US20200399692A1 - Modified nucleotides - Google Patents

Modified nucleotides Download PDF

Info

Publication number
US20200399692A1
US20200399692A1 US16/877,442 US202016877442A US2020399692A1 US 20200399692 A1 US20200399692 A1 US 20200399692A1 US 202016877442 A US202016877442 A US 202016877442A US 2020399692 A1 US2020399692 A1 US 2020399692A1
Authority
US
United States
Prior art keywords
mmol
group
composition
solution
nucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/877,442
Inventor
John Milton
Xiaolin Wu
Mark Edward Brennan Smith
Joseph Brennan
Colin Lloyd Barnes
Xiaohai Liu
Silke Ruediger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illumina Cambridge Ltd
Original Assignee
Illumina Cambridge Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46324959&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20200399692(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US10/227,131 external-priority patent/US7057026B2/en
Priority claimed from GB0230037A external-priority patent/GB0230037D0/en
Priority claimed from GB0303924A external-priority patent/GB0303924D0/en
Application filed by Illumina Cambridge Ltd filed Critical Illumina Cambridge Ltd
Priority to US16/877,442 priority Critical patent/US20200399692A1/en
Assigned to SOLEXA LIMITED reassignment SOLEXA LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SMITH, MARK, BRENNAN, JOSEPH, RUEDIGER, SILKE, LIU, XIAOHAI, MILTON, JOHN, WU, XIAOLIN, BARNES, COLIN
Assigned to ILLUMINA CAMBRIDGE LIMITED reassignment ILLUMINA CAMBRIDGE LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SOLEXA LIMITED
Publication of US20200399692A1 publication Critical patent/US20200399692A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/14Pyrrolo-pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/186Modifications characterised by incorporating a non-extendable or blocking moiety
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2535/00Reactions characterised by the assay type for determining the identity of a nucleotide base or a sequence of oligonucleotides
    • C12Q2535/113Cycle sequencing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention relates to modified nucleotides.
  • this invention discloses nucleotides having a removable protecting group, their use in polynucleotide sequencing methods and a method for chemical deprotection of the protecting group.
  • nucleic acids An example of the technologies that have improved the study of nucleic acids is the development of fabricated arrays of immobilised nucleic acids. These arrays consist typically of a high-density matrix of polynucleotides immobilised onto a solid support material. See, e.g., Fodor et al., Trends Biotech. 12:19-26, 1994, which describes ways of assembling the nucleic acids using a chemically sensitized glass surface protected by a mask, but exposed at defined areas to allow attachment of suitably modified nucleotide phosphoramidites.
  • Fabricated arrays can also be manufactured by the technique of “spotting” known polynucleotides onto a solid support at predetermined positions (e.g., Stimpson et al., Proc. Natl. Acad. Sci. USA 92:6379-6383, 1995).
  • Sequencing by synthesis of DNA ideally requires the controlled (i.e. one at a time) incorporation of the correct complementary nucleotide opposite the oligonucleotide being sequenced. This allows for accurate sequencing by adding nucleotides in multiple cycles as each nucleotide residue is sequenced one at a time, thus preventing an uncontrolled series of incorporations occurring.
  • the incorporated nucleotide is read using an appropriate label attached thereto before removal of the label moiety and the subsequent next round of sequencing.
  • blocking group In order to ensure only a single incorporation occurs, a structural modification (“blocking group”) of the sequencing nucleotides is required to ensure a single nucleotide incorporation but which then prevents any further nucleotide incorporation into the polynucleotide chain.
  • the blocking group must then be removable, under reaction conditions which do not interfere with the integrity of the DNA being sequenced.
  • the sequencing cycle can then continue with the incorporation of the next blocked, labelled nucleotide.
  • the entire process should consist of high yielding, highly specific chemical and enzymatic steps to facilitate multiple cycles of sequencing.
  • nucleotide and more usually nucleotide triphosphates, generally require a 3′OH-blocking group so as to prevent the polymerase used to incorporate it into a polynucleotide chain from continuing to replicate once the base on the nucleotide is added.
  • a 3′OH-blocking group There are many limitations on the suitability of a molecule as a blocking group. It must be such that it prevents additional nucleotide molecules from being added to the polynucleotide chain whilst simultaneously being easily removable from the sugar moiety without causing damage to the polynucleotide chain.
  • the modified nucleotide must be tolerated by the polymerase or other appropriate enzyme used to incorporate it into the polynucleotide chain.
  • the ideal blocking group will therefore exhibit long term stability, be efficiently incorporated by the polymerase enzyme, cause total blocking of secondary or further incorporation and have the ability to be removed under mild conditions that do not cause damage to the polynucleotide structure, preferably under aqueous conditions. These stringent requirements are daunting obstacles to the design and synthesis of the requisite modified nucleotides.
  • Reversible blocking groups for this purpose have been described previously but none of them generally meet the above criteria for polynucleotide, e.g. DNA-compatible, chemistry.
  • Metzker et al. discloses the synthesis and use of eight 3′-modified 2-deoxyribonucleoside 5′-triphosphates (3′-modified dNTPs) and testing in two DNA template assays for incorporation activity.
  • the 3′-modified dNTPs included 3′allyl deoxyriboadenosine 5′-triphosphate (3′-allyl dATP).
  • the 3′allyl blocked compound was not used to demonstrate a complete cycle of termination, deprotection and reinitiation of DNA synthesis: the only test results presented were those which showed the ability of this compound to terminate DNA synthesis in a single termination assay, out of eight such assays conducted, each conducted with a different DNA polymerase.
  • WO02/29003 (The Trustees of Columbia University in the City of New York) describes a sequencing method which, may include the use of an allyl protecting group to cap the 3′-OH group on a growing strand of DNA in a polymerase reaction.
  • the allyl group is introduced according to the procedure of Metzker (infra) and is said to be removed by using methodology reported by Kamal et al ( Tet. Let, 40, 371-372, 1999).
  • the Kamal deprotection methodology employs sodium iodide and chlorotrimethylsilane so as to generate in situ iodotrimethylsilane, in acetonitrile solvent, quenching with sodium thiosulfate. After extraction into ethyl acetate and drying (sodium sulfate), then concentration under reduced pressure and column chromatography (ethyl acetate:hexane; 2:3 as eluant), free alcohols were obtained in 90-98% yield.
  • the present invention is based on the surprising development of a number of reversible blocking groups and methods of deprotecting them under DNA compatible conditions. Some of these blocking groups are novel per se; others have been disclosed in the prior art but, as noted above, it has not proved possible to utilised these blocking groups in DNA sequencing.
  • allyl deprotection methodology makes use of a water-soluble transition metal catalyst formed from a transition metal and at least partially water-soluble ligands. In aqueous solution these form at least partially water-soluble transition metal complexes.
  • aqueous solution herein is meant a liquid comprising at least 20 vol %, preferably at least 50%, for example at least 75 vol %, particularly at least 95 vol % and especially greater than above 98 vol %, ideally 100 vol % of water as the continuous phase.
  • the allyl group may be used to protect not only the hydroxyl group but also thiol and amine functionalities.
  • allylic esters may be formed from the reaction between carboxylic acids and allyl halides, for example.
  • Primary or secondary amides may also be protected using methods known in the art.
  • the novel deprotection methodology described herein may be used in the deprotection of all these allylated compounds, e.g. allyl esters and mono- or bisallylated primary amines or allylated amides, or in the deprotection of allylated secondary amines.
  • the method is also suitable in the deprotection of allyl esters and thioethers.
  • Protecting groups which comprise the acetal functionality have been used previously as blocking groups. However, removal of such groups and ethers requires strongly acidic deprotections detrimental to DNA molecules. The hydrolysis of an acetal however, results in the formation of an unstable hemiacetal intermediate which hydrolyses under aqueous conditions to the natural hydroxyl group.
  • the inventors have utilised this concept and applied it further such that this feature of the invention resides in utilising blocking groups that include protecting groups to protect intermediate molecules that would normally hydrolyse under aqueous conditions. These protecting groups comprise a second functional group that stabilises the structure of the intermediate but which can be removed at a later stage following incorporation into the polynucleotide.
  • Protecting groups have been used in organic synthesis reactions to temporarily mask the characteristic chemistry of a functional group because it interferes with another reaction.
  • a modified nucleotide or nucleoside molecule comprising a purine or pyrimidine base and a ribose or deoxyribose sugar moiety having a removable 3′-OH blocking group covalently attached thereto, such that the 3′ carbon atom has attached a group of the structure
  • Z is any of —C(R′) 2 —O—R′′, —C(R′) 2 —N(R′′) 2 , —C(R′) 2 —N(H)R′′, —C(R′) 2 —S—R′′ and —C(R′) 2 —F,
  • each R′′ is or is part of a removable protecting group
  • each R′ is independently a hydrogen atom, an alkyl, substituted alkyl, arylalkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclic, acyl, cyano, alkoxy, aryloxy, heteroaryloxy or amido group, or a detectable label attached through a linking group; or (R′) 2 represents an alkylidene group of formula ⁇ C(R′′′) 2 wherein each R′′′ may be the same or different and is selected from the group comprising hydrogen and halogen atoms and alkyl groups; and
  • each R′′ is exchanged for H or, where Z is —C(R′) 2 —F, the F is exchanged for OH, SH or NH 2 , preferably OH, which intermediate dissociates under aqueous conditions to afford a molecule with a free 3′OH;
  • both R′ groups are not H.
  • the invention provides a, 3′-O-allyl nucleotide or nucleoside which nucleotide or nucleoside comprises a detectable label linked to the base of the nucleoside or nucleotide, preferably by a cleavable linker.
  • the invention provides a polynucleotide comprising a 3′-O-allyl nucleotide or nucleoside which nucleotide or nucleoside comprises a detectable label linked to the base of the nucleoside or nucleotide, preferably by a cleavable linker.
  • the invention provides a method of converting a compound of formula R—O-allyl, R 2 N(allyl), RNH(allyl), RN(allyl) 2 or R—S-allyl to a corresponding compound in which the allyl group is removed and replaced by hydrogen, said method comprising the steps of reacting a compound of formula R—O-allyl, R 2 N(allyl), RNH(allyl), RN(allyl) 2 or R—S-allyl in aqueous solution with a transition metal comprising a transition metal and one or more ligands selected from the group comprising water-soluble phosphine and water-soluble nitrogen-containing phosphine ligands, wherein the or each R is a water-soluble biological molecule.
  • the invention provides a method of controlling the incorporation of a nucleotide molecule complementary to the nucleotide in a target single-stranded polynucleotide in a synthesis or sequencing reaction comprising incorporating into the growing complementary polynucleotide a molecule according to the invention, the incorporation of said molecule preventing or blocking introduction of subsequent nucleoside or nucleotide molecules into said growing complementary polynucleotide.
  • the invention provides a method for determining the sequence of a target single-stranded, polynucleotide, comprising monitoring the sequential incorporation of complementary nucleotides, wherein at least one incorporation, and preferably all of the incorporations is of a nucleotide according to the invention as hereinbefore described which preferably comprises a detectable label linked to the base of the nucleoside or nucleotide by a cleavable linker and wherein the identity of the nucleotide incorporated is determined by detecting the label, said blocking group and said label being removed prior to introduction of the next complementary nucleotide.
  • the invention provides a method for determining the sequence of a target single-stranded polynucleotide, comprising:
  • nucleotides are preferably linked from the base to a detectable label by a cleavable linker and wherein the detectable label linked to each type of nucleotide can be distinguished upon detection from the detectable label used for other types of nucleotides;
  • the invention provides a kit, comprising:
  • nucleosides or nucleotides comprise a purine or pyrimidine base and a ribose or deoxyribose sugar moiety which has a blocking group covalently attached thereto, preferably at the 3′O position, which renders the molecules useful in techniques requiring blocking of the 3′-OH group to prevent incorporation of additional nucleotides, such as for example in sequencing reactions, polynucleotide synthesis, nucleic acid amplification, nucleic acid hybridisation assays, single nucleotide polymorphism studies, and other such techniques.
  • blocking group is used herein in the context of the invention, this embraces both the allyl and “Z” blocking groups described herein.
  • each “Z” group will generally be the same group, except in those cases where the detectable label forms part of the “Z” group, i.e. is not attached to the base.
  • the molecule can be linked via the base to a detectable label by a desirable linker, which label may be a fluorophore, for example.
  • the detectable label may instead, if desirable, be incorporated into the blocking groups of formula “Z”.
  • the linker can be acid labile, photolabile or contain a disulfide linkage.
  • Other linkages, in particular phosphine-cleavable azide-containing linkers, may be employed in the invention as described in greater detail.
  • nucleotides are incorporated, e.g. where the incorporation of a nucleotide molecule complementary to the nucleotide in a target single stranded polynucleotide is controlled in a synthesis or sequencing reaction of the invention, the incorporation of the molecule may be accomplished via a terminal transferase, a polymerase or a reverse transcriptase.
  • the molecule is incorporated by a polymerase and particularly from Thermococcus sp., such as 9° N.
  • the polymerase is a mutant 9° N A485L and even more preferably is a double mutant Y409V and A485L.
  • the blocking group and the label may be removed in a single chemical treatment step.
  • the blocking group is cleaved simultaneously with the label. This will of course be a feature inherent to those blocking groups of formula Z which incorporate a detectable label.
  • the blocked and labelled modified nucleotide constructs of the nucleotide bases A, T, C and G are recognised as substrates by the same polymerase enzyme.
  • each of the nucleotides can be brought into contact with the target sequentially, with removal of non-incorporated nucleotides prior to addition of the next nucleotide, where detection and removal of the label and the blocking group is carried out either after addition of each nucleotide, or after addition of all four nucleotides.
  • all of the nucleotides can be brought into contact with the target simultaneously, i.e., a composition comprising all of the different nucleotides is brought into contact with the target, and non-incorporated nucleotides are removed prior to detection and subsequent to removal of the label and the blocking group.
  • the methods can comprise a first step and a second step, where in the first step, a first composition comprising two of the four types of modified nucleotides is brought into contact with the target, and non-incorporated nucleotides are removed prior to detection and subsequent to removal of the label and the blocking group, and where in the second step, a second composition comprising the two nucleotides not included in the first composition is brought into contact with the target, and non-incorporated nucleotides are removed prior to detection and subsequent to removal of the label and blocking group, and where the first steps and the second step can be optionally repeated one or more times.
  • the methods described herein can also comprise a first step and a second step, where in the first step, a composition comprising one of the four nucleotides is brought into contact with the target, and non-incorporated nucleotides are removed prior to detection and subsequent to removal of the label and blocking group, and where in the second step, a second composition, comprising the three nucleotides not included in the first composition is brought into contact with the target, and non-incorporated nucleotides are removed prior to detection and subsequent to removal of the label and blocking group, and where the first steps and the second step can be optionally repeated one or more times.
  • the methods described herein can also comprise a first step and a second step, where in the first step, a first composition comprising three of the four nucleotides is brought into contact with the target, and non-incorporated nucleotides are removed prior to detection and subsequent to removal of the label and blocking group and where in the second step, a composition comprising the nucleotide not included in the first composition is brought into contact with the target, and non-incorporated nucleotides are removed prior to detection and subsequent to removal of the label and blocking group, and where the first steps and the second step can be optionally repeated one or more times.
  • the incorporating step in the methods of the invention can be accomplished via a terminal transferase, a polymerase or a reverse transcriptase as hereinbefore defined.
  • the detectable label and/or the cleavable linker can be of a size sufficient to prevent the incorporation of a second nucleotide or nucleoside into the nucleic acid molecule.
  • each of the four nucleotides in certain methods described herein for determining the sequence of a target single-stranded polynucleotide, each of the four nucleotides, one of which will be complementary to the first unpaired base in the target polynucleotide, can be brought into contact with the target sequentially, optionally with removal of non-incorporated nucleotides prior to addition of the next nucleotide. Determination of the success of the incorporation may be carried out either after provision of each nucleotide, or after the addition of all of the nucleotides added. If it is determined after addition of fewer than four nucleotides that one has been incorporated, it is not necessary to provide further nucleotides in order to detect the nucleotides complementary to the incorporated nucleotide.
  • nucleotides can be brought into contact with the target simultaneously, i.e., a composition comprising all of the different nucleotide (i.e. A, T, C and G or A, U, C and G) is brought into contact with the target, and non-incorporated nucleotides removed prior to detection and removal of the label(s).
  • the methods involving sequential addition of nucleotides may comprise a first substep and optionally one or more subsequent substeps. In the first substep a composition comprising one, two or three of the four possible nucleotides is provided, i.e. brought into contact with, the target.
  • any unincorporated nucleotides may be removed and a detecting step may be conducted to determine whether one of the nucleotides has been incorporated. If one has been incorporated, the cleavage of the linker may be effected. In this way the identity of a nucleotide in the target polynucleotide may be determined. The nascent polynucleotide may then be extended to determine the identity of the next unpaired nucleotide in the target oligonucleotide.
  • first substep above does not lead to incorporation of a nucleotide, or if this is not known, since the presence of incorporated nucleotides is not sought immediately after the first substep, one or more subsequent substeps may be conducted in which some or all, of those nucleotides not provided in the first substep are provided either, as appropriate, simultaneously or subsequently. Thereafter any unincorporated nucleotides may be removed and a detecting step conducted to determine whether one of the classes of nucleotide has been incorporated. If one has been incorporated, cleavage of the linker may be effected. In this way the identity of a nucleotide in the target polynucleotide may be determined.
  • the nascent polynucleotide may then be extended to determine the identity of the next unpaired nucleotide in the target oligonucleotide. If necessary, a third and optionally a fourth substep may be effected in a similar manner to the second substep. Obviously, once four substeps have been effected, all four possible nucleotides will have been provided and one will have been incorporated.
  • the method for sequencing comprises one or more substeps, to remove any unincorporated nucleotides before further nucleotide are provided. Again, this is not a required feature of the invention. Obviously, it is necessary that at least some and preferably as many as practicable of the unincorporated nucleotides are removed prior to the detection of the incorporated nucleotide.
  • kits of the invention include: (a) individual nucleotides according to the hereinbefore described invention, where each nucleotide has a base that is linked to a detectable label via a cleavable linker, or a detectable label linked via an optionally cleavable liner to a blocking group of formula Z, and where the detectable label linked to each nucleotide can be distinguished upon detection from the detectable label used for other three nucleotides; and (b) packaging materials therefor.
  • the kit can further include an enzyme for incorporating the nucleotide into the complementary nucleotide chain and buffers appropriate for the action of the enzyme in addition to appropriate chemicals for removal of the blocking group and the detectable label, which can preferably be removed by the same chemical treatment step.
  • the nucleotides/nucleosides are suitable for use in many different DNA-based methodologies, including DNA synthesis and DNA sequencing protocols.
  • FIG. 1 shows exemplary nucleotide structures useful in the invention.
  • X can be H, phosphate, diphosphate or triphosphate.
  • R 1 and R 2 can be the same or different, and can be selected from H, OH, or any group which can be transformed into an OH, including, but not limited to, a carbonyl.
  • Some suitable functional groups for R 1 and R 2 include the structures shown in FIG. 3 and FIG. 4 .
  • FIG. 2 shows structures of linkers useful in certain aspects of the invention, including (1) disulfide linkers and acid labile linkers, (2) dialkoxybenzyl linkers, (3) Sieber linkers, (4) indole linkers and (5) t-butyl Sieber linkers.
  • FIG. 3 shows some functional molecules useful in the invention, including some cleavable linkers and some suitable hydroxyl protecting groups.
  • R 1 and R 2 may be the same of different, and can be H, OH, or any group which can be transformed into an OH group, including a carbonyl.
  • R 3 represents one or more substituents independently selected from alkyl, alkoxyl, amino or halogen groups.
  • R 4 and R 5 can be H or alkyl, and R 6 can be alkyl, cycloalkyl, alkenyl, cycloalkenyl or benzyl.
  • X can be H, phosphate, diphosphate or triphosphate.
  • FIG. 4 is a schematic illustration of some of the Z blocking groups that can be used according to the invention.
  • FIG. 5 shows two cycles of incorporation of labelled and blocked DGTP, DCTP and dATP respectively (compounds 18, 24 and 32).
  • FIG. 6 shows six cycles of incorporation of labelled and blocked DTTP (compound 6).
  • FIG. 7 shows the effective blocking by compound 38 (a 3′-Oallyl nucleotide of the invention).
  • the present invention relates to nucleotide or nucleoside molecules that are modified by the reversible covalent attachment of a 3′-OH blocking groups thereto, and which molecules may be used in reactions where blocked nucleotide or nucleoside molecules are required, such as in sequencing reactions, polynucleotide synthesis and the like.
  • the blocking group is an allyl group
  • it may be introduced into the 3′-position using standard literature procedures such as that used by Metzker (infra).
  • the allyl groups are removed by reacting in aqueous solution a compound of formula R—O-allyl, R 2 N(allyl), RNH(allyl), RN(allyl) 2 or R—S-allyl (wherein R is a water-soluble biological molecule) with a transition metal, wherein said transition metal is capable of forming a metal allyl complex, in the presence of one or more ligands selected from the group comprising water-soluble phosphine and water-soluble mixed nitrogen-phosphine ligands.
  • the water-soluble biological molecule is not particularly restricted provided, of course, it contains one or more hydroxyl, acid, amino, amide or thiol functionalities protected with an allyl group.
  • Allyl esters are examples of compounds of formula R—O-allyl.
  • Preferred functionalities are hydroxyl and amino.
  • the term biological molecule is used to embrace any molecules or class of Molecule which performs a biological role. Such molecules include for example, polynucleotides such as DNA and RNA, oligonucleotides and single nucleotides.
  • peptides and peptide mimetics such as enzymes and hormones etc.
  • Compounds which comprise a secondary amide linkage, such as peptides, or a secondary amine, where such compounds are allylated on the nitrogen atom of the secondary amine or amide are examples of compounds of formula R 2 N(allyl) in which both R groups belong to the same biological molecule.
  • Particularly preferred compounds are polynucleotides, (including oligonucleotides) and nucleotides and nucleosides, preferably those which contain one base to which is attached a detectable label linked through a cleavable linker. Such compounds are useful in the determination of sequences of oligonucleotides as described herein.
  • Transition metals of use in the invention are any which may form metal allyl complexes, for example platinum, palladium, rhodium, ruthenium, osmium and iridium. Palladium is preferred.
  • the transition metal e.g. palladium
  • a salt e.g. as a halide.
  • Mixed salts such as Na 2 PdCl 4 may also be used.
  • Other appropriate salts and compounds will be readily determined by the skilled person and are commercially available, e.g. from Aldrich Chemical Company.
  • Suitable ligands are any phosphine or mixed nitrogen-phosphine ligands known to those skilled in the art, characterised in that the ligands are derivatised so as to render them water-soluble, e.g. by introducing one or more sulfonate, amine, hydroxyl (preferably a plurality of hydroxyl) or carboxylate residues. Where amine residues are present, formation of amine salts may assist the solublisation of the ligand and thus the metal-allyl complex.
  • appropriate ligands are triaryl phosphines, e.g. triphenyl phosphine, derivatised so as to make them water-soluble.
  • trialkyl phosphines e.g. tri-C 1-6 -alkyl phosphines such as triethyl phosphines; such trialkyl phosphines are likewise derivatised so as to make them water-soluble.
  • Sulfonate-containing and carboxylate-containing phosphines are particularly preferred; an example of the former 3,3′,3′′-phosphinidynetris (benzenesulfonic acid) which is commercially available from Aldrich Chemical Company as the trisodium salt; and a preferred example of the latter is tris(2-carboxyethyl)phosphine which is available from Aldrich as the hydrochloride salt.
  • the derivatised water-soluble phosphines and nitrogen-containing phosphines described herein may be used as their salts (e.g. as the hydrochloride or sodium salts) or, for example, in the case of the sulfonic and carboxylic acid-containing phosphines described herein, as the free acids.
  • 3,3′,3′′-phosphinidynetris (benzenesulfonic acid) and tris(2-carboxyethyl)phosphines may be introduced either as the triacids or the trisodium salts.
  • Other appropriate salts will be evident to those skilled in the art.
  • the existence in salt form is not particularly important provided the phosphines are soluble in aqueous solution.
  • ligands which may be used to include the following:
  • the atoms chelated to the transition metal in the water soluble complex may be part of mono- or polydentate ligands. Some such polydentate ligands are shown above. Whilst monodentate ligands are preferred, the invention thus also embraces methods which use water-soluble bi-, tri-, tetra-, penta- and hexadentate water-soluble phosphine and water-soluble nitrogen-containing phosphine ligands
  • allyl blocking groups are of particular utility in sequencing polynucleotides wherein the 3′-OH is allylated.
  • the 2′-OH is equally amenable to allylation, and to deprotection according to the method of the invention if necessary.
  • any allylated alcohol may be deprotected according to the method of the invention.
  • Preferred allylated alcohols are those derived from primary and secondary alcohols. Particularly preferred are allylated nucleosides and nucleotides as described herein.
  • the aqueous solution in which allyl deprotection is effected need not be 100% (as the continuous phase). However, substantially pure water (e.g. at least 98 vol % preferably about 100 vol %) is preferred.
  • Cosolvents are generally not required although they can assist in the solublisation of the allylated substrate for the deallylation. Generally, biomolecules are readily soluble in water (e.g. pure water) in which the deprotection reaction described herein may be effected. If desirable, one or more water-miscible cosolvents may be employed. Appropriate solvents include acetonitrile or dimethylsulfoxide, methanol, ethanol and acetone, methanol being preferred. Less preferred solvents include tetrahydrofuran (THF) and dioxane.
  • THF tetrahydrofuran
  • a soluble metal complex comprising a transition metal and one or more water-soluble phosphine and water-soluble nitrogen-containing phosphine ligands. More than one type of water-soluble phosphine/nitrogen-containing phosphine ligand may be used in a deallylation reaction although generally only one type of these classes of ligand will be used in a given reaction. We believe the deallylation reaction to be catalytic. Accordingly, the quantity of transition metal, e.g. palladium, may be less than 1 mol % (calculated relative to the allyl-protected compound to be deprotected).
  • the amount of catalyst may be much less than 1 mol %, e.g. ⁇ 0.50 mol %, preferably ⁇ 0.10 mol %, particularly ⁇ 0.05 mol %. Even lower quantities of metal may be used, for example ⁇ 0.03 or even ⁇ 0.01 mol %. As those skilled in the art will be aware, however, as quantity of catalyst ds reduced, so too is the speed of the reaction. The skilled person will be able to judge, in any instance, the precise quantity of transition metal and thus catalyst most optimally suited to any particular deallylation reaction.
  • the quantity of water-soluble phosphorus-containing ligand(s) used must be greater than 1 molar equivalent (again calculated relative to the allyl-protected compound to be deprotected). Preferably greater than 4, e.g. greater than 6, for example 8-12 molar equivalents of ligand may be used. Even higher quantities of ligand e.g. >20 mole equivalents may be used if desired.
  • each R′ may be independently H or an alkyl
  • Z is of formula —C(R′) 2 —O—R′′, —C(R′) 2 —N(R′′) 2 , —C(R′) 2 —N(H)R′′ and —C(R′) 2 —SR′′.
  • Z is of the formula —C(R′) 2 —O—R′′, —C(R′) 2 —N(R′′) 2 , and —C(R′) 2 —SR′′.
  • R′′ may be a benzyl group or a substituted benzyl group.
  • Z is —C(R′) 2 —N(R′′) 2
  • Z is —C(R′) 2 —N(R′′) 2
  • —N(R′′) 2 is azido (—N 3 ).
  • R′ in Z groups of formula —C(R′) 2 —N 3 and other Z groups may be any of the other groups discussed herein.
  • R′ groups include C 1-6 alkyl, particularly methyl and ethyl, and the following (in which each structure shows the bond which connects the R′ moiety to the carbon atom to which it is attached in the Z groups; the asterisks (*) indicate the points of attachment):
  • each R is an optionally substituted C 1-10 alkyl group, an optionally substituted alkoxy group, a halogen atom or functional group such as hydroxyl, amino, cyano, nitro, carboxyl and the like
  • Het is a heterocyclic (which may for example be a heteroaryl group).
  • R′ groups shown above are preferred where the other R′ group is the same as the first or is hydrogen.
  • Preferred Z groups are of formula C(R′) 2 N 3 in which the R′ groups are selected from the structures given above and hydrogen; or in which (R′) 2 represents an alkylidene group of formula ⁇ C(R′′′) 2 , e.g. ⁇ C(Me) 2 .
  • the azido group may be converted to amino by contacting such molecules with the phosphine or nitrogen-containing phosphines ligands described in detail in connection with the transition metal complexes which serve to cleave the allyl groups from compounds of formula PN—O-allyl, formula R—O-allyl, R 2 N(allyl), RNH (allyl), RN(allyl) 2 and R—S-allyl.
  • the azido group in Z groups of formula C(R′) 2 N 3 may be converted to amino by contacting such molecules with the thiols, in particular water-soluble thiols such as dithiothreitol (DTT).
  • R′ group represents a detectable label attached through a linking group
  • the other R′ group or any other part of “Z” will generally not contain a detectable label, nor will the base of the nucleoside or nucleotide contain a detectable label.
  • Appropriate linking groups for connecting the detectable label to the 3′blocking group will be known to the skilled person and examples of such groups are described in greater detail hereinafter.
  • linkages in R′ groups containing detectable labels are those which contain one or more amide bonds.
  • Such linkers may also contain an arylene, e.g. phenylene, group in the chain (i.e. a linking moiety —Ar— where the phenyl ring is part of the linker by way of its 1,4-disposed carbon atoms).
  • the phenyl ring may be substituted at its non-bonded position with one or more substituents such as alkyl, hydroxyl, alkyloxy, halide, nitro, carboxyl or cyano and the like, particularly electron-withdrawing groups, which electron-withdrawing is either by induction or resonance.
  • the linkage in the R′ group may also include moieties such a —O—, —S(O) q , wherein q is 0, 1 or 2 or NH or Nalkyl. Examples of such Z groups are as follows:
  • EWG electron-withdrawing group
  • n is an integer of from 1 to 50, preferably 2-20, e.g. 3 to 10; and fluor indicates a fluorophore
  • An example of an electron-withdrawing group by resonance is nitro; a group which acts through induction is fluoro.
  • fluorophore is indicated as being the detectable label present, other detectable groups as discussed in greater detail hereinafter may be included instead.
  • each R′′ is or is part of a removable protecting group.
  • R′′ may be a benzyl group or is substituted benzyl group is an alternative embodiment.
  • R′′ is a benzyl group
  • the phenyl ring may bear a linker group to which is attached a fluorophore or other detectable group. Introduction of such groups does not prevent the ability to remove such R′′s and they do not prevent the generation of the desired unstable intermediates during deprotection of blocking groups of formula Z.
  • a “nucleotide” consists of a nitrogenous base, a sugar, and one or more phosphate groups. They are monomeric units of a nucleic acid sequence.
  • the sugar is a ribose, and in DNA a deoxyribose, i.e. a sugar lacking a hydroxyl group that is present in ribose.
  • the nitrogenous base is a derivative of purine or pyrimidine.
  • the purines are adenine (A) and guanine (G), and the pyrimidines are cytosine (C) and thymine (T) (or in the context of RNA, uracil (U)).
  • the C-1 atom of deoxyribose is bonded to N-1 of a pyrimidine or N-9 of a purine.
  • a nucleotide is also a phosphate ester or a nucleoside, with esterification occurring on the hydroxyl group attached to C-5 of the sugar. Nucleotides are usually mono, di- or triphosphates.
  • nucleoside is structurally similar to a nucleotide, but is missing the phosphate moieties.
  • An example of a nucleoside analogue would be one in which the label is linked to the base and there is no phosphate group attached to the sugar molecule.
  • the base is usually referred to as a purine or pyrimidine, the skilled person will appreciate that derivatives and analogues are available which do not alter the capability of the nucleotide or nucleoside to undergo Watson-Crick base pairing.
  • “Derivative” or “analogue” means a compound or molecule whose core structure is the same as, or closely resembles that of, a parent compound, but which has a chemical or physical modification, such as a different or additional side group, or 2′ and or 3′ blocking groups, which allows the derivative nucleotide or nucleoside to be linked to another molecule.
  • the base can be a deazapurine.
  • the derivatives should be capable of undergoing Watson-Crick pairing.
  • “Derivative” and “analogue” also mean a synthetic nucleotide or nucleoside derivative having modified base moieties and/or modified sugar moieties. Such derivatives and analogs are discussed in, e.g., Scheit, Nucleotide Analogs (John Wiley & Son, 1980) and Uhlman et al., Chemical Reviews 90:543-584, 1990. Nucleotide analogs can also comprise modified phosphodiester linkages, including phosphorothioate, phosphorodithioate, alkyl-phosphonate, phosphoranilidate and phosphoramidate linkages. The analogs should be capable of undergoing Watson-Crick base pairing. “Derivative”, “analog” and “modified” as used herein, may be used interchangeably, and are encompassed by the terms “nucleotide” and “nucleoside” defined herein.
  • incorporating means becoming part of a nucleic acid (eg DNA) molecule or oligonucleotide or primer.
  • An oligonucleotide refers to a synthetic or natural molecule comprising a covalently linked sequence of nucleotides which are formed by a phosphodiester or modified phosphodiester bond between the 3′ position of the pentose on one nucleotide and the 5′ position of the pentose on an adjacent nucleotide.
  • alkyl covers straight chain, branched chain and cycloalkyl groups. Unless the context indicates otherwise, the term “alkyl” refers to groups having 1 to 10 carbon atoms, for example 1 to 8 carbon atoms, and typically from 1 to 6 carbon atoms, for example from 1 to 4 carbon atoms. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2-methyl butyl, 3-methyl butyl, and n-hexyl and its isomers.
  • cycloalkyl groups are those having from 3 to 10 ring atoms, particular examples including those derived from cyclopropane, cyclobutane, cyclopentane, cyclohexane and cycloheptane, bicycloheptane and decalin.
  • alkyl (including cycloalkyl) groups are substituted, particularly where these form either both of the R′ groups of the molecules of the invention
  • substituents include halogen substituents or functional groups such as hydroxyl, amino, cyano, nitro, carboxyl and the like. Such groups may also be substituents, where appropriate, of the other R′ groups in the molecules of the invention.
  • amino refers to groups of type NR*R**, wherein R* and R** are independently selected from hydrogen, a C 1-6 alkyl group (also referred to as C 1-6 alkylamino or di-C 1-6 alkylamino).
  • halogen as used herein includes fluorine, chlorine, bromine and iodine.
  • nucleotide molecules of the present invention are suitable for use in many different methods where the detection of nucleotides is required.
  • DNA sequencing methods such as those outlined in U.S. Pat. No. 5,302,509 can be carried out using the nucleotides.
  • the present invention can make use of conventional detectable labels. Detection can be carried out by any suitable method, including fluorescence spectroscopy or by other optical means.
  • the preferred label is a fluorophore, which, after absorption of energy, emits radiation at a defined wavelength.
  • Many suitable fluorescent labels are known. For example, Welch et al. ( Chem. Eur. J. 5(3):951-960, 1999) discloses dansyl-functionalised fluorescent moieties that can be used in the present invention. Zhu et al. ( Cytometry 28:206-211, 1997) describes the use of the fluorescent labels Cy3 and Cy5, which can also be used in the present invention. Labels suitable for use are also disclosed in Prober et al.
  • fluorescent labels include, but are not limited to, fluorescein, rhodamine (including TMR, texas red and Rox), alexa, bodipy, acridine, coumarin, pyrene, benzanthracene and the cyanins.
  • bi-fluorophore FRET cassettes Tet. Let. 46:8867-8871, 2000
  • Multi-fluor dendrimeric systems J. Amer. Chem. Soc. 123:8101-8108, 2001
  • microparticles including quantum dots (Empodocles et al., Nature 399:126-130, 1999), gold nanoparticles (Reichert et al., Anal. Chem. 72:6025-6029, 2000) and microbeads (Lacoste et al., Proc. Natl. Acad. Sci USA 97(17):9461-9466, 2000) can all be used.
  • Multi-component labels can also be used in the invention.
  • a multi-component label is one which is dependent on the interaction with a further compound for detection.
  • the most common multi-component label used in biology is the biotin-streptavidin system. Biotin is used as the label attached to the nucleotide base. Streptavidin is then added separately to enable detection to occur.
  • Other multi-component systems are available. For example, dinitrophenol has a commercially available fluorescent antibody that can be used for detection.
  • nucleotides The invention has been and will be further described with reference to nucleotides. However, unless indicated otherwise, the reference to nucleotides is also intended to be applicable to nucleosides. The invention will also be further described with reference to DNA, although the description will also be applicable to RNA, PNA, and other nucleic acids, unless otherwise indicated.
  • the modified nucleotides of the invention may use a cleavable linker to attach the label to the nucleotide.
  • a cleavable linker ensures that the label can, if required, be removed after detection, avoiding any interfering signal with any labelled nucleotide incorporated subsequently.
  • cleavable linkers is preferable, particularly in the methods of the invention hereinbefore described except where the detectable label is attached to the nucleotide by forming part of the “Z” group.
  • Sanger sequencing methods and related protocols (Sanger-type), which rely upon randomised chain-termination at a particular type of nucleotide.
  • Sanger-type sequencing protocol is the BASS method described by Metzker (infra).
  • Other Sanger-type sequencing methods will be known to those skilled in the art.
  • Sanger and Sanger-type methods generally operate by the conducting of an experiment in which eight types of nucleotides are provided, four of which contain a 3′OH group; and four of which omit the OH group and which are labeled differently from each other.
  • ddNTPs are conventially abbreviated to ddNTPs.
  • the sequence of the target oligonucleotide may be determined.
  • nucleotides of the present invention may be of utility in Sanger methods and related protocols since the same effect achieved by using ddNTPs may be achieved by using the novel 3′-OH blocking groups described herein: both prevent incorporation of subsequent nucleotides.
  • nucleotides according to the present invention in Sanger and Sanger-type sequencing methods, wherein the linker connecting the detectable label to the nucleotide may or may not be cleavable, forms a still further aspect of this invention.
  • the invention provides the use of such nucleotides in a Sanger or a Sanger-type sequencing method.
  • nucleotides where 3′-OH Z-blocked nucleotides according to the present invention are used, it will be appreciated that the detectable labels attached to the nucleotides need not be connected via cleavable linkers, since in each instance where a labelled nucleotide of the invention is incorporated, no nucleotides need to be subsequently incorporated and thus the label need not be removed from the nucleotide.
  • monitoring of the incorporation of 3′OH blocked nucleotides may be determined by use of radioactive 32 P in the phosphate groups attached. These may be present in either the ddNTPs themselves or in the primers used for extension. Where the blocking groups are of formula “Z”, this represents a further aspect of the invention.
  • the invention provides the use of a nucleotide having a 3′OH group blocked with a “Z” group in a Sanger or a Sanger-type sequencing method.
  • a 32 P detectable label may be present in either the ddNTPs used in the primer used for extension.
  • Cleavable linkers are known in the art, and conventional chemistry can be applied to attach a linker to a nucleotide base and a label.
  • the linker can be cleaved by any suitable method, including exposure to acids, bases, nucleophiles, electrophiles, radicals, metals, reducing or oxidising agents, light, temperature, enzymes etc.
  • the linker as discussed herein may also be cleaved with the same catalyst used to cleave the 3′O-blocking group bond.
  • Suitable linkers can be adapted from standard chemical blocking groups, as disclosed in Greene & Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons. Further suitable cleavable linkers used in solid-phase synthesis are disclosed in Guillier et al. (Chem. Rev. 100:2092-2157, 2000).
  • nucleoside cleavage site can be located at a position on the linker that ensures that part of the linker remains attached to the nucleotide base after cleavage.
  • the linker can be attached at any position on the nucleotide base provided that Watson-Crick base pairing can still be carried out.
  • the linker is attached via the 7-position of the purine or the preferred deazapurine analogue, via an 8-modified purine, via an N-6 modified adenosine or an N-2 modified guanine.
  • attachment is preferably via the 5-position on cytosine, thymidine or uracil and the N-4 position on cytosine.
  • Suitable nucleotide structures are shown in FIG. 1 . For each structure in FIG.
  • R 1 X can be H, phosphate, diphosphate or triphosphate.
  • R 1 and R 2 can be the same or different, and are selected from H, OH, O-allyl, or formula Z as described herein or any other group which can be transformed into an OH, including, but not limited to, a carbonyl, provided that at least one of R 1 and R 2 is O-allyl or formula Z as described herein.
  • Some suitable functional groups for R 1 and R 2 include the structures shown in FIGS. 3 and 4 .
  • Suitable linkers include, but are not limited to, disulfide linkers (1), acid labile linkers (2, 3, 4 and 5; including dialkoxybenzyl linkers (e.g., 2), Sieber linkers (e.g., 3), indole linkers (e.g., 4), t-butyl Sieber linkers (e.g., 5)), electrophilically cleavable linkers, nucleophilically cleavable linkers, photocleavable linkers, cleavage under reductive conditions, oxidative conditions, cleavage via use of safety-catch linkers, and cleavage by elimination mechanisms.
  • Electrophilically cleaved linkers are typically cleaved by protons and include cleavages sensitive to acids.
  • Suitable linkers include the modified benzylic systems such as trityl, p-alkoxybenzyl esters and p-alkoxybenzyl amides.
  • Other suitable linkers include tert-butyloxycarbonyl (Boc) groups and the acetal system.
  • thiophilic metals such as nickel, silver or mercury
  • thioacetal or other sulfur-containing protecting groups can also be considered for the preparation of suitable linker molecules.
  • Nucleophilic cleavage is also a well recognised method in the preparation of linker molecules.
  • Groups such as esters that are labile in water (i.e., can be cleaved simply at basic pH) and groups that are labile to non-aqueous nucleophiles, can be used.
  • Fluoride ions can be used to cleave silicon-oxygen bonds in groups such as triisopropyl silane (TIPS) or t-butyldimethyl silane (TBDMS).
  • Photocleavable linkers have been used widely in carbohydrate chemistry. It is preferable that the light required to activate cleavage does not affect the other components of the modified nucleotides. For example, if a fluorophore is used as the label, it is preferable if this absorbs light of a different wavelength to that required to cleave the linker molecule.
  • Suitable linkers include those based on O-nitrobenzyl compounds and nitroveratryl compounds. Linkers based on benzoin chemistry can also be used (Lee et al., J. Org. Chem. 64:3454-3460, 1999).
  • linkers There are many linkers known that are susceptible to reductive cleavage. Catalytic hydrogenation using palladium-based catalysts has been used to cleave benzyl and benzyloxycarbonyl groups. Disulfide bond reduction is also known in the art.
  • Oxidation-based approaches are well known in the art. These include oxidation of p-alkoxybenzyl groups and the oxidation of sulfur and selenium linkers.
  • aqueous iodine to cleave disulfides and other sulfur or selenium-based linkers is also within the scope of the invention.
  • Safety-catch linkers are those that cleave in two steps.
  • the first step is the generation of a reactive nucleophilic center followed by a second step involving an intra-molecular cyclization that results in cleavage.
  • levulinic ester linkages can be treated with hydrazine or photochemistry to release an active amine, which can then be cyclised to cleave an ester elsewhere in the molecule (Burgess et al., J. Org. Chem. 62:5165-5168, 1997).
  • Elimination reactions can also be used.
  • the base-catalysed elimination of groups such as Fmoc and cyanoethyl, and palladium-catalysed reductive elimination of allylic systems can be used.
  • the linker can comprise a spacer unit.
  • the spacer distances e.g., the nucleotide base from the cleavage site or label.
  • the length of the linker is unimportant provided that the label is held a sufficient distance from the nucleotide so as not to interfere with any interaction between the nucleotide and an enzyme:
  • the linker may consist of the same functionality as the block. This will make the deprotection and deblocking process more efficient, as only a single treatment will be required to remove both the label and the block.
  • linkers are phosphine-cleavable azide containing linkers.
  • a method for determining the sequence of a target polynucleotide can be carried out by contacting the target polynucleotide separately with the different nucleotides to form the complement to that of the target polynucleotide, and detecting the incorporation of the nucleotides.
  • Such a method makes use of polymerisation, whereby a polymerase enzyme extends the complementary strand by incorporating the correct nucleotide complementary to that on the target.
  • the polymerisation reaction also requires a specific primer to initiate polymerisation.
  • the incorporation of the modified nucleotide is carried out by the polymerase enzyme, and the incorporation event is then determined.
  • polymerase enzymes include DNA polymerase I, the Klenow fragment, DNA polymerase III, T4 or T7 DNA polymerase, Taq polymerase or Vent polymerase.
  • Polymerases engineered to have specific properties can also be used.
  • the molecule is preferably incorporated by a polymerase and particularly from Thermococcus sp., such as 9° N.
  • the polymerase is a mutant 9° N A485L and even more preferably is a double mutant Y409V and A485L.
  • An example of one such preferred enzyme is Thermococcus sp. 9° N exo ⁇ Y409V A485L available from New England Biolabs. Examples of such appropriate polymerases are disclosed in Proc. Natl. Acad. Sci. USA, 1996(93), pp 5281-5285 , Nucleic Acids Research, 1999(27), pp 2454-2553 and Acids Research, 2002(30), pp 605-613.
  • the sequencing methods are preferably carried out with the target polynucleotide arrayed on a solid support.
  • Multiple target polynucleotides can be immobilised on the solid support through linker molecules, or can be attached to particles, e.g., microspheres, which can also be attached to a solid support material.
  • the polynucleotides can be attached to the solid support by a number of means, including the use of biotin-avidin interactions.
  • Methods for immobilizing polynucleotides on a solid support are well known in the art, and include lithographic techniques and “spotting” individual polynucleotides in defined positions on a solid support. Suitable solid supports are known in the art, and include glass slides and beads, ceramic and silicon surfaces and plastic materials.
  • the support is usually a flat surface although microscopic beads (microspheres) can also be used and can in turn be attached to another solid support by known means.
  • the microspheres can be of any suitable size, typically in the range of from 10 nm to 100 nm in diameter.
  • the polynucleotides are attached directly onto a planar surface, preferably a planar glass surface. Attachment will preferably be by means of a covalent linkage.
  • the arrays that are used are single molecule arrays that comprise polynucleotides in distinct optically resolvable areas, e.g., as disclosed in International Application No. WO00/06770.
  • the sequencing method can be carried out on both single polynucleotide molecule and multi-polynucleotide molecule arrays, i.e., arrays of distinct individual polynucleotide molecules and arrays of distinct regions comprising multiple copies of one individual polynucleotide molecule.
  • Single molecule arrays allow each individual polynucleotide to be resolved separately. The use of single molecule arrays is preferred. Sequencing single molecule arrays non-destructively allows a spatially addressable array to be formed.
  • the method makes use of the polymerisation reaction to generate the complementary sequence of the target. Conditions compatible with polymerization reactions will be apparent to the skilled person.
  • the primer sequence may be added as a separate component with respect to the target polynucleotide.
  • the primer and the target polynucleotide may each be part of one single stranded molecule, with the primer portion forming an intramolecular duplex with a part of the target, i.e., a hairpin loop structure. This structure may be immobilised to the solid support at any point on the molecule.
  • Other conditions necessary for carrying out the polymerase reaction including temperature, pH, buffer compositions etc., will be apparent to those skilled in the art.
  • the modified nucleotides of the invention are then brought into contact with the target polynucleotide, to allow polymerisation to occur.
  • the nucleotides may be added sequentially, i.e., separate addition of each nucleotide type (A, T, G or C), or added together. If they are added together, it is preferable for each nucleotide type to be labelled with a different label.
  • This polymerisation step is allowed to proceed for a time sufficient to allow incorporation of a nucleotide.
  • Nucleotides that are not incorporated are then removed, for example, by subjecting the array to a washing step, and detection of the incorporated labels may then be carried out.
  • Detection may be by conventional means, for example if the label is a fluorescent moiety, detection of an incorporated base may be carried out by using a confocal scanning microscope to scan the surface of the array with a laser, to image a fluorophore bound directly to the incorporated base.
  • a sensitive 2-D detector such as a charge-coupled detector (CCD)
  • CCD charge-coupled detector
  • SNOM scanning near-field optical microscopy
  • individual polynucleotides may be distinguished when separated by a distance of less than 100 nm, e.g., 10 nm to 10 ⁇ m.
  • SNOM scanning near-field optical microscopy
  • the label may be removed using suitable conditions that cleave the linker and the 3′OH block to allow for incorporation of further modified nucleotides of the invention.
  • Appropriate conditions may be those described herein for allyl group and for “Z” group deprotections. These conditions can serve to deprotect both the linker (if cleavable) and the blocking group.
  • the linker may be deprotected separately from the allyl group by employing methods of cleaving the linker known in the art (which do not sever the 0-blocking group bond) followed by deprotection.
  • Nucleotides bearing this blocking group at the 3′position have been synthesised, shown to be successfully incorporated by DNA polymerases, block efficiently and may be subsequently removed under neutral, aqueous conditions using water soluble phosphines or thiols allowing further extension:
  • Tetrasodium diphosphate decahydrate (1.5 g, 3.4 mmol) was dissolved in water (34 ml) and the solution was applied to a column of dowex in the H + form. The column was eluted with water. The eluent dropped directly into a cooled (ice bath) and stirred solution of tri-n-butylamine (1.6 ml, 6.8 mmol) in EtOH (14 ml). The column was washed until the pH of the eluent increased to 6. The aq. ethanol solution was evaporated to dryness and then co-evaporated twice with ethanol and twice with anhydrous DMF. The residue was dissolved in DMF (6.7 ml). The pale yellow solution was stored over 4 ⁇ molecular sieves.
  • the nucleoside (4) and proton sponge was dried over P 2 O 5 under vacuum overnight.
  • a solution of (4) (92 mg, 0.21 mmol) and proton sponge (90 mg, 0.42 mmol) in trimethylphosphate (0.5 ml) was stirred with 4 ⁇ molecular sieves for 1 h.
  • Freshly distilled POCl 3 (24 ⁇ l, 0.26 mmol) was added and the solution was stirred at 4° C. for 2 h.
  • the mixture was slowly warmed up to room temperature and bis (tri-n-butyl ammonium) pyrophosphate (1.7 ml, 0.85 mmol) and anhydrous tri-n-butyl amine (0.4 ml, 1.7 mmol) was added.
  • the starting disulfide (4.0 mg, 13.1 ⁇ mol) was dissolved in DMF (300 ⁇ L) and diisopropylethylamine (4 ⁇ L) was slowly added. The mixture was stirred at room temperature and a solution of Cy-3 dye (5 mg, 6.53 ⁇ mol) in DMF (300 ⁇ L) was added over 10 min.
  • the starting material (8) (10 g, 20.43 mmol) was azeotroped in dry pyridine (2 ⁇ 100 ml) then dissolved in dry pyridine (160 ml) under N 2 atmosphere. Chlorotrimethylsilane (10 ml, 79.07 mmol) added drop wise to the solution and stirred for 2 hours at room temperature. Benzoyl chloride (2.6 ml, 22.40 mmol) was then added to solution and stirred for one further hour. The reaction mixture was cooled to 0° C., distilled water (50 ml) added slowly to the solution and stirred for 30 minutes. Pyridine and water were evaporated from mixture under high vacuum to yield a brown gel that was portioned between 100 ml of sat.
  • the starting material (13) (2.85 g, 4.79 mmol) was dissolved in dry DMSO (40 ml) under N 2 atmosphere. Acetic acid (2.7 ml, 47.9 mmol) and acetic anhydride (14.4 ml, 143.7 mmol) were added sequentially and slowly to the starting material, which was then stirred for 18 h at room temperature. Saturated NaHCO 3 (150 ml) solution was carefully added to the reaction mixture. The aqueous layer was extracted with EtOAc (3 ⁇ 150 ml). The organic layers were combined, dried (MgSO 4 ), filtered and evaporated to yield an orange liquid that was subsequently azeotroped with toluene (4 ⁇ 150 ml) until material solidified.
  • the starting material (14) (1.65 g, 2.99 mmol was dissolved in DCM (18 ml) and cooled to 0° C. Cyclohexene (1.5 ml, 14.95 mmol) and SO 2 Cl 2 (0.72 ml, 8.97 mmol) were added and stirred 1 h in ice bath. TLC indicated starting material still to be present whereupon a further aliquot of SO 2 Cl 2 (0.24 ml) was added and the mixture stirred for 1 h at 0° C. Volatiles were removed by evaporation to yield a light brown solid that was redissolved in 18 ml of dry DMF (18 ml) under N 2 .
  • the starting material (140 mg, 0.22 mmol) was dissolved in THF (7.5 ml).
  • TBAF (1M soln. in THF, 0.25 ml) was added slowly and stirred for 2 h at room temperature.
  • Volatile material removed under reduced pressure to yield a brown gel that was purified by flash chromatography (EtOAc:DCM 7:3) to yield the desired product (16) as a light coloured crystalline solid (0.9 g, 76%).
  • Alexa Fluor 488-NHS 35 mg, 54 ⁇ mol was dissolved in DMF (700 ⁇ L) and, to ensure full activation, 4-DMAP (7 mg, 59 ⁇ mol) and N,N′-disuccinimidyl carbonate (15 mg, 59 ⁇ mol) were sequentially added. After 15 min on complete activation, a solution of the starting disulfide (32.0 mg, 108 ⁇ mol) in DMF (300 ⁇ L) containing diisopropylethylamine (4 ⁇ L) was added over the solution of the activated dye.
  • Alexa Fluor 488 disulfide linker (3.4 ⁇ mol, 2.37 mg) in DMF (200 ⁇ L) was added 4-DMAP (0.75 mg, 5.1 ⁇ mol) and N,N-disuccinimidyl carbonate (1.70 mg, 5.1 ⁇ mol). The mixture was stirred for 15 to full activation of the acid, then it was added into the solution of the nucleotide (17) (3.45 mg, 6.0 ⁇ mol) in DMF (0.3 ml) containing nBu 3 N (40 ⁇ L) at 0° C. The mixture was sonicated for 3 min and then continuously stirred for 16 h in the absence of light.
  • Tetrasodium diphosphate decahydrate (1.5 g, 3.4 mmol) was dissolved in water (34 ml) and the solution was applied to a column of dowex 50 in the H + form. The column was washed with water. The eluent dropped directly into a cooled (ice bath) and stirred solution of tri-n-butyl amine (1.6 ml, 6.8 mmol) in EtOH (14 ml). The column was washed until the pH of the eluent increased to 6. The aqueous ethanol solution was evaporated to dryness and then co-evaporated twice with ethanol and twice with anhydrous DMF. The residue was dissolved in DMF (6.7 ml).
  • the pale yellow solution was stored over 4 ⁇ molecular sieves.
  • the nucleoside (22) and proton sponge was dried over P 2 O 5 under vacuum overnight.
  • a solution of (22) (104 mg, 0.22 mmol) and proton sponge (71 mg, 0.33 mmol) in trimethylphosphate (0.4 ml) was stirred with 4 ⁇ molecular sieves for 1 h.
  • Freshly distilled POCl 3 (25 ⁇ l, 0.26 mmol) was added and the solution was stirred at 4° C. for 2 h.
  • the mixture was slowly warmed up to room temperature and bis (tri-n-butyl ammonium) pyrophosphate (1.76 ml, 0.88 mmol) and anhydrous tri-n-butyl amine (0.42 ml, 1.76 mmol) were added. After 5 min, the reaction was quenched with 0.1 M TEAB (triethylammonium bicarbonate) buffer (15 ml) and stirred for 3 h. The water was removed under reduced pressure and the resulting residue dissolved in concentrated ammonia ( ⁇ 0.88, 10 ml) and stirred at room temperature for 16 h. The reaction mixture was then evaporated to dryness. The residue was dissolved in water and the solution applied to a DEAE-Sephadex A-25 column.
  • TEAB triethylammonium bicarbonate
  • MPLC MPLC was performed with a linear gradient of 2 L each of 0.05 M and 1 M TEAB.
  • the triphosphate was eluted between 0.7 M and 0.8 M buffer. Fractions containing the product were combined and evaporated to dryness. The residue was dissolved in water and further purified by HPLC.
  • t r (23) 20.5 min (Zorbax C18 preparative column, gradient: 5% to 35% B in 30 min, buffer A 0.1M TEAB, buffer B MeCN).
  • the reaction was quenched with TEAB buffer (0.1M, 10 ml) and loaded on a DEAE Sephadex column (2 ⁇ 5 cm).
  • the column was first eluted with 0.1 M TEAB buffer (100 ml) and then 1 M TEAB buffer (100 ml).
  • the desired triphosphate product was eluted out with 1 M TEAB buffer.
  • t r (24) 23.8 min (Zorbax C18 preparative column, gradient: 5% to 55% B in 30 min, buffer A 0.1M TEAB, buffer B MeCN).
  • the nucleoside (25) (1.13 g, 2.82 mmol) was coevaporated twice in dry pyridine (2 ⁇ 10 ml) and dissolved in dry pyridine (18 ml). To this solution was added t-butyldiphenylsilylchloride (748 ⁇ l, 2.87 mmol) in small portions at 0° C. The reaction mixture was let to warm up at room temperature and left stirring overnight. The reaction was quenched with sat. aq. NaCl solution. EtOAc (25 ml) was added to reaction mixture and the aqueous layer was extracted with EtOAc three times. After drying the combined organic extracts (MgSO 4 ) the solvent was removed under vacuum.
  • the nucleoside (30) and proton sponge was dried over P 2 O 5 under vacuum overnight.
  • a solution of (30) (150 mg, 0.294 mmol) and proton sponge (126 mg, 0.588 mmol) in trimethylphosphate (980 ⁇ l) was stirred with 4 ⁇ molecular sieves for 1 h.
  • Freshly distilled POCl 3 (36 ⁇ l, 0.388 mmol) was added and the solution was stirred at 4° C. for 2 h.
  • the mixture was slowly warmed up to room temperature and bis (tri-n-butyl ammonium) pyrophosphate 0.5 M solution in DMF (2.35 ml, 1.17 mmol) and anhydrous tri-n-butyl amine (560 ⁇ l, 2.35 mmol) was added. After 5 min, the reaction was quenched with 0.1 M TEAB (triethylammonium bicarbonate) buffer (15 ml) and stirred for 3 h. The water was removed under reduced pressure and the resulting residue dissolved in concentrated ammonia (p 0.88, 15 ml) and stirred at room temperature for 16 h. The reaction mixture was then evaporated to dryness.
  • TEAB triethylammonium bicarbonate
  • a hairpin DNA covalently attached self complementary primer/template
  • streptavidin bead By attaching a hairpin DNA (covalently attached self complementary primer/template) to a streptavidin bead
  • the reaction can be performed over multiple cycles as shown in FIGS. 5 and 6 .
  • TE buffer Tris-HCl pH 8, 10 mM and EDTA, 1 mM. Resuspend in B & W buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA and 2.0 M NaCl), add biotinylated 32 P labelled hairpin DNA with appropriate overhanging template sequence. Allow to stand at room temperature for 15 minutes. Remove buffer and wash beads 3 times TE buffer.
  • Tris-(2-carboxyethyl)phosphines trisodium salt (TCEP) (0.1M) is added to the beads and mixed thoroughly. The mixture was then incubated at 65° C. for 15 minutes. The deblocking solution is removed and the beads washed 3 times with TE buffer.
  • Iodoacetamide (431 mM) in 0.1 mM phosphate pH 6.5 is added to the beads and mixed thoroughly, this is then left at room temperature for 5 minutes. The capping solution is removed and the beads washed 3 times with TE buffer.
  • the reaction products can be analysed by placing the bead solution in the well of a standard 12% polyacrylamide DNA sequencing gel in 40% formamide loading buffer. Running the gel under denaturing conditions causes the DNA to be released from the beads and onto the gel.
  • the DNA band shifts are affected by both the presence of dye and the addition of extra nucleotides and thus the cleavage of the dye (and block) with the phosphine cause a mobility shift on the gel.
  • nucleoside (42) (170 mg, 0.41 mmol) and proton sponge (105 mg, 0.50 mmol) (both previously dried under P 2 O 5 for at least 24 h) in PO(OMe) 3 (360 ⁇ l), at 0° C. under Argon atmosphere, was slowly added POCl 3 (freshly distilled) (50 ⁇ l, 0.54 mmol). The solution was vigorously stirred for 3 h at 0° C.
  • the nucleoside (47) and proton sponge was dried over P 2 O 5 under vacuum overnight.
  • a solution of (47) (73 mg, 0.16 mmol) and proton sponge (69 mg, 0.32 mmol) trimethylphosphate (0.5 ml) was stirred with 4 ⁇ molecular sieves for 1 h.
  • Freshly distilled POCl 3 (18 ⁇ l, 0.19 mmol) was added and the solution was stirred at 4° C. for 2 h.
  • the mixture was slowly warmed up to room temperature and bis (tri-n-butyl ammonium) pyrophosphate (1.3 ml, 0.88 mmol) and anhydrous tri-n-butyl amine (0.3 ml, 1.28 mmol) was added.
  • reaction was quenched with 0.1 M TEAB (triethylammonium bicarbonate) buffer (10 ml) and stirred for 3 h.
  • TEAB triethylammonium bicarbonate
  • the water was removed under reduced pressure and the resulting residue dissolved in concentrated ammonia ( ⁇ 0.88, 10 ml) and stirred at room temperature for 16 h.
  • the reaction mixture was then evaporated to dryness.
  • the residue was dissolved in water and the solution applied to a DEAE-Sephadex A-25 column.
  • MPLC was performed with a linear gradient of 2 L each of 0.05 M and 1 M TEAB.
  • the triphosphate was eluted between 0.7 M and 0.8 M buffer. Fractions containing the product were combined and evaporated to dryness.
  • TBDPSCl (0.87 g, 2.78 mmol) was added to a stirred solution of 7-deaza-7-iodo-2′-deoxyadenosine (1.05 g, 2.78 mmol) in dry pyridine (19 ml) at 5° C. under N 2 . After 10 min the solution was allowed to rise to room temperature and stirred for 18 h. The solution was evaporated under reduced pressure and the residue purified by flash chromatography on silica (DCM to DCM:MeOH 19:1). This gave the desired product (49) (1.6 g, 83%).
  • the nucleoside (54) and proton sponge was dried over P 2 O 5 under vacuum overnight.
  • a solution of (54) (84 mg, 0.191 mmol) and proton sponge (49 mg, 0.382 mmol) in trimethylphosphate (600 ⁇ l) was stirred with 4 ⁇ molecular sieves for 1 h.
  • Freshly distilled POCl 2 (36 ⁇ l, 0.388 mmol) was added and the solution was stirred at 4° C. for 2 h.
  • the mixture was slowly warmed up to room temperature and bis (tri-n-butyl ammonium) pyrophosphate 0.5 M in solution in DMF (1.52 ml, 0.764 mmol) and anhydrous tri-n-butyl amine (364 ⁇ l, 1.52 mmol) was added. After 5 min, the reaction was quenched with 0.1 M TEAB (triethylammonium bicarbonate) buffer (5 ml) and stirred for 3 h. The water was removed under reduced pressure and the resulting residue dissolved in concentrated ammonia (p 0.88, 5 ml) and stirred at room temperature for 16 h. The reaction mixture was then evaporated to dryness.
  • TEAB triethylammonium bicarbonate
  • Nucleotides bearing this blocking group have similar properties to the allyl example, though incorporate less rapidly. Deblocking can be achieved efficiently by the use of aqueous buffered cerium ammonium nitrate or DDQ, both conditions initially liberating the hemiacetal (1) which decomposes to the required (2) prior to further extension:
  • the 3′-OH may also be protected with benzyl groups where the phenyl group is unsubstituted, e.g. with benzyloxymethyl, as well as benzyl groups where the phenyl group bears electron-donating substituents; an example of such an electron-rich benzylic protecting group is 3,4-dimethoxybenzyloxymethyl.
  • electron-poor benzylic protecting groups such as those in which the phenyl ring is substituted with one or more nitro groups, are less preferred since the conditions required to form the intermediate groups of formulae —C(R′) 2 —OH, —C(R′) 2 —NH 2 , and —C(R′) 2 —SH are sufficiently harsh that the integrity of the polynucleotide can be affected by the conditions needed to deprotect such electron-poor benzylic protecting groups.
  • Nucleotides bearing this blocking group may be converted to the intermediate hemiacetal using catalytic reactions known to those skilled in the art such as, for example, those using heavy metal ions such as silver.

Abstract

The invention provides modified nucleotide or nucleoside molecule comprising a purine or pyrimidine base and a ribose or deoxyribose sugar moiety having a removable 3′-OH blocking group covalently attached thereto, such that the 3′ carbon atom has attached a group of the structure —O—Z wherein Z is any of —C(R′)2-O—R″, —C(R′)2-N(R″)2, —C(R′)2-N(H)R″, —C(R′)2-S—R″ and —C(R′)2-F, wherein each R″ is or is part of a removable protecting group; each R′ is independently a hydrogen atom, an alkyl, substituted alkyl, arylalkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclic, acyl, cyano, alkoxy, aryloxy, heteroaryloxy or amido group, or a detectable label attached through a linking group; or (R′)2 represents an alkylidene group of formula ═C(R′″)2 wherein each R′″ may be the same or different and is selected from the group comprising hydrogen and halogen atoms and alkyl groups; and wherein said molecule may be reacted to yield an intermediate in which each R″ is exchanged for H or, where Z is —C(R′)2-F, the F is exchanged for OH, SH or NH2, preferably OH, which intermediate dissociates under aqueous conditions to afford a molecule with a free 3′OH; with the proviso that where Z is —C(R′)2-S—R″, both R′ groups are not H.

Description

  • The invention relates to modified nucleotides. In particular, this invention discloses nucleotides having a removable protecting group, their use in polynucleotide sequencing methods and a method for chemical deprotection of the protecting group.
  • Advances in the study of molecules have been led, in part, by improvement in technologies used to characterise the molecules or their biological reactions. In particular, the study of the nucleic acids DNA and RNA has benefited from developing technologies used for sequence analysis and the study of hybridisation events.
  • An example of the technologies that have improved the study of nucleic acids is the development of fabricated arrays of immobilised nucleic acids. These arrays consist typically of a high-density matrix of polynucleotides immobilised onto a solid support material. See, e.g., Fodor et al., Trends Biotech. 12:19-26, 1994, which describes ways of assembling the nucleic acids using a chemically sensitized glass surface protected by a mask, but exposed at defined areas to allow attachment of suitably modified nucleotide phosphoramidites. Fabricated arrays can also be manufactured by the technique of “spotting” known polynucleotides onto a solid support at predetermined positions (e.g., Stimpson et al., Proc. Natl. Acad. Sci. USA 92:6379-6383, 1995).
  • Sequencing by synthesis of DNA ideally requires the controlled (i.e. one at a time) incorporation of the correct complementary nucleotide opposite the oligonucleotide being sequenced. This allows for accurate sequencing by adding nucleotides in multiple cycles as each nucleotide residue is sequenced one at a time, thus preventing an uncontrolled series of incorporations occurring. The incorporated nucleotide is read using an appropriate label attached thereto before removal of the label moiety and the subsequent next round of sequencing. In order to ensure only a single incorporation occurs, a structural modification (“blocking group”) of the sequencing nucleotides is required to ensure a single nucleotide incorporation but which then prevents any further nucleotide incorporation into the polynucleotide chain. The blocking group must then be removable, under reaction conditions which do not interfere with the integrity of the DNA being sequenced. The sequencing cycle can then continue with the incorporation of the next blocked, labelled nucleotide. In order to be of practical use, the entire process should consist of high yielding, highly specific chemical and enzymatic steps to facilitate multiple cycles of sequencing.
  • To be useful in DNA sequencing, nucleotide, and more usually nucleotide triphosphates, generally require a 3′OH-blocking group so as to prevent the polymerase used to incorporate it into a polynucleotide chain from continuing to replicate once the base on the nucleotide is added. There are many limitations on the suitability of a molecule as a blocking group. It must be such that it prevents additional nucleotide molecules from being added to the polynucleotide chain whilst simultaneously being easily removable from the sugar moiety without causing damage to the polynucleotide chain. Furthermore, the modified nucleotide must be tolerated by the polymerase or other appropriate enzyme used to incorporate it into the polynucleotide chain. The ideal blocking group will therefore exhibit long term stability, be efficiently incorporated by the polymerase enzyme, cause total blocking of secondary or further incorporation and have the ability to be removed under mild conditions that do not cause damage to the polynucleotide structure, preferably under aqueous conditions. These stringent requirements are formidable obstacles to the design and synthesis of the requisite modified nucleotides.
  • Reversible blocking groups for this purpose have been described previously but none of them generally meet the above criteria for polynucleotide, e.g. DNA-compatible, chemistry.
  • Metzker et al., (Nucleic Acids Research, 22(20): 4259-4267, 1994) discloses the synthesis and use of eight 3′-modified 2-deoxyribonucleoside 5′-triphosphates (3′-modified dNTPs) and testing in two DNA template assays for incorporation activity. The 3′-modified dNTPs included 3′allyl deoxyriboadenosine 5′-triphosphate (3′-allyl dATP). However, the 3′allyl blocked compound was not used to demonstrate a complete cycle of termination, deprotection and reinitiation of DNA synthesis: the only test results presented were those which showed the ability of this compound to terminate DNA synthesis in a single termination assay, out of eight such assays conducted, each conducted with a different DNA polymerase.
  • WO02/29003 (The Trustees of Columbia University in the City of New York) describes a sequencing method which, may include the use of an allyl protecting group to cap the 3′-OH group on a growing strand of DNA in a polymerase reaction. The allyl group is introduced according to the procedure of Metzker (infra) and is said to be removed by using methodology reported by Kamal et al (Tet. Let, 40, 371-372, 1999).
  • The Kamal deprotection methodology employs sodium iodide and chlorotrimethylsilane so as to generate in situ iodotrimethylsilane, in acetonitrile solvent, quenching with sodium thiosulfate. After extraction into ethyl acetate and drying (sodium sulfate), then concentration under reduced pressure and column chromatography (ethyl acetate:hexane; 2:3 as eluant), free alcohols were obtained in 90-98% yield.
  • In WO02/29003, the Kamal allyl deprotection is suggested as being directly applicable in DNA sequencing without modification, the Kamal conditions being mild and specific.
  • While Metzker reports on the preparation of a 3′allyl-blocked nucleotide or nucleoside and WO02/29003 suggests the use of the allyl functionality as a 3′-OH cap during sequencing, neither of these documents actually teaches the deprotection of 3′-allylated hydroxyl group in the context of a sequencing protocol. Whilst the use of an allyl group as a hydroxyl protecting group is well known—it is easy to introduce and is stable across the whole pH range and to elevated temperatures—there is to date, no concrete embodiment of the successful cleavage of a 3′-allyl group under DNA compatible conditions, i.e. conditions under which the integrity of the DNA is not wholly or partially destroyed. In other words, it has not been possible hitherto to conduct DNA sequencing using 3′OH allyl-blocked nucleotides.
  • The Kamal methodology is inappropriate to conduct in aqueous media since the TMS chloride will hydrolyse preventing the in situ generation of TMS iodide. Attempts to carry out the Kamal deprotection (in acetonitrile) in sequencing have proven unsuccessful in our hands.
  • The present invention is based on the surprising development of a number of reversible blocking groups and methods of deprotecting them under DNA compatible conditions. Some of these blocking groups are novel per se; others have been disclosed in the prior art but, as noted above, it has not proved possible to utilised these blocking groups in DNA sequencing.
  • One feature of the invention derives from the development of a completely new method of allyl deprotection. Our procedure is of broad applicability to the deprotection of virtually all allyl-protected hydroxyl functionality and may be effected in aqueous solution, in contrast to the methodology of Kamal et al. (which is effected in acetonitrile) and to the other methods known generally in the prior art which are highly oxygen- and moisture-sensitive. A further feature of the invention derives from the development of a new class of protecting groups. These are based upon acetals and related protecting groups but do not suffer from some of the disadvantages of acetal deprotection known in the prior art.
  • The allyl deprotection methodology makes use of a water-soluble transition metal catalyst formed from a transition metal and at least partially water-soluble ligands. In aqueous solution these form at least partially water-soluble transition metal complexes. By aqueous solution herein is meant a liquid comprising at least 20 vol %, preferably at least 50%, for example at least 75 vol %, particularly at least 95 vol % and especially greater than above 98 vol %, ideally 100 vol % of water as the continuous phase.
  • As those skilled in the art will appreciate, the allyl group may be used to protect not only the hydroxyl group but also thiol and amine functionalities. Moreover allylic esters may be formed from the reaction between carboxylic acids and allyl halides, for example. Primary or secondary amides may also be protected using methods known in the art. The novel deprotection methodology described herein may be used in the deprotection of all these allylated compounds, e.g. allyl esters and mono- or bisallylated primary amines or allylated amides, or in the deprotection of allylated secondary amines. The method is also suitable in the deprotection of allyl esters and thioethers.
  • Protecting groups which comprise the acetal functionality have been used previously as blocking groups. However, removal of such groups and ethers requires strongly acidic deprotections detrimental to DNA molecules. The hydrolysis of an acetal however, results in the formation of an unstable hemiacetal intermediate which hydrolyses under aqueous conditions to the natural hydroxyl group. The inventors have utilised this concept and applied it further such that this feature of the invention resides in utilising blocking groups that include protecting groups to protect intermediate molecules that would normally hydrolyse under aqueous conditions. These protecting groups comprise a second functional group that stabilises the structure of the intermediate but which can be removed at a later stage following incorporation into the polynucleotide. Protecting groups have been used in organic synthesis reactions to temporarily mask the characteristic chemistry of a functional group because it interferes with another reaction.
  • Therefore, according to a first aspect of the invention there is provided a modified nucleotide or nucleoside molecule comprising a purine or pyrimidine base and a ribose or deoxyribose sugar moiety having a removable 3′-OH blocking group covalently attached thereto, such that the 3′ carbon atom has attached a group of the structure

  • —O—Z
  • wherein Z is any of —C(R′)2—O—R″, —C(R′)2—N(R″)2, —C(R′)2—N(H)R″, —C(R′)2—S—R″ and —C(R′)2—F,
  • wherein each R″ is or is part of a removable protecting group;
  • each R′ is independently a hydrogen atom, an alkyl, substituted alkyl, arylalkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclic, acyl, cyano, alkoxy, aryloxy, heteroaryloxy or amido group, or a detectable label attached through a linking group; or (R′)2 represents an alkylidene group of formula ═C(R′″)2 wherein each R′″ may be the same or different and is selected from the group comprising hydrogen and halogen atoms and alkyl groups; and
  • wherein said molecule may be reacted to yield an intermediate in which each R″ is exchanged for H or, where Z is —C(R′)2—F, the F is exchanged for OH, SH or NH2, preferably OH, which intermediate dissociates under aqueous conditions to afford a molecule with a free 3′OH;
  • with the proviso that where Z is —C(R′)2—S—R″, both R′ groups are not H.
  • Viewed from another aspect, the invention provides a, 3′-O-allyl nucleotide or nucleoside which nucleotide or nucleoside comprises a detectable label linked to the base of the nucleoside or nucleotide, preferably by a cleavable linker.
  • In a further aspect, the invention provides a polynucleotide comprising a 3′-O-allyl nucleotide or nucleoside which nucleotide or nucleoside comprises a detectable label linked to the base of the nucleoside or nucleotide, preferably by a cleavable linker.
  • Viewed from a still further aspect, the invention provides a method of converting a compound of formula R—O-allyl, R2N(allyl), RNH(allyl), RN(allyl)2 or R—S-allyl to a corresponding compound in which the allyl group is removed and replaced by hydrogen, said method comprising the steps of reacting a compound of formula R—O-allyl, R2N(allyl), RNH(allyl), RN(allyl)2 or R—S-allyl in aqueous solution with a transition metal comprising a transition metal and one or more ligands selected from the group comprising water-soluble phosphine and water-soluble nitrogen-containing phosphine ligands, wherein the or each R is a water-soluble biological molecule.
  • In a further aspect the invention provides a method of controlling the incorporation of a nucleotide molecule complementary to the nucleotide in a target single-stranded polynucleotide in a synthesis or sequencing reaction comprising incorporating into the growing complementary polynucleotide a molecule according to the invention, the incorporation of said molecule preventing or blocking introduction of subsequent nucleoside or nucleotide molecules into said growing complementary polynucleotide.
  • In a further aspect, the invention provides a method for determining the sequence of a target single-stranded, polynucleotide, comprising monitoring the sequential incorporation of complementary nucleotides, wherein at least one incorporation, and preferably all of the incorporations is of a nucleotide according to the invention as hereinbefore described which preferably comprises a detectable label linked to the base of the nucleoside or nucleotide by a cleavable linker and wherein the identity of the nucleotide incorporated is determined by detecting the label, said blocking group and said label being removed prior to introduction of the next complementary nucleotide.
  • From a further aspect, the invention provides a method for determining the sequence of a target single-stranded polynucleotide, comprising:
  • (a) providing a plurality of different nucleotides according to the hereinbefore described invention which nucleotides are preferably linked from the base to a detectable label by a cleavable linker and wherein the detectable label linked to each type of nucleotide can be distinguished upon detection from the detectable label used for other types of nucleotides;
  • (b) incorporating the nucleotide into the complement of the target single-stranded polynucleotide;
  • (c) detecting the label of the nucleotide of (b), thereby determining the type of nucleotide incorporated;
  • (d) removing the label of the nucleotide of (b) and the blocking group; and
  • (e) optionally repeating steps (b)-(d) one or more times;
  • thereby determining the sequence of a target single-stranded polynucleotide.
  • Additionally, in another aspect, the invention provides a kit, comprising:
  • (a) a plurality of different individual nucleotides of the invention; and
  • (b) packaging materials therefor.
  • The nucleosides or nucleotides according to or used in the methods of the present invention comprise a purine or pyrimidine base and a ribose or deoxyribose sugar moiety which has a blocking group covalently attached thereto, preferably at the 3′O position, which renders the molecules useful in techniques requiring blocking of the 3′-OH group to prevent incorporation of additional nucleotides, such as for example in sequencing reactions, polynucleotide synthesis, nucleic acid amplification, nucleic acid hybridisation assays, single nucleotide polymorphism studies, and other such techniques.
  • Where the term “blocking group” is used herein in the context of the invention, this embraces both the allyl and “Z” blocking groups described herein. However, it will be appreciated that, in the methods of the invention as described and claimed herein, where mixtures of nucleotides are used, these very preferably each comprise the same type of blocking, i.e. allyl-blocked or “Z”-blocked. Where “Z”-blocked nucleotides are used, each “Z” group will generally be the same group, except in those cases where the detectable label forms part of the “Z” group, i.e. is not attached to the base.
  • Once the blocking group has been removed, it is possible to incorporate another nucleotide to the free 3′-OH group.
  • The molecule can be linked via the base to a detectable label by a desirable linker, which label may be a fluorophore, for example. The detectable label may instead, if desirable, be incorporated into the blocking groups of formula “Z”. The linker can be acid labile, photolabile or contain a disulfide linkage. Other linkages, in particular phosphine-cleavable azide-containing linkers, may be employed in the invention as described in greater detail.
  • Preferred labels and linkages included those disclosed in WO 03/048387.
  • In the methods where nucleotides are incorporated, e.g. where the incorporation of a nucleotide molecule complementary to the nucleotide in a target single stranded polynucleotide is controlled in a synthesis or sequencing reaction of the invention, the incorporation of the molecule may be accomplished via a terminal transferase, a polymerase or a reverse transcriptase.
  • Preferably, the molecule is incorporated by a polymerase and particularly from Thermococcus sp., such as 9° N. Even more preferably, the polymerase is a mutant 9° N A485L and even more preferably is a double mutant Y409V and A485L.
  • In the methods for determining the sequence of a target single-stranded polynucleotide comprising monitoring the sequential incorporation of complementary nucleotides of the invention, it is preferred that the blocking group and the label may be removed in a single chemical treatment step. Thus, in a preferred embodiment of the invention, the blocking group is cleaved simultaneously with the label. This will of course be a feature inherent to those blocking groups of formula Z which incorporate a detectable label.
  • Furthermore, preferably the blocked and labelled modified nucleotide constructs of the nucleotide bases A, T, C and G are recognised as substrates by the same polymerase enzyme.
  • In the methods described herein, each of the nucleotides can be brought into contact with the target sequentially, with removal of non-incorporated nucleotides prior to addition of the next nucleotide, where detection and removal of the label and the blocking group is carried out either after addition of each nucleotide, or after addition of all four nucleotides.
  • In the methods, all of the nucleotides can be brought into contact with the target simultaneously, i.e., a composition comprising all of the different nucleotides is brought into contact with the target, and non-incorporated nucleotides are removed prior to detection and subsequent to removal of the label and the blocking group.
  • The methods can comprise a first step and a second step, where in the first step, a first composition comprising two of the four types of modified nucleotides is brought into contact with the target, and non-incorporated nucleotides are removed prior to detection and subsequent to removal of the label and the blocking group, and where in the second step, a second composition comprising the two nucleotides not included in the first composition is brought into contact with the target, and non-incorporated nucleotides are removed prior to detection and subsequent to removal of the label and blocking group, and where the first steps and the second step can be optionally repeated one or more times.
  • The methods described herein can also comprise a first step and a second step, where in the first step, a composition comprising one of the four nucleotides is brought into contact with the target, and non-incorporated nucleotides are removed prior to detection and subsequent to removal of the label and blocking group, and where in the second step, a second composition, comprising the three nucleotides not included in the first composition is brought into contact with the target, and non-incorporated nucleotides are removed prior to detection and subsequent to removal of the label and blocking group, and where the first steps and the second step can be optionally repeated one or more times.
  • The methods described herein can also comprise a first step and a second step, where in the first step, a first composition comprising three of the four nucleotides is brought into contact with the target, and non-incorporated nucleotides are removed prior to detection and subsequent to removal of the label and blocking group and where in the second step, a composition comprising the nucleotide not included in the first composition is brought into contact with the target, and non-incorporated nucleotides are removed prior to detection and subsequent to removal of the label and blocking group, and where the first steps and the second step can be optionally repeated one or more times.
  • The incorporating step in the methods of the invention can be accomplished via a terminal transferase, a polymerase or a reverse transcriptase as hereinbefore defined. The detectable label and/or the cleavable linker can be of a size sufficient to prevent the incorporation of a second nucleotide or nucleoside into the nucleic acid molecule.
  • In certain methods described herein for determining the sequence of a target single-stranded polynucleotide, each of the four nucleotides, one of which will be complementary to the first unpaired base in the target polynucleotide, can be brought into contact with the target sequentially, optionally with removal of non-incorporated nucleotides prior to addition of the next nucleotide. Determination of the success of the incorporation may be carried out either after provision of each nucleotide, or after the addition of all of the nucleotides added. If it is determined after addition of fewer than four nucleotides that one has been incorporated, it is not necessary to provide further nucleotides in order to detect the nucleotides complementary to the incorporated nucleotide.
  • Alternatively, all of the nucleotides can be brought into contact with the target simultaneously, i.e., a composition comprising all of the different nucleotide (i.e. A, T, C and G or A, U, C and G) is brought into contact with the target, and non-incorporated nucleotides removed prior to detection and removal of the label(s). The methods involving sequential addition of nucleotides may comprise a first substep and optionally one or more subsequent substeps. In the first substep a composition comprising one, two or three of the four possible nucleotides is provided, i.e. brought into contact with, the target. Thereafter any unincorporated nucleotides may be removed and a detecting step may be conducted to determine whether one of the nucleotides has been incorporated. If one has been incorporated, the cleavage of the linker may be effected. In this way the identity of a nucleotide in the target polynucleotide may be determined. The nascent polynucleotide may then be extended to determine the identity of the next unpaired nucleotide in the target oligonucleotide.
  • If the first substep above does not lead to incorporation of a nucleotide, or if this is not known, since the presence of incorporated nucleotides is not sought immediately after the first substep, one or more subsequent substeps may be conducted in which some or all, of those nucleotides not provided in the first substep are provided either, as appropriate, simultaneously or subsequently. Thereafter any unincorporated nucleotides may be removed and a detecting step conducted to determine whether one of the classes of nucleotide has been incorporated. If one has been incorporated, cleavage of the linker may be effected. In this way the identity of a nucleotide in the target polynucleotide may be determined. The nascent polynucleotide may then be extended to determine the identity of the next unpaired nucleotide in the target oligonucleotide. If necessary, a third and optionally a fourth substep may be effected in a similar manner to the second substep. Obviously, once four substeps have been effected, all four possible nucleotides will have been provided and one will have been incorporated.
  • It is desirable to determine whether a type or class of nucleotide has been incorporated after any particular combination comprising one, two or three nucleotides has been provided. In this way the unnecessary cost and time expended in providing the other nucleotide(s) is obviated. This is not a required feature of the invention, however.
  • It is also desirable, where the method for sequencing comprises one or more substeps, to remove any unincorporated nucleotides before further nucleotide are provided. Again, this is not a required feature of the invention. Obviously, it is necessary that at least some and preferably as many as practicable of the unincorporated nucleotides are removed prior to the detection of the incorporated nucleotide.
  • The kits of the invention include: (a) individual nucleotides according to the hereinbefore described invention, where each nucleotide has a base that is linked to a detectable label via a cleavable linker, or a detectable label linked via an optionally cleavable liner to a blocking group of formula Z, and where the detectable label linked to each nucleotide can be distinguished upon detection from the detectable label used for other three nucleotides; and (b) packaging materials therefor. The kit can further include an enzyme for incorporating the nucleotide into the complementary nucleotide chain and buffers appropriate for the action of the enzyme in addition to appropriate chemicals for removal of the blocking group and the detectable label, which can preferably be removed by the same chemical treatment step.
  • The nucleotides/nucleosides are suitable for use in many different DNA-based methodologies, including DNA synthesis and DNA sequencing protocols.
  • The invention may be understood with reference to the attached drawings in which:
  • FIG. 1 shows exemplary nucleotide structures useful in the invention. For each structure, X can be H, phosphate, diphosphate or triphosphate. R1 and R2 can be the same or different, and can be selected from H, OH, or any group which can be transformed into an OH, including, but not limited to, a carbonyl. Some suitable functional groups for R1 and R2 include the structures shown in FIG. 3 and FIG. 4.
  • FIG. 2 shows structures of linkers useful in certain aspects of the invention, including (1) disulfide linkers and acid labile linkers, (2) dialkoxybenzyl linkers, (3) Sieber linkers, (4) indole linkers and (5) t-butyl Sieber linkers.
  • FIG. 3 shows some functional molecules useful in the invention, including some cleavable linkers and some suitable hydroxyl protecting groups. In these structures, R1 and R2 may be the same of different, and can be H, OH, or any group which can be transformed into an OH group, including a carbonyl. R3 represents one or more substituents independently selected from alkyl, alkoxyl, amino or halogen groups. R4 and R5 can be H or alkyl, and R6 can be alkyl, cycloalkyl, alkenyl, cycloalkenyl or benzyl. X can be H, phosphate, diphosphate or triphosphate.
  • FIG. 4 is a schematic illustration of some of the Z blocking groups that can be used according to the invention.
  • FIG. 5 shows two cycles of incorporation of labelled and blocked DGTP, DCTP and dATP respectively (compounds 18, 24 and 32).
  • FIG. 6 shows six cycles of incorporation of labelled and blocked DTTP (compound 6).
  • FIG. 7 shows the effective blocking by compound 38 (a 3′-Oallyl nucleotide of the invention).
  • The present invention relates to nucleotide or nucleoside molecules that are modified by the reversible covalent attachment of a 3′-OH blocking groups thereto, and which molecules may be used in reactions where blocked nucleotide or nucleoside molecules are required, such as in sequencing reactions, polynucleotide synthesis and the like.
  • Where the blocking group is an allyl group, it may be introduced into the 3′-position using standard literature procedures such as that used by Metzker (infra).
  • The allyl groups are removed by reacting in aqueous solution a compound of formula R—O-allyl, R2N(allyl), RNH(allyl), RN(allyl)2 or R—S-allyl (wherein R is a water-soluble biological molecule) with a transition metal, wherein said transition metal is capable of forming a metal allyl complex, in the presence of one or more ligands selected from the group comprising water-soluble phosphine and water-soluble mixed nitrogen-phosphine ligands.
  • The water-soluble biological molecule is not particularly restricted provided, of course, it contains one or more hydroxyl, acid, amino, amide or thiol functionalities protected with an allyl group. Allyl esters are examples of compounds of formula R—O-allyl. Preferred functionalities are hydroxyl and amino.
  • As used herein the term biological molecule is used to embrace any molecules or class of Molecule which performs a biological role. Such molecules include for example, polynucleotides such as DNA and RNA, oligonucleotides and single nucleotides. In addition, peptides and peptide mimetics, such as enzymes and hormones etc., are embraced by the invention. Compounds which comprise a secondary amide linkage, such as peptides, or a secondary amine, where such compounds are allylated on the nitrogen atom of the secondary amine or amide, are examples of compounds of formula R2N(allyl) in which both R groups belong to the same biological molecule. Particularly preferred compounds however are polynucleotides, (including oligonucleotides) and nucleotides and nucleosides, preferably those which contain one base to which is attached a detectable label linked through a cleavable linker. Such compounds are useful in the determination of sequences of oligonucleotides as described herein.
  • Transition metals of use in the invention are any which may form metal allyl complexes, for example platinum, palladium, rhodium, ruthenium, osmium and iridium. Palladium is preferred.
  • The transition metal, e.g. palladium, is conveniently introduced as a salt, e.g. as a halide. Mixed salts such as Na2PdCl4 may also be used. Other appropriate salts and compounds will be readily determined by the skilled person and are commercially available, e.g. from Aldrich Chemical Company.
  • Suitable ligands are any phosphine or mixed nitrogen-phosphine ligands known to those skilled in the art, characterised in that the ligands are derivatised so as to render them water-soluble, e.g. by introducing one or more sulfonate, amine, hydroxyl (preferably a plurality of hydroxyl) or carboxylate residues. Where amine residues are present, formation of amine salts may assist the solublisation of the ligand and thus the metal-allyl complex. Examples of appropriate ligands are triaryl phosphines, e.g. triphenyl phosphine, derivatised so as to make them water-soluble. Also preferred are trialkyl phosphines, e.g. tri-C1-6-alkyl phosphines such as triethyl phosphines; such trialkyl phosphines are likewise derivatised so as to make them water-soluble. Sulfonate-containing and carboxylate-containing phosphines are particularly preferred; an example of the former 3,3′,3″-phosphinidynetris (benzenesulfonic acid) which is commercially available from Aldrich Chemical Company as the trisodium salt; and a preferred example of the latter is tris(2-carboxyethyl)phosphine which is available from Aldrich as the hydrochloride salt.
  • The derivatised water-soluble phosphines and nitrogen-containing phosphines described herein may be used as their salts (e.g. as the hydrochloride or sodium salts) or, for example, in the case of the sulfonic and carboxylic acid-containing phosphines described herein, as the free acids. Thus 3,3′,3″-phosphinidynetris (benzenesulfonic acid) and tris(2-carboxyethyl)phosphines may be introduced either as the triacids or the trisodium salts. Other appropriate salts will be evident to those skilled in the art. The existence in salt form is not particularly important provided the phosphines are soluble in aqueous solution.
  • Other ligands which may be used to include the following:
  • Figure US20200399692A1-20201224-C00001
  • The skilled person will be aware that the atoms chelated to the transition metal in the water soluble complex may be part of mono- or polydentate ligands. Some such polydentate ligands are shown above. Whilst monodentate ligands are preferred, the invention thus also embraces methods which use water-soluble bi-, tri-, tetra-, penta- and hexadentate water-soluble phosphine and water-soluble nitrogen-containing phosphine ligands
  • The various aspects of the invention relating to allyl blocking groups are of particular utility in sequencing polynucleotides wherein the 3′-OH is allylated. However, when present, the 2′-OH is equally amenable to allylation, and to deprotection according to the method of the invention if necessary. In fact any allylated alcohol may be deprotected according to the method of the invention. Preferred allylated alcohols, however, are those derived from primary and secondary alcohols. Particularly preferred are allylated nucleosides and nucleotides as described herein. It is possible to deprotect tertiary allylated alcohols—the reaction is simply slower (although deprotection may be in such, and other deprotections of this invention, accelerated if necessary by heating the solution, e.g. to 40° C., preferably 50° C. or higher such as approximately 60° C. or even up to 80° C.).
  • It is also possible to deprotect allylated primary or secondary amines and allylated thiols.
  • As noted earlier, the aqueous solution in which allyl deprotection is effected need not be 100% (as the continuous phase). However, substantially pure water (e.g. at least 98 vol % preferably about 100 vol %) is preferred. Cosolvents are generally not required although they can assist in the solublisation of the allylated substrate for the deallylation. Generally, biomolecules are readily soluble in water (e.g. pure water) in which the deprotection reaction described herein may be effected. If desirable, one or more water-miscible cosolvents may be employed. Appropriate solvents include acetonitrile or dimethylsulfoxide, methanol, ethanol and acetone, methanol being preferred. Less preferred solvents include tetrahydrofuran (THF) and dioxane.
  • In the method of allyl deprotection according to the invention, a soluble metal complex is formed comprising a transition metal and one or more water-soluble phosphine and water-soluble nitrogen-containing phosphine ligands. More than one type of water-soluble phosphine/nitrogen-containing phosphine ligand may be used in a deallylation reaction although generally only one type of these classes of ligand will be used in a given reaction. We believe the deallylation reaction to be catalytic. Accordingly, the quantity of transition metal, e.g. palladium, may be less than 1 mol % (calculated relative to the allyl-protected compound to be deprotected). Advantageously the amount of catalyst may be much less than 1 mol %, e.g. <0.50 mol %, preferably <0.10 mol %, particularly <0.05 mol %. Even lower quantities of metal may be used, for example <0.03 or even <0.01 mol %. As those skilled in the art will be aware, however, as quantity of catalyst ds reduced, so too is the speed of the reaction. The skilled person will be able to judge, in any instance, the precise quantity of transition metal and thus catalyst most optimally suited to any particular deallylation reaction.
  • In contrast to the amount of metal required in forming the active catalyst, the quantity of water-soluble phosphorus-containing ligand(s) used must be greater than 1 molar equivalent (again calculated relative to the allyl-protected compound to be deprotected). Preferably greater than 4, e.g. greater than 6, for example 8-12 molar equivalents of ligand may be used. Even higher quantities of ligand e.g. >20 mole equivalents may be used if desired.
  • The skilled person will be able to determine the quantity of ligand best suited to any individual reaction.
  • Where the blocking group is any of —C(R′)2—O—R″, —C(R′)2—N(R″)2, —C(R′)2—N(H)R″, —C(R′)2—S—R″ and —C(R′)2—F, i.e. of formula Z, each R′ may be independently H or an alkyl
  • The intermediates produced advantageously spontaneously dissociate under aqueous conditions back to the natural 3′ hydroxy structure, which permits further incorporation of another nucleotide. Any appropriate protecting group may be used, as discussed herein. Preferably, Z is of formula —C(R′)2—O—R″, —C(R′)2—N(R″)2, —C(R′)2—N(H)R″ and —C(R′)2—SR″. Particularly preferably, Z is of the formula —C(R′)2—O—R″, —C(R′)2—N(R″)2, and —C(R′)2—SR″. R″ may be a benzyl group or a substituted benzyl group.
  • One example of groups of structure —O—Z wherein Z is —C(R′)2—N(R″)2 are those in which —N(R″)2 is azido (—N3). One preferred such example is azidomethyl wherein each R′ is H. Alternatively, R′ in Z groups of formula —C(R′)2—N3 and other Z groups may be any of the other groups discussed herein.
  • Examples of typical R′ groups include C1-6 alkyl, particularly methyl and ethyl, and the following (in which each structure shows the bond which connects the R′ moiety to the carbon atom to which it is attached in the Z groups; the asterisks (*) indicate the points of attachment):
  • Figure US20200399692A1-20201224-C00002
  • (wherein each R is an optionally substituted C1-10 alkyl group, an optionally substituted alkoxy group, a halogen atom or functional group such as hydroxyl, amino, cyano, nitro, carboxyl and the like) and “Het” is a heterocyclic (which may for example be a heteroaryl group). These R′ groups shown above are preferred where the other R′ group is the same as the first or is hydrogen. Preferred Z groups are of formula C(R′)2N3 in which the R′ groups are selected from the structures given above and hydrogen; or in which (R′)2 represents an alkylidene group of formula ═C(R′″)2, e.g. ═C(Me)2.
  • Where molecules contain Z groups of formula C(R′)2N3, the azido group may be converted to amino by contacting such molecules with the phosphine or nitrogen-containing phosphines ligands described in detail in connection with the transition metal complexes which serve to cleave the allyl groups from compounds of formula PN—O-allyl, formula R—O-allyl, R2N(allyl), RNH (allyl), RN(allyl)2 and R—S-allyl. When transforming azido to amino, however, no transition metal is necessary. Alternatively, the azido group in Z groups of formula C(R′)2N3 may be converted to amino by contacting such molecules with the thiols, in particular water-soluble thiols such as dithiothreitol (DTT).
  • Where an R′ group represents a detectable label attached through a linking group, the other R′ group or any other part of “Z” will generally not contain a detectable label, nor will the base of the nucleoside or nucleotide contain a detectable label. Appropriate linking groups for connecting the detectable label to the 3′blocking group will be known to the skilled person and examples of such groups are described in greater detail hereinafter.
  • Exemplary of linkages in R′ groups containing detectable labels are those which contain one or more amide bonds. Such linkers may also contain an arylene, e.g. phenylene, group in the chain (i.e. a linking moiety —Ar— where the phenyl ring is part of the linker by way of its 1,4-disposed carbon atoms). The phenyl ring may be substituted at its non-bonded position with one or more substituents such as alkyl, hydroxyl, alkyloxy, halide, nitro, carboxyl or cyano and the like, particularly electron-withdrawing groups, which electron-withdrawing is either by induction or resonance. The linkage in the R′ group may also include moieties such a —O—, —S(O)q, wherein q is 0, 1 or 2 or NH or Nalkyl. Examples of such Z groups are as follows:
  • Figure US20200399692A1-20201224-C00003
  • (wherein EWG stands for electron-withdrawing group; n is an integer of from 1 to 50, preferably 2-20, e.g. 3 to 10; and fluor indicates a fluorophore). An example of an electron-withdrawing group by resonance is nitro; a group which acts through induction is fluoro. The skilled person will be aware of other appropriate electron-withdrawing groups. In addition, it will be understood that whilst a fluorophore is indicated as being the detectable label present, other detectable groups as discussed in greater detail hereinafter may be included instead.
  • Where a detectable label is attached to a nucleotide at the 3′-blocking position, the linker need not be cleavable to have utility in those reactions, such as DNA sequencing, described herein which require the label to be “read” and removed before the next step of the reaction. This is because the label, when attached to the 3′block, will become separated from the nucleotide when the intermediate compounds described herein collapse so as to replace the “Z” group with a hydrogen atom. As noted above, each R″ is or is part of a removable protecting group. R″ may be a benzyl group or is substituted benzyl group is an alternative embodiment.
  • It will be appreciated that where it is possible to incorporate a detectable label onto a group R″, the invention embraces this possibility. Thus, where R″ is a benzyl group, the phenyl ring may bear a linker group to which is attached a fluorophore or other detectable group. Introduction of such groups does not prevent the ability to remove such R″s and they do not prevent the generation of the desired unstable intermediates during deprotection of blocking groups of formula Z.
  • As is known in the art, a “nucleotide” consists of a nitrogenous base, a sugar, and one or more phosphate groups. They are monomeric units of a nucleic acid sequence. In RNA, the sugar is a ribose, and in DNA a deoxyribose, i.e. a sugar lacking a hydroxyl group that is present in ribose. The nitrogenous base is a derivative of purine or pyrimidine. The purines are adenine (A) and guanine (G), and the pyrimidines are cytosine (C) and thymine (T) (or in the context of RNA, uracil (U)). The C-1 atom of deoxyribose is bonded to N-1 of a pyrimidine or N-9 of a purine. A nucleotide is also a phosphate ester or a nucleoside, with esterification occurring on the hydroxyl group attached to C-5 of the sugar. Nucleotides are usually mono, di- or triphosphates.
  • A “nucleoside” is structurally similar to a nucleotide, but is missing the phosphate moieties. An example of a nucleoside analogue would be one in which the label is linked to the base and there is no phosphate group attached to the sugar molecule.
  • Although the base is usually referred to as a purine or pyrimidine, the skilled person will appreciate that derivatives and analogues are available which do not alter the capability of the nucleotide or nucleoside to undergo Watson-Crick base pairing. “Derivative” or “analogue” means a compound or molecule whose core structure is the same as, or closely resembles that of, a parent compound, but which has a chemical or physical modification, such as a different or additional side group, or 2′ and or 3′ blocking groups, which allows the derivative nucleotide or nucleoside to be linked to another molecule. For example, the base can be a deazapurine. The derivatives should be capable of undergoing Watson-Crick pairing. “Derivative” and “analogue” also mean a synthetic nucleotide or nucleoside derivative having modified base moieties and/or modified sugar moieties. Such derivatives and analogs are discussed in, e.g., Scheit, Nucleotide Analogs (John Wiley & Son, 1980) and Uhlman et al., Chemical Reviews 90:543-584, 1990. Nucleotide analogs can also comprise modified phosphodiester linkages, including phosphorothioate, phosphorodithioate, alkyl-phosphonate, phosphoranilidate and phosphoramidate linkages. The analogs should be capable of undergoing Watson-Crick base pairing. “Derivative”, “analog” and “modified” as used herein, may be used interchangeably, and are encompassed by the terms “nucleotide” and “nucleoside” defined herein.
  • In the context of the present invention, the term “incorporating” means becoming part of a nucleic acid (eg DNA) molecule or oligonucleotide or primer. An oligonucleotide refers to a synthetic or natural molecule comprising a covalently linked sequence of nucleotides which are formed by a phosphodiester or modified phosphodiester bond between the 3′ position of the pentose on one nucleotide and the 5′ position of the pentose on an adjacent nucleotide.
  • The term “alkyl” covers straight chain, branched chain and cycloalkyl groups. Unless the context indicates otherwise, the term “alkyl” refers to groups having 1 to 10 carbon atoms, for example 1 to 8 carbon atoms, and typically from 1 to 6 carbon atoms, for example from 1 to 4 carbon atoms. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2-methyl butyl, 3-methyl butyl, and n-hexyl and its isomers.
  • Examples of cycloalkyl groups are those having from 3 to 10 ring atoms, particular examples including those derived from cyclopropane, cyclobutane, cyclopentane, cyclohexane and cycloheptane, bicycloheptane and decalin.
  • Where alkyl (including cycloalkyl) groups are substituted, particularly where these form either both of the R′ groups of the molecules of the invention, examples of appropriate substituents include halogen substituents or functional groups such as hydroxyl, amino, cyano, nitro, carboxyl and the like. Such groups may also be substituents, where appropriate, of the other R′ groups in the molecules of the invention.
  • The term amino refers to groups of type NR*R**, wherein R* and R** are independently selected from hydrogen, a C1-6 alkyl group (also referred to as C1-6 alkylamino or di-C1-6 alkylamino).
  • The term “halogen” as used herein includes fluorine, chlorine, bromine and iodine.
  • The nucleotide molecules of the present invention are suitable for use in many different methods where the detection of nucleotides is required.
  • DNA sequencing methods, such as those outlined in U.S. Pat. No. 5,302,509 can be carried out using the nucleotides.
  • The present invention can make use of conventional detectable labels. Detection can be carried out by any suitable method, including fluorescence spectroscopy or by other optical means. The preferred label is a fluorophore, which, after absorption of energy, emits radiation at a defined wavelength. Many suitable fluorescent labels are known. For example, Welch et al. (Chem. Eur. J. 5(3):951-960, 1999) discloses dansyl-functionalised fluorescent moieties that can be used in the present invention. Zhu et al. (Cytometry 28:206-211, 1997) describes the use of the fluorescent labels Cy3 and Cy5, which can also be used in the present invention. Labels suitable for use are also disclosed in Prober et al. (Science 238:336-341, 1987); Connell et al. (BioTechniques 5(4):342-384, 1987), Ansorge et al. (Nucl. Acids Res. 15(11):4593-4602, 1987) and Smith et al. (Nature 321:674, 1986). Other commercially available fluorescent labels include, but are not limited to, fluorescein, rhodamine (including TMR, texas red and Rox), alexa, bodipy, acridine, coumarin, pyrene, benzanthracene and the cyanins.
  • Multiple labels can also be used in the invention. For example, bi-fluorophore FRET cassettes (Tet. Let. 46:8867-8871, 2000) are well known in the art and can be utilised in the present invention. Multi-fluor dendrimeric systems (J. Amer. Chem. Soc. 123:8101-8108, 2001) can also be used.
  • Although fluorescent labels are preferred, other forms of detectable labels will be apparent as useful to those of ordinary skill. For example, microparticles, including quantum dots (Empodocles et al., Nature 399:126-130, 1999), gold nanoparticles (Reichert et al., Anal. Chem. 72:6025-6029, 2000) and microbeads (Lacoste et al., Proc. Natl. Acad. Sci USA 97(17):9461-9466, 2000) can all be used.
  • Multi-component labels can also be used in the invention. A multi-component label is one which is dependent on the interaction with a further compound for detection. The most common multi-component label used in biology is the biotin-streptavidin system. Biotin is used as the label attached to the nucleotide base. Streptavidin is then added separately to enable detection to occur. Other multi-component systems are available. For example, dinitrophenol has a commercially available fluorescent antibody that can be used for detection.
  • The invention has been and will be further described with reference to nucleotides. However, unless indicated otherwise, the reference to nucleotides is also intended to be applicable to nucleosides. The invention will also be further described with reference to DNA, although the description will also be applicable to RNA, PNA, and other nucleic acids, unless otherwise indicated.
  • The modified nucleotides of the invention may use a cleavable linker to attach the label to the nucleotide. The use of a cleavable linker ensures that the label can, if required, be removed after detection, avoiding any interfering signal with any labelled nucleotide incorporated subsequently.
  • Generally, the use of cleavable linkers is preferable, particularly in the methods of the invention hereinbefore described except where the detectable label is attached to the nucleotide by forming part of the “Z” group.
  • Those skilled in the art will be aware of the utility of dideoxynucleoside triphosphates in so-called Sanger sequencing methods, and related protocols (Sanger-type), which rely upon randomised chain-termination at a particular type of nucleotide. An example of a Sanger-type sequencing protocol is the BASS method described by Metzker (infra). Other Sanger-type sequencing methods will be known to those skilled in the art.
  • Sanger and Sanger-type methods generally operate by the conducting of an experiment in which eight types of nucleotides are provided, four of which contain a 3′OH group; and four of which omit the OH group and which are labeled differently from each other. The nucleotides used which omit the 3′OH group—dideoxy nucleotides—are conventially abbreviated to ddNTPs. As is known by the skilled person, since the ddNTPs are labeled differently, by determining the positions of the terminal nucleotides incorporated, and combining this information, the sequence of the target oligonucleotide may be determined.
  • The nucleotides of the present invention, it will be recognized, may be of utility in Sanger methods and related protocols since the same effect achieved by using ddNTPs may be achieved by using the novel 3′-OH blocking groups described herein: both prevent incorporation of subsequent nucleotides.
  • The use of the nucleotides according to the present invention in Sanger and Sanger-type sequencing methods, wherein the linker connecting the detectable label to the nucleotide may or may not be cleavable, forms a still further aspect of this invention. Viewed from this aspect, the invention provides the use of such nucleotides in a Sanger or a Sanger-type sequencing method.
  • Where 3′-OH Z-blocked nucleotides according to the present invention are used, it will be appreciated that the detectable labels attached to the nucleotides need not be connected via cleavable linkers, since in each instance where a labelled nucleotide of the invention is incorporated, no nucleotides need to be subsequently incorporated and thus the label need not be removed from the nucleotide.
  • Moreover, it will be appreciated that monitoring of the incorporation of 3′OH blocked nucleotides may be determined by use of radioactive 32P in the phosphate groups attached. These may be present in either the ddNTPs themselves or in the primers used for extension. Where the blocking groups are of formula “Z”, this represents a further aspect of the invention.
  • Viewed from this aspect, the invention provides the use of a nucleotide having a 3′OH group blocked with a “Z” group in a Sanger or a Sanger-type sequencing method. In this embodiment, a 32P detectable label may be present in either the ddNTPs used in the primer used for extension.
  • Cleavable linkers are known in the art, and conventional chemistry can be applied to attach a linker to a nucleotide base and a label. The linker can be cleaved by any suitable method, including exposure to acids, bases, nucleophiles, electrophiles, radicals, metals, reducing or oxidising agents, light, temperature, enzymes etc. The linker as discussed herein may also be cleaved with the same catalyst used to cleave the 3′O-blocking group bond. Suitable linkers can be adapted from standard chemical blocking groups, as disclosed in Greene & Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons. Further suitable cleavable linkers used in solid-phase synthesis are disclosed in Guillier et al. (Chem. Rev. 100:2092-2157, 2000).
  • The use of the term “cleavable linker” is not meant to imply that the whole linker is required to be removed from e.g., the nucleotide base. Where the detectable label is attached to the base, the nucleoside cleavage site can be located at a position on the linker that ensures that part of the linker remains attached to the nucleotide base after cleavage.
  • Where the detectable label is attached to the base, the linker can be attached at any position on the nucleotide base provided that Watson-Crick base pairing can still be carried out. In the context of purine bases, it is preferred if the linker is attached via the 7-position of the purine or the preferred deazapurine analogue, via an 8-modified purine, via an N-6 modified adenosine or an N-2 modified guanine. For pyrimidines, attachment is preferably via the 5-position on cytosine, thymidine or uracil and the N-4 position on cytosine. Suitable nucleotide structures are shown in FIG. 1. For each structure in FIG. 1 X can be H, phosphate, diphosphate or triphosphate. R1 and R2 can be the same or different, and are selected from H, OH, O-allyl, or formula Z as described herein or any other group which can be transformed into an OH, including, but not limited to, a carbonyl, provided that at least one of R1 and R2 is O-allyl or formula Z as described herein. Some suitable functional groups for R1 and R2 include the structures shown in FIGS. 3 and 4.
  • Suitable linkers are shown in FIG. 3 and include, but are not limited to, disulfide linkers (1), acid labile linkers (2, 3, 4 and 5; including dialkoxybenzyl linkers (e.g., 2), Sieber linkers (e.g., 3), indole linkers (e.g., 4), t-butyl Sieber linkers (e.g., 5)), electrophilically cleavable linkers, nucleophilically cleavable linkers, photocleavable linkers, cleavage under reductive conditions, oxidative conditions, cleavage via use of safety-catch linkers, and cleavage by elimination mechanisms.
  • A. Electrophilically Cleaved Linkers.
  • Electrophilically cleaved linkers are typically cleaved by protons and include cleavages sensitive to acids. Suitable linkers include the modified benzylic systems such as trityl, p-alkoxybenzyl esters and p-alkoxybenzyl amides. Other suitable linkers include tert-butyloxycarbonyl (Boc) groups and the acetal system.
  • The use of thiophilic metals, such as nickel, silver or mercury, in the cleavage of thioacetal or other sulfur-containing protecting groups can also be considered for the preparation of suitable linker molecules.
  • B. Nucleophilically Cleaved Linkers.
  • Nucleophilic cleavage is also a well recognised method in the preparation of linker molecules. Groups such as esters that are labile in water (i.e., can be cleaved simply at basic pH) and groups that are labile to non-aqueous nucleophiles, can be used. Fluoride ions can be used to cleave silicon-oxygen bonds in groups such as triisopropyl silane (TIPS) or t-butyldimethyl silane (TBDMS).
  • C. Photocleavable Linkers.
  • Photocleavable linkers have been used widely in carbohydrate chemistry. It is preferable that the light required to activate cleavage does not affect the other components of the modified nucleotides. For example, if a fluorophore is used as the label, it is preferable if this absorbs light of a different wavelength to that required to cleave the linker molecule. Suitable linkers include those based on O-nitrobenzyl compounds and nitroveratryl compounds. Linkers based on benzoin chemistry can also be used (Lee et al., J. Org. Chem. 64:3454-3460, 1999).
  • D. Cleavage Under Reductive Conditions
  • There are many linkers known that are susceptible to reductive cleavage. Catalytic hydrogenation using palladium-based catalysts has been used to cleave benzyl and benzyloxycarbonyl groups. Disulfide bond reduction is also known in the art.
  • E. Cleavage Under Oxidative Conditions
  • Oxidation-based approaches are well known in the art. These include oxidation of p-alkoxybenzyl groups and the oxidation of sulfur and selenium linkers. The use of aqueous iodine to cleave disulfides and other sulfur or selenium-based linkers is also within the scope of the invention.
  • F. Safety-Catch Linkers
  • Safety-catch linkers are those that cleave in two steps. In a preferred system the first step is the generation of a reactive nucleophilic center followed by a second step involving an intra-molecular cyclization that results in cleavage. For example, levulinic ester linkages can be treated with hydrazine or photochemistry to release an active amine, which can then be cyclised to cleave an ester elsewhere in the molecule (Burgess et al., J. Org. Chem. 62:5165-5168, 1997).
  • G. Cleavage by Elimination Mechanisms
  • Elimination reactions can also be used. For example, the base-catalysed elimination of groups such as Fmoc and cyanoethyl, and palladium-catalysed reductive elimination of allylic systems, can be used.
  • As well as the cleavage site, the linker can comprise a spacer unit. The spacer distances e.g., the nucleotide base from the cleavage site or label. The length of the linker is unimportant provided that the label is held a sufficient distance from the nucleotide so as not to interfere with any interaction between the nucleotide and an enzyme:
  • In a preferred embodiment the linker may consist of the same functionality as the block. This will make the deprotection and deblocking process more efficient, as only a single treatment will be required to remove both the label and the block.
  • Particularly preferred linkers are phosphine-cleavable azide containing linkers.
  • A method for determining the sequence of a target polynucleotide can be carried out by contacting the target polynucleotide separately with the different nucleotides to form the complement to that of the target polynucleotide, and detecting the incorporation of the nucleotides. Such a method makes use of polymerisation, whereby a polymerase enzyme extends the complementary strand by incorporating the correct nucleotide complementary to that on the target. The polymerisation reaction also requires a specific primer to initiate polymerisation.
  • For each cycle, the incorporation of the modified nucleotide is carried out by the polymerase enzyme, and the incorporation event is then determined. Many different polymerase enzymes exist, and it will be evident to the person of ordinary skill which is most appropriate to use. Preferred enzymes include DNA polymerase I, the Klenow fragment, DNA polymerase III, T4 or T7 DNA polymerase, Taq polymerase or Vent polymerase. Polymerases engineered to have specific properties can also be used. As noted earlier, the molecule is preferably incorporated by a polymerase and particularly from Thermococcus sp., such as 9° N. Even more preferably, the polymerase is a mutant 9° N A485L and even more preferably is a double mutant Y409V and A485L. An example of one such preferred enzyme is Thermococcus sp. 9° N exo −Y409V A485L available from New England Biolabs. Examples of such appropriate polymerases are disclosed in Proc. Natl. Acad. Sci. USA, 1996(93), pp 5281-5285, Nucleic Acids Research, 1999(27), pp 2454-2553 and Acids Research, 2002(30), pp 605-613.
  • The sequencing methods are preferably carried out with the target polynucleotide arrayed on a solid support. Multiple target polynucleotides can be immobilised on the solid support through linker molecules, or can be attached to particles, e.g., microspheres, which can also be attached to a solid support material. The polynucleotides can be attached to the solid support by a number of means, including the use of biotin-avidin interactions. Methods for immobilizing polynucleotides on a solid support are well known in the art, and include lithographic techniques and “spotting” individual polynucleotides in defined positions on a solid support. Suitable solid supports are known in the art, and include glass slides and beads, ceramic and silicon surfaces and plastic materials. The support is usually a flat surface although microscopic beads (microspheres) can also be used and can in turn be attached to another solid support by known means. The microspheres can be of any suitable size, typically in the range of from 10 nm to 100 nm in diameter. In a preferred embodiment, the polynucleotides are attached directly onto a planar surface, preferably a planar glass surface. Attachment will preferably be by means of a covalent linkage. Preferably, the arrays that are used are single molecule arrays that comprise polynucleotides in distinct optically resolvable areas, e.g., as disclosed in International Application No. WO00/06770.
  • The sequencing method can be carried out on both single polynucleotide molecule and multi-polynucleotide molecule arrays, i.e., arrays of distinct individual polynucleotide molecules and arrays of distinct regions comprising multiple copies of one individual polynucleotide molecule. Single molecule arrays allow each individual polynucleotide to be resolved separately. The use of single molecule arrays is preferred. Sequencing single molecule arrays non-destructively allows a spatially addressable array to be formed.
  • The method makes use of the polymerisation reaction to generate the complementary sequence of the target. Conditions compatible with polymerization reactions will be apparent to the skilled person.
  • To carry out the polymerase reaction it will usually be necessary to first anneal a primer sequence to the target polynucleotide, the primer sequence being recognised by the polymerase enzyme and acting as an initiation site for the subsequent extension of the complementary strand. The primer sequence may be added as a separate component with respect to the target polynucleotide. Alternatively, the primer and the target polynucleotide may each be part of one single stranded molecule, with the primer portion forming an intramolecular duplex with a part of the target, i.e., a hairpin loop structure. This structure may be immobilised to the solid support at any point on the molecule. Other conditions necessary for carrying out the polymerase reaction, including temperature, pH, buffer compositions etc., will be apparent to those skilled in the art.
  • The modified nucleotides of the invention are then brought into contact with the target polynucleotide, to allow polymerisation to occur. The nucleotides may be added sequentially, i.e., separate addition of each nucleotide type (A, T, G or C), or added together. If they are added together, it is preferable for each nucleotide type to be labelled with a different label.
  • This polymerisation step is allowed to proceed for a time sufficient to allow incorporation of a nucleotide.
  • Nucleotides that are not incorporated are then removed, for example, by subjecting the array to a washing step, and detection of the incorporated labels may then be carried out.
  • Detection may be by conventional means, for example if the label is a fluorescent moiety, detection of an incorporated base may be carried out by using a confocal scanning microscope to scan the surface of the array with a laser, to image a fluorophore bound directly to the incorporated base. Alternatively, a sensitive 2-D detector, such as a charge-coupled detector (CCD), can be used to visualise the individual signals generated. However, other techniques such as scanning near-field optical microscopy (SNOM) are available and may be used when imaging dense arrays. For example, using SNOM, individual polynucleotides may be distinguished when separated by a distance of less than 100 nm, e.g., 10 nm to 10 μm. For a description of scanning near-field optical microscopy, see Moyer et al., Laser Focus World 29:10, 1993. Suitable apparatus used for imaging polynucleotide arrays are known and the technical set-up will be apparent to the skilled person.
  • After detection, the label may be removed using suitable conditions that cleave the linker and the 3′OH block to allow for incorporation of further modified nucleotides of the invention. Appropriate conditions may be those described herein for allyl group and for “Z” group deprotections. These conditions can serve to deprotect both the linker (if cleavable) and the blocking group. Alternatively, the linker may be deprotected separately from the allyl group by employing methods of cleaving the linker known in the art (which do not sever the 0-blocking group bond) followed by deprotection.
  • This invention may be further understood with reference to the following examples which serve to illustrate the invention and not to limit its scope. 3′-OH protected with an azidomethyl group as a protected form of a hemiaminal:
  • Figure US20200399692A1-20201224-C00004
  • Nucleotides bearing this blocking group at the 3′position have been synthesised, shown to be successfully incorporated by DNA polymerases, block efficiently and may be subsequently removed under neutral, aqueous conditions using water soluble phosphines or thiols allowing further extension:
  • Figure US20200399692A1-20201224-C00005
  • 5-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyuridine (1)
  • To a solution of 5-iodo-2′-deoxyuridine (1.05 g, 2.96 mmol) and CuI (114 mg, 0.60 mmol) in dry DMF (21 ml) was added triethylamine (0.9 ml). After stirring for 5 min trifluoro-N-prop-2-ynyl-acetamide (1.35 g, 9.0 mmol) and Pd(PPh3)4 (330 mg, 0.29 mmol) were added to the mixture and the reaction was stirred at room temperature in the dark for 16 h. Metanol (MeOH) (40 ml) and bicarbonate dowex added to the reaction mixture and stirred for 45 min. The mixture was filtered and the filtrate washed with MeOH and the solvent was removed under vacuum. The crude mixture was purified by chromatography on silica (ethyl acetate (EtOAc) to EtOAc:MeOH 95:5) to give slightly yellow crystals (794 mg, 71%). 1H NMR (d6 dimethylsulfoxide (DMSO)) δ 2.13-2.17 (m, 2H, H-2′), 3.57-3.65 (m, 2H, H-5′), 3.81-3.84 (m, 1H, H-4′), 4.23-4.27 (m, 3H, H-3′, CH2N), 5.13 (t, J=5.0 Hz, 1H, OH), 5.20 (d, J=4.3 Hz, 1H, OH), 6.13 (t, J=6.7 Hz, 1H, H-1′), 8.23 (s, 1H, H-6), 10.11 (t, J=5.6 Hz, 1H, NH), 11.70 (br s, 1H, NH). Mass (−ve electrospray) calcd for C14H14F3N3O6 377.08, found 376.
  • Figure US20200399692A1-20201224-C00006
  • 5′-O-(tert-butydimethylsilyl)-5-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyuridine (2)
  • To a solution of (1) (656 mg, 1.74 mmol) in dry DMF (15 ml) was added t-butyldimethylsilylchloride (288 mg, 1.91 mmol) in small portions, followed by imidazole (130 mg, 1.91 mmol). The reaction was followed by TLC and was completed after stirring for 8 h at room temperature. The reaction was quenched with sat. aq. NaCl solution. EtOAc (25 ml) was added to the reaction mixture and the aqueous layer was extracted with EtOAc three times. After drying the combined organics (MgSO4), the solvent was removed under vacuum. Purification by chromatography on silica (EtOAc:petroleum ether 8:2) gave (2) as slightly yellow crystals (676 mg, 83%). 1H NMR (d6 DMSO) δ 0.00 (s, 6H, CH3), 0.79 (s, 9H, tBu), 1.93-2.00 (m, 1H, H-2′), 2.06-2.11 (m, 1H, H-2′), 3.63-3.75 (m, 2H, H-5′), 3.79-3.80 (m, 1H, H-4′), 4.12-4.14 (m, 3H, H-3′, CH2N), 5.22 (d, J=4.1 Hz, 1H, OH), 6.03 (t, J=6.9 Hz, 1H, H-1′), 7.86 (s, 1H, H-6), 9.95 (t, J=5.4 Hz, 1H, NH), 11.61 (br s, 1H, NH). Mass (−ve electrospray) calcd for C20H28F3N3O6Si 491.17, found 490.
  • Figure US20200399692A1-20201224-C00007
  • 5′-O-(tert-Butydimethylsilyl)-3′-O-methylthiomethyl-5-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyuridine (3)
  • To a solution of (2) (1.84 g, 3.7 mmol) in dry DMSO (7 ml) was added acetic acid (3.2 ml) and acetic anhydride (10.2 ml). The mixture was stirred for 2 days at room temperature, before it was quenched with sat. aq. NaHCO3. EtOAc (50 ml) was added and the aqueous layer was extracted three times with ethyl acetate. The combined organic layers were washed with sat. aq. NaHCO3 solution and dried (MgSO4). After removing the solvent under reduced pressure, the product (3) was purified by chromatography on silica (EtOAc:petroleum ether 8:2) yielding a clear sticky oil (1.83 g, 89%). 1H NMR (d6 DMSO): δ 0.00 (s, 6H, CH3), 0.79 (s, 9H, tBu), 1.96-2.06 (m, 1H, H-2′), 1.99 (s, 3H, SCH3), 2.20-2.26 (m, 1H, H-2′), 3.63-3.74 (m, 2H, H-5′), 3.92-3.95 (m, 1H, H-4′), 4.11-4.13 (m, 2H, CH2), 4.28-4.30 (m, 1H, H-3′), 4.59 (br s, 2H, CH2), 5.97 (t, J=6.9 Hz, 1H, H-1′), 7.85 (s, 1H, H-6), 9.95 (t, J=5.3 Hz, 1H, NH), 11.64 (s, 1H, NH). Mass (−ve electrospray) calcd for C22H32F3N3O6SSi 551.17, found 550.
  • Figure US20200399692A1-20201224-C00008
  • 3′-O-Azidomethyl-5-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyuridine (4)
  • To a solution of (3) (348 mg, 0.63 mmol) and cyclohexene (0.32 ml, 3.2 mmol) in dry CH2Cl2 (5 ml) at 4° C., sulfurylchoride (1M in CH2Cl2, 0.76 ml, 0.76 mmol) was added drop wise under N2. After 10 min TLC indicated the full consumption of the nucleoside (3). The solvent was evaporated and the residue was subjected to high vacuum for 20 min. It was then redissolved in dry DMF (3 ml) and treated with NaN3 (205 mg, 3.15 mmol). The resulting suspension was stirred under room temperature for 2 h. The reaction was quenched with CH2Cl2 and the organic layers were washed with sat aq. NaCl solution. After removing the solvent, the resulting yellow gum was redissolved in THF (2 ml) and treated with TBAF (1 M in THF, 0.5 ml) at room temperature for 30 min. The solvent was removed and the reaction worked up with CH2Cl2 and sat. aq. NaHCO3 solution. The aqueous layer was extracted three times with CH2Cl2. Purification by chromatography on silica (EtOAc:petroleum ether 1:1 to EtOAc) gave (4) (100 mg, 37%) as a pale yellow foam. 1H NMR (d6 DMSO) δ 2.15-2.26 (m, 2H, H-2′), 3.47-3.57 (m, 2H, H-5′), 3.88-3.90 (m, 1H, H-4′), 4.14 (d, J=4.7 Hz, 2H, CH2NH), 4.24-4.27 (m, 1H, H-3′), 4.75 (s, 2H, CH2N3), 5.14 (t, J=5.2 Hz, 1H, OH), 5.96-6.00 (m, 1H, H-1′), 8.10 (s, 1H, H-6), 10.00 (s, 1H, NHCOCF3)), 11.26 (s, 1H, NH).
  • Figure US20200399692A1-20201224-C00009
  • Preparation of bis(tri-n-butylammonium) pyrophosphate (0.5 M solution in DMF)
  • Tetrasodium diphosphate decahydrate (1.5 g, 3.4 mmol) was dissolved in water (34 ml) and the solution was applied to a column of dowex in the H+ form. The column was eluted with water. The eluent dropped directly into a cooled (ice bath) and stirred solution of tri-n-butylamine (1.6 ml, 6.8 mmol) in EtOH (14 ml). The column was washed until the pH of the eluent increased to 6. The aq. ethanol solution was evaporated to dryness and then co-evaporated twice with ethanol and twice with anhydrous DMF. The residue was dissolved in DMF (6.7 ml). The pale yellow solution was stored over 4 Å molecular sieves.
  • 3′-O-Azidomethyl-5-(3-amino-prop-1-ynyl)-2′-deoxyuridine 5′-O-nucleoside triphosphate (5)
  • The nucleoside (4) and proton sponge was dried over P2O5 under vacuum overnight. A solution of (4) (92 mg, 0.21 mmol) and proton sponge (90 mg, 0.42 mmol) in trimethylphosphate (0.5 ml) was stirred with 4 Å molecular sieves for 1 h. Freshly distilled POCl3 (24 μl, 0.26 mmol) was added and the solution was stirred at 4° C. for 2 h. The mixture was slowly warmed up to room temperature and bis (tri-n-butyl ammonium) pyrophosphate (1.7 ml, 0.85 mmol) and anhydrous tri-n-butyl amine (0.4 ml, 1.7 mmol) was added. After 3 min, the reaction was quenched with 0.1 M TEAB (triethylammonium bicarbonate) buffer (15 ml) and stirred for 3 h. The water was removed under reduced pressure and the resulting residue dissolved in concentrated ammonia (ρ 0.88, 15 ml) and stirred at room temperature for 16 h. The reaction mixture was then evaporated to dryness. The residue was dissolved in water and the solution applied to a DEAE-Sephadex A-25 column. MPLC was performed with a linear gradient of TEAB. The triphosphate was eluted between 0.7 M and 0.8 M buffer. Fractions containing the product were combined and evaporated to dryness. The residue was dissolved in water and further purified by HPLC. HPLC: tr(5): 18.8 min (Zorbax C18 preparative column, gradient: 5% to 35% B in 30 min, buffer A 0.1M TEAB, buffer B MeCN) The product was isolated as a white foam (76 O.D., 7.6 μmol, 3.8%, ε280=10000). 1H NMR (D2O) δ 1.79 (s, CH2), 2.23-2.30; 2.44-2.50 (2×m, 2H, H-2′), 3.85 (m, CH2NH), 4.10-4.18 (m, 2H, H-5′), 4.27 (br s, H-4′), 4.48-4.50 (m, H-3′), 4.70-4.77 (m, CH2N3), 6.21 (t, J=6.6 Hz, H-1′), 8.32 (s, 1H, H-6). 31P NMR (D2O) δ −6.6 (m, 1P, Pγ), −10.3 (d, J=18.4 Hz, 1P, Pα), −21.1 (m, 1P, Pβ). Mass (−ve electrospray) calcd for C13H19N6O14P3 576.02, found 575.
  • Figure US20200399692A1-20201224-C00010
  • Cy-3Disulfide Linker
  • The starting disulfide (4.0 mg, 13.1 μmol) was dissolved in DMF (300 μL) and diisopropylethylamine (4 μL) was slowly added. The mixture was stirred at room temperature and a solution of Cy-3 dye (5 mg, 6.53 μmol) in DMF (300 μL) was added over 10 min. After 3.5 h, on complete reaction, the volatiles were evaporated under reduced pressure and the crude residue was HPLC purified on a Zorbax analytical column SB-C18 with a flow rate of 1 ml/min in 0.1M triethylammonium bicarbonate buffer (buffer A) and CH3CN (buffer B) using the following gradient: 5 min 2% B; 31 min 55% B; 33 min 95% B; 37 min 95%; 39 min 2% B; 44 min. 2% B. The expected Cy3-disulfide linker was eluted with a tr: 21.8 min. in 70% yield (based on a UV measurement; ε550 150,000 cm−1 M−1 in H2O) as a hygroscopic solid. 1H NMR (D2O) δ 1.31-1.20 (m+t, J=7.2 Hz, 5H, CH2+CH3), 1.56-1.47 (m, 2H, CH2), 1.67 (s, 12H, 4 CH3), 1.79-1.74 (m, 2H, CH2), 2.11 (t, J=6.9 Hz, 2H, CH2), 2.37 (t, J=6.9 Hz, 2H, CH2), 2.60 (t, J=6.3 Hz, 2H, CH2), 2.67 (t, J=6.9 Hz, 2H, CH2), 3.27 (t, J=6.1 Hz, 2H, CH2), 4.10-4.00 (m, 4H, 2CH2), 6.29 (dd, J=13.1, 8.1 Hz, 2H, 2 ═CH), 7.29 (dd, 2H, J=8.4, 6.1 Hz, 2 ═CH), 7.75-7.71 (m, 2H, 2 ═CH), 7.78 (s, 2H, ═CH), 8.42 (t, J=12.8 Hz, 1H, ═CH). Mass (−ve electrospray) calcd for C36H47N3O9S4 793.22, found 792 (M−H), 396 [M/2].
  • Figure US20200399692A1-20201224-C00011
  • A mixture of Cy3 disulphide linker (2.5 μmol), disuccinimidyl carbonate (0.96 mg, 3.75 μmol) and DMAP (0.46 mg, 3.75 μmol) were dissolved in dry DMF (0.5 ml) and stirred at room temperature for 10 min. The reaction was monitored by TLC (MeOH:CH2Cl2 3:7) until all the dye linker was consumed. Then a solution of (5) (7.5 μmol) and n-Bu3N (30 μl, 125 μmol) in DMF (0.2 ml) was added to the reaction mixture and stirred at room temperature for 1 h. TLC (MeOH:CH2Cl2 4:6) showed complete consumption of the activated ester and a dark red spot appeared on the baseline. The reaction was quenched with TEAB buffer (0.1M, 10 ml) and loaded on a DEAE Sephadex column (2×5 cm). The column was first eluted with 0.1 M TEAS buffer (100 ml) to wash off organic residues and then 1 M TEAB buffer (100 ml). The desired triphosphate analogue (6) was eluted out with 1 M TEAB buffer. The fraction containing the product were combined, evaporated and purified by HPLC. HPLC conditions: tr(6): 16.1 min (Zorbax C18 preparative column, gradient: 2% to 55% B in 30 min, buffer A 0.1M TEAB, buffer B MeCN). The product was isolated as dark red solid (1.35 μmol, 54%, ε550=150000). 1H NMR (D2O) δ 1.17-1.28 (m, 6H 3×CH2), 1.41-1.48 (m, 3H, CH3), 1.64 (s, 12H, 4×CH3), 1.68-1.71 (m, 2H, CH2), 2.07-2.10 (m, 3H, H-2′, CH2), 2.31-2.35 (m, 1H, H-2′), 2.50-2.54 (m, 2H, CH2), 2.65 (t, =5.9 Hz, 2H, CH2), 2.76 (t, J=7.0 Hz, 2H, CH2), 3.26-3.31 (m, 2H, CH2), 3.88-3.91 (m, 2H CH2), 3.94-4.06 (m, 3H, CH2N, H-5′), 4.16 (br s, 1H, H-4′), 4.42-4.43 (m, 1H, H-3′), 4.72-4.78 (m, 2H, CH2N3), 6.24 (dd, J=5.8, 8.2 Hz, H-1′), 6.25 (dd, J=3.5, 8.5 Hz, 2H, HAr), 7.24, 7.25 (2d, J=14.8 Hz, 2×═CH), 7.69-7.86 (m, 4H, HAr, H-6), 8.42 (t, J=13.4 Hz, ═CH). 31P NMR (D2O) δ −4.85 (m, 1P, Pγ, −9.86 (m, 1P, Pα), −20.40 (m, 1P, Pβ). Mass (−ve electrospray) calcd for C49H64N9O22P3S4 1351.23, found 1372 (M−2H+Na), 1270 [M−80], 1190 [M−160].
  • Figure US20200399692A1-20201224-C00012
  • 5-[3-(2,2,2-Trifluoroacetamido)-prop-1-ynyl]-2′-deoxycytidine (7)
  • To a solution of 5-iodo-2′-deoxycytidine (10 g, 28.32 mmol) in DMF (200 ml) in a light protected round bottom flask under Argon atmosphere, was added CuI (1.08 g, 5.67 mmol), triethylamine (7.80 ml, 55.60 mmol), 2,2,2-trifluoro-N-prop-2-ynyl-acetamide (12.8 g, 84.76 mmol) and at last Pd(PPh)3)4 (3.27 g, 2.83 mmol). After 18 hours at room temperature, dowex bicarbonate (20 mg) was added and the mixture was stirred for a further 1 h. Filtration and evaporation of the volatiles under reduced pressure gave a residue that was purified by flash chromatography on silica gel (CH2Cl2, CH2Cl2:EtOAc 1:1, EtOAc:MeOH 9:1). The expected product (7) was obtained as a beige solid in quantitative yield. 1H NMR (D2O) δ 2.24-2.17 (m, 1H, H-2′), 2.41-2.37 (m, 1H, H-2′), 3.68 (dd, J=12.5, 5.0 Hz, 1H, H-5′), 3.77 (dd, J=12.5, 3.2 Hz, 1H, H-5′), 3.99 (m, 1H, H-4′), 4.27 (s, 2H, CH2N), 4.34 (m, 1H, H-3′), 6.11 (t, J=6.3 Hz, 1H, H-1′), 8.1 (br s, 1H, NH); MS (ES): m/z (%) (M−H) 375 (100).
  • Figure US20200399692A1-20201224-C00013
  • 5′-O-(tert-Butyldimethylsilyl)-5-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxycytidine (8)
  • To a solution of the starting material (7) (1.0 g, 2.66 mmol) and imidazole (200 mg, 2.93 mmol) in DMF (3.0 ml) at 0° C., was slowly added TBDMSCl (442 mg, 2.93 mmol) in four portions over 1 h. After 2 h, the volatiles were evaporated under reduced pressure and the residue was adsorbed on silica gel and purified by flash chromatography (EtOAc, EtOAc:MeOH 9.5:0.5). The expected product (8) was isolated as a crystalline solid (826 mg, 64%). 1H NMR (d6 DMSO) δ 0.00 (s, 1H, CH3); 0.01 (s, 1H, CH3), 0.79 (s, 9H, tBu), 1.87-1.80 (m, 1H, H-2′), 2.12 (ddd, J=13.0, 5.8 and 3.0 Hz, 1H, H-2′), 3.65 (dd, J=11.5, 2.9 Hz, 1H, H-5′), 3.74 (dd, J=11.5, 2.5 Hz, 1H, H-5′), 3.81-3.80 (m, 1H, H-4′), 4.10-4.09 (m, 1H, H-3′), 4.17 (d, 2H, J=5.1 Hz, NCH2), 5.19 (d, 1H, J=4.0 Hz, 3′-OH), 6.04 (t, J=6.6 Hz, 1H, H-1′), 6.83 (br s, 1H, NHH), 7.78 (br s, 1H, NRH), 7.90 (s, 1H, H-6), 9.86 (t, J=5.1 Hz, 1H, —H2CNH); MS (ES): m/z (%) (MH)+ 491 (40%).
  • Figure US20200399692A1-20201224-C00014
  • 4-N-Acetyl-5′-O-(tert-butyldimethylsilyl)-3′-O-(methylthiolmethyl)-5-[3-(2,2,2-trifluoroacetamide)-prop-1-ynyl]-2′-deoxycytidine (9)
  • To a solution of the starting material (8) (825 mg, 1.68 mmol) in DMSO (6.3 ml) and N2 atmosphere, was slowly added acetic acid (AcOH) (1.3 ml, 23.60 mmol) followed by acetic anhydride (Ac2O) (4.8 ml, 50.50 mmol). The solution was stirred at room temperature for 18 h and quenched at 0° C. by addition of saturated NaHCO3 (20 ml). The product was extracted into EtOAc (3×30 ml), organic extracts combined, dried (MgSO4), filtered and the volatiles evaporated. The crude residue was purified by flash chromatography on silica gel (EtOAc:petroleum ether 1:1) to give the expected product as a colourless oil (9) (573 mg, 62%). 1H NMR (d6 DMSO) δ 0.00 (s, 6H, 2×CH3), 0.78 (s, 9H, tBu), 2.01 (s, 3H, SCH3), 2.19-1.97 (m, 2H, 2×H2′), 2.25 (s, 3H, COCH3), 3.67 (dd, 1H, J=11.5 Hz, H-5′), 3.78 (dd, 1H, J=11.5, 3.3 Hz, H-5′), 4.06-4.05 (m, 1H, H-4′), 4.17 (d, 2H, J=5.1 Hz, N—CH2), 4.30-4.28 (m, 1H, H-3′), 4.63 (s, 2H; CH2—S), 5.94 (t, 1H, J=6.5 Hz, H-1′), 8.17 (s, 1H, H-6), 9.32 (s, 1H, NHCO), 9.91 (t, 1H, J=5.4 Hz, NHCH2); MS (ES): m/z (%) (MH)+ 593.
  • Figure US20200399692A1-20201224-C00015
  • 4-N-Acetyl-3′-O-(azidomethyl)-5′-O-(tert-butyldimethylsilyl)-5-[3-(2,2,2-trifluoroacetamide)-prop-1-ynyl]-2′-deoxycytidine (10)
  • To a solution of the starting material (9) (470 mg, 0.85 mmol) in dicloromethane (DCM) (8 ml) under N2 atmosphere and cooled to 0° C., was added cyclohexene (430 μl, 4.27 mmol) followed by SO2Cl2 (1 M in DCM, 1.0 ml, 1.02 mmol). The solution was stirred for 30 minutes at 0° C., and the volatiles were evaporated. Residue immediately dissolved in DMF (8 ml) stirred under N2 and sodium azide (275 mg, 4.27 mmol) slowly added. After 18 h, the crude product was evaporated to dryness, dissolved in EtOAc (30 ml) and washed with Na2CO3 (3×5 ml). The combined organic layer was kept separately. A second extraction of the product from the aqueous layer was performed with DCM (3×10 ml). All the combined organic layers were dried (MgSO4), filtered and the volatiles evaporated under reduced pressure to give an oil identified as the expected product (10) (471 mg, 94% yield). This was used without any further purification. 1H NMR (d6 DMSO) δ 0.11 (s, 3H, CH3), 0.11 (s, 3H, CH3), 0.88 (s, 9H, tBu), 2.16-2.25 (m, 1H, H-2′), 2.35 (s, 3H, COCH3), 2.47-2.58 (m, 1H, H-2′), 3.79 (dd, J=11.6, 3.2 Hz, 1H, H-5′), 3.90 (dd, J=11.6, 3.0 Hz, 1H, H-5′), 4.17-4.19 (m, 1H, H-4′), 4.28 (s, 2H, NCH2), 4.32-4.35 (m, 1H, H-3′), 4.89 (dd, J=14.4, 6.0 Hz, 2H, CH2—N3), 6.05 (t, J=6.4 Hz, 1H, H-1′), 8.25 (s, 1H, H-6), 9.46 (br s, 1H, NHH), 10.01 (br s, 1H, NHH).
  • Figure US20200399692A1-20201224-C00016
  • 4-N-Acetyl-3′-O-(azidomethyl)-5-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxycytidine and 3′-O-(Azidomethyl)-5-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxycytidine (11)
  • To a solution of the starting material (11) (440 mg, 0.75 mmol) in THF (20 ml) at 0° C. and N2 atmosphere, was added TBAF in THF 1.0 M (0.82 ml, 0.82 mmol). After 1.5 h, the volatiles were evaporated under reduced pressure and the residue purified by flash chromatography on silica gel (EtOAc:petroleum ether 8:2 to EtOAc 100% to EtOAc:MeOH 8:2). Two compounds were isolated and identified as above described. The first eluted 4-N-Acetyl (11), (53 mg, 15%) and, the second one 4-NH2 (12) (271 mg, 84%).
  • Compound 4-N-Acetyl (11): 1H NMR (d6 DMSO) δ 1.98 (s, 3H, CH3CO), 2.14-2.20 (m, 2H, HH-2′), 3.48-3.55 (m, 1H, H-5′), 3.57-3.63 (m, 1H, H-5′), 3.96-4.00 (m, 1H, H-4′), 4.19 (d, J=5.3 Hz, 2H, CH2—NH), 4.23-4.28 (m, 1H, H-3′), 4.77 (s, 2H, CH2—N3), 5.2 (t, 1H, J=5.1 Hz, 5′-OH), 5.95 (t, J=6.2 Hz, 1H, H-1′), 8.43 (s, 1H, H-6), 9.34 (s, 1H, CONH), 9.95 (t, J=5.3 Hz, 1H, NHCH2).
  • Compound 4-NH2 (12): 1H NMR (d6 DMSO) δ 1.98-2.07 (2H, CHH-2′), 3.50-3.63 (m, 2H, CHH-5′), 3.96-4.00 (m, 1H, H-4′), 4.09 (d, J=5.3 Hz, 2H, CH2—NH), 4.24-4.28 (m, 1H, H-3′), 4.76 (s, 2H, CH2—N3), 5.13 (t, J=5.3 Hz, 1H, 5′-OH), 5.91 (br s, 1H, NHH), 6.11 (t, J=6.4 Hz, 1H, H-1′), 8.20 (t, J=5.3 Hz, 1H, NCH2), 8.45 (s, 1H, H-6), 11.04 (br s, 1H, NHH).
  • Figure US20200399692A1-20201224-C00017
  • 4-N-Benzoyl-5′-O-(tert-butyldimethylsilyl)-5-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxycytidine (13)
  • The starting material (8) (10 g, 20.43 mmol) was azeotroped in dry pyridine (2×100 ml) then dissolved in dry pyridine (160 ml) under N2 atmosphere. Chlorotrimethylsilane (10 ml, 79.07 mmol) added drop wise to the solution and stirred for 2 hours at room temperature. Benzoyl chloride (2.6 ml, 22.40 mmol) was then added to solution and stirred for one further hour. The reaction mixture was cooled to 0° C., distilled water (50 ml) added slowly to the solution and stirred for 30 minutes. Pyridine and water were evaporated from mixture under high vacuum to yield a brown gel that was portioned between 100 ml of sat. aq. NaHCO3 (100 ml) solution DCM. The organic phase was separated and the aqueous phase extracted with a further (2×100 ml) of DCM. The organic layers were combined, dried (MgSO4), filtered and the volatiles evaporated under reduced pressure. The resulting brown oil was purified by flash chromatography on silica gel (DCM:MeOH 99:1 to 95:5) to yield a light yellow crystalline solid (13) (8.92 g, 74%): 1H NMR (d6 DMSO): b 0.00 (s, 6H, CH3), 0.78 (s, 9H, tBu), 1.94 (m, 1H, H-2′), 2.27 (m, 1H, H-2′), 3.64 (d, 1H, J=11.6 Hz, H-5′), 3.75 (d, 1H, J=11.6 Hz, H-5′), 3.91 (m, 1H, H-4′), 4.09 (br m, 3H, CH2NH, H-3′), 5.24 (s, 1H, 3′-OH), 6.00 (m, 1H, H-1′), 7.39 (m, 2H, Ph), 7.52 (m, 2H, Ph), 7.86 (m, 1H, Ph), 8.0 (s, 1H, H-6), 9.79 (t, 1H, J=5.4 Hz, NHCH2), 12.67 (br s, 1H, NH). Mass (+ve electrospray) calcd for C27H33P3N4O6Si 594.67, found 595.
  • Figure US20200399692A1-20201224-C00018
  • 4-N-Benzoyl-5′-O-(tert-butyldimethylsilyl)-3′-O-methylthiomethyl-5-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxycytidine (14)
  • The starting material (13) (2.85 g, 4.79 mmol) was dissolved in dry DMSO (40 ml) under N2 atmosphere. Acetic acid (2.7 ml, 47.9 mmol) and acetic anhydride (14.4 ml, 143.7 mmol) were added sequentially and slowly to the starting material, which was then stirred for 18 h at room temperature. Saturated NaHCO3 (150 ml) solution was carefully added to the reaction mixture. The aqueous layer was extracted with EtOAc (3×150 ml). The organic layers were combined, dried (MgSO4), filtered and evaporated to yield an orange liquid that was subsequently azeotroped with toluene (4×150 ml) until material solidified. Crude residue purified on silica gel (petroleum ether:EtOAc 3:1 to 2:1) to yield a yellow crystalline solid (14) (1.58 g, 50%). 1H NMR (d6 DMSO): δ 0.00 (s, 6H, CH3), 0.78 (s, 9H, tBu), 1.99 (s, 3H, CH3), 2.09 (m, 1H, H-2′), 2.28 (m, 1H, H-2′), 3.66 (d, 1H, J=11.5, 2.9 Hz, H-5′), 3.74 (dd, 1H, J=11.3, 2.9 Hz, H-5′), 3.99 (m, 1H, H-4′), 4.09 (m, 1H, CH2NH), 4.29 (m, 1H, H-3′), 4.61 (s, 2H, CH2S), 6.00 (m, 1H, H-1′), 7.37 (m, 2H, Ph), 7.50 (m, 2H, Ph), 7.80 (d, 1H, J=7.55 Hz, HAr), 7.97 (s, 1H, H-6), 9.79 (br t, 1H, NHCH2), 12.64 (br s, 1H, NH). Mass (−ve electrospray) calcd for C29H37F3N4O6SSi 654.79, found 653.2.
  • Figure US20200399692A1-20201224-C00019
  • 4-N-Benzoyl-5′-O-(tert-butyldimethylsilyl)-3′-O-azidomethyl-5-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxycytidine (15)
  • The starting material (14) (1.65 g, 2.99 mmol) was dissolved in DCM (18 ml) and cooled to 0° C. Cyclohexene (1.5 ml, 14.95 mmol) and SO2Cl2 (0.72 ml, 8.97 mmol) were added and stirred 1 h in ice bath. TLC indicated starting material still to be present whereupon a further aliquot of SO2Cl2 (0.24 ml) was added and the mixture stirred for 1 h at 0° C. Volatiles were removed by evaporation to yield a light brown solid that was redissolved in 18 ml of dry DMF (18 ml) under N2. Sodium azide (0.97 g, 14.95 mmol) was then added to the solution and stirred for 2.5 h at room temperature. The reaction mixture was passed through a pad of silica and eluted with EtOAc and the volatiles removed by high vacuum evaporation. The resulting brown gel was purified by flash chromatography (petroleum ether:EtOAc 4:1 to 2:1) to yield the desired product as a white crystalline solid (15) (0.9 g, 55%). 1H NMR (d6 DMSO): δ 0.00 (s, 6H, CH3), 0.78 (s, 9H, tBu), 2.16 (m, 1H, H-2′), 2.22 (m, 1H, H-2′), 3.70 (d, 1H, J=11.5 Hz, H-5′), 3.75 (d, 1H, J=11.3 Hz, H-5′), 4.01 (m, 1H, H-4′), 4.10 (m, 1H, CH2NH), 4.23 (m, 1H, H-3′), 4.76 (s, 2H, CH2S), 5.99 (m, 1H, H-1′), 7.37 (m, 2H, Ph), 7.50 (m, 2H, Ph), 7.81 (d, 1H, J=7.4 Hz, Ph), 7.95 (s, 1H, H-6), 9.78 (br s, 1H, NHCH2), 12.64 (br s, 1H, NH). Mass (−ve electrospray) calcd. for C28H34F3N7O6Si 649.71, found 648.2
  • Figure US20200399692A1-20201224-C00020
  • 4-N-Benzoyl-3′-O-azidomethyl-5-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxycytidine (16)
  • The starting material (15) (140 mg, 0.22 mmol) was dissolved in THF (7.5 ml). TBAF (1M soln. in THF, 0.25 ml) was added slowly and stirred for 2 h at room temperature. Volatile material removed under reduced pressure to yield a brown gel that was purified by flash chromatography (EtOAc:DCM 7:3) to yield the desired product (16) as a light coloured crystalline solid (0.9 g, 76%). 1H NMR (d6 DMSO): δ 2.16 (m, 1H, H-2′), 2.22 (m, 1H, H-2′), 3.70 (d, 1H, J=11.5 Hz, H-5′), 3.75 (d, 1H, J=11.3 Hz, H-5′), 4.01 (m, 1H, H-4′), 4.10 (m, 1H, CH2NH), 4.23 (m, 1H, H-3′), 4.76 (s, 2H, CH2S), 5.32 (s, 1H, 5′ OH), 5.99 (m, 1H, H-1′), 7.37 (m, 2H, Ph), 7.50 (m, 2H, Ph), 7.81 (d, 1H, J=7.35 Hz, Ph), 7.95 (s, 1H, H-6), 9.78 (br s, 1H, NHCH2), 12.64 (br s, 1H, NH). Mass (−ve electrospray) calcd for C22H20F3N7O6 535.44, found 534.
  • Figure US20200399692A1-20201224-C00021
  • 5-(3-Amino-prop-1-ynyl)-3′-O-azidomethyl-2′-deoxycytidine 5′-O-nucleoside triphosphate (17)
  • To a solution of (11) and (12) (290 mg, 0.67 mmol) and proton sponge (175 mg, 0.82 mmol) (both previously dried under P2O5 for at least 24 h) in PO(OMe)3 (600 μl), at 0° C. under Argon atmosphere, was slowly added POCl3 (freshly distilled) (82 μl, 0.88 mmol). The solution was vigorously stirred for 3 h at 0° C. and then quenched by addition of tetra-tributylammonium diphosphate (0.5 M) in DMF (5.2 ml, 2.60 mmol), followed by nBu3N (1.23 ml, 5.20 mmol) and triethylammonium bicarbonate (TEAB) 0.1 M (20 ml). After 1 h at room temperature aqueous ammonia solution (ρ 0.88, 20 ml) was added to the mixture. Solution stirred at room temperature for 15 h, volatiles evaporated under reduced pressure and the residue was purified by MPLC with a gradient of TEAB from 0.05M to 0.7M. The expected triphosphate was eluted from the column at approx. 0.60 M TEAB. A second purification was done by HPLC in a Zorbax SB-C18 column (21.2 mm i.d.×25 cm) eluted with 0.1M TEAB (pump A) and 30% CH3CN in 0.1M TEAB (pump B) using a gradient as follows: 0-5 min 5% B, Φ.2 ml; 5-25 min 80% B, Φ.8 ml; 25-27 min 95% B, Φ.8 ml; 27-30 min 95% B, Φ.8 ml; 30-32 min 5% B, Φ.8 ml; 32-35 min 95% B, Φ.2 ml, affording the product described above with a rt(17): 20.8 (14.5 μmols, 2.5% yield); 31P NMR (D2O, 162 MHz) δ −5.59 (d, J=20.1 Hz, Pχ), −10.25 (d, J=19.3 Hz, 1P, Pα), −20.96 (t, J=19.5 Hz, 1P, Pβ); 1H NMR (D2O) δ 2.47-2.54 (m, 1H, H-2′), 2.20-2.27 (m, 1H, H-2′), 3.88 (s, 2H, CH2N), 4.04-4.12 (m, 1H, HH-5′), 4.16-4.22 (m, 1H, 4.24-4.30 (m, 1H, H-4′), 4.44-4.48 (m, 1H, H-3′), 6.13 (t, J=6.3 Hz, 1H, H-1′), 8.35 (s, 1H, H-6); MS (ES): m/z (%) (M−H) 574 (73%), 494 (100%).
  • Figure US20200399692A1-20201224-C00022
  • Alexa488 Disulfide Linker
  • Commercial available Alexa Fluor 488-NHS (35 mg, 54 μmol) was dissolved in DMF (700 μL) and, to ensure full activation, 4-DMAP (7 mg, 59 μmol) and N,N′-disuccinimidyl carbonate (15 mg, 59 μmol) were sequentially added. After 15 min on complete activation, a solution of the starting disulfide (32.0 mg, 108 μmol) in DMF (300 μL) containing diisopropylethylamine (4 μL) was added over the solution of the activated dye. Further addition of diisopropylethylamine (20 μL) to the final mixture was done, ultrasonicated for 5 min and reacted for 18 h at room temperature in the darkness. The volatiles were evaporated under reduced pressure and the crude residue was first purified passing it through a short ion exchange resin Sephadex-DEAE A-25 (40-120μ) column, first eluted with TEAB 0.1 M (25 ml) then 1.0 M TEAB (75 ml). The latest containing the two final compounds was concentrated and the residue was HPLC purified in a Zorbax SB-C18 column (21.2 mm i.d.×25 cm) eluted with 0.1M TEAB (pump A) and CH3CN (pump B) using a gradient as follows: 0-2 min 2% B, Φ.2 ml; 2-4 min 2% B, Φ.8 ml; 4-15 min 23% B, Φ.8 ml; 15-24 min 23% B, Φ.8 ml; 24-26 min 95% B, Φ.8 ml; 26-28 min 95% B, Φ.8 ml, 28-30 min 2% B, Φ.8 ml, 30-33 min 2% B, Φ.2 ml affording both compounds detailed above with tr: 19.0 (left regioisomer) and tr: 19.5 (right regioisomer). Both regioisomers were respectively passed through a dowex ion exchange resin column, affording respectively 16.2 μmol and 10.0 μmol, 62% total yield (based in commercial available Alexa Fluor 488-NHS of 76% purity); ε493=71,000 cm−1 M−1 in H2O. 1H NMR (D2O) (left regioisomer) δ 2.51 (t, J=6.8 Hz, 2H, CH2), 2.66 (t, J=6.8 Hz, 2H, CH2), 2.71 (t, J=5.8 Hz, 2H, CH2), 3.43 (t, J=5.8 Hz, 2H, CH2), 6.64 (d, J=9.2 HZ, 2H, HAr), 6.77 (d, J=9.2 Hz, 2H, HAr), 7.46 (s, 1H, HAr), 7.90 (dd, J=8.1 and 1.5 Hz, 1H, HAr), 8.20 (d, J=8.1 Hz, 1H, HAr). 1H NMR (D2O) (right regioisomer) δ 2.67 (t, J=6.8 Hz, 2H, CH2), 2.82 (t, J=6.8 Hz, 2H, CH2), 2.93 (t, J=6.1 Hz, 2H, CH2), 3.68 (t, J=6.1 Hz, 2H, CH2), 6.72 (d, J=9.3 HZ, 2H, HAr), 6.90 (d, J=9.3 HZ, 2H, HAr), 7.32 (d, J=7.9 Hz, 1H, HAr), 8.03 (dd, J=7.9, 1.7 Hz, 1H, HAr), 8.50 (d, J=1.8 Hz, 1H, HAr) Mass (−ve electrospray) calcd for C26H23N3O12S4 697.02, found 692 (M−H), 347 [M/2].
  • Figure US20200399692A1-20201224-C00023
  • To a solution of Alexa Fluor 488 disulfide linker (3.4 μmol, 2.37 mg) in DMF (200 μL) was added 4-DMAP (0.75 mg, 5.1 μmol) and N,N-disuccinimidyl carbonate (1.70 mg, 5.1 μmol). The mixture was stirred for 15 to full activation of the acid, then it was added into the solution of the nucleotide (17) (3.45 mg, 6.0 μmol) in DMF (0.3 ml) containing nBu3N (40 μL) at 0° C. The mixture was sonicated for 3 min and then continuously stirred for 16 h in the absence of light. The volatiles were evaporated under reduced pressure and the residue was firstly purified by filtration through a short ion exchange resin Sephadex-DEAE A-25 column, first eluted with TEAB 0.1 M (50 ml) removing the unreacted dye-linker, then 1.0 M TEAB (100 ml) to collect the expected product (18). After concentration and the residue was HPLC purified in a Zorbax SB-C18 column (21.2 mm i.d.×25 cm) eluted with 0.1M TEAB (pump A) and CH3CN (pump B) using a gradient as follows: 0-2 min 2% B, 0.2 ml; 2-4 min 2% B, Φ.8 ml; 4-15 min 23% B, Φ.8 ml; 15-24 min 23% B, Φ.8 ml; 24-26 min 95% B, Φ.8 ml; 26-28 min 95% B, Φ.8 ml, 28-30 min 2% B, Φ.8 ml, 30-33 min 2% B, Φ.2 ml affording the product detailed above with a rt(18): 19.8 (0.26 μmols, 12% yield based on UV measurement); λmax=493 nm, ∈ 71,000 cm−1 M−1 in H2O); 31P NMR (D2O, 162 MHz) δ −5.06 (d, J=20.6 Hz, 1P, Pχ), −10.25 (d, J=19.3 Hz, 1P, Pα), −21.21 (t, J=19.5 Hz, 1P, Pβ); 1H NMR (D2O) δ 2.09-2.17 (m, 1H, HH-2′), 2.43-2.50 (m, 1H, HH-2′), 2.61 (t, J=6.8 Hz, 2H, H2C—S), 2.83 (2H, S—CH2), 3.68 (t, J=6.0 Hz, 2H, ArCONCH2), 4.06 (s, 2H, CH2N), 4.08-4.17 (m, 4H, HH-5′), 4.25-4.29 (m, 1H, H-4′), 4.46-4.50 (m, 1H, H-3′), 6.09 (t, J=6.4 Hz, 1H, H-1′), 6.88 (d, J=9.1 Hz, 1H, HAr), 6.89 (d, J=9.3 Hz, 1H, HAr), 7.15 (d, J=9.3 Hz, 1H, HAr), 7.17 (d, J=9.1 Hz, 1H, HAr), 7.64 (br s, 1H, HAr), 8.00-7.94 (m, 2H, HAr) 8.04 (s, 1H, H-6); MS (ES): m/z (%) (M−H) 1253 (46%), (M−H+Na) 1275 (100%).
  • Figure US20200399692A1-20201224-C00024
  • 7-Deaza-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyguanosine (19)
  • Under N2, a suspension of 7-deaza-7-iodo-guanosine (2 g, 2.75 mmol), Pd(PPh3)4 (582 mg, 0.55 mmol), CuI (210 mg, 1.1 mmol), Et3N (1.52 ml, 11 mmol) and the propagylamine (2.5 g, 16.5 mmol) in DMF (40 ml) was stirred at room temperature for 15 h under N2. The reaction was protected from light with aluminium foil. After TLC indicating the full consumption of starting material, the reaction mixture was concentrated. The residue was diluted with MeOH (20 ml) and treated with dowex-HCO3 . The mixture was stirring for 30 min and filtered. The solution was concentrated and purified by silica gel chromatography (petroleum ether:EtOAc 50:50 to petroleum ether:EtOAc:MeOH 40:40:20), giving (19) as a yellow powder (2.1 g, 92%). 1H NMR (d6 DMSO) δ 2.07-2.11 (m, 1H, H-2′), 2.31-2.33 (m, 1H, H-2′), 3.49-3.53 (m, 2H, H-5′), 3.77 (br s, 1H, H-4′), 4.25 (d, J=4.3 Hz, 2H, —CCH2), 4.30 (br s, 1H, H-3′), 4.95 (t, J=5.2 Hz, 1H, 5′-OH), 5.25 (d, J=3.4 Hz, 1H, 3′-OH), 6.27-6.31 (m, 1H, H-1′), 6.37 (s, 2H, NH2), 7.31 (s, 1H, H-8), 10.10 (br s, 1H, NHCOCF3), 10.55 (s, 1H, NH). Mass (−ve electrospray) calcd for C16H36F3N5O5 415, found 414.
  • Figure US20200399692A1-20201224-C00025
  • 5′-O-(tert-Butyldiphenyl)-7-deaza-7-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyguanosine (20)
  • A solution of (19) (2.4 g, 5.8 mmol) in pyridine (50 ml) was treated with tert-butyldiphenylsilyl chloride (TBDPSCl) (1.65 ml, 6.3 mmol) drop wise at 0° C. The reaction mixture was then warmed to room temperature. After 4 h, another portion of TBDPSCl (260 μL, 1 mmol) was added. The reaction was monitored by TLC, until full consumption of the starting material. The reaction was quenched with MeOH (˜5 ml) and evaporated to dryness. The residue was dissolved in DCM and aq. sat. NaHCO3 was added. The aqueous layer was extracted with DCM three times. The combined organic extracts were dried (MgSO4) and concentrated under vacuum. Purification by chromatography on silica (EtOAc to EtOAc:MeOH 85:15) gave (20) a yellow foam (3.1 g, 82%). 1H NMR (d6 DMSO) δ 1.07 (s, 9H, CH3), 2.19-2.23 (m, 1H, H-2′), 2.38-2.43 (m, 1H, H-2′), 3.73-3.93 (m, 2H, H-5′), 4.29 (d, J=5.0 Hz, 2H, CH2N), 4.42-4.43 (m, 1H, H-3′), 5.41 (br s, 1H, OH), 6.37 (t, J=6.5 Hz, H-1′), 6.45 (br s, 2H, NH2), 7.24-7.71 (m, 11H, H-8, HAr) 10.12 (t, J=3.6 Hz, 1H, NH), 10.62 (s, 1H, H-3). Mass (+ve electrospray) calcd for C32H34F3N5O5Si 653, found 654.
  • Figure US20200399692A1-20201224-C00026
  • 5′-O-(tert-Butyldiphenyl)-7-deaza-3′-O-methylthiolmethyl-7-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyguanosine (21)
  • A solution of (20) (1.97 g, 3.0 mmol) in DMSO (15 ml) was treated with Ac2O (8.5 ml, 90 mmol), and AcOH (2.4 ml, 42 mmol) and stirred at room temperature for 15 h, then 2 h at 40° C. The reaction mixture was diluted with EtOAc (200 ml) and stirred with sat, aq. NaHCO3 (200 ml) for 1 h. The aqueous layer was washed with EtOAc twice. The organic layer was combined, dried (MgSO4) and concentrated under vacuum. Purification by chromatography on silica (EtOAc:Hexane 1:1 to EtOAc:Hexane:MeOH 10:10:1) gave (21) as a yellow foam (1.3 g, 60%). 1H NMR (CDCl3) δ 1.04 (s, 9H, CH3), 2.08 (s, 3H, SCH3), 2.19-2.35 (m, 2H, H-2), 3.67-3.71 (m, 2H, H-5′), 3.97-3.99 (m, 2H, H-4′, H-3′), 4.23 (br s, 2H, CH2N), 4.58 (s, 2H; CH2S), 6.31 (dd, J=5.7, 7.9 Hz, H-1′), 7.19-7.62 (m, 11H, H8, HAr). Mass (+ve electrospray) calcd for C34H38F3N5O5SSi 713, found: 714.
  • Figure US20200399692A1-20201224-C00027
  • 3′-O-Azidomethyl-7-deaza-7-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyguanosine (22)
  • To a solution of (21) (1.3 mg, 1.8 mmol), cyclohexene (0.91 ml, 9 mmol) in CH2Cl2 (10 ml) in 4° C., sulfurylchloride (1M in CH2Cl2) (1.1 ml, 1.1 mmol) was added drop wise under N2. After 30 min., TLC indicated the full consumption of the nucleoside (22). After evaporation to remove the solvent, the residue was then subjected to high vacuum for 20 min, and then treated with NaN3 (585 mmol, 9 mmol) and DMF (10 ml). The resulted suspension was stirred under room temperature for 2 h. Extraction with CH2Cl2/NaCl (10%) gave a yellow gum, which was treated with TBAF in THF (1 M, 3 ml) and THF (3 ml) at room temperature for 20 min. Evaporation to remove solvents, extraction with EtOAc/sat. aq. NaHCO3, followed by purification by chromatography on silica (EtOAc to EtOAc:MeOH 9:1) gave (22) as a yellow foam (420 mg, 50%). 1H NMR (d6 DMSO): δ 2.36-2.42 (m, 1H, H-2′), 2.49-2.55 (m, 1H, H-2′), 3.57-3.59 (m, 2H, H-5′), 3.97-4.00 (m, 1H, H-4′), 4.29 (m, 2H, CH2N), 4.46-4.48 (m, 1H, H-3′), 4.92-4.96 (m, 2H, CH2N3), 5.14 (t, J=5.4 Hz, 1H, 5′-OH), 5.96-6.00 (dd, J=5.7, 8.7 Hz, 1H, H-1′), 6.46 (br s, 2H, NH2), 7.39 (s, 1H, H-6), 10.14 (s, 1H, NH), 10.63 (s, 1H, H-3).
  • Figure US20200399692A1-20201224-C00028
  • 3′-O-Azidomethyl-7-deaza-7-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyguanosine 5′-O-nucleoside triphosphate (23)
  • Tetrasodium diphosphate decahydrate (1.5 g, 3.4 mmol) was dissolved in water (34 ml) and the solution was applied to a column of dowex 50 in the H+ form. The column was washed with water. The eluent dropped directly into a cooled (ice bath) and stirred solution of tri-n-butyl amine (1.6 ml, 6.8 mmol) in EtOH (14 ml). The column was washed until the pH of the eluent increased to 6. The aqueous ethanol solution was evaporated to dryness and then co-evaporated twice with ethanol and twice with anhydrous DMF. The residue was dissolved in DMF (6.7 ml). The pale yellow solution was stored over 4 Å molecular sieves. The nucleoside (22) and proton sponge was dried over P2O5 under vacuum overnight. A solution of (22) (104 mg, 0.22 mmol) and proton sponge (71 mg, 0.33 mmol) in trimethylphosphate (0.4 ml) was stirred with 4 Å molecular sieves for 1 h. Freshly distilled POCl3 (25 μl, 0.26 mmol) was added and the solution was stirred at 4° C. for 2 h. The mixture was slowly warmed up to room temperature and bis (tri-n-butyl ammonium) pyrophosphate (1.76 ml, 0.88 mmol) and anhydrous tri-n-butyl amine (0.42 ml, 1.76 mmol) were added. After 5 min, the reaction was quenched with 0.1 M TEAB (triethylammonium bicarbonate) buffer (15 ml) and stirred for 3 h. The water was removed under reduced pressure and the resulting residue dissolved in concentrated ammonia (ρ 0.88, 10 ml) and stirred at room temperature for 16 h. The reaction mixture was then evaporated to dryness. The residue was dissolved in water and the solution applied to a DEAE-Sephadex A-25 column. MPLC was performed with a linear gradient of 2 L each of 0.05 M and 1 M TEAB. The triphosphate was eluted between 0.7 M and 0.8 M buffer. Fractions containing the product were combined and evaporated to dryness. The residue was dissolved in water and further purified by HPLC. tr(23)=20.5 min (Zorbax C18 preparative column, gradient: 5% to 35% B in 30 min, buffer A 0.1M TEAB, buffer B MeCN). The product was isolated as a white foam (225 O.D., 29.6 μmol, 13.4%, ε260=7,600). 1HNMR (D2O) δ 2.43-2.5 (m, 2H, H-2′), 3.85 (m, 2H, CH2N), 3.97-4.07 (m, 2H, H-5′), 4.25 (br s, 1H, H-4′), 4.57 (br s, 1H, H-3′), 4.74-4.78 (m, 2H, CH2N3), 6.26-6.29 (m, 1H, H-1′), 7.41 (s, 1H, H-8). 31P-NMR (D2O) δ −8.6 (m, 1P, Pγ), −10.1 (d, J=19.4 Hz, 1P, Pα), −21.8 (t, J=19.4 Hz, 1P, Pβ). Mass (−ve electrospray) calcd for C15H21N8O13P3 614, found 613.
  • Figure US20200399692A1-20201224-C00029
  • A mixture of disulphide linkered-Cy3 (2.5 μmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) (0.95 mg, 5 μmol), 1-hydroxybenzotriazole (HOBt) (0.68 mg, 5 μmol) and N-methyl-morpholine (0.55 μL, 5 μmol) in DMF (0.9 ml) was stirred at room temperature for 1 h. A solution of (23) (44 O.D., 3.75 μmol) in 0.1 ml water was added to the reaction mixture at 4° C., and left at room temperature for 3 h. The reaction was quenched with TEAB buffer (0.1M, 10 ml) and loaded on a DEAE Sephadex column (2×5 cm). The column was first eluted with 0.1 M TEAB buffer (100 ml) and then 1 M TEAB buffer (100 ml). The desired triphosphate product was eluted out with 1 M TEAB buffer. Concentrating the fraction containing the product and applied to HPLC. tr(24)=23.8 min (Zorbax C18 preparative column, gradient: 5% to 55% B in 30 min, buffer A 0.1M TEAB, buffer B MeCN). The product was isolated as a red foam (0.5 μmol, 20%, εmax=150,000). 1H NMR (D2O) δ 1.17-1.71 (m, 20H, 4×CH2, 4×CH3), 2.07-2.15 (m, 1H, H-2′), 2.21-2.30 (m, 1H, H-2′), 2.52-2.58 (m, 2H, CH2), 2.66-2.68 (m, 2H, CH2), 2.72-2.76 (m, 2H, CH2), 3.08-3.19 (m, 2H, CH2), 3.81-3.93 (m, 6H, CH2, H-5′), 4.08-4.16 (m, 1H, H-4′), 4.45-4.47 (m, 1H, H-3′), 4.70-4.79 (m, 2H, CH2N3), 6.05-6.08 (m, 2H, HAr), 6.15-6.18 (m, 1H, H-1′), 7.11 (s, 1H, H-8), 7.09-7.18 (m, 2H, CH), 7.63-7.72 (m, 4H, HAr), 8.27-8.29 (m, 1H, CH). 31P NMR (D2O) δ −4.7 (m, 1P, Pγ), −9.8 (m, 1P, Pα), −19.7 (m, 1P, Pβ). Mass (−ve electrospray) calcd for C51H66N11O21P3S41389.25, found 1388 (M−H), 694 [M−2H], 462 [M−3H].
  • Figure US20200399692A1-20201224-C00030
  • 7-Deaza-7-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyadenosine (25)
  • To a suspension of 7-deaza-7-iodo-2′-deoxyadenosine (1 g, 2.65 mmol) and CuI (100 mg, 0.53 mmol) in dry DMF (20 ml) was added triethylamine (740 μl, 5.3 mmol). After stirring for 5 min trifluoro-N-prop-2-ynyl-acetamide (1.2 g, 7.95 mmol) and Pd(PPh3)4 (308 mg, 0.26 mmol) were added to the mixture and the reaction was stirred at room temperature in the dark for 16 h. MeOH (40 ml) and bicarbonate dowex was added to the reaction mixture and stirred for 45 min. The mixture was filtered. The filtrate washed with MeOH and the solvent was removed under vacuum. The crude mixture was purified by chromatography on silica (EtOAc to EtOAc:MeOH 95:20) to give slightly yellow powder (25) (1.0 g, 95%). 1H NMR (d6 DMSO) δ 2.11-2.19 (m, 1H, H-2′), 2.40-2.46 (m, 1H, H-2′), 3.44-3.58 (m, 2H, H-5′), 3.80 (m, 1H, H-4′), 4.29 (m, 3H, H-3′, CH2N), 5.07 (t, J=5.5 Hz, 1H, OH), 5.26 (d, J=4.0 Hz, 1H, OH), 6.45 (dd, J=6.1, 8.1 Hz, 1H, H-1′), 7.74 (s, 1H, H-8), 8.09 (s, 1H, H-2), 10.09 (t, J=5.3 Hz, 1H, NH).
  • Figure US20200399692A1-20201224-C00031
  • 5′-O-(tert-Butyldiphenylsilyl)-7-deaza-7-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyadenosine (26)
  • The nucleoside (25) (1.13 g, 2.82 mmol) was coevaporated twice in dry pyridine (2×10 ml) and dissolved in dry pyridine (18 ml). To this solution was added t-butyldiphenylsilylchloride (748 μl, 2.87 mmol) in small portions at 0° C. The reaction mixture was let to warm up at room temperature and left stirring overnight. The reaction was quenched with sat. aq. NaCl solution. EtOAc (25 ml) was added to reaction mixture and the aqueous layer was extracted with EtOAc three times. After drying the combined organic extracts (MgSO4) the solvent was removed under vacuum. Purification by chromatography on silica (DCM then EtOAc to EtOAc:MeOH 85:15) gave (26) as a slightly yellow powder (1.76 g, 97%). 1H NMR (d6 DMSO) δ 1.03 (s, 9H, tBu), 2.25-2.32 (m, 1H, H-2′), 2.06-2.47 (m, 1H, H-2′), 3.71-3.90 (m, 2H, H-5′), 3.90-3.96 (m, 1H, H-4′), 4.32 (m, 2H, CH2N), 4.46 (m, 1H, H-3′), 5.42 (br s, 1H, OH), 6.53 (t, J=6.7 Hz, 1H, H-1′), 7.38-7.64 (m, 11H, H-8 and HAr), 8.16 (s, 1H, H-2), 10.12 (t, J=5.3 Hz, 1H, NH).
  • Figure US20200399692A1-20201224-C00032
  • 5′-O-(tert-Butyldiphenylsilyl)-7-deaza-4-N,N-dimethylformadin-7-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyadenosine (27)
  • A solution of the nucleoside (26) (831 mg, 1.30 mmol) was dissolved in a mixture of MeOH:N,N-dimethylacetal (30 ml: 3 ml) and stirred at 40° C. The reaction monitored by TLC, was complete after 1 h. The solvent was removed under vacuum. Purification by chromatography on silica (EtOAc:MeOH 95:5) gave (27) as a slightly brown powder (777 mg, 86%). 1H NMR (d6 DMSO) δ 0.99 (s, 9H, tBu), 2.22-2.29 (m, 1H, H-2′), 2.50-2.59 (m, 1H, H-2′), 3.13 (s. 3H, CH3), 3.18 (s. 3H, CH3), 3.68-3.87 (m, 2H, H-5′), 3.88-3.92 (m, 1H, H-4′), 4.25 (m, 2H, CH2N), 4.43 (m, 1H, H-3′), 6.56 (t, J=6.6 Hz, 1H, H-1′), 7.36-7.65 (m, 10H, HAr), 7.71 (s, 1H, H-8), 8.33 (s, 1H, CH), 8.8 (s, 1H, H-2), 10.12 (t, J=5.3 Hz, 1H, NH).
  • Figure US20200399692A1-20201224-C00033
  • 5′-O-(tert-Butyldiphenylsilyl)-7-deaza-4-N,N′-dimethylformadin-3′-O-methylthiomethoxy-7-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyadenosine (28)
  • To a solution of (27) (623 mg, 0.89 mmol) in dry DMSO (8 ml) was added acetic acid (775 μl, 13.35 mmol) and acetic anhydride (2.54 ml, 26.7 mmol). The mixture was stirred overnight at room temperature. The reaction was then poured into EtOAc and sat. aq. NaHCO3 (1:1) solution and stirred vigorously. The organic layer was washed one more time with sat. aq. NaHCO3 and dried over MgSO4. After removing the solvent under reduced pressure, the product (28) was purified by chromatography on silica (EtOAc:petroleum ether 1:2, then EtOAc) yielding (28) (350 mg, 52%). 1H NMR (d6 DMSO): δ, 1.0 (s, 9H, tBu), 2.09 (s, 3H, SCH3), 2.41-2.48 (m, 1H, H-2′), 2.64-2.72 (m, 1H, H-2′), 3.12 (s, 3H, CH3), 3.17 (s, 3H, CH3), 3.66-3.89 (m, 2H, H-5′), 4.04 (m, 1H, H-4′), 4.26 (m, J=5.6 Hz, 2H, CH2), 4.67 (m, 1H, H-3′), 4.74 (br s, 2H, CH2), 6.49 (t, J=6.1, 8.1 Hz, 1H, H-1′), 7.37-7.48 (m, 5H, HAr), 7.58-7.67 (m, 5H, HAr), 7.76 (s, 1H, H-8), 8.30 (s, 1H, CH), 8.79 (s, 1H, H-2), 10.05 (t, J=5.6 Hz, 1H, NH).
  • Figure US20200399692A1-20201224-C00034
  • 3′-O-Azidomethyl-5′-O-(tert-butyldiphenylsilyl)-7-deaza-4-N,N-dimethylformadin-7-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyadenosine (29)
  • To a solution of (28) (200 mg, 0.26 mmol) and cyclohexene (0.135 ml, 1.3 mmol) in dry CH2Cl2 (5 ml) at 0° C., sulfurylchoride (32 μl, 0.39 mmol) was added under N2. After 10 min, TLC indicated the full consumption of the nucleoside (28). The solvent was evaporated and the residue was subjected to high vacuum for 20 min. It was then redissolved in dry DMF (3 ml), cooled to 0° C. and treated with NaN3 (86 mg, 1.3 mmol). The resulting suspension was stirred under room temperature for 3 h. The reaction was partitioned between EtOAc and water. The aqueous phases were extracted with EtOAc. The combined organic extracts were combined and dried over MgSO4. After removing the solvent under reduced pressure, the mixture was purified by chromatography on silica (EtOAc) yielding an oil (29) (155 mg, 80%). 1H NMR (d6 DMSO): δ 0.99 (s, 9H, tBu), 2.45-2.50 (m, 1H, H-2′), 2.69-2.78 (m, 1H, H-2′), 3.12 (s, 3H, CH2), 3.17 (s, 3H, CH2), 3.67-3.88 (m, 2H, H-5′), 4.06 (m, 1H, H-4′), 4.25 (m, 2H, CH2), 4.61 (m, 1H, H-3′), 4.84-4.97 (m, 2H, CH2), 6.58 (t, J=6.6 Hz, 1H, H-1′), 7.35-7.47 (m, 5H, HAr), 7.58-7.65 (m, 5H, HAr), 7.77 (s, 1H, H-8), 8.30 (s, 1H, CH), 8.79 (s, 1H, H-2), 10.05 (br s, 1H, NH).
  • Figure US20200399692A1-20201224-C00035
  • 3′-O-Azidomethyl-7-deaza-4-N,N-dimethylformadin-7-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyadenosine (30)
  • A solution of (29) (155 mg, 0.207 mmol) in solution in tetrahydrofuran (THF) (3 ml) was treated with TBAF (1 M in THF, 228 μl) at 0° C. The ice-bath was then removed and the reaction mixture stirred at room temperature. After 2 h-TLC indicated the full consumption of the nucleoside. The solvent was removed. Purification by chromatography on silica (EtOAc:MeOH 95:5) gave (30) (86 mg, 82%) as a pale brown oil. 1H NMR (d6 DMSO) δ 2.40-2.48 (dd, J=8.1, 13.6 Hz, 1H, H-2′), 2.59-2.68 (dd, J=8.3, 14 Hz, 1H, H-2′), 3.12 (s, 3H, CH3), 3.17 (s, 3H, CH3), 3.52-3.62 (m, 2H, H-5′), 4.02 (m, 1H, H-4′), 4.28 (d, J=5.6 Hz, 2H, CH2NH), 4.47 (m, 1H, H-3′), 4.89 (s, 2H, CH2N3), 5.19 (t, J=5.6 Hz, 1H, OH), 6.49 (dd, J=8.1, 8.7 Hz, 1H, H-1′), 7.88 (s, 1H, H-8), 8.34 (s, 1H, CH), 8.80 (s, 1H, H-2), 10.08 (s, 1H, NH).
  • Figure US20200399692A1-20201224-C00036
  • 7-(3-Aminoprop-1-ynyl)-3′-O-azidomethyl-7-deaza-2′-deoxyadenosine 5′-O-nucleoside triphosphate (31)
  • The nucleoside (30) and proton sponge was dried over P2O5 under vacuum overnight. A solution of (30) (150 mg, 0.294 mmol) and proton sponge (126 mg, 0.588 mmol) in trimethylphosphate (980 μl) was stirred with 4 Å molecular sieves for 1 h. Freshly distilled POCl3 (36 μl, 0.388 mmol) was added and the solution was stirred at 4° C. for 2 h. The mixture was slowly warmed up to room temperature and bis (tri-n-butyl ammonium) pyrophosphate 0.5 M solution in DMF (2.35 ml, 1.17 mmol) and anhydrous tri-n-butyl amine (560 μl, 2.35 mmol) was added. After 5 min, the reaction was quenched with 0.1 M TEAB (triethylammonium bicarbonate) buffer (15 ml) and stirred for 3 h. The water was removed under reduced pressure and the resulting residue dissolved in concentrated ammonia (p 0.88, 15 ml) and stirred at room temperature for 16 h. The reaction mixture was then evaporated to dryness. The residue was dissolved in water and the solution applied to a DEAE-Sephadex A-25 column. MPLC was performed with a linear gradient of 0.05 M to 1 M TEAB. Fractions containing the product were combined and evaporated to dryness. The residue was dissolved in water and further purified by HPLC. HPLC: tr(31): 19.94 min (Zorbax C18 preparative column, gradient: 5% to 35% B in 20 min, buffer A 0.1M TEAB, buffer B MeCN). The product (31) was isolated as a white foam (17.5 μmol, 5.9%, ε280=15000). 1H NMR (D2O) δ 2.67-2.84 (2m, 2H, H-2′), 4.14 (m, 2H, CH2NH), 4.17-4.36 (m, 2H, H-5′), 4.52 (br s, H-4′), 6.73 (t, J=6.6 Hz, H-1′), 8.06 (s, 1H, H-8), 8.19 (s, 1H, H-2). 31P NMR (D2O) δ −5.07 (d, J=21.8 Hz, 1P, Pγ), −10.19 (d, J=19.8 Hz, 1P, Pα), −21.32 (t, J=19.8 Hz, 1P, Pβ). Mass (−ve electrospray) calcd for C15H21N8O12P3 598.05, found 596.
  • Figure US20200399692A1-20201224-C00037
  • To the Cy3 disulphide linker (1.3 μmol) in solution in DMF (450 μl) is added at 0° C. 50 μl of a mixture of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, 1-hydroxybenzotriazole hydrate and N-methylmorpholine (26 μM each) in DMF. The reaction mixture was stirred at room temperature for 1 h. The reaction was monitored by TLC (MeOH:CH2Cl2 3:7) until all the dye linker was consumed. Then DMF (400 μl) was added at 0° C., followed by the nucleotide (31) (1.2 μmol) in solution in water (100 μl) and the reaction mixture and stirred at room temperature overnight. TLC (MeOH:CH2Cl2 4:6) showed complete consumption of the activated ester and a dark red spot appeared on the baseline. The reaction was quenched with TEAB buffer (0.1M, 10 ml) and loaded on a DEAE Sephadex column (2×5 cm). The column was first eluted with 0.1 M TEAB buffer (100 ml) to wash off organic residues and then 1 M TEAB buffer (100 ml). The desired triphosphate (32) was eluted out with 1 M TEAB buffer. The fraction containing the product were combined, evaporated and purified by HPLC. HPLC conditions: tr(32): 22.44 min (Zorbax C18 preparative column, gradient: 5% to 35% B in 20 min, buffer A 0.1M TEAB, buffer B MeCN). The product was isolated as dark pink solid (0.15 μmol, 12.5%, ε550=150000). 1H NMR (D2O) δ 2.03 (t, 2H, CH2), 2.25 (m, 1H, H-2′), 2.43 (m, 1H, H-2′), 2.50 (m, 2H, CH2), 2.66 (m, 2H, CH2), 3.79 (m, 2H CH2), 3.99 (m, 4H, CH2N, H-5′), 4.18 (br s, 1H, H-4′), 6.02, 6.17 (2d, J=13.64 Hz, 2H, HAr), 6.30 (dd, J=6.06, 8.58 Hz, H-1′), 7.08, 7.22 (2d, 2H, 2×═CH), 7.58-7.82 (m, 5H, HAr, H-2, H-8), 8.29 (m, ═CH). 31P NMR (D2O) δ −4.83 (m, 1P, Pγ), −10.06 (m, 1P, Pα), −20.72 (m, 1P, Pβ).
  • Enzyme Incorporation of 3′-Azidomethyl dNTPs
  • To a 100 nM DNA primer/template (primer previously labelled with P32 and T4 polynucleotide kinase) in Tris-HCl pH 8.8 50 mM, Tween-20 0.01%, and MgSO 4 4 mM, add 2 μM compound 6 and 100 nM polymerase (Thermococcus sp. 9° N exo Y409V A485L supplied by New England Biolabs). The template consists of a run of 10 adenine bases to show the effect of the block. The reaction is heated to 65 C for 10 mins. To show complete blocking, a chase is performed with the four native, unblocked nucleoside triphosphates. Quantitative incorporation of a single azidomethyl blocked dTTP can be observed and thus the azidomethyl group can be seen to act as an effective block to further incorporation.
  • By attaching a hairpin DNA (covalently attached self complementary primer/template) to a streptavidin bead The reaction can be performed over multiple cycles as shown in FIGS. 5 and 6.
  • Preparation of the Streptavidin Beads
  • Remove the storage buffer and wash the beads 3 times with TE buffer (Tris-HCl pH 8, 10 mM and EDTA, 1 mM). Resuspend in B & W buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA and 2.0 M NaCl), add biotinylated 32P labelled hairpin DNA with appropriate overhanging template sequence. Allow to stand at room temperature for 15 minutes. Remove buffer and wash beads 3 times TE buffer.
  • Incorporation of the Fully Functional Nucleoside Triphosphate (FFN)
  • To a solution of Tris-HCl pH 8.8 50 mM, Tween-20 0.01%, MgSO 4 4 mM, MnCl2 0.4 mM (except cycle 1, 0.2 mM), add 2 μM FFN and 100 nM polymerase. This solution is then added to the beads and mixed thoroughly and incubated at 65° C. for 10-15 minutes. The reaction mixture is removed and the beads washed 3 times with TE buffer.
  • Deblocking Step
  • Tris-(2-carboxyethyl)phosphines trisodium salt (TCEP) (0.1M) is added to the beads and mixed thoroughly. The mixture was then incubated at 65° C. for 15 minutes. The deblocking solution is removed and the beads washed 3 times with TE buffer.
  • Capping Step
  • Iodoacetamide (431 mM) in 0.1 mM phosphate pH 6.5 is added to the beads and mixed thoroughly, this is then left at room temperature for 5 minutes. The capping solution is removed and the beads washed 3 times with TE buffer.
  • Repeat as required
  • The reaction products can be analysed by placing the bead solution in the well of a standard 12% polyacrylamide DNA sequencing gel in 40% formamide loading buffer. Running the gel under denaturing conditions causes the DNA to be released from the beads and onto the gel. The DNA band shifts are affected by both the presence of dye and the addition of extra nucleotides and thus the cleavage of the dye (and block) with the phosphine cause a mobility shift on the gel.
  • Two cycles of incorporation with compounds 18 (C), 24 (G) and 32 (A) and six cycles with compound 6 can be seen in figures FIG. 5 and FIG. 6.
  • 3′-OH Protected with an Allyl Group
  • Figure US20200399692A1-20201224-C00038
  • Nucleotides bearing this blocking group at the 3′position have been synthesised, shown to be successfully incorporated by DNA polymerases, block efficiently and may be subsequently removed under neutral, aqueous conditions using water soluble phosphines or thiols allowing further extension.
  • Figure US20200399692A1-20201224-C00039
  • 5′-O-(t-Butyldimethylsilyl)-5-iodo-2′-deoxyuridine (33)
  • To a solution of 5-iodo-2′-deoxyuridine (5.0 g, 14 mmol) in 70 ml in dry N,N-dimethylformamide (DMF) was added imidazole (1.09 g, 16 mmol), followed by (2.41 g, 16 mmol) TBDMSCl at 0° C. The mixture was left in the ice bath and stirred overnight. The reaction was quenched with sat. aq. NaCl solution and extracted with EtOAc. After drying (MgSO4), the solvent was removed and the crude mixture was purified by chromatography on silica (EtOAc:petroleum ether 3:7). The product (33) (5.9 g, 90%) was obtained as a colourless solid. 1H NMR (d6 DMSO) δ 0.00 (s, 3H, CH3), 0.79 (s, 9H, tBu), 1.88-1.97 (m, 1H, H-2′), 2.00-2.05 (m, 1H, H-2′), 3.59-3.71 (m, 2H, H-5′), 3.75 (br s, 1H, H-4′), 4.06 (br s, 1H, H-3′), 5.18 (d, J=4.0 Hz, 1H, OH), 5.98 (t, J=5.9 Hz, 1H, H-1′), 7.89 (s, 1H, H-6), 11.62 (s, 1H, NH). Mass (−ve electrospray) calcd for C15H25IN2O5Si 468.06 found 467.
  • Figure US20200399692A1-20201224-C00040
  • 3′-O-Allyl-5′-O-t-butyldimethylsilyl-5-iodo-2′-deoxyuridine (34)
  • To a suspension of NaH (497 mg, 12.4 mmol, 60% in mineral oil) in dry THF (20 ml) a solution of 5′-TBDMS protected 5-iodo-2′-deoxyuridine (2.8 g, 5.9 mmol) in dry THF (50 ml) was added drop wise. After the gas evolution had stopped the mixture was stirred for another 10 min and then allylbromide (561 μl, 6.5 mmol) was added drop wise. After the complete addition the milky reaction mixture was stirred at room temperature for 16 h. The reaction was quenched by addition of sat. aq. NaCl solution (30 ml). The aqueous layer was extracted three times using EtOAc and after washing with sat. aq. NaCl solution the organic phase was dried (MgSO4). After removing of the solvents the crude product was purified by chromatography (EtOAc:petroleum ether 1:1). The allylated product (2.39 g, 80%) was obtained as a colourless foam. 1H NMR (d6 DMSO) δ −0.01 (s, 3H, CH3), 0.78 (s, 9H, tBu), 1.94-2.01 (m, 1H, H-2′), 2.16-2.21 (m, 1H, H-2′), 3.61-3.71 (m, 2H, H-5′), 3.87-3.94 (m, 4H, H-3′, H-4′, OCH2), 5.04 (dd, J=1.6, 10.4 Hz, 1H, ═CH2), 5.15 (dd, J=1.8, 17.3 Hz, 1H, ═CH2), 5.72-5.81 (m, 1H, CH═), 5.92 (t, J=5.7 Hz, 1H, H-1′), 7.88 (s, 1H, 6-H), 11.6 (s, 1H, NH). Mass (−ve electrospray) calcd for C18H29IN2O5Si 508.09, found 507.
  • Figure US20200399692A1-20201224-C00041
  • 3′-O-Allyl-5-iodo-2′-deoxyuridine (35)
  • To a solution of (34) (2.34 g, 4.71 mmol) in dry THF (40 ml) was added at 0° C. TBAF (5.2 ml, 5.2 mmol, 1 M solution in THF). The reaction mixture was allowed to warm up to room temperature and was then stirred for 16 h. The reaction was quenched by adding sat. NaCl solution (20 ml) and extracted with EtOAc three times. The combined organic layers were dried over MgSO4. The crude mixture was purified by chromatography on silica (EtOAc:petrol 7:3). Product (35) (1.4 g, 75%) was isolated as a colourless solid. 1H NMR (d6 DMSO) δ 2.02-2.39 (m, 2H, H-2′), 3.42-3.52 (m, 2H, H-5′), 3.84-3.88 (m, 3H, H-4′, CH2], 3.97-4.00 (m, 1H, H-3′), 5.02-5.09 (m, 2H, OH, ═CH2), (dd, J=1.9, 17.3 Hz, 1H, ═CH2), 5.73-5.82 (m, 1H, CH═), 5.94 (t, J=6.8 Hz, 1H, H-1′), 8.24 (s, 1H, H-6), 11.56 (s, 1H, NH). Mass (−ve electrospray) calcd for C12H16IN2O5 394.0 found 393.
  • Figure US20200399692A1-20201224-C00042
  • 3′-O-Allyl-5-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyuridine
  • To a solution of (35) (400 mg, 1.0 mmol) in dry DMF (10 ml) was added CuI (38 mg, 20 μmol) and triethylamine (300 μl, 2.0 mmol). The propargyltrifluoroacetamide (453 mg, 3.0 mmol) was added drop wise, followed by Pd(PPh3)4 (110 mg, 9.5 μmol). The reaction was stirred for 16 h in the dark. The reaction was quenched by adding MeOH (10 ml), DCM (10 ml) and bicarbonate dowex. The mixture was stirred for 30 min and then filtered. The solvents were removed under vacuum and the crude product was purified by chromatography on silica (EtOAc:petrol 3:7 to 7:3). The product was isolated as slightly yellow crystals (398 mg, 95%). 1H NMR (d6 DMSO) δ 2.25-2.43 (m, 2H, H-2′), 3.65-3.76 (m, 2H, H-5′), 4.07-4.17 (m, 3H, H-4′, CH2), 4.21-4.23 (m, 1H, H-3′), 4.34 (d, J=5.5 Hz, 2H, CH2N), 5.25-5.27 (m, 2H, ═CH2, OH), 5.38 (dd, J=1.83, 17.3 Hz, 1H, ═CH2), 5.96-6.06 (m, 1H, ═CH), 6.17 (t, J=6.9 Hz, 1H, H-1′), 8.29 (s, 1H, H-6), 10.17 (t, J=5.5 Hz, 1H, NHTFA), 11.78 (s, 1H, NH). Mass (−ve electrospray) calcd for C17H18F3N3O6 417.11, found 416.
  • Figure US20200399692A1-20201224-C00043
  • 3′-O-Allyl-5-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyuridine 5′-O-nucleoside triphosphate (37)
  • Under nitrogen (36) (100 mg, 0.24 mmol) and proton sponge (61.5 mg, 0.28 mmol), both dried under vacuum over P2O5 for 24 h, were dissolved in OP(OMe)3 (225 μl). At 0° C. freshly distilled POCl3 was added drop wise and the mixture was stirred for 1.5 h. Then pyrophosphate (1.44 ml, 0.72 μmol, 0.5 M in DMF) and nBu3N (0.36 ml, 1.5 mmol) were added and the resulting mixture stirred for another 1.5 h. Triethylammonium bicarbonate solution (4.5 ml, 0.1 M solution, TEAB) was added and the reaction mixture was left stirring for 2 h. Then aq. NH3 (4.5 ml) was added and the mixture was stirred for 16 h. After removing the solvents to dryness, the residue was redissolved in water, filtered and purified by MPLC, followed by HPLC purification. The desired triphosphate (37) (10.2 μmol, 4%, ε280=10000) was isolated as a colourless foam. MPLC conditions: a gradient was run from 0.05M TEAB to 0.7 M TEAB using 2 l of each on a DEAE sephadex column. The product containing fractions came off with ˜0.4 M TEAB. After removing the solvent, the product was HPLC purified. HPLC conditions: tr(triphosphate): 21.9 min (Zorbax C-18 preparative column, buffer A 0.1 M TEAB, buffer B 0.1 M TEAB+30% Acetonitrile, gradient 5-35% buffer B in 35 min). 1H NMR (D2O) δ 2.17-2.23 (m, 1H, H-2′), 2.40-2.45 (m, 1H, H-2′), 3.67 (s, 2H, CH2N), 3.99 (d, J=5.9 Hz, 2H, OCH2), 4.02-4.17 (m, 2H, H-5′), 4.25 (br s, 1H, H-4′), 4.32-4.33 (m, 1H, H-3′), 5.13 (d, J=10.3 Hz, 1H, ═CH2), 5.23 (d, J=17.2 Hz, 1H, ═CH2), 5.78-5.88 (m. 1H, ═CH), 6.16 (t, J=6.7 Hz, 1H, H-1′), 8.33 (s, 1H, H-6). 31P NMR (161.9 MHz, D2O) δ −21.3 (t, J=19.5 Hz, 1P, Pγ), −10.3 (d, J=19 Hz, 1P, Pα), −7.1 (d, J=15.5 Hz, 1P, Pβ). Mass (−ve electrospray) calcd for C15H22N3O14P3 561.03, found 560, 480 [M−phosphate], 401 [M−2× phosphate].
  • Figure US20200399692A1-20201224-C00044
  • To a solution of Cy3 disulfide linker (2.5 μmol) in DMF (0.2 ml) at 0° C. was added. Disuccinimidyl carbonate (0.96 mg 3.75 μmol) and 4-(dimethylamino) pyridine (DMAP) (0.46 mg 3.75 μmol). The reaction mixture was stirred for 10 min and then checked by TLC (MeOH:DCM 3:7) (activated ester rf=0.5). In a separate flask the 3′-O-allyl thymidine triphosphate (37) (532 μl, 14.1 mM in water, 7.5 μmol) were mixed with Bu3N (143 μl) and evaporated to dryness. After this the triphosphate (37) was dissolved in dry DMF (0.2 ml). To the triphosphate (37) solution at 0° C. was added the activated dye and the reaction mixture was allowed to warm to room temperature and then stirred for 16 h. The solvent was removed and the residue was dissolved in water. The reaction mixture was passed through a small DEAE sephadex column (2×5 cm) using 0.1 M TEAB (100 ml) to remove the coupling reagents and unreacted linker. With 1 M TEAB (100 ml) the triphosphate (38) was eluted. The mixture was then separated by HPLC. Yield: 1.41 μmol (56%, ε550=150000) product as a dark red solid were isolated. HPLC conditions: tr (38): 19.6 min (Zorbax C-18 preparative column, buffer A 0.1 M TEAB, buffer B Acetonitrile, gradient: 2-58% buffer B in 29 min). 1H (d6 DMSO) δ 0.75-0.79 (m, 3H, CH3), 1.17-1.28 (m, 2H, CH2), 1.48-1.55 (m, 2H, CH2), 1.64 (s, 12H, 4×CH3), 1.70-1.77 (m, 2H, CH2), 1.96-2.02 (m, 1H, H-2′), 2.07-2.11 (m, 2H, CH2), 2.25-2.30 (m, 1H, H-2′), 2.51-2.55 (m, 2H, CH2), 2.64-2.68 (m, 2H, CH2), 2.75-2.81 (m, 2H, CH2), 3.27-3.31 (m, 2H, CH2), 3.91-4.05 (m, 9H, H-5′, OCH2, NCH2, 2×NCH2-dye), 4.13 (s, 1H, H-4′), 4.22-4.24 (m, 1H, H-3′), 5.06 (d, J=10.5 Hz, 1H, ═CH2), 5.15 (dd, J=1.4 Hz, 17.3 Hz, 1H, ═CH2), 5.72-5.82 (m, 1H, ═CH), 6.03-6.06 (m, 1H, H-1′), 6.20-6.29 (m, 2H, αH), 7.23-7.31 (m, 2H, HAr), 7.63-7.79 (m, 5H, H-6, 4×HAr), 8.31-8.45 (m, 1H, βH). 31P (161.9 MHz, d6 DMSO) δ −20.2 (m, 1P, Pβ), −10.0 (d, J 18.5 Hz, 1P, Pα), −4.8 (d, J 19.5 Hz, 1P, Pγ). Mass (−ve electrospray) calcd for C51H67S4N6O22P3 1336.24, found 1335.1, 688.1 [cleaved disulfide (dye), 647.9 [cleaved disulfide (nucleotide)].
  • Enzyme Incorporation of Compound 38
  • To a 100 nM DNA primer/template (primer previously labelled with P32 and T4 polynucleotide kinase) in Tris-HCl pH 8.8 50 mM, Tween-20 0.01%, and MgSO 4 4 mM, add 2 μM compound 38 and 100 nM polymerase (Thermococcus sp. 9° N exo Y409V A485L supplied by New England Biolabs). The template consists of a run of 10 adenine bases to show the effect of the block. The reaction is heated to 65 C for 10 mins. To show complete blocking, a chase is performed with the four native, unblocked nucleoside triphosphates. Quantitative incorporation of the allyl block can be observed (see FIG. 7) and this can be seen to act as an effective block to further incorporation.
  • Figure US20200399692A1-20201224-C00045
  • 5′-O-(tert-Butyldimethylsilyl)-5-iodo-2′-deoxycytidine (39)
  • To a solution of 5-iodo-2′-deoxycytidine (2.2 g, 6.23 mmol) in DMF (130 ml) was added imidazole (467 mg, 6.85 mmol). The mixture was cooled at 0° C. and tert-butyldimethylsilyl chloride (TBDMSCl) (1.33 g, 6.85 mmol) added over 5 minutes. After 18 h at room temperature, the volatiles were evaporated under reduced pressure and the residue purified by flash chromatography on silica gel with EtOAc:MeOH (95:5 to 90:10) to give the expected product (39) (2.10 g, 72%) together with unreacted starting material (490 mg). 1H NMR (d6 DMSO) δ 0.11 (s, 3H, CH3), 0.12 (s, 3H, CH3), 0.89 (s, 9H, 3CH3), 1.90 (ddd, J=13.2, 7.7 and 5.7 Hz, 1H, 2.18 (ddd, J=13.2, 5.7 and 2.3 Hz, 1H, HH-2′), 3.72 (dd, J=11.5, 3.6 Hz, 1H, HH-5′), 3.80 (dd, J=11.5, 2.8 Hz, 1H, HH-5′), 3.86-3.89 (m, 1H, H-4′), 4.14-4.18 (m, 1H, H-3′), 5.22 (1H, d, J=4.1 Hz, OH), 6.09 (1H, dd, J=7.8, 5.8 Hz, H-1′), 6.60 (br s, 1H, NHH), 7.81 (br s, 1H, NRH), 7.94 (s, 1H, H-6); MS (ES): m/z (%) (M+H) 468 (90%).
  • Figure US20200399692A1-20201224-C00046
  • 3′-O-Allyl-5′-O-(tert-butyldimethylsilyl)-5-iodo-2′-deoxycytidine (40)
  • To a solution of NaH (60%, 113 mg, 2.84 mmol) in THF (26 ml) under N2 atmosphere, was slowly added a solution of the starting nucleoside (39) (669 mg, 1.43 mmol) in THF (6 ml). The mixture was stirred at room temperature for 45 minutes, cooled at 0° C. and allyl bromide (134 μL, 1.58 mmol) was slowly added. After 15 h at room temperature, the solution was cooled to 0° C. and quenched by addition of H2O (5 ml). THF evaporated under reduced pressure and the product extracted into EtOAc (3×25 ml). Combined organic extracts were dried (MgSO4) filtered and the volatiles evaporated under reduced pressure to give a residue that was purified by flash chromatography on silica gel with EtOAc affording the expected 3′-O-allyl product (40) (323 mg, 44%) as a colourless oil, together with some unreacted starting material (170 mg); 1H NMR (d6 DMSO) δ 0.00 (s, 3H, CH2), 0.01 (s, 3H, CH2), 0.79 (s, 9H, 3CH2), 1.84 (ddd, J=13.3, 8.2 and 5.5 Hz, 1H, H-2′), 2.20-2.25 (m, 1H, H-2′), 3.62-3.72 (m, 2H, H-5′), 3.88-3.93 (m, 4H, H-3′, 4′, HHC—CH═), 5.1 (dd, J=8.5, 1.7 Hz, 1H, CH═CHH), 5.16 (dd, J=17.2, 1.7 Hz, 1H, CH═CHH), 5.75-5.83 (m, 1H, CH═CHH), 5.94 (dd, J=8.4, 5.6 Hz, 1H, H-1′), 6.53 (br s, 1H, NHH), 7.74 (br s, 1H, NHH), 7.83 (s, 1H, H-6); MS (ES): m/z (%) (M−H) 506 (100%).
  • Figure US20200399692A1-20201224-C00047
  • 3′-O-Allyl-5-iodo-2′-deoxycytidine (41)
  • To a solution of the starting nucleoside (40) (323 mg, 0.64 mmol) in THF (15 ml) under N2 protected atmosphere was added at room temperature tetrabutylammonium fluoride (TBAF) 1M in THF (0.7 ml, 0.7 mmol). Mixture stirred for one hour and then quenched by addition of H2O (5 ml). THF was evaporated and aqueous residue extracted into EtOAc (3×25 ml). Combined organic extracts were dried (MgSO4), filtered and the volatiles evaporated under reduced pressure giving a crude material which was purified by flash chromatography on a pre-packed silica column eluted with EtOAc. The product (41) was obtained as a white solid (233 mg, 93%). 1H NMR (d6 DMSO) δ 1.96-2.05 (m, 1H, H-2′) 2.24 (ddd, J=13.5, 5.8 and 2.8 Hz, 1H, H-2′), 3.50-3.62 (m, 2H, H5′), 3.91-3.97 (m, 2H, H3′, H4′), 4.03-4.07 (m, 2H, HHC—CH═), 5.11-5.16 (m, 2H, OH, CH═CHH), 5.24 (dd, J=17.2, 1.6 Hz, 1H, CH═CHH), 5.82-5.91 (m, 1H, CH═CHH), 6.02 (dd, J=7.6, 6.0 Hz, 1H, H-1′), 6.60 (s, 1H, NHH), 7.79 (s, 1H, NHH), 8.21 (s, 1H, H-6). MS (ES): m/z (%) (M−H) 392 (100%).
  • Figure US20200399692A1-20201224-C00048
  • 3′-O-Allyl-5-[3-(2,2,2-trifluoroacetamide)-prop-1-ynyl]-2′-deoxycytidine (42)
  • To a solution of the starting nucleoside (41) (200 mg, 0.51 mmol) in dry DMF (8.5 ml) at room temperature and Argon atmosphere, was slowly added CuI (19 mg, 0.10 mmol), NEt3 (148 μl, 1.02 mmol), 2,2,2-trifluoro-N-prop-2-ynyl-acetamide (230 mg, 1.53 mmol) and Pd(PPh3)4 (58 mg, 0.05 mmol). The mixture was stirred at room temperature and protected from light during four hours, quenched by addition of dowex bicarbonate and stirred for a 1 h, then filtered and the volatiles evaporated under reduced pressure. The residue was further evaporated from MeOH (15 ml) and then purified by flash chromatography on silica gel (CH2Cl2, CH2Cl2:EtOAc 1:1, EtOAc:MeOH 97.5:2.5). The expected product (42) was obtained as a beige solid (180 mg, 85%). 1H NMR (d6 DMSO) δ 1.90 (ddd, J=13.6, 7.7 and 6.0 Hz, 1H, H-2′), 2.16 (ddd, J=13.6, 5.7 and 2.4 Hz, 1H, H-2′), 3.42-3.50 (m, 2H, H-5′), 3.84-3.87 (m, 3H, H-4′, OHHC—CH═), 3.94-3.96 (m, 1H, H-3′), 4.16 (d, J=5.1 Hz, 2H, H2C—N), 4.98-5.05 (m, 2H, OH, CH═CHH), 5.14 (dd, J=17.3, 1.7 Hz, 1H, CH═CHH), 5.72-5.82 (m, 1H, CH═CHH), 5.95 (dd, J=7.7, 5.8 Hz, 1H, H-1′), 6.74 (br s, 1H, NHH), 7.72 (br s, 1H, NHH), 8.01 (1H, s, H-6), 9.82 (br t, 1H, HN—CH2). MS (ES): m/z (%) (M−H) 415 (100%).
  • Figure US20200399692A1-20201224-C00049
  • 3′-O-Allyl-5-(3-amino-prop-1-ynyl)-5′-O-triphosphate-2′-deoxycytidine (43)
  • To a solution of the nucleoside (42) (170 mg, 0.41 mmol) and proton sponge (105 mg, 0.50 mmol) (both previously dried under P2O5 for at least 24 h) in PO(OMe)3 (360 μl), at 0° C. under Argon atmosphere, was slowly added POCl3 (freshly distilled) (50 μl, 0.54 mmol). The solution was vigorously stirred for 3 h at 0° C. and then quenched by addition of tetra-tributylammonium diphosphate 0.5 M in DMF (3.20 ml, 1.60 mmol), followed by nBu3N (0.75 ml, 3.2 mmol) and triethylammonium bicarbonate (TEAB) 0.1 M (12 ml). The mixture was stirred at room temperature for 3 h and then an aqueous ammonia solution (ρ 0.88 1.0 ml) (12 ml) was added. The solution was stirred at room temperature for 15 h, volatiles evaporated under reduced pressure and the residue was purified by MPLC with a gradient of TEAB from 0.05M to 0.7M. The expected triphosphate (43) was eluted from the column at approx. 0.51 M TEAB. A second purification was done by HPLC in a Zorbax SB-C18 column (21.2 mm i.d.×25 cm) eluted with 0.1M TEAB (pump A) and 30% CH3CN in 0.1M TEAB (pump B) using a gradient as follows: 0-5 min 5% B, Φ.2 ml; 5-25 min 80% B, Φ.8 ml; 25-27 min 95% B, Φ.8 ml; 27-30 min 95% B, Φ.8 ml; 30-32 min 5% B, Φ.8 ml; 32-35 min 95% B, Φ.2 ml, affording the product (43) detailed above with a tr(43): 20.5 (20 μmols, 5% yield); 31P NMR (D2O) δ −6.01 (d, J=19.9 Hz, 1P, Pγ), −10.24 (d, J=19.3 Hz, 1P, Pα), −21.00 (t, J=19.6 Hz, 1P, Pβ); 1H NMR (D2O) δ 2.19-2.26 (m, 1H, H-2′), 2.51 (1H, ddd, J=14.2, 6.1 and 3.2 Hz, H-2′)′, 3.96-4.07 (m, 4H, NCH2, OHHC—CH═), 4.09-4.14 (m, 1H, 1H, H-5′) 4.22-4.26 (m, 1H, H-5′), 4.30-4.37 (m, 2H, H-3′, 4′), 5.20 (d, J=10.4 Hz, 1H, CH═CHH), 5.30 (1H, dd, J=17.3, 1.5 Hz, CH═CHH), 5.85-5.95 (m, 1H, CH═CHH), 6.18 (t, J=6.5 Hz, 1H, H-1′), 8.40 (s, 1H, H-6); MS (ES): m/z (%) (M−H) 559 (100%).
  • Figure US20200399692A1-20201224-C00050
  • To a solution of Alexa Fluor 488 disulfide linker (2.37 mg, 3.4 μmol) in DMF (500 μl) was added N,N-disuccinimidyl carbonate (1.3 mg, 5.1 μmol) and 4-DMAP (0.6 mg, 5.1 μmol). The mixture was stirred for 10 minutes, then it was added into the solution of the nucleotide (43) (3.23 mg, 5.8 μmol) in DMF (100 μl) containing nBu3N (30 μl). The mixture was continuously stirred for 16 h at room temperature. The volatiles were evaporated under reduced pressure and the residue was firstly purified by passing it through a short ion exchange resin Sephadex-DEAE A-25 (40-120μ)—column, first eluted with TEAB 0.1 M (70 ml) then 1.0 M TEAB (100 ml). The latest containing the expected product (44) was concentrated and the residue was HPLC purified in a Zorbax SB-C18 column (21.2 mm i.d.×25 cm) eluted with 0.1M TEAB (pump A) and CH3CN (pump B) using a gradient as follows: 0-2 min 2% B, Φ.2 ml; 2-4 min 2% B, Φ.8 ml; 4-15 min 23% B, Φ.8 ml; 15-24 min 23% B, Φ.8 ml; 24-26 min 95% B, Φ.8 ml; 26-28 min 95% B, Φ.8 ml, 28-30 min 2% B, Φ.8 ml, 30-33 min 2% B, Φ.2 ml affording the product detailed above with a rt(44): 19.9 (0.56 μmols, 17% yield based on UV measurement); λmax=493 nm, ∈ 71,000 cm−1 M−1 in H2O); 31P NMR (D2O) δ −5.07 (d, J=22.2 Hz, 1P, Pχ), −10.26 (d, J=19.4 Hz, 1P, Pα), −21.09 (t, J=19.7 Hz, 1P, Pβ); 1HNMR (D2O) δ 2.44-2.26 (m, 2H, HH-2′), 2.50 (t, J=6.7 Hz, 2H, CH2), 2.83 (4H, CH2, CH2), 3.58 (t, J=6.0 Hz, 2H, CH2), 4.07-3.91 (m, 6H, HH-5′, NCH2, OHHC—CH═), 4.16-4.12 (m, 1H, H-4′), 4.23-4.17 (m, 1H, H-3′), 5.24-5.09 (m, 2H, CH═CHH, CH═CHH), 5.84-5.74 (m, 1H, CH═CHH), 5.98 (t, J=8.1 Hz, 1H, H-1′), 6.79 (d, J=9.1 Hz, 1H, HAr), 6.80 (d, J=9.3 Hz, 1H, HAr), 7.06 (t, J=8.8 Hz, 2H, HAr), 7.55 (br S, 1H, HAr), 7.90-7.85 (m, 2H, HAr), 7.94 (s, 1H, H-6); MS (ES): m/z (%) (M−H) 1239 (27%).
  • Figure US20200399692A1-20201224-C00051
  • 5′-O-(tert-Butyldimethylsilyl)-7-deaza-7-iodo-2′-deoxyguanosine (45)
  • A solution of (44) (0.55 g, 1.4 mmol) in DMF (10 ml) was treated with imidazole (190 mg, 2.8 mmol) and TBDMSCl (274 mg, 1.82 mmol) at r.t. for 15 h. The reaction was quenched with MeOH (˜5 ml). The mixture was evaporated to dryness. Water (˜300 ml) was added to the residue and stirred for at least 1 h to fully dissolve imidazole. Filtration gave a brown solid, which was dried and purified by silica gel chromatography (DCM to DCM: MeOH 90:10), giving (45) as pale yellow powder (394 mg, 56%). 1H NMR (d6 DMSO) δ 0.00, 0.01 (2s, 6H, CH3), 0.82 (s, 9H, CH3), 1.99-2.05, 2.16-2.22 (2m, 2H, H-2′), 3.58-3.66 (m, 2H, H-5′), 3.72-3.74 (m, 1H, H-4′), 4.18-4.19 (m, 1H, H-3′), 5.16 (d, J=3.0 Hz, 1H, OH), 6.20 (dd, J=6.0, 8.0 Hz, 1H, H-1′), 6.25 (br s, 2H, NH2), 7.58 (s, 1H, H-8), 10.37 (s, 1H, HN). Mass (−ve electrospray) calcd for C17H27IN4O4Si 506, found 505.
  • Figure US20200399692A1-20201224-C00052
  • 3′-O-Allyl-5′-O-(tert-butyldimethylsilyl)-7-deaza-7-iodo-2′-deoxyguanosine (46)
  • A solution of (45) (354 mg, 0.7 mmol) in THF (25 ml) was treated with NaH (42 mg, 1.75 mmol) at r.t. for 1 h. Allyl bromide was added and the suspension was stirred at r.t. for 2 days. ˜60% of the starting material (45) was converted to the product (46). The reaction was quenched with sat. aq. NaCl and extracted with DCM three times. The combined organic layer were dried (MgSO4) and concentrated under vacuum. The residue was treated with TBAF in THF (1 ml) and THF (1 ml) for 30 min. Evaporation to remove of THF. The residue was dissolved in DCM and aqueous NaHCO3 (sat.) was added. The aqueous layer was extracted with DCM three times. The combined organics was dried over MgSO4 and concentrated under vacuum. Purification by chromatography on silica (EtOAc to EtOAc:MeOH 85:15) gave (46) as a yellow foam (101 mg, 35%). 1H NMR (d6 DMSO) δ 2.15-2.31 (m, 2H, H-2′), 3.41-3.45 (m, 2H, H-5′), 3.82-3.85 (m, 1H, H-4′), 3.93 (d, J=2.6 Hz, 2H, OCH2), 4.04-4.06 (m, 1H, H-3′), 4.99 (t, J=5.4 Hz, OH), 5.08-5.24 (m, 2H, ═CH2), 5.79-5.89 (m, 1H, CH═), 6.15 (dd, J=5.9, 9.1 Hz, 1H, H-1′), 6.27 (br s, 2H, NH2), 7.07 (s, H-8), 10.39 (s, 1H, NH). Mass (−ve electrospray) calcd for C14H17IN4O4 432, found 431.
  • Figure US20200399692A1-20201224-C00053
  • 3′-O-Allyl-5′-O-(tert-butyldimethylsilyl)-7-deaza-7-[3-(2,2,2-trifluoroacetamido)-prop-1-ynyl]-2′-deoxyguanosine (47)
  • Under N2, a suspension of (46) (104 mg, 0.24 mmol), Pd(PPh3)4 (24 mg, 0.024 mmol), CuI (9.1 mg, 0.048 mmol), Et3N (66 μL, 0.48 mmol) and CH≡CCH2NHCOCF3 (89 μL, 0.72 mmol) in DMF (2 ml) was stirred at r.t. for 15 h. The reaction was protected from light with aluminium foil. After TLC indicating the full consumption of starting material, the reaction mixture was concentrated. The residue was diluted with MeOH (20 ml) and treated with dowex-HCO3 . The mixture was stirring for 30 min and filtered. The solution was concentrated and purified by silica gel chromatography (petroleum ether:EtOAc 50:50 to petroleum ether:EtOAc:MeOH 40:40:20) giving (47) as a yellow powder (74 mg, 70%). 1H NMR (d6 DMSO) δ 2.15-2.39 (m, 2H, H-2′), 3.42-3.44 (m, 2H, H-5′), 3.83-3.87 (m, 1H, H-4′), 3.93-3.95 (m, 2H, OCH2), 4.0-4.07 (m, 1H, H-3′), 4.15 (d, J=5.3 Hz, 2H, ≡CCH2), 4.91 (t, J=5.4 Hz, OH), 5.08-5.24 (m, 2H, ═CH2), 5.80-5.89 (m, 1H, CH═), 6.15 (dd, J=5.6, 8.9 Hz, 1H, H-1′), 6.28 (br s, 2H, NH2), 7.24 (s, H-8), 9.98 (t, J=5.3 Hz, 1H, NH), 10.44 (s, 1H, NH). Mass (−ve electrospray) calcd for C19H20F3N5O5 455, found 454.
  • Figure US20200399692A1-20201224-C00054
  • The nucleoside (47) and proton sponge was dried over P2O5 under vacuum overnight. A solution of (47) (73 mg, 0.16 mmol) and proton sponge (69 mg, 0.32 mmol) trimethylphosphate (0.5 ml) was stirred with 4 Å molecular sieves for 1 h. Freshly distilled POCl3 (18 μl, 0.19 mmol) was added and the solution was stirred at 4° C. for 2 h. The mixture was slowly warmed up to room temperature and bis (tri-n-butyl ammonium) pyrophosphate (1.3 ml, 0.88 mmol) and anhydrous tri-n-butyl amine (0.3 ml, 1.28 mmol) was added. After 5 min, the reaction was quenched with 0.1 M TEAB (triethylammonium bicarbonate) buffer (10 ml) and stirred for 3 h. The water was removed under reduced pressure and the resulting residue dissolved in concentrated ammonia (ρ 0.88, 10 ml) and stirred at room temperature for 16 h. The reaction mixture was then evaporated to dryness. The residue was dissolved in water and the solution applied to a DEAE-Sephadex A-25 column. MPLC was performed with a linear gradient of 2 L each of 0.05 M and 1 M TEAB. The triphosphate was eluted between 0.7 M and 0.8 M buffer. Fractions containing the product were combined and evaporated to dryness. The residue was dissolved in water and further purified by HPLC. tr(48)=20.3 min (Zorbax C18 preparative column, gradient: 5% to 35% B in 30 min, buffer A 0.1 M TEAB, buffer B MeCN). The product (48) was isolated as a white foam (147 O.D., 19.3 μmol, 12%, ε260=7,600). 1H NMR (D2O) δ 2.38-2.46 (m, 2H, H-2′), 3.91 (m, 2H, ≡CCH2), 3.98-4.07 (m, 4H, H-5′, 2H, OCH2), 4.25 (br s, 1H, H-4′), 4.40 (br s, 1H, H-3′), 5.16-5.30 (m, 1H, ═CH2), 5.83-5.91 (m, 1H, ═CH), 6.23-6.27 (m, 1H, H-1′), 7.44 (s, 1H, H-8). 31P NMR δ −7.1 (d, J=16.5 Hz, 1P, Pγ), −10.1 (d, J=19.9 Hz, 1P, Pα), −21.5 (t, J=18.0 Hz, 1P, Pβ). Mass (−ve electrospray) calcd for C17H24N5O13P3 599, found 598.
  • Figure US20200399692A1-20201224-C00055
  • 7-Deaza-5′-O-diphenylsilyl-7-iodo-2′-deoxyadenosine (49)
  • TBDPSCl (0.87 g, 2.78 mmol) was added to a stirred solution of 7-deaza-7-iodo-2′-deoxyadenosine (1.05 g, 2.78 mmol) in dry pyridine (19 ml) at 5° C. under N2. After 10 min the solution was allowed to rise to room temperature and stirred for 18 h. The solution was evaporated under reduced pressure and the residue purified by flash chromatography on silica (DCM to DCM:MeOH 19:1). This gave the desired product (49) (1.6 g, 83%). 1H NMR (d6 DMSO) δ 1.07 (s, 9H), 2.31-2.36 (m, 1H), 3.76-3.80 (dd, 1H, J=11.1, 4.7 Hz), 3.88-3.92 (dd, 1H, J=11.2, 3.9 Hz), 3.97-4.00 (m, 1H), 4.49-4.50 (m, 1H), 5.83 (s, 1H), 6.58-6.61 (t, 1H, J=6.7 Hz), 7.44-7.55 (m, 6H), 7.68-7.70 (m, 5H), 8.28 (s, 1H). Mass (electrospray) calcd for C27H31IN4O3Si 614.12, found 613.
  • Figure US20200399692A1-20201224-C00056
  • 7-Deaza-6-N,N-dimethylformadine-5′-O-diphenylsilyl-7-iodo-2′-deoxyadenosine (50)
  • A solution of (49) (1.6 g, 2.61 mmol) in MeOH (70 ml) containing dimethylformamide dimethylacetal (6.3 g, 53 mmol) was heated at 45° C. for 18 h. The solution was cooled, evaporated under reduced pressure and purified by flash chromatography on silica gel (EtOAc to EtOAc:MeOH 98:2). This resulted in 1.52 g (87%) of the desired product (50). 1H NMR (d6 DMSO) δ 0.85 (s, 9H), 2.05-2.11 (m, 1H), 3.03 (s, 3H), 3.06 (s, 3H), 3.53-3.57 (dd, 1H, J=11.1, 4.8 Hz), 3.65-3.69 (dd, 1H, J=11.1, 4 Hz), 3.73-3.76 (q, 1H, J=4 Hz), 4.26-4.28 (m, 1H), 5.21-5.22 (d, 1H, J=4.3 Hz), 6.39-6.42 (t, 1H, J=6.8 Hz), 7.21-7.32 (m, 6H), 7.46 (s, 1H), 7.45-7.48 (m, 4H), 8.15 (s, 1H), 8.68 (s, 1H). Mass (+ve electrospray) calcd for C30H36IN5O3Si 669.16, found 670.
  • Figure US20200399692A1-20201224-C00057
  • 3′-O-Allyl-7-deaza-6-N,N-dimethylformadine-5′-O-diphenylsilyl-7-iodo-2′-deoxyadenosine (51)
  • A solution of (50) (1.52 g, 2.28 mmol) in dry THF (5 ml) was added drop wise at room temperature to a stirred suspension of sodium hydride (60%, 109 mg, 2.73 mmol) in dry THF (35 ml). After 45 min the yellow solution was cooled to 5° C. and allyl bromide (0.413 g, 3.41 mmol) added. The solution was allowed to rise to room temperature and stirred for 18 h. After adding isopropanol (10 drops) the solution was partitioned between water (5 ml) and EtOAc (50 ml). The organic layer was separated and the aqueous solution extracted further with EtOAc (2×50 ml). The combined organic solutions were dried (MgSO4) and evaporated under reduced pressure. The residue was purified by flash chromatography on silica (petroleum ether:EtOAc 1:3 to EtOAc) to give 1.2 g (74%) of the desired product (51) as a gum. 1H NMR (d6 DMSO) δ 1.03 (s, 9H), 2.39-2.45 (m, 1H), 2.60-2.67 (m, 1H), 3.2 (s, 3H), 3.23 (s, 3H), 3.70-3.74 (dd, 1H, J=11.2, 4.6 Hz), 3.83-3.87 (dd, 1H, J=11, 5.4 Hz), 4.03-4.08 (m, 3H), 4.30-4.31 (m, 1H), 5.18-5.21 (m, 1H), 5.28-5.33 (m, 1H), 5.89-5.98 (m, 1H), 6.49-6.53 (dd, 1H, J=8.4, 5.8 Hz), 7.41-7.51 (m, 6H), 7.62-7.66 (m, 5H), 8.31 (s, 1H), 8.85 (s, 1H). Mass (+ve electrospray) calcd for C33H40IN5O3Si 709.19, found 710.
  • Figure US20200399692A1-20201224-C00058
  • 3′-O-Allyl-7-deaza-6-N,N′-dimethylformadine-7-iodo-2′-deoxyadenosine (52)
  • A 1M solution of TBAF in THF (4.4 ml, 4.4 mmol) was added to a solution of (51) (1.2 g, 1.69 mmol) in THF (100 ml) at 5° C. under N2. The solution was allowed to rise to room temperature and stirred for 2d. The solution was evaporated under reduced pressure and purified by flash chromatography on silica (EtOAc to EtOAc:MeOH 97:3). This gave 593 mg (77%) of the desired product (52). 1H NMR (d6DMSO) δ 2.54 (m, 2H), 3.40 (s, 3H), 3.44 (s, 3H), 3.72-3.8 (m, 2H), 4.18-4.21 (m, 1H), 4.23-4.27 (m, 3H), 4.4-4.42 (d, 1H, J=5.7 Hz), 5.35-5.41 (m, 2H), 5.49-5.5 (q, 1H, J=1.7 Hz), 5.53-5.55 (q, 1H, J=1.7 Hz), 6.1-6.2 (m, 1H), 6.67-6.70 (dd, 1H, J=8.8, 5.5 Hz), 7.96 (s, 1H), 8.53 (s, 1H), 9.06 (s, 1H). Mass (−ve electrospray) calcd for C17H22IN5O3 471.08, found 472.
  • Figure US20200399692A1-20201224-C00059
  • 3′-O-Allyl-7-deaza-7-iodo-2′-deoxyadenosine (53)
  • A solution of (52) (593 mg, 1.3 mmol) in MeOH (20 ml) containing 35% aqueous ammonia (20 ml) was heated at 50° C. for 2d. After cooling the solution was evaporated under reduced pressure and then azeotroped with toluene (3×10 ml). This resulted in 530 mg (98%) of the desired product (53) as a solid. 1H NMR (d6 DMSO) δ 2.39 (m, 1H), 3.56-3.65 (m, 2H), 4.03-4.05 (m, 1H), 4.09-4.11 (m, 2H), 5.23-5.25 (d, 1H, J=10.6 Hz), 5.35-5.4 (d, 1H, J=15.4 Hz), 5.95-6.05 (m, 1H), 6.48-6.51 (dd, 1H, J=8.9, 5.5 Hz), 6.6-6.95 (s, 1H), 7.75 (s, 1H), 8.16 (s, 1H). Mass (+ve electrospray) calcd for C14H17IN4O3 416.03, found 417.
  • Figure US20200399692A1-20201224-C00060
  • 3′-O-Allyl-7-deaza-7-[3-(2,2,2-trifluoroacetamide)]-2′-deoxyadenosine (54)
  • To a solution of (53) (494 mg, 1.19 mmol) in dry DMF (17 ml) was added sequentially copper (I) iodide (45.1 mg, 0.24 mmol), N-2,2,2-trifluoro-N-prop-2-ynylacetamide (538 mg, 3.56 mmol), Et3N (240 mg, 2.38 mmol) and Pd(Ph3P)4 (137 mg, 0.12 mmol) at room temperature. The flask was wrapped in foil to exclude light and stirred under N2 for 18 h. Then MeOH (10 ml) and a small spatula of dowex bicarbonate H+ form were added and the mixture stirred for 30 min. The mixture was filtered, evaporated under reduced pressure and the residue triturated with MeOH to remove palladium salts. The filtrate was evaporated under reduced pressure and purified by flash chromatography on silica (DCM to DCM:MeOH 97:3). The desired product (54) was obtained as brown solid (490 mg, 94%). 1H NMR (d6 DMSO) δ 2.25-2.31 (m, 1H), 2.98-3.04 (m, 1H), 3.41-3.49 (m, 2H), 3.88-3.95 (m, 3H), 4.10-4.12 (d, 1H, J=5.2 Hz), 4.22-4.23 (d, 2H, J=5.3 Hz), 5.07-5.12 (m, 2H), 5.19-5.24 (dd, 1H, J=17.3, 1.9 Hz), 5.79-5.89 (m, 1H), 6.31-6.35 (dd, 1H, J=8.6, 5.6 Hz), 7.69 (s, 1H), 8.02 (S, 1H). Mass (−ve electrospray) calcd for C19H20F3N5O4 439.15, found 438.
  • Figure US20200399692A1-20201224-C00061
  • 3′-O-Allyl-7-[3-aminoprop-1-ynyl]-7-deaza-2′-deoxyadenosine 5′-O-nucleoside triphosphate (55)
  • The nucleoside (54) and proton sponge was dried over P2O5 under vacuum overnight. A solution of (54) (84 mg, 0.191 mmol) and proton sponge (49 mg, 0.382 mmol) in trimethylphosphate (600 μl) was stirred with 4 Å molecular sieves for 1 h. Freshly distilled POCl2 (36 μl, 0.388 mmol) was added and the solution was stirred at 4° C. for 2 h. The mixture was slowly warmed up to room temperature and bis (tri-n-butyl ammonium) pyrophosphate 0.5 M in solution in DMF (1.52 ml, 0.764 mmol) and anhydrous tri-n-butyl amine (364 μl, 1.52 mmol) was added. After 5 min, the reaction was quenched with 0.1 M TEAB (triethylammonium bicarbonate) buffer (5 ml) and stirred for 3 h. The water was removed under reduced pressure and the resulting residue dissolved in concentrated ammonia (p 0.88, 5 ml) and stirred at room temperature for 16 h. The reaction mixture was then evaporated to dryness. The residue was dissolved in water and the solution applied to a DEAE-Sephadex A-25 column. MPLC was performed with a linear gradient of 0.05 M to 1 M TEAB. Fractions containing the product were combined and evaporated to dryness. The residue was dissolved in water and further purified by HPLC. HPLC: tr(55)=: 22.60 min (Zorbax C18 preparative column, gradient: 5% to 35% B in 20 min, buffer A 0.1M TEAB, buffer B MeCN) The product was isolated as a white foam (17.5 μmol, 5.9%, ε280=15000). 1H NMR (D2O) δ 2.67-2.84 (2m, 2H, H-2′), 4.14 (br s, 2H, CH2NH), 4.17-4.36 (m, 2H, H-5′), 4.52 (br s, 1H, H-4′), 6.73 (t, J=6.6 Hz, 1H, H-1′), 8.06 (s, 1H, H-8), 8.19 (s, 1H, H-2). 31P NMR (D2O) δ −5.07 (d, J=21.8 Hz, 1P, Pγ), −10.19 (d, J=19.8 Hz, 1P, Pα), −21.32 (t, J=19.8 Hz, 1P, Pβ). Mass (−ve electrospray) calcd for C15H21N8O12P3 598.05, found 596
  • Figure US20200399692A1-20201224-C00062
  • To the Cy3 disulphide linker (2.6 μmol) in solution in DMF (450 μl) is added at 0° C. 100 μl of a mixture of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, 1-hydroxybenzotriazole hydrate and N-methylmorpholine (26 μM each) in DMF. The reaction mixture was stirred at room temperature for 1 h. The reaction was monitored by TLC (MeOH:CH2Cl2 4:6) until all the dye linker was consumed. Then 400 μl of DMF are added at 0° C., followed by the nucleotide (55) (3.9 μmol), in solution in water (100 μl) and the reaction mixture and stirred at room temperature overnight. TLC (MeOH:CH2Cl2 4:6) showed complete consumption of the activated ester and a dark red spot appeared on the baseline. The reaction was quenched with TEAB buffer (0.1M, 10 ml) and loaded on a DEAE Sephadex column (2×5 cm). The column was first eluted with 0.1 M TEAB buffer (100 ml) to wash off organic residues and then 1 M TEAB buffer (100 ml). The desired triphosphate (56) was eluted out with 1 M TEAB buffer. The fraction containing the product were combined, evaporated and purified by HPLC. HPLC conditions: tr(56)=: 21.38 min (Zorbax C18 preparative column, gradient: 5% to 15% B in 1 min, then 4 min at 15% B, then 15 to 35% B in 15 min, buffer A 0.1M TEAB, buffer B MeCN). The product was isolated as dark pink solid (0.15 μmol, 12.5%, ε550=15000). 1H NMR (D2O) δ 2.03 (t, J=6.4 Hz, 2H, CH2), 2.21-2.33 (m, 1H, H-2′), 2.37-2.49 (m, 1H, H-2′), 2.50 (t, J=6.3 Hz, 2H, CH2), 2.66 (t, J=5.4 Hz, 2H, CH2), 3.79 (t, J=6.4 Hz, 2H CH2), 3.99 (m, 4H, CH2N, H-5′), 4.18 (br s, 1H, H-4′), 6.02, 6.17 (2d, J=13.6 Hz, 2H, Har) 6.30 (dd, J=6.1, 8.6 Hz, H-1′), 7.08, 7.22 (2d, J=7.8, 8.6 Hz, 2H, 2×═CH), 7.58-7.82 (m, 6H, 2HAr, H-2, H-8), 8.29 (t, J=13.6 Hz, ═CH). 31P NMR (D2O) δ −4.83 (m, 1P, Pγ), −10.06 (m, 1P, Pα), −20.72 (m, 1P, Pβ).
  • Cleavage of 3′-Allyl Group in Aqueous Conditions
  • The following shows a typical deblocking procedure for a 3′blocked nucleoside in which approximately 0.5 equivalents of Na2PdCl4 and 4 equivalents of the water-soluble phosphine ligand L were employed, in water, at 50° C. Tfa stands for trifluoracetyl:
  • Figure US20200399692A1-20201224-C00063
  • To a solution of Ligand L (7.8 mg, 13.7 μmol) in degassed H2O (225 μl) was added a solution of Na2PdCl4 (0.5 mg, 1.6 μmol) in degassed H2O (25 μl) in an eppendorff vial. The two solutions were mixed well and after 5 min a solution of B (1 mg, 2.3 μmol) in H2O (250 μl) was added. The reaction mixture was then placed in a heating block at 50° C. The reaction could be followed by HPLC. Aliquots of 50 μl were taken from the reaction mixture and filtered through an eppendorff filter vial (porosity 0.2 μm); 22 μl of the solution were injected in the HPLC to monitor the reaction. The reaction was purified by HPLC. In a typical experiment the cleavage was finished (i.e. >98% cleavage had occurred after 30 min).
  • 3′-OH Protected with a 3,4 Dimethoxybenzyloxymethyl Group as a Protected Form of a Hemiacetal
  • Figure US20200399692A1-20201224-C00064
  • Nucleotides bearing this blocking group have similar properties to the allyl example, though incorporate less rapidly. Deblocking can be achieved efficiently by the use of aqueous buffered cerium ammonium nitrate or DDQ, both conditions initially liberating the hemiacetal (1) which decomposes to the required (2) prior to further extension:
  • Figure US20200399692A1-20201224-C00065
  • The 3′-OH may also be protected with benzyl groups where the phenyl group is unsubstituted, e.g. with benzyloxymethyl, as well as benzyl groups where the phenyl group bears electron-donating substituents; an example of such an electron-rich benzylic protecting group is 3,4-dimethoxybenzyloxymethyl.
  • In contrast, electron-poor benzylic protecting groups, such as those in which the phenyl ring is substituted with one or more nitro groups, are less preferred since the conditions required to form the intermediate groups of formulae —C(R′)2—OH, —C(R′)2—NH2, and —C(R′)2—SH are sufficiently harsh that the integrity of the polynucleotide can be affected by the conditions needed to deprotect such electron-poor benzylic protecting groups.
  • 3′-OH Protected with a Fluoromethyloxymethyl Group as a Protected Form of a Hemiacetal

  • —O—CH2—F
  • Nucleotides bearing this blocking group may be converted to the intermediate hemiacetal using catalytic reactions known to those skilled in the art such as, for example, those using heavy metal ions such as silver.

Claims (22)

1. (canceled)
2. (canceled)
3. A composition comprising:
a planar solid support;
a plurality of different target polynucleotides immobilized at distinct regions on the solid support, wherein the distinct regions comprise multiple copies of one of the plurality of different target polynucleotides;
a plurality of different complementary oligonucleotides hybridized to the different target polynucleotides; and
an aqueous solution contacting the solid support, wherein the aqueous solution comprises:
at least 75% by volume water as a continuous phase of the aqueous solution;
at least one fluorescent label; and
a water-soluble tri-C1-6-alkyl phosphine substituted with a plurality of hydroxyl, carboxyl, carboxylate, amino, or sulfonate groups.
4. The composition of claim 3, wherein the aqueous solution comprises a plurality of different fluorescent labels.
5. The composition of claim 4, wherein the fluorescent labels comprise fluorescein, rhodamine, alexa, bodipy, acridine, coumarin, pyrene, benzanthracene cyanine, or a mixture thereof.
6. The composition of claim 5, wherein the fluorescent labels comprise Cy3 or Cy5.
7. The composition of claim 3, wherein the aqueous solution comprises about 95% by volume of water.
8. The composition of claim 7, wherein the aqueous solution comprises greater than 98% by volume of water.
9. The composition of claim 3, wherein the water-soluble tri-C1-6-alkyl phosphine has a plurality of hydroxyl groups.
10. The composition of claim 3, wherein the water-soluble tri-C1-6-alkyl phosphine has the structure of:
Figure US20200399692A1-20201224-C00066
or a salt thereof.
11. The composition of claim 10, wherein the salt of the water-soluble tri-C1-6-alkyl phosphine is a trisodium salt.
12. The composition of claim 3, wherein the planar solid support comprises a glass surface, a silicon surface, a ceramic surface, or a plastic surface.
13. The composition of claim 12, wherein the planar solid support comprises fabricated arrays of oligonucleotides.
14. The composition of claim 3, wherein the aqueous mixture has a temperature of about 50° C. or higher.
15. The composition of claim 14, wherein the aqueous mixture has a temperature of about 50° C. to about 80° C.
16. The composition of claim 3, wherein the label in aqueous mixture comprises a multi-component label.
17. The composition of claim 14, wherein the multi-component label comprises a fluorescent antibody.
18. An oligonucleotide comprising a nucleotide residue, wherein said nucleotide residue comprises the structure:
Figure US20200399692A1-20201224-C00067
wherein Z is —CH2N3;
B is a nucleobase selected from the group consisting of a purine, a pyrimidine and a deazapurine; and
Figure US20200399692A1-20201224-C00068
comprises
Figure US20200399692A1-20201224-C00069
19. The oligonucleotide of claim 18, wherein the nucleobase is selected from the group consisting of
Figure US20200399692A1-20201224-C00070
wherein the asterisk * indicates the attachment point to the sugar moiety of the nucleotide residue.
20. The oligonucleotide of claim 18, wherein the oligonucleotide is hybridized to a target polynucleotide.
21. The oligonucleotide of claim 20, wherein the target polynucleotide is immobilized to a solid support.
22. The oligonucleotide of claim 21, wherein the solid support comprises an array of immobilized target polynucleotides.
US16/877,442 2002-08-23 2020-05-18 Modified nucleotides Abandoned US20200399692A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/877,442 US20200399692A1 (en) 2002-08-23 2020-05-18 Modified nucleotides

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
US10/227,131 US7057026B2 (en) 2001-12-04 2002-08-23 Labelled nucleotides
GB0230037A GB0230037D0 (en) 2002-12-23 2002-12-23 Modified nucleotides
GB0230037.4 2002-12-23
GB0303924A GB0303924D0 (en) 2003-02-20 2003-02-20 Modified nucleotides
GB0303924.5 2003-02-20
PCT/GB2003/003686 WO2004018497A2 (en) 2002-08-23 2003-08-22 Modified nucleotides for polynucleotide sequencing
US10/525,401 US7541444B2 (en) 2002-08-23 2003-08-22 Modified nucleotides
US12/455,397 US7771973B2 (en) 2002-12-23 2009-06-01 Modified nucleotides
US12/804,352 US8071739B2 (en) 2002-08-23 2010-07-20 Modified nucleotides
US13/281,275 US8597881B2 (en) 2002-12-23 2011-10-25 Modified nucleotides
US13/791,575 US9121060B2 (en) 2002-08-23 2013-03-08 Modified nucleotides
US14/821,548 US9388464B2 (en) 2002-08-23 2015-08-07 Modified nucleotides
US15/179,813 US10513731B2 (en) 2002-08-23 2016-06-10 Modified nucleotides
US16/523,810 US20200017908A1 (en) 2002-08-23 2019-07-26 Modified nucleotides
US16/877,442 US20200399692A1 (en) 2002-08-23 2020-05-18 Modified nucleotides

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/523,810 Continuation US20200017908A1 (en) 2002-08-23 2019-07-26 Modified nucleotides

Publications (1)

Publication Number Publication Date
US20200399692A1 true US20200399692A1 (en) 2020-12-24

Family

ID=46324959

Family Applications (9)

Application Number Title Priority Date Filing Date
US10/525,401 Active 2024-06-20 US7541444B2 (en) 2002-08-23 2003-08-22 Modified nucleotides
US12/455,397 Expired - Lifetime US7771973B2 (en) 2002-08-23 2009-06-01 Modified nucleotides
US12/804,352 Expired - Fee Related US8071739B2 (en) 2002-08-23 2010-07-20 Modified nucleotides
US13/281,275 Expired - Lifetime US8597881B2 (en) 2002-08-23 2011-10-25 Modified nucleotides
US13/791,575 Expired - Fee Related US9121060B2 (en) 2002-08-23 2013-03-08 Modified nucleotides
US14/821,548 Expired - Lifetime US9388464B2 (en) 2002-08-23 2015-08-07 Modified nucleotides
US15/179,813 Expired - Lifetime US10513731B2 (en) 2002-08-23 2016-06-10 Modified nucleotides
US16/523,810 Abandoned US20200017908A1 (en) 2002-08-23 2019-07-26 Modified nucleotides
US16/877,442 Abandoned US20200399692A1 (en) 2002-08-23 2020-05-18 Modified nucleotides

Family Applications Before (8)

Application Number Title Priority Date Filing Date
US10/525,401 Active 2024-06-20 US7541444B2 (en) 2002-08-23 2003-08-22 Modified nucleotides
US12/455,397 Expired - Lifetime US7771973B2 (en) 2002-08-23 2009-06-01 Modified nucleotides
US12/804,352 Expired - Fee Related US8071739B2 (en) 2002-08-23 2010-07-20 Modified nucleotides
US13/281,275 Expired - Lifetime US8597881B2 (en) 2002-08-23 2011-10-25 Modified nucleotides
US13/791,575 Expired - Fee Related US9121060B2 (en) 2002-08-23 2013-03-08 Modified nucleotides
US14/821,548 Expired - Lifetime US9388464B2 (en) 2002-08-23 2015-08-07 Modified nucleotides
US15/179,813 Expired - Lifetime US10513731B2 (en) 2002-08-23 2016-06-10 Modified nucleotides
US16/523,810 Abandoned US20200017908A1 (en) 2002-08-23 2019-07-26 Modified nucleotides

Country Status (10)

Country Link
US (9) US7541444B2 (en)
EP (6) EP3002289B1 (en)
JP (3) JP2006509040A (en)
AU (1) AU2003259350A1 (en)
CY (1) CY1120186T1 (en)
DK (3) DK3002289T3 (en)
ES (2) ES2407681T3 (en)
GB (1) GB2395954A (en)
SI (3) SI3587433T1 (en)
WO (1) WO2004018497A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10995111B2 (en) 2003-08-22 2021-05-04 Illumina Cambridge Limited Labelled nucleotides

Families Citing this family (663)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1790736A3 (en) * 2000-10-06 2007-08-15 The Trustees Of Columbia University In The City Of New York Massive parallel method for decoding DNA and RNA
US9708358B2 (en) 2000-10-06 2017-07-18 The Trustees Of Columbia University In The City Of New York Massive parallel method for decoding DNA and RNA
GB0129012D0 (en) 2001-12-04 2002-01-23 Solexa Ltd Labelled nucleotides
US7057026B2 (en) * 2001-12-04 2006-06-06 Solexa Limited Labelled nucleotides
SI3587433T1 (en) 2002-08-23 2020-08-31 Illumina Cambridge Limited Modified nucleotides
US7414116B2 (en) 2002-08-23 2008-08-19 Illumina Cambridge Limited Labelled nucleotides
EP2119722B1 (en) 2002-08-23 2016-10-26 Illumina Cambridge Limited Labelled nucleotides
US20060078893A1 (en) 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
GB0307428D0 (en) 2003-03-31 2003-05-07 Medical Res Council Compartmentalised combinatorial chemistry
GB0307403D0 (en) 2003-03-31 2003-05-07 Medical Res Council Selection by compartmentalised screening
GB0321306D0 (en) 2003-09-11 2003-10-15 Solexa Ltd Modified polymerases for improved incorporation of nucleotide analogues
US8637650B2 (en) 2003-11-05 2014-01-28 Genovoxx Gmbh Macromolecular nucleotide compounds and methods for using the same
WO2005084367A2 (en) 2004-03-03 2005-09-15 The Trustees Of Columbia University In The City Of New York Photocleavable fluorescent nucleotides for dna sequencing on chip constructed by site-specific coupling chemistry
JP4627625B2 (en) * 2004-03-11 2011-02-09 三井化学株式会社 Method for producing N-acetylcytidines
US20050221339A1 (en) 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
WO2006084132A2 (en) 2005-02-01 2006-08-10 Agencourt Bioscience Corp. Reagents, methods, and libraries for bead-based squencing
EP2233582A1 (en) 2005-02-01 2010-09-29 AB Advanced Genetic Analysis Corporation Nucleic acid sequencing by performing successive cycles of duplex extension
GB0507835D0 (en) * 2005-04-18 2005-05-25 Solexa Ltd Method and device for nucleic acid sequencing using a planar wave guide
EP1888743B1 (en) 2005-05-10 2011-08-03 Illumina Cambridge Limited Improved polymerases
EP2463386B1 (en) 2005-06-15 2017-04-12 Complete Genomics Inc. Nucleic acid analysis by random mixtures of non-overlapping fragments
US9169510B2 (en) 2005-06-21 2015-10-27 The Trustees Of Columbia University In The City Of New York Pyrosequencing methods and related compositions
GB0514935D0 (en) 2005-07-20 2005-08-24 Solexa Ltd Methods for sequencing a polynucleotide template
JP4621921B2 (en) * 2005-07-27 2011-02-02 国立大学法人群馬大学 Novel nucleic acid derivative and method for producing polynucleotide using the same
GB0517097D0 (en) 2005-08-19 2005-09-28 Solexa Ltd Modified nucleosides and nucleotides and uses thereof
EP1937850B1 (en) 2005-10-27 2019-05-29 The President and Fellows of Harvard College Methods and compositions for labeling nucleic acids
GB2446084B (en) 2005-10-31 2011-03-02 Univ Columbia Synthesis of four color 3-o-allyl modified photocleavable fluorescent nucleotides and related methods
GB2446083B (en) 2005-10-31 2011-03-02 Univ Columbia Chemically cleavable 3'-0-allyl-dntp-allyl-fluorophore fluorescent nucleotide analogues and related methods
GB0524069D0 (en) 2005-11-25 2006-01-04 Solexa Ltd Preparation of templates for solid phase amplification
WO2007081386A2 (en) 2006-01-11 2007-07-19 Raindance Technologies, Inc. Microfluidic devices and methods of use
US8716033B2 (en) 2006-02-10 2014-05-06 Life Technologies Corporation Oligosaccharide modification and labeling of proteins
US8114636B2 (en) 2006-02-10 2012-02-14 Life Technologies Corporation Labeling and detection of nucleic acids
EP4105644A3 (en) 2006-03-31 2022-12-28 Illumina, Inc. Systems and devices for sequence by synthesis analysis
EP2002017B1 (en) 2006-04-04 2015-06-10 Keygene N.V. High throughput detection of molecular markers based on restriction fragments
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
EP2047910B1 (en) 2006-05-11 2012-01-11 Raindance Technologies, Inc. Microfluidic device and method
US9074242B2 (en) 2010-02-12 2015-07-07 Raindance Technologies, Inc. Digital analyte analysis
EP2021415B1 (en) * 2006-05-18 2017-03-15 Illumina Cambridge Limited Dye compounds and the use of their labelled conjugates
EP2032686B1 (en) 2006-06-23 2022-01-12 Illumina, Inc. System and method for creation of dna cluster arrays
PL2038425T3 (en) 2006-07-12 2011-03-31 Keygene Nv High throughput physical mapping using aflp
EP3536396B1 (en) 2006-08-07 2022-03-30 The President and Fellows of Harvard College Fluorocarbon emulsion stabilizing surfactants
WO2008037568A2 (en) * 2006-09-04 2008-04-03 Quiatech Ab Reversible terminators for efficient sequencing by synthesis
WO2008042067A2 (en) 2006-09-28 2008-04-10 Illumina, Inc. Compositions and methods for nucleotide sequencing
US7754429B2 (en) 2006-10-06 2010-07-13 Illumina Cambridge Limited Method for pair-wise sequencing a plurity of target polynucleotides
US8568979B2 (en) 2006-10-10 2013-10-29 Illumina, Inc. Compositions and methods for representational selection of nucleic acids from complex mixtures using hybridization
GB2457402B (en) 2006-12-01 2011-10-19 Univ Columbia Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators
US7897737B2 (en) 2006-12-05 2011-03-01 Lasergen, Inc. 3′-OH unblocked, nucleotides and nucleosides, base modified with photocleavable, terminating groups and methods for their use in DNA sequencing
US7893227B2 (en) 2006-12-05 2011-02-22 Lasergen, Inc. 3′-OH unblocked nucleotides and nucleosides base modified with non-cleavable, terminating groups and methods for their use in DNA sequencing
US8612161B2 (en) * 2008-03-19 2013-12-17 Intelligent Biosystems Inc. Methods and compositions for base calling nucleic acids
US11940413B2 (en) 2007-02-05 2024-03-26 IsoPlexis Corporation Methods and devices for sequencing nucleic acids in smaller batches
WO2008097559A2 (en) 2007-02-06 2008-08-14 Brandeis University Manipulation of fluids and reactions in microfluidic systems
WO2008130623A1 (en) 2007-04-19 2008-10-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
WO2009051807A1 (en) 2007-10-19 2009-04-23 The Trustees Of Columbia University In The City Of New York Design and synthesis of cleavable fluorescent nucleotides as reversible terminators for dna sequencing by synthesis
EP2725107B1 (en) 2007-10-19 2018-08-29 The Trustees of Columbia University in the City of New York DNA sequencing with non-fluorescent nucleotide reversible terminators and cleavable label modified ddNTPs and nucleic acid comprising inosine with reversible terminators
US8617811B2 (en) 2008-01-28 2013-12-31 Complete Genomics, Inc. Methods and compositions for efficient base calling in sequencing reactions
JP5498952B2 (en) 2007-11-21 2014-05-21 ユニバーシティ・オブ・ジョージア・リサーチ・ファウンデイション・インコーポレイテッド Process for reacting alkynes with alkynes and 1,3-dipolar functional compounds
BRPI0908734A2 (en) 2008-03-17 2015-07-28 Expressive Res Bv Methods for the identification of genomic DNA in a sample and for the identification of polymorphisms, and kit
US9017973B2 (en) 2008-03-19 2015-04-28 Intelligent Biosystems, Inc. Methods and compositions for incorporating nucleotides
US8911948B2 (en) 2008-04-30 2014-12-16 Integrated Dna Technologies, Inc. RNase H-based assays utilizing modified RNA monomers
DK2644707T3 (en) * 2008-04-30 2015-06-29 Integrated Dna Tech Inc RNase-H-based assays using modified RNA monomers.
US8039817B2 (en) 2008-05-05 2011-10-18 Illumina, Inc. Compensator for multiple surface imaging
US20110105356A1 (en) * 2008-05-07 2011-05-05 Derosier Chad F Compositions and methods for providing substances to and from an array
EP2297344B1 (en) 2008-05-16 2018-03-14 Life Technologies Corporation Dual labeling methods for measuring cellular proliferation
ES2625938T3 (en) 2008-05-27 2017-07-21 Trilink Biotechnologies Chemically modified 5¿-triphosphate nucleosides for thermally initiated nucleic acid replication
CN103588839B (en) 2008-06-11 2017-04-12 激光基因公司 Nucleotides and nucleosides and method for their use in DNA sequencing
WO2010003132A1 (en) 2008-07-02 2010-01-07 Illumina Cambridge Ltd. Using populations of beads for the fabrication of arrays on surfaces
EP2315629B1 (en) 2008-07-18 2021-12-15 Bio-Rad Laboratories, Inc. Droplet libraries
US8383345B2 (en) 2008-09-12 2013-02-26 University Of Washington Sequence tag directed subassembly of short sequencing reads into long sequencing reads
US8728764B2 (en) 2008-10-02 2014-05-20 Illumina Cambridge Limited Nucleic acid sample enrichment for sequencing applications
US8541207B2 (en) 2008-10-22 2013-09-24 Illumina, Inc. Preservation of information related to genomic DNA methylation
CA2742298C (en) 2008-11-03 2019-09-10 The Regents Of The University Of California Methods for detecting modification resistant nucleic acids
EP2373817A4 (en) * 2008-12-10 2013-01-02 Illumina Inc Methods and compositions for hybridizing nucleic acids
US8236532B2 (en) 2008-12-23 2012-08-07 Illumina, Inc. Multibase delivery for long reads in sequencing by synthesis protocols
JP2012514977A (en) 2009-01-13 2012-07-05 キージーン・エン・フェー New genome sequencing strategy
US8528589B2 (en) 2009-03-23 2013-09-10 Raindance Technologies, Inc. Manipulation of microfluidic droplets
WO2010111690A2 (en) 2009-03-27 2010-09-30 Life Technologies Corporation Polymerase compositions and methods
US20100330569A1 (en) * 2009-04-23 2010-12-30 Intelligent Bio-Systems, Inc. Hydroxymethyl Linkers For Labeling Nucleotides
AU2010242073C1 (en) 2009-04-30 2015-12-24 Good Start Genetics, Inc. Methods and compositions for evaluating genetic markers
WO2010127304A2 (en) * 2009-05-01 2010-11-04 Illumina, Inc. Sequencing methods
US8632975B2 (en) 2009-06-05 2014-01-21 Life Technologies Corporation Nucleotide transient binding for sequencing methods
DK2456892T3 (en) 2009-07-24 2014-12-08 Illumina Inc Procedure for sequencing of a polynukleotidskabelon
SI2669387T1 (en) 2009-08-25 2017-01-31 Illumina, Inc. Methods for selecting and amplifying polynucleotides
WO2011042564A1 (en) 2009-10-09 2011-04-14 Universite De Strasbourg Labelled silica-based nanomaterial with enhanced properties and uses thereof
WO2011050938A1 (en) 2009-10-26 2011-05-05 Genovoxx Gmbh Conjugates of nucleotides and method for the application thereof
US10837883B2 (en) 2009-12-23 2020-11-17 Bio-Rad Laboratories, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
ES2596655T3 (en) 2010-02-01 2017-01-11 Illumina Inc.  Focusing procedures and optical systems and assemblies that use them
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US8603741B2 (en) * 2010-02-18 2013-12-10 Pacific Biosciences Of California, Inc. Single molecule sequencing with two distinct chemistry steps
EP2539464B1 (en) 2010-02-23 2016-11-16 Illumina, Inc. Amplification methods to minimise sequence specific bias
DE202011003570U1 (en) 2010-03-06 2012-01-30 Illumina, Inc. Systems and apparatus for detecting optical signals from a sample
WO2011123246A2 (en) 2010-04-01 2011-10-06 Illumina, Inc. Solid-phase clonal amplification and related methods
US10787701B2 (en) 2010-04-05 2020-09-29 Prognosys Biosciences, Inc. Spatially encoded biological assays
US20190300945A1 (en) 2010-04-05 2019-10-03 Prognosys Biosciences, Inc. Spatially Encoded Biological Assays
ES2555106T3 (en) 2010-04-05 2015-12-29 Prognosys Biosciences, Inc. Spatially coded biological assays
US9029103B2 (en) 2010-08-27 2015-05-12 Illumina Cambridge Limited Methods for sequencing polynucleotides
US20120070829A1 (en) 2010-09-10 2012-03-22 Bio-Rad Laboratories, Inc. Size selection of dna for chromatin analysis
US8483969B2 (en) 2010-09-17 2013-07-09 Illuminia, Inc. Variation analysis for multiple templates on a solid support
WO2012050920A1 (en) 2010-09-29 2012-04-19 Illumina, Inc. Compositions and methods for sequencing nucleic acids
US9562897B2 (en) 2010-09-30 2017-02-07 Raindance Technologies, Inc. Sandwich assays in droplets
US8753816B2 (en) 2010-10-26 2014-06-17 Illumina, Inc. Sequencing methods
EP2632593B1 (en) 2010-10-27 2021-09-29 Illumina, Inc. Flow cells for biological or chemical analysis
US8575071B2 (en) 2010-11-03 2013-11-05 Illumina, Inc. Reducing adapter dimer formation
US9074251B2 (en) 2011-02-10 2015-07-07 Illumina, Inc. Linking sequence reads using paired code tags
EP2635679B1 (en) 2010-11-05 2017-04-19 Illumina, Inc. Linking sequence reads using paired code tags
EP2643484A4 (en) 2010-11-22 2014-04-16 Univ California Methods of identifying a cellular nascent rna transcript
WO2013082164A1 (en) 2011-11-28 2013-06-06 Life Technologies Corporation Enhanced ligation reactions
US9163281B2 (en) 2010-12-23 2015-10-20 Good Start Genetics, Inc. Methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction
US8951781B2 (en) 2011-01-10 2015-02-10 Illumina, Inc. Systems, methods, and apparatuses to image a sample for biological or chemical analysis
CA2825815C (en) 2011-01-31 2017-09-05 Illumina, Inc. Methods for reducing nucleic acid damage
EP2670894B1 (en) 2011-02-02 2017-11-29 University Of Washington Through Its Center For Commercialization Massively parallel continguity mapping
EP3859011A1 (en) 2011-02-11 2021-08-04 Bio-Rad Laboratories, Inc. Methods for forming mixed droplets
WO2012112804A1 (en) 2011-02-18 2012-08-23 Raindance Technoligies, Inc. Compositions and methods for molecular labeling
AU2012236896A1 (en) 2011-03-25 2013-05-16 Integrated Dna Technologies, Inc. RNase H-based assays utilizing modified RNA monomers
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
WO2012146377A1 (en) 2011-04-27 2012-11-01 Dmitry Cherkasov Method and components for detecting nucleic acid chains
WO2012150035A1 (en) 2011-05-04 2012-11-08 Genovoxx Gmbh Nucleoside-triphosphate conjugate and methods for the use thereof
US9624539B2 (en) 2011-05-23 2017-04-18 The Trustees Of Columbia University In The City Of New York DNA sequencing by synthesis using Raman and infrared spectroscopy detection
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
US9556470B2 (en) 2011-06-02 2017-01-31 Raindance Technologies, Inc. Enzyme quantification
US8778848B2 (en) 2011-06-09 2014-07-15 Illumina, Inc. Patterned flow-cells useful for nucleic acid analysis
EP2980226A1 (en) 2011-07-08 2016-02-03 Keygene N.V. Sequence based genotyping based on oligonucleotide ligation assays
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
AU2012308518B2 (en) 2011-09-13 2017-08-17 Agilent Technologies, Inc. 5-methoxy, 3'-oh unblocked, fast photocleavable terminating nucleotides and methods for nucleic acid sequencing
US9453258B2 (en) * 2011-09-23 2016-09-27 Illumina, Inc. Methods and compositions for nucleic acid sequencing
AU2012316218B2 (en) 2011-09-26 2016-03-17 Gen-Probe Incorporated Algorithms for sequence determinations
US10378051B2 (en) 2011-09-29 2019-08-13 Illumina Cambridge Limited Continuous extension and deblocking in reactions for nucleic acids synthesis and sequencing
CA2852665A1 (en) 2011-10-17 2013-04-25 Good Start Genetics, Inc. Analysis methods
WO2013063382A2 (en) 2011-10-28 2013-05-02 Illumina, Inc. Microarray fabrication system and method
CA2854023A1 (en) 2011-11-07 2013-05-16 Illumina, Inc. Integrated sequencing apparatuses and methods of use
EP2788499B1 (en) 2011-12-09 2016-01-13 Illumina, Inc. Expanded radix for polymeric tags
WO2013117595A2 (en) 2012-02-07 2013-08-15 Illumina Cambridge Limited Targeted enrichment and amplification of nucleic acids on a support
US9176031B2 (en) 2012-02-24 2015-11-03 Raindance Technologies, Inc. Labeling and sample preparation for sequencing
NO2694769T3 (en) 2012-03-06 2018-03-03
US20130261984A1 (en) 2012-03-30 2013-10-03 Illumina, Inc. Methods and systems for determining fetal chromosomal abnormalities
EP4219012A1 (en) 2012-04-03 2023-08-02 Illumina, Inc. Method of imaging a substrate comprising fluorescent features and use of the method in nucleic acid sequencing
US8209130B1 (en) 2012-04-04 2012-06-26 Good Start Genetics, Inc. Sequence assembly
US8812422B2 (en) 2012-04-09 2014-08-19 Good Start Genetics, Inc. Variant database
US20130274148A1 (en) 2012-04-11 2013-10-17 Illumina, Inc. Portable genetic detection and analysis system and method
US9444880B2 (en) 2012-04-11 2016-09-13 Illumina, Inc. Cloud computing environment for biological data
US10227635B2 (en) 2012-04-16 2019-03-12 Molecular Loop Biosolutions, Llc Capture reactions
US10584377B2 (en) 2012-05-02 2020-03-10 Ibis Biosciences, Inc. DNA sequencing
WO2013166303A1 (en) 2012-05-02 2013-11-07 Ibis Biosciences, Inc. Dna sequencing
WO2013166305A1 (en) 2012-05-02 2013-11-07 Ibis Biosciences, Inc. Dna sequencing
US9012022B2 (en) 2012-06-08 2015-04-21 Illumina, Inc. Polymer coatings
US8895249B2 (en) 2012-06-15 2014-11-25 Illumina, Inc. Kinetic exclusion amplification of nucleic acid libraries
EP2870264A4 (en) 2012-07-03 2016-03-02 Sloan Kettering Inst Cancer Quantitative assessment of human t-cell repertoire recovery after allogeneic hematopoietic stem cell transplantation
US9092401B2 (en) 2012-10-31 2015-07-28 Counsyl, Inc. System and methods for detecting genetic variation
EP2875173B1 (en) 2012-07-17 2017-06-28 Counsyl, Inc. System and methods for detecting genetic variation
NL2017959B1 (en) 2016-12-08 2018-06-19 Illumina Inc Cartridge assembly
CA3178340A1 (en) 2012-08-20 2014-02-27 Illumina, Inc. Method and system for fluorescence lifetime based sequencing
US9150896B2 (en) * 2012-09-06 2015-10-06 Illumina, Inc. Nucleotides and primers with removable blocking groups
US9181583B2 (en) 2012-10-23 2015-11-10 Illumina, Inc. HLA typing using selective amplification and sequencing
US9116139B2 (en) 2012-11-05 2015-08-25 Illumina, Inc. Sequence scheduling and sample distribution techniques
US9683230B2 (en) 2013-01-09 2017-06-20 Illumina Cambridge Limited Sample preparation on a solid support
US9805407B2 (en) 2013-01-25 2017-10-31 Illumina, Inc. Methods and systems for using a cloud computing environment to configure and sell a biological sample preparation cartridge and share related data
US9512422B2 (en) 2013-02-26 2016-12-06 Illumina, Inc. Gel patterned surfaces
DK2964612T3 (en) 2013-03-08 2017-04-03 Illumina Cambridge Ltd POLYMETHIN COMPOUNDS AND USE THEREOF AS FLUORESCING LABELS
EP2964781B1 (en) 2013-03-08 2018-01-10 Roche Diagnostics GmbH Egfr mutation blood testing
EP2964624B1 (en) 2013-03-08 2017-01-04 Illumina Cambridge Limited Rhodamine compounds and their use as fluorescent labels
EP2969479B1 (en) 2013-03-13 2021-05-05 Illumina, Inc. Multilayer fluidic devices and methods for their fabrication
EP2970951B1 (en) 2013-03-13 2019-02-20 Illumina, Inc. Methods for nucleic acid sequencing
EP2971070B2 (en) 2013-03-14 2021-03-03 Illumina, Inc. Modified polymerases for improved incorporation of nucleotide analogues
WO2014152421A1 (en) 2013-03-14 2014-09-25 Good Start Genetics, Inc. Methods for analyzing nucleic acids
US9146248B2 (en) 2013-03-14 2015-09-29 Intelligent Bio-Systems, Inc. Apparatus and methods for purging flow cells in nucleic acid sequencing instruments
US10648026B2 (en) 2013-03-15 2020-05-12 The Trustees Of Columbia University In The City Of New York Raman cluster tagged molecules for biological imaging
WO2014139596A1 (en) 2013-03-15 2014-09-18 Illumina Cambridge Limited Modified nucleosides or nucleotides
US20140274747A1 (en) 2013-03-15 2014-09-18 Illumina, Inc. Super resolution imaging
US9193998B2 (en) 2013-03-15 2015-11-24 Illumina, Inc. Super resolution imaging
US9591268B2 (en) 2013-03-15 2017-03-07 Qiagen Waltham, Inc. Flow cell alignment methods and systems
EP2986597A4 (en) 2013-04-19 2016-11-16 Agency Science Tech & Res Tunable fluorescence using cleavable linkers
US8847799B1 (en) 2013-06-03 2014-09-30 Good Start Genetics, Inc. Methods and systems for storing sequence read data
WO2014210225A1 (en) 2013-06-25 2014-12-31 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
KR102070483B1 (en) 2013-07-01 2020-01-29 일루미나, 인코포레이티드 Catalyst-free surface functionalization and polymer grafting
ES2628485T3 (en) 2013-07-03 2017-08-03 Illumina, Inc. Sequencing by orthogonal synthesis
DK3030645T3 (en) 2013-08-08 2023-01-30 Illumina Inc FLUID SYSTEM FOR DELIVERY OF REAGENTS TO A FLOW CELL
US9352315B2 (en) 2013-09-27 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method to produce chemical pattern in micro-fluidic structure
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
CN103601778A (en) * 2013-10-17 2014-02-26 上海交通大学 Synthetic method of 7-denitrified-7-substituted guanosine
WO2015057565A1 (en) 2013-10-18 2015-04-23 Good Start Genetics, Inc. Methods for assessing a genomic region of a subject
US10851414B2 (en) 2013-10-18 2020-12-01 Good Start Genetics, Inc. Methods for determining carrier status
US10540783B2 (en) 2013-11-01 2020-01-21 Illumina, Inc. Image analysis useful for patterned objects
EP2876166B1 (en) 2013-11-20 2016-12-14 Roche Diagnostics GmbH New compound for sequencing by synthesis
ES2808824T3 (en) 2013-12-03 2021-03-02 Illumina Inc Methods and systems for analyzing image data
JP6672149B2 (en) 2013-12-10 2020-03-25 イラミーナ インコーポレーテッド Biosensor for biological or chemical analysis and method of manufacturing the same
US9944977B2 (en) 2013-12-12 2018-04-17 Raindance Technologies, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
JP6366719B2 (en) 2013-12-20 2018-08-01 イルミナ インコーポレイテッド Preservation of genomic connectivity information in fragmented genomic DNA samples
KR102475314B1 (en) 2013-12-23 2022-12-06 일루미나, 인코포레이티드 Structured substrates for improving detection of light emissions and methods relating to the same
WO2015103367A1 (en) 2013-12-31 2015-07-09 Raindance Technologies, Inc. System and method for detection of rna species
WO2015103225A1 (en) 2013-12-31 2015-07-09 Illumina, Inc. Addressable flow cell using patterned electrodes
US9677132B2 (en) 2014-01-16 2017-06-13 Illumina, Inc. Polynucleotide modification on solid support
KR102001554B1 (en) 2014-01-16 2019-07-18 일루미나, 인코포레이티드 Amplicon preparation and sequencing on solid supports
KR101982388B1 (en) 2014-02-13 2019-05-27 일루미나, 인코포레이티드 Integrated consumer genomic services
LT3108009T (en) 2014-02-18 2021-07-12 Illumina, Inc. Methods and compositions for dna profiling
WO2015138648A1 (en) 2014-03-11 2015-09-17 Illumina, Inc. Disposable, integrated microfluidic cartridge and methods of making and using same
FR3020071B1 (en) 2014-04-17 2017-12-22 Dna Script PROCESS FOR THE SYNTHESIS OF NUCLEIC ACIDS, IN PARTICULAR LARGE NUCLEIC ACIDS, USE OF THE METHOD AND KIT FOR IMPLEMENTING THE METHOD
US20170044525A1 (en) 2014-04-29 2017-02-16 Illumina, Inc. Multiplexed single cell gene expression analysis using template switch and tagmentation
GB201408077D0 (en) 2014-05-07 2014-06-18 Illumina Cambridge Ltd Polymethine compounds and their use as fluorescent labels
WO2015175530A1 (en) 2014-05-12 2015-11-19 Gore Athurva Methods for detecting aneuploidy
SG11201610168YA (en) 2014-05-16 2017-01-27 Illumina Inc Nucleic acid synthesis techniques
KR102231650B1 (en) 2014-05-27 2021-03-23 일루미나, 인코포레이티드 Systems and methods for biochemical analysis including a base instrument and a removable cartridge
AU2015271824B2 (en) 2014-06-03 2020-12-03 Illumina, Inc. Compositions, systems, and methods for detecting events using tethers anchored to or adjacent to nanopores
US20150353989A1 (en) 2014-06-09 2015-12-10 Illumina Cambridge Limited Sample preparation for nucleic acid amplification
CA2952058A1 (en) 2014-06-13 2015-12-17 Illumina Cambridge Limited Methods and compositions for preparing sequencing libraries
US10017759B2 (en) 2014-06-26 2018-07-10 Illumina, Inc. Library preparation of tagged nucleic acid
ES2788949T3 (en) 2014-06-27 2020-10-23 Illumina Inc Modified polymerases for improved incorporation of nucleotide analogs
EP3161152B1 (en) 2014-06-30 2018-12-26 Illumina, Inc. Methods and compositions using one-sided transposition
CA2955356C (en) 2014-07-15 2024-01-02 Illumina, Inc. Biochemically activated electronic device
AU2015294354B2 (en) 2014-07-21 2021-10-28 Illumina, Inc. Polynucleotide enrichment using CRISPR-Cas systems
GB201414098D0 (en) 2014-08-08 2014-09-24 Illumina Cambridge Ltd Modified nucleotide linkers
CN107076739B (en) 2014-08-21 2018-12-25 伊卢米纳剑桥有限公司 Reversible surface functionalization
FR3025201B1 (en) 2014-09-02 2018-10-12 Dna Script MODIFIED NUCLEOTIDES FOR THE SYNTHESIS OF NUCLEIC ACIDS, A KIT COMPRISING SUCH NUCLEOTIDES AND THEIR USE FOR GENERATING SYNTHETIC NUCLEIC ACID GENES OR SEQUENCES
WO2016040446A1 (en) 2014-09-10 2016-03-17 Good Start Genetics, Inc. Methods for selectively suppressing non-target sequences
WO2016040602A1 (en) 2014-09-11 2016-03-17 Epicentre Technologies Corporation Reduced representation bisulfite sequencing using uracil n-glycosylase (ung) and endonuclease iv
US10633694B2 (en) 2014-09-12 2020-04-28 Illumina, Inc. Compositions, systems, and methods for detecting the presence of polymer subunits using chemiluminescence
KR102538753B1 (en) 2014-09-18 2023-05-31 일루미나, 인코포레이티드 Methods and systems for analyzing nucleic acid sequencing data
EP3224595A4 (en) 2014-09-24 2018-06-13 Good Start Genetics, Inc. Process control for increased robustness of genetic assays
WO2016054096A1 (en) 2014-09-30 2016-04-07 Illumina, Inc. Modified polymerases for improved incorporation of nucleotide analogues
US9897791B2 (en) 2014-10-16 2018-02-20 Illumina, Inc. Optical scanning systems for in situ genetic analysis
SG10201903408VA (en) 2014-10-17 2019-05-30 Illumina Cambridge Ltd Contiguity preserving transposition
WO2016064880A1 (en) 2014-10-20 2016-04-28 Molecular Assemblies, Inc. Modified template-independent enzymes for polydeoxynucleotide systhesis
CN107074904B (en) 2014-10-23 2022-12-23 深圳华大智造科技股份有限公司 Signal-constrained sequencing (SCS) and nucleotide analogs for signal-constrained sequencing
ES2772127T3 (en) 2014-10-31 2020-07-07 Illumina Cambridge Ltd DNA copolymer polymers and coatings
US10000799B2 (en) 2014-11-04 2018-06-19 Boreal Genomics, Inc. Methods of sequencing with linked fragments
GB201419731D0 (en) 2014-11-05 2014-12-17 Illumina Cambridge Ltd Sequencing from multiple primers to increase data rate and density
WO2016073237A1 (en) 2014-11-05 2016-05-12 Illumina Cambridge Limited Reducing dna damage during sample preparation and sequencing using siderophore chelators
CN114438174A (en) 2014-11-11 2022-05-06 伊鲁米那股份有限公司 Polynucleotide amplification using CRISPR-CAS system
SG10202004350TA (en) 2014-11-11 2020-06-29 Illumina Cambridge Ltd Methods and arrays for producing and sequencing monoclonal clusters of nucleic acid
CN112782140A (en) 2014-12-03 2021-05-11 伊索普莱西斯公司 Analysis and screening of cellular secretion characteristics
CN114438172A (en) 2014-12-15 2022-05-06 亿明达股份有限公司 Compositions and methods for single molecule placement on a substrate
US10066259B2 (en) 2015-01-06 2018-09-04 Good Start Genetics, Inc. Screening for structural variants
CN107406890B (en) 2015-02-10 2023-07-18 亿明达股份有限公司 Methods and compositions for analyzing cellular components
GB201503534D0 (en) * 2015-03-03 2015-04-15 Nuclera Nucleics Ltd Novel method
US10576471B2 (en) 2015-03-20 2020-03-03 Illumina, Inc. Fluidics cartridge for use in the vertical or substantially vertical position
AU2016235288B2 (en) 2015-03-24 2019-02-28 Illumina Cambridge Limited Methods, carrier assemblies, and systems for imaging samples for biological or chemical analysis
EP3277839B1 (en) 2015-03-31 2020-12-02 Illumina Cambridge Limited Surface concatamerization of templates
EP3901281B1 (en) 2015-04-10 2022-11-23 Spatial Transcriptomics AB Spatially distinguished, multiplex nucleic acid analysis of biological specimens
EP3283870B1 (en) 2015-04-14 2020-05-06 Illumina, Inc. Structured substrates for improving detection of light emissions and methods relating to the same
US10844428B2 (en) 2015-04-28 2020-11-24 Illumina, Inc. Error suppression in sequenced DNA fragments using redundant reads with unique molecular indices (UMIS)
US9868947B2 (en) 2015-05-04 2018-01-16 Washington University Compositions and methods for the construction of a random allelic series
CN106117288B (en) * 2015-05-08 2019-10-15 生捷科技控股公司 The reversible terminator of disulfide bond connection
EP4190912A1 (en) 2015-05-11 2023-06-07 Illumina, Inc. Platform for discovery and analysis of therapeutic agents
GB201508858D0 (en) 2015-05-22 2015-07-01 Illumina Cambridge Ltd Polymethine compounds with long stokes shifts and their use as fluorescent labels
US10640809B2 (en) 2015-05-29 2020-05-05 Epicentre Technologies Corporation Methods of analyzing nucleic acids
EP3302804B1 (en) 2015-05-29 2022-07-13 Illumina, Inc. Sample carrier and assay system for conducting designated reactions
DK3303614T3 (en) 2015-05-29 2020-05-18 Illumina Cambridge Ltd Improved application of surface primers in clusters
MX2017015517A (en) 2015-06-03 2018-11-09 Illumina Inc Compositions, systems, and methods for sequencing polynucleotides using tethers anchored to polymerases adjacent to nanopores.
JP6698708B2 (en) 2015-06-09 2020-05-27 ライフ テクノロジーズ コーポレーション Methods, systems, compositions, kits, devices, and computer-readable media for molecular tagging
CN115261468A (en) 2015-07-06 2022-11-01 伊卢米纳剑桥有限公司 Sample preparation for nucleic acid amplification
CN107924121B (en) 2015-07-07 2021-06-08 亿明达股份有限公司 Selective surface patterning via nanoimprinting
GB201512372D0 (en) * 2015-07-15 2015-08-19 Nuclera Nucleics Ltd Novel method
US20180207920A1 (en) 2015-07-17 2018-07-26 Illumina, Inc. Polymer sheets for sequencing applications
EP3957747A1 (en) 2015-07-27 2022-02-23 Illumina, Inc. Spatial mapping of nucleic acid sequence information
BR112017023418A2 (en) 2015-07-30 2018-07-24 Illumina, Inc. orthogonal nucleotide unlocking
PL3334839T3 (en) 2015-08-14 2021-08-02 Illumina, Inc. Systems and methods using magnetically-responsive sensors for determining a genetic characteristic
CN108474805A (en) 2015-08-24 2018-08-31 亿明达股份有限公司 For accumulator and flow control system in biological and chemical setting-out line road
WO2017040306A1 (en) 2015-08-28 2017-03-09 Illumina, Inc. Nucleic acid sequence analysis from single cells
US10906044B2 (en) 2015-09-02 2021-02-02 Illumina Cambridge Limited Methods of improving droplet operations in fluidic systems with a filler fluid including a surface regenerative silane
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
JP2018530320A (en) 2015-09-09 2018-10-18 キアゲン ゲーエムベーハー Polymerase enzyme
US10450598B2 (en) 2015-09-11 2019-10-22 Illumina, Inc. Systems and methods for obtaining a droplet having a designated concentration of a substance-of-interest
GB201516987D0 (en) 2015-09-25 2015-11-11 Illumina Cambridge Ltd Polymethine compounds and their use as fluorescent labels
US11085076B2 (en) 2015-09-28 2021-08-10 The Trustees Of Columbia University In The City Of New York Synthesis of novel disulfide linker based nucleotides as reversible terminators for DNA sequencing by synthesis
US10577643B2 (en) 2015-10-07 2020-03-03 Illumina, Inc. Off-target capture reduction in sequencing techniques
US10465232B1 (en) 2015-10-08 2019-11-05 Trace Genomics, Inc. Methods for quantifying efficiency of nucleic acid extraction and detection
CN108513581B (en) 2015-10-13 2022-02-08 国立研究开发法人海洋研究开发机构 Fragmentation method of double-stranded RNA and use thereof
EP3373818B1 (en) 2015-11-09 2024-03-06 Radiaction Ltd. Radiation shielding apparatuses
US10253352B2 (en) 2015-11-17 2019-04-09 Omniome, Inc. Methods for determining sequence profiles
CN115881230A (en) 2015-12-17 2023-03-31 伊路敏纳公司 Differentiating methylation levels in complex biological samples
CA3008031A1 (en) 2016-01-11 2017-07-20 Illumina Singapore Pte Ltd Detection apparatus having a microfluorometer, a fluidic system, and a flow cell latch clamp module
WO2017165703A1 (en) 2016-03-24 2017-09-28 Illumina, Inc. Photonic superlattice-based devices and compositions for use in luminescent imaging, and methods of using the same
US20170274374A1 (en) 2016-03-28 2017-09-28 Ilumina, Inc. Multi-plane microarrays
EP4282974A3 (en) 2016-03-28 2024-03-13 Ncan Genomics, Inc. Linked duplex target capture
US10961573B2 (en) 2016-03-28 2021-03-30 Boreal Genomics, Inc. Linked duplex target capture
US11326206B2 (en) 2016-04-07 2022-05-10 Pacific Biosciences Of California, Inc. Methods of quantifying target nucleic acids and identifying sequence variants
US10988501B2 (en) 2016-04-22 2021-04-27 Mgi Tech Co., Ltd. Reversibly blocked nucleoside analogues and their use
EP4224219A3 (en) 2016-04-22 2023-08-30 Illumina Inc Photonic stucture-based devices and compositions for use in luminescent imaging of multiple sites within a pixel, and methods of using the same
EP3656873A3 (en) 2016-05-11 2020-07-29 Illumina, Inc. Polynucleotide enrichment and amplification using argonaute systems
KR102171865B1 (en) 2016-05-18 2020-10-29 일루미나, 인코포레이티드 Self-assembled patterning using patterned hydrophobic surfaces
US11299769B2 (en) 2016-06-06 2022-04-12 Redvault Biosciences, Lp Target reporter constructs and uses thereof
JP7283727B2 (en) 2016-06-16 2023-05-30 ヘイスタック サイエンシィズ コーポレーション Oligonucleotides Directed and Recorded for Combinatorial Synthesis of Code Probe Molecules
CA3026773C (en) 2016-07-22 2022-10-18 Oregon Health & Science University Single cell whole genome libraries and combinatorial indexing methods of making thereof
RU2768718C2 (en) 2016-09-22 2022-03-24 Иллумина, Инк. Detection of somatic variation of number of copies
WO2018064116A1 (en) 2016-09-28 2018-04-05 Illumina, Inc. Methods and systems for data compression
US10385214B2 (en) 2016-09-30 2019-08-20 Illumina Cambridge Limited Fluorescent dyes and their uses as biomarkers
CN111781139B (en) 2016-10-14 2023-09-12 亿明达股份有限公司 Clamping box assembly
ES2927350T3 (en) 2016-10-19 2022-11-04 Illumina Inc Methods for chemical ligation of nucleic acids
JP7348066B2 (en) 2016-11-11 2023-09-20 アイソプレキシス コーポレイション Compositions and methods for simultaneous analysis of single cell genome, transcriptome and proteome
WO2018093780A1 (en) 2016-11-16 2018-05-24 Illumina, Inc. Validation methods and systems for sequence variant calls
GB201619458D0 (en) 2016-11-17 2017-01-04 Spatial Transcriptomics Ab Method for spatial tagging and analysing nucleic acids in a biological specimen
CN110226084A (en) 2016-11-22 2019-09-10 伊索普莱克西斯公司 For the systems, devices and methods of cell capture and its manufacturing method
JP7048609B2 (en) 2016-12-09 2022-04-05 ボリアル ジェノミクス, インコーポレイテッド Linked ligation
PL3551753T3 (en) 2016-12-09 2022-10-31 The Broad Institute, Inc. Crispr effector system based diagnostics
PT3558510T (en) 2016-12-22 2023-01-30 Illumina Inc Array including sequencing primer and non-sequencing entity
SG11201810611YA (en) 2016-12-22 2018-12-28 Illumina Cambridge Ltd Coumarin compounds and their uses as fluorescent labels
CN110325651B (en) 2016-12-22 2024-03-15 伊鲁米那股份有限公司 Arrays with quality control tracers
CN110248725B (en) 2016-12-22 2022-08-02 伊鲁米那股份有限公司 Array comprising resin film and patterned polymer layer
CA3048415C (en) 2016-12-30 2023-02-28 Omniome, Inc. Method and system employing distinguishable polymerases for detecting ternary complexes and identifying cognate nucleotides
GB201704754D0 (en) 2017-01-05 2017-05-10 Illumina Inc Kinetic exclusion amplification of nucleic acid libraries
WO2018128544A1 (en) 2017-01-06 2018-07-12 Agendia N.V. Biomarkers for selecting patient groups, and uses thereof.
WO2018129314A1 (en) 2017-01-06 2018-07-12 Illumina, Inc. Phasing correction
EP3568490B1 (en) 2017-01-10 2021-03-10 Omniome, Inc. Polymerases engineered to reduce nucleotide-independent dna binding
CA3045498C (en) 2017-01-17 2021-07-13 Illumina, Inc. Oncogenic splice variant determination
SG11201906428SA (en) 2017-01-18 2019-08-27 Illumina Inc Methods and systems for generation and error-correction of unique molecular index sets with heterogeneous molecular lengths
AU2017394644B2 (en) 2017-01-20 2020-02-06 Pacific Biosciences Of California, Inc. Allele-specific capture of nucleic acids
EP3565900B1 (en) 2017-01-20 2021-04-07 Omniome, Inc. Genotyping by polymerase binding
CA3050695C (en) 2017-01-20 2024-02-20 Omniome, Inc. Process for cognate nucleotide detection in a nucleic acid sequencing workflow
GB201701686D0 (en) 2017-02-01 2017-03-15 Illunina Inc System & method with fiducials having offset layouts
GB201701688D0 (en) 2017-02-01 2017-03-15 Illumia Inc System and method with fiducials in non-recliner layouts
GB201701689D0 (en) 2017-02-01 2017-03-15 Illumia Inc System and method with fiducials of non-closed shapes
WO2018148727A1 (en) 2017-02-13 2018-08-16 Qiagen Waltham Inc. Polymerase enzyme from 9°n
WO2018148726A1 (en) 2017-02-13 2018-08-16 Qiagen Waltham Inc. Polymerase enzyme from phage t4
US20200002689A1 (en) 2017-02-13 2020-01-02 Qiagen Sciences, Llc Polymerase enzyme from 9°n
WO2018148724A1 (en) 2017-02-13 2018-08-16 Qiagen Waltham Inc. Polymerase enzyme from pyrococcus furiosus
WO2018148723A1 (en) 2017-02-13 2018-08-16 Qiagen Waltham Inc. Polymerase enzyme from pyrococcus abyssi
WO2018152162A1 (en) 2017-02-15 2018-08-23 Omniome, Inc. Distinguishing sequences by detecting polymerase dissociation
US20190360051A1 (en) 2017-02-17 2019-11-28 Stichting Vumc Swarm intelligence-enhanced diagnosis and therapy selection for cancer using tumor- educated platelets
KR102607830B1 (en) 2017-02-21 2023-12-01 일루미나, 인코포레이티드 Tagmentation using immobilized transposomes with linkers
EP3596099A4 (en) 2017-03-06 2020-12-09 Singular Genomics Systems, Inc. Nucleic acid sequencing-by-synthesis (sbs) methods that combine sbs cycle steps
AU2018234832A1 (en) 2017-03-15 2019-10-10 Massachusetts Institute Of Technology CRISPR effector system based diagnostics for virus detection
US11104937B2 (en) 2017-03-15 2021-08-31 The Broad Institute, Inc. CRISPR effector system based diagnostics
US11021740B2 (en) 2017-03-15 2021-06-01 The Broad Institute, Inc. Devices for CRISPR effector system based diagnostics
US11174515B2 (en) 2017-03-15 2021-11-16 The Broad Institute, Inc. CRISPR effector system based diagnostics
CA3056428A1 (en) 2017-03-20 2018-09-27 Illumina, Inc. Methods and compositions for preparing nucleic acid libraries
US20200377935A1 (en) 2017-03-24 2020-12-03 Life Technologies Corporation Polynucleotide adapters and methods of use thereof
WO2018187013A1 (en) 2017-04-04 2018-10-11 Omniome, Inc. Fluidic apparatus and methods useful for chemical and biological reactions
CA3059952C (en) 2017-04-23 2023-04-18 Illumina Cambridge Limited Compositions and methods for improving sample identification in indexed nucleic acid libraries
DK3872187T3 (en) 2017-04-23 2022-12-05 Illumina Cambridge Ltd COMPOSITIONS AND METHODS FOR IMPROVING SAMPLE IDENTIFICATION IN INDEXED NUCLEIC ACID LIBRARIES
CN110785497A (en) 2017-04-23 2020-02-11 伊鲁米纳剑桥有限公司 Compositions and methods for improving sample identification in indexed nucleic acid libraries
DK3615671T3 (en) 2017-04-23 2021-10-18 Illumina Cambridge Ltd COMPOSITIONS AND METHODS FOR IMPROVING SAMPLE IDENTIFICATION IN INDEXED NUCLEIC ACID LIBRARIES
US10161003B2 (en) 2017-04-25 2018-12-25 Omniome, Inc. Methods and apparatus that increase sequencing-by-binding efficiency
SG11201909697TA (en) 2017-05-01 2019-11-28 Illumina Inc Optimal index sequences for multiplex massively parallel sequencing
EP3619340A4 (en) 2017-05-02 2021-01-20 Haystack Sciences Corporation Molecules for verifying oligonucleotide directed combinatorial synthesis and methods of making and using the same
SG10202113017YA (en) 2017-05-08 2021-12-30 Illumina Inc Universal short adapters for indexing of polynucleotide samples
SG11201911730XA (en) 2017-06-07 2020-01-30 Univ Oregon Health & Science Single cell whole genome libraries for methylation sequencing
GB2578038B (en) 2017-06-16 2022-11-23 Life Technologies Corp Control nucleic acids, and compositions, kits, and uses thereof
WO2018236631A1 (en) 2017-06-20 2018-12-27 Illumina, Inc. Methods and compositions for addressing inefficiencies in amplification reactions
GB201711219D0 (en) 2017-07-12 2017-08-23 Illumina Cambridge Ltd Short pendant arm linkers for nucleotides in sequencing applications
EP3655153B1 (en) 2017-07-18 2020-09-16 Omniome, Inc. Method of chemically modifying plastic surfaces
US20200202977A1 (en) 2017-07-31 2020-06-25 Illumina, Inc. Sequencing system with multiplexed biological sample aggregation
JP6998404B2 (en) 2017-08-01 2022-02-04 深▲セン▼恒特基因有限公司 Method for enriching and determining the target nucleotide sequence
US11692221B2 (en) 2017-08-01 2023-07-04 Mgi Tech Co., Ltd. Nucleic acid sequencing method
KR102480894B1 (en) 2017-08-01 2022-12-23 일루미나, 인코포레이티드 Hydrogel beads for nucleotide sequencing
EP4289967A3 (en) 2017-08-01 2024-03-20 Illumina, Inc. Spatial indexing of genetic material and library preparation using hydrogel beads and flow cells
US10858701B2 (en) 2017-08-15 2020-12-08 Omniome, Inc. Scanning apparatus and method useful for detection of chemical and biological analytes
US20190077726A1 (en) * 2017-09-13 2019-03-14 Singular Genomics Systems, Inc. Methods of synthesizing labeled nucleosides
US11447818B2 (en) 2017-09-15 2022-09-20 Illumina, Inc. Universal short adapters with variable length non-random unique molecular identifiers
SG11202002282TA (en) 2017-09-20 2020-04-29 Regeneron Pharma Immunotherapy methods for patients whose tumors carry a high passenger gene mutation burden
KR102362711B1 (en) 2017-10-16 2022-02-14 일루미나, 인코포레이티드 Deep Convolutional Neural Networks for Variant Classification
EP3622519B1 (en) 2017-10-16 2023-09-13 Illumina, Inc. Deep learning-based aberrant splicing detection
GB201716931D0 (en) 2017-10-16 2017-11-29 Illumina Cambridge Ltd New fluorescent compounds and their use as biomarkers
KR20230028569A (en) 2017-11-06 2023-02-28 일루미나, 인코포레이티드 Nucleic acid indexing techniques
WO2019099529A1 (en) 2017-11-16 2019-05-23 Illumina, Inc. Systems and methods for determining microsatellite instability
JP7013490B2 (en) 2017-11-30 2022-02-15 イルミナ インコーポレイテッド Validation methods and systems for sequence variant calls
JP6868541B2 (en) * 2017-12-05 2021-05-12 イルミナ ケンブリッジ リミテッド Modified nucleosides or modified nucleotides
NZ759650A (en) 2018-01-08 2022-07-01 Illumina Inc High-throughput sequencing with semiconductor-based detection
US11561196B2 (en) 2018-01-08 2023-01-24 Illumina, Inc. Systems and devices for high-throughput sequencing with semiconductor-based detection
CA3065939A1 (en) 2018-01-15 2019-07-18 Illumina, Inc. Deep learning-based variant classifier
JP2021511795A (en) 2018-01-29 2021-05-13 ザ・ブロード・インスティテュート・インコーポレイテッド Diagnosis based on CRISPR effector system
CA3089267A1 (en) 2018-02-06 2019-08-15 Omniome, Inc. Compositions and techniques for nucleic acid primer extension
CN111094589A (en) 2018-02-13 2020-05-01 伊鲁米纳公司 DNA sequencing Using hydrogel beads
WO2019195225A1 (en) 2018-04-02 2019-10-10 Illumina, Inc. Compositions and methods for making controls for sequence-based genetic testing
WO2019200338A1 (en) 2018-04-12 2019-10-17 Illumina, Inc. Variant classifier based on deep neural networks
AU2019255987A1 (en) 2018-04-19 2020-12-10 Pacific Biosciences Of California, Inc. Improving accuracy of base calls in nucleic acid sequencing methods
RU2750567C2 (en) 2018-04-20 2021-06-29 Иллумина, Инк. Methods for encapsulating single cells, encapsulated cells, and methods of application thereof
WO2019209426A1 (en) 2018-04-26 2019-10-31 Omniome, Inc. Methods and compositions for stabilizing nucleic acid-nucleotide-polymerase complexes
JP7100069B2 (en) 2018-05-15 2022-07-12 イルミナ インコーポレイテッド Compositions and Methods for Chemical Cleavage and Deprotection of Surface-Binding Oligonucleotides
US20210148899A1 (en) 2018-05-25 2021-05-20 lllumina, Inc. Circulating rna signatures specific to preeclampsia
US11339428B2 (en) 2018-05-31 2022-05-24 Pacific Biosciences Of California, Inc. Increased signal to noise in nucleic acid sequencing
US11180794B2 (en) 2018-05-31 2021-11-23 Omniome, Inc. Methods and compositions for capping nucleic acids
FI3810774T3 (en) 2018-06-04 2023-12-11 Illumina Inc Methods of making high-throughput single-cell transcriptome libraries
US20200251183A1 (en) 2018-07-11 2020-08-06 Illumina, Inc. Deep Learning-Based Framework for Identifying Sequence Patterns that Cause Sequence-Specific Errors (SSEs)
WO2020023362A1 (en) 2018-07-24 2020-01-30 Omniome, Inc. Serial formation of ternary complex species
WO2020022891A2 (en) 2018-07-26 2020-01-30 Stichting Vumc Biomarkers for atrial fibrillation
WO2020028194A1 (en) 2018-07-30 2020-02-06 Readcoor, Inc. Methods and systems for sample processing or analysis
CA3109238A1 (en) 2018-08-15 2020-02-20 Illumina, Inc. Compositions and methods for improving library enrichment
US20210317524A1 (en) 2018-08-28 2021-10-14 10X Genomics, Inc. Resolving spatial arrays
US11519033B2 (en) 2018-08-28 2022-12-06 10X Genomics, Inc. Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample
WO2020047010A2 (en) 2018-08-28 2020-03-05 10X Genomics, Inc. Increasing spatial array resolution
US20230011240A1 (en) 2018-09-11 2023-01-12 Singular Genomics Systems, Inc. Modified archaeal family b polymerases
WO2020060811A1 (en) 2018-09-17 2020-03-26 Omniome, Inc. Engineered polymerases for improved sequencing
EP3856753A4 (en) * 2018-09-28 2022-11-16 Centrillion Technology Holdings Corporation Disulfide-linked reversible terminators
WO2020073734A1 (en) 2018-10-12 2020-04-16 深圳市真迈生物科技有限公司 Biochip and manufacturing method therefor
CN113705585A (en) 2018-10-15 2021-11-26 因美纳有限公司 Method and system based on neural network implementation
WO2020086834A1 (en) 2018-10-25 2020-04-30 Singular Genomics Systems, Inc. Nucleotide analogues
BR112021005976A2 (en) 2018-10-26 2021-06-29 Illumina, Inc. modulation of polymer microspheres for DNA processing
US11104888B2 (en) 2018-10-31 2021-08-31 Illumina, Inc. Polymerases, compositions, and methods of use
US20220010370A1 (en) 2018-11-07 2022-01-13 Egi Tech (Shen Zhen) Co., Limited Method for sequencing polynucleotides
NL2022043B1 (en) 2018-11-21 2020-06-03 Akershus Univ Hf Tagmentation-Associated Multiplex PCR Enrichment Sequencing
EP4293126A3 (en) 2018-11-30 2024-01-17 Illumina, Inc. Analysis of multiple analytes using a single assay
US10710076B2 (en) 2018-12-04 2020-07-14 Omniome, Inc. Mixed-phase fluids for nucleic acid sequencing and other analytical assays
AU2019391274A1 (en) 2018-12-05 2021-01-07 Illumina Cambridge Limited Methods and compositions for cluster generation by bridge amplification
WO2020117968A2 (en) 2018-12-05 2020-06-11 Illumina, Inc. Polymerases, compositions, and methods of use
DE202019005610U1 (en) 2018-12-07 2021-06-10 Element Biosciences, Inc. Flow cell device and its use
WO2020123319A2 (en) 2018-12-10 2020-06-18 10X Genomics, Inc. Methods of using master / copy arrays for spatial detection
GB201820300D0 (en) 2018-12-13 2019-01-30 10X Genomics Inc Method for spatial tagging and analysing genomic DNA in a biological specimen
EP3894593A2 (en) 2018-12-13 2021-10-20 DNA Script Direct oligonucleotide synthesis on cells and biomolecules
GB201820341D0 (en) 2018-12-13 2019-01-30 10X Genomics Inc Method for transposase-mediated spatial tagging and analysing genomic DNA in a biological specimen
AU2019400090A1 (en) 2018-12-14 2021-01-07 Illumina Cambridge Limited Decreasing phasing with unlabeled nucleotides during sequencing
AU2019411266A1 (en) 2018-12-17 2021-01-07 Illumina Cambridge Limited Compositions for use in polyunucleotide sequencing
KR20210104555A (en) 2018-12-17 2021-08-25 일루미나 케임브리지 리미티드 Primer oligonucleotides for sequencing
AU2019411272A1 (en) 2018-12-18 2021-01-07 Illumina Cambridge Limited Methods and compositions for paired end sequencing using a single surface primer
US20200208214A1 (en) 2018-12-19 2020-07-02 Illumina, Inc. Methods for improving polynucleotide cluster clonality
AU2019403077B2 (en) 2018-12-19 2022-09-29 F. Hoffmann-La Roche Ag 3' protected nucleotides
CN113227348A (en) 2018-12-20 2021-08-06 欧姆尼欧美公司 Temperature control for analysis of nucleic acids and other analytes
US11293061B2 (en) * 2018-12-26 2022-04-05 Illumina Cambridge Limited Sequencing methods using nucleotides with 3′ AOM blocking group
EP3884071A4 (en) 2019-01-03 2022-04-06 Boreal Genomics, Inc. Linked target capture
US11649485B2 (en) 2019-01-06 2023-05-16 10X Genomics, Inc. Generating capture probes for spatial analysis
US11926867B2 (en) 2019-01-06 2024-03-12 10X Genomics, Inc. Generating capture probes for spatial analysis
EP3908286A4 (en) * 2019-01-08 2022-10-12 Singular Genomics Systems, Inc. Nucleotide cleavable linkers and uses thereof
EP3908672A1 (en) 2019-01-11 2021-11-17 Illumina Cambridge Limited Complex surface-bound transposome complexes
EP3921418A4 (en) 2019-02-06 2023-02-08 Singular Genomics Systems, Inc. Compositions and methods for nucleic acid sequencing
KR20210125496A (en) 2019-02-12 2021-10-18 디엔에이 스크립트 Efficient product cleavage in template-free enzymatic synthesis of polynucleotides
US11499189B2 (en) 2019-02-14 2022-11-15 Pacific Biosciences Of California, Inc. Mitigating adverse impacts of detection systems on nucleic acids and other biological analytes
US11680950B2 (en) 2019-02-20 2023-06-20 Pacific Biosciences Of California, Inc. Scanning apparatus and methods for detecting chemical and biological analytes
EP3931354A1 (en) 2019-02-28 2022-01-05 10X Genomics, Inc. Profiling of biological analytes with spatially barcoded oligonucleotide arrays
NL2023327B1 (en) 2019-03-01 2020-09-17 Illumina Inc Multiplexed fluorescent detection of analytes
WO2020178231A1 (en) 2019-03-01 2020-09-10 Illumina, Inc. Multiplexed fluorescent detection of analytes
CN112654614A (en) 2019-03-01 2021-04-13 伊卢米纳剑桥有限公司 Tertiary amine substituted coumarin compounds and their use as fluorescent markers
AU2020230955A1 (en) 2019-03-01 2021-01-07 Illumina Cambridge Limited Exocyclic amine-substituted coumarin compounds and their uses as fluorescent labels
SG11202102530QA (en) 2019-03-01 2021-04-29 Illumina Inc High-throughput single-nuclei and single-cell libraries and methods of making and of using
WO2020190509A1 (en) 2019-03-15 2020-09-24 10X Genomics, Inc. Methods for using spatial arrays for single cell sequencing
NL2023311B9 (en) 2019-03-21 2021-03-12 Illumina Inc Artificial intelligence-based generation of sequencing metadata
NL2023314B1 (en) 2019-03-21 2020-09-28 Illumina Inc Artificial intelligence-based quality scoring
US11210554B2 (en) 2019-03-21 2021-12-28 Illumina, Inc. Artificial intelligence-based generation of sequencing metadata
US11783917B2 (en) 2019-03-21 2023-10-10 Illumina, Inc. Artificial intelligence-based base calling
WO2020205296A1 (en) 2019-03-21 2020-10-08 Illumina, Inc. Artificial intelligence-based generation of sequencing metadata
NL2023312B1 (en) 2019-03-21 2020-09-28 Illumina Inc Artificial intelligence-based base calling
NL2023310B1 (en) 2019-03-21 2020-09-28 Illumina Inc Training data generation for artificial intelligence-based sequencing
NL2023316B1 (en) 2019-03-21 2020-09-28 Illumina Inc Artificial intelligence-based sequencing
EP3887542A1 (en) 2019-03-22 2021-10-06 10X Genomics, Inc. Three-dimensional spatial analysis
US11421271B2 (en) 2019-03-28 2022-08-23 Illumina Cambridge Limited Methods and compositions for nucleic acid sequencing using photoswitchable labels
WO2020210370A1 (en) 2019-04-12 2020-10-15 Roche Sequencing Solutions, Inc. Nucleic acid sequencing by synthesis using magnetic sensor arrays
US11327073B2 (en) 2019-04-12 2022-05-10 Western Digital Technologies, Inc. Thermal sensor array for molecule detection and related detection schemes
US11738336B2 (en) 2019-04-12 2023-08-29 Western Digital Technologies, Inc. Spin torque oscillator (STO) sensors used in nucleic acid sequencing arrays and detection schemes for nucleic acid sequencing
US11579217B2 (en) 2019-04-12 2023-02-14 Western Digital Technologies, Inc. Devices and methods for frequency- and phase-based detection of magnetically-labeled molecules using spin torque oscillator (STO) sensors
US11609208B2 (en) 2019-04-12 2023-03-21 Western Digital Technologies, Inc. Devices and methods for molecule detection based on thermal stabilities of magnetic nanoparticles
US11112468B2 (en) 2019-04-12 2021-09-07 Western Digital Technologies, Inc. Magnetoresistive sensor array for molecule detection and related detection schemes
US20220205036A1 (en) 2019-05-15 2022-06-30 EGI Tech (Shenzhen) Co., Limited Single-channel sequencing method based on self-luminescence
US11593649B2 (en) 2019-05-16 2023-02-28 Illumina, Inc. Base calling using convolutions
EP3976820A1 (en) 2019-05-30 2022-04-06 10X Genomics, Inc. Methods of detecting spatial heterogeneity of a biological sample
WO2020252186A1 (en) 2019-06-11 2020-12-17 Omniome, Inc. Calibrated focus sensing
SG11202105834UA (en) 2019-07-12 2021-07-29 Illumina Cambridge Ltd Nucleic acid library preparation using electrophoresis
CA3125241A1 (en) 2019-07-12 2021-01-21 Illumina Cambridge Limited Compositions and methods for preparing nucleic acid sequencing libraries using crispr/cas9 immobilized on a solid support
US11377655B2 (en) 2019-07-16 2022-07-05 Pacific Biosciences Of California, Inc. Synthetic nucleic acids having non-natural structures
US10656368B1 (en) 2019-07-24 2020-05-19 Omniome, Inc. Method and system for biological imaging using a wide field objective lens
EP4047098A4 (en) 2019-08-20 2023-06-07 EGI Tech (Shen Zhen) Co., Limited Method for sequencing polynucleotides on basis of optical signal dynamics of luminescent label and secondary luminescent signal
TW202124406A (en) 2019-09-10 2021-07-01 美商歐姆尼歐美公司 Reversible modification of nucleotides
WO2021050962A1 (en) 2019-09-11 2021-03-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Cancer detection and classification
US11512295B2 (en) 2019-09-12 2022-11-29 Singular Genomics Systems, Inc. Modified thermoccocus polymerases
US11208682B2 (en) 2019-09-13 2021-12-28 Western Digital Technologies, Inc. Enhanced optical detection for nucleic acid sequencing using thermally-dependent fluorophore tags
EP4038546A1 (en) 2019-10-01 2022-08-10 10X Genomics, Inc. Systems and methods for identifying morphological patterns in tissue samples
EP4045683A1 (en) 2019-10-18 2022-08-24 Omniome, Inc. Methods and compositions for capping nucleic acids
EP4025711A2 (en) 2019-11-08 2022-07-13 10X Genomics, Inc. Enhancing specificity of analyte binding
EP4055155A1 (en) 2019-11-08 2022-09-14 Pacific Biosciences of California, Inc. Engineered polymerases for improved sequencing by binding
WO2021091611A1 (en) 2019-11-08 2021-05-14 10X Genomics, Inc. Spatially-tagged analyte capture agents for analyte multiplexing
CN117078725A (en) 2019-11-21 2023-11-17 10X基因组学有限公司 Spatial analysis of analytes
JP2023501760A (en) 2019-11-22 2023-01-19 イルミナ インコーポレイテッド A circulating RNA signature specific to pre-eclampsia
US11747329B2 (en) 2019-11-22 2023-09-05 Western Digital Technologies, Inc. Magnetic gradient concentrator/reluctance detector for molecule detection
IL292961B2 (en) 2019-11-27 2024-01-01 Illumina Cambridge Ltd Cyclooctatetraene Containing Dyes and Compositions
DE202019106695U1 (en) 2019-12-02 2020-03-19 Omniome, Inc. System for sequencing nucleic acids in fluid foam
DE202019106694U1 (en) 2019-12-02 2020-03-19 Omniome, Inc. System for sequencing nucleic acids in fluid foam
AU2020396889A1 (en) 2019-12-04 2021-09-30 Illumina, Inc. Preparation of DNA sequencing libraries for detection of DNA pathogens in plasma
WO2021118349A1 (en) 2019-12-10 2021-06-17 Prinses Máxima Centrum Voor Kinderoncologie B.V. Methods of typing germ cell tumors
WO2021123074A1 (en) * 2019-12-18 2021-06-24 F. Hoffmann-La Roche Ag Methods of sequencing by synthesis using a consecutive labeling scheme
BR112021019640A2 (en) 2019-12-19 2022-06-21 Illumina Inc High-throughput single cell libraries and methods of preparation and use
US11747262B2 (en) 2019-12-23 2023-09-05 Singular Genomics Systems, Inc. Flow cell carrier and methods of use
US11498078B2 (en) 2019-12-23 2022-11-15 Singular Genomics Systems, Inc. Flow cell receiver and methods of use
SG11202106899SA (en) 2019-12-23 2021-09-29 10X Genomics Inc Methods for spatial analysis using rna-templated ligation
AU2020412459B2 (en) 2019-12-23 2022-12-08 Singular Genomics Systems, Inc. Methods for long read sequencing
US11155858B2 (en) 2019-12-31 2021-10-26 Singular Genomics Systems, Inc. Polynucleotide barcodes for long read sequencing
US11702693B2 (en) 2020-01-21 2023-07-18 10X Genomics, Inc. Methods for printing cells and generating arrays of barcoded cells
US11732299B2 (en) 2020-01-21 2023-08-22 10X Genomics, Inc. Spatial assays with perturbed cells
EP4097251A1 (en) 2020-01-29 2022-12-07 10X Genomics, Inc. Compositions and methods for analyte detection
US11898205B2 (en) 2020-02-03 2024-02-13 10X Genomics, Inc. Increasing capture efficiency of spatial assays
US20230054204A1 (en) 2020-02-04 2023-02-23 Pacific Biosciences Of California, Inc. Flow cells and methods for their manufacture and use
US11732300B2 (en) 2020-02-05 2023-08-22 10X Genomics, Inc. Increasing efficiency of spatial analysis in a biological sample
EP4107284A1 (en) 2020-02-17 2022-12-28 10X Genomics, Inc. In situ analysis of chromatin interaction
IL295560A (en) 2020-02-20 2022-10-01 Illumina Inc Artificial intelligence-based many-to-many base calling
US20210265018A1 (en) 2020-02-20 2021-08-26 Illumina, Inc. Knowledge Distillation and Gradient Pruning-Based Compression of Artificial Intelligence-Based Base Caller
US20210265015A1 (en) 2020-02-20 2021-08-26 Illumina, Inc. Hardware Execution and Acceleration of Artificial Intelligence-Based Base Caller
WO2021168287A1 (en) 2020-02-21 2021-08-26 10X Genomics, Inc. Methods and compositions for integrated in situ spatial assay
CN115461143A (en) 2020-02-21 2022-12-09 10X基因组学有限公司 Compositions, methods, and systems for sample processing
US11891654B2 (en) 2020-02-24 2024-02-06 10X Genomics, Inc. Methods of making gene expression libraries
US11034942B1 (en) 2020-02-27 2021-06-15 Singular Genomics Systems, Inc. Modified pyrococcus polymerases and uses thereof
EP4114966A1 (en) 2020-03-03 2023-01-11 Pacific Biosciences Of California, Inc. Methods and compositions for sequencing double stranded nucleic acids
US11359238B2 (en) 2020-03-06 2022-06-14 Singular Genomics Systems, Inc. Linked paired strand sequencing
AU2021234084A1 (en) 2020-03-09 2022-01-06 Illumina, Inc. Methods for sequencing polynucleotides
EP4117818A2 (en) 2020-03-10 2023-01-18 Western Digital Technologies Inc. Magnetic sensor arrays for nucleic acid sequencing and methods of making and using them
IL296604A (en) 2020-03-30 2022-11-01 Illumina Inc Methods and compositions for preparing nucleic acid libraries
CN113512083B (en) * 2020-04-10 2023-05-23 深圳华大生命科学研究院 Method for synthesizing nucleotide or nucleotide analogue
WO2021216708A1 (en) 2020-04-22 2021-10-28 10X Genomics, Inc. Methods for spatial analysis using targeted rna depletion
EP4143344A1 (en) 2020-04-27 2023-03-08 Agendia N.V. Treatment of her2 negative, mammaprint high risk 2 breast cancer
US11739359B2 (en) 2020-05-01 2023-08-29 Microsoft Technology Licensing, Llc Universal template strands for enzymatic polynucleotide synthesis
US20230183798A1 (en) 2020-05-05 2023-06-15 Pacific Biosciences Of California, Inc. Compositions and methods for modifying polymerase-nucleic acid complexes
US11188778B1 (en) 2020-05-05 2021-11-30 Illumina, Inc. Equalization-based image processing and spatial crosstalk attenuator
US20230203592A1 (en) 2020-05-05 2023-06-29 Akershus Universitetssykehus Hf Compositions and methods for characterizing bowel cancer
JP2023525470A (en) 2020-05-08 2023-06-16 イルミナ インコーポレイテッド Genome sequencing and detection methods
CA3177286A1 (en) 2020-05-12 2021-11-18 Illumina Inc. Generating nucleic acids with modified bases using recombinant terminal deoxynucleotidyl transferase
EP4153775A1 (en) 2020-05-22 2023-03-29 10X Genomics, Inc. Simultaneous spatio-temporal measurement of gene expression and cellular activity
WO2021237087A1 (en) 2020-05-22 2021-11-25 10X Genomics, Inc. Spatial analysis to detect sequence variants
WO2021242834A1 (en) 2020-05-26 2021-12-02 10X Genomics, Inc. Method for resetting an array
US11702683B2 (en) 2020-05-28 2023-07-18 Microsoft Technology Licensing, Llc De novo polynucleotide synthesis with substrate-bound polymerase
EP4162074B1 (en) 2020-06-08 2024-04-24 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
WO2021252617A1 (en) 2020-06-09 2021-12-16 Illumina, Inc. Methods for increasing yield of sequencing libraries
EP4165207A1 (en) 2020-06-10 2023-04-19 10X Genomics, Inc. Methods for determining a location of an analyte in a biological sample
EP4165549A1 (en) 2020-06-11 2023-04-19 Nautilus Biotechnology, Inc. Methods and systems for computational decoding of biological, chemical, and physical entities
US11787831B2 (en) 2020-06-22 2023-10-17 Illumina Cambridge Limited Nucleosides and nucleotides with 3′ acetal blocking group
CN116034166A (en) 2020-06-25 2023-04-28 10X基因组学有限公司 Spatial analysis of DNA methylation
JP2023532231A (en) 2020-06-30 2023-07-27 イルミナ インコーポレイテッド Sequencing by Catalytically Controlled Synthesis to Generate Unblemished DNA
CN111732623B (en) * 2020-06-30 2022-01-18 中国科学院化学研究所 Tri-isopropyl silaacetylene modified deoxycytidine phosphoramidite monomer and preparation method and application thereof
BR112022026806A2 (en) 2020-07-02 2023-04-25 Illumina Inc METHOD TO CALIBRATE SEEDING EFFICIENCY OF LIBRARY OF NUCLEIC ACIDS IN FLOW CELLS
US11761038B1 (en) 2020-07-06 2023-09-19 10X Genomics, Inc. Methods for identifying a location of an RNA in a biological sample
AU2021306281A1 (en) 2020-07-08 2023-01-05 Illumina, Inc. Beads as transposome carriers
EP4153606A2 (en) 2020-07-13 2023-03-29 Singular Genomics Systems, Inc. Methods of sequencing complementary polynucleotides
US20220033900A1 (en) 2020-07-28 2022-02-03 Illumina Cambridge Limited Substituted coumarin dyes and uses as fluorescent labels
KR20230041725A (en) 2020-08-06 2023-03-24 일루미나, 인코포레이티드 Construction of RNA and DNA sequencing libraries using bead-linked transposomes
KR20230051508A (en) 2020-08-18 2023-04-18 일루미나, 인코포레이티드 Sequence-specific targeted translocation and selection and sorting of nucleic acids
US20220067489A1 (en) 2020-08-28 2022-03-03 Illumina, Inc. Detecting and Filtering Clusters Based on Artificial Intelligence-Predicted Base Calls
KR20230069135A (en) 2020-09-11 2023-05-18 일루미나 케임브리지 리미티드 Methods for Enriching Target Sequences in Sequencing Libraries Using Hairpin Adapters
WO2022056385A1 (en) 2020-09-14 2022-03-17 Singular Genomics Systems, Inc. Methods and systems for multidimensional imaging
US11926822B1 (en) 2020-09-23 2024-03-12 10X Genomics, Inc. Three-dimensional spatial analysis
AU2021366658A1 (en) 2020-10-21 2023-06-22 Illumina Cambridge Limited Sequencing templates comprising multiple inserts and compositions and methods for improving sequencing throughput
CN116615560A (en) 2020-10-30 2023-08-18 元素生物科学公司 Reagents for large-scale parallel nucleic acid sequencing
US20220145345A1 (en) 2020-11-11 2022-05-12 Microsoft Technology Licensing, Llc Spatial control of polynucleotide synthesis by strand capping
US11827935B1 (en) 2020-11-19 2023-11-28 10X Genomics, Inc. Methods for spatial analysis using rolling circle amplification and detection probes
WO2022109269A2 (en) * 2020-11-20 2022-05-27 The General Hospital Corporation Methods for dna methylation analysis
AU2021391422A1 (en) 2020-12-02 2022-11-03 Illumina Software, Inc. System and method for detection of genetic alterations
US20220186300A1 (en) 2020-12-11 2022-06-16 10X Genomics, Inc. Methods and compositions for multimodal in situ analysis
US20220195196A1 (en) 2020-12-17 2022-06-23 Illumina Cambridge Limited Alkylpyridinium coumarin dyes and uses in sequencing applications
US20220195517A1 (en) 2020-12-17 2022-06-23 Illumina Cambridge Limited Long stokes shift chromenoquinoline dyes and uses in sequencing applications
US20220195516A1 (en) 2020-12-17 2022-06-23 Illumina Cambridge Limited Methods, systems and compositions for nucleic acid sequencing
EP4153964A4 (en) 2020-12-21 2023-11-29 Singular Genomics Systems, Inc. Systems and methods for multicolor imaging
AU2021409136A1 (en) 2020-12-21 2023-06-29 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
US20220195518A1 (en) 2020-12-22 2022-06-23 Illumina Cambridge Limited Methods and compositions for nucleic acid sequencing
CA3204784A1 (en) 2021-01-13 2022-07-21 Alex Nemiroski Surface structuring with colloidal assembly
US20220228200A1 (en) 2021-01-19 2022-07-21 10X Genomics, Inc. Methods and compositions for internally controlled in situ assays
US20220235403A1 (en) 2021-01-26 2022-07-28 10X Genomics, Inc. Nucleic acid analog probes for in situ analysis
US20240117416A1 (en) 2021-01-29 2024-04-11 Illumina, Inc. Methods, compositions and kits to improve seeding efficiency of flow cells with polynucleotides
CA3208854A1 (en) 2021-02-04 2022-08-11 Illumina, Inc. Long indexed-linked read generation on transposome bound beads
WO2022170212A1 (en) 2021-02-08 2022-08-11 Singular Genomics Systems, Inc. Methods and compositions for sequencing complementary polynucleotides
WO2022174054A1 (en) 2021-02-13 2022-08-18 The General Hospital Corporation Methods and compositions for in situ macromolecule detection and uses thereof
EP4301873A1 (en) 2021-03-03 2024-01-10 10X Genomics, Inc. Analyte detection in situ using nucleic acid origami
EP4263868A1 (en) 2021-03-12 2023-10-25 Singular Genomics Systems, Inc. Nanoarrays and methods of use thereof
US11884977B2 (en) 2021-03-12 2024-01-30 Singular Genomics Systems, Inc. Nanoarrays and methods of use thereof
WO2022197754A1 (en) 2021-03-16 2022-09-22 Illumina Software, Inc. Neural network parameter quantization for base calling
CA3210451A1 (en) 2021-03-22 2022-09-29 Illumina Cambridge Limited Methods for improving nucleic acid cluster clonality
BR112023019894A2 (en) 2021-03-29 2023-11-14 Illumina Inc COMPOSITIONS AND METHODS FOR ASSESSING DNA DAMAGE IN A LIBRARY AND NORMALIZING AMPLICON SIZE DISTORTION
JP2024511766A (en) 2021-03-29 2024-03-15 イルミナ インコーポレイテッド Improved library preparation method
EP4314282A1 (en) 2021-03-30 2024-02-07 Illumina, Inc. Improved methods of isothermal complementary dna and library preparation
KR20230165273A (en) 2021-03-31 2023-12-05 일루미나 케임브리지 리미티드 Nucleic acid library sequencing technology with adapter dimer detection
IL307164A (en) 2021-03-31 2023-11-01 Illumina Inc Methods of preparing directional tagmentation sequencing libraries using transposon-based technology with unique molecular identifiers for error correction
AU2022248999A1 (en) 2021-03-31 2023-02-02 Illumina, Inc. Artificial intelligence-based base caller with contextual awareness
WO2022213027A1 (en) 2021-04-02 2022-10-06 Illumina, Inc. Machine-learning model for detecting a bubble within a nucleotide-sample slide for sequencing
US20220336054A1 (en) 2021-04-15 2022-10-20 Illumina, Inc. Deep Convolutional Neural Networks to Predict Variant Pathogenicity using Three-Dimensional (3D) Protein Structures
EP4294920A1 (en) 2021-04-27 2023-12-27 Singular Genomics Systems, Inc. High density sequencing and multiplexed priming
KR20240004473A (en) 2021-04-29 2024-01-11 일루미나, 인코포레이티드 Amplification techniques for nucleic acid characterization
CA3215598A1 (en) 2021-05-05 2022-11-10 Michael Callingham Fluorescent dyes containing bis-boron fused heterocycles and uses in sequencing
WO2022235163A1 (en) 2021-05-07 2022-11-10 Agendia N.V. Endocrine treatment of hormone receptor positive breast cancer typed as having a low risk of recurrence
EP4337789A1 (en) 2021-05-10 2024-03-20 Pacific Biosciences of California, Inc. Dna amplification buffer replenishment during rolling circle amplification
WO2022240764A1 (en) 2021-05-10 2022-11-17 Pacific Biosciences Of California, Inc. Single-molecule seeding and amplification on a surface
US20220372468A1 (en) 2021-05-19 2022-11-24 Microsoft Technology Licensing, Llc Real-time detection of errors in oligonucleotide synthesis
IL308173A (en) 2021-05-20 2024-01-01 Illumina Inc Compositions and methods for sequencing by synthesis
AU2022280886A1 (en) 2021-05-28 2023-12-07 Illumina, Inc. Oligo-modified nucleotide analogues for nucleic acid preparation
EP4347877A1 (en) 2021-06-01 2024-04-10 10X Genomics, Inc. Methods and compositions for analyte detection and probe resolution
WO2022256422A1 (en) 2021-06-02 2022-12-08 10X Genomics, Inc. Sample analysis using asymmetric circularizable probes
US20220403450A1 (en) 2021-06-03 2022-12-22 Illumina Software, Inc. Systems and methods for sequencing nucleotides using two optical channels
EP4355476A1 (en) 2021-06-15 2024-04-24 Illumina, Inc. Hydrogel-free surface functionalization for sequencing
WO2022272260A1 (en) 2021-06-23 2022-12-29 Illumina, Inc. Compositions, methods, kits, cartridges, and systems for sequencing reagents
WO2023278608A1 (en) 2021-06-29 2023-01-05 Illumina, Inc. Self-learned base caller, trained using oligo sequences
WO2023278184A1 (en) 2021-06-29 2023-01-05 Illumina, Inc. Methods and systems to correct crosstalk in illumination emitted from reaction sites
KR20240022490A (en) 2021-06-29 2024-02-20 일루미나, 인코포레이티드 Signal-to-noise ratio metrics for determining nucleotide base calling and base calling quality
AU2022301321A1 (en) 2021-06-29 2024-01-18 Illumina, Inc. Machine-learning model for generating confidence classifications for genomic coordinates
US20230005253A1 (en) 2021-07-01 2023-01-05 Illumina, Inc. Efficient artificial intelligence-based base calling of index sequences
US20230027409A1 (en) 2021-07-13 2023-01-26 Illumina, Inc. Methods and systems for real time extraction of crosstalk in illumination emitted from reaction sites
CN117651855A (en) 2021-07-13 2024-03-05 10X基因组学有限公司 Method for preparing polymeric substrates with controlled thickness
KR20240031968A (en) 2021-07-19 2024-03-08 일루미나, 인코포레이티드 Intensity extraction with interpolation and adaptation to base calling
US11455487B1 (en) 2021-10-26 2022-09-27 Illumina Software, Inc. Intensity extraction and crosstalk attenuation using interpolation and adaptation for base calling
US20230116852A1 (en) 2021-07-23 2023-04-13 Illumina, Inc. Methods for preparing substrate surface for dna sequencing
US20230021577A1 (en) 2021-07-23 2023-01-26 Illumina Software, Inc. Machine-learning model for recalibrating nucleotide-base calls
CA3223746A1 (en) 2021-07-28 2023-02-02 Rohan PAUL Quality score calibration of basecalling systems
WO2023014741A1 (en) 2021-08-03 2023-02-09 Illumina Software, Inc. Base calling using multiple base caller models
US20230057571A1 (en) 2021-08-03 2023-02-23 10X Genomics, Inc. Nucleic acid concatemers and methods for stabilizing and/or compacting the same
US20230047225A1 (en) 2021-08-14 2023-02-16 Illumina, Inc. Polymerases, compositions, and methods of use
WO2023023484A1 (en) 2021-08-16 2023-02-23 10X Genomics, Inc. Probes comprising a split barcode region and methods of use
CN117881795A (en) 2021-08-17 2024-04-12 因美纳有限公司 Methods and compositions for identifying methylated cytosines
WO2023034489A1 (en) 2021-09-01 2023-03-09 10X Genomics, Inc. Methods, compositions, and kits for blocking a capture probe on a spatial array
WO2023034079A1 (en) 2021-09-01 2023-03-09 Illumina Software, Inc. Amplitude modulation for accelerated base calling
WO2023034920A2 (en) 2021-09-03 2023-03-09 Singular Genomics Systems, Inc. Amplification oligonucleotides
CN115943217A (en) 2021-09-07 2023-04-07 深圳华大智造科技股份有限公司 Method for analyzing sequence of target polynucleotide
CA3231118A1 (en) 2021-09-07 2023-03-16 Meihua Gong Method for analyzing sequence of target polynucleotide
CN117561573A (en) 2021-09-17 2024-02-13 因美纳有限公司 Automatic identification of the source of faults in nucleotide sequencing from base interpretation error patterns
CN117546243A (en) 2021-09-21 2024-02-09 因美纳有限公司 Map-referenced genome and base detection method using estimated haplotypes
WO2023049212A2 (en) 2021-09-22 2023-03-30 Illumina, Inc. State-based base calling
US20230096386A1 (en) 2021-09-30 2023-03-30 Illumina Cambridge Limited Polynucleotide sequencing
WO2023056328A2 (en) 2021-09-30 2023-04-06 Illumina, Inc. Solid supports and methods for depleting and/or enriching library fragments prepared from biosamples
WO2023069927A1 (en) 2021-10-20 2023-04-27 Illumina, Inc. Methods for capturing library dna for sequencing
US20230158469A1 (en) * 2021-11-01 2023-05-25 Twist Bioscience Corporation Devices and methods for synthesis
WO2023081485A1 (en) 2021-11-08 2023-05-11 Pacific Biosciences Of California, Inc. Stepwise sequencing of a polynucleotide with a homogenous reaction mixture
WO2023085932A1 (en) 2021-11-10 2023-05-19 Omnigen B.V. Prediction of response following folfirinox treatment in cancer patients
EP4305195A2 (en) 2021-12-01 2024-01-17 10X Genomics, Inc. Methods, compositions, and systems for improved in situ detection of analytes and spatial analysis
CN117581303A (en) 2021-12-02 2024-02-20 因美纳有限公司 Generating cluster-specific signal corrections for determining nucleotide base detection
WO2023107622A1 (en) 2021-12-10 2023-06-15 Illumina, Inc. Parallel sample and index sequencing
WO2023119164A1 (en) 2021-12-21 2023-06-29 Illumina Cambridge Limited Wax-microsphere matrix compositions and methods of making and using the same
US20230215515A1 (en) 2021-12-23 2023-07-06 Illumina Software, Inc. Facilitating secure execution of external workflows for genomic sequencing diagnostics
WO2023122363A1 (en) 2021-12-23 2023-06-29 Illumina Software, Inc. Dynamic graphical status summaries for nucelotide sequencing
WO2023129898A2 (en) 2021-12-27 2023-07-06 10X Genomics, Inc. Methods and compositions for rolling circle amplification
US20230207050A1 (en) 2021-12-28 2023-06-29 Illumina Software, Inc. Machine learning model for recalibrating nucleotide base calls corresponding to target variants
WO2023129764A1 (en) 2021-12-29 2023-07-06 Illumina Software, Inc. Automatically switching variant analysis model versions for genomic analysis applications
AU2022424380A1 (en) 2021-12-29 2024-01-18 Illumina, Inc. Methods of nucleic acid sequencing using surface-bound primers
WO2023141154A1 (en) 2022-01-20 2023-07-27 Illumina Cambridge Limited Methods of detecting methylcytosine and hydroxymethylcytosine by sequencing
US20230279475A1 (en) 2022-01-21 2023-09-07 10X Genomics, Inc. Multiple readout signals for analyzing a sample
WO2023164570A1 (en) 2022-02-23 2023-08-31 Insitro, Inc. Pooled optical screening and transcriptional measurements of cells comprising barcoded genetic perturbations
CA3224595A1 (en) 2022-02-25 2023-08-31 Steven Norberg Machine-learning models for detecting and adjusting values for nucleotide methylation levels
US20230410944A1 (en) 2022-02-25 2023-12-21 Illumina, Inc. Calibration sequences for nucelotide sequencing
US11795505B2 (en) 2022-03-10 2023-10-24 Singular Genomics Systems, Inc. Nucleic acid delivery scaffolds
WO2023175021A1 (en) 2022-03-15 2023-09-21 Illumina, Inc. Methods of preparing loop fork libraries
US20230343414A1 (en) 2022-03-25 2023-10-26 Illumina, Inc. Sequence-to-sequence base calling
US20230304086A1 (en) 2022-03-28 2023-09-28 Illumina Cambridge Limited Labeled avidin and methods for sequencing
WO2023192917A1 (en) 2022-03-29 2023-10-05 Nautilus Subsidiary, Inc. Integrated arrays for single-analyte processes
WO2023186819A1 (en) 2022-03-29 2023-10-05 Illumina Cambridge Limited Chromenoquinoline dyes and uses in sequencing
WO2023186982A1 (en) 2022-03-31 2023-10-05 Illumina, Inc. Compositions and methods for improving sequencing signals
CA3222797A1 (en) 2022-03-31 2023-10-05 Ramesh NEELAKANDAN Nucleosides and nucleotides with 3' vinyl blocking group
WO2023192616A1 (en) 2022-04-01 2023-10-05 10X Genomics, Inc. Compositions and methods for targeted masking of autofluorescence
WO2023196526A1 (en) 2022-04-06 2023-10-12 10X Genomics, Inc. Methods for multiplex cell analysis
WO2023196572A1 (en) 2022-04-07 2023-10-12 Illumina Singapore Pte. Ltd. Altered cytidine deaminases and methods of use
CA3224264A1 (en) 2022-04-08 2023-10-12 Illumina, Inc. Aptamer dynamic range compression and detection techniques
US20230340571A1 (en) 2022-04-26 2023-10-26 Illumina, Inc. Machine-learning models for selecting oligonucleotide probes for array technologies
US20230348967A1 (en) 2022-04-29 2023-11-02 Illumina Cambridge Limited Methods and systems for encapsulating lyophilised microspheres
WO2023215612A1 (en) 2022-05-06 2023-11-09 10X Genomics, Inc. Analysis of antigen and antigen receptor interactions
US20230368866A1 (en) 2022-05-10 2023-11-16 Illumina Software, Inc. Adaptive neural network for nucelotide sequencing
WO2023225095A1 (en) 2022-05-18 2023-11-23 Illumina Cambridge Limited Preparation of size-controlled nucleic acid fragments
WO2023224488A1 (en) 2022-05-19 2023-11-23 Agendia N.V. Dna repair signature and prediction of response following cancer therapy
WO2023224487A1 (en) 2022-05-19 2023-11-23 Agendia N.V. Prediction of response to immune therapy in breast cancer patients
US20230383342A1 (en) 2022-05-31 2023-11-30 Illumina Cambridge Limited Compositions and methods for nucleic acid sequencing
WO2023235353A2 (en) 2022-06-03 2023-12-07 Illumina, Inc. Circulating rna biomarkers for preeclampsia
US20230407386A1 (en) 2022-06-09 2023-12-21 Illumina, Inc. Dependence of base calling on flow cell tilt
US20240035071A1 (en) 2022-06-17 2024-02-01 10X Genomics, Inc. Catalytic de-crosslinking of samples for in situ analysis
US20230420080A1 (en) 2022-06-24 2023-12-28 Illumina Software, Inc. Split-read alignment by intelligently identifying and scoring candidate split groups
US20230420082A1 (en) 2022-06-27 2023-12-28 Illumina Software, Inc. Generating and implementing a structural variation graph genome
WO2024006779A1 (en) 2022-06-27 2024-01-04 Illumina, Inc. Accelerators for a genotype imputation model
WO2024006705A1 (en) 2022-06-27 2024-01-04 Illumina Software, Inc. Improved human leukocyte antigen (hla) genotyping
US20230416279A1 (en) 2022-06-28 2023-12-28 Illumina Cambridge Limited Fluorescent dyes containing fused tetracyclic bis-boron heterocycle and uses in sequencing
WO2024015962A1 (en) 2022-07-15 2024-01-18 Pacific Biosciences Of California, Inc. Blocked asymmetric hairpin adaptors
WO2024026356A1 (en) 2022-07-26 2024-02-01 Illumina, Inc. Rapid single-cell multiomics processing using an executable file
CN115260262A (en) * 2022-08-09 2022-11-01 深圳赛陆医疗科技有限公司 Preparation method of cytosine azide
WO2024036304A1 (en) 2022-08-12 2024-02-15 10X Genomics, Inc. Puma1 polymerases and uses thereof
US20240084373A1 (en) 2022-08-16 2024-03-14 10X Genomics, Inc. Ap50 polymerases and uses thereof
WO2024039516A1 (en) 2022-08-19 2024-02-22 Illumina, Inc. Third dna base pair site-specific dna detection
WO2024059852A1 (en) 2022-09-16 2024-03-21 Illumina, Inc. Cluster segmentation and conditional base calling
US20240112753A1 (en) 2022-09-29 2024-04-04 Illumina, Inc. Target-variant-reference panel for imputing target variants
WO2024073043A1 (en) 2022-09-30 2024-04-04 Illumina, Inc. Methods of using cpg binding proteins in mapping modified cytosine nucleotides
WO2024069581A1 (en) 2022-09-30 2024-04-04 Illumina Singapore Pte. Ltd. Helicase-cytidine deaminase complexes and methods of use
WO2024068971A1 (en) 2022-09-30 2024-04-04 Illumina, Inc. Polymerases, compositions, and methods of use
WO2024073047A1 (en) 2022-09-30 2024-04-04 Illumina, Inc. Cytidine deaminases and methods of use in mapping modified cytosine nucleotides
US20240120027A1 (en) 2022-09-30 2024-04-11 Illumina, Inc. Machine-learning model for refining structural variant calls
WO2024068889A2 (en) 2022-09-30 2024-04-04 Illumina, Inc. Compositions and methods for reducing photo damage during sequencing
WO2024077096A1 (en) 2022-10-05 2024-04-11 Illumina, Inc. Integrating variant calls from multiple sequencing pipelines utilizing a machine learning architecture
WO2024077152A1 (en) 2022-10-06 2024-04-11 Illumina, Inc. Probes for depleting abundant small noncoding rna
WO2024077202A2 (en) 2022-10-06 2024-04-11 Illumina, Inc. Probes for improving environmental sample surveillance
WO2024077162A2 (en) 2022-10-06 2024-04-11 Illumina, Inc. Probes for improving coronavirus sample surveillance
US11952624B1 (en) 2022-11-07 2024-04-09 GeneSense Technology Inc., Shanghai (CN) Nucleic acid sequencing using self-luminescence

Family Cites Families (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US227131A (en) 1880-05-04 Heney o
GB230037A (en) 1924-02-27 1925-10-01 Panhard & Levassor Improvements in internal combustion engines provided with valve sleeves
GB303924A (en) 1927-10-13 1929-01-14 Gregorio John Boonzaier Improvements in or relating to carburettors for internal combustion engines
US4711955A (en) * 1981-04-17 1987-12-08 Yale University Modified nucleotides and methods of preparing and using same
US5175269A (en) * 1984-01-30 1992-12-29 Enzo Diagnostics, Inc. Compound and detectable molecules having an oligo- or polynucleotide with modifiable reactive group
US5118605A (en) * 1984-10-16 1992-06-02 Chiron Corporation Polynucleotide determination with selectable cleavage sites
US4824775A (en) * 1985-01-03 1989-04-25 Molecular Diagnostics, Inc. Cells labeled with multiple Fluorophores bound to a nucleic acid carrier
US4772691A (en) * 1985-06-05 1988-09-20 The Medical College Of Wisconsin, Inc. Chemically cleavable nucleotides
US4863849A (en) * 1985-07-18 1989-09-05 New York Medical College Automatable process for sequencing nucleotide
US4888274A (en) 1985-09-18 1989-12-19 Yale University RecA nucleoprotein filament and methods
US5047519A (en) 1986-07-02 1991-09-10 E. I. Du Pont De Nemours And Company Alkynylamino-nucleotides
US5242796A (en) 1986-07-02 1993-09-07 E. I. Du Pont De Nemours And Company Method, system and reagents for DNA sequencing
GB8810400D0 (en) 1988-05-03 1988-06-08 Southern E Analysing polynucleotide sequences
SE8801070D0 (en) 1988-03-23 1988-03-23 Pharmacia Ab METHOD FOR IMMOBILIZING A DNA SEQUENCE ON A SOLID SUPPORT
US4971903A (en) 1988-03-25 1990-11-20 Edward Hyman Pyrophosphate-based method and apparatus for sequencing nucleic acids
US5174962A (en) * 1988-06-20 1992-12-29 Genomyx, Inc. Apparatus for determining DNA sequences by mass spectrometry
GB8910880D0 (en) 1989-05-11 1989-06-28 Amersham Int Plc Sequencing method
US5547839A (en) 1989-06-07 1996-08-20 Affymax Technologies N.V. Sequencing of surface immobilized polymers utilizing microflourescence detection
US6346413B1 (en) 1989-06-07 2002-02-12 Affymetrix, Inc. Polymer arrays
US5302509A (en) 1989-08-14 1994-04-12 Beckman Instruments, Inc. Method for sequencing polynucleotides
WO1991006678A1 (en) 1989-10-26 1991-05-16 Sri International Dna sequencing
WO1993005183A1 (en) 1991-09-09 1993-03-18 Baylor College Of Medicine Method and device for rapid dna or rna sequencing determination by a base addition sequencing scheme
DE4141178A1 (en) 1991-12-13 1993-06-17 Europ Lab Molekularbiolog New nucleic acid sequencing method - using one labelled nucleotide at one time in cycles comprising elongation, wash, label detection and removal of the label, then repeating
GB9208733D0 (en) * 1992-04-22 1992-06-10 Medical Res Council Dna sequencing method
GB9210176D0 (en) * 1992-05-12 1992-06-24 Cemu Bioteknik Ab Chemical method
US5516664A (en) 1992-12-23 1996-05-14 Hyman; Edward D. Enzymatic synthesis of repeat regions of oligonucleotides
US5436143A (en) * 1992-12-23 1995-07-25 Hyman; Edward D. Method for enzymatic synthesis of oligonucleotides
US6074823A (en) * 1993-03-19 2000-06-13 Sequenom, Inc. DNA sequencing by mass spectrometry via exonuclease degradation
FR2703052B1 (en) * 1993-03-26 1995-06-02 Pasteur Institut New method of nucleic acid sequencing.
US5959089A (en) 1993-07-19 1999-09-28 Hannessian; Stephen Amino-cyclodextrin syntheses
GB9315847D0 (en) * 1993-07-30 1993-09-15 Isis Innovation Tag reagent and assay method
US5547859A (en) * 1993-08-02 1996-08-20 Goodman; Myron F. Chain-terminating nucleotides for DNA sequencing methods
WO1995014108A1 (en) * 1993-11-17 1995-05-26 Amersham International Plc Primer extension mass spectroscopy nucleic acid sequencing method
US5763594A (en) * 1994-09-02 1998-06-09 Andrew C. Hiatt 3' protected nucleotides for enzyme catalyzed template-independent creation of phosphodiester bonds
US5872244A (en) * 1994-09-02 1999-02-16 Andrew C. Hiatt 3' protected nucleotides for enzyme catalyzed template-independent creation of phosphodiester bonds
US5808045A (en) * 1994-09-02 1998-09-15 Andrew C. Hiatt Compositions for enzyme catalyzed template-independent creation of phosphodiester bonds using protected nucleotides
US6232465B1 (en) * 1994-09-02 2001-05-15 Andrew C. Hiatt Compositions for enzyme catalyzed template-independent creation of phosphodiester bonds using protected nucleotides
US6214987B1 (en) * 1994-09-02 2001-04-10 Andrew C. Hiatt Compositions for enzyme catalyzed template-independent formation of phosphodiester bonds using protected nucleotides
US6013445A (en) 1996-06-06 2000-01-11 Lynx Therapeutics, Inc. Massively parallel signature sequencing by ligation of encoded adaptors
US5604097A (en) 1994-10-13 1997-02-18 Spectragen, Inc. Methods for sorting polynucleotides using oligonucleotide tags
WO1996011937A1 (en) 1994-10-14 1996-04-25 Stratagene Porphyrin labeling of polynucleotides
US5681940A (en) 1994-11-02 1997-10-28 Icn Pharmaceuticals Sugar modified nucleosides and oligonucleotides
DE4438918A1 (en) 1994-11-04 1996-05-09 Hoechst Ag Modified oligonucleotides, their preparation and their use
SE9500342D0 (en) 1995-01-31 1995-01-31 Marek Kwiatkowski Novel chain terminators, the use thereof for nucleic acid sequencing and synthesis and a method of their preparation
WO1996027025A1 (en) 1995-02-27 1996-09-06 Ely Michael Rabani Device, compounds, algorithms, and methods of molecular characterization and manipulation with molecular parallelism
EP0745686A1 (en) * 1995-06-01 1996-12-04 Roche Diagnostics GmbH The use of DNA polymerase 3'-intrinsic editing activity
US5728528A (en) 1995-09-20 1998-03-17 The Regents Of The University Of California Universal spacer/energy transfer dyes
EP0992511B1 (en) 1996-01-23 2009-03-11 Operon Biotechnologies, Inc. Methods and compositions for determining the sequence of nucleic acid molecules
US6613508B1 (en) * 1996-01-23 2003-09-02 Qiagen Genomics, Inc. Methods and compositions for analyzing nucleic acid molecules utilizing sizing techniques
US6312893B1 (en) * 1996-01-23 2001-11-06 Qiagen Genomics, Inc. Methods and compositions for determining the sequence of nucleic acid molecules
US5821356A (en) * 1996-08-12 1998-10-13 The Perkin Elmer Corporation Propargylethoxyamino nucleotides
US5885775A (en) * 1996-10-04 1999-03-23 Perseptive Biosystems, Inc. Methods for determining sequences information in polynucleotides using mass spectrometry
JP2001508657A (en) 1997-01-08 2001-07-03 プロリゴ・エルエルシー Oligonucleotide bioconjugation
US6046005A (en) * 1997-01-15 2000-04-04 Incyte Pharmaceuticals, Inc. Nucleic acid sequencing with solid phase capturable terminators comprising a cleavable linking group
WO1998033939A1 (en) 1997-01-31 1998-08-06 Hitachi, Ltd. Method for determining nucleic acid base sequence and apparatus therefor
JP3489991B2 (en) 1997-07-07 2004-01-26 理化学研究所 3'-deoxyribonucleotide derivative
CN1152140C (en) * 1997-07-28 2004-06-02 医疗生物系统有限公司 Nucleic acid sequence analysis
US6008379A (en) * 1997-10-01 1999-12-28 The Perkin-Elmer Corporation Aromatic-substituted xanthene dyes
US6511803B1 (en) 1997-10-10 2003-01-28 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
AU737174B2 (en) 1997-10-10 2001-08-09 President & Fellows Of Harvard College Replica amplification of nucleic acid arrays
US6485944B1 (en) 1997-10-10 2002-11-26 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
GB9815163D0 (en) 1998-07-13 1998-09-09 Brax Genomics Ltd Compounds
WO1999049082A2 (en) 1998-03-23 1999-09-30 Invitrogen Corporation Modified nucleotides and methods useful for nucleic acid sequencing
WO1999057321A1 (en) 1998-05-01 1999-11-11 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and dna molecules
US6780591B2 (en) * 1998-05-01 2004-08-24 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US6096875A (en) 1998-05-29 2000-08-01 The Perlein-Elmer Corporation Nucleotide compounds including a rigid linker
US6218530B1 (en) * 1998-06-02 2001-04-17 Ambergen Inc. Compounds and methods for detecting biomolecules
US6287821B1 (en) * 1998-06-11 2001-09-11 Orchid Biosciences, Inc. Nucleotide analogues with 3'-pro-fluorescent fluorophores in nucleic acid sequence analysis
US6335155B1 (en) 1998-06-26 2002-01-01 Sunesis Pharmaceuticals, Inc. Methods for rapidly identifying small organic molecule ligands for binding to biological target molecules
US6218118B1 (en) * 1998-07-09 2001-04-17 Agilent Technologies, Inc. Method and mixture reagents for analyzing the nucleotide sequence of nucleic acids by mass spectrometry
WO2000006770A1 (en) 1998-07-30 2000-02-10 Solexa Ltd. Arrayed biomolecules and their use in sequencing
US6787308B2 (en) * 1998-07-30 2004-09-07 Solexa Ltd. Arrayed biomolecules and their use in sequencing
GB0002310D0 (en) 2000-02-01 2000-03-22 Solexa Ltd Polynucleotide sequencing
DE19844931C1 (en) 1998-09-30 2000-06-15 Stefan Seeger Procedures for DNA or RNA sequencing
US6221592B1 (en) 1998-10-20 2001-04-24 Wisconsin Alumi Research Foundation Computer-based methods and systems for sequencing of individual nucleic acid molecules
US6451525B1 (en) 1998-12-03 2002-09-17 Pe Corporation (Ny) Parallel sequencing method
WO2000036152A1 (en) 1998-12-14 2000-06-22 Li-Cor, Inc. A system and methods for nucleic acid sequencing of single molecules by polymerase synthesis
US6380378B1 (en) * 1998-12-24 2002-04-30 Toagosei Company, Ltd. Nucleotide compound, nucleotide block oligonucleotide, and method for producing them
US6087112A (en) 1998-12-30 2000-07-11 Oligos Etc. Inc. Arrays with modified oligonucleotide and polynucleotide compositions
DE60044490D1 (en) * 1999-02-23 2010-07-15 Caliper Life Sciences Inc MANIPULATION OF MICROTEILS IN MICROFLUID SYSTEMS
DK1159453T3 (en) 1999-03-10 2008-10-06 Asm Scient Inc Method of Direct Nucleic Acid Sequencing
US7037654B2 (en) * 1999-04-30 2006-05-02 Aclara Biosciences, Inc. Methods and compositions for enhancing detection in determinations employing cleavable electrophoretic tag reagents
US7056661B2 (en) 1999-05-19 2006-06-06 Cornell Research Foundation, Inc. Method for sequencing nucleic acid molecules
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US6242193B1 (en) * 1999-07-30 2001-06-05 Hitachi, Ltd. Apparatus for determining base sequence of nucleic acid
AU7086800A (en) 1999-08-30 2001-03-26 Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The High speed parallel molecular nucleic acid sequencing
US6982146B1 (en) * 1999-08-30 2006-01-03 The United States Of America As Represented By The Department Of Health And Human Services High speed parallel molecular nucleic acid sequencing
AU7537200A (en) 1999-09-29 2001-04-30 Solexa Ltd. Polynucleotide sequencing
US6309836B1 (en) * 1999-10-05 2001-10-30 Marek Kwiatkowski Compounds for protecting hydroxyls and methods for their use
EP1228244A4 (en) 1999-11-04 2005-02-09 California Inst Of Techn Methods and apparatuses for analyzing polynucleotide sequences
US20030186256A1 (en) * 1999-12-23 2003-10-02 Achim Fischer Method for carrying out the parallel sequencing of a nucleic acid mixture on a surface
GB0002389D0 (en) 2000-02-02 2000-03-22 Solexa Ltd Molecular arrays
CZ20022825A3 (en) 2000-02-18 2003-05-14 Shire Biochem Inc. Nucleoside analogs intended for use when treating or prophylaxis infections induced by flavivirus
WO2001073121A1 (en) 2000-03-30 2001-10-04 Toyota Jidosha Kabushiki Kaisha Method of determining base sequence of single nucleic acid molecule
GB0013276D0 (en) 2000-06-01 2000-07-26 Amersham Pharm Biotech Uk Ltd Nucleotide analogues
GB0016473D0 (en) 2000-07-05 2000-08-23 Amersham Pharm Biotech Uk Ltd Sequencing method
DE10041539A1 (en) * 2000-08-24 2002-03-07 Febit Ferrarius Biotech Gmbh New amidite derivatives for the synthesis of polymers on surfaces
CA2421582A1 (en) 2000-09-11 2002-03-21 The Trustees Of Columbia University In The City Of New York Combinatorial fluorescence energy transfer tags and uses thereof
EP1790736A3 (en) 2000-10-06 2007-08-15 The Trustees Of Columbia University In The City Of New York Massive parallel method for decoding DNA and RNA
WO2002047266A2 (en) 2000-10-20 2002-06-13 The Board Of Trustees Of The Leland Stanford Junior University Transient electrical signal based methods and devices for characterizing molecular interaction and/or motion in a sample
US7297518B2 (en) 2001-03-12 2007-11-20 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences by asynchronous base extension
US20030027140A1 (en) 2001-03-30 2003-02-06 Jingyue Ju High-fidelity DNA sequencing using solid phase capturable dideoxynucleotides and mass spectrometry
DE10120798B4 (en) 2001-04-27 2005-12-29 Genovoxx Gmbh Method for determining gene expression
DE10120797B4 (en) 2001-04-27 2005-12-22 Genovoxx Gmbh Method for analyzing nucleic acid chains
US6613523B2 (en) 2001-06-29 2003-09-02 Agilent Technologies, Inc. Method of DNA sequencing using cleavable tags
AU2002354577B2 (en) * 2001-07-13 2007-02-08 Ambergen, Inc. Nucleotide compositions comprising photocleavable markers and methods of preparation thereof
AU2002337030A1 (en) 2001-08-29 2003-03-18 Genovoxx Gmbh Method for analyzing nucleic acid sequences and gene expression
GB0128526D0 (en) 2001-11-29 2002-01-23 Amersham Pharm Biotech Uk Ltd Nucleotide analogues
GB0129012D0 (en) 2001-12-04 2002-01-23 Solexa Ltd Labelled nucleotides
US7057026B2 (en) 2001-12-04 2006-06-06 Solexa Limited Labelled nucleotides
WO2003066812A2 (en) 2002-02-05 2003-08-14 Baylor College Of Medecine Substituted 4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene compounds for 8-color dna sequencing
DE60301622T2 (en) 2002-04-04 2006-06-14 Biotage Ab Uppsala PRIMER EXTENSION BASED PROCESS USING NUCLEOTIDES MARKED OVER COLD LINKERS
US20040014096A1 (en) * 2002-04-12 2004-01-22 Stratagene Dual-labeled nucleotides
US7074597B2 (en) * 2002-07-12 2006-07-11 The Trustees Of Columbia University In The City Of New York Multiplex genotyping using solid phase capturable dideoxynucleotides and mass spectrometry
SI3587433T1 (en) * 2002-08-23 2020-08-31 Illumina Cambridge Limited Modified nucleotides
US7414116B2 (en) * 2002-08-23 2008-08-19 Illumina Cambridge Limited Labelled nucleotides
EP2119722B1 (en) 2002-08-23 2016-10-26 Illumina Cambridge Limited Labelled nucleotides
GB0321306D0 (en) 2003-09-11 2003-10-15 Solexa Ltd Modified polymerases for improved incorporation of nucleotide analogues
WO2005084367A2 (en) 2004-03-03 2005-09-15 The Trustees Of Columbia University In The City Of New York Photocleavable fluorescent nucleotides for dna sequencing on chip constructed by site-specific coupling chemistry
US7393533B1 (en) 2004-11-08 2008-07-01 La Jolla Institute For Allergy And Immunology H3L envelope protein immunization methods and H3L envelope passive protection methods
GB0517097D0 (en) 2005-08-19 2005-09-28 Solexa Ltd Modified nucleosides and nucleotides and uses thereof
US8481259B2 (en) 2007-02-05 2013-07-09 Intelligent Bio-Systems, Inc. Methods and devices for sequencing nucleic acids in smaller batches
US8612161B2 (en) 2008-03-19 2013-12-17 Intelligent Biosystems Inc. Methods and compositions for base calling nucleic acids
EP2725107B1 (en) 2007-10-19 2018-08-29 The Trustees of Columbia University in the City of New York DNA sequencing with non-fluorescent nucleotide reversible terminators and cleavable label modified ddNTPs and nucleic acid comprising inosine with reversible terminators
US9309569B2 (en) 2010-08-26 2016-04-12 Intelligent Bio-Systems, Inc. Methods and compositions for sequencing nucleic acid using charge
EP2652153B1 (en) 2010-12-17 2017-07-05 The Trustees of Columbia University in the City of New York Dna sequencing by synthesis using modified nucleotides and nanopore detection
US9624539B2 (en) 2011-05-23 2017-04-18 The Trustees Of Columbia University In The City Of New York DNA sequencing by synthesis using Raman and infrared spectroscopy detection
WO2014139596A1 (en) 2013-03-15 2014-09-18 Illumina Cambridge Limited Modified nucleosides or nucleotides

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11008359B2 (en) 2002-08-23 2021-05-18 Illumina Cambridge Limited Labelled nucleotides
US10995111B2 (en) 2003-08-22 2021-05-04 Illumina Cambridge Limited Labelled nucleotides
US11028116B2 (en) 2003-08-22 2021-06-08 Illumina Cambridge Limited Labelled nucleotides
US11028115B2 (en) 2003-08-22 2021-06-08 Illumina Cambridge Limited Labelled nucleotides

Also Published As

Publication number Publication date
US20090325172A1 (en) 2009-12-31
EP1530578A2 (en) 2005-05-18
JP2011088898A (en) 2011-05-06
GB0405884D0 (en) 2004-04-21
US8597881B2 (en) 2013-12-03
SI3363809T1 (en) 2020-08-31
WO2004018497A2 (en) 2004-03-04
US20160032378A1 (en) 2016-02-04
JP2014011999A (en) 2014-01-23
US7541444B2 (en) 2009-06-02
AU2003259350A8 (en) 2004-03-11
DK3002289T3 (en) 2018-04-23
ES2407681T3 (en) 2013-06-13
EP2607369B1 (en) 2015-09-23
WO2004018497A3 (en) 2004-06-17
GB2395954A (en) 2004-06-09
US20160362737A1 (en) 2016-12-15
US9121060B2 (en) 2015-09-01
DK3587433T3 (en) 2020-05-18
EP3587433B1 (en) 2020-04-22
JP5748805B2 (en) 2015-07-15
US20070166705A1 (en) 2007-07-19
SI3587433T1 (en) 2020-08-31
EP3002289B1 (en) 2018-02-28
EP3587433A1 (en) 2020-01-01
EP3795577A1 (en) 2021-03-24
CY1120186T1 (en) 2018-12-12
EP3363809B1 (en) 2020-04-08
US10513731B2 (en) 2019-12-24
US8071739B2 (en) 2011-12-06
US7771973B2 (en) 2010-08-10
US9388464B2 (en) 2016-07-12
EP3002289A1 (en) 2016-04-06
JP2006509040A (en) 2006-03-16
EP1530578B1 (en) 2013-03-13
US20120095201A1 (en) 2012-04-19
US20100292452A1 (en) 2010-11-18
DK3363809T3 (en) 2020-05-04
US20130197209A1 (en) 2013-08-01
EP2607369A1 (en) 2013-06-26
US20200017908A1 (en) 2020-01-16
SI3002289T1 (en) 2018-07-31
ES2550513T3 (en) 2015-11-10
EP3363809A1 (en) 2018-08-22
AU2003259350A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US20200399692A1 (en) Modified nucleotides
US10480025B2 (en) Labelled nucleotides
US7566537B2 (en) Labelled nucleotides
US11028115B2 (en) Labelled nucleotides
ES2790586T3 (en) Modified nucleotides

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOLEXA LIMITED, GREAT BRITAIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MILTON, JOHN;WU, XIAOLIN;SMITH, MARK;AND OTHERS;SIGNING DATES FROM 20050316 TO 20050417;REEL/FRAME:052781/0117

Owner name: ILLUMINA CAMBRIDGE LIMITED, UNITED KINGDOM

Free format text: CHANGE OF NAME;ASSIGNOR:SOLEXA LIMITED;REEL/FRAME:052781/0180

Effective date: 20080104

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE