US20210107803A1 - Iron oxide pigments containing al - Google Patents
Iron oxide pigments containing al Download PDFInfo
- Publication number
- US20210107803A1 US20210107803A1 US16/498,511 US201816498511A US2021107803A1 US 20210107803 A1 US20210107803 A1 US 20210107803A1 US 201816498511 A US201816498511 A US 201816498511A US 2021107803 A1 US2021107803 A1 US 2021107803A1
- Authority
- US
- United States
- Prior art keywords
- iron
- aluminium
- ions
- pigments
- sulfate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000001034 iron oxide pigment Substances 0.000 title claims abstract description 23
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 30
- 239000004411 aluminium Substances 0.000 claims abstract description 26
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229920000180 alkyd Polymers 0.000 claims abstract description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 89
- 239000000049 pigment Substances 0.000 claims description 67
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 54
- 229910052742 iron Inorganic materials 0.000 claims description 37
- 239000000243 solution Substances 0.000 claims description 37
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 32
- 230000003647 oxidation Effects 0.000 claims description 32
- 238000007254 oxidation reaction Methods 0.000 claims description 32
- 238000001354 calcination Methods 0.000 claims description 30
- 150000002500 ions Chemical class 0.000 claims description 25
- -1 polyethylene Polymers 0.000 claims description 25
- 239000007864 aqueous solution Substances 0.000 claims description 24
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 17
- 238000001556 precipitation Methods 0.000 claims description 17
- 239000004698 Polyethylene Substances 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 12
- 150000001399 aluminium compounds Chemical class 0.000 claims description 11
- 239000006072 paste Substances 0.000 claims description 11
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical group [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 claims description 10
- 239000011777 magnesium Substances 0.000 claims description 10
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 229920003023 plastic Polymers 0.000 claims description 9
- 239000004033 plastic Substances 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 239000011651 chromium Substances 0.000 claims description 8
- 229910052595 hematite Inorganic materials 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 239000011572 manganese Substances 0.000 claims description 8
- 230000001590 oxidative effect Effects 0.000 claims description 7
- 239000003973 paint Substances 0.000 claims description 7
- 229920000573 polyethylene Polymers 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000004438 BET method Methods 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 6
- 229920001903 high density polyethylene Polymers 0.000 claims description 6
- 239000004700 high-density polyethylene Substances 0.000 claims description 6
- 239000007800 oxidant agent Substances 0.000 claims description 6
- 230000019612 pigmentation Effects 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052783 alkali metal Inorganic materials 0.000 claims description 5
- 239000007900 aqueous suspension Substances 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 5
- 238000004040 coloring Methods 0.000 claims description 4
- 239000000123 paper Substances 0.000 claims description 4
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 claims description 3
- 239000004566 building material Substances 0.000 claims description 3
- 229910001388 sodium aluminate Inorganic materials 0.000 claims description 3
- 239000000047 product Substances 0.000 description 23
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 18
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 17
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 16
- 239000001054 red pigment Substances 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 12
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical class [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 10
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 235000013980 iron oxide Nutrition 0.000 description 8
- 239000013065 commercial product Substances 0.000 description 7
- 230000006872 improvement Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000004737 colorimetric analysis Methods 0.000 description 5
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 5
- 238000003801 milling Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000012065 filter cake Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- JLDSOYXADOWAKB-UHFFFAOYSA-N aluminium nitrate Chemical compound [Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O JLDSOYXADOWAKB-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910000329 aluminium sulfate Inorganic materials 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- 229940077746 antacid containing aluminium compound Drugs 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 238000006266 etherification reaction Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 229910052598 goethite Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 150000002505 iron Chemical class 0.000 description 2
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 2
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000012692 Fe precursor Substances 0.000 description 1
- 101000835023 Homo sapiens Transcription factor A, mitochondrial Proteins 0.000 description 1
- 102100026155 Transcription factor A, mitochondrial Human genes 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 159000000013 aluminium salts Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- RAQDACVRFCEPDA-UHFFFAOYSA-L ferrous carbonate Chemical class [Fe+2].[O-]C([O-])=O RAQDACVRFCEPDA-UHFFFAOYSA-L 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical class [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 238000010902 jet-milling Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
- 229910006540 α-FeOOH Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/22—Compounds of iron
- C09C1/24—Oxides of iron
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0018—Mixed oxides or hydroxides
- C01G49/0045—Mixed oxides or hydroxides containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/06—Ferric oxide [Fe2O3]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/54—Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
- C01P2006/13—Surface area thermal stability thereof at high temperatures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
- C01P2006/63—Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
- C01P2006/64—Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
- C01P2006/65—Chroma (C*)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2265—Oxides; Hydroxides of metals of iron
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/006—Additives being defined by their surface area
Definitions
- the invention relates to new Al-containing iron oxide pigments, to a process for producing them and to their use for the colouring of pastes, paints, plastics, paper and building materials.
- High-grade red iron oxide pigments which represent the state of the art are customarily single-phase haematites having Fe 2 O 3 contents of 96.5 wt % up to 99.5 wt %.
- Processes possessing particular industrial significance are the Copperas, precipitation and Penniman processes and also the calcining of iron oxide precursors based on goethite and magnetite.
- red pigments Important fields for use of these red pigments are inks and paints (solventborne, aqueous and powder coatings), plastics, and also paper and laminates, with levels of pigmentation of up to around 35 wt %.
- red iron oxide pigments For measuring the colour properties of red iron oxide pigments, there are long-established test methods, in which the colouredness of media coloured using red iron oxide pigments, such as test specimens of plastic or paint systems, is measured.
- Standard parameters established for measuring the colouredness of red iron oxide pigments include the parameters of what is called the CIELAB colour space.
- CIELAB colour space every perceptible colour within this three-dimensional colour space is defined by the colour locus with the coordinates L* (lightness), a* (red-green value) and b* (yellow-blue value).
- L* lightness
- a* red-green value
- b* yellowness of the colour.
- the colour blue in contrast, becomes stronger as the b* value becomes more negative.
- the saturation C ab * also called chroma, or chromaticity
- This value is a direct product of the values a* and b* and represents the square root of the sum of the squares of a* and b*.
- the values a*, b*, L*, and C ab * are dimensionless values which are commonly identified as “CIELAB units”.
- the corresponding colorimetry in plastics takes place, for example, in polyethylene (high-density polyethylene, HDPE) at a level of pigmentation of 1 wt %.
- polyethylene high-density polyethylene, HDPE
- DE 3500470 attempted to use the precipitant MgO and a specific precipitation methodology in order to provide an Al-doped haematite having an improved hue (see Examples 7 and 8). While it did find as light increase in the b* value (see Comparative Example Bversus A), as a result of using MgO as against NaOH in the Al-free haematite, the absolute colour values found in DE'470 even for the A-doped haematites were still in need of improvement, especially the b* values. In any case, the presence of magnesium leads to the formation of Mg ferrites, which do not have good coloristic qualities.
- a comparison of MgO and the variant addition described in EP'331 relative to the procedure of the present invention can be found in Comparative Example III of the present invention (for results see Table 1).
- Al-containing red iron oxide pigments are produced by coating of finely divided goethite ( ⁇ -FeOOH) precursors with aluminium compounds, with subsequent calcination.
- ⁇ -FeOOH finely divided goethite
- the reworking, for example, of Example 3 in that specification yielded Al-containing red iron oxide pigments whose colour properties, however, are still in need of improvement (Tab. 1).
- red pigments which expand the colour space relative to the red iron oxide pigments in the prior art.
- These new pigments are preferably to possess a higher saturation C ab * as well and, in particular, an improved heat stability, in plastics, for example. It has been found that specific Al-containing iron oxide pigments achieve this object.
- the invention therefore relates to Al-containing iron oxide pigments of the formula Fe 2-x Al x O 3 with x values from 0.01 to 0.25, characterized in that they possess an a* value of 30.5 to 32.5 CIELAB units and a b* value of 25.5 to 30.5 CIELAB units, measured in each case in the alkyd resin according to DIN EN ISO 787-25: 2007 as full shade.
- the Al-containing iron oxide of the invention is preferably present in a haematite structure.
- the aluminium is located preferably at the octahedral lattice sites in substitution of Fe 3+ ions.
- Preferred Al-containing iron oxides have a saturation C ab * of 39.8 to 44.6 CIELAB units.
- C ab * here represents the square root of the sum of the squares of a* and b*, measured in the varnish system above.
- the pigments of the invention preferably possess a heat stability measured in HDPE polyethylene at 1% pigmentation, determined according to DIN EN 12877-2 by a change ( ⁇ C ab *) in the saturation (C ab *) of less than 3 CIELAB units, preferably less than 1.5 CIELAB units, on temperature increase from 200 to 320° C.
- the Al index x is a number from 0.01 to 0.10, more particularly from 0.025 to 0.075.
- pigments of the invention in which, in the formula, the Al index x is a number from 0.11 to 0.25, more particularly from 0.12 to 0.15.
- the pigments of the invention likewise preferably have a water content of less than 0.8 wt %, preferably of less than 0.5 wt %.
- the pigments of the invention have a chloride content of less than 0.1 wt %, preferably less than 0.01 wt %, based on the pigment.
- the amount of manganese and chromium as well is preferably very small.
- the sum total of manganese and chromium is preferably less than 500 ppm, very preferably less than 100 ppm, based on the pigment.
- the amount of magnesium is preferably less than 500 ppm, very preferably less than 100 ppm, based on the pigment.
- the pigments of the invention preferably have a specific surface area by the BET method of 6.5 to 12.5 m 2 /g.
- the pigments of the invention may also be coated. In that case they may have one or more coatings selected from organic and/or inorganic compounds.
- Organic coating materials include, for example, polyhydric alcohols, polyethylene glycols, polypropylene glycols, their etherification products with monohydric alcohols and esterification products with carboxylic acids, and also silicone oils.
- Suitable inorganic coating materials are preferably colourless oxides or hydroxides of Al, Si, Zr and Mg, especially Al 2 O 3 .
- the coating materials are employed preferably in an amount of 0.01 to 3 wt %, based on the pigment.
- the invention further relates to a process for producing the pigments of the invention, comprising at least the steps of a) precipitation, b) oxidation and c) calcination, characterized in that:
- the Fe:Al ratio of 199:1 to 7:1 corresponds, in the target composition of Fe 2-x Al x O 3 , to an x value of 0.01 to 0.25.
- the aqueous solution comprising ions of iron, of sulfate and of aluminium can be obtained by mixing corresponding sulfate-containing iron salt solutions with solutions containing aluminium ions, which in turn may be obtained individually from corresponding iron precursors and aluminium compounds, respectively.
- iron(II) sulfates for such iron sulfate solutions can be obtained from steel-pickling plants or from TiO 2 production by the sulfate process, or by dissolving metallic iron, iron carbonates, iron hydroxides or iron oxides in sulfuric acid.
- iron(II) sulfate solutions having a total iron content of 80 to 95 g/I and a sum content of manganese and chromium of less than 250 mg/I.
- the solution used preferably also includes a magnesium content of less than 500, preferably less than 100 ppm, based on the solution.
- Preferred for the precipitation according to step a) is an aqueous solution comprising ions of iron, of sulfate and aluminium in which the iron ions are present in the form of a mixture of iron(II) and iron(III) ions, preferably with an Fe(III) fraction of 5 to 30 mol %, more particularly 10 to 20 mol % Fe(III), based on the total amount of iron in the solution.
- Setting the correspondingly preferred Fe(III) fractions in the respective iron(II)/(III) sulfate mixture can be done either by adding corresponding amounts of iron salts, preferably of iron(III) sulfate, or by partial oxidation of the iron salt solution, preferably the iron(II) sulfate solution, with—for example—atmospheric oxygen, preferably at temperatures of 80° C. or above, in particular at 80 to 100° C., or with H 2 O 2 at temperatures preferably of 20 to 70° C.
- Al components used in the aqueous solution comprising ions of iron, of sulfate and of aluminium may be aluminium salts such as, for example, chlorides, sulfates or else nitrates, particular preference being given to Al(III) sulfates.
- the aqueous solution comprising ions of iron, of sulfate and of aluminium for step a1) preferably contains a molar ratio of iron in the form of Fe(II) and/or Fe(III) to Al ions of 79:1 to 26:1, preferably of 17.2:1 to 7:1, more particularly of 15.7:1 to 12.3:1.
- An Fe:Al ratio of 79:1 to 26:1 here corresponds, in the target composition Fe 2-x Al x O 3 , to an x value of 0.025 to 0.075; an Fe:Al ratio of 17.2:1 to 7:1 here corresponds to an x value of 0.11 to 0.25; and an Fe:Al ratio of 15.7:1 to 12.3:1 here corresponds to an x value of 0.12 to 0.15.
- aqueous solutions comprising ions of iron, of sulfate and of aluminium and used in accordance with the invention are provided preferably by mixing of the Fe(III)- and/or Fe(II)-containing sulfate solution and of corresponding Al-containing solutions.
- the reaction in step a1) is preferably accomplished by heating the alkaline compound as precipitant in a suitable reaction vessel with stirrer, gasification container and electrical heating to the reaction temperature.
- the reaction temperature is preferably 20 to 100° C., more particularly 80 to 100° C., more preferably 85 to 100° C.
- the aqueous solution comprising ions of iron, of sulfate and of aluminium is metered into the initial charge of the alkaline compound, preferably in the form of its aqueous solution. This addition is preferably made at the reaction temperature.
- the precipitation here takes place preferably at a pH of greater than 10, more particularly at a pH of 10.5 to 14.
- the addition is made preferably with stirring. If a particular ratio of Fe(II) and Fe(III) has already been set in the aqueous solution comprising the ions of iron, of sulfate and of aluminium, it is preferred to allow the precipitation reaction to proceed under inert gas. Optionally, however, the Fe(II)/(III) ratio may also be set only during the precipitation, by means of the above-described oxidation.
- the amount of alkaline compound to be used for the precipitation is a product of the amounts of the iron ions and aluminium ions, preference being given to a molar ratio of Fe total to OH ⁇ of 0.45 to 0.55 and also of Al(III) to OH ⁇ of 0.33, and also, optionally, of free acid present that is to be neutralized—sulfuric acid, for example.
- the procedure and the proportions of the iron ions to aluminium ions are fundamentally the same as in the case of the precipitation a1), with the difference being that the aluminium compound is not present in the iron(II)/(III) sulfate mixture but is instead introduced as an initial charge together with the alkaline compound serving as precipitant.
- the aluminium compound is preferably, for example, an aqueous Na aluminate solution which is mixed with the alkaline precipitant in order then to furnish the soluble Al ions.
- Suitable alkaline compounds serving as precipitant are those specified under a1).
- the alkaline precipitant is preferably included as an initial charge mixed with an alkali metal aluminate solution, and the iron(II)/(III) sulfate mixture is metered into this initial charge.
- the precipitation is followed by oxidation with an oxidizing agent.
- the oxidizing agent used is preferably an oxygen-containing gas, such as air, for example. This oxidation takes place preferably in the aqueous medium obtained after step a1) or a2), more particularly in the suspension obtained as a result of the precipitation.
- the oxidizing agent, more particularly the oxygen-containing gas is preferably introduced into the aqueous medium obtained after step a1) or a2).
- the oxidation according to step b) here takes place in particular at a temperature of 20 to 100° C. more particularly at 80 to 100° C. very preferably at 85 to 100° C.
- the course of the oxidation and also the end of the oxidizing step can be checked, for example, by an EMF measurement using a commercial redox electrode in the reaction vessel.
- the depletion of dissolved iron(II) ions in the reaction mixture is indicated by a jump in potential.
- the pigment precursor preferably the magnetite formed
- the filtrate conductivity is below 2000 ⁇ S/cm, preferably below 800 ⁇ S/cm, more preferably below 200 ⁇ S/cm. This is followed preferably by drying of the filter cake, in particular at a temperature of 30 to 250, preferably of 30 to 120° C.
- the production of the Al-containing iron oxide pigments of the invention with the composition Fe 2-x Al x O 3 is accomplished by calcination of the oxidation product obtained after step b), preferably in the form of the isolated, washed and dried filter cake, also referred to as Al-containing magnetite, at a temperature of 500 to 1100° C., preferably of 600 to 975° C., preferably in the presence of an oxygen-containing gas, more particularly of air.
- the level of optimum calcining temperature is dependent on the Al content of the oxidation product obtained after step b).
- the optimum calcining temperature here is the temperature at which the maximum a* value (red fraction) has been obtained. This may be determined in a series of different calcining temperatures.
- the pigments of the invention obtained after step c) may additionally be subjected to grinding and/or to coating.
- inorganic coating it is preferred for coating to follow step c).
- Preferred inorganic coating materials that are suitable are preferably colourless oxides or hydroxides of Al, Si, Zr and Mg, especially Al 2 O 3 .
- Al-containing iron oxides of the invention with or without inorganic coating, to be subjected additionally to milling.
- Suitable milling methods are, for example, jet milling, pendulum milling or else wet milling operations.
- organic coating materials examples being polyhydric alcohols, polyethylene glycols, polypropylene glycols, their etherification products with monohydric alcohols and esterification products with carboxylic acids, and also silicone oils. These coating materials may likewise act as milling assistants.
- the preferred quantities of coating materials for metered addition may be from 0.01 to 3 wt % in the case of inorganic coating materials and from 0.01 to 1 wt % in the case of organic coating materials.
- the sum total of organic and inorganic coating materials in this context is 0.01 to 3 wt %.
- the invention further relates to the use of the pigments of the invention for colouring pastes, paints, plastics, paper and building materials.
- a thixotroped long-oil alkyd resin (WorléeKyd P 151) were applied to the bottom part of a plate paint dispersion machine (TFAM) with a plate diameter of 240 mm, and the red iron oxide pigment in question was processed with the test paste to form a coloured paste with a PVC (pigment volume concentration) of 10%.
- TFAM plate paint dispersion machine
- the test paste contains 95 wt % of alkyd resin (Worléekyd P 151 from Worlée-Chemie GmbH, DE) and 5 wt % of Luvotix HAT thixotropic agent (Lehmann & Voss & Co KG, DE).
- the Luvotix is incorporated by stirring into the alkyd resin which has been preheated at 70 to 75° C., and the mixed paste is heated at 95° C. until dissolution has taken place. After cooling, the paste is rolled free of bubbles on a triple-roll mill.
- the red pigments were weighed out according to
- m P mass of red iron oxide pigment
- PVC pigment volume concentration
- m b mass of binder
- ⁇ p density of pigment
- ⁇ b density of binder
- the completed paste was transferred to a paste plate and subjected to colorimetry on a Datacolor 600 colorimeter with the measuring geometry of d/8° and the illuminant D65/10° with gloss (CIELAB colour space according to DIN 5033 Part 7 ).
- HDPE polyethylene
- the same red pigment was processed in HD-PE and the heat stability was ascertained by measurement of the saturation C ab * as a function of the processing temperature between 200 and 320° C. (see Table 6 and FIG. 1 ).
- the oxidation time was around 10.5 hours at 85° C.
- the oxidation product was calcined in a chamber kiln at the optimum calcining temperature of 900° C. (accuracy ⁇ 5° C.) in a residence time of 30 minutes under an oxidizing atmosphere. To determine the optimum calcining temperature, a variety of temperatures were trialled (see Table 3).
- the inventive pigment obtained was characterized—as indicated in Table 4—and tested coloristically in WorléeKyd P 151 (full shade) (for colorimetric values see Table 5).
- This oxidation product was calcined at the optimum calcining temperature of 700° C. (accuracy ⁇ 5° C.) with a residence time of 30 minutes in an oxidizing atmosphere in a chamber kiln.
- optimum calcining temperature 700° C. (accuracy ⁇ 5° C.) with a residence time of 30 minutes in an oxidizing atmosphere in a chamber kiln.
- a variety of temperatures were trialled (see Table 3).
- inventive Al-containing pigments from Inventive Examples 1 (0.81% Al) and 2 (2.2% Al) represent high-grade Al-containing red iron oxide pigments having specific surface areas by the BET method in the range from 8.6 to 9.6 m 2 /g and they exhibit very high chemical purity, characterized by Mn and Cr contents of in total below 100 ppm, by C contents of below 250 ppm and by low H 2 O contents of less than 0.01 wt % (see Table 5).
- the inventive Al-containing red pigments are characterized by a significantly higher heat stability in HD-PE (as ⁇ C ab * values of 200 versus 320° C., see Table 6) with a significantly higher saturation C ab *, specifically:
- the noninventive pigment obtained was characterized—as indicated in Table 4—and tested coloristically in WorléeKyd P 151 (full shade) (for colorimetric values see Table 5).
- Inventive Example 1 was repeated, but using MgO rather than NaOH as precipitant, in half the molar quantity in accordance with the divalent nature of Mg, as employed for the production of Al-doped iron oxide in Example 7 of EP-A-187331.
- the initial charge, rather than the NaOH was the Fe(II)/Fe(III)/Al(III) sulfate mixture, and the MgO precipitant was added to this initial charge likewise as described in EP'331. Accordingly, the differences of a different precipitant and a different sequence of addition were transposed from EP'331 to Inventive Example 1 of the invention.
- the pigment produced was measured in analogy to the determination of colour data for the inventive examples above.
- the noninventive pigment obtained was characterized—as indicated in Table 4—and tested coloristically in WorléeKyd P 151 (full shade) (for colorimetric values see Table 5).
- the optimum calcining temperature is highlighted by bold text.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Compounds Of Iron (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Cosmetics (AREA)
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17164231.7 | 2017-03-31 | ||
EP17164231.7A EP3381984A1 (de) | 2017-03-31 | 2017-03-31 | Al-haltige eisenoxidpigmente |
EP17179589.1 | 2017-07-04 | ||
EP17179589 | 2017-07-04 | ||
EP18155087.2 | 2018-02-05 | ||
EP18155087 | 2018-02-05 | ||
PCT/EP2018/056863 WO2018177789A1 (de) | 2017-03-31 | 2018-03-19 | Al-haltige eisenoxidpigmente |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/056863 A-371-Of-International WO2018177789A1 (de) | 2017-03-31 | 2018-03-19 | Al-haltige eisenoxidpigmente |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/700,428 Division US11634342B2 (en) | 2017-03-31 | 2022-03-21 | Iron oxide pigments containing Al |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210107803A1 true US20210107803A1 (en) | 2021-04-15 |
Family
ID=61692009
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/498,511 Abandoned US20210107803A1 (en) | 2017-03-31 | 2018-03-19 | Iron oxide pigments containing al |
US17/700,428 Active US11634342B2 (en) | 2017-03-31 | 2022-03-21 | Iron oxide pigments containing Al |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/700,428 Active US11634342B2 (en) | 2017-03-31 | 2022-03-21 | Iron oxide pigments containing Al |
Country Status (10)
Country | Link |
---|---|
US (2) | US20210107803A1 (de) |
EP (1) | EP3601439B1 (de) |
JP (1) | JP6935505B2 (de) |
KR (1) | KR102476176B1 (de) |
CN (1) | CN110506081B (de) |
AU (1) | AU2018246923B2 (de) |
CA (1) | CA3059079A1 (de) |
MX (1) | MX2019011586A (de) |
WO (1) | WO2018177789A1 (de) |
ZA (1) | ZA201907149B (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112063198B (zh) * | 2020-09-10 | 2021-11-30 | 中国科学院包头稀土研发中心 | 一种稀土红色颜料及其制备方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2826941C2 (de) | 1978-06-20 | 1985-11-21 | Bayer Ag, 5090 Leverkusen | Verfahren zur Herstellung von Eisenoxidrotpigmenten |
DE3124746A1 (de) * | 1981-06-24 | 1983-01-13 | Basf Ag, 6700 Ludwigshafen | Plaettchenfoermige pigmente der formel al(pfeil abwaerts)x(pfeil abwaerts)fe(pfeil abwaerts)2(pfeil abwaerts)-(pfeil abwaerts)x(pfeil abwaerts)o(pfeil abwaerts)3(pfeil abwaerts), deren herstellung und verwendung |
JPS582226A (ja) * | 1981-06-29 | 1983-01-07 | Tone Sangyo Kk | 赤色酸化鉄の製造方法 |
DE3500470A1 (de) * | 1985-01-09 | 1986-07-10 | Bayer Ag, 5090 Leverkusen | Verfahren zur herstellung heller farbreiner eisenoxidrotpigmente |
DE3716300A1 (de) * | 1987-05-15 | 1988-11-24 | Bayer Ag | Neue farbreine eisenoxidpigmente, verfahren zu ihrer herstellung und deren verwendung |
CN1106036A (zh) * | 1994-01-26 | 1995-08-02 | 拜尔公司 | 纯色氧化铁直接红颜料的制法和用途 |
DE59605913D1 (de) * | 1995-10-26 | 2000-10-26 | Bayer Ag | Farbreine, gelbstichige Eisenoxidrotpigmente, Verfahren zu ihrer Herstellung sowie deren Verwendung |
JPH11102238A (ja) * | 1997-09-29 | 1999-04-13 | Toshiba Corp | コンピュータシステムおよびそのシステムにおけるサスペンド制御方法 |
DE19746262A1 (de) * | 1997-10-20 | 1999-04-22 | Bayer Ag | Eisenoxidrotpigmente, Verfahren zur Herstellung von Eisenoxidrotpigmenten und deren Verwendung |
JP3728505B2 (ja) * | 2002-07-09 | 2005-12-21 | 国立大学法人 岡山大学 | Al置換ヘマタイトの製造方法 |
DE102004024013A1 (de) | 2004-05-14 | 2005-12-01 | Bayer Chemicals Ag | Farbreine, gut dispergierbare Eisenoxidrotpigmente mit hoher Mahlstabilität |
EP2436713A1 (de) * | 2010-09-29 | 2012-04-04 | Sika Technology AG | Zweikomponentige Polyurethane basierend auf hyperbranched Polymeren |
JP6388104B2 (ja) * | 2013-11-01 | 2018-09-12 | 戸田工業株式会社 | 酸化鉄粒子粉末、該酸化鉄粒子粉末を用いた塗料及び樹脂組成物 |
KR102470829B1 (ko) * | 2014-09-11 | 2022-11-28 | 란세스 도이치란트 게엠베하 | 헤마타이트 안료 및 그의 제조 방법 |
JP7038995B2 (ja) * | 2016-10-21 | 2022-03-22 | 国立大学法人 岡山大学 | 赤色顔料用及び触媒用酸化鉄並びにその製造方法 |
-
2018
- 2018-03-19 CA CA3059079A patent/CA3059079A1/en active Pending
- 2018-03-19 WO PCT/EP2018/056863 patent/WO2018177789A1/de active Application Filing
- 2018-03-19 EP EP18712200.7A patent/EP3601439B1/de active Active
- 2018-03-19 US US16/498,511 patent/US20210107803A1/en not_active Abandoned
- 2018-03-19 CN CN201880023196.2A patent/CN110506081B/zh active Active
- 2018-03-19 MX MX2019011586A patent/MX2019011586A/es unknown
- 2018-03-19 KR KR1020197028061A patent/KR102476176B1/ko active IP Right Grant
- 2018-03-19 JP JP2019553343A patent/JP6935505B2/ja active Active
- 2018-03-19 AU AU2018246923A patent/AU2018246923B2/en active Active
-
2019
- 2019-10-29 ZA ZA2019/07149A patent/ZA201907149B/en unknown
-
2022
- 2022-03-21 US US17/700,428 patent/US11634342B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
ZA201907149B (en) | 2020-10-28 |
US11634342B2 (en) | 2023-04-25 |
CN110506081B (zh) | 2021-12-10 |
CA3059079A1 (en) | 2018-10-04 |
AU2018246923B2 (en) | 2020-04-09 |
CN110506081A (zh) | 2019-11-26 |
BR112019020265A2 (pt) | 2020-04-22 |
WO2018177789A1 (de) | 2018-10-04 |
EP3601439B1 (de) | 2021-03-03 |
KR20190141131A (ko) | 2019-12-23 |
US20220259064A1 (en) | 2022-08-18 |
MX2019011586A (es) | 2019-11-08 |
JP2020515686A (ja) | 2020-05-28 |
JP6935505B2 (ja) | 2021-09-15 |
EP3601439A1 (de) | 2020-02-05 |
AU2018246923A1 (en) | 2019-11-14 |
KR102476176B1 (ko) | 2022-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU751726B2 (en) | Iron oxide red pigments, process for the production of iron oxide red pigments and use thereof | |
CN105246981B (zh) | 无机红色颜料 | |
KR20160037894A (ko) | 비스무트 바나데이트 안료 | |
US11634342B2 (en) | Iron oxide pigments containing Al | |
CA2421245A1 (en) | Method for producing an iron oxide nucleus containing aluminium | |
US7294191B2 (en) | Pure-coloured, readily dispersible iron oxide red pigments with high grinding stability | |
KR20010087331A (ko) | 산화철의 제조 방법 및 그의 용도 | |
KR101630554B1 (ko) | 복합 산화물 블랙 안료 및 그 제조 방법 | |
JP6077433B2 (ja) | 複合酸化物黒色顔料及びその製造方法 | |
JP4336227B2 (ja) | 複合黒色酸化物粒子、その製造方法、黒色塗料及びブラックマトリックス | |
JP2003201122A (ja) | 粒状ヘマタイト粒子粉末の製造法 | |
AU2021244968B2 (en) | Colour-strong manganese ferrite colour pigments | |
EP0691307A1 (de) | Pigmentäres Material | |
BR112019020265B1 (pt) | PIGMENTOS DE ÓXIDO DE FERRO CONTENDO ALUMÍNIO DE FÓRMULA Fe2-xAlxO3 com valores de x de 0,01 a 0,25 | |
US11981582B2 (en) | Cu—Cr—Zn—O based pigment | |
EP3381984A1 (de) | Al-haltige eisenoxidpigmente | |
CA2421189A1 (en) | Method for producing an iron oxide nucleus containing aluminium | |
CN118414388A (zh) | 用于生产氧化铁颜料的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LANXESS DEUTSCHLAND GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BUETJE, KAI;KATHREIN, CHRISTINE;ROSENHAHN, CARSTEN;AND OTHERS;SIGNING DATES FROM 20191008 TO 20191025;REEL/FRAME:051302/0645 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |