US20230147162A1 - Robot cleaner - Google Patents

Robot cleaner Download PDF

Info

Publication number
US20230147162A1
US20230147162A1 US17/918,493 US202017918493A US2023147162A1 US 20230147162 A1 US20230147162 A1 US 20230147162A1 US 202017918493 A US202017918493 A US 202017918493A US 2023147162 A1 US2023147162 A1 US 2023147162A1
Authority
US
United States
Prior art keywords
force transmitter
side brush
force
robot cleaner
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/918,493
Other languages
English (en)
Inventor
Hwang Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, HWANG
Publication of US20230147162A1 publication Critical patent/US20230147162A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0427Gearing or transmission means therefor
    • A47L9/0444Gearing or transmission means therefor for conveying motion by endless flexible members, e.g. belts
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0427Gearing or transmission means therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0405Driving means for the brushes or agitators
    • A47L9/0411Driving means for the brushes or agitators driven by electric motor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0427Gearing or transmission means therefor
    • A47L9/0433Toothed gearings
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0461Dust-loosening tools, e.g. agitators, brushes
    • A47L9/0466Rotating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0461Dust-loosening tools, e.g. agitators, brushes
    • A47L9/0466Rotating tools
    • A47L9/0477Rolls
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0461Dust-loosening tools, e.g. agitators, brushes
    • A47L9/0488Combinations or arrangements of several tools, e.g. edge cleaning tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2847Surface treating elements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation

Definitions

  • the present disclosure relates to a robot cleaner, and more particularly, to a robot cleaner that does not cause damage to an obstacle or a side brush even when the obstacle is caught on the side brush during travel.
  • a vacuum cleaner is an appliance that sucks air containing a foreign substance from outside by driving an air suction apparatus, which is disposed inside a cleaner main body to generate an air suction force, and separates and collects the foreign substance.
  • the vacuum cleaner performing the above function is classified into a manual vacuum cleaner that is directly manipulated by a user and a robot cleaner that performs cleaning by itself without the user manipulation.
  • a robot cleaner sucks various foreign substances lying on a face to be cleaned while autonomously travelling on the face-to-be cleaned.
  • Korean Patent Application Publication No. 10-2006-0111788 discloses a technology in which a robot cleaner includes a side brush to clean various faces of a floor during cleaning.
  • the obstacle when the side brush hits an obstacle, the obstacle may move closer to a suction portion and may be sucked into the cleaner.
  • the side brush when the obstacle does not move when the side brush hits the obstacle, the side brush may be caught by the obstacle and may be damaged, or a strong rotation force may be transmitted to the obstacle and the obstacle may be damaged.
  • the obstacle corresponds to an electric wire
  • the electric wire may be cut and a phenomenon such as an electric leakage and the like may occur.
  • the present disclosure is to solve the problem as described above.
  • the present disclosure is to provide a robot cleaner with improved stability during travel.
  • the present disclosure is to provide a robot cleaner in which a rotation of a side brush changes when an obstacle is caught on the side brush, thereby preventing damage of the obstacle or the side brush.
  • the present disclosure includes a main body including a suction portion disposed thereon, main wheels for moving the main body, and a side brush assembly disposed on the main body and rotating with a rotation shaft perpendicular to a rotation shaft of the main wheels, wherein the rotation of the side brush assembly may change based on whether an obstacle is hit.
  • two transmitters are connected to each other by a belt, so that operation of a side brush assembly may be maintained in a situation in which a change in a rotational force occurs between the two transmitters when the side brush assembly hits an obstacle.
  • a configuration of connecting the two transmitters with each other by the belt having a constant vertical dimension such that the rotational force may be transmitted between the two transmitters again when the side brush assembly returns to a situation of not hitting the obstacle.
  • the present disclosure provides a robot cleaner including a main body including a suction portion disposed thereon, main wheels for moving the main body, and a side brush assembly disposed on the main body and rotating with a rotation shaft perpendicular to a rotation shaft of the main wheels, wherein the side brush assembly includes a housing for forming an exterior of the side brush assembly, a first force transmitter disposed in the housing and rotating by receiving a driving force, a belt connected to the first force transmitter, a second force transmitter connected to the first force transmitter by the belt to receive a rotational force of the first force transmitter, and a side brush coupled to the second force transmitter.
  • the present disclosure discloses a structure in which, when slip occurs between the belt and one of the first force transmitter and the second force transmitter, a rotation angular speed of the first force transmitter and a rotation angular speed of the second force transmitter may become different from each other.
  • the present disclosure discloses a technology capable of providing the rotational force to both the side brush and agitator using one motor assembly. Different rotational speeds may be transmitted to the side brush and the agitator depending on respective coupling schemes and gear ratios.
  • the second force transmitter includes a pulley to which the belt is coupled, and a rotation shaft to be coupled to a rotation center of the pulley.
  • the side brush is rotated at the same rotational angular speed with the rotation shaft.
  • a rotational speed is changed, but a rotational force is constantly transmitted from the motor assembly to the first force transmitter.
  • a rotation of the second force transmitter may change based on circumstances of the second force transmitter. In one example, when a factor that changes the rotation of the second force transmitter is removed after the rotation of the second force transmitter is changed, the rotational force of the first force transmitter is stably transmitted to the second force transmitter again by the belt.
  • the rotational force of the side brush may be changed such that the side brush no longer hits the obstacle.
  • FIG. 1 is a view illustrating a bottom face of a robot cleaner according to the present disclosure.
  • FIG. 2 is a view illustrating main components according to an embodiment.
  • FIG. 3 is a view illustrating an exploded perspective view in FIG. 2 .
  • FIG. 4 is a view illustrating a cross-section of some of main components in FIG. 2 .
  • FIG. 5 is a view illustrating an operation of a side brush assembly.
  • FIG. 1 is a view illustrating a bottom face of a robot cleaner according to the present disclosure. Hereinafter, a description will be achieved with reference to FIG. 1 .
  • the present disclosure includes a main body 10 for forming an exterior, main wheels 40 arranged on the main body 10 and rotating such that the main body 10 may be moved back and forth or may turn, and a front auxiliary wheel 20 for supporting one side of the main body 10 and assisting the turning of the main body 10 by the main wheels 40 .
  • the main wheels 40 are arranged on left and right sides of the main body 10 independently of each other.
  • the main wheels 40 on the left and right sides may be driven independently of each other.
  • the main body 10 includes a suction portion 14 for sucking a foreign substance and the like.
  • the suction portion 14 may include an agitator 60 disposed on the main body 10 and being brought into contact with a floor face on which cleaning is performed while rotating, a suction hole defined in the main body 10 and capable of sucking the external foreign substance by a suction force generated inside the main body 10 , and the like.
  • a rear auxiliary wheel 30 may be disposed rearward of the main wheels 40 to support the other side of the main body 10 .
  • the front auxiliary wheel 20 and the rear auxiliary wheel 30 are arranged to be freely rotatable in a horizontal direction with respect to the main body 10 .
  • the front auxiliary wheel 20 and the rear auxiliary wheel 30 are arranged to have a fixed height with respect to the main body 10 .
  • the main wheels 40 are not rotatable in the horizontal direction with respect to the main body 10 , the main wheels 40 are composed of two wheels on both sides and the wheels on the both sides rotate at different rotational speeds or in different directions, so that the main body 10 may turn left or right.
  • the main wheels 40 have a height varying with respect to the main body 10 .
  • the main wheels 40 may be moved to a desired location or rotated in a desired direction by a rotational force of the wheel in a state in which a rotation shaft is disposed substantially parallel to the floor face or a face to be cleaned where the robot cleaner is moved.
  • a side brush assembly 100 is disposed on one side of the main body 10 .
  • the side brush assembly 100 as a brush rotates, the brush moves an obstacle located away from a bottom of the main body 10 or an obstacle in contact with a wall to be sucked into the suction portion 14 .
  • the side brush assembly 100 may be driven together with the suction portion 14 when the robot cleaner is driven.
  • the side brush assembly 100 as a driving force for rotating the brush, a suction force generated in the suction portion 14 or a driving force for rotating the main wheels 40 may be used.
  • the side brush assembly 100 may include a separate motor to generate a separate rotational force.
  • FIG. 2 is a view illustrating main components according to an embodiment.
  • FIG. 2 a motor assembly 200 , a gear box 300 , and a side brush assembly 100 are represented together.
  • the motor assembly 200 has a motor therein, so that a rotational force by the motor may be generated.
  • the motor assembly 200 is coupled to the gear box 300 , so that the rotational force generated by the motor assembly 200 is transmitted to the gear box 300 .
  • the gear box 300 is coupled to the side brush assembly 100 , so that the rotational force of the motor assembly 200 is transmitted to the side brush assembly 100 through the gear box 300 .
  • the side brush assembly 100 includes a housing that forms an exterior of the side brush assembly 100 , a first force transmitter 130 disposed on the housing and rotating by receiving a driving force, a belt 150 connected to the first force transmitter 130 , a second force transmitter 170 connected to the first force transmitter 130 by the belt 150 to receive a rotational force of the first force transmitter, and a side brush 190 coupled to the second force transmitter 170 .
  • the rotational force transmitted to the side brush assembly 100 is transferred to the side brush 190 through the first force transmitter 130 , the belt 150 , and the second force transmitter 170 .
  • FIG. 3 is a view illustrating an exploded perspective view in FIG. 2
  • FIG. 4 is a view illustrating a cross-section of some of main components in FIG. 2 .
  • the housing forming the exterior of the side brush assembly 100 includes an upper housing 112 disposed on an upper side and a lower housing 114 coupled to a lower side of the upper housing 112 .
  • a space may be defined inside by the upper housing 112 and the lower housing 114 , and a plurality of components may be arranged in the space.
  • the first force transmitter 130 is rotatably coupled to the upper housing 112 and the lower housing 114 .
  • the first force transmitter 130 has a first coupling groove 134 defined therein to which the belt 150 is coupled.
  • First coupling ribs 136 for preventing the belt 150 from being removed from the first coupling groove 134 are respectively arranged on a top face and a bottom face of the first coupling groove 134 .
  • the first coupling ribs 136 may be arranged to protrude from a portion where the first coupling groove 134 is recessed to respectively surround upper and lower ends of the belt 150 . Therefore, even when the belt 150 momentarily slips, the belt 150 may be prevented from leaving the first coupling groove 134 .
  • the first coupling ribs 136 are entirely arranged along a circumference of the first coupling groove 134 .
  • the second force transmitter 170 is rotatably coupled to the upper housing 112 and the lower housing 114 .
  • the second force transmitter 170 has a second coupling groove 174 defined therein to which the belt 150 is coupled.
  • Second coupling ribs 176 are respectively arranged on a top face and a bottom face of the second coupling groove 174 to prevent the belt 150 from being removed from the second coupling groove 174 .
  • the second coupling rib 176 may be arranged to protrude from a portion where the second coupling groove 174 is recessed to respectively surround the upper and lower ends of the belt 150 . Therefore, even when the belt 150 momentarily slips, the belt 150 may be prevented from leaving the second coupling groove 174 .
  • the first coupling ribs 136 are entirely arranged along a circumference of the second coupling groove 174 .
  • the belt 150 may be an endless belt.
  • the endless belt may have a constant vertical dimension.
  • the endless belt may have an O-shaped section constantly.
  • Each of the first coupling groove 134 and the second coupling groove 174 may have a circular shape in which a central portion thereof is more recessed than an outer portion thereof so as to be coupled to the circular cross-section of the belt 150 .
  • the coupling groove may be defined such that recessed depths of the central portion and the outer portion thereof are the same.
  • Each of the first coupling groove 134 and the second coupling groove 174 has a shape in which a groove is not defined in the middle and has a shape of being recessed along the circumference that is kept constant. That is, the first coupling groove 134 and the second coupling groove 174 are defined to maintain a smooth shape without intermittently protruding portions. Therefore, even when the slip occurs on the belt 150 and locations at which the belt 150 is coupled to the first coupling groove 134 and the second coupling groove 174 are changed, a state in which the belt 150 is coupled to the first coupling groove 134 and the second coupling groove 174 may be maintained.
  • the second force transmitter 170 includes a pulley 172 to which the belt 150 is coupled, and a rotation shaft 180 coupled to a rotation center of the pulley 172 .
  • the second coupling groove 174 and the second coupling rib 176 are respectively defined in and formed on the pulley 172 .
  • the rotation shaft 180 is coupled to a central portion of the pulley 172 , so that when the pulley 172 is rotated, the rotation shaft 180 is rotated together.
  • the rotation shaft 180 is formed such that upper and lower sides thereof have a polygonal shape rather than a circular shape. Therefore, because a central through-hole of the pulley 172 is coupled to the upper side of the rotation shaft 180 , the pulley 172 is rotated with the same rotational angular speed as the rotation shaft 180 .
  • the central through-hole of the pulley 172 is defined to have the same polygonal shape as the polygonal shape formed at the upper side of the rotation shaft 180 , so that the pulley 172 may be coupled to the rotation shaft 180 so as not to be idle.
  • the side brush 190 is coupled to the lower side of the rotation shaft 180 .
  • a through-hole is also defined in a center of the side brush 190 and is coupled to a polygonal portion formed at the lower side of the rotation shaft 180 .
  • the through-hole defined in the side brush 190 is also defined in the same polygonal shape as the rotation shaft 180 , so that the side brush 190 and the rotation shaft 180 may be rotated at the same rotational angular speed without idling.
  • the side brush 190 includes a plurality of brushes 194 .
  • the brushes 194 may be distributed to be spaced apart from each other and hit a floor portion where the robot cleaner is moving.
  • the brush 194 is made of a material that may be deformed when a force is applied from the outside. Specifically, because the brush 194 is made of a rubber material, so that a deformation of the brush 194 , such as bending, may occur when the brush 194 hits an obstacle made of a relatively strong material. In addition, when the brush 194 does not hit the obstacle by moving away from the obstacle, the brush 194 may be restored into an original shape, that is, a straight extended shape.
  • the side brush assembly 100 includes a reduction gear 116 for reducing a speed of the rotational force transmitted from the gear box 300 .
  • the rotational force transmitted to the reduction gear 116 is transmitted to the first force transmitter 130 through another gear 117 .
  • the rotational force transmitted from the gear box 300 is transmitted to the first force transmitter 130 through the plurality of gears. Therefore, when a gear of the gear box 300 is rotated, the first force transmitter 130 is always rotated. However, a rotation speed and the like may be changed by a gear ratio.
  • the motor assembly 200 includes a motor that is rotated by receiving current from the battery. As the motor is rotated, the motor assembly 200 may generate he rotational force.
  • the gear box 300 is disposed to engage a rotation shaft of the motor disposed in the motor assembly 200 .
  • the gear box 300 includes a first cover 304 that forms an exterior of the gear box 300 and a second cover 306 coupled to the first cover 304 .
  • a space is defined therebetween, and a plurality of gears 310 and 320 are arranged to be engaged with each other in the corresponding space.
  • the plurality of gears 310 and 320 are rotated based on the rotational force supplied from the motor assembly 200 .
  • the gear 310 disposed at one end of the gear box 300 may be coupled to and rotated together with the rotation shaft of the motor disposed in the motor assembly 200 .
  • a center of the gear 320 disposed at the other end of the gear box 300 is coupled to the reduction gear 116 , so that, as the gear 320 is rotated, the reduction gear 116 may be rotated together.
  • the gear 320 may transmit the rotational force to a rotation shaft of the agitator. Therefore, when the gear 320 is rotated, the rotational force may be simultaneously transmitted to the side brush assembly 100 and the agitator 60 .
  • FIG. 5 is a view illustrating an operation of a side brush assembly.
  • the rotational force generated in the motor assembly 200 may be transmitted to both the side brush assembly 100 and the agitator 60 . Because the gear box 300 is disposed between the side brush assembly 100 and the agitator 60 , the rotational force of the motor assembly 200 may be simultaneously transmitted to the side brush assembly 100 and the agitator 60 .
  • the agitator 60 is disposed in a horizontal direction in FIG. 5 , and the rotation shaft of the agitator 60 is parallel to the direction in which the agitator 60 is disposed.
  • the rotation shaft of the side brush assembly 100 is in a normal direction of FIG. 5 , the rotation shaft for rotating the agitator 60 and the rotation shaft of the side brush assembly 100 are arranged perpendicular to each other.
  • the rotation shaft of the agitator 60 and the rotation shaft of the motor assembly 200 may be arranged parallel to each other. All of the plurality of gears arranged in the gear box 300 may be rotated with rotation shafts in a direction parallel to the direction of the rotation shaft of the agitator 60 .
  • the side brush assembly 100 may also be disposed on a left side of the agitator 60 , so that the rotational force generated by one motor assembly 200 may be transmitted to the two side brush assemblies 100 . Because the agitator 60 is elongated in the main body 10 , the agitator 60 may perform a function of transmitting the rotational force to the side brush assembly positioned on the opposite side.
  • the rotational force generated by the motor assembly 200 is transmitted to the agitator 60 and the side brush assembly 100 through the gear box 300 .
  • a rotation speed may be transmitted differently.
  • a rotation direction is vertically changed through the reduction gear 116 and the rotation speed may be reduced.
  • the gear 117 coupled with the reduction gear 116 is gear-coupled to the first force transmitter 130 . Therefore, when the reduction gear 116 is rotated, the first force transmitter 130 must be rotated together, and when the rotation of the reduction gear 116 is stopped, the rotation of the first force transmitter 130 must also be stopped.
  • the side brush 190 when the first force transmitter 130 is rotated, as the second force transmitter 170 coupled to the belt 150 is also rotated, the side brush 190 is also rotated to hit the floor or a side face. In this connection, when a relatively large object such as an electric wire is caught on the brush 194 , the brush 194 may be deformed. In addition, a situation in which the rotation of the side brush 190 is slowed or stopped may occur.
  • the slip may occur between the belt 150 and the second force transmitter 170 , so that the rotation of the first force transmitter 130 may be continued.
  • the side brush 190 should be rotated constantly even when the side brush 190 hits any obstacle.
  • damage may occur to the robot cleaner as well as the side brush 190 . Therefore, in the present embodiment, because a situation in which, even though the rotational force is continuously transmitted from the first force transmitter 130 , the second force transmitter 170 does not rotate constantly based on the rotational force of the first force transmitter 130 may occur, the side brush may be prevented from being damaged.
  • a rotation angular speed of the first force transmitter and a rotation angular speed of the second force transmitter may be different when the slip occurs between the belt 150 and the first force transmitter 130 or the second force transmitter 170 .
  • the brush 194 when the brush 194 is out of a moment of hitting the obstacle, the brush 194 may rotate by the rotational force transmitted from the first force transmitter 130 again by the rotational force by the belt 150 .
US17/918,493 2020-04-17 2020-08-27 Robot cleaner Pending US20230147162A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020200046419A KR20210128601A (ko) 2020-04-17 2020-04-17 로봇 청소기
KR10-2020-0046419 2020-04-17
PCT/KR2020/011441 WO2021210732A1 (en) 2020-04-17 2020-08-27 Robot cleaner

Publications (1)

Publication Number Publication Date
US20230147162A1 true US20230147162A1 (en) 2023-05-11

Family

ID=78085170

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/918,493 Pending US20230147162A1 (en) 2020-04-17 2020-08-27 Robot cleaner

Country Status (4)

Country Link
US (1) US20230147162A1 (ko)
KR (1) KR20210128601A (ko)
TW (1) TWI786436B (ko)
WO (1) WO2021210732A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220175204A1 (en) * 2020-03-30 2022-06-09 Bissell Inc. Edge cleaning brushes for floor cleaner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM435906U (ko) * 2012-04-06 2012-08-21 Uni Ring Tech Co Ltd
KR102022104B1 (ko) * 2012-10-18 2019-09-18 엘지전자 주식회사 자동 청소기
KR101469333B1 (ko) * 2012-12-26 2014-12-04 엘지전자 주식회사 자동 청소기
KR102137524B1 (ko) * 2014-02-13 2020-07-24 삼성전자주식회사 로봇청소기
JP6877089B2 (ja) * 2016-02-17 2021-05-26 日立グローバルライフソリューションズ株式会社 電気掃除機
KR102021828B1 (ko) * 2017-08-07 2019-09-17 엘지전자 주식회사 청소기
TWM560281U (zh) * 2018-01-12 2018-05-21 Uni Ring Tech Co Ltd 清潔裝置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220175204A1 (en) * 2020-03-30 2022-06-09 Bissell Inc. Edge cleaning brushes for floor cleaner

Also Published As

Publication number Publication date
WO2021210732A1 (en) 2021-10-21
TWI786436B (zh) 2022-12-11
TW202139911A (zh) 2021-11-01
KR20210128601A (ko) 2021-10-27

Similar Documents

Publication Publication Date Title
EP2417892B1 (en) Robot cleaner
US4654927A (en) Side sweeping brushing vacuum machine
CN216876181U (zh) 清洁头及表面清洁装置
US20230147162A1 (en) Robot cleaner
KR101618130B1 (ko) 로봇 청소기
CN114376472B (zh) 清洁基部及表面清洁设备
KR200312080Y1 (ko) 걸레청소기
US20210161346A1 (en) Robot cleaner
JPH1133510A (ja) アップライト型掃除機
KR20020081512A (ko) 로봇청소기의 구동장치
CN216907847U (zh) 清洁基部及表面清洁设备
KR101961092B1 (ko) 로봇 청소기
KR20010081426A (ko) 진공청소기의 걸레 부착용 흡입구체
AU2019449365B2 (en) Vacuum cleaner head and electric vacuum cleaner
JP3214030B2 (ja) 電気掃除機の吸込具
KR200347628Y1 (ko) 진공청소기
JPH01242023A (ja) 電気掃除機の吸込口体
KR200148057Y1 (ko) 진공청소기
JPH063258U (ja) 掃除機のノズル装置
US20220386833A1 (en) Robot cleaner
KR20150129426A (ko) 로봇청소기
JPH0739489A (ja) 電気掃除機の吸込口体
JP3214020B2 (ja) 電気掃除機の吸込具
CN116687293A (zh) 地刷组件、表面清洁设备及地刷组件的清理方法
JPH01285233A (ja) 電気掃除機の吸込口体

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, HWANG;REEL/FRAME:061411/0446

Effective date: 20220930

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION