 Mobile terminal and method for detecting a gesture to control functions
US9311298B2 (en) 2013-06-21 2016-04-12 Microsoft Technology Licensing, Llc Building conversational understanding systems using a toolset
US10496743B2 (en) 2013-06-26 2019-12-03 Nuance Communications, Inc. Methods and apparatus for extracting facts from a medical text
US8947596B2 (en) 2013-06-27 2015-02-03 Intel Corporation Alignment of closed captions
RU2637874C2 (en) 2013-06-27 2017-12-07 Гугл Инк. Generation of interactive recommendations for chat information systems
US9747899B2 (en) 2013-06-27 2017-08-29 Amazon Technologies, Inc. Detecting self-generated wake expressions
US20150006148A1 (en) 2013-06-27 2015-01-01 Microsoft Corporation Automatically Creating Training Data For Language Identifiers
US10255930B2 (en) 2013-06-28 2019-04-09 Harman International Industries, Incorporated Wireless control of linked devices
US9741339B2 (en) 2013-06-28 2017-08-22 Google Inc. Data driven word pronunciation learning and scoring with crowd sourcing based on the word's phonemes pronunciation scores
US9646606B2 (en) 2013-07-03 2017-05-09 Google Inc. Speech recognition using domain knowledge
DE102014109121B4 (en) 2013-07-10 2023-05-04 Gm Global Technology Operations, Llc Systems and methods for arbitration of a speech dialog service
US9396727B2 (en) 2013-07-10 2016-07-19 GM Global Technology Operations LLC Systems and methods for spoken dialog service arbitration
WO2015005927A1 (en) 2013-07-11 2015-01-15 Intel Corporation Device wake and speaker verification using the same audio input
TWI508057B (en) 2013-07-15 2015-11-11 Chunghwa Picture Tubes Ltd Speech recognition system and method
US9311912B1 (en) 2013-07-22 2016-04-12 Amazon Technologies, Inc. Cost efficient distributed text-to-speech processing
US9407950B2 (en) 2013-07-23 2016-08-02 Microsoft Technology Licensing, Llc Controlling devices in entertainment environment
US20150031416A1 (en) 2013-07-23 2015-01-29 Motorola Mobility Llc Method and Device For Command Phrase Validation
US9335983B2 (en) 2013-07-28 2016-05-10 Oded Haim Breiner Method and system for displaying a non-installed android application and for requesting an action from a non-installed android application
US9575720B2 (en) 2013-07-31 2017-02-21 Google Inc. Visual confirmation for a recognized voice-initiated action
US9311915B2 (en) 2013-07-31 2016-04-12 Google Inc. Context-based speech recognition
TWI601032B (en) 2013-08-02 2017-10-01 晨星半導體股份有限公司 Controller for voice-controlled device and associated method
EP3031211B1 (en) 2013-08-06 2020-11-11 Saronikos Trading and Services, Unipessoal Lda. System for controlling electronic devices by means of voice commands, more specifically a remote control to control a plurality of electronic devices by means of voice commands
DE112014003653B4 (en) 2013-08-06 2024-04-18 Apple Inc. Automatically activate intelligent responses based on activities from remote devices
JP2015041845A (en) 2013-08-21 2015-03-02 カシオ計算機株式会社 Character input device and program
CN105659179B (en) * 2013-08-21 2018-07-17 霍尼韦尔国际公司 Device and method for interacting with HVAC controller
WO2015026366A1 (en) 2013-08-23 2015-02-26 Nuance Communications, Inc. Multiple pass automatic speech recognition methods and apparatus
JP6522503B2 (en) 2013-08-29 2019-05-29 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Device control method, display control method and purchase settlement method
KR102147935B1 (en) 2013-08-29 2020-08-25 삼성전자주식회사 Method for processing data and an electronic device thereof
US10127224B2 (en) 2013-08-30 2018-11-13 Intel Corporation Extensible context-aware natural language interactions for virtual personal assistants
US20150066506A1 (en) 2013-08-30 2015-03-05 Verint Systems Ltd. System and Method of Text Zoning
US10867597B2 (en) 2013-09-02 2020-12-15 Microsoft Technology Licensing, Llc Assignment of semantic labels to a sequence of words using neural network architectures
US9633669B2 (en) 2013-09-03 2017-04-25 Amazon Technologies, Inc. Smart circular audio buffer
US9316400B2 (en) 2013-09-03 2016-04-19 Panasonic Intellctual Property Corporation of America Appliance control method, speech-based appliance control system, and cooking appliance
KR102065409B1 (en) 2013-09-04 2020-01-13 엘지전자 주식회사 Mobile terminal and method for controlling the same
GB2517952B (en) 2013-09-05 2017-05-31 Barclays Bank Plc Biometric verification using predicted signatures
US9460704B2 (en) 2013-09-06 2016-10-04 Google Inc. Deep networks for unit selection speech synthesis
US9208779B2 (en) 2013-09-06 2015-12-08 Google Inc. Mixture of n-gram language models
US9898642B2 (en) 2013-09-09 2018-02-20 Apple Inc. Device, method, and graphical user interface for manipulating user interfaces based on fingerprint sensor inputs
US20150074524A1 (en) 2013-09-10 2015-03-12 Lenovo (Singapore) Pte. Ltd. Management of virtual assistant action items
CN104700832B (en) 2013-12-09 2018-05-25 联发科技股份有限公司 Voiced keyword detecting system and method
EP3047481A4 (en) 2013-09-20 2017-03-01 Amazon Technologies Inc. Local and remote speech processing
CN104463552B (en) 2013-09-22 2018-10-02 中国电信股份有限公司 Calendar reminding generation method and device
US20150088511A1 (en) 2013-09-24 2015-03-26 Verizon Patent And Licensing Inc. Named-entity based speech recognition
US10134395B2 (en) 2013-09-25 2018-11-20 Amazon Technologies, Inc. In-call virtual assistants
CN104516522B (en) 2013-09-29 2018-05-01 北京三星通信技术研究有限公司 The method and apparatus of nine grids input through keyboard
US20150095031A1 (en) 2013-09-30 2015-04-02 At&T Intellectual Property I, L.P. System and method for crowdsourcing of word pronunciation verification
US20150095278A1 (en) 2013-09-30 2015-04-02 Manyworlds, Inc. Adaptive Probabilistic Semantic System and Method
US20150100537A1 (en) 2013-10-03 2015-04-09 Microsoft Corporation Emoji for Text Predictions
US20150100983A1 (en) 2013-10-06 2015-04-09 Yang Pan Personal Mobile Device as Ad hoc Set-Top Box for Television
US9436918B2 (en) 2013-10-07 2016-09-06 Microsoft Technology Licensing, Llc Smart selection of text spans
US8996639B1 (en) 2013-10-15 2015-03-31 Google Inc. Predictive responses to incoming communications
US9063640B2 (en) 2013-10-17 2015-06-23 Spotify Ab System and method for switching between media items in a plurality of sequences of media items
US20150120723A1 (en) 2013-10-24 2015-04-30 Xerox Corporation Methods and systems for processing speech queries
US10055681B2 (en) 2013-10-31 2018-08-21 Verint Americas Inc. Mapping actions and objects to tasks
US9183830B2 (en) 2013-11-01 2015-11-10 Google Inc. Method and system for non-parametric voice conversion
US10088973B2 (en) 2013-11-08 2018-10-02 Google Llc Event scheduling presentation in a graphical user interface environment
JP6493866B2 (en) 2013-11-12 2019-04-03 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Information processing apparatus, information processing method, and program
GB2520266A (en) 2013-11-13 2015-05-20 Ibm Cursor-Based Character input interface
US10430024B2 (en) 2013-11-13 2019-10-01 Microsoft Technology Licensing, Llc Media item selection using user-specific grammar
US9361084B1 (en) 2013-11-14 2016-06-07 Google Inc. Methods and systems for installing and executing applications
US9443522B2 (en) 2013-11-18 2016-09-13 Beijing Lenovo Software Ltd. Voice recognition method, voice controlling method, information processing method, and electronic apparatus
US9898554B2 (en) 2013-11-18 2018-02-20 Google Inc. Implicit question query identification
US10162813B2 (en) 2013-11-21 2018-12-25 Microsoft Technology Licensing, Llc Dialogue evaluation via multiple hypothesis ranking
US20150149354A1 (en) 2013-11-27 2015-05-28 Bank Of America Corporation Real-Time Data Recognition and User Interface Field Updating During Voice Entry
US9451434B2 (en) 2013-11-27 2016-09-20 At&T Intellectual Property I, L.P. Direct interaction between a user and a communication network
US10079013B2 (en) 2013-11-27 2018-09-18 Sri International Sharing intents to provide virtual assistance in a multi-person dialog
US9698999B2 (en) 2013-12-02 2017-07-04 Amazon Technologies, Inc. Natural language control of secondary device
US8719039B1 (en) 2013-12-05 2014-05-06 Google Inc. Promoting voice actions to hotwords
WO2015085237A1 (en) 2013-12-06 2015-06-11 Adt Us Holdings, Inc. Voice activated application for mobile devices
US9215510B2 (en) 2013-12-06 2015-12-15 Rovi Guides, Inc. Systems and methods for automatically tagging a media asset based on verbal input and playback adjustments
US20150162001A1 (en) 2013-12-10 2015-06-11 Honeywell International Inc. System and method for textually and graphically presenting air traffic control voice information
US9208153B1 (en) 2013-12-13 2015-12-08 Symantec Corporation Filtering relevant event notifications in a file sharing and collaboration environment
US9479931B2 (en) * 2013-12-16 2016-10-25 Nuance Communications, Inc. Systems and methods for providing a virtual assistant
US9571645B2 (en) 2013-12-16 2017-02-14 Nuance Communications, Inc. Systems and methods for providing a virtual assistant
US20170017501A1 (en) 2013-12-16 2017-01-19 Nuance Communications, Inc. Systems and methods for providing a virtual assistant
US9804820B2 (en) 2013-12-16 2017-10-31 Nuance Communications, Inc. Systems and methods for providing a virtual assistant
EP3063646A4 (en) 2013-12-16 2017-06-21 Nuance Communications, Inc. Systems and methods for providing a virtual assistant
WO2015092943A1 (en) 2013-12-17 2015-06-25 Sony Corporation Electronic devices and methods for compensating for environmental noise in text-to-speech applications
GB2523984B (en) 2013-12-18 2017-07-26 Cirrus Logic Int Semiconductor Ltd Processing received speech data
US10565268B2 (en) 2013-12-19 2020-02-18 Adobe Inc. Interactive communication augmented with contextual information
US9741343B1 (en) 2013-12-19 2017-08-22 Amazon Technologies, Inc. Voice interaction application selection
US20150221307A1 (en) 2013-12-20 2015-08-06 Saurin Shah Transition from low power always listening mode to high power speech recognition mode
KR102179506B1 (en) 2013-12-23 2020-11-17 삼성전자 주식회사 Electronic apparatus and control method thereof
US9640181B2 (en) 2013-12-27 2017-05-02 Kopin Corporation Text editing with gesture control and natural speech
KR102092164B1 (en) 2013-12-27 2020-03-23 삼성전자주식회사 Display device, server device, display system comprising them and methods thereof
US9460735B2 (en) 2013-12-28 2016-10-04 Intel Corporation Intelligent ancillary electronic device
US9390726B1 (en) 2013-12-30 2016-07-12 Google Inc. Supplementing speech commands with gestures
US10078489B2 (en) 2013-12-30 2018-09-18 Microsoft Technology Licensing, Llc Voice interface to a social networking service
US9274673B2 (en) 2013-12-31 2016-03-01 Google Inc. Methods, systems, and media for rewinding media content based on detected audio events
US9152307B2 (en) 2013-12-31 2015-10-06 Google Inc. Systems and methods for simultaneously displaying clustered, in-line electronic messages in one display
US9424241B2 (en) 2013-12-31 2016-08-23 Barnes & Noble College Booksellers, Llc Annotation mode including multiple note types for paginated digital content
US9823811B2 (en) 2013-12-31 2017-11-21 Next It Corporation Virtual assistant team identification
US9742836B2 (en) 2014-01-03 2017-08-22 Yahoo Holdings, Inc. Systems and methods for content delivery
US20150193379A1 (en) 2014-01-06 2015-07-09 Apple Inc. System and method for cognizant time-based reminders
US8938394B1 (en) 2014-01-09 2015-01-20 Google Inc. Audio triggers based on context
US9443516B2 (en) 2014-01-09 2016-09-13 Honeywell International Inc. Far-field speech recognition systems and methods
US9924215B2 (en) 2014-01-09 2018-03-20 Hsni, Llc Digital media content management system and method
US9514748B2 (en) 2014-01-15 2016-12-06 Microsoft Technology Licensing, Llc Digital personal assistant interaction with impersonations and rich multimedia in responses
US8868409B1 (en) 2014-01-16 2014-10-21 Google Inc. Evaluating transcriptions with a semantic parser
US20150199965A1 (en) 2014-01-16 2015-07-16 CloudCar Inc. System and method for recognition and automatic correction of voice commands
US9336300B2 (en) 2014-01-17 2016-05-10 Facebook, Inc. Client-side search templates for online social networks
WO2015110850A1 (en) 2014-01-22 2015-07-30 Sony Corporation Directing audio output based on gestures
CN103744761B (en) 2014-01-22 2017-02-08 广东欧珀移动通信有限公司 Method and system for controlling multiple mobile terminals to automatically execute tasks
US11386886B2 (en) 2014-01-28 2022-07-12 Lenovo (Singapore) Pte. Ltd. Adjusting speech recognition using contextual information
US9858039B2 (en) 2014-01-28 2018-01-02 Oracle International Corporation Voice recognition of commands extracted from user interface screen devices
US10019060B2 (en) 2014-01-30 2018-07-10 Duane Matthew Cash Mind-controlled virtual assistant on a smartphone device
CN105934791B (en) 2014-01-31 2019-11-22 惠普发展公司,有限责任合伙企业 Voice input order
US20160173960A1 (en) 2014-01-31 2016-06-16 EyeGroove, Inc. Methods and systems for generating audiovisual media items
US9292488B2 (en) 2014-02-01 2016-03-22 Soundhound, Inc. Method for embedding voice mail in a spoken utterance using a natural language processing computer system
CN105981099A (en) 2014-02-06 2016-09-28 三菱电机株式会社 Speech search device and speech search method
US20150228281A1 (en) 2014-02-07 2015-08-13 First Principles,Inc. Device, system, and method for active listening
US10083205B2 (en) 2014-02-12 2018-09-25 Samsung Electronics Co., Ltd. Query cards
US9037967B1 (en) 2014-02-18 2015-05-19 King Fahd University Of Petroleum And Minerals Arabic spell checking technique
US9589562B2 (en) 2014-02-21 2017-03-07 Microsoft Technology Licensing, Llc Pronunciation learning through correction logs
WO2015127404A1 (en) 2014-02-24 2015-08-27 Microsoft Technology Licensing, Llc Unified presentation of contextually connected information to improve user efficiency and interaction performance
US9495959B2 (en) 2014-02-27 2016-11-15 Ford Global Technologies, Llc Disambiguation of dynamic commands
US20150248651A1 (en) 2014-02-28 2015-09-03 Christine E. Akutagawa Social networking event planning
US9412363B2 (en) 2014-03-03 2016-08-09 Microsoft Technology Licensing, Llc Model based approach for on-screen item selection and disambiguation
US9489171B2 (en) 2014-03-04 2016-11-08 Microsoft Technology Licensing, Llc Voice-command suggestions based on user identity
US20150256873A1 (en) 2014-03-04 2015-09-10 Microsoft Technology Licensing, Llc Relayed voice control of devices
US9582246B2 (en) * 2014-03-04 2017-02-28 Microsoft Technology Licensing, Llc Voice-command suggestions based on computer context
US9286910B1 (en) 2014-03-13 2016-03-15 Amazon Technologies, Inc. System for resolving ambiguous queries based on user context
US9430186B2 (en) 2014-03-17 2016-08-30 Google Inc Visual indication of a recognized voice-initiated action
US9336306B2 (en) 2014-03-21 2016-05-10 International Business Machines Corporation Automatic evaluation and improvement of ontologies for natural language processing tasks
IN2014DE00899A (en) 2014-03-28 2015-10-02 Samsung Electronics Co Ltd
US10037758B2 (en) 2014-03-31 2018-07-31 Mitsubishi Electric Corporation Device and method for understanding user intent
US9196243B2 (en) 2014-03-31 2015-11-24 International Business Machines Corporation Method and system for efficient spoken term detection using confusion networks
US9286892B2 (en) 2014-04-01 2016-03-15 Google Inc. Language modeling in speech recognition
US20150278370A1 (en) 2014-04-01 2015-10-01 Microsoft Corporation Task completion for natural language input
EP3127352B1 (en) 2014-04-02 2020-10-28 Sony Corporation Power efficient proximity detection
US20150286627A1 (en) 2014-04-03 2015-10-08 Adobe Systems Incorporated Contextual sentiment text analysis
KR20150115555A (en) 2014-04-04 2015-10-14 삼성전자주식회사 Electronic device And Method for providing information thereof
KR102249086B1 (en) 2014-04-04 2021-05-10 삼성전자주식회사 Electronic Apparatus and Method for Supporting of Recording
JP6282516B2 (en) 2014-04-08 2018-02-21 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Multi-device voice operation system, voice operation method, and program
US20150294516A1 (en) 2014-04-10 2015-10-15 Kuo-Ching Chiang Electronic device with security module
US9888452B2 (en) 2014-04-10 2018-02-06 Twin Harbor Labs Llc Methods and apparatus notifying a user of the operating condition of a household appliance
WO2015157013A1 (en) 2014-04-11 2015-10-15 Analog Devices, Inc. Apparatus, systems and methods for providing blind source separation services
US9652453B2 (en) 2014-04-14 2017-05-16 Xerox Corporation Estimation of parameters for machine translation without in-domain parallel data
US20150294086A1 (en) 2014-04-14 2015-10-15 Elwha Llc Devices, systems, and methods for automated enhanced care rooms
CN104980412B (en) 2014-04-14 2018-07-13 阿里巴巴集团控股有限公司 A kind of applications client, server-side and corresponding portal authentication method
US20150302856A1 (en) 2014-04-17 2015-10-22 Qualcomm Incorporated Method and apparatus for performing function by speech input
US10770075B2 (en) 2014-04-21 2020-09-08 Qualcomm Incorporated Method and apparatus for activating application by speech input
US9607613B2 (en) 2014-04-23 2017-03-28 Google Inc. Speech endpointing based on word comparisons
US20150310862A1 (en) 2014-04-24 2015-10-29 Microsoft Corporation Deep learning for semantic parsing including semantic utterance classification
US10845982B2 (en) 2014-04-28 2020-11-24 Facebook, Inc. Providing intelligent transcriptions of sound messages in a messaging application
US9520127B2 (en) 2014-04-29 2016-12-13 Microsoft Technology Licensing, Llc Shared hidden layer combination for speech recognition systems
KR102248474B1 (en) 2014-04-30 2021-05-07 삼성전자 주식회사 Voice command providing method and apparatus
US9600600B2 (en) 2014-04-30 2017-03-21 Excalibur Ip, Llc Method and system for evaluating query suggestions quality
US9501163B2 (en) 2014-05-06 2016-11-22 Symbol Technologies, Llc Apparatus and method for activating a trigger mechanism
KR102282487B1 (en) 2014-05-08 2021-07-26 삼성전자주식회사 Apparatus and method for executing application
US9620105B2 (en) 2014-05-15 2017-04-11 Apple Inc. Analyzing audio input for efficient speech and music recognition
US9459889B2 (en) 2014-05-19 2016-10-04 Qualcomm Incorporated Systems and methods for context-aware application control
KR102216048B1 (en) 2014-05-20 2021-02-15 삼성전자주식회사 Apparatus and method for recognizing voice commend
KR102223278B1 (en) 2014-05-22 2021-03-05 엘지전자 주식회사 Glass type terminal and control method thereof
US9990433B2 (en) 2014-05-23 2018-06-05 Samsung Electronics Co., Ltd. Method for searching and device thereof
US10592095B2 (en) 2014-05-23 2020-03-17 Apple Inc. Instantaneous speaking of content on touch devices
US9502031B2 (en) 2014-05-27 2016-11-22 Apple Inc. Method for supporting dynamic grammars in WFST-based ASR
US9437189B2 (en) 2014-05-29 2016-09-06 Google Inc. Generating language models
US9715875B2 (en) 2014-05-30 2017-07-25 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
CN110797019B (en) 2014-05-30 2023-08-29 苹果公司 Multi-command single speech input method
WO2015184387A1 (en) 2014-05-30 2015-12-03 Apple Inc. Accessory management system using environment model
US9380123B2 (en) 2014-05-30 2016-06-28 Apple Inc. Activity continuation between electronic devices
US10170123B2 (en) 2014-05-30 2019-01-01 Apple Inc. Intelligent assistant for home automation
US9842101B2 (en) 2014-05-30 2017-12-12 Apple Inc. Predictive conversion of language input
US9760559B2 (en) 2014-05-30 2017-09-12 Apple Inc. Predictive text input
TWI520007B (en) 2014-05-30 2016-02-01 由田新技股份有限公司 Eye-controlled password input apparatus, method, computer readable medium, and computer program product thereof
US10078631B2 (en) 2014-05-30 2018-09-18 Apple Inc. Entropy-guided text prediction using combined word and character n-gram language models
US10579212B2 (en) 2014-05-30 2020-03-03 Apple Inc. Structured suggestions
US9430463B2 (en) 2014-05-30 2016-08-30 Apple Inc. Exemplar-based natural language processing
WO2015183699A1 (en) 2014-05-30 2015-12-03 Apple Inc. Predictive messaging method
US9519634B2 (en) 2014-05-30 2016-12-13 Educational Testing Service Systems and methods for determining lexical associations among words in a corpus
US9633004B2 (en) 2014-05-30 2017-04-25 Apple Inc. Better resolution when referencing to concepts
US9654536B2 (en) 2014-06-04 2017-05-16 Sonos, Inc. Cloud queue playback policy
JP6307356B2 (en) 2014-06-06 2018-04-04 株式会社デンソー Driving context information generator
EP3158691B1 (en) 2014-06-06 2024-09-25 Google LLC Proactive environment-based chat information system
US20150364140A1 (en) 2014-06-13 2015-12-17 Sony Corporation Portable Electronic Equipment and Method of Operating a User Interface
US9462112B2 (en) 2014-06-19 2016-10-04 Microsoft Technology Licensing, Llc Use of a digital assistant in communications
US10186282B2 (en) 2014-06-19 2019-01-22 Apple Inc. Robust end-pointing of speech signals using speaker recognition
US9632748B2 (en) 2014-06-24 2017-04-25 Google Inc. Device designation for audio input monitoring
US9384738B2 (en) 2014-06-24 2016-07-05 Google Inc. Dynamic threshold for speaker verification
US9338493B2 (en) 2014-06-30 2016-05-10 Apple Inc. Intelligent automated assistant for TV user interactions
KR102261552B1 (en) * 2014-06-30 2021-06-07 삼성전자주식회사 Providing Method For Voice Command and Electronic Device supporting the same
US10659851B2 (en) 2014-06-30 2020-05-19 Apple Inc. Real-time digital assistant knowledge updates
US10321204B2 (en) 2014-07-11 2019-06-11 Lenovo (Singapore) Pte. Ltd. Intelligent closed captioning
KR20160009344A (en) 2014-07-16 2016-01-26 삼성전자주식회사 Method and apparatus for recognizing whispered voice
US9257120B1 (en) 2014-07-18 2016-02-09 Google Inc. Speaker verification using co-location information
KR101918421B1 (en) 2014-07-18 2018-11-13 애플 인크. Raise gesture detection in a device
US20160028666A1 (en) 2014-07-24 2016-01-28 Framy Inc. System and method for instant messaging
US9301256B2 (en) 2014-07-24 2016-03-29 Verizon Patent And Licensing Inc. Low battery indication for callers to mobile device
US20160086116A1 (en) 2014-07-27 2016-03-24 Supriya Rao Method and system of an automatically managed calendar and contextual task list
US20160034811A1 (en) 2014-07-31 2016-02-04 Apple Inc. Efficient generation of complementary acoustic models for performing automatic speech recognition system combination
US9377871B2 (en) 2014-08-01 2016-06-28 Nuance Communications, Inc. System and methods for determining keyboard input in the presence of multiple contact points
US9548066B2 (en) 2014-08-11 2017-01-17 Amazon Technologies, Inc. Voice application architecture
US9767794B2 (en) 2014-08-11 2017-09-19 Nuance Communications, Inc. Dialog flow management in hierarchical task dialogs
US9361442B2 (en) 2014-08-12 2016-06-07 International Business Machines Corporation Triggering actions on a user device based on biometrics of nearby individuals
JP6044604B2 (en) 2014-08-18 2016-12-14 カシオ計算機株式会社 Terminal device and program
US10345767B2 (en) 2014-08-19 2019-07-09 Samsung Electronics Co., Ltd. Apparatus and method for gamification of sensor data interpretation in smart home
US20160055240A1 (en) 2014-08-22 2016-02-25 Microsoft Corporation Orphaned utterance detection system and method
US10446141B2 (en) 2014-08-28 2019-10-15 Apple Inc. Automatic speech recognition based on user feedback
US9990610B2 (en) 2014-08-29 2018-06-05 Google Llc Systems and methods for providing suggested reminders
CN105471705B (en) 2014-09-03 2021-03-23 腾讯科技(深圳)有限公司 Intelligent control method, equipment and system based on instant messaging
US9959863B2 (en) 2014-09-08 2018-05-01 Qualcomm Incorporated Keyword detection using speaker-independent keyword models for user-designated keywords
CN105960672B (en) 2014-09-09 2019-11-26 微软技术许可有限责任公司 Variable component deep neural network for Robust speech recognition
US9818400B2 (en) 2014-09-11 2017-11-14 Apple Inc. Method and apparatus for discovering trending terms in speech requests
US10789041B2 (en) 2014-09-12 2020-09-29 Apple Inc. Dynamic thresholds for always listening speech trigger
CN105490890A (en) 2014-09-16 2016-04-13 中兴通讯股份有限公司 Intelligent household terminal and control method therefor
US9508028B2 (en) 2014-09-24 2016-11-29 Nuance Communications, Inc. Converting text strings into number strings, such as via a touchscreen input
US10317992B2 (en) 2014-09-25 2019-06-11 Microsoft Technology Licensing, Llc Eye gaze for spoken language understanding in multi-modal conversational interactions
US9830321B2 (en) 2014-09-30 2017-11-28 Rovi Guides, Inc. Systems and methods for searching for a media asset
US10074360B2 (en) 2014-09-30 2018-09-11 Apple Inc. Providing an indication of the suitability of speech recognition
US9378740B1 (en) 2014-09-30 2016-06-28 Amazon Technologies, Inc. Command suggestions during automatic speech recognition
US9886432B2 (en) 2014-09-30 2018-02-06 Apple Inc. Parsimonious handling of word inflection via categorical stem + suffix N-gram language models
US9646634B2 (en) 2014-09-30 2017-05-09 Google Inc. Low-rank hidden input layer for speech recognition neural network
US10127911B2 (en) 2014-09-30 2018-11-13 Apple Inc. Speaker identification and unsupervised speaker adaptation techniques
US9668121B2 (en) 2014-09-30 2017-05-30 Apple Inc. Social reminders
US9646609B2 (en) 2014-09-30 2017-05-09 Apple Inc. Caching apparatus for serving phonetic pronunciations
US9318107B1 (en) 2014-10-09 2016-04-19 Google Inc. Hotword detection on multiple devices
US9741344B2 (en) 2014-10-20 2017-08-22 Vocalzoom Systems Ltd. System and method for operating devices using voice commands
US20160117386A1 (en) 2014-10-22 2016-04-28 International Business Machines Corporation Discovering terms using statistical corpus analysis
US9576575B2 (en) * 2014-10-27 2017-02-21 Toyota Motor Engineering & Manufacturing North America, Inc. Providing voice recognition shortcuts based on user verbal input
CN104460593B (en) 2014-10-29 2017-10-10 小米科技有限责任公司 mode switching method and device
US9880714B2 (en) 2014-10-30 2018-01-30 Ebay Inc. Dynamic loading of contextual ontologies for predictive touch screen typing
US10089364B2 (en) 2014-10-31 2018-10-02 Kabushiki Kaisha Toshiba Item recommendation device, item recommendation method, and computer program product
US9646611B2 (en) 2014-11-06 2017-05-09 Microsoft Technology Licensing, Llc Context-based actions
US10572589B2 (en) 2014-11-10 2020-02-25 International Business Machines Corporation Cognitive matching of narrative data
GB2532075A (en) 2014-11-10 2016-05-11 Lego As System and method for toy recognition and detection based on convolutional neural networks
US9582493B2 (en) 2014-11-10 2017-02-28 Oracle International Corporation Lemma mapping to universal ontologies in computer natural language processing
US20160139662A1 (en) 2014-11-14 2016-05-19 Sachin Dabhade Controlling a visual device based on a proximity between a user and the visual device
US9258604B1 (en) 2014-11-24 2016-02-09 Facebook, Inc. Commercial detection based on audio fingerprinting
US9886430B2 (en) 2014-11-25 2018-02-06 Microsoft Technology Licensing, Llc Entity based content selection
US10614799B2 (en) 2014-11-26 2020-04-07 Voicebox Technologies Corporation System and method of providing intent predictions for an utterance prior to a system detection of an end of the utterance
US9812126B2 (en) 2014-11-28 2017-11-07 Microsoft Technology Licensing, Llc Device arbitration for listening devices
US10192549B2 (en) 2014-11-28 2019-01-29 Microsoft Technology Licensing, Llc Extending digital personal assistant action providers
US9466297B2 (en) 2014-12-09 2016-10-11 Microsoft Technology Licensing, Llc Communication system
US20160162458A1 (en) 2014-12-09 2016-06-09 Idibon, Inc. Graphical systems and methods for human-in-the-loop machine intelligence
US9711141B2 (en) 2014-12-09 2017-07-18 Apple Inc. Disambiguating heteronyms in speech synthesis
US20160170966A1 (en) 2014-12-10 2016-06-16 Brian Kolo Methods and systems for automated language identification
CN111427534B (en) 2014-12-11 2023-07-25 微软技术许可有限责任公司 Virtual assistant system capable of actionable messaging
US9904673B2 (en) 2014-12-17 2018-02-27 International Business Machines Corporation Conversation advisor
US9911415B2 (en) 2014-12-19 2018-03-06 Lenovo (Singapore) Pte. Ltd. Executing a voice command during voice input
US9552816B2 (en) 2014-12-19 2017-01-24 Amazon Technologies, Inc. Application focus in speech-based systems
US9811312B2 (en) 2014-12-22 2017-11-07 Intel Corporation Connected device voice command support
KR20160076201A (en) 2014-12-22 2016-06-30 엘지전자 주식회사 Mobile terminal and method for controlling the same
JP6504808B2 (en) 2014-12-22 2019-04-24 キヤノン株式会社 Imaging device, setting method of voice command function, computer program, and storage medium
US9837081B2 (en) 2014-12-30 2017-12-05 Microsoft Technology Licensing, Llc Discovering capabilities of third-party voice-enabled resources
US9959129B2 (en) 2015-01-09 2018-05-01 Microsoft Technology Licensing, Llc Headless task completion within digital personal assistants
US9367541B1 (en) 2015-01-20 2016-06-14 Xerox Corporation Terminological adaptation of statistical machine translation system through automatic generation of phrasal contexts for bilingual terms
US9424412B1 (en) 2015-02-02 2016-08-23 Bank Of America Corporation Authenticating customers using biometrics
US20160225372A1 (en) 2015-02-03 2016-08-04 Samsung Electronics Company, Ltd. Smart home connected device contextual learning using audio commands
US9613022B2 (en) 2015-02-04 2017-04-04 Lenovo (Singapore) Pte. Ltd. Context based customization of word assistance functions
KR101678087B1 (en) * 2015-02-16 2016-11-23 현대자동차주식회사 Vehicle and method of controlling the same
KR20160101826A (en) 2015-02-17 2016-08-26 삼성전자주식회사 Multi-Users Based Device
WO2016134183A1 (en) 2015-02-19 2016-08-25 Digital Reasoning Systems, Inc. Systems and methods for neural language modeling
US9928232B2 (en) 2015-02-27 2018-03-27 Microsoft Technology Licensing, Llc Topically aware word suggestions
US9911412B2 (en) 2015-03-06 2018-03-06 Nuance Communications, Inc. Evidence-based natural language input recognition
US9865280B2 (en) 2015-03-06 2018-01-09 Apple Inc. Structured dictation using intelligent automated assistants
US10152299B2 (en) 2015-03-06 2018-12-11 Apple Inc. Reducing response latency of intelligent automated assistants
US9721566B2 (en) 2015-03-08 2017-08-01 Apple Inc. Competing devices responding to voice triggers
US9886953B2 (en) 2015-03-08 2018-02-06 Apple Inc. Virtual assistant activation
US10567477B2 (en) 2015-03-08 2020-02-18 Apple Inc. Virtual assistant continuity
US20160266871A1 (en) 2015-03-11 2016-09-15 Adapx, Inc. Speech recognizer for multimodal systems and signing in/out with and /or for a digital pen
US9805713B2 (en) 2015-03-13 2017-10-31 Google Inc. Addressing missing features in models
US9899019B2 (en) 2015-03-18 2018-02-20 Apple Inc. Systems and methods for structured stem and suffix language models
US20160286045A1 (en) 2015-03-23 2016-09-29 Vonage Network Llc System and method for providing an informative message when rejecting an incoming call
US9703394B2 (en) 2015-03-24 2017-07-11 Google Inc. Unlearning techniques for adaptive language models in text entry
US20160285816A1 (en) 2015-03-25 2016-09-29 Facebook, Inc. Techniques for automated determination of form responses
US9672725B2 (en) 2015-03-25 2017-06-06 Microsoft Technology Licensing, Llc Proximity-based reminders
US9484021B1 (en) 2015-03-30 2016-11-01 Amazon Technologies, Inc. Disambiguation in speech recognition
TWI525532B (en) 2015-03-30 2016-03-11 Yu-Wei Chen Set the name of the person to wake up the name for voice manipulation
US10095683B2 (en) 2015-04-10 2018-10-09 Facebook, Inc. Contextual speller models on online social networks
US9678664B2 (en) 2015-04-10 2017-06-13 Google Inc. Neural network for keyboard input decoding
US10049099B2 (en) 2015-04-10 2018-08-14 Facebook, Inc. Spell correction with hidden markov models on online social networks
US9842105B2 (en) 2015-04-16 2017-12-12 Apple Inc. Parsimonious continuous-space phrase representations for natural language processing
KR102269035B1 (en) 2015-04-21 2021-06-24 삼성전자주식회사 Server and method for controlling a group action
WO2016175354A1 (en) 2015-04-29 2016-11-03 주식회사 아카인텔리전스 Artificial intelligence conversation device and method
GB2537903B (en) 2015-04-30 2019-09-04 Toshiba Res Europe Limited Device and method for a spoken dialogue system
US9953063B2 (en) 2015-05-02 2018-04-24 Lithium Technologies, Llc System and method of providing a content discovery platform for optimizing social network engagements
US20160328205A1 (en) 2015-05-05 2016-11-10 Motorola Mobility Llc Method and Apparatus for Voice Operation of Mobile Applications Having Unnamed View Elements
US9892363B2 (en) 2015-05-07 2018-02-13 Truemotion, Inc. Methods and systems for sensor-based driving data collection
US9953648B2 (en) 2015-05-11 2018-04-24 Samsung Electronics Co., Ltd. Electronic device and method for controlling the same
US20160337299A1 (en) 2015-05-13 2016-11-17 Google Inc. Prioritized notification display
US9906482B2 (en) 2015-05-13 2018-02-27 The Travelers Indemnity Company Predictive electronic message management systems and controllers
EP3300074B1 (en) 2015-05-19 2019-08-21 Sony Corporation Information processing apparatus
US10061848B2 (en) 2015-05-22 2018-08-28 Microsoft Technology Licensing, Llc Ontology-crowd-relevance deep response generation
WO2016191653A1 (en) 2015-05-27 2016-12-01 Orion Labs Intelligent agent features for wearable personal communication nodes
US10083688B2 (en) 2015-05-27 2018-09-25 Apple Inc. Device voice control for selecting a displayed affordance
US10200824B2 (en) 2015-05-27 2019-02-05 Apple Inc. Systems and methods for proactively identifying and surfacing relevant content on a touch-sensitive device
US10127220B2 (en) 2015-06-04 2018-11-13 Apple Inc. Language identification from short strings
US10101822B2 (en) 2015-06-05 2018-10-16 Apple Inc. Language input correction
US10505884B2 (en) 2015-06-05 2019-12-10 Microsoft Technology Licensing, Llc Entity classification and/or relationship identification
US9578173B2 (en) 2015-06-05 2017-02-21 Apple Inc. Virtual assistant aided communication with 3rd party service in a communication session
US9865265B2 (en) 2015-06-06 2018-01-09 Apple Inc. Multi-microphone speech recognition systems and related techniques
US20160357861A1 (en) 2015-06-07 2016-12-08 Apple Inc. Natural language event detection
US10186254B2 (en) 2015-06-07 2019-01-22 Apple Inc. Context-based endpoint detection
US10255907B2 (en) 2015-06-07 2019-04-09 Apple Inc. Automatic accent detection using acoustic models
US11025565B2 (en) 2015-06-07 2021-06-01 Apple Inc. Personalized prediction of responses for instant messaging
US20160371250A1 (en) 2015-06-16 2016-12-22 Microsoft Technology Licensing, Llc Text suggestion using a predictive grammar model
US9767386B2 (en) 2015-06-23 2017-09-19 Adobe Systems Incorporated Training a classifier algorithm used for automatically generating tags to be applied to images
CN104951077A (en) 2015-06-24 2015-09-30 百度在线网络技术(北京)有限公司 Man-machine interaction method and device based on artificial intelligence and terminal equipment
US10325590B2 (en) 2015-06-26 2019-06-18 Intel Corporation Language model modification for local speech recognition systems using remote sources
US10019992B2 (en) 2015-06-29 2018-07-10 Disney Enterprises, Inc. Speech-controlled actions based on keywords and context thereof
US20160378747A1 (en) 2015-06-29 2016-12-29 Apple Inc. Virtual assistant for media playback
US20160379641A1 (en) 2015-06-29 2016-12-29 Microsoft Technology Licensing, Llc Auto-Generation of Notes and Tasks From Passive Recording
KR102371188B1 (en) 2015-06-30 2022-03-04 삼성전자주식회사 Apparatus and method for speech recognition, and electronic device
US9536527B1 (en) 2015-06-30 2017-01-03 Amazon Technologies, Inc. Reporting operational metrics in speech-based systems
US20170011303A1 (en) 2015-07-09 2017-01-12 Qualcomm Incorporated Contact-Based Predictive Response
US10249297B2 (en) 2015-07-13 2019-04-02 Microsoft Technology Licensing, Llc Propagating conversational alternatives using delayed hypothesis binding
US10426037B2 (en) 2015-07-15 2019-09-24 International Business Machines Corporation Circuitized structure with 3-dimensional configuration
US10311384B2 (en) 2015-07-29 2019-06-04 Microsoft Technology Licensing, Llc Automatic creation and maintenance of a taskline
US9691361B2 (en) 2015-08-03 2017-06-27 International Business Machines Corporation Adjusting presentation of content on a display
JP5906345B1 (en) 2015-08-05 2016-04-20 株式会社Cygames Program, electronic device, system and control method for predicting touch target based on operation history
US10362978B2 (en) 2015-08-28 2019-07-30 Comcast Cable Communications, Llc Computational model for mood
US10747498B2 (en) 2015-09-08 2020-08-18 Apple Inc. Zero latency digital assistant
US10740384B2 (en) 2015-09-08 2020-08-11 Apple Inc. Intelligent automated assistant for media search and playback
US10671428B2 (en) 2015-09-08 2020-06-02 Apple Inc. Distributed personal assistant
US10331312B2 (en) 2015-09-08 2019-06-25 Apple Inc. Intelligent automated assistant in a media environment
US10026399B2 (en) 2015-09-11 2018-07-17 Amazon Technologies, Inc. Arbitration between voice-enabled devices
US9665567B2 (en) 2015-09-21 2017-05-30 International Business Machines Corporation Suggesting emoji characters based on current contextual emotional state of user
US9875081B2 (en) 2015-09-21 2018-01-23 Amazon Technologies, Inc. Device selection for providing a response
US11010550B2 (en) 2015-09-29 2021-05-18 Apple Inc. Unified language modeling framework for word prediction, auto-completion and auto-correction
US11587559B2 (en) 2015-09-30 2023-02-21 Apple Inc. Intelligent device identification
US20170092278A1 (en) 2015-09-30 2017-03-30 Apple Inc. Speaker recognition
US10891106B2 (en) 2015-10-13 2021-01-12 Google Llc Automatic batch voice commands
US10083685B2 (en) 2015-10-13 2018-09-25 GM Global Technology Operations LLC Dynamically adding or removing functionality to speech recognition systems
US10146874B2 (en) 2015-10-28 2018-12-04 Fujitsu Limited Refining topic representations
US20170125016A1 (en) 2015-11-02 2017-05-04 Le Holdings (Beijing) Co., Ltd. Method and electronic device for processing voice messages
US9691378B1 (en) 2015-11-05 2017-06-27 Amazon Technologies, Inc. Methods and devices for selectively ignoring captured audio data
US10956666B2 (en) 2015-11-09 2021-03-23 Apple Inc. Unconventional virtual assistant interactions
KR102432620B1 (en) 2015-11-12 2022-08-16 삼성전자주식회사 Electronic device and method for performing action according to proximity of external object
KR102450853B1 (en) 2015-11-30 2022-10-04 삼성전자주식회사 Apparatus and method for speech recognition
US10546015B2 (en) 2015-12-01 2020-01-28 Facebook, Inc. Determining and utilizing contextual meaning of digital standardized image characters
US9990921B2 (en) 2015-12-09 2018-06-05 Lenovo (Singapore) Pte. Ltd. User focus activated voice recognition
US10796693B2 (en) 2015-12-09 2020-10-06 Lenovo (Singapore) Pte. Ltd. Modifying input based on determined characteristics
US10223066B2 (en) 2015-12-23 2019-03-05 Apple Inc. Proactive assistance based on dialog communication between devices
CN108701125A (en) 2015-12-29 2018-10-23 Mz知识产权控股有限责任公司 System and method for suggesting emoticon
US20170193083A1 (en) 2016-01-06 2017-07-06 International Business Machines Corporation Identifying message content related to an event utilizing natural language processing and performing an action pertaining to the event
US9792534B2 (en) 2016-01-13 2017-10-17 Adobe Systems Incorporated Semantic natural language vector space
US9747289B2 (en) 2016-01-13 2017-08-29 Disney Enterprises, Inc. System and method for proximity-based personalized content recommendations
US9922647B2 (en) 2016-01-29 2018-03-20 International Business Machines Corporation Approach to reducing the response time of a speech interface
US10055489B2 (en) 2016-02-08 2018-08-21 Ebay Inc. System and method for content-based media analysis
US10097919B2 (en) 2016-02-22 2018-10-09 Sonos, Inc. Music service selection
US9922648B2 (en) * 2016-03-01 2018-03-20 Google Llc Developer voice actions system
DK201670539A1 (en) 2016-03-14 2017-10-02 Apple Inc Dictation that allows editing
US10446143B2 (en) 2016-03-14 2019-10-15 Apple Inc. Identification of voice inputs providing credentials
US10304444B2 (en) 2016-03-23 2019-05-28 Amazon Technologies, Inc. Fine-grained natural language understanding
US20170286397A1 (en) 2016-03-30 2017-10-05 International Business Machines Corporation Predictive Embeddings
US10431205B2 (en) 2016-04-27 2019-10-01 Conduent Business Services, Llc Dialog device with dialog support generated using a mixture of language models combined using a recurrent neural network
RU2632144C1 (en) 2016-05-12 2017-10-02 Общество С Ограниченной Ответственностью "Яндекс" Computer method for creating content recommendation interface
KR20170128820A (en) 2016-05-16 2017-11-24 엘지전자 주식회사 Mobile terminal and method for controlling the same
US9934775B2 (en) 2016-05-26 2018-04-03 Apple Inc. Unit-selection text-to-speech synthesis based on predicted concatenation parameters
US9972304B2 (en) 2016-06-03 2018-05-15 Apple Inc. Privacy preserving distributed evaluation framework for embedded personalized systems
US10249300B2 (en) 2016-06-06 2019-04-02 Apple Inc. Intelligent list reading
CN107480161A (en) 2016-06-08 2017-12-15 苹果公司 The intelligent automation assistant probed into for media
US10049663B2 (en) 2016-06-08 2018-08-14 Apple, Inc. Intelligent automated assistant for media exploration
DK179588B1 (en) 2016-06-09 2019-02-22 Apple Inc. Intelligent automated assistant in a home environment
US10586535B2 (en) 2016-06-10 2020-03-10 Apple Inc. Intelligent digital assistant in a multi-tasking environment
US10592601B2 (en) 2016-06-10 2020-03-17 Apple Inc. Multilingual word prediction
US10067938B2 (en) 2016-06-10 2018-09-04 Apple Inc. Multilingual word prediction
US10192552B2 (en) 2016-06-10 2019-01-29 Apple Inc. Digital assistant providing whispered speech
US10490187B2 (en) 2016-06-10 2019-11-26 Apple Inc. Digital assistant providing automated status report
US10509862B2 (en) 2016-06-10 2019-12-17 Apple Inc. Dynamic phrase expansion of language input
DK179343B1 (en) 2016-06-11 2018-05-14 Apple Inc Intelligent task discovery
DK201670540A1 (en) 2016-06-11 2018-01-08 Apple Inc Application integration with a digital assistant
DK179049B1 (en) 2016-06-11 2017-09-18 Apple Inc Data driven natural language event detection and classification
DK179415B1 (en) 2016-06-11 2018-06-14 Apple Inc Intelligent device arbitration and control
US9990176B1 (en) 2016-06-28 2018-06-05 Amazon Technologies, Inc. Latency reduction for content playback
US10491598B2 (en) 2016-06-30 2019-11-26 Amazon Technologies, Inc. Multi-factor authentication to access services
US10326869B2 (en) 2016-08-19 2019-06-18 Amazon Technologies, Inc. Enabling voice control of telephone device
US20180060312A1 (en) 2016-08-23 2018-03-01 Microsoft Technology Licensing, Llc Providing ideogram translation
US10432749B2 (en) * 2016-08-24 2019-10-01 Facebook, Inc. Application bookmarks and recommendations
US10313779B2 (en) 2016-08-26 2019-06-04 Bragi GmbH Voice assistant system for wireless earpieces
CN107809372A (en) 2016-09-08 2018-03-16 阿里巴巴集团控股有限公司 The generation method of activity reminder message, movable based reminding method and device
US10043516B2 (en) 2016-09-23 2018-08-07 Apple Inc. Intelligent automated assistant
CN106484139B (en) 2016-10-19 2019-01-29 北京新美互通科技有限公司 Emoticon recommended method and device
US10515632B2 (en) 2016-11-15 2019-12-24 At&T Intellectual Property I, L.P. Asynchronous virtual assistant
US10170110B2 (en) 2016-11-17 2019-01-01 Robert Bosch Gmbh System and method for ranking of hybrid speech recognition results with neural networks
US10332523B2 (en) 2016-11-18 2019-06-25 Google Llc Virtual assistant identification of nearby computing devices
KR20180060328A (en) 2016-11-28 2018-06-07 삼성전자주식회사 Electronic apparatus for processing multi-modal input, method for processing multi-modal input and sever for processing multi-modal input
US9934785B1 (en) 2016-11-30 2018-04-03 Spotify Ab Identification of taste attributes from an audio signal
US20180158548A1 (en) * 2016-12-07 2018-06-07 B9 Systems, LLC Data processing systems for scheduling work shifts, such as physician work shifts
US11237696B2 (en) * 2016-12-19 2022-02-01 Google Llc Smart assist for repeated actions
US9747083B1 (en) 2017-01-23 2017-08-29 Essential Products, Inc. Home device application programming interface
DE102017203570A1 (en) 2017-03-06 2018-09-06 Volkswagen Aktiengesellschaft METHOD AND DEVICE FOR PRESENTING RECOMMENDED OPERATING OPERATIONS OF A PROPOSING SYSTEM AND INTERACTION WITH THE PROPOSING SYSTEM
US20180268106A1 (en) * 2017-03-17 2018-09-20 Orbit Healthcare, Inc. System and method for connecting patients, medical service providers, and medical insurance providers
US11361266B2 (en) * 2017-03-20 2022-06-14 Microsoft Technology Licensing, Llc User objective assistance technologies
US10547729B2 (en) * 2017-03-27 2020-01-28 Samsung Electronics Co., Ltd. Electronic device and method of executing function of electronic device
US11048995B2 (en) 2017-05-16 2021-06-29 Google Llc Delayed responses by computational assistant
US20180336892A1 (en) * 2017-05-16 2018-11-22 Apple Inc. Detecting a trigger of a digital assistant
US10990930B2 (en) * 2017-06-19 2021-04-27 International Business Machines Corporation Autonomous event generator
US9967381B1 (en) 2017-11-03 2018-05-08 Republic Wireless, Inc. Virtual telephony assistant
CN107919123B (en) 2017-12-07 2022-06-03 北京小米移动软件有限公司 Multi-voice assistant control method, device and computer readable storage medium
US11145298B2 (en) 2018-02-13 2021-10-12 Roku, Inc. Trigger word detection with multiple digital assistants
US11076039B2 (en) 2018-06-03 2021-07-27 Apple Inc. Accelerated task performance

Also Published As

Publication number Publication date
US11076039B2 (en) 2021-07-27
US10496705B1 (en) 2019-12-03
US20190373102A1 (en) 2019-12-05
US10944859B2 (en) 2021-03-09
US20190371316A1 (en) 2019-12-05
US10504518B1 (en) 2019-12-10
US20190371317A1 (en) 2019-12-05
US20190370292A1 (en) 2019-12-05
US20210152684A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US20230388409A1 (en) Accelerated task performance
AU2019100576A4 (en) Accelerated task performance
AU2021203518B2 (en) User activity shortcut suggestions
US11675491B2 (en) User configurable task triggers
US11638059B2 (en) Content playback on multiple devices
US20220374727A1 (en) Intelligent device selection using historical interactions
EP3885938B1 (en) Accelerated task performance
EP3745242A1 (en) User activity shortcut suggestions

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION