US20190308982A1 - Pesticidally active heterocyclic derivatives with sulfur containing substituents - Google Patents
Pesticidally active heterocyclic derivatives with sulfur containing substituents Download PDFInfo
- Publication number
- US20190308982A1 US20190308982A1 US16/470,165 US201716470165A US2019308982A1 US 20190308982 A1 US20190308982 A1 US 20190308982A1 US 201716470165 A US201716470165 A US 201716470165A US 2019308982 A1 US2019308982 A1 US 2019308982A1
- Authority
- US
- United States
- Prior art keywords
- spp
- formula
- compounds
- ccn
- alternative name
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 *C1=*C(C2=NC3=C(C2)N=NC([2*])=C3)=C(C[1*])C=C1C1CC1.CC Chemical compound *C1=*C(C2=NC3=C(C2)N=NC([2*])=C3)=C(C[1*])C=C1C1CC1.CC 0.000 description 31
- LGPMBEHDKBYMNU-UHFFFAOYSA-N CC.[H]C=C Chemical compound CC.[H]C=C LGPMBEHDKBYMNU-UHFFFAOYSA-N 0.000 description 3
- FKQYZXABSHYQBB-UHFFFAOYSA-N CCS(=O)(=O)C1=C(C2=NC3=C(N=NC(C(F)(F)F)=C3)N2C)N=CC(C2(C#N)CC2)=C1 Chemical compound CCS(=O)(=O)C1=C(C2=NC3=C(N=NC(C(F)(F)F)=C3)N2C)N=CC(C2(C#N)CC2)=C1 FKQYZXABSHYQBB-UHFFFAOYSA-N 0.000 description 3
- XVAZIYSLVCWFIY-UHFFFAOYSA-N CCSC1=C(C2=NC3=C(N=NC(C(F)(F)F)=C3)N2C)N=CC(C2(C#N)CC2)=C1 Chemical compound CCSC1=C(C2=NC3=C(N=NC(C(F)(F)F)=C3)N2C)N=CC(C2(C#N)CC2)=C1 XVAZIYSLVCWFIY-UHFFFAOYSA-N 0.000 description 2
- UIOABZROFNOMJD-UHFFFAOYSA-M C.C.C.CB(O)O.CB(O[Rb])O[Rb].CB1OC(C)(C)C(C)(C)O1.CC.CC.CC.CC.CC.CC.CC1(C)OB(B2OC(C)(C)C(C)(C)O2)OC1(C)C.CC1CC1.CC1CC1.CC1CC1.CC1CC1.CC1CC1.CC1CC1.CCCC[Sn-](CCCC)CCCC.CCCC[Sn](CCCC)(CCCC)[Sn](CCCC)(CCCC)CCCC.CCCC[Sn](Cl)(CCCC)CCCC.CI.CI.CI.CI.[Rb]OB(O[Rb])O[Rb] Chemical compound C.C.C.CB(O)O.CB(O[Rb])O[Rb].CB1OC(C)(C)C(C)(C)O1.CC.CC.CC.CC.CC.CC.CC1(C)OB(B2OC(C)(C)C(C)(C)O2)OC1(C)C.CC1CC1.CC1CC1.CC1CC1.CC1CC1.CC1CC1.CC1CC1.CCCC[Sn-](CCCC)CCCC.CCCC[Sn](CCCC)(CCCC)[Sn](CCCC)(CCCC)CCCC.CCCC[Sn](Cl)(CCCC)CCCC.CI.CI.CI.CI.[Rb]OB(O[Rb])O[Rb] UIOABZROFNOMJD-UHFFFAOYSA-M 0.000 description 1
- NQDCWFSUJXKATD-UHFFFAOYSA-N CCOC(=O)C(C#N)C1=CN=C(C(=O)OC)C(SCC)=C1 Chemical compound CCOC(=O)C(C#N)C1=CN=C(C(=O)OC)C(SCC)=C1 NQDCWFSUJXKATD-UHFFFAOYSA-N 0.000 description 1
- YATVCBNSQWHLTH-UHFFFAOYSA-N CCS(=O)(=O)C1=C(C(=O)Cl)N=CC(C2(C#N)CC2)=C1 Chemical compound CCS(=O)(=O)C1=C(C(=O)Cl)N=CC(C2(C#N)CC2)=C1 YATVCBNSQWHLTH-UHFFFAOYSA-N 0.000 description 1
- CFFUIUBLABDLAH-UHFFFAOYSA-N CCSC1=C(C(=O)CC2=CC(C(F)(F)F)=CN=C2NC)N=CC(C2(C#N)CC2)=C1 Chemical compound CCSC1=C(C(=O)CC2=CC(C(F)(F)F)=CN=C2NC)N=CC(C2(C#N)CC2)=C1 CFFUIUBLABDLAH-UHFFFAOYSA-N 0.000 description 1
- MECVGWRVTBQGIJ-UHFFFAOYSA-N CCSC1=CC(C2(C#N)CC2)=CN=C1C(=O)O Chemical compound CCSC1=CC(C2(C#N)CC2)=CN=C1C(=O)O MECVGWRVTBQGIJ-UHFFFAOYSA-N 0.000 description 1
- XBEJWNZIDGTXSB-UHFFFAOYSA-N CCSC1=CC(C2(C#N)CC2)=CN=C1C(=O)OC Chemical compound CCSC1=CC(C2(C#N)CC2)=CN=C1C(=O)OC XBEJWNZIDGTXSB-UHFFFAOYSA-N 0.000 description 1
- MLOUMNVUAYSNKM-UHFFFAOYSA-N CCSC1=CC(C2(C#N)CC2)=CN=C1C1=NC2=CC(C(F)(F)F)=CN=C2N1C Chemical compound CCSC1=CC(C2(C#N)CC2)=CN=C1C1=NC2=CC(C(F)(F)F)=CN=C2N1C MLOUMNVUAYSNKM-UHFFFAOYSA-N 0.000 description 1
- PUHAEBBCUFGFDR-UHFFFAOYSA-N CCSC1=CC(CC#N)=CN=C1C(=O)OC Chemical compound CCSC1=CC(CC#N)=CN=C1C(=O)OC PUHAEBBCUFGFDR-UHFFFAOYSA-N 0.000 description 1
- HDONPQYYLHZJJA-UHFFFAOYSA-N [CH2-][OH+]/C(=N\C1CCCCC1)NC1CCCCC1.[CH2-][OH+]/C(=N\CCCN(C)C)NCC Chemical compound [CH2-][OH+]/C(=N\C1CCCCC1)NC1CCCCC1.[CH2-][OH+]/C(=N\CCCN(C)C)NCC HDONPQYYLHZJJA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/90—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
- A61P33/14—Ectoparasiticides, e.g. scabicides
Definitions
- the present invention relates to pesticidally active, in particular insecticidally active tetracyclic heterocyclic derivatives containing sulphur substituents, to compositions comprising those compounds and to their use for controlling animal pests (including arthropods and in particular insects or representatives of the order Acarina).
- Heterocyclic compounds with pesticidal action are known and described, for example, in WO 2012/086848, WO2016/104746 and WO 2014/142292.
- the present invention accordingly relates to compounds of formula I,
- A is CH or N
- X is S, SO or SO 2 ;
- R 1 is C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 3 -C 6 cycloalkyl or C 3 -C 6 cycloalkyl-C 1 -C 4 alkyl; or R 1 is C 3 -C 6 cycloalkyl mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano and C 1 -C 4 alkyl; or R 1 is C 3 -C 6 cycloalkyl-C 1 -C 4 alkyl mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano and C 1 -C 4 alkyl; or R 1 is C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl or C 2 -C 6 alkynyl; R 2 is halogen, cyano, C 1 -C 6 haloalkyl or C 1 -C 6 halo
- Compounds of formula I which have at least one basic centre can form, for example, acid addition salts, for example with strong inorganic acids such as mineral acids, for example perchloric acid, sulfuric acid, nitric acid, a phosphorus acid or a hydrohalic acid, with strong organic carboxylic acids, such as C 1 -C 4 alkanecarboxylic acids which are unsubstituted or substituted, for example by halogen, for example acetic acid, such as saturated or unsaturated dicarboxylic acids, for example oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid or phthalic acid, such as hydroxycarboxylic acids, for example ascorbic acid, lactic acid, malic acid, tartaric acid or citric acid, or such as benzoic acid, or with organic sulfonic acids, such as C 1 -C 4 alkane- or arylsulfonic acids which are unsubstituted or substituted, for example by
- Compounds of formula I which have at least one acidic group can form, for example, salts with bases, for example mineral salts such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts, or salts with ammonia or an organic amine, such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower-alkylamine, for example ethyl-, diethyl-, triethyl- or dimethylpropylamine, or a mono-, di- or trihydroxy-lower-alkylamine, for example mono-, di- or triethanolamine.
- bases for example mineral salts such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts
- salts with ammonia or an organic amine such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower-alkylamine, for example ethyl-, diethy
- alkyl groups occurring in the definitions of the substituents can be straight-chain or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, hexyl, nonyl, decyl and their branched isomers.
- Alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, alkoxy, alkenyl and alkynyl radicals are derived from the alkyl radicals mentioned.
- the alkenyl and alkynyl groups can be mono- or polyunsaturated.
- C 1 -di-alkylamino is dimethylamino.
- Halogen is generally fluorine, chlorine, bromine or iodine. This also applies, correspondingly, to halogen in combination with other meanings, such as haloalkyl or halophenyl.
- Haloalkyl groups preferably have a chain length of from 1 to 6 carbon atoms.
- Haloalkyl is, for example, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, pentafluoroethyl, 1,1-difluoro-2,2,2-trichloroethyl, 2,2,3,3-tetrafluoroethyl and 2,2,2-trichloroethyl.
- Haloalkylsulfanyl groups preferably have a chain length of from 1 to 4 carbon atoms.
- Haloalkylsulfanyl is, for example, difluoromethylsulfanyl, trifluoromethylsulfanyl or 2,2,2-trifluoroethylsulfanyl. Similar considerations apply to the radicals C 1 -C 4 haloalkylsulfinyl and C 1 -C 4 haloalkylsulfonyl, which may be, for example, trifluoromethylsulfinyl, trifluoromethylsulfonyl or 2,2,2-trifluoroethylsulfonyl.
- Alkoxy is, for example, methoxy, ethoxy, propoxy, i-propoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy and also the isomeric pentyloxy and hexyloxy radicals.
- Haloalkoxy groups preferably have a chain length of from 1 to 4 carbon atoms.
- Haloalkoxy is, for example, difluoromethoxy, trifluoromethoxy or 2,2,2-trifluoroethoxy.
- Alkoxyalkyl groups preferably have a chain length of 1 to 6 carbon atoms.
- Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, n-propoxymethyl, n-propoxyethyl, isopropoxymethyl or isopropoxyethyl.
- Alkoxycarbonyl is, for example, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl or tert-butoxycarbonyl; preferably methoxycarbonyl or ethoxycarbonyl.
- Alkylthio groups preferably have a chain length of from 1 to 6 carbon atoms.
- Alkylthio is, for example, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio, preferably methylthio and ethylthio.
- Alkylsulphinyl is, for example, methylsulphinyl, ethylsulphinyl, propylsulphinyl, isopropylsulphinyl, n-butylsulphinyl, isobutylsulphinyl, sec-butylsulphinyl, tert-butylsulphinyl; preferably methylsulphinyl and ethylsulphinyl.
- Alkylsulphonyl is, for example, methylsulphonyl, ethylsulphonyl, propylsulphonyl, isopropylsulphonyl, n-butylsulphonyl, isobutylsulphonyl, sec-butylsulphonyl or tert-butylsulphonyl; preferably methylsulphonyl or ethylsulphonyl.
- Alkylamino is, for example, methylamino, ethylamino, n-propylamino, isopropylamino or the isomeric butylamines.
- Dialkylamino is, for example, dimethylamino, methylethylamino, diethylamino, n-propylmethylamino, dibutylamino and diisopropylamino.
- Preference is given to alkylamino groups having a chain length of from 1 to 4 carbon atoms.
- the cycloalkyl groups preferably have from 3 to 6 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
- “mono- to polysubstituted” in the definition of the substituents means typically, depending on the chemical structure of the substituents, monosubstituted to seven-times substituted, preferably monosubstituted to five-times substituted, more preferably mono-, double- or triple-substituted.
- Free radicals represents methyl groups.
- the alkyl group of the di(C 1 -C 4 )alkylamino may be the same or may be different.
- the compounds of formula I according to the invention also include hydrates which may be formed during the salt formation.
- a preferred group of compounds of formula I is represented by the compounds of formula I-1
- X 1 , A, R 2 , R 1a and Z 1 are as defined under formula I above; and wherein Xa 1 is S, SO or SO 2 ; Ra 1 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl.
- R 2 is preferably C 1 -C 4 haloalkyl, C 1 -C 4 haloalkylsulfanyl, C 1 -C 4 haloalkylsulfinyl or C 1 -C 4 haloalkylsulfonyl
- Xa 1 is preferably SO 2 and Ra 1 is preferably ethyl.
- Z 1 is cyano, formyl, hydroxycarbonyl, aminocarbonyl, C 1 -C 4 alkoxycarbonyl, C 1 -C 4 alkylcarbonyl, di-(C 1 -C 4 )alkylaminocarbonyl, C 1 -C 4 alkylaminocarbonyl, amino, (C 1 -C 4 )alkylcarbonylamino, di-(C 1 -C 4 )alkylcarbonylamino, (C 1 -C 4 )alkoxycarbonylamino or the group —C(R 5 ) ⁇ NOR 6 , wherein R 5 and R 6 are independently hydrogen, C 1 -C 4 alkyl or C 1 -C 4 haloalkyl; or Z 1 is cyano-C 1 -C 2 -alkyl, hydroxyl-C 1 -C 2 -alkyl, formyl-C 1 -C 2 -alkyl, C 1
- Especially preferred compounds of formula I-1 are those in which n is 1, and X 1 is NR 3 , wherein R 3 is methyl or ethyl and R 1a is hydrogen.
- a further preferred group of compounds of formula I is represented by the compounds of formula I-2
- A, R 2 and Z 1 are as defined under formula I above;
- Xa 2 is S, SO or SO 2 ; and
- Ra 2 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl.
- R 2 is preferably C 1 -C 4 haloalkyl, C 1 -C 4 haloalkylsulfanyl, C 1 -C 4 haloalkylsulfinyl or C 1 -C 4 haloalkylsulfonyl,
- Xa 2 is preferably SO 2 and Ra 2 is preferably ethyl.
- Z 1 is cyano, formyl, hydroxycarbonyl, aminocarbonyl, C 1 -C 4 alkoxycarbonyl, di-(C 1 -C 4 )alkylaminocarbonyl, C 1 -C 4 alkylaminocarbonyl, amino, (C 1 -C 4 )alkylcarbonylamino, di-(C 1 -C 4 )alkylcarbonylamino, (C 1 -C 4 )alkoxycarbonylamino or a group —C(R 5 ) ⁇ NOR 6 wherein R 5 and R 6 are independently hydrogen, C 1 -C 4 alkyl or C 1 -C 4 haloalkyl; and n is 1 or 2.
- Especially preferred compounds of formula I-2 are those, wherein n is 1, Ra 2 is ethyl and Xa 2 is SO 2 .
- A is CH or N
- X a3 is S or SO 2 ;
- R a3 is ethyl;
- R 2 is C 1 -C 4 haloalkyl, C 1 -C 4 haloalkylsulfanyl, C 1 -C 2 haloalkylsulfinyl, C 1 -C 2 haloalkylsulfonyl;
- Z 1 is cyano, hydroxycarbonyl, aminocarbonyl, C 1 -C 4 alkoxycarbonyl, methylaminocarbonyl, dimethylaminocarbonyl, amino, methoxycarbonylamino, formyl, hydroxymethylene or methylhydroxymethylene.
- Especially preferred compounds of formula I-3 are those wherein R 2 is trifluoromethyl, pentafluoroethyl, trifluoromethylsulfanyl or trifluoromethysulfonyl.
- compounds of formula I can be prepared (as depicted in scheme 1) from compounds of formula Ia, wherein A, R 1 , R 1a , R 2 , X 1 , Z 1 and n have the values defined in formula I.
- the reaction can be performed with reagents like, for example, a peracid as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide, as for example, hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a monoperoxo-disulfate salt or potassium permanganate.
- Compounds of formula Ia can be prepared (scheme 2) by reacting a compound of the formula II, wherein A, R 2 , R 1a and X 1 are as defined in formula I, and wherein X b1 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, preferentially fluorine or chlorine, with a compound of the formula III, wherein R 1 is as defined in formula I, and M is a metal or non-metal cation.
- the cation M is assumed to be monovalent, but polyvalent cations associated with more than one S—R 1 group can also be considered.
- Preferred cations are, for example lithium, sodium, potassium or cesium.
- the reaction can be performed in a solvent, preferably polar aprotic, at temperatures below 0° C. or up to boiling temperature of the reaction mixture.
- an acid catalyst for example methane sulfonic acid, or para-toluene sulfonic acid
- compounds of formula II can be prepared from compounds of formulas IV by heating in a solvent, for example acetic acid, at temperatures between 80-120° C., optionally in a microwave.
- Compounds of formula IV can also be converted to compounds of formula Ia (wherein X 1 is O or S) using triphenyl phosphine, di-isopropyl azo dicarboxylate in an inert solvent such as THF at temperatures between 25-50° C.
- THF inert solvent
- Such an amide nitrogen heteroarylation reaction typically runs under transition metal-catalysed C—N bond formation conditions involving a catalytic system (such as for example [1,1′-bis(diphenylphosphino) ferrocene] dichloropalladium(II)), usually composed of a metal, such as a palladium source (for example palladium(0) precursors like Pd 2 (dibenzylideneacetone) 3 , or palladium(II) precursors like Pd(OAc) 2 ) and a ligand (for example phosphine-based or N-heterocyclic carbene-based), a base, such as alkoxides (for example sodium or potassium tert-butoxide), carbonates, phosphates or silyl amides (for example potassium or cesium carbonate, potassium phosphate, or lithium hexamethyl disilazane) or hydroxides (for example sodium or potassium hydroxide), and solvents such as toluene,
- Amides of the formula VI wherein A, R 1 , X and Q have the values defined in formula I, and X b 1 is a halogen, can be prepared from compounds of formula VII by reaction with an ammonia in an inert solvent such as methanol or ethanol, at temperatures between 25-60° C., preferably between 25- ⁇ 40° C. (scheme 5).
- an inert solvent such as methanol or ethanol
- Compounds of formula VII can prepared (as shown in scheme 6) by a Suzuki reaction, which involves for example, reacting compounds of formula VIII, wherein Xb 3 is a leaving group like, for example, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate (especially preferred are those in which Xb1 is fluoro, chloro, or bromo) with compounds of formula IX, wherein Y b1 can be a boron-derived functional group, as for example B(OH) 2 or B(OR b1 ) 2 wherein R b1 can be a C 1 -C 4 alkyl group or the two groups OR b1 can form together with the boron atom a five membered ring, as for example a pinacol boronic ester.
- Xb 3 is a leaving group like, for example, chlorine, bromine or iodine
- the reaction can be catalyzed by a palladium based catalyst, for example tetrakis(triphenylphosphine)-palladium or (1,1′bis(diphenylphosphino)-ferrocene)dichloropalladium-dichloromethane (1:1 complex), in presence of a base, like sodium carbonate or cesium fluoride, in a solvent or a solvent mixture, like, for example a mixture of 1,2-dimethoxyethane and water or of dioxane and water, preferably under inert atmosphere.
- the reaction temperature can preferentially range from ambient temperature to the boiling point of the reaction mixture.
- Suzuki reactions are well known to those skilled in the art and have been reviewed, for example J. Orgmet. Chem. 576, 1999, 147-168.
- compounds of formula VII can be prepared by a Stille reaction of compounds of formula IXa wherein Y b2 is a trialkyl tin derivative, preferably tri-n-butyl tin, with compounds of formula VIII and compounds of formula IXa.
- Such Stille reactions are usually carried out in the presence of a palladium catalyst, for example tetrakis(triphenylphosphine)palladium(0), or (1,1′bis(diphenylphosphino)-ferrocene)dichloropalladium-dichloromethane (1:1 complex), in an inert solvent such as DMF, acetonitrile, or dioxane, optionally in the presence of an additive, such as cesium fluoride, or lithium chloride, and optionally in the presence of a further catalyst, for example copper(I)iodide.
- a palladium catalyst for example tetrakis(triphenylphosphine)palladium(0), or (1,1′bis(diphenylphosphino)-ferrocene)dichloropalladium-dichloromethane (1:1 complex
- an inert solvent such as DMF, acetonitrile, or dioxane
- an additive such
- step B reaction of the metallated intermediate of the formula IX 2 , wherein Zb 2 is a metal such as Li + or MgCl + for example, with, for example, a trialkylborate (step B), or a tri-n-butyl tin chloride (step B).
- Another way to access an organometal intermediate of the formula IX 2 is from a compound of the formula IX 1 wherein Zb 1 is chlorine, bromine or iodine, via metal-halogen exchange with an organometallic species (step C), like butyl lithium or an organ magnesium compound, or direct metallation with a metal, like magnesium.
- a further method to produce compounds of formula I again uses the same reactions previously described but changes their order to produce the final compounds.
- compounds of formula X and Xa are treated with ammonia as previously described to give compounds of formula XIV and XIVa.
- Palladium catalyzed reaction of XIV and XIVa with compounds of formula V lead to compounds of formula XV and XVa, which, when X 1 is NR 3 spontaneously cyclise to compounds of formula XVIa and XVIb.
- compounds of formula XV and XVa can be cyclized in a separate step as previously discussed to XVIa and XVIb. Suzuki or Stille couplings with compounds of formula IX and IXa respectively yield the compounds of formula I. This is described in scheme 11.
- compounds XIaab where X 01 is halogen, preferably chlorine are formed by treatment of XIaa, with, for example, oxalyl chloride (COCl) 2 or thionyl chloride SOCl 2 in the presence of catalytic quantities of N,N-dimethylformamide (DMF) in inert solvents such as methylene chloride or tetrahydrofurane at temperatures between 20 to 100° C., preferably 25° C.
- COCl oxalyl chloride
- SOCl 2 thionyl chloride
- DMF N,N-dimethylformamide
- Compounds of formula XIIIa and/or XIIIab can alternatively be isolated, and further be converted into compounds of formula Ia, as described previously.
- Compounds of formula XIaa are obtained by hydrolysis of compounds of formula XIa, by ester hydrolysis, using conditions known to those skilled in the art.
- compounds of formula XVIIIaa and XVIIIab may be prepared from compounds of formula X, Xa by the methods described in scheme 13. Intermediates obtained from such chemistry, namely, XVIIIaa, XVIIIab, XVIIIaaa and XVIIIaba,
- Z 1 is C 3 -C 6 cycloalkyl, hydroxycarbonyl, amidocarbonyl, C 1 -C 4 haloalkoxy, C 1 -C 4 alkoxy, C 1 -C 4 haloalkylsulfanyl, C 1 -C 4 halo-alkylsulfinyl, C 1 -C 4 haloalkylsulfonyl, C 1 -C 6 alkoxycarbonyl, —C(O)C 1 -C 4 haloalkyl and phenyl, whereby the phenyl group can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 haloalkoxy, C 1 -C 4 alkoxy, C 1 -C 4 haloalkylsulfanyl, C 1 -C 4
- X b3 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate.
- the catalyst can be for example tetrakis(triphenylphosphine)palladium(0), palladium chloride or palladium(II)acetate.
- the ligand can be for example triphenylphosphine, or BINAP, and the base for example triethylamine, potassium carbonate or sodium acetate.
- Such reactions are well known in the literature and have been described for example in Chem. Rev. 100 (8): 3009-3066. 2000.
- the compounds formed may have the trans-stereochemistry shown in scheme 17, but depending on the reaction conditions, one skilled in the art can also obtain compounds of formula I-d with a cis-double bond configuration.
- Compounds of formula XX can be treated with compounds of formula XXI, in the presence of a base such as sodium hydride, K 2 CO 3 , or Cs 2 CO 3 , in an inert solvent such as DMF, acetone, or acetonitrile, to give compounds of formula Iaa.
- compounds of formula Iaa can be prepared directly from compounds of formula XVI by treatment with compounds of formula XXIII, with Pd 2 (dba) 3 , a ligand, such as BINAP, a strong base such as LiHMDS, in an inert solvent such as THF at temperatures between 40-70° C.
- a base such as sodium hydride, K 2 CO 3 , or Cs 2 CO 3
- an inert solvent such as DMF, acetone, or acetonitrile
- compounds of formula Iaa can be prepared directly from compounds of formula XVI by treatment with compounds of formula XXIII, with Pd 2 (dba) 3 , a
- R 7 , R 8 , R 10 , R 11 , and R 12 are independently hydrogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl or phenyl whereby the phenyl group can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 haloalkoxy, C 1 -C 4 alkoxy, C 1 -C 4 haloalkylsulfanyl, C 1 -C 4 halo-alkylsulfinyl, C 1 -C 4 haloalkylsulfonyl and —C(O)C 1 -C 4 haloalkyl; or R 7 , R 7 , R
- compounds of formula X can be prepared by esterification of compound Xb, for example, with strong acid as sulfuric acid in presence of methanol, or by other esterification methods known by those skilled in the art
- Compounds of formula X can be treated with compound of formula XXVII in presence of base for example K 2 CO 3 and DMSO to give compound of formula XXIV by a mechanism known as SnAr substitution, well known by those skilled in the art, and exemplified for example in xxxxxx.
- Krapcho dealkoxycarbonylation of the resulting compound XXIV at temperatures between 70-180° C. gives the compound of formula XXV.
- Such Krapcho dealkoxycarbonylations are described for example in Krapcho, A. P.; Ciganek, E. Org. React. 2013, 81, 1.
- the resulting compound of formula XXV can be treated with a compound XXI as described previously in scheme 16 to give compound of formula XXVI.
- aprotic inert organic solvents are hydrocarbons such as benzene, toluene, xylene or cyclohexane, chlorinated hydrocarbons such as dichloromethane, trichloromethane, tetrachloromethane or chlorobenzene, ethers such as diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran or dioxane, nitriles such as acetonitrile or propionitrile, amides such as N,N-dimethylformamide, diethylformamide or N-methylpyrrolidinone.
- hydrocarbons such as benzene, toluene, xylene or cyclohexane
- chlorinated hydrocarbons such as dichloromethane, trichloromethane, tetrachloromethane or chlorobenzene
- ethers such as diethyl
- the reaction temperatures are advantageously between ⁇ 20° C. and +120° C.
- the reactions are slightly exothermic and, as a rule, they can be carried out at ambient temperature.
- the mixture may be heated briefly to the boiling point of the reaction mixture.
- the reaction times can also be shortened by adding a few drops of base as reaction catalyst.
- Suitable bases are, in particular, tertiary amines such as trimethylamine, triethylamine, quinuclidine, 1,4-diazabicyclo[2.2.2]octane, 1,5-diazabicyclo[4.3.0]non-5-ene or 1,5-diazabicyclo[5.4.0]undec-7-ene.
- inorganic bases such as hydrides, e.g. sodium hydride or calcium hydride, hydroxides, e.g. sodium hydroxide or potassium hydroxide, carbonates such as sodium carbonate and potassium carbonate, or hydrogen carbonates such as potassium hydrogen carbonate and sodium hydrogen carbonate may also be used as bases.
- the bases can be used as such or else with catalytic amounts of a phase-transfer catalyst, for example a crown ether, in particular 18-crown-6, or a tetraalkylammonium salt.
- the compounds of the formula I can be isolated in the customary manner by concentrating and/or by evaporating the solvent and purified by recrystallization or trituration of the solid residue in solvents in which they are not readily soluble, such as ethers, aromatic hydrocarbons or chlorinated hydrocarbons.
- the reaction is advantageously carried out in a temperature range from approximately ⁇ 80° C. to approximately +140° C., preferably from approximately ⁇ 30° C. to approximately +100° C., in many cases in the range between ambient temperature and approximately +80° C.
- a compound of formula I can be converted in a manner known per se into another compound of formula I by replacing one or more substituents of the starting compound of formula I in the customary manner by (an)other substituent(s) according to the invention.
- Salts of compounds of formula I can be prepared in a manner known per se.
- acid addition salts of compounds of formula I are obtained by treatment with a suitable acid or a suitable ion exchanger reagent and salts with bases are obtained by treatment with a suitable base or with a suitable ion exchanger reagent.
- Salts of compounds of formula I can be converted in the customary manner into the free compounds I, acid addition salts, for example, by treatment with a suitable basic compound or with a suitable ion exchanger reagent and salts with bases, for example, by treatment with a suitable acid or with a suitable ion exchanger reagent.
- Salts of compounds of formula I can be converted in a manner known per se into other salts of compounds of formula I, acid addition salts, for example, into other acid addition salts, for example by treatment of a salt of inorganic acid such as hydrochloride with a suitable metal salt such as a sodium, barium or silver salt, of an acid, for example with silver acetate, in a suitable solvent in which an inorganic salt which forms, for example silver chloride, is insoluble and thus precipitates from the reaction mixture.
- a salt of inorganic acid such as hydrochloride
- a suitable metal salt such as a sodium, barium or silver salt
- the compounds of formula I which have salt-forming properties can be obtained in free form or in the form of salts.
- the compounds of formula I and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can be present in the form of one of the isomers which are possible or as a mixture of these, for example in the form of pure isomers, such as antipodes and/or diastereomers, or as isomer mixtures, such as enantiomer mixtures, for example racemates, diastereomer mixtures or racemate mixtures, depending on the number, absolute and relative configuration of asymmetric carbon atoms which occur in the molecule and/or depending on the configuration of non-aromatic double bonds which occur in the molecule; the invention relates to the pure isomers and also to all isomer mixtures which are possible and is to be understood in each case in this sense hereinabove and herein below, even when stereochemical details are not mentioned specifically in each case.
- Diastereomer mixtures or racemate mixtures of compounds of formula I, in free form or in salt form, which can be obtained depending on which starting materials and procedures have been chosen can be separated in a known manner into the pure diasteromers or racemates on the basis of the physicochemical differences of the components, for example by fractional crystallization, distillation and/or chromatography.
- Enantiomer mixtures such as racemates, which can be obtained in a similar manner can be resolved into the optical antipodes by known methods, for example by recrystallization from an optically active solvent, by chromatography on chiral adsorbents, for example high-performance liquid chromatography (HPLC) on acetyl celulose, with the aid of suitable microorganisms, by cleavage with specific, immobilized enzymes, via the formation of inclusion compounds, for example using chiral crown ethers, where only one enantiomer is complexed, or by conversion into diastereomeric salts, for example by reacting a basic end-product racemate with an optically active acid, such as a carboxylic acid, for example camphor, tartaric or malic acid, or sulfonic acid, for example camphorsulfonic acid, and separating the diastereomer mixture which can be obtained in this manner, for example by fractional crystallization based on their differing solubilities, to give the
- Pure diastereomers or enantiomers can be obtained according to the invention not only by separating suitable isomer mixtures, but also by generally known methods of diastereoselective or enantioselective synthesis, for example by carrying out the process according to the invention with starting materials of a suitable stereochemistry.
- N-oxides can be prepared by reacting a compound of the formula I with a suitable oxidizing agent, for example the H 2 O 2 /urea adduct in the presence of an acid anhydride, e.g. trifluoroacetic anhydride.
- a suitable oxidizing agent for example the H 2 O 2 /urea adduct
- an acid anhydride e.g. trifluoroacetic anhydride
- the compounds of formula I and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can, if appropriate, also be obtained in the form of hydrates and/or include other solvents, for example those which may have been used for the crystallization of compounds which are present in solid form.
- Table A-1 provides 50 compounds A-1.001 to A-1.050 of formula Ia wherein R 12a is CH 2 CH 3 , A is N and R 10a , R 13a , X 2 are as defined in table B.
- R 10a , R 13a and X 2 Entry R 13a X 2 R 10a 1 CN S CF 3 2 CN SO 2 CF 3 3 CO 2 H S CF 3 4 CO 2 H SO 2 CF 3 5 CO 2 CH 3 S CF 3 6 CO 2 CH 3 SO 2 CF 3 7 CONHCH 3 S CF 3 8 CONHCH 3 SO 2 CF 3 9 CONH 2 S CF 3 10 CONH 2 SO 2 CF 3 11 CN S CF 2 CF 3 12 CN SO 2 CF 2 CF 3 13 CO 2 H S CF 2 CF 3 14 CO 2 H SO 2 CF 2 CF 3 15 CO 2 CH 3 S CF 2 CF 3 16 CO 2 CH 3 SO 2 CF 2 CF 3 17 CONHCH 3 S CF 2 CF 3 18 CONHCH 3 SO 2 CF 2 CF 3 19 CONH 2 S CF 2 CF 3 20 CONH 2 SO 2 CF 3 21 CN S SCF 3 22 CN SO 2 SCF 3 23
- Table A-2 provides 50 compounds A-2.001 to A-2.050 of formula Ia wherein R 12a is CH 2 CH 3 , A is CH and R 10a , R 13a , X 2 are as defined in table B.
- the compounds of formula I according to the invention are preventively and/or curatively valuable active ingredients in the field of pest control, even at low rates of application, which have a very favorable biocidal spectrum and are well tolerated by warm-blooded species, fish and plants.
- the active ingredients according to the invention act against all or individual developmental stages of normally sensitive, but also resistant, animal pests, such as insects or representatives of the order Acarina.
- the insecticidal or acaricidal activity of the active ingredients according to the invention can manifest itself directly, i.e.
- Examples of the abovementioned animal pests are: from the order Acarina, for example, Acalitus spp, Aculus spp, Acaricalus spp, Aceria spp, Acarus siro, Amblyomma spp., Argas spp., Boophilus spp., Brevipalpus spp., Bryobia spp, Calipitrimerus spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides spp, Eotetranychus spp, Eriophyes spp., Hemitarsonemus spp, Hyalomma spp., Ixodes spp., Olygonychus spp, Ornithodoros spp., Polyphagotarsone latus, Panonychus spp., Phyllocoptruta oleivora, Phytonemus spp, Poly
- Haematopinus spp. Linognathus spp., Pediculus spp., Pemphigus spp. and Phylloxera spp.;
- Trogoderma spp. from the order Diptera, for example, Aedes spp., Anopheles spp, Antherigona soccata, Bactrocea oleae, Bibio hortulanus, Bradysia spp, Calliphora erythrocephala, Ceratitis spp., Chrysomyia spp., Culex spp., Cuterebra spp., Dacus spp., Delia spp, Drosophila melanogaster, Fannia spp., Gastrophilus spp., Geomyza tripunctata, Glossina spp., Hypoderma spp., Hyppobosca spp., Liriomyza spp., Lucilia spp., Melanagromyza spp., Musca spp., Oestrus spp., Orseolia spp., Oscinella fri
- Hemiptera for example, Acanthocoris scabrator, Acrosternum spp, Adelphocoris lineolatus, Amblypelta nitida, Bathycoelia thalassina, Blissus spp, Cimex spp., Clavigralla tomentosicollis, Creontiades spp, Distantiella theobroma, Dichelops furcatus, Dysdercus spp., Edessa spp, Euchistus spp., Eurydema pulchrum, Eurygaster spp., Halyomorpha halys, Horcias nobilellus, Leptocorisa spp., Lygus spp, Margarodes spp, Murgantia histrionic, Neomegalotomus spp, Nesidiocoris tenuis, Nezara spp., Nysius simul
- Vespa spp. from the order Isoptera, for example, Coptotermes spp, Corniternes cumulans, Incisitermes spp, Macrotermes spp, Mastotermes spp, Microtermes spp, Reticulitermes spp.; Solenopsis geminate from the order Lepidoptera, for example, Acleris spp., Adoxophyes spp., Aegeria spp., Agrotis spp., Alabama argillaceae, Amylois spp., Anticarsia gemmatalis, Archips spp., Argyresthia spp, Argyrotaenia spp., Autographa spp., Bucculatrix thurberiella, Busseola fusca, Cadra cautella, Carposina nipponensis, Chilo spp., Choristoneura spp., Chrysoteuchia topiaria, Cly
- Orthoptera for example, Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Neocurtilla hexadactyla, Periplaneta spp., Scapteriscus spp, and Schistocerca spp.; from the order Psocoptera, for example,
- the order Siphonaptera for example, Ceratophyllus spp., Ctenocephalides spp. and Xenopsylla cheopis
- the order Thysanoptera for example, Calliothrips phaseoli, Frankliniella spp., Heliothrips spp, Hercinothrips spp., Parthenothrips spp, Scirtothrips aurantii, Sericothrips variabilis, Taeniothrips spp., Thrips spp
- the order Thysanura for example, Lepisma saccharina.
- the active ingredients according to the invention can be used for controlling, i.e. containing or destroying, pests of the abovementioned type which occur in particular on plants, especially on useful plants and ornamentals in agriculture, in horticulture and in forests, or on organs, such as fruits, flowers, foliage, stalks, tubers or roots, of such plants, and in some cases even plant organs which are formed at a later point in time remain protected against these pests.
- Suitable target crops are, in particular, cereals, such as wheat, barley, rye, oats, rice, maize or sorghum; beet, such as sugar or fodder beet; fruit, for example pomaceous fruit, stone fruit or soft fruit, such as apples, pears, plums, peaches, almonds, cherries or berries, for example strawberries, raspberries or blackberries; leguminous crops, such as beans, lentils, peas or soya; oil crops, such as oilseed rape, mustard, poppies, olives, sunflowers, coconut, castor, cocoa or ground nuts; cucurbits, such as pumpkins, cucumbers or melons; fibre plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruit or tangerines; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes or bell peppers; Lauraceae, such as avocado, Cinnamonium or camphor; and also tobacco, nuts,
- compositions and/or methods of the present invention may be also used on any ornamental and/or vegetable crops, including flowers, shrubs, broad-leaved trees and evergreens.
- the invention may be used on any of the following ornamental species: Ageratum spp., Alonsoa spp., Anemone spp., Anisodontea capsenisis, Anthemis spp., Antirrhinum spp., Aster spp., Begonia spp. (e.g. B. elatior, B. semperflorens, B. tubéreux ), Bougainvillea spp., Brachycome spp., Brassica spp.
- Ageratum spp. Ageratum spp., Alonsoa spp., Anemone spp., Anisodontea capsenisis, Anthemis spp., Antirrhinum spp., Aster spp., Begonia spp. (e.g. B. elatior, B. semperflorens, B. tubéreux ), Bougainvillea spp., Brachycome
- Iresines spp. Kalanchoe spp., Lantana camara, Lavatera trimestris, Leonotis leonurus, Lilium spp., Mesembryanthemum spp., Mimulus spp., Monarda spp., Nemesia spp., Tagetes spp., Dianthus spp. ( carnation ), Canna spp., Oxalis spp., Bellis spp., Pelargonium spp. ( P. peltatum, P. Zonale ), Viola spp.
- the invention may be used on any of the following vegetable species: Allium spp. ( A. sativum, A. cepa, A. oschaninii, A. Porrum, A. ascalonicum, A. fistulosum ), Anthriscus cerefolium, Apium graveolus, Asparagus officinalis, Beta vulgarus, Brassica spp. ( B. Oleracea, B. Pekinensis, B. rapa ), Capsicum annuum, Cicer arietinum, Cichorium endivia, Cichorum spp. ( C. intybus, C. endivia ), Citrillus lanatus, Cucumis spp. ( C.
- Preferred ornamental species include African violet, Begonia, Dahlia, Gerbera, Hydrangea, Verbena, Rosa, Kalanchoe, Poinsettia, Aster, Centaurea, Coreopsis, Delphinium, Monarda, Phlox, Rudbeckia, Sedum, Petunia, Viola, Impatiens, Geranium, Chrysanthemum, Ranunculus, Fuchsia, Salvia, Hortensia , rosemary, sage, St. Johnswort, mint, sweet pepper, tomato and cucumber.
- the active ingredients according to the invention are especially suitable for controlling Aphis craccivora, Diabrotica balteata, Heliothis virescens, Myzus persicae, Plutella xylostella and Spodoptera littoralis in cotton, vegetable, maize, rice and soya crops.
- the active ingredients according to the invention are further especially suitable for controlling Mamestra (preferably in vegetables), Cydia pomonella (preferably in apples), Empoasca (preferably in vegetables, vineyards), Leptinotarsa (preferably in potatos) and Chilo supressalis (preferably in rice).
- the invention may also relate to a method of controlling damage to plant and parts thereof by plant parasitic nematodes (Endoparasitic-, Semiendoparasitic- and Ectoparasitic nematodes), especially plant parasitic nematodes such as root knot nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, Meloidogyne arenaria and other Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii , and other Heterodera species; Seed gall nematodes, Anguina species; Stem and foliar nematodes, Aphelenchoides species; Sting nematodes, Belonola
- the compounds of the invention may also have activity against the molluscs.
- Examples of which include, for example, Ampullariidae; Arion ( A. ater, A. circumscriptus, A. hortensis, A. rufus ); Bradybaenidae ( Bradybaena fruticum ); Cepaea ( C. hortensis, C. Nemoralis ); ochlodina; Deroceras ( D. agrestis, D. empiricorum, D. laeve, D. reticulatum ); Discus ( D. rotundatus ); Euomphalia; Galba ( G. trunculata ); Helicelia ( H. itala, H.
- H. aperta Limax ( L. cinereoniger, L. flavus, L. marginatus, L. maximus, L. tenellus ); Lymnaea; Milax ( M. gagates, M. marginatus, M. sowerbyi ); Opeas; Pomacea ( P. canaticulata ); Vallonia and Zanitoides.
- crops is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
- Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins, for example insecticidal proteins from Bacillus cereus or Bacillus popilliae ; or insecticidal proteins from Bacillus thuringiensis , such as 8-endotoxins, e.g. Cry1Ab, Cry1Ac, Cry1F, Cry1Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), e.g. Vip1, Vip2, Vip3 or Vip3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp.
- insecticidal proteins for example insecticidal proteins from Bacillus cereus or Bacillus popilliae
- Bacillus thuringiensis such as 8-endotoxins, e.g. Cry1Ab, Cry1Ac, Cry1F, Cry1Fa
- Xenorhabdus spp. such as Photorhabdus luminescens, Xenorhabdus nematophilus ; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins; toxins produced by fungi, such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ec
- 8-endotoxins for example Cry1Ab, Cry1Ac, Cry1F, Cry1Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), for example Vip1, Vip2, Vip3 or Vip3A
- Vip vegetative insecticidal proteins
- Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701).
- Truncated toxins for example a truncated Cry1Ab, are known.
- modified toxins one or more amino acids of the naturally occurring toxin are replaced.
- preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of Cry3A055, a cathepsin-G-recognition sequence is inserted into a Cry3A toxin (see WO 03/018810).
- Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878 and WO 03/052073.
- Cry1-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651.
- the toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects.
- insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and moths (Lepidoptera).
- Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a Cry1Ab toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus® (maize variety that expresses a Cry1Ab and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9C toxin); Herculex I® (maize variety that expresses a Cry1 Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a Cry1Ac toxin); Bollgard I® (cotton variety that expresse
- transgenic crops are:
- This toxin is Cry3A055 modified by insertion of a cathepsin-G-protease recognition sequence.
- the preparation of such transgenic maize plants is described in WO 03/018810.
- MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/DE/02/9.
- MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects. 5.
- NK603xMON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a Cry1Ab toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain Lepidoptera, include the European corn borer.
- crops is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called “pathogenesis-related proteins” (PRPs, see e.g. EP-A-0 392 225).
- PRPs pathogenesis-related proteins
- Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-0 392 225, WO 95/33818 and EP-A-0 353 191.
- the methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
- Crops may also be modified for enhanced resistance to fungal (for example Fusarium , Anthracnose, or Phytophthora ), bacterial (for example Pseudomonas ) or viral (for example potato leafroll virus, tomato spotted wilt virus, cucumber mosaic virus) pathogens.
- fungal for example Fusarium , Anthracnose, or Phytophthora
- bacterial for example Pseudomonas
- viral for example potato leafroll virus, tomato spotted wilt virus, cucumber mosaic virus pathogens.
- Crops also include those that have enhanced resistance to nematodes, such as the soybean cyst nematode.
- Crops that are tolerance to abiotic stress include those that have enhanced tolerance to drought, high salt, high temperature, chill, frost, or light radiation, for example through expression of NF-YB or other proteins known in the art.
- Antipathogenic substances which can be expressed by such transgenic plants include, for example, ion channel blockers, such as blockers for sodium and calcium channels, for example the viral KP1, KP4 or KP6 toxins; stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called “pathogenesis-related proteins” (PRPs; see e.g. EP-A-0 392 225); antipathogenic substances produced by microorganisms, for example peptide antibiotics or heterocyclic antibiotics (see e.g. WO 95/33818) or protein or polypeptide factors involved in plant pathogen defense (so-called “plant disease resistance genes”, as described in WO 03/000906).
- ion channel blockers such as blockers for sodium and calcium channels, for example the viral KP1, KP4 or KP6 toxins
- stilbene synthases such as the viral KP1, KP4 or KP6 toxins
- bibenzyl synthases such as
- compositions according to the invention are the protection of stored goods and store rooms and the protection of raw materials, such as wood, textiles, floor coverings or buildings, and also in the hygiene sector, especially the protection of humans, domestic animals and productive livestock against pests of the mentioned type.
- the present invention also provides a method for controlling pests (such as mosquitoes and other disease vectors; see also http://www.who.int/malaria/vector_control/irs/en/).
- the method for controlling pests comprises applying the compositions of the invention to the target pests, to their locus or to a surface or substrate by brushing, rolling, spraying, spreading or dipping.
- an IRS (indoor residual spraying) application of a surface such as a wall, ceiling or floor surface is contemplated by the method of the invention.
- the method for controlling such pests comprises applying a pesticidally effective amount of the compositions of the invention to the target pests, to their locus, or to a surface or substrate so as to provide effective residual pesticidal activity on the surface or substrate.
- a pesticidally effective amount of the compositions of the invention to the target pests, to their locus, or to a surface or substrate so as to provide effective residual pesticidal activity on the surface or substrate.
- Such application may be made by brushing, rolling, spraying, spreading or dipping the pesticidal composition of the invention.
- an IRS application of a surface such as a wall, ceiling or floor surface is contemplated by the method of the invention so as to provide effective residual pesticidal activity on the surface.
- it is contemplated to apply such compositions for residual control of pests on a substrate such as a fabric material in the form of (or which can be used in the manufacture of) netting, clothing, bedding, curtains and tents.
- Substrates including non-woven, fabrics or netting to be treated may be made of natural fibres such as cotton, raffia, jute, flax, sisal, hessian, or wool, or synthetic fibres such as polyamide, polyester, polypropylene, polyacrylonitrile or the like.
- the polyesters are particularly suitable.
- the methods of textile treatment are known, e.g. WO 2008/151984, WO 03/034823, U.S. Pat. No. 5,631,072, WO 2005/64072, WO2006/128870, EP 1724392, WO 2005/113886 or WO 2007/090739.
- compositions according to the invention are the field of tree injection/trunk treatment for all ornamental trees as well all sort of fruit and nut trees.
- the compounds according to the present invention are especially suitable against wood-boring insects from the order Lepidoptera as mentioned above and from the order Coleoptera, especially against woodborers listed in the following tables A and B:
- the present invention may be also used to control any insect pests that may be present in turfgrass, including for example beetles, caterpillars, fire ants, ground pearls, millipedes, sow bugs, mites, mole crickets, scales, mealybugs ticks, spittlebugs, southern chinch bugs and white grubs.
- the present invention may be used to control insect pests at various stages of their life cycle, including eggs, larvae, nymphs and adults.
- the present invention may be used to control insect pests that feed on the roots of turfgrass including white grubs (such as Cyclocephala spp. (e.g. masked chafer, C. lurida ), Rhizotrogus spp. (e.g. European chafer, R. majalis ), Cotinus spp. (e.g. Green June beetle, C. nitida ), Popillia spp. (e.g. Japanese beetle, P. japonica ), Phyllophaga spp. (e.g. May/June beetle), Ataenius spp. (e.g. Black turfgrass ataenius, A.
- white grubs such as Cyclocephala spp. (e.g. masked chafer, C. lurida ), Rhizotrogus spp. (e.g. European chafer, R. majalis ), Co
- Maladera spp. e.g. Asiatic garden beetle, M. castanea ) and Tomarus spp.
- ground pearls Margarodes spp.
- mole crickets tawny, southern, and short-winged; Scapteriscus spp., Gryllotalpa africana ) and leatherjackets (European crane fly, Tipula spp.).
- the present invention may also be used to control insect pests of turfgrass that are thatch dwelling, including armyworms (such as fall armyworm Spodoptera frugiperda , and common armyworm Pseudaletia unipuncta ), cutworms, billbugs ( Sphenophorus spp., such as S. venatus verstitus and S. parvulus ), and sod webworms (such as Crambus spp. and the tropical sod webworm, Herpetogramma phaeopteralis ).
- armyworms such as fall armyworm Spodoptera frugiperda , and common armyworm Pseudaletia unipuncta
- cutworms such as S. venatus verstitus and S. parvulus
- sod webworms such as Crambus spp. and the tropical sod webworm, Herpetogramma phaeopteralis
- the present invention may also be used to control insect pests of turfgrass that live above the ground and feed on the turfgrass leaves, including chinch bugs (such as southern chinch bugs, Blissus insularis ), Bermudagrass mite ( Eriophyes cynodoniensis ), rhodesgrass mealybug ( Antonina graminis ), two-lined spittlebug ( Propsapia bicincta ), leafhoppers, cutworms (Noctuidae family), and greenbugs.
- chinch bugs such as southern chinch bugs, Blissus insularis
- Bermudagrass mite Eriophyes cynodoniensis
- rhodesgrass mealybug Antonina graminis
- two-lined spittlebug Propsapia bicincta
- leafhoppers cutworms (Noctuidae family), and greenbugs.
- the present invention may also be used to control other pests of turfgrass such as red imported fire ants ( Solenopsis invicta ) that create ant mounds in turf.
- red imported fire ants Solenopsis invicta
- compositions according to the invention are active against ectoparasites such as hard ticks, soft ticks, mange mites, harvest mites, flies (biting and licking), parasitic fly larvae, lice, hair lice, bird lice and fleas.
- ectoparasites such as hard ticks, soft ticks, mange mites, harvest mites, flies (biting and licking), parasitic fly larvae, lice, hair lice, bird lice and fleas.
- Anoplurida Haematopinus spp., Linognathus spp., Pediculus spp. and Phtirus spp., Solenopotes spp.
- Nematocerina and Brachycerina for example Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Glossina spp., Calliphora spp., Glossina spp., Call
- Siphonaptrida for example Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp.
- Heteropterida for example Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp.
- Actinedida Prostigmata
- Acaridida Acaridida
- Acarapis spp. Cheyletiella spp., Ornitrocheyletia spp., Myobia spp., Psorergatesspp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp. and Laminosioptes spp.
- compositions according to the invention are also suitable for protecting against insect infestation in the case of materials such as wood, textiles, plastics, adhesives, glues, paints, paper and card, leather, floor coverings and buildings.
- compositions according to the invention can be used, for example, against the following pests: beetles such as Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinuspecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthesrugicollis, Xyleborus spec., Tryptodendron spec., Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec.
- hymenopterans such as Sirex juvencus, Urocerus gigas, Urocerus gigas taignus and Urocerus augur , and termites such as Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis and Coptotermes formosanus , and bristletails such as Lepisma saccharina.
- the compounds according to the invention can be used as pesticidal agents in unmodified form, but they are generally formulated into compositions in various ways using formulation adjuvants, such as carriers, solvents and surface-active substances.
- formulation adjuvants such as carriers, solvents and surface-active substances.
- the formulations can be in various physical forms, e.g.
- Such formulations can either be used directly or diluted prior to use.
- the dilutions can be made, for example, with water, liquid fertilisers, micronutrients, biological organisms, oil or solvents.
- the formulations can be prepared e.g. by mixing the active ingredient with the formulation adjuvants in order to obtain compositions in the form of finely divided solids, granules, solutions, dispersions or emulsions.
- the active ingredients can also be formulated with other adjuvants, such as finely divided solids, mineral oils, oils of vegetable or animal origin, modified oils of vegetable or animal origin, organic solvents, water, surface-active substances or combinations thereof.
- the active ingredients can also be contained in very fine microcapsules.
- Microcapsules contain the active ingredients in a porous carrier. This enables the active ingredients to be released into the environment in controlled amounts (e.g. slow-release).
- Microcapsules usually have a diameter of from 0.1 to 500 microns. They contain active ingredients in an amount of about from 25 to 95% by weight of the capsule weight.
- the active ingredients can be in the form of a monolithic solid, in the form of fine particles in solid or liquid dispersion or in the form of a suitable solution.
- the encapsulating membranes can comprise, for example, natural or synthetic rubbers, cellulose, styrene/butadiene copolymers, polyacrylonitrile, polyacrylate, polyesters, polyamides, polyureas, polyurethane or chemically modified polymers and starch xanthates or other polymers that are known to the person skilled in the art.
- very fine microcapsules can be formed in which the active ingredient is contained in the form of finely divided particles in a solid matrix of base substance, but the microcapsules are not themselves encapsulated.
- liquid carriers there may be used: water, toluene, xylene, petroleum ether, vegetable oils, acetone, methyl ethyl ketone, cyclohexanone, acid anhydrides, acetonitrile, acetophenone, amyl acetate, 2-butanone, butylene carbonate, chlorobenzene, cyclohexane, cyclohexanol, alkyl esters of acetic acid, diacetone alcohol, 1,2-dichloropropane, diethanolamine, p-diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, N,N-dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, dipropylene glycol
- Suitable solid carriers are, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, limestone, calcium carbonate, bentonite, calcium montmorillonite, cottonseed husks, wheat flour, soybean flour, pumice, wood flour, ground walnut shells, lignin and similar substances.
- a large number of surface-active substances can advantageously be used in both solid and liquid formulations, especially in those formulations which can be diluted with a carrier prior to use.
- Surface-active substances may be anionic, cationic, non-ionic or polymeric and they can be used as emulsifiers, wetting agents or suspending agents or for other purposes.
- Typical surface-active substances include, for example, salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; salts of alkylarylsulfonates, such as calcium dodecylbenzenesulfonate; alkylphenol/alkylene oxide addition products, such as nonylphenol ethoxylate; alcohol/alkylene oxide addition products, such as tridecylalcohol ethoxylate; soaps, such as sodium stearate; salts of alkylnaphthalenesulfonates, such as sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2-ethylhexyl)sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryltrimethylammonium chloride, polyethylene glycol esters of fatty
- Further adjuvants that can be used in pesticidal formulations include crystallisation inhibitors, viscosity modifiers, suspending agents, dyes, anti-oxidants, foaming agents, light absorbers, mixing auxiliaries, antifoams, complexing agents, neutralising or pH-modifying substances and buffers, corrosion inhibitors, fragrances, wetting agents, take-up enhancers, micronutrients, plasticisers, glidants, lubricants, dispersants, thickeners, antifreezes, microbicides, and liquid and solid fertilisers.
- compositions according to the invention can include an additive comprising an oil of vegetable or animal origin, a mineral oil, alkyl esters of such oils or mixtures of such oils and oil derivatives.
- the amount of oil additive in the composition according to the invention is generally from 0.01 to 10%, based on the mixture to be applied.
- the oil additive can be added to a spray tank in the desired concentration after a spray mixture has been prepared.
- Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsified vegetable oil, alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow.
- Preferred oil additives comprise alkyl esters of C 8 -C 22 fatty acids, especially the methyl derivatives of C 12 -C 18 fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid (methyl laurate, methyl palmitate and methyl oleate, respectively).
- Many oil derivatives are known from the Compendium of Herbicide Adjuvants, 10 th Edition, Southern Illinois University, 2010.
- inventive compositions generally comprise from 0.1 to 99% by weight, especially from 0.1 to 95% by weight, of compounds of the present invention and from 1 to 99.9% by weight of a formulation adjuvant which preferably includes from 0 to 25% by weight of a surface-active substance.
- the rates of application vary within wide limits and depend on the nature of the soil, the method of application, the crop plant, the pest to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target crop.
- a general guideline compounds may be applied at a rate of from 1 to 2000 l/ha, especially from 10 to 1000 l/ha.
- Preferred formulations can have the following compositions (weight %):
- active ingredient 1 to 95%, preferably 60 to 90% surface-active agent: 1 to 30%, preferably 5 to 20% liquid carrier: 1 to 80%, preferably 1 to 35%
- active ingredient 0.1 to 10%, preferably 0.1 to 5% solid carrier: 99.9 to 90%, preferably 99.9 to 99%
- active ingredient 5 to 75%, preferably 10 to 50% water: 94 to 24%, preferably 88 to 30% surface-active agent: 1 to 40%, preferably 2 to 30%
- active ingredient 0.5 to 90%, preferably 1 to 80% surface-active agent: 0.5 to 20%, preferably 1 to 15% solid carrier: 5 to 95%, preferably 15 to 90%
- active ingredient 0.1 to 30%, preferably 0.1 to 15% solid carrier: 99.5 to 70%, preferably 97 to 85%
- Wettable powders a) b) c) active ingredients 25% 50% 75% sodium lignosulfonate 5% 5% — sodium lauryl sulfate 3% — 5% sodium diisobutylnaphthalenesulfonate — 6% 10% phenol polyethylene glycol ether — 2% — (7-8 mol of ethylene oxide) highly dispersed silicic acid 5% 10% 10% Kaolin 62% 27% —
- the combination is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders that can be diluted with water to give suspensions of the desired concentration.
- Powders for dry seed treatment a) b) c) active ingredients 25% 50% 75% light mineral oil 5% 5% 5% highly dispersed silicic acid 5% 5% — Kaolin 65% 40% — Talcum — 20%
- the combination is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.
- Emulsifiable concentrate active ingredients 10% octylphenol polyethylene glycol ether (4-5 mol of ethylene 3% oxide) calcium dodecylbenzenesulfonate 3% castor oil polyglycol ether (35 mol of ethylene oxide) 4% Cyclohexanone 30% xylene mixture 50%
- Emulsions of any required dilution which can be used in plant protection, can be obtained from this concentrate by dilution with water.
- Dusts a) b) c) Active ingredients 5% 6% 4% Talcum 95% — — Kaolin — 94% — mineral filler — — 96%
- Ready-for-use dusts are obtained by mixing the combination with the carrier and grinding the mixture in a suitable mill. Such powders can also be used for dry dressings for seed.
- the combination is mixed and ground with the adjuvants, and the mixture is moistened with water.
- the mixture is extruded and then dried in a stream of air.
- the finely ground combination is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol.
- Non-dusty coated granules are obtained in this manner.
- the finely ground combination is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
- a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
- living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
- active ingredients 40% propylene glycol 5% copolymer butanol PO/EO 2% Tristyrenephenole with 10-20 moles EO 2% 1,2-benzisothiazolin-3-one (in the form of a 20% 0.5% solution in water) monoazo-pigment calcium salt 5% Silicone oil (in the form of a 75% emulsion in water) 0.2% Water 45.3%
- the finely ground combination is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
- a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
- living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
- 28 parts of the combination are mixed with 2 parts of an aromatic solvent and 7 parts of toluene diisocyanate/polymethylene-polyphenylisocyanate-mixture (8:1).
- This mixture is emulsified in a mixture of 1.2 parts of polyvinylalcohol, 0.05 parts of a defoamer and 51.6 parts of water until the desired particle size is achieved.
- a mixture of 2.8 parts 1,6-diaminohexane in 5.3 parts of water is added.
- the mixture is agitated until the polymerization reaction is completed.
- the obtained capsule suspension is stabilized by adding 0.25 parts of a thickener and 3 parts of a dispersing agent.
- the capsule suspension formulation contains 28% of the active ingredients.
- the medium capsule diameter is 8-15 microns.
- the resulting formulation is applied to seeds as an aqueous suspension in an apparatus suitable for that purpose.
- Formulation types include an emulsion concentrate (EC), a suspension concentrate (SC), a suspo-emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EO), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an oil miscible liquid (OL), a soluble concentrate (SL), an ultra-low volume suspension (SU), an ultra-low volume liquid (UL), a technical concentrate (TK), a dispersible concentrate (DC), a wettable powder (WP), a soluble granule (SG) or any technically feasible formulation in combination with agriculturally acceptable adjuvants.
- EC emulsion concentrate
- SC suspension concentrate
- SE suspo-emulsion
- CS capsule suspension
- WG water dispersible granule
- EG
- Mp means melting point in ° C. Free radicals represent methyl groups.
- Spectra were recorded on a Mass Spectrometer from Waters (SQD, SQDII Single quadrupole mass spectrometer) equipped with an electrospray source (Polarity: positive and negative ions, Capillary: 3.00 kV, Cone range: 30 V, Extractor: 2.00 V, Source Temperature: 150° C., Desolvation Temperature: 350° C., Cone Gas Flow: 50 l/h, Desolvation Gas Flow: 650 l/h, Mass range: 100 to 900 Da) and an Acquity UPLC from Waters: Binary pump, heated column compartment, diode-array detector and ELSD detector.
- Electrospray Polarity positive and negative ions
- Step A Preparation of 5-(1-cyanocyclopropyl)-3-ethylsulfonyl-pyridine-2-carbonyl chloride
- Step B Preparation of 1-[5-Ethylsulfonyl-6-[7-methyl-3-(trifluoromethyl)imidazo[4,5-c]pyridazin-6-yl]-3-pyridyl]cyclopropanecarbonitrile
- Example H-2 Preparation of 1-[5-ethylsulfanyl-6-[7-methyl-3-(trifluoromethyl)imidazo[4,5-c]pyridazin-6-yl]-3-pyridyl]cyclopropanecarbonitrile
- Step A Preparation of methyl 5-(1-cyano-2-ethoxy-2-oxo-ethyl)-3-ethylsulfanyl-pyridine-2-carboxylate
- Methyl-5-bromo-3-ethylsulfanyl-pyridine-2-carboxylate prepared as described in patent WO 2017089190 (32 g, 115.88 mmol) was dissolved in dimethyl sulfoxide (350 mL). Then ethyl 2-cyanoacetate (18.5 mL, 173.82 mmol), potassium carbonate (40.442 g, 289.70 mmol) and tetrabutylammonium bromide (3.81 g, 11.588 mmol) were added successively at ambient temperature. The resulting suspension were stirred one night at 90° C. and then cooled to ambient temperature.
- Step B Preparation of methyl 5-(cyanomethyl)-3-ethylsulfanyl-pyridine-2-carboxylate
- Step C Preparation of methyl 5-(1-cyanocyclopropyl)-3-ethylsulfanyl-pyridine-2-carboxylate
- Methyl 5-(cyanomethyl)-3-ethylsulfanyl-pyridine-2-carboxylate (5 g, 21.16 mmol) was dissolved in acetonitrile (170 mL) and treated with cesium carbonate (20.7 g, 63.48 mmol) and 1,2-dibromoethane (2.19 mL, 25.39 mmol) at ambient temperature. The resulting mixture was stirred 3 h 30 hours at 80° C. and then at ambient temperature overnight. The reaction mixture was diluted with water and ethylacetate. The aqueous layer was extracted 3 times with ethylacetate.
- Step D Preparation of 5-(1-cyanocyclopropyl)-3-ethylsulfanyl-pyridine-2-carboxylic acid
- Step E Preparation of 5-(1-cyanocyclopropyl)-3-ethylsulfanyl-N-[2-(methylamino)-5-(trifluoromethyl)-3-pyridyl]pyridine-2-carboxamide
- Step F Preparation of 1-[5-ethylsulfanyl-6-[3-methyl-6-(trifluoromethyl)imidazo[4,5-b]pyridin-2-yl]-3-pyridyl]cyclopropanecarbonitrile
- the table H-1 shows the physical chemical and spectral data of compounds of formula I:
- compositions according to the invention can be broadened considerably, and adapted to prevailing circumstances, by adding other insecticidally, acaricidally and/or fungicidally active ingredients.
- mixtures of the compounds of formula I with other insecticidally, acaricidally and/or fungicidally active ingredients may also have further surprising advantages which can also be described, in a wider sense, as synergistic activity. For example, better tolerance by plants, reduced phytotoxicity, insects can be controlled in their different development stages or better behaviour during their production, for example during grinding or mixing, during their storage or during their use.
- Suitable additions to active ingredients here are, for example, representatives of the following classes of active ingredients: organophosphorus compounds, nitrophenol derivatives, thioureas, juvenile hormones, formamidines, benzophenone derivatives, ureas, pyrrole derivatives, carbamates, pyrethroids, chlorinated hydrocarbons, acylureas, pyridylmethyleneamino derivatives, macrolides, neonicotinoids and Bacillus thuringiensis preparations.
- TX means “one compound selected from the group consisting of the compounds described in Tables A-1, A-2, H-1 and H-2 of the present invention”.
- an adjuvant selected from the group of substances consisting of petroleum oils (alternative name) (628)+TX, an acaricide selected from the group of substances consisting of 1,1-bis(4-chlorophenyl)-2-ethoxyethanol (IUPAC name) (910)+TX, 2,4-dichlorophenyl benzenesulfonate (IUPAC/Chemical Abstracts name) (1059)+TX, 2-fluoro-N-methyl-N-1-naphthylacetamide (IUPAC name) (1295)+TX, 4-chlorophenyl phenyl sulfone (IUPAC name) (981)+TX, abamectin (1)+TX, acequinocyl (3)+TX, acetoprole [CCN]+TX, acrinathrin (9)+TX, aldicarb (16)+TX, aldoxycarb (863)+TX, alpha-cypermethrin (202)
- Bacillus subtilis strain AQ175+TX Bacillus spp. strain AQ177+TX, Bacillus spp. strain AQ178+TX, Bacillus subtilis strain QST 713 (CEASE®+TX, Serenade®+TX, Rhapsody®)+TX, Bacillus subtilis strain QST 714 (JAZZ®)+TX, Bacillus subtilis strain AQ153+TX, Bacillus subtilis strain AQ743+TX, Bacillus subtilis strain QST3002+TX, Bacillus subtilis strain QST3004+TX, Bacillus subtilis var.
- amyloliquefaciens strain FZB24 (Taegro®+TX, Rhizopro®)+TX, Bacillus thuringiensis Cry 2Ae+TX, Bacillus thuringiensis Cry1Ab+TX, Bacillus thuringiensis aizawai GC 91 (Agree®)+TX, Bacillus thuringiensis israelensis (BMP123®+TX, Aquabac®+TX, VectoBac®)+TX, Bacillus thuringiensis kurstaki (Javelin®+TX, Deliver®+TX, CryMax®+TX, Bonide®+TX, Scutella WP®+TX, Turilav WP®+TX, Astuto®+TX, Dipel WP®+TX, Biobit®+TX, Foray®)+TX, Bacillus thuringiensis kurstaki BMP 123 (Baritone®
- aizawai (XenTari®+TX, DiPel®)+TX, bacteria spp. (GROWMEND®+TX, GROWSWEET®+TX, Shootup®)+TX, bacteriophage of Clavipacter michiganensis (AgriPhage®)+TX, Bakflor®+TX, Beauveria bassiana (Beaugenic®+TX, Brocaril WP®)+TX, Beauveria bassiana GHA (Mycotrol ES®+TX, Mycotrol O®+TX, BotaniGuard®)+TX, Beauveria brongniartii (Engerlingspilz®+TX, Schweizer Beauveria®+TX, Melocont®)+TX, Beauveria spp.+TX, Botrytis cineria +TX, Bradyrhizobium japonicum (TerraMax®)+TX, Brevibacillus brevis +T
- LC 52 (Sentinel®)+TX, Trichoderma lignorum +TX, Trichoderma longibrachiatum +TX, Trichoderma polysporum (Binab T®)+TX, Trichoderma taxi +TX, Trichoderma virens +TX, Trichoderma virens (formerly Gliocladium virens GL-21) (SoilGuard®)+TX, Trichoderma viride +TX, Trichoderma viride strain ICC 080 (Remedier®)+TX, Trichosporon pullulans +TX, Trichosporon spp.+TX, Trichothecium spp.+TX, Trichothecium roseum +TX, Typhula phacorrhiza strain 94670+TX, Typhula phacorrhiza strain 94671+TX, Ulocladium atrum +TX, Ulocladium oudemansii (Botry-Zen®)+T
- the active ingredient mixture of the compounds of formula I selected from Tables A-1, A-2, H-1 and H-2 with active ingredients described above comprises a compound selected from Tables A-1, A-2, H-1 and H-2 and an active ingredient as described above preferably in a mixing ratio of from 100:1 to 1:6000, especially from 50:1 to 1:50, more especially in a ratio of from 20:1 to 1:20, even more especially from 10:1 to 1:10, very especially from 5:1 and 1:5, special preference being given to a ratio of from 2:1 to 1:2, and a ratio of from 4:1 to 2:1 being likewise preferred, above all in a ratio of 1:1, or 5:1, or 5:2, or 5:3, or 5:4, or 4:1, or 4:2, or 4:3, or 3:1, or 3:2, or 2:1, or 1:5, or 2:5, or 3:5, or 4:5, or 1:4, or 2:4, or 3:4, or 1:3, or 2:3, or 1:2, or 1:600, or 1:300, or 1:150, or 1:35, or 2
- the mixtures as described above can be used in a method for controlling pests, which comprises applying a composition comprising a mixture as described above to the pests or their environment, with the exception of a method for treatment of the human or animal body by surgery or therapy and diagnostic methods practised on the human or animal body.
- the mixtures comprising a compound of formula I selected from Tables A-1, A-2, H-1 and H-2 and one or more active ingredients as described above can be applied, for example, in a single “ready-mix” form, in a combined spray mixture composed from separate formulations of the single active ingredient components, such as a “tank-mix”, and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days.
- the order of applying the compounds of formula I selected from Tables A-1, A-2, H-1 and H-2 and the active ingredients as described above is not essential for working the present invention.
- compositions according to the invention can also comprise further solid or liquid auxiliaries, such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides, plant activators, molluscicides or herbicides.
- auxiliaries such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides
- compositions according to the invention are prepared in a manner known per se, in the absence of auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
- auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
- compositions that is the methods of controlling pests of the abovementioned type, such as spraying, atomizing, dusting, brushing on, dressing, scattering or pouring—which are to be selected to suit the intended aims of the prevailing circumstances—and the use of the compositions for controlling pests of the abovementioned type are other subjects of the invention.
- Typical rates of concentration are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm, of active ingredient.
- the rate of application per hectare is generally 1 to 2000 g of active ingredient per hectare, in particular 10 to 1000 g/ha, preferably 10 to 600 g/ha.
- a preferred method of application in the field of crop protection is application to the foliage of the plants (foliar application), it being possible to select frequency and rate of application to match the danger of infestation with the pest in question.
- the active ingredient can reach the plants via the root system (systemic action), by drenching the locus of the plants with a liquid composition or by incorporating the active ingredient in solid form into the locus of the plants, for example into the soil, for example in the form of granules (soil application). In the case of paddy rice crops, such granules can be metered into the flooded paddy-field.
- the compounds of the invention and compositions thereof are also be suitable for the protection of plant propagation material, for example seeds, such as fruit, tubers or kernels, or nursery plants, against pests of the abovementioned type.
- the propagation material can be treated with the compound prior to planting, for example seed can be treated prior to sowing.
- the compound can be applied to seed kernels (coating), either by soaking the kernels in a liquid composition or by applying a layer of a solid composition. It is also possible to apply the compositions when the propagation material is planted to the site of application, for example into the seed furrow during drilling.
- These treatment methods for plant propagation material and the plant propagation material thus treated are further subjects of the invention.
- Typical treatment rates would depend on the plant and pest/fungi to be controlled and are generally between 1 to 200 grams per 100 kg of seeds, preferably between 5 to 150 grams per 100 kg of seeds, such as between 10 to 100 grams per 100 kg of seeds.
- seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corns, bulbs, fruit, tubers, grains, rhizomes, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.
- the present invention also comprises seeds coated or treated with or containing a compound of formula I.
- coated or treated with and/or containing generally signifies that the active ingredient is for the most part on the surface of the seed at the time of application, although a greater or lesser part of the ingredient may penetrate into the seed material, depending on the method of application.
- the seed product When the said seed product is (re)planted, it may absorb the active ingredient.
- the present invention makes available a plant propagation material adhered thereto with a compound of formula (I). Further, it is hereby made available, a composition comprising a plant propagation material treated with a compound of formula (I).
- Seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting.
- the seed treatment application of the compound formula (I) can be carried out by any known methods, such as spraying or by dusting the seeds before sowing or during the sowing/planting of the seeds.
- Example B1 Bemisia tabaci (Cotton White Fly): Feeding/Contact Activity
- Cotton leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10′000 ppm DMSO stock solutions. After drying the leaf discs were infested with adult white flies. The samples were checked for mortality 6 days after incubation.
- Example B2 Diabrotica Balteata (Corn Root Worm)
- Maize sprouts placed onto an agar layer in 24-well microtiter plates were treated with aqueous test solutions prepared from 10′000 ppm DMSO stock solutions by spraying. After drying, the plates were infested with L2 larvae (6 to 10 per well). The samples were assessed for mortality and growth inhibition in comparison to untreated samples 4 days after infestation.
- the following compound gave an effect of at least 80% in at least one of the two categories (mortality or growth inhibition) at an application rate of 200 ppm:
- Example B3 Euschistus heros (Neotropical Brown Stink Bug)
- Soybean leaves on agar in 24-well microtiter plates were sprayed with aqueous test solutions prepared from 10′000 ppm DMSO stock solutions. After drying the leaves were infested with N2 nymphs. The samples were assessed for mortality and growth inhibition in comparison to untreated samples 5 days after infestation.
- Example B4 Frankliniella occidentalis (Western Flower Thrips )
- Feeding/contact activity Sunflower leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10′000 DMSO stock solutions. After drying the leaf discs were infested with a Frankliniella population of mixed ages. The samples were assessed for mortality 7 days after infestation.
- Example B5 Myzus persicae (Green Peach Aphid):Feeding/Contact Activity
- Sunflower leaf discs were placed onto agar in a 24-well microtiter plate and sprayed with aqueous test solutions prepared from 10′000 ppm DMSO stock solutions. After drying, the leaf discs were infested with an aphid population of mixed ages. The samples were assessed for mortality 6 days after infestation.
- Example B6 Myzus persicae (Green Peach Aphid). Systemic Activity
- Roots of pea seedlings infested with an aphid population of mixed ages were placed directly into aqueous test solutions prepared from 10′000 DMSO stock solutions. The samples were assessed for mortality 6 days after placing seedlings into test solutions.
- Example B7 Myzus persicae (Green Peach Aphid). Intrinsic Activity
- Test compounds prepared from 10′000 ppm DMSO stock solutions were applied by pipette into 24-well microtiter plates and mixed with sucrose solution. The plates were closed with a stretched Parafilm. A plastic stencil with 24 holes was placed onto the plate and infested pea seedlings were placed directly on the Parafilm. The infested plate was closed with a gel blotting paper and another plastic stencil and then turned upside down. The samples were assessed for mortality 5 days after infestation.
- Example B8 Plutella xylostella (Diamond Back Moth)
- 24-well microtiter plates with artificial diet were treated with aqueous test solutions prepared from 10′000 ppm DMSO stock solutions by pipetting. After drying, the plates were infested with L2 larvae (10 to 15 per well). The samples were assessed for mortality and growth inhibition in comparison to untreated samples 5 days after infestation.
- Example B9 Spodoptera littoralis (Egyptian Cotton Leaf Worm)
- Test compounds were applied by pipette from 10′000 ppm DMSO stock solutions into 24-well plates and mixed with agar. Lettuce seeds were placed onto the agar and the multi well plate was closed by another plate which contained also agar. After 7 days the compound was absorbed by the roots and the lettuce grew into the lid plate. The lettuce leaves were then cut off into the lid plate. Spodoptera eggs were pipetted through a plastic stencil onto a humid gel blotting paper and the lid plate was closed with it. The samples were assessed for mortality, anti-feedant effect and growth inhibition in comparison to untreated samples 6 days after infestation.
- the following compound gave an effect of at least 80% in at least one of the three categories (mortality, anti-feeding, or growth inhibition) at a test rate of 12.5 ppm:
- Example B10 Tetranychus urticae (Two-Spotted Spider Mite): Feeding/Contact Activity
- Bean leaf discs on agar in 24-well microtiter plates were sprayed with aqueous test solutions prepared from 10′000 ppm DMSO stock solutions. After drying the leaf discs were infested with a mite population of mixed ages. The samples were assessed for mortality on mixed population (mobile stages) 8 days after infestation.
- Example B11 Thrips tabaci (Onion Thrips ) Feeding/Contact Activity
- Sunflower leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10′000 ppm DMSO stock solutions. After drying the leaf discs were infested with a thrips population of mixed ages. The samples were assessed for mortality 6 days after infestation.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Dentistry (AREA)
- Agronomy & Crop Science (AREA)
- Environmental Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Plant Pathology (AREA)
- Pest Control & Pesticides (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Tropical Medicine & Parasitology (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Catching Or Destruction (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IN201611042841 | 2016-12-15 | ||
| IN201611042841 | 2016-12-15 | ||
| PCT/EP2017/081968 WO2018108726A1 (en) | 2016-12-15 | 2017-12-08 | Pesticidally active heterocyclic derivatives with sulfur containing substituents |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2017/081968 A-371-Of-International WO2018108726A1 (en) | 2016-12-15 | 2017-12-08 | Pesticidally active heterocyclic derivatives with sulfur containing substituents |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/468,051 Continuation US12421237B2 (en) | 2016-12-15 | 2021-09-07 | Pesticidally active heterocyclic derivatives with sulfur containing substituents |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20190308982A1 true US20190308982A1 (en) | 2019-10-10 |
Family
ID=60702699
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/470,165 Abandoned US20190308982A1 (en) | 2016-12-15 | 2017-12-08 | Pesticidally active heterocyclic derivatives with sulfur containing substituents |
| US17/468,051 Active 2040-09-24 US12421237B2 (en) | 2016-12-15 | 2021-09-07 | Pesticidally active heterocyclic derivatives with sulfur containing substituents |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/468,051 Active 2040-09-24 US12421237B2 (en) | 2016-12-15 | 2021-09-07 | Pesticidally active heterocyclic derivatives with sulfur containing substituents |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US20190308982A1 (enExample) |
| EP (1) | EP3554242A1 (enExample) |
| JP (1) | JP7113014B2 (enExample) |
| CN (1) | CN110022682B (enExample) |
| BR (1) | BR112019012127A2 (enExample) |
| WO (1) | WO2018108726A1 (enExample) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI793104B (zh) * | 2017-02-21 | 2023-02-21 | 瑞士商先正達合夥公司 | 具有含硫取代基的殺有害生物活性雜環衍生物 |
| MX2021004735A (es) | 2018-10-23 | 2021-06-04 | Basf Se | Compuestos plaguicidas triciclicos. |
| WO2020161208A1 (en) * | 2019-02-06 | 2020-08-13 | Syngenta Crop Protection Ag | Herbicidal fused pyridazine compounds |
| WO2020161209A1 (en) * | 2019-02-06 | 2020-08-13 | Syngenta Crop Protection Ag | Herbicidal fused pyridazine compounds |
| BR112022005137A2 (pt) | 2019-09-20 | 2022-06-14 | Syngenta Crop Protection Ag | Derivados heterocíclicos com substituintes contendo enxofre e sulfoximina ativos em termos pesticidas |
| WO2022013417A1 (en) | 2020-07-17 | 2022-01-20 | Syngenta Crop Protection Ag | Pesticidally active heterocyclic derivatives with sulfur containing substituents |
| WO2022017975A1 (en) | 2020-07-18 | 2022-01-27 | Syngenta Crop Protection Ag | Pesticidally active heterocyclic derivatives with sulfur containing substituents |
| EP4204422A1 (en) * | 2020-08-26 | 2023-07-05 | Syngenta Crop Protection AG | Process for the preparation of 2,2-difluoro-1,3-benzodioxole derivatives with sulfur containing substituents |
| UY39404A (es) | 2020-09-02 | 2022-03-31 | Syngenta Crop Protection Ag | Derivados de 2,2-diflúor-5h-[1,3]dioxol[4,5-f]isoindol-7-ona activos como plaguicidas con sustituyentes que contienen azufre |
| TW202229238A (zh) * | 2020-10-09 | 2022-08-01 | 瑞士商先正達農作物保護公司 | 用於製備5-(1-氰基環丙基)-吡啶-2-甲酸、酯、醯胺和腈之方法 |
| WO2022186133A1 (ja) * | 2021-03-01 | 2022-09-09 | 日本農薬株式会社 | スルホンアミド基を有する縮合複素環化合物又はその塩類及び該化合物若しくはその塩類を含有する農園芸用殺虫剤又は動物用の外部若しくは内部寄生虫防除剤並びにそれらの使用方法 |
| IL309024A (en) | 2021-06-02 | 2024-02-01 | Syngenta Crop Protection Ag | Pesticidally active heterocyclic derivatives with sulfoximine containing substituents |
| WO2024071440A1 (ja) * | 2023-02-20 | 2024-04-04 | 住友化学株式会社 | シクロプロパンカルボン酸エステル化合物及びその用途 |
| CN120882309A (zh) | 2023-03-14 | 2025-10-31 | 先正达农作物保护股份公司 | 对杀昆虫剂具有抗性的有害生物的控制 |
Family Cites Families (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| BR8600161A (pt) | 1985-01-18 | 1986-09-23 | Plant Genetic Systems Nv | Gene quimerico,vetores de plasmidio hibrido,intermediario,processo para controlar insetos em agricultura ou horticultura,composicao inseticida,processo para transformar celulas de plantas para expressar uma toxina de polipeptideo produzida por bacillus thuringiensis,planta,semente de planta,cultura de celulas e plasmidio |
| CA1340685C (en) | 1988-07-29 | 1999-07-27 | Frederick Meins | Dna sequences encoding polypeptides having beta-1,3-glucanase activity |
| US5169629A (en) | 1988-11-01 | 1992-12-08 | Mycogen Corporation | Process of controlling lepidopteran pests, using bacillus thuringiensis isolate denoted b.t ps81gg |
| NZ231804A (en) | 1988-12-19 | 1993-03-26 | Ciba Geigy Ag | Insecticidal toxin from leiurus quinquestriatus hebraeus |
| ES2199931T3 (es) | 1989-03-24 | 2004-03-01 | Syngenta Participations Ag | Plantas transgenicas resistentes a enfermedades. |
| GB8910624D0 (en) | 1989-05-09 | 1989-06-21 | Ici Plc | Bacterial strains |
| CA2015951A1 (en) | 1989-05-18 | 1990-11-18 | Mycogen Corporation | Novel bacillus thuringiensis isolates active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins |
| DK0427529T3 (da) | 1989-11-07 | 1995-06-26 | Pioneer Hi Bred Int | Larvedræbende lactiner og planteinsektresistens baseret derpå |
| US5639949A (en) | 1990-08-20 | 1997-06-17 | Ciba-Geigy Corporation | Genes for the synthesis of antipathogenic substances |
| UA48104C2 (uk) | 1991-10-04 | 2002-08-15 | Новартіс Аг | Фрагмент днк, який містить послідовність,що кодує інсектицидний протеїн, оптимізовану для кукурудзи,фрагмент днк, який забезпечує направлену бажану для серцевини стебла експресію зв'язаного з нею структурного гена в рослині, фрагмент днк, який забезпечує специфічну для пилку експресію зв`язаного з нею структурного гена в рослині, рекомбінантна молекула днк, спосіб одержання оптимізованої для кукурудзи кодуючої послідовності інсектицидного протеїну, спосіб захисту рослин кукурудзи щонайменше від однієї комахи-шкідника |
| US5530195A (en) | 1994-06-10 | 1996-06-25 | Ciba-Geigy Corporation | Bacillus thuringiensis gene encoding a toxin active against insects |
| US5631072A (en) | 1995-03-10 | 1997-05-20 | Avondale Incorporated | Method and means for increasing efficacy and wash durability of insecticide treated fabric |
| WO2000015615A1 (en) | 1998-09-15 | 2000-03-23 | Syngenta Participations Ag | Pyridine ketones useful as herbicides |
| DE60111236T2 (de) | 2000-08-25 | 2006-04-27 | Syngenta Participations Ag | Hybriden von crystal proteinen aus bacillus thurigiensis |
| WO2003000906A2 (en) | 2001-06-22 | 2003-01-03 | Syngenta Participations Ag | Plant disease resistance genes |
| US7230167B2 (en) | 2001-08-31 | 2007-06-12 | Syngenta Participations Ag | Modified Cry3A toxins and nucleic acid sequences coding therefor |
| EP1439752B1 (en) | 2001-10-25 | 2005-08-24 | Siamdutch Mosquito Netting Company Limited | Treatment of fabric materials with an insecticide |
| AR037856A1 (es) | 2001-12-17 | 2004-12-09 | Syngenta Participations Ag | Evento de maiz |
| US20050132500A1 (en) | 2003-12-22 | 2005-06-23 | Basf Aktiengesellschaft | Composition for impregnation of fibers, fabrics and nettings imparting a protective activity against pests |
| KR100963370B1 (ko) | 2004-02-18 | 2010-06-14 | 이시하라 산교 가부시끼가이샤 | 안트라닐아미드계 화합물, 그의 제조 방법 및 그것을함유하는 유해 생물 방제제 |
| DE102004023894A1 (de) | 2004-05-12 | 2005-12-08 | Basf Ag | Verfahren zur Behandlung von flexiblen Substraten |
| EP1781653A1 (en) | 2004-07-05 | 2007-05-09 | Astex Therapeutics Limited | 3,4-disubstituted pyrazoles as cyclin dependent kinases (cdk) or aurora kinase or glycogen synthase 3 (gsk-3) inhibitors |
| DE102005007160A1 (de) | 2005-02-16 | 2006-08-24 | Basf Ag | Pyrazolcarbonsäureanilide, Verfahren zu ihrer Herstellung und sie enthaltende Mittel zur Bekämpfung von Schadpilzen |
| DE102005020889A1 (de) | 2005-05-04 | 2006-11-09 | Fritz Blanke Gmbh & Co.Kg | Verfahren zur antimikrobiellen Ausrüstung von textilen Flächengebilden |
| AP2007004257A0 (en) | 2005-06-03 | 2007-12-31 | Basf Ag | Composition for impregnation of fibres fabrics andnettings imparting a protective activity against pests |
| ES2443690T3 (es) | 2005-09-02 | 2014-02-20 | Nissan Chemical Industries, Ltd. | Compuesto de benzamida sustituido con isoxazolina y agente controlador de organismos dañinos |
| GEP20115161B (en) | 2005-10-25 | 2011-02-10 | Syngenta Participations Ag | Heterocyclic amide derivatives useful as microbiocides |
| WO2007090739A1 (de) | 2006-02-03 | 2007-08-16 | Basf Se | Verfahren zum behandeln von substraten |
| WO2008128968A1 (en) | 2007-04-19 | 2008-10-30 | Novartis Ag | Nicotinic acid derivatives as modulators of metabotropic glutamate receptor-5 |
| EP2158354B1 (en) | 2007-06-12 | 2012-04-04 | Basf Se | Aqueous formulation and process for the impregnation of non-living-materials imparting a protective activity against pests |
| JP5369854B2 (ja) | 2008-04-21 | 2013-12-18 | 住友化学株式会社 | 有害節足動物防除組成物および縮合複素環化合物 |
| EA018139B1 (ru) | 2008-11-25 | 2013-05-30 | Чжаохай Цинь | Гидрокарбилиден нитрогидразинкарбоксимидамиды и способ их получения, а также их применения в качестве инсектицида |
| US8273764B2 (en) | 2009-04-28 | 2012-09-25 | Sumitomo Chemical Company, Limited | Fused heterocyclic compounds and use thereof |
| TW201234965A (en) | 2010-12-24 | 2012-09-01 | Sumitomo Chemical Co | Fused heterocyclic compound and use for pest control thereof |
| TWI528899B (zh) | 2010-12-29 | 2016-04-11 | 杜邦股份有限公司 | 中離子性殺蟲劑 |
| TWI589570B (zh) | 2011-08-04 | 2017-07-01 | 住友化學股份有限公司 | 稠合雜環化合物及其在病蟲害防制上之用途 |
| UY35421A (es) | 2013-03-15 | 2014-10-31 | Nihon Nohyaku Co Ltd | Compuesto heterocíclico condensado o su sal, insecticida agrícola u hortícola que comprende el comp uesto y método de uso del insecticida |
| MX2015017821A (es) | 2013-07-02 | 2016-04-15 | Syngenta Participations Ag | Heterociclos bi-o triciclicos activos como plaguicidas con sustituyentes que contienen azufre. |
| WO2016039441A1 (ja) | 2014-09-12 | 2016-03-17 | 日本農薬株式会社 | イミダゾピリダジン化合物又はその塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法 |
| CN106795167B (zh) | 2014-10-16 | 2021-02-09 | 先正达参股股份有限公司 | 具有含硫取代基的杀有害生物活性的四环杂环衍生物 |
| BR112017012232B1 (pt) * | 2014-12-11 | 2021-08-17 | Syngenta Participations Ag | Derivados tetraciclicos ativos em termos pesticidas com substituintes contendo enxofre |
| PL3233851T3 (pl) * | 2014-12-17 | 2020-12-14 | Syngenta Participations Ag | Aktywne pestycydowo heterocykliczne pochodne z podstawnikami zawierającymi siarkę |
| JP2018052816A (ja) * | 2014-12-26 | 2018-04-05 | 日本農薬株式会社 | シクロアルキル基を有する縮合複素環化合物又はその塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法 |
| WO2016116338A1 (en) | 2015-01-19 | 2016-07-28 | Syngenta Participations Ag | Pesticidally active polycyclic derivatives with sulfur containing substituents |
| TWI696612B (zh) * | 2015-01-29 | 2020-06-21 | 日商日本農藥股份有限公司 | 具有環烷基吡啶基的稠合雜環化合物或其鹽類及含有該化合物的農園藝用殺蟲劑以及其使用方法 |
| EP3268361B1 (en) * | 2015-03-12 | 2019-09-18 | Syngenta Participations AG | Pesticidally active tetracyclic derivatives with sulfur containing substituents |
| EP3380470A1 (en) | 2015-11-23 | 2018-10-03 | Syngenta Participations AG | Pesticidally active heterocyclic derivatives with sulphur and cyclopropyl containing substituents |
-
2017
- 2017-12-08 JP JP2019531707A patent/JP7113014B2/ja active Active
- 2017-12-08 EP EP17816655.9A patent/EP3554242A1/en active Pending
- 2017-12-08 CN CN201780074392.8A patent/CN110022682B/zh active Active
- 2017-12-08 US US16/470,165 patent/US20190308982A1/en not_active Abandoned
- 2017-12-08 WO PCT/EP2017/081968 patent/WO2018108726A1/en not_active Ceased
- 2017-12-08 BR BR112019012127-7A patent/BR112019012127A2/pt not_active Application Discontinuation
-
2021
- 2021-09-07 US US17/468,051 patent/US12421237B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| US20210403478A1 (en) | 2021-12-30 |
| EP3554242A1 (en) | 2019-10-23 |
| US12421237B2 (en) | 2025-09-23 |
| CN110022682B (zh) | 2022-03-01 |
| WO2018108726A1 (en) | 2018-06-21 |
| JP7113014B2 (ja) | 2022-08-04 |
| BR112019012127A2 (pt) | 2019-11-05 |
| JP2020502115A (ja) | 2020-01-23 |
| CN110022682A (zh) | 2019-07-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12134612B2 (en) | Pesticidally active polycyclic derivatives with sulfur containing substituents | |
| US12421237B2 (en) | Pesticidally active heterocyclic derivatives with sulfur containing substituents | |
| US10051864B2 (en) | Pesticidally active heterocyclic derivatives with sulphur containing substituents | |
| US10081641B2 (en) | Pesticidally active heterocyclic derivatives with sulphur containing substituents | |
| US9949483B2 (en) | Pesticidally active heterocyclic derivatives with sulphur containing substituents | |
| US10323031B2 (en) | Pesticidally active tetracyclic derivatives with sulfur containing substituents | |
| US11440910B2 (en) | Pesticidally active heterocyclic derivatives with sulfur containing substituents | |
| US10945435B2 (en) | Imidazopyrimidine derivatives with sulfur containing phenyl and pyridyl substituents | |
| US20170367332A1 (en) | Pesticidally active polycyclic derivatives with sulfur containing substituents | |
| US11413291B2 (en) | Pesticidally active heterocyclic derivatives with sulfur containing substituents | |
| US20180319789A1 (en) | Pesticidally active tetracyclic derivatives with sulfur containing substituents | |
| EP3245192A1 (en) | Pesticidally active heterocyclic derivatives with sulphur containing substituents | |
| EP3227285B1 (en) | Pesticidally active amide heterocyclic derivatives with sulphur containing substituents | |
| WO2018215304A1 (en) | Tetracyclic pyridazine sulphur containing compounds and their use as pesticides | |
| WO2018091389A1 (en) | Pesticidally active heterocyclic derivatives with sulphur containing substituents |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SYNGENTA PARTICIPATIONS AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EDMUNDS, ANDREW;RENDLER, SEBASTIAN;MUEHLEBACH, MICHEL;AND OTHERS;SIGNING DATES FROM 20170812 TO 20171211;REEL/FRAME:049941/0255 |
|
| AS | Assignment |
Owner name: SYNGENTA PARTICIPATONS AG, SWITZERLAND Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE FOR INVENTORS 6 AND 7 PREVIOUSLY RECORDED AT REEL: 49941 FRAME: 255. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:EDMUNDS, ANDREW;RENDLER, SEBASTIAN;MUEHLEBACH, MICHEL;AND OTHERS;SIGNING DATES FROM 20171208 TO 20171211;REEL/FRAME:049977/0170 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |