US20180366707A1 - Solid-state battery separators and methods of fabrication - Google Patents

Solid-state battery separators and methods of fabrication Download PDF

Info

Publication number
US20180366707A1
US20180366707A1 US16/109,295 US201816109295A US2018366707A1 US 20180366707 A1 US20180366707 A1 US 20180366707A1 US 201816109295 A US201816109295 A US 201816109295A US 2018366707 A1 US2018366707 A1 US 2018366707A1
Authority
US
United States
Prior art keywords
cathode
anode
electrolyte
solid
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/109,295
Inventor
Lonnie G. Johnson
David Ketema JOHNSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Battery Technologies Inc
Original Assignee
Johnson Battery Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Battery Technologies Inc filed Critical Johnson Battery Technologies Inc
Priority to US16/109,295 priority Critical patent/US20180366707A1/en
Assigned to JOHNSON BATTERY TECHNOLOGIES, INC. reassignment JOHNSON BATTERY TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOHNSON, DAVID KETEMA, JOHNSON, LONNIE G.
Publication of US20180366707A1 publication Critical patent/US20180366707A1/en
Priority to US16/918,647 priority patent/US20200335756A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • H01M2/1646
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0411Methods of deposition of the material by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Solid-state Lithium batteries were developed by Duracell in the 1970's and made commercially available in the 1980's but are no longer produced.
  • the cells used a lithium metal anode, a dispersed phase electrolyte of lithium iodide and Al 2 O 3 and a metal salt as the cathode.
  • the Li/LiI(Al 2 O 3 )/metal salt construction was a true solid-state battery. These batteries were not rechargeable.
  • the total thickness of the cell is typically less than 10 um with the cathode being less than 4 um, the solid electrolyte around 2 um (just sufficient to provide electrical isolation of the cathode and anode) and the Li anode also around 2 um. Since strong chemical bonding (both within each layer and between the layers of the cell) is provided by the physical vapor deposition technique, the transport properties are excellent.
  • the solid electrolyte LiPON has a conductivity of only 2 ⁇ 10 ⁇ 6 S/cm- 1 (fifty times lower than that of the LiI(Al 2 O 3 ) solid electrolyte used in the Duracell battery described above), the impedance of the thin 2 um layer is very small allowing for very high rate capability. Batteries based on this technology are very expensive to fabricate, are very small, and have very low capacity.
  • the cells consist of thick ( ⁇ 100 um) porous composite cathodes cast on a thin ( ⁇ 10 um) Al foil current collector.
  • the composite cathode typically contains LiCoO 2 as the active material due to its high capacity and good cycle life, and carbon black to provide electrical conductivity throughout the layer.
  • a thin polymer separator is used to provide electrical isolation between the cathode and the carbon based anode which intercalates Li during the charge cycle.
  • the cell is immersed in liquid electrolyte which provides very high conductivity for the transport of Li ions between the cathode and anode during charge and discharge. Because the thick composite cathode is porous, the liquid electrolyte is absorbed into and fills the structure, and thus provides excellent surface contact with the LiCoO2 active material to allow fast transport of Li ions throughout the cell with minimal impedance.
  • the liquid electrolyte itself consists of a Li salt (for example, LiPF 6 ) in a solvent blend including ethylene carbonate and other linear carbonates such as dimethyl carbonate.
  • Liquid electrolytes are generally volatile and subject to pressure build up explosion and fire under a high charge rate, a high discharge rate, and/or internal short circuit conditions. Charging at a high rate can cause dendritic lithium growth on the surface of the anode. The resulting dendrites can extend through the separator and cause a short circuit in the cell.
  • the self-discharge and efficiency of the cell is limited by side reactions and corrosion of the cathode by the liquid electrolyte.
  • the liquid electrolyte also creates a hazard if the cell over-heats due to overvoltage or short circuit conditions creating another potential fire or explosion hazard.
  • solid-state batteries that employ high capacity lithium intercalation compounds are being developed.
  • active battery cathode material e.g., LiNiMnCoO 2 , LiCoO 2 , LiMn 2 O 4 Li 4 Ti 5 O 12 or similar
  • an electrically conductive material e.g., carbon black
  • lithium ion conductive glass electrolyte material such as Li 3x La 2/3-x TiO 3
  • the precursor When gelled and subsequently cured, the precursor is transformed into a solid lithium ion conductive glass electrolyte.
  • Past attempts at constructing such all-solid-state batteries have been limited by the need to bind the materials together in order to facilitate effective lithium ion transport across interfaces. This binding process has been attempted by sintering at high temperature. The temperatures required for effective sintering are in the range of 600° C. and higher. The problem has been that the cathode and electrolyte materials will react with each other at such sintering temperatures resulting in high impedance interfaces and an ineffective battery.
  • a cathode is formed by mixing a lithium active material, an electrically conductive material, and the liquid sol gel precursor to form a slurry or paste.
  • the cathode can be formed as either a thick pellet or as a thin casting containing the mixture of cathode components.
  • the cathode is held together by the ion conductive glass electrolyte matrix that is formed by gelling and curing the sol-gel precursor solution. Curing temperature for the gelled precursor is in the range of 300° C., thus parasitic reactions are avoided.
  • the all-solid-state primary cell developed by Duracell and described in detail above demonstrated very high energy densities of up to 1000 Wh/L and excellent performance in terms of safety, stability, and low self-discharge.
  • the cell impedance was very high, severely limiting the discharge rate of the battery.
  • This type of cell is also restricted in application because the electrochemical window is limited to less than three volts due to the iodide ions in the electrolyte which are oxidized above approximately three volts.
  • a stable rechargeable version of this cell was never developed.
  • the vacuum deposition equipment required to fabricate the cells is very expensive and the deposition rates are slow leading to very high manufacturing costs.
  • separators for rechargeable solid-state batteries are described.
  • separators are fabricated from high ionic, conductive filler powder and meltable inorganic solid electrolyte.
  • the meltable inorganic solid electrolyte is configured to bond together the high ionic, conductive filler powder to form the separator.
  • batteries are fabricated from a cathode current collector foil substrate by roll casting a cathode slurry on the cathode current collector foil substrate.
  • batteries are fabricated by coextruding cathode material and separator material and laminating a cathode current collector foil to the cathode material by hot press rolling.
  • FIG. 1 illustrates an example process for constructing a solid-state battery having a final cell structure representative of a low-melt temperature electrolyte bonded solid-state rechargeable battery electrode.
  • FIG. 2 illustrates an example construction of an all-solid-state lithium ion battery cell with an active anode in one or more embodiments of a solid-state battery.
  • FIG. 3 illustrates an example construction of an all-solid-state lithium ion battery cell having an electrode formed by powder materials hot pressed into free standing pellets or wafers in one or more embodiments of a solid-state battery.
  • FIG. 4 illustrates an example construction of an all-solid-state lithium ion battery cell with a lithium magnesium alloy in one or more embodiments of a solid-state battery.
  • FIG. 5 illustrates an example construction of an all-solid-state lithium ion battery cell with coextruded cathode, separator, and anode material in one or more embodiments of a solid-state battery.
  • FIG. 6 illustrates an example construction of an all-solid-state lithium ion battery cell with coextruded cathode and separator material in one or more embodiments of a solid-state battery.
  • FIG. 7 illustrates an example construction of an all-solid-state lithium ion battery with multiple cells in one or more embodiments of a solid-state battery.
  • Implementations of solid-state batteries relate to the construction of various all-solid-state batteries, to include: one or more embodiments of a low melt temperature electrolyte bonded solid-state rechargeable battery electrode; one or more embodiments of a composite separator having a low melt temperature electrolyte component; one or more embodiments of solid-state battery electrodes, separator co-extrusion and roll casting; and/or one or more embodiments of composite low melt temperature electrolyte coated lithium and lithium alloy anodes.
  • Solid-state batteries are the focus of a great deal of attention because of the potential for attractive performance properties including: (1) long shelf life, (2) long term stable power capability, (3) no gassing, (4) broad operating temperature range: 40° C. to 170° C. for pure lithium anodes and up to and beyond 300° C. using active composite anodes, and (5) high volumetric energy density, up to 2000 Wh/L. They are particularly suited for applications requiring long life under low-drain or open-circuit conditions.
  • a solid-state battery with improved manufacturability over existing solid-state batteries, as well as improved performance and safety over existing Li-ion technology can be constructed using simple manufacturing techniques, such as doctor blade casting and hot rolling. Also, other simple and fast techniques, such as low temperature compression using processes that include hot pressing or rolling, can be utilized in the fabrication of a solid-state battery. Further, a solid-state battery can be fabricated at low cost using ceramic processing techniques such as casting and hot roll annealing. An all-solid-state cell can be constructed that has low impedance, utilizes thick active electrodes relative to the thickness of the inert components, can be fabricated on a large scale, and is safe for applications such as powering cell phones, computers, any other type of electronic device, and even electric vehicles. The solid-state rechargeable batteries have long term stability and reliability, and are suitable for use as a permanent component in such devices.
  • a solid-state battery has constituent components that are bonded together by an inorganic glass electrolyte produced in situ by a low melt temperature reaction that bonds the constituent materials together to enable ion conduction continuity.
  • the low temperature bonding or sintering of constituent materials of the battery avoids the problems associated with high temperature sintering such as atomic diffusion and migration that can lead to high interface impedances between lithium active materials and lithium electrolyte materials. It is desirable in one or more implementations to have sintering occur below 600° C.
  • a battery electrode can be constructed with powders of a lithium active material, such as lithium titanium oxide, lithium cobalt oxide, lithium manganese oxide, or other lithium-based electrochemically active battery material.
  • Li 3x La 2/3-x TiO 3 lanthanum lithium zirconium oxide
  • Sulphide Li 10 GeP 2 S 12
  • Ohara Corp LiSICON
  • an additive such as carbon black carbon nanotubes or other suitable material to provide electrical conductivity all bonded together by an inorganic electrolyte such as Lithium Phosphorous Oxynitride
  • a separator can include powder material of a solid-state electrolyte, such as lanthanum lithium zirconium oxide or similar solid-state electrolyte with high lithium ion conductivity bonded together by an electrolyte formed in situ such as Lithium Phosphorous Oxynitride (LiPON) produced by melt and reaction at low temperature reaction.
  • a solid-state electrolyte such as lanthanum lithium zirconium oxide or similar solid-state electrolyte with high lithium ion conductivity bonded together by an electrolyte formed in situ such as Lithium Phosphorous Oxynitride (LiPON) produced by melt and reaction at low temperature reaction.
  • the powder constituents of an electrode or separator are first thoroughly mixed.
  • the mixture can be hot pressed as a pellet or it can be spun, spray, doctor blade casted or printed onto a substrate to produce cathode, electrolyte separator, and anode component layers of a cell that are 3 um to 1 mm thick.
  • the formed cell components are subsequently hot pressed or rolled at an elevated temperature sufficient to soften or melt the low melt temperature electrolyte constituent of the electrode. Upon cooling and re-hardening, the low melt constituent binds the electrode together and provides ionic conductive continuity between the component powder particles.
  • the high ion conductive powder electrolyte component dispersed within the electrode provides low impedance for conduction of lithium ions throughout the structure of the electrode to enable a resulting cell that has high charge and discharge rate capability.
  • the electrically conductive component dispersed in the cathode provides low impedance for transport of electrons throughout the cathode construction to allow for high rate capability.
  • the electrode can be constructed (to include manufactured, fabricated, etc.) to stand alone as in a pressed pellet, or can be fabricated as a thin coating applied to a substrate. If the standalone construction is used, a current collector (aluminum, nickel, copper, or similar metal) can be sputtered or evaporated onto the electrode as a coating to act as a current collector and to provide electrical contact. The current collector could also be bonded as a foil onto one surface of the electrode during the high temperature pressing process. Alternatively, if the electrode is coated onto a non-electrically conductive substrate, then the substrate will be coated first with a suitable current collector to provide electrical contact to the cathode.
  • the substrate material can be a metal foil, ceramic, polymer, and/or any other suitable material.
  • a composite battery electrode is formed using low melt temperature electrolyte as a binder to achieve low interface impedance bonding between the constituents.
  • a surface of the composite electrode formed in this manner can be coated with a thin layer of the same low melt temperature electrolyte used inside the composite cathode to function as an electrolyte separator between the cathode and anode.
  • the coating may include a filler powder of the high ionic conductive material thus forming a composite separator.
  • a thin coating of lithium metal is evaporated onto the electrolyte separator coating to form an anode and thereby complete the battery.
  • a first electrode is formed as an anode containing a Li ion intercalation compound having a low lithium reaction potential.
  • a second electrode is formed as a cathode containing a Li ion intercalation material that has a higher reaction potential than the material used in the first electrode.
  • Metal oxide electrolytes having conductivities in the range of 10 ⁇ 3 S/cm have been fabricated. Yet, use of such materials as solid electrolytes in all-solid-state batteries has been limited.
  • One problem is the high interface impedance that results from the high temperature sintering process used to form the bonds between the electrolyte and active cathode materials. Bonding is needed to enable lithium ion conduction between the materials; however, inter-atomic migration during sintering results in very high interface impedance and very limited functionality of a resulting cell.
  • Lithium Phosphorous OxyNitride is a solid electrolyte that has relatively low ionic conductivity, in the range of 10 ⁇ 6 S/cm. This material is typically produced as a thin film coating by reactive sputter deposition. However, similar ion conductive material can be fabricated in bulk by solid-state reaction, although material produced to date has not been the exact composition and have shown lower ionic conductivity. LiPON is a glass electrolyte that softens at temperatures in the range of 300° C. Reactive sputtered compositions have been fabricated that display conductivity as high as 9.4 ⁇ 10 ⁇ 6 S/cm.
  • LiPON is sputter deposited as a thin, 1 um to 2 um coating on top of a cathode layer followed by a evaporated coating of anode material, typically lithium. Even though the actual conductivity of LiPON is only in the 1e ⁇ 6 S/cm range, its use in thin film form allows relatively low levels of cell resistance to be achieved.
  • the “high” conductivity form of LiPON generally has the formulation Li 3 PN 0.14 O 4 . However as a glass, a range of mixture ratios of the constituent elements is possible and its conductivity varies with composition. It has long been a desire to develop a method for producing LiPON in bulk that has ionic conductivity that is comparable to that produced by reactive sputter deposition.
  • LiNO 3 and LiNO 2 are lithium nitrates salts having melt temperatures of 255° C. and 220° C. respectively.
  • LiH 2 PO 4 and P 2 O 5 are solid acids having melt temperatures of 189° C. and 340° C. respectively. Generally a balanced reaction between one of these salts and one of the acids produces lithium phosphate (LiPO 3 and/or Li 3 PO 4 ) as reaction products.
  • reaction product mixture that includes nitrogen salt dispersed in the lithium phosphate reaction product.
  • An unanticipated result is that the dispersed lithium nitride salt results in formation of a LiPON mixture that displays ionic conductivity at a level similar to that of LiPON produced by reactive sputter deposition.
  • the resulting reaction product is not meltable at low temperature.
  • other electrolytes that exhibit usable conductivity and melt temperature characteristics include Li 2 O—MoO 3 , Li 2 O—WO 3 , LiBr—Li 2 O—WO 3 , and LiBr—Li 2 O—B 2 O 3 —P 2 O 5 .
  • low melt temperature electrolytes have low ionic conductivities, their low melt temperature makes them suitable for effectively bonding with and forming low ionic impedance interfaces with lithium active battery materials and with other, faster lithium ion conductive materials. They can be heated to a molten or near molten state and interfaced with lithium active materials without the inter-atomic migration problems typically associated with high temperature sintering, a problem which until now has limited the practical construction of high performance all-solid-state batteries.
  • the low conductivity, low melt temperature electrolyte is, in effect, employed in thin film form in order to achieve high conductivity rates, similar to the way low conductivity electrolyte is used in thin film batteries.
  • the low melt temperature, low conductivity electrolyte can be used to form thin film links or interfaces between the constituent powder components of the electrode.
  • a lithium active powder such as Lithium Nickel Manganese Cobalt Oxide, an electrically conductive powder such as carbon black or powder like carbon nanotubes, and a fast ionic conductive solid electrolyte powder such as Lithium Lanthanum Zirconium Oxide (LLZO) having ionic conductivity in the 10 ⁇ 3 S/cm range can all be combined with a salt and acid mixture of LiNO 2 or LiNO3 and LiH 2 PO4 or P 2 O 5 . Heating the mixture under pressure at relatively low temperature causes the salt to melt and react with the acid to produce a lithium ion conductive glass matrix that bonds the structure together.
  • the fast LLZO component provides high conductivity rates across the entire depth of the cathode once the constituent powders are all linked to each other via the low interface impedances enabled by the in situ formed electrolyte component.
  • the powder components including the low melt temperature electrolyte in powder form are all mixed together and then hot pressed into a pellet or casting.
  • the combination of heat and pressure causes the low melt temperature electrolyte to soften and flow into the voids between the other component powder particles.
  • the low melt temperature electrolyte bonds the other component particles together and provides ionic conductivity between them.
  • the fast ion conductive electrolyte component functions as the primary lithium ion conductive material for conducting ions across the thickness of the electrode.
  • the low melt temperature electrolyte primarily forms thin interface layers between the component particles to minimize the overall ionic impedance of the electrode.
  • the different functional roles of the two electrolytes enable the construction (to include manufacture, fabrication, etc.) of relatively thick, low impedance electrodes.
  • the low temperature electrolyte is used to form a protective coating on the individual lithium active powder particles.
  • the approach is to mill the lithium active, electrically conductive carbon nanotubes and the low melt temperature electrolyte powders together as a dry mixture in a mill having sufficient energy such that the particle to particle friction generates sufficient heat to melt the low melt temperature electrolyte component.
  • the individual lithium active particles become individually coated with a film of ion conductive glass which also conducts electrons because of the carbon embedded therein.
  • the coated particles can be subsequently mixed, at low energy so as not to disturb the coating, with Lithium Phosphorous Sulfide based super ionic conductive electrolyte material, such as Li 10 GeP 2 S 12 which, without the glass electrolyte coating, could form an unstable interface with the lithium active material.
  • Lithium Phosphorous Sulfide based super ionic conductive electrolyte material such as Li 10 GeP 2 S 12 which, without the glass electrolyte coating, could form an unstable interface with the lithium active material.
  • Yet another embodiment is to apply a thin electrolyte separator coating of the low melt temperature electrolyte, or a mixture of the low melt temperature electrolyte, and a fast lithium ion conductive electrolyte onto the surface of a lithium active electrode (anode or cathode).
  • the coating may be applied by hot pressing or hot roll coating/extrusion.
  • FIG. 1 illustrates an example 100 of constructing an all-solid-state lithium battery cell representative of slurry coated construction with a lithium metal anode in one or more embodiments of solid state batteries.
  • Cathode current collector foil 102 is used as a substrate and as a cathode current collector for the battery.
  • the foil passes over roller 104 and onto casting table 106 .
  • Slurry 108 is premixed by milling and is supplied to the casting table.
  • the slurry includes of a carrier liquid with an active cathode powder, a low melt temperature electrolyte powder, a fast ion conductive electrolyte powder, and an electrically conductive powder.
  • a liquid such as acetonitrile is selected as the liquid component of the slurry based on its chemical stability with the constituent powders in the slurry and it having sufficient vapor pressure for easy removal by evaporation.
  • the slurry 108 is coated onto the foil substrate 102 as the substrate passes across the casting table 106 . Doctor blade 110 is used to control the thickness of the resulting coating.
  • the coated foil 112 passes through dryer oven 114 where the carrier liquid is removed by evaporation and the casting is preheated prior to passing on to hot rollers 116 .
  • the coated foil 112 passes through hot rollers 116 .
  • the temperature of rollers 116 would typically be less than about 500° C.
  • the temperature of rollers 116 is sufficient to melt or soften the low melt temperature electrolyte causing it to flow under the pressure of the rollers into the pores and gaps between the constituent powder particles as the particles are pressed closer to each other under the force applied by the rollers.
  • an electrolyte separator slurry 118 is coated on top of the cathode casting 120 , where the electrolyte separator slurry 118 is electrolyte powder and a liquid carrier, such as acetonitrile. Slurry 118 may optionally contain fast conductive electrolyte powder as well as the low melt temperature component. Doctor blade 124 is used to control the thickness of the casting.
  • the now multilayer casting 122 passes through dryer oven 126 where the carrier liquid is removed from the coating.
  • Hot rollers 128 apply heat and pressure to melt or soften the electrolyte powder coated on the surface of the cathode, as well as melt, at least to some extent, the low melt temperature electrolyte within the cathode yielding monolithic glass electrolyte bonded and coated cathode casting 132 on the current collector foil.
  • anode foil 130 is hot pressed and bonded to the surface of the glass electrolyte coating by hot rollers 134 to form the completed cell casting 136 .
  • Foil 130 may be lithium foil, copper foil, lithium coated copper foil, or other suitable anode or anode current collector material. Alternatively, the anode may be applied by evaporation under vacuum.
  • Solid-state battery cell 140 is representative of the structure of an all-solid-state lithium battery cell with a cathode current collector/substrate 148 , composite cathode 146 , glass electrolyte coating 144 , and anode/anode current collector 142 .
  • FIG. 2 illustrates an example 200 of constructing of an all-solid-state lithium ion battery cell representative of slurry coated construction with an anode current collector foil in one or more embodiments of solid state batteries.
  • An active anode is employed instead of a lithium metal anode.
  • cathode current collector foil 102 is used as a substrate and as a cathode current collector for the battery. The foil 102 passes over roller 104 and onto casting table 106 .
  • Active cathode powder, a low melt temperature electrolyte powder, a fast ion conductive electrolyte powder, an electrically conductive powder, and carrier liquid slurry 108 is coated onto the substrate using doctor blade 110 .
  • the slurry is dried by oven 114 and calendared using hot rollers 116 to bond the structure together.
  • a slurry of electrolyte separator powder 118 is coated on top of the cathode casting 120 using doctor blade 124 , where the electrolyte separator powder 118 is electrolyte reactant powder and a carrier liquid, such as acetonitrile. Slurry 118 may optionally contain a fast conductive electrolyte powder as well as the low melt temperature component.
  • the resulting casting 122 is dried in oven 126 .
  • Hot rollers 128 apply heat and pressure to reflow the low melt temperature electrolyte material in the cathode and separator to bond the structure together.
  • slurry of active anode material 204 is coated on top of thus formed separator coating 202 using doctor blade 206 .
  • the multilayer casting 232 passes through oven 210 for drying and optional preheating, and subsequently through hot rollers 208 for electrolyte reflow and calendaring to bond the structure together.
  • anode current collector foil 214 is hot pressed and bonded to the surface of the thus formed active anode layer 216 of cell casting 212 by hot rollers 134 to form the completed cell casting 218 .
  • the anode current collector may be applied by evaporation.
  • a suitable active material for the cathode layer is lithium nickel cobalt manganese oxide (LiNiCoMnO2) and a suitable anode active material is lithium titanium oxide (LTO). This combination would result in a cell having a mean voltage of approximately 2.0V.
  • Solid-state battery cell 220 is representative of the structure of an all-solid-state lithium ion battery cell with a cathode current collector/substrate 230 , composite cathode 228 , glass electrolyte coating 226 , composite anode 224 and anode/anode current collector 222 .
  • FIG. 3 illustrates an example 300 of constructing an all-solid-state lithium ion battery cell representative of hot pressed electrode powder construction in one or more embodiments of solid state batteries.
  • the basic structure of the cell is similar to that of the cells depicted in FIGS. 1 and 2 .
  • the electrode powder materials are hot pressed into free standing pellets or wafers as opposed to using a liquid carrier to make a slurry for casting onto a substrate.
  • Cathode and anode pellets can be used to form batteries that have an integrated circuit chip or pellet like configuration.
  • the low melt temperature electrolyte performs the dual function of providing low interface impedance particle to particle ionic conduction and of bonding the constituent powders together.
  • a measured amount of electrode or separator powder mixture is placed in a die and hot pressed at a temperature, approximately 300° C., which is sufficient to reflow the low temperature electrolyte component of the powder and bond the constituent powders together.
  • the shape of the die and the amount of powder placed in the die determines the physical dimensions of the resulting pellet or wafer.
  • measured amounts of cathode powder mixture 302 , separator powder 304 , and active anode powder 306 are each individually placed at 312 inside cavity 310 of heated die 314 , the die being heated by heating element 318 from power supply 316 , and hot pressed by piston 308 to form the respective component layers of a battery cell.
  • Dies can be configured to produce prismatic shaped cathode 324 , prismatic shaped electrolyte separator 322 , and prismatic shaped active anode 320 .
  • dies could be configured to form disc shaped cell components as represented by cathode 326 , separator 330 , and anode 332 or even other configurations. The thickness of the component layers depends on the amount of powder used.
  • the individual components 334 , 336 , and 338 may be placed together in a heated die such as illustrated by 340 and hot pressed by piston 342 , where the components are fused together to form a complete cell structure.
  • the cavity shape of die 340 is selected to make the desired shape of the cell component to form a prismatic shaped cell 344 , a disc shaped cell 328 or other shapes.
  • Anode and cathode current collectors may be vacuum evaporated or hot pressed as foils onto the anode and cathode surfaces of the cells.
  • FIG. 4 illustrates an example 400 of an all-solid-state lithium ion battery cell in one or more embodiments of solid state batteries.
  • a lithium magnesium alloy can be employed as a substrate and anode.
  • the lithium magnesium alloy foil 402 passes over roller 404 and onto casting table 406 .
  • a doctor blade 410 is used to cast electrolyte separator material 408 onto lithium magnesium foil 402 .
  • the coated foil 412 passes through dryer oven 414 where the carrier liquid is removed by evaporation and the casting is preheated prior to passing on to hot rollers 416 .
  • doctor blade 424 is used to apply cathode coating material 418 on top of the electrolyte separator layer of anode-separator casting 420 .
  • the anode, separator, cathode stack 422 is dried in drying oven 426 and hot rolled with hot rollers 428 .
  • the cell structure is completed by applying a current collector foil layer 430 to the completed anode, separator, cathode stack 432 with hot rollers 434 to bond together the completed cell casting 436 .
  • Solid-state battery cell 440 is representative of the structure of an all-solid-state lithium battery cell with a lithium magnesium alloy anode/substrate 448 , composite cathode 446 , glass electrolyte coating 444 , and a cathode current collector 442 .
  • the foil 402 may be a non-active material such as copper foil. In such an embodiment, the lithium anode is formed during the first charge cycle.
  • FIG. 5 illustrates an example 500 of an all-solid-state lithium ion battery cell in one or more embodiments of solid state batteries.
  • the example 500 illustrates co-extrusion of the cathode material 508 , separator material 506 , and anode material 504 using extrusion die 510 .
  • the extruded material is supplied to hot rollers 502 where cathode current collector 512 and anode current collector 514 are laminated onto the resulting battery structure.
  • the continuous web of battery structure is subsequently cut into individual battery cells as illustrated by laser cutting table 516 .
  • Solid-state battery cell 520 is representative of the structure of an all-solid-state lithium ion battery cell with a cathode current collector/substrate 528 , composite cathode 526 , separator material 524 , composite anode 522 , and anode current collector 530 .
  • FIG. 6 illustrates an example 600 of an all-solid-state lithium ion battery cell in one or more embodiments of solid state batteries.
  • the example 600 illustrates the use of die 606 to co-extrude cathode material 604 and separator material 602 .
  • Cathode current collector 608 is laminated onto the cathode side of the cathode separator structure by hot rollers 610 .
  • Anode deposition chamber 626 applies an anode coating to the surface of the separator of the cathode-separator stack 624 by evaporation using evaporator 622 .
  • Continuous mask 612 is configured having a series of open window areas that determine the deposition pattern of the evaporated lithium.
  • Battery structure 628 illustrates an example of a series of anodes applied along the separator surface. Such a patterned deposition simplifies cutting the continuous web into individual cells. For example, the cells can be cut between individual cells as illustrated by dotted line 630 without concern about short circuiting the anode to the cathode along the cut line.
  • Hot press 616 is utilized for thermal lamination of precut anode current collectors onto the surface of the separator.
  • the anode current collectors are conveyed from a supply reel 614 through hot press 616 , where they are laminated to the separator, with the leftover carrier tape for the precut anode current collectors captured by take-up spool 618 .
  • the evaporation and thermal lamination may be performed in series, where the evaporated lithium functions as a wetting layer to enhance the bonding of the subsequent thermally bonded anode current collector structure.
  • the thermally bonded anode structure may be lithium, copper, or other suitable material.
  • Evaporation chamber 626 may alternatively apply copper as an anode structure as opposed to a lithium layer. The copper would function as a current collector whereby lithium would evolve as an anode as it is plated from the cathode on first charge.
  • FIG. 7 illustrates an example 700 of an all-solid-state lithium ion battery constructed with multiple cells, which are constructed with aluminum current collectors 702 , sol gel LLZO glass separators 704 , sol gel LLZO bonded LTO anodes 706 , and sol gel LLZO bonded cathodes 708 .
  • the example all-solid-state battery can be constructed using a series of alternating layers of cathode, cathode current collector, cathode, separator, anode, anode current collector, anode, separator, cathode and so on.
  • electrodes for rechargeable solid-state batteries are described.
  • electrodes are fabricated from electrochemically active powder material and meltable inorganic solid electrolyte.
  • the meltable inorganic solid electrolyte is configured to bond together the electrochemically active powder material to form the electrode.
  • separators for rechargeable solid-state batteries are described.
  • separators are fabricated from high ionic, conductive filler powder and meltable inorganic solid electrolyte.
  • the meltable inorganic solid electrolyte is configured to bond together the high ionic, conductive filler powder to form the separator.
  • batteries are fabricated from a cathode current collector foil substrate by roll casting a cathode slurry on the cathode current collector foil substrate.
  • batteries are fabricated by coextruding cathode material and separator material and laminating a cathode current collector foil to the cathode material by hot press rolling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

Embodiments of solid-state batteries, battery components, and related construction methods are described. The components include one or more embodiments of a low melt temperature electrolyte bonded solid-state rechargeable battery electrode and one or more embodiments of a composite separator having a low melt temperature electrolyte component. Embodiments of methods for fabrication of solid-state batteries and battery components are described. These methods include co-extrusion, hot pressing and roll casting.

Description

    RELATED APPLICATIONS
  • This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Application No. 61/711,676, filed Oct. 9, 2012, entitled “Solid-State Batteries,” the content of which is hereby incorporated by reference.
  • BACKGROUND
  • Solid-state Lithium batteries were developed by Duracell in the 1970's and made commercially available in the 1980's but are no longer produced. The cells used a lithium metal anode, a dispersed phase electrolyte of lithium iodide and Al2O3 and a metal salt as the cathode. The Li/LiI(Al2O3)/metal salt construction was a true solid-state battery. These batteries were not rechargeable.
  • It has long been a goal to develop a rechargeable solid state lithium-based battery using inorganic solid electrolyte material because of the passivation reactions and unstable interfaces that form between organic electrolyte materials such as liquid and solid polymer electrolytes. In the early 1990's another all-solid-state battery was developed at the Oak Ridge National Laboratories. These cells consist of thin films of cathode, inorganic electrolyte, and anode materials deposited on a ceramic substrate using vacuum deposition techniques including RF sputtering for the cathode and electrolyte, and vacuum evaporation of the Li metal anode. The total thickness of the cell is typically less than 10 um with the cathode being less than 4 um, the solid electrolyte around 2 um (just sufficient to provide electrical isolation of the cathode and anode) and the Li anode also around 2 um. Since strong chemical bonding (both within each layer and between the layers of the cell) is provided by the physical vapor deposition technique, the transport properties are excellent. Although the solid electrolyte LiPON has a conductivity of only 2×10−6 S/cm-1 (fifty times lower than that of the LiI(Al2O3) solid electrolyte used in the Duracell battery described above), the impedance of the thin 2 um layer is very small allowing for very high rate capability. Batteries based on this technology are very expensive to fabricate, are very small, and have very low capacity.
  • Currently, Li-ion battery chemistry gives the highest performance and is becoming the most widely used of all battery chemistries. The cells consist of thick (˜100 um) porous composite cathodes cast on a thin (˜10 um) Al foil current collector. The composite cathode typically contains LiCoO2 as the active material due to its high capacity and good cycle life, and carbon black to provide electrical conductivity throughout the layer. A thin polymer separator is used to provide electrical isolation between the cathode and the carbon based anode which intercalates Li during the charge cycle. The cell is immersed in liquid electrolyte which provides very high conductivity for the transport of Li ions between the cathode and anode during charge and discharge. Because the thick composite cathode is porous, the liquid electrolyte is absorbed into and fills the structure, and thus provides excellent surface contact with the LiCoO2 active material to allow fast transport of Li ions throughout the cell with minimal impedance.
  • The liquid electrolyte itself consists of a Li salt (for example, LiPF6) in a solvent blend including ethylene carbonate and other linear carbonates such as dimethyl carbonate. Despite improvements in energy density and cycle life, there remains an underlying problem with batteries that contain liquid electrolytes. Liquid electrolytes are generally volatile and subject to pressure build up explosion and fire under a high charge rate, a high discharge rate, and/or internal short circuit conditions. Charging at a high rate can cause dendritic lithium growth on the surface of the anode. The resulting dendrites can extend through the separator and cause a short circuit in the cell. The self-discharge and efficiency of the cell is limited by side reactions and corrosion of the cathode by the liquid electrolyte. The liquid electrolyte also creates a hazard if the cell over-heats due to overvoltage or short circuit conditions creating another potential fire or explosion hazard.
  • To address safety and reliability problems with lithium based batteries that employ liquid electrolytes, and to achieve high energy density, solid-state batteries that employ high capacity lithium intercalation compounds are being developed. These all-solid-state batteries consist of a composite cathode containing active battery cathode material (e.g., LiNiMnCoO2, LiCoO2, LiMn2O4 Li4Ti5O12 or similar), an electrically conductive material (e.g., carbon black), and lithium ion conductive glass electrolyte material, such as Li3xLa2/3-xTiO3 (x=0.11) (LLTO) or Li7La3Zr2O12 (LLZO) that is formed in situ from a liquid precursor via a low temperature sol gel process. When gelled and subsequently cured, the precursor is transformed into a solid lithium ion conductive glass electrolyte. Past attempts at constructing such all-solid-state batteries have been limited by the need to bind the materials together in order to facilitate effective lithium ion transport across interfaces. This binding process has been attempted by sintering at high temperature. The temperatures required for effective sintering are in the range of 600° C. and higher. The problem has been that the cathode and electrolyte materials will react with each other at such sintering temperatures resulting in high impedance interfaces and an ineffective battery.
  • In constructing a solid-state battery using the low temperature sol gel approach, a cathode is formed by mixing a lithium active material, an electrically conductive material, and the liquid sol gel precursor to form a slurry or paste. The cathode can be formed as either a thick pellet or as a thin casting containing the mixture of cathode components. The cathode is held together by the ion conductive glass electrolyte matrix that is formed by gelling and curing the sol-gel precursor solution. Curing temperature for the gelled precursor is in the range of 300° C., thus parasitic reactions are avoided.
  • Construction of battery electrodes using the sol gel approach to produce glass electrolyte as a binder requires proper gelling, drying, and curing of the precursor. Gelling of precursors for LLTO and LLZO is a hygroscopic process. Moisture must diffuse into the cathode structure through the tortuous path formed by the densely packed cathode powder materials in order for the cathode material to gel properly throughout. Secondly, drying of the precursor after gelling can be time consuming because solvents and alcohols must diffuse through the gelled electrolyte within the tortuous compacted electrode powder structure.
  • The all-solid-state primary cell developed by Duracell and described in detail above demonstrated very high energy densities of up to 1000 Wh/L and excellent performance in terms of safety, stability, and low self-discharge. However, due to the pressed powder construction and the requirement for a thick electrolyte separation layer, the cell impedance was very high, severely limiting the discharge rate of the battery. This type of cell is also restricted in application because the electrochemical window is limited to less than three volts due to the iodide ions in the electrolyte which are oxidized above approximately three volts. In addition, a stable rechargeable version of this cell was never developed.
  • The all-solid-state thin film battery developed by Oak Ridge National Laboratories, also detailed above, addresses many of the problems associated with Li-ion technology, but also has limitations of its own. The vacuum deposition equipment required to fabricate the cells is very expensive and the deposition rates are slow leading to very high manufacturing costs. Also, in order to take advantage of the high energy density and power density afforded by use of the thin films, it is necessary to deposit the films on a substrate that is much smaller and lighter than the battery layers themselves so that the battery layers make up a significant portion of the volume and weight of the battery compared to the inert substrate and packaging components. It is not practical to simply deposit thicker layers as the cathode thickness is limited because lithium diffusion rates within the active material limit the thickness of a cathode that can be charged and discharged at useful rates. Therefore the films must be deposited on very thin substrates (<10 um) or multiple batteries must be built up on a single substrate, which leads to problems with maintaining low interface impedance with the electrolyte during the required high temperature annealing of the cathode material after deposition.
  • SUMMARY
  • This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
  • Implementations of separators for rechargeable solid-state batteries are described. In at least some embodiments, separators are fabricated from high ionic, conductive filler powder and meltable inorganic solid electrolyte. The meltable inorganic solid electrolyte is configured to bond together the high ionic, conductive filler powder to form the separator.
  • Implementations for methods of fabricating rechargeable solid-state batteries are described. In at least some embodiments, batteries are fabricated from a cathode current collector foil substrate by roll casting a cathode slurry on the cathode current collector foil substrate.
  • Implementations for methods of fabricating rechargeable solid-state batteries are described. In other embodiments, batteries are fabricated by coextruding cathode material and separator material and laminating a cathode current collector foil to the cathode material by hot press rolling.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of Solid-State Battery Separators and Methods of Fabrication are described with reference to the following Figures. The same numbers may be used throughout to reference like features and components that are shown in the Figures:
  • FIG. 1 illustrates an example process for constructing a solid-state battery having a final cell structure representative of a low-melt temperature electrolyte bonded solid-state rechargeable battery electrode.
  • FIG. 2 illustrates an example construction of an all-solid-state lithium ion battery cell with an active anode in one or more embodiments of a solid-state battery.
  • FIG. 3 illustrates an example construction of an all-solid-state lithium ion battery cell having an electrode formed by powder materials hot pressed into free standing pellets or wafers in one or more embodiments of a solid-state battery.
  • FIG. 4 illustrates an example construction of an all-solid-state lithium ion battery cell with a lithium magnesium alloy in one or more embodiments of a solid-state battery.
  • FIG. 5 illustrates an example construction of an all-solid-state lithium ion battery cell with coextruded cathode, separator, and anode material in one or more embodiments of a solid-state battery.
  • FIG. 6 illustrates an example construction of an all-solid-state lithium ion battery cell with coextruded cathode and separator material in one or more embodiments of a solid-state battery.
  • FIG. 7 illustrates an example construction of an all-solid-state lithium ion battery with multiple cells in one or more embodiments of a solid-state battery.
  • DETAILED DESCRIPTION
  • Implementations of solid-state batteries relate to the construction of various all-solid-state batteries, to include: one or more embodiments of a low melt temperature electrolyte bonded solid-state rechargeable battery electrode; one or more embodiments of a composite separator having a low melt temperature electrolyte component; one or more embodiments of solid-state battery electrodes, separator co-extrusion and roll casting; and/or one or more embodiments of composite low melt temperature electrolyte coated lithium and lithium alloy anodes. Solid-state batteries are the focus of a great deal of attention because of the potential for attractive performance properties including: (1) long shelf life, (2) long term stable power capability, (3) no gassing, (4) broad operating temperature range: 40° C. to 170° C. for pure lithium anodes and up to and beyond 300° C. using active composite anodes, and (5) high volumetric energy density, up to 2000 Wh/L. They are particularly suited for applications requiring long life under low-drain or open-circuit conditions.
  • In embodiments, a solid-state battery with improved manufacturability over existing solid-state batteries, as well as improved performance and safety over existing Li-ion technology can be constructed using simple manufacturing techniques, such as doctor blade casting and hot rolling. Also, other simple and fast techniques, such as low temperature compression using processes that include hot pressing or rolling, can be utilized in the fabrication of a solid-state battery. Further, a solid-state battery can be fabricated at low cost using ceramic processing techniques such as casting and hot roll annealing. An all-solid-state cell can be constructed that has low impedance, utilizes thick active electrodes relative to the thickness of the inert components, can be fabricated on a large scale, and is safe for applications such as powering cell phones, computers, any other type of electronic device, and even electric vehicles. The solid-state rechargeable batteries have long term stability and reliability, and are suitable for use as a permanent component in such devices.
  • In embodiments, a solid-state battery has constituent components that are bonded together by an inorganic glass electrolyte produced in situ by a low melt temperature reaction that bonds the constituent materials together to enable ion conduction continuity. The low temperature bonding or sintering of constituent materials of the battery avoids the problems associated with high temperature sintering such as atomic diffusion and migration that can lead to high interface impedances between lithium active materials and lithium electrolyte materials. It is desirable in one or more implementations to have sintering occur below 600° C. A battery electrode can be constructed with powders of a lithium active material, such as lithium titanium oxide, lithium cobalt oxide, lithium manganese oxide, or other lithium-based electrochemically active battery material. A solid-state electrolyte can be utilized, such as lanthanum lithium titanium oxide (Li3xLa2/3-xTiO3 (x=0.11)), lanthanum lithium zirconium oxide (Garnet (Li7La3Zr2O12)), Sulphide (Li10GeP2S12), Ohara Corp (LiSICON), or similar solid-state electrolyte with high lithium ion conductivity, and an additive such as carbon black carbon nanotubes or other suitable material to provide electrical conductivity all bonded together by an inorganic electrolyte such as Lithium Phosphorous Oxynitride (LiPON).
  • The active material selected for inclusion in a given electrode can be chosen for a desired operating voltage and capacity, and whether its intended function is as a cathode or anode in the final cell. In embodiments, a separator can include powder material of a solid-state electrolyte, such as lanthanum lithium zirconium oxide or similar solid-state electrolyte with high lithium ion conductivity bonded together by an electrolyte formed in situ such as Lithium Phosphorous Oxynitride (LiPON) produced by melt and reaction at low temperature reaction.
  • The powder constituents of an electrode or separator are first thoroughly mixed. The mixture can be hot pressed as a pellet or it can be spun, spray, doctor blade casted or printed onto a substrate to produce cathode, electrolyte separator, and anode component layers of a cell that are 3 um to 1 mm thick. The formed cell components are subsequently hot pressed or rolled at an elevated temperature sufficient to soften or melt the low melt temperature electrolyte constituent of the electrode. Upon cooling and re-hardening, the low melt constituent binds the electrode together and provides ionic conductive continuity between the component powder particles. The high ion conductive powder electrolyte component dispersed within the electrode provides low impedance for conduction of lithium ions throughout the structure of the electrode to enable a resulting cell that has high charge and discharge rate capability. The electrically conductive component dispersed in the cathode provides low impedance for transport of electrons throughout the cathode construction to allow for high rate capability.
  • The electrode can be constructed (to include manufactured, fabricated, etc.) to stand alone as in a pressed pellet, or can be fabricated as a thin coating applied to a substrate. If the standalone construction is used, a current collector (aluminum, nickel, copper, or similar metal) can be sputtered or evaporated onto the electrode as a coating to act as a current collector and to provide electrical contact. The current collector could also be bonded as a foil onto one surface of the electrode during the high temperature pressing process. Alternatively, if the electrode is coated onto a non-electrically conductive substrate, then the substrate will be coated first with a suitable current collector to provide electrical contact to the cathode. The substrate material can be a metal foil, ceramic, polymer, and/or any other suitable material.
  • A composite battery electrode is formed using low melt temperature electrolyte as a binder to achieve low interface impedance bonding between the constituents. A surface of the composite electrode formed in this manner can be coated with a thin layer of the same low melt temperature electrolyte used inside the composite cathode to function as an electrolyte separator between the cathode and anode. The coating may include a filler powder of the high ionic conductive material thus forming a composite separator. A thin coating of lithium metal is evaporated onto the electrolyte separator coating to form an anode and thereby complete the battery.
  • In an alternate design to make a Li-ion cell, a first electrode is formed as an anode containing a Li ion intercalation compound having a low lithium reaction potential. A second electrode is formed as a cathode containing a Li ion intercalation material that has a higher reaction potential than the material used in the first electrode. The anode and cathode thus formed are bonded to each other using a low melt temperature electrolyte separator layer to form an all-solid-state battery having a solid-state glass electrolyte bonded cathode and solid-state glass electrolyte bonded anode.
  • Metal oxide electrolytes having conductivities in the range of 10−3 S/cm have been fabricated. Yet, use of such materials as solid electrolytes in all-solid-state batteries has been limited. One problem is the high interface impedance that results from the high temperature sintering process used to form the bonds between the electrolyte and active cathode materials. Bonding is needed to enable lithium ion conduction between the materials; however, inter-atomic migration during sintering results in very high interface impedance and very limited functionality of a resulting cell.
  • On the other hand, Lithium Phosphorous OxyNitride (LiPON) is a solid electrolyte that has relatively low ionic conductivity, in the range of 10−6 S/cm. This material is typically produced as a thin film coating by reactive sputter deposition. However, similar ion conductive material can be fabricated in bulk by solid-state reaction, although material produced to date has not been the exact composition and have shown lower ionic conductivity. LiPON is a glass electrolyte that softens at temperatures in the range of 300° C. Reactive sputtered compositions have been fabricated that display conductivity as high as 9.4×10−6 S/cm. In constructing thin film batteries, LiPON is sputter deposited as a thin, 1 um to 2 um coating on top of a cathode layer followed by a evaporated coating of anode material, typically lithium. Even though the actual conductivity of LiPON is only in the 1e−6 S/cm range, its use in thin film form allows relatively low levels of cell resistance to be achieved. The “high” conductivity form of LiPON generally has the formulation Li3PN0.14O4. However as a glass, a range of mixture ratios of the constituent elements is possible and its conductivity varies with composition. It has long been a desire to develop a method for producing LiPON in bulk that has ionic conductivity that is comparable to that produced by reactive sputter deposition. Another example of low melt temperature, ion conductive material is the amorphous mixture of LiNO3 and nano-Al2O3. The ionic conductivity of LiNO3 and Al2O3 mixture is in the range of 10−6 S/cm, similar to LiPON. LiNO3 and LiNO2 are lithium nitrates salts having melt temperatures of 255° C. and 220° C. respectively. LiH2PO4 and P2O5 are solid acids having melt temperatures of 189° C. and 340° C. respectively. Generally a balanced reaction between one of these salts and one of the acids produces lithium phosphate (LiPO3 and/or Li3PO4) as reaction products. However, including a small percentage of excess salt as a reactant results in a reaction product mixture that includes nitrogen salt dispersed in the lithium phosphate reaction product. An unanticipated result is that the dispersed lithium nitride salt results in formation of a LiPON mixture that displays ionic conductivity at a level similar to that of LiPON produced by reactive sputter deposition. The resulting reaction product is not meltable at low temperature. Alternatively, other electrolytes that exhibit usable conductivity and melt temperature characteristics include Li2O—MoO3, Li2O—WO3, LiBr—Li2O—WO3, and LiBr—Li2O—B2O3—P2O5.
  • Although these example low melt temperature electrolytes have low ionic conductivities, their low melt temperature makes them suitable for effectively bonding with and forming low ionic impedance interfaces with lithium active battery materials and with other, faster lithium ion conductive materials. They can be heated to a molten or near molten state and interfaced with lithium active materials without the inter-atomic migration problems typically associated with high temperature sintering, a problem which until now has limited the practical construction of high performance all-solid-state batteries. The low conductivity, low melt temperature electrolyte is, in effect, employed in thin film form in order to achieve high conductivity rates, similar to the way low conductivity electrolyte is used in thin film batteries.
  • The low melt temperature, low conductivity electrolyte can be used to form thin film links or interfaces between the constituent powder components of the electrode. A lithium active powder such as Lithium Nickel Manganese Cobalt Oxide, an electrically conductive powder such as carbon black or powder like carbon nanotubes, and a fast ionic conductive solid electrolyte powder such as Lithium Lanthanum Zirconium Oxide (LLZO) having ionic conductivity in the 10−3 S/cm range can all be combined with a salt and acid mixture of LiNO2 or LiNO3 and LiH2PO4 or P2O5. Heating the mixture under pressure at relatively low temperature causes the salt to melt and react with the acid to produce a lithium ion conductive glass matrix that bonds the structure together. The fast LLZO component provides high conductivity rates across the entire depth of the cathode once the constituent powders are all linked to each other via the low interface impedances enabled by the in situ formed electrolyte component.
  • To construct an electrode (cathode or anode), the powder components, including the low melt temperature electrolyte in powder form are all mixed together and then hot pressed into a pellet or casting. The combination of heat and pressure causes the low melt temperature electrolyte to soften and flow into the voids between the other component powder particles. The low melt temperature electrolyte bonds the other component particles together and provides ionic conductivity between them. The fast ion conductive electrolyte component functions as the primary lithium ion conductive material for conducting ions across the thickness of the electrode. The low melt temperature electrolyte primarily forms thin interface layers between the component particles to minimize the overall ionic impedance of the electrode. The different functional roles of the two electrolytes enable the construction (to include manufacture, fabrication, etc.) of relatively thick, low impedance electrodes.
  • In an alternate embodiment, the low temperature electrolyte is used to form a protective coating on the individual lithium active powder particles. The approach is to mill the lithium active, electrically conductive carbon nanotubes and the low melt temperature electrolyte powders together as a dry mixture in a mill having sufficient energy such that the particle to particle friction generates sufficient heat to melt the low melt temperature electrolyte component. The individual lithium active particles become individually coated with a film of ion conductive glass which also conducts electrons because of the carbon embedded therein. The coated particles can be subsequently mixed, at low energy so as not to disturb the coating, with Lithium Phosphorous Sulfide based super ionic conductive electrolyte material, such as Li10GeP2S12 which, without the glass electrolyte coating, could form an unstable interface with the lithium active material. Yet another embodiment is to apply a thin electrolyte separator coating of the low melt temperature electrolyte, or a mixture of the low melt temperature electrolyte, and a fast lithium ion conductive electrolyte onto the surface of a lithium active electrode (anode or cathode). The coating may be applied by hot pressing or hot roll coating/extrusion.
  • FIG. 1 illustrates an example 100 of constructing an all-solid-state lithium battery cell representative of slurry coated construction with a lithium metal anode in one or more embodiments of solid state batteries. Cathode current collector foil 102 is used as a substrate and as a cathode current collector for the battery. The foil passes over roller 104 and onto casting table 106. Slurry 108 is premixed by milling and is supplied to the casting table. The slurry includes of a carrier liquid with an active cathode powder, a low melt temperature electrolyte powder, a fast ion conductive electrolyte powder, and an electrically conductive powder. A liquid such as acetonitrile is selected as the liquid component of the slurry based on its chemical stability with the constituent powders in the slurry and it having sufficient vapor pressure for easy removal by evaporation. The slurry 108 is coated onto the foil substrate 102 as the substrate passes across the casting table 106. Doctor blade 110 is used to control the thickness of the resulting coating.
  • The coated foil 112 passes through dryer oven 114 where the carrier liquid is removed by evaporation and the casting is preheated prior to passing on to hot rollers 116. The coated foil 112 passes through hot rollers 116. The temperature of rollers 116 would typically be less than about 500° C. The temperature of rollers 116 is sufficient to melt or soften the low melt temperature electrolyte causing it to flow under the pressure of the rollers into the pores and gaps between the constituent powder particles as the particles are pressed closer to each other under the force applied by the rollers.
  • Next, an electrolyte separator slurry 118 is coated on top of the cathode casting 120, where the electrolyte separator slurry 118 is electrolyte powder and a liquid carrier, such as acetonitrile. Slurry 118 may optionally contain fast conductive electrolyte powder as well as the low melt temperature component. Doctor blade 124 is used to control the thickness of the casting. The now multilayer casting 122 passes through dryer oven 126 where the carrier liquid is removed from the coating. Hot rollers 128 apply heat and pressure to melt or soften the electrolyte powder coated on the surface of the cathode, as well as melt, at least to some extent, the low melt temperature electrolyte within the cathode yielding monolithic glass electrolyte bonded and coated cathode casting 132 on the current collector foil. Finally, anode foil 130 is hot pressed and bonded to the surface of the glass electrolyte coating by hot rollers 134 to form the completed cell casting 136. Foil 130 may be lithium foil, copper foil, lithium coated copper foil, or other suitable anode or anode current collector material. Alternatively, the anode may be applied by evaporation under vacuum. If lithium is not employed, then the lithium anode will be first formed upon the initial charge of the cell as lithium is plated beneath the anode current collector. Solid-state battery cell 140 is representative of the structure of an all-solid-state lithium battery cell with a cathode current collector/substrate 148, composite cathode 146, glass electrolyte coating 144, and anode/anode current collector 142.
  • FIG. 2 illustrates an example 200 of constructing of an all-solid-state lithium ion battery cell representative of slurry coated construction with an anode current collector foil in one or more embodiments of solid state batteries. An active anode is employed instead of a lithium metal anode. Similar to the construction of the lithium metal anode cell, cathode current collector foil 102 is used as a substrate and as a cathode current collector for the battery. The foil 102 passes over roller 104 and onto casting table 106. Active cathode powder, a low melt temperature electrolyte powder, a fast ion conductive electrolyte powder, an electrically conductive powder, and carrier liquid slurry 108 is coated onto the substrate using doctor blade 110. The slurry is dried by oven 114 and calendared using hot rollers 116 to bond the structure together.
  • Next, a slurry of electrolyte separator powder 118 is coated on top of the cathode casting 120 using doctor blade 124, where the electrolyte separator powder 118 is electrolyte reactant powder and a carrier liquid, such as acetonitrile. Slurry 118 may optionally contain a fast conductive electrolyte powder as well as the low melt temperature component. The resulting casting 122 is dried in oven 126. Hot rollers 128 apply heat and pressure to reflow the low melt temperature electrolyte material in the cathode and separator to bond the structure together. Next, slurry of active anode material 204 is coated on top of thus formed separator coating 202 using doctor blade 206. The multilayer casting 232 passes through oven 210 for drying and optional preheating, and subsequently through hot rollers 208 for electrolyte reflow and calendaring to bond the structure together. Finally, anode current collector foil 214 is hot pressed and bonded to the surface of the thus formed active anode layer 216 of cell casting 212 by hot rollers 134 to form the completed cell casting 218. Alternatively, the anode current collector may be applied by evaporation. A suitable active material for the cathode layer is lithium nickel cobalt manganese oxide (LiNiCoMnO2) and a suitable anode active material is lithium titanium oxide (LTO). This combination would result in a cell having a mean voltage of approximately 2.0V. Solid-state battery cell 220 is representative of the structure of an all-solid-state lithium ion battery cell with a cathode current collector/substrate 230, composite cathode 228, glass electrolyte coating 226, composite anode 224 and anode/anode current collector 222.
  • FIG. 3 illustrates an example 300 of constructing an all-solid-state lithium ion battery cell representative of hot pressed electrode powder construction in one or more embodiments of solid state batteries. The basic structure of the cell is similar to that of the cells depicted in FIGS. 1 and 2. However, in an embodiment, the electrode powder materials are hot pressed into free standing pellets or wafers as opposed to using a liquid carrier to make a slurry for casting onto a substrate. Cathode and anode pellets can be used to form batteries that have an integrated circuit chip or pellet like configuration. As in the case of the casted electrodes, the low melt temperature electrolyte performs the dual function of providing low interface impedance particle to particle ionic conduction and of bonding the constituent powders together. A measured amount of electrode or separator powder mixture is placed in a die and hot pressed at a temperature, approximately 300° C., which is sufficient to reflow the low temperature electrolyte component of the powder and bond the constituent powders together. The shape of the die and the amount of powder placed in the die determines the physical dimensions of the resulting pellet or wafer.
  • In FIG. 3, measured amounts of cathode powder mixture 302, separator powder 304, and active anode powder 306 are each individually placed at 312 inside cavity 310 of heated die 314, the die being heated by heating element 318 from power supply 316, and hot pressed by piston 308 to form the respective component layers of a battery cell. Dies can be configured to produce prismatic shaped cathode 324, prismatic shaped electrolyte separator 322, and prismatic shaped active anode 320. Similarly, dies could be configured to form disc shaped cell components as represented by cathode 326, separator 330, and anode 332 or even other configurations. The thickness of the component layers depends on the amount of powder used. The individual components 334, 336, and 338 may be placed together in a heated die such as illustrated by 340 and hot pressed by piston 342, where the components are fused together to form a complete cell structure. The cavity shape of die 340 is selected to make the desired shape of the cell component to form a prismatic shaped cell 344, a disc shaped cell 328 or other shapes. Anode and cathode current collectors may be vacuum evaporated or hot pressed as foils onto the anode and cathode surfaces of the cells.
  • FIG. 4 illustrates an example 400 of an all-solid-state lithium ion battery cell in one or more embodiments of solid state batteries. A lithium magnesium alloy can be employed as a substrate and anode. The lithium magnesium alloy foil 402 passes over roller 404 and onto casting table 406. A doctor blade 410 is used to cast electrolyte separator material 408 onto lithium magnesium foil 402. The coated foil 412 passes through dryer oven 414 where the carrier liquid is removed by evaporation and the casting is preheated prior to passing on to hot rollers 416. After drying and hot rolling to reflow the meltable portion of the electrolyte and form a continuous coating, doctor blade 424 is used to apply cathode coating material 418 on top of the electrolyte separator layer of anode-separator casting 420. The anode, separator, cathode stack 422 is dried in drying oven 426 and hot rolled with hot rollers 428. Then the cell structure is completed by applying a current collector foil layer 430 to the completed anode, separator, cathode stack 432 with hot rollers 434 to bond together the completed cell casting 436. Note that an anode having a solid electrolyte coating applied thereto could be useful in other types of batteries, including those that employ an organic electrolyte such as a liquid or polymer. Solid-state battery cell 440 is representative of the structure of an all-solid-state lithium battery cell with a lithium magnesium alloy anode/substrate 448, composite cathode 446, glass electrolyte coating 444, and a cathode current collector 442. The foil 402 may be a non-active material such as copper foil. In such an embodiment, the lithium anode is formed during the first charge cycle.
  • FIG. 5 illustrates an example 500 of an all-solid-state lithium ion battery cell in one or more embodiments of solid state batteries. The example 500 illustrates co-extrusion of the cathode material 508, separator material 506, and anode material 504 using extrusion die 510. The extruded material is supplied to hot rollers 502 where cathode current collector 512 and anode current collector 514 are laminated onto the resulting battery structure. The continuous web of battery structure is subsequently cut into individual battery cells as illustrated by laser cutting table 516. Solid-state battery cell 520 is representative of the structure of an all-solid-state lithium ion battery cell with a cathode current collector/substrate 528, composite cathode 526, separator material 524, composite anode 522, and anode current collector 530.
  • FIG. 6 illustrates an example 600 of an all-solid-state lithium ion battery cell in one or more embodiments of solid state batteries. The example 600 illustrates the use of die 606 to co-extrude cathode material 604 and separator material 602. Cathode current collector 608 is laminated onto the cathode side of the cathode separator structure by hot rollers 610. Anode deposition chamber 626 applies an anode coating to the surface of the separator of the cathode-separator stack 624 by evaporation using evaporator 622. Continuous mask 612 is configured having a series of open window areas that determine the deposition pattern of the evaporated lithium. It moves above the surface of the extruded cathode/separator at the same speed so as to define specific areas of the separator surface on which the anode material will deposit. Battery structure 628 illustrates an example of a series of anodes applied along the separator surface. Such a patterned deposition simplifies cutting the continuous web into individual cells. For example, the cells can be cut between individual cells as illustrated by dotted line 630 without concern about short circuiting the anode to the cathode along the cut line.
  • Hot press 616 is utilized for thermal lamination of precut anode current collectors onto the surface of the separator. The anode current collectors are conveyed from a supply reel 614 through hot press 616, where they are laminated to the separator, with the leftover carrier tape for the precut anode current collectors captured by take-up spool 618. The evaporation and thermal lamination may be performed in series, where the evaporated lithium functions as a wetting layer to enhance the bonding of the subsequent thermally bonded anode current collector structure. The thermally bonded anode structure may be lithium, copper, or other suitable material. Evaporation chamber 626 may alternatively apply copper as an anode structure as opposed to a lithium layer. The copper would function as a current collector whereby lithium would evolve as an anode as it is plated from the cathode on first charge.
  • FIG. 7 illustrates an example 700 of an all-solid-state lithium ion battery constructed with multiple cells, which are constructed with aluminum current collectors 702, sol gel LLZO glass separators 704, sol gel LLZO bonded LTO anodes 706, and sol gel LLZO bonded cathodes 708. The example all-solid-state battery can be constructed using a series of alternating layers of cathode, cathode current collector, cathode, separator, anode, anode current collector, anode, separator, cathode and so on.
  • CONCLUSION
  • Implementations of electrodes for rechargeable solid-state batteries are described. In at least some embodiments, electrodes are fabricated from electrochemically active powder material and meltable inorganic solid electrolyte. The meltable inorganic solid electrolyte is configured to bond together the electrochemically active powder material to form the electrode.
  • Implementations of separators for rechargeable solid-state batteries are described. In at least some embodiments, separators are fabricated from high ionic, conductive filler powder and meltable inorganic solid electrolyte. The meltable inorganic solid electrolyte is configured to bond together the high ionic, conductive filler powder to form the separator.
  • Implementations for methods of fabricating rechargeable solid-state batteries are described. In at least some embodiments, batteries are fabricated from a cathode current collector foil substrate by roll casting a cathode slurry on the cathode current collector foil substrate.
  • Implementations for methods of fabricating rechargeable solid-state batteries are described. In other embodiments, batteries are fabricated by coextruding cathode material and separator material and laminating a cathode current collector foil to the cathode material by hot press rolling.
  • Although the embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that the embodiments defined in the appended claims are not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed embodiments.

Claims (18)

1.-20. (canceled)
21. A method of fabricating a solid-state battery comprising:
receiving a cathode current collector foil substrate; and
roll casting a cathode slurry on the cathode current collector foil substrate to form a cathode casting.
22. The method of claim 21, wherein the roll casting comprises:
applying the cathode slurry to the cathode current collector foil substrate;
controlling the thickness of the applied cathode slurry with a doctor blade;
drying the cathode slurry in a drying oven; and
bonding the dried cathode slurry to the cathode current collector foil substrate with hot press rollers.
23. The method of claim 21, further comprising:
roll casting an electrolyte separator slurry on the cathode casting to form an electrolyte bonded and coated cathode casting.
24. The method of claim 23, further comprising:
roll casting an anode slurry on the electrolyte bonded and coated cathode casting.
25. The method of claim 24, further comprising:
bonding cathode current collector foil to the cathode; and
bonding anode current collector foil to the anode.
26. The method of claim 25, wherein the bonding is achieved using hot press rolling.
27. A method for fabrication of a solid-state battery comprising:
coextruding cathode material and separator material; and
laminating a cathode current collector foil to the cathode material by hot press rolling.
28. The method of claim 27, further comprising:
coextruding anode material with the cathode material and the separator material.
29. The method of claim 27, further comprising:
applying an anode by evaporative deposition.
30. The method of claim 29, further comprising:
controlling the application of the anode with a continuous mask.
31. The method of claim 29, further comprising:
applying the anode current collector to the anode by hot pressing an anode current collecting foil to the anode.
32. A system comprising:
a solid-state battery, the solid state battery comprising:
a cathode including lithium active powders, electrolyte powders, and electrically conductive carbon nanotubes, the lithium active particles being individually coated with a film of ion conductive glass; and
a separator comprising:
ionic, conductive filler powder; and
a first meltable inorganic solid electrolyte configured to bond together the ionic, conductive filler powder.
33. The system of claim 32, further comprising:
a coating of lithium metal applied onto the separator to form an anode for the solid-state battery.
33. The system of claim 33, wherein the anode is applied to the separator by evaporative deposition.
35. The system of claim 32, further comprising an anode bonded to the separator, the anode comprising:
an active anode powder;
an ion conductive electrolyte powder;
an electrically conductive powder; and
a second meltable inorganic solid electrolyte configured to bond together th active anode powder, the ion conductive electrolyte powder and the electrically conductive powder.
36. The system of claim 32, wherein the inorganic solid electrolyte is meltable at a maximum reaction temperature of about 500° C.
37. The system of claim 32, wherein the separator is coextruded with cathode material.
US16/109,295 2012-10-09 2018-08-22 Solid-state battery separators and methods of fabrication Abandoned US20180366707A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/109,295 US20180366707A1 (en) 2012-10-09 2018-08-22 Solid-state battery separators and methods of fabrication
US16/918,647 US20200335756A1 (en) 2012-10-09 2020-07-01 Solid-state battery separators and methods of fabrication

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261711676P 2012-10-09 2012-10-09
US13/829,525 US10084168B2 (en) 2012-10-09 2013-03-14 Solid-state battery separators and methods of fabrication
US16/109,295 US20180366707A1 (en) 2012-10-09 2018-08-22 Solid-state battery separators and methods of fabrication

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/829,525 Continuation US10084168B2 (en) 2012-10-09 2013-03-14 Solid-state battery separators and methods of fabrication

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/918,647 Division US20200335756A1 (en) 2012-10-09 2020-07-01 Solid-state battery separators and methods of fabrication

Publications (1)

Publication Number Publication Date
US20180366707A1 true US20180366707A1 (en) 2018-12-20

Family

ID=50432895

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/829,525 Active US10084168B2 (en) 2012-10-09 2013-03-14 Solid-state battery separators and methods of fabrication
US13/829,951 Active 2033-05-09 US9793525B2 (en) 2012-10-09 2013-03-14 Solid-state battery electrodes
US16/109,295 Abandoned US20180366707A1 (en) 2012-10-09 2018-08-22 Solid-state battery separators and methods of fabrication
US16/918,647 Pending US20200335756A1 (en) 2012-10-09 2020-07-01 Solid-state battery separators and methods of fabrication

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/829,525 Active US10084168B2 (en) 2012-10-09 2013-03-14 Solid-state battery separators and methods of fabrication
US13/829,951 Active 2033-05-09 US9793525B2 (en) 2012-10-09 2013-03-14 Solid-state battery electrodes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/918,647 Pending US20200335756A1 (en) 2012-10-09 2020-07-01 Solid-state battery separators and methods of fabrication

Country Status (8)

Country Link
US (4) US10084168B2 (en)
EP (4) EP3168914B1 (en)
JP (2) JP6407870B2 (en)
KR (2) KR20150067237A (en)
CN (2) CN104718641B (en)
DK (1) DK2965369T3 (en)
HK (1) HK1220041A1 (en)
WO (2) WO2014058683A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020223374A1 (en) * 2019-04-30 2020-11-05 6K Inc. Lithium lanthanum zirconium oxide (llzo) powder
US11273491B2 (en) 2018-06-19 2022-03-15 6K Inc. Process for producing spheroidized powder from feedstock materials
US11311938B2 (en) 2019-04-30 2022-04-26 6K Inc. Mechanically alloyed powder feedstock
US11577314B2 (en) 2015-12-16 2023-02-14 6K Inc. Spheroidal titanium metallic powders with custom microstructures
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
US12040162B2 (en) 2022-06-09 2024-07-16 6K Inc. Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows
US12042861B2 (en) 2021-03-31 2024-07-23 6K Inc. Systems and methods for additive manufacturing of metal nitride ceramics
US12094688B2 (en) 2022-08-25 2024-09-17 6K Inc. Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP)

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416478A (en) 2012-03-01 2019-11-05 约翰逊Ip控股有限责任公司 Solid union barrier film, its manufacturing method and solid state rechargeable lithium battery
US10084168B2 (en) 2012-10-09 2018-09-25 Johnson Battery Technologies, Inc. Solid-state battery separators and methods of fabrication
US9337471B2 (en) * 2012-12-27 2016-05-10 Palo Alto Research Center Incorporated Co-extrusion print head for multi-layer battery structures
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
KR101816763B1 (en) * 2013-05-08 2018-01-09 주식회사 엘지화학 Electrode structure of electrochemical device including insulating layer and manufacturing thereof
DE102013219606A1 (en) * 2013-09-27 2015-04-02 Robert Bosch Gmbh Electrode material with lithium argyrodite
ES2890654T3 (en) 2013-10-07 2022-01-21 Quantumscape Battery Inc Garnet Materials for Li Secondary Batteries and Manufacturing Methods and Use of the Garnet Materials
EP3778790A1 (en) 2014-05-15 2021-02-17 Northwestern University Ink compositions for three-dimensional printing and methods of forming objects using the ink compositions
JP6054919B2 (en) * 2014-07-02 2016-12-27 トヨタ自動車株式会社 Method for producing electrode for lithium ion secondary battery
JP5989715B2 (en) * 2014-07-08 2016-09-07 トヨタ自動車株式会社 Method for producing electrode sheet for lithium ion secondary battery
JP6077495B2 (en) * 2014-07-11 2017-02-08 トヨタ自動車株式会社 Method for producing electrode for lithium ion secondary battery
JP2016051586A (en) * 2014-08-29 2016-04-11 トヨタ自動車株式会社 Manufacturing method of electrode for lithium ion secondary battery
US20160118685A1 (en) * 2014-10-24 2016-04-28 Battelle Memorial Institute Methods and compositions for lithium ion batteries
JP6090290B2 (en) * 2014-11-21 2017-03-08 株式会社豊田中央研究所 COMPOSITE, BATTERY, COMPOSITE MANUFACTURING METHOD AND ION CONDUCTIVE SOLID MANUFACTURING METHOD
WO2016164523A1 (en) 2015-04-07 2016-10-13 Northwestern University Ink compositions for fabricating objects from regoliths and methods of forming the objects
KR102609408B1 (en) 2015-04-16 2023-12-04 퀀텀스케이프 배터리, 인코포레이티드 Setter plate for producing solid electrolyte and method for producing dense solid electrolyte using the same
CN105024040B (en) * 2015-07-21 2018-12-04 成都英诺科技咨询有限公司 A kind of double spread lamination assembling technique and its device in lithium battery manufacturing process
CN107851774A (en) 2015-07-21 2018-03-27 昆腾斯科普公司 Casting and the method and material of sintering green compact garnet
DE102015217749A1 (en) * 2015-09-16 2017-03-16 Robert Bosch Gmbh Coated cathode active material for a battery cell
WO2017106817A1 (en) * 2015-12-17 2017-06-22 The Regents Of The University Of Michigan Slurry formulation for the formation of layers for solid batteries
WO2017102011A1 (en) * 2015-12-17 2017-06-22 Toyota Motor Europe All-solid-state battery using sodium ion intercalation cathode with li/na exchanging layer
WO2017112804A1 (en) * 2015-12-21 2017-06-29 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
EP3411917A4 (en) * 2016-02-01 2020-03-18 The Regents of The University of Michigan Segmented cell architecture for solid state batteries
JP6786231B2 (en) 2016-03-16 2020-11-18 株式会社東芝 Laminates for lithium-ion secondary batteries, lithium-ion secondary batteries, battery packs and vehicles
US20170331092A1 (en) 2016-05-13 2017-11-16 Quantumscape Corporation Solid electrolyte separator bonding agent
US10236528B2 (en) * 2016-07-18 2019-03-19 Northwestern University Three dimensional extrusion printed electrochemical devices
US11158880B2 (en) 2016-08-05 2021-10-26 Quantumscape Battery, Inc. Translucent and transparent separators
DE102016215070A1 (en) * 2016-08-12 2018-02-15 Bayerische Motoren Werke Aktiengesellschaft Electrode for solid-state cell with embedded conductivity additive
DE102016218494A1 (en) * 2016-09-27 2018-03-29 Robert Bosch Gmbh Method for producing an electrode stack for a battery cell and battery cell
CN110036504A (en) * 2016-10-07 2019-07-19 密执安州立大学董事会 The stabilisation coating of solid state battery
DE102016219661A1 (en) * 2016-10-11 2018-04-12 Continental Automotive Gmbh Method for producing a galvanic lithium-ion cell and galvanic lithium-ion cell
EP3529839A1 (en) 2016-10-21 2019-08-28 QuantumScape Corporation Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
US11870052B2 (en) 2016-11-17 2024-01-09 Worcester Polytechnic Institute Sprayed formation of batteries
DE102016225221A1 (en) 2016-12-16 2018-06-21 Robert Bosch Gmbh Method for producing an electrode stack for a battery cell and battery cell
DE102016225313A1 (en) * 2016-12-16 2018-06-21 Bayerische Motoren Werke Aktiengesellschaft Lithium cell with glassy carbon layer
US10530009B2 (en) * 2017-03-22 2020-01-07 Ford Global Technologies, Llc Solid state battery
CN108631010B (en) * 2017-03-24 2021-07-27 深圳先进技术研究院 Integrated secondary battery and preparation method thereof
US10622680B2 (en) 2017-04-06 2020-04-14 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
EP4369453A3 (en) 2017-06-23 2024-10-02 QuantumScape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
KR102246631B1 (en) 2017-07-10 2021-04-30 주식회사 엘지화학 3D Pattern Diecutter for lithium metal electrode
DE102017212266A1 (en) 2017-07-18 2019-01-24 Robert Bosch Gmbh Method for producing a solid-state separator for a battery cell
KR102261504B1 (en) 2017-08-10 2021-06-07 주식회사 엘지에너지솔루션 Pre-lithiation Method of Anode Electrodes for secondary battery
CN107591568B (en) * 2017-08-19 2019-12-10 电子科技大学 Preparation method of laminated all-solid-state lithium ion battery
JP7060678B2 (en) * 2017-08-31 2022-04-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Mixed Composites for Electrochemical Cells Solid Electrolytes
CN108878953A (en) * 2017-09-11 2018-11-23 长城汽车股份有限公司 Solid state lithium battery, forming method and vehicle
WO2019090360A1 (en) 2017-11-06 2019-05-09 Quantumscape Corporation Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
KR102381016B1 (en) * 2017-11-10 2022-04-04 엔지케이 인슐레이터 엘티디 secondary battery
KR102270120B1 (en) * 2017-12-01 2021-06-28 주식회사 엘지에너지솔루션 Electrode and electrode-assembly
US11322799B2 (en) 2017-12-01 2022-05-03 Lg Energy Solution, Ltd. Electrode including single-sided electrode with inorganic coating layer attached to slurry on collector and electrode assembly including the same
JP6601640B2 (en) 2017-12-18 2019-11-06 パナソニックIpマネジメント株式会社 Heating roll press apparatus and heating roll press method
US12094721B2 (en) 2018-01-05 2024-09-17 University Of Maryland, College Park Multi-layer solid-state devices and methods for forming the same
DE112019000405T5 (en) 2018-03-05 2020-10-22 Robert Bosch Gmbh MELT EXTRUDED SOLID BATTERY COMPONENTS
JP2019160543A (en) * 2018-03-13 2019-09-19 セイコーエプソン株式会社 Secondary battery, electronic device, and manufacturing method of secondary battery
DE102018205299A1 (en) * 2018-04-09 2019-10-10 Karlsruher Institut für Technologie Process for producing a layer structure for a lithium-ion solid-state accumulator
KR102088648B1 (en) * 2018-04-20 2020-03-13 (주)티디엘 Manufacturing method of all solid state lithium secondary battery
CA3101863A1 (en) 2018-06-06 2019-12-12 Quantumscape Corporation Solid-state battery
CN113169371A (en) 2018-06-07 2021-07-23 陈霖 Materials and methods for components of lithium batteries
CN108832172B (en) * 2018-06-22 2021-01-15 中国科学院宁波材料技术与工程研究所 All-solid-state electrolyte material, preparation method thereof and all-solid-state lithium secondary battery
KR20210027471A (en) * 2018-07-09 2021-03-10 24엠 테크놀로지즈, 인크. Continuous and semi-continuous methods of manufacturing semi-solid electrodes and batteries
CN109244547B (en) * 2018-08-23 2021-06-15 柔电(武汉)科技有限公司 Composite solid electrolyte diaphragm, preparation method thereof and lithium ion battery
CN108808083A (en) * 2018-08-28 2018-11-13 江苏双登富朗特新能源有限公司 Solid electrolyte membrane preparation method
KR102516224B1 (en) * 2018-12-04 2023-03-30 주식회사 엘지에너지솔루션 Lamination apparatus and method, producing facility of secondary battery including the same
CN109768215B (en) * 2018-12-27 2022-02-18 杭州阳名新能源设备科技有限公司 Method for processing low-impedance interface of anode of solid-state lithium battery and anode structure
WO2020163879A1 (en) * 2019-02-04 2020-08-13 South 8 Technologies, Inc. Method of electrochemical energy storage device construction
CN109980290B (en) * 2019-03-18 2021-05-07 浙江锋锂新能源科技有限公司 Mixed solid-liquid electrolyte lithium storage battery
CN111063861B (en) * 2019-04-08 2021-06-11 中科(马鞍山)新材料科创园有限公司 Anode plate for all-solid-state battery and preparation method thereof
KR102266000B1 (en) * 2019-06-17 2021-06-17 주식회사 엘 앤 에프 Cathode Active Material for Lithium Secondary Battery
CN110380009B (en) * 2019-07-03 2022-04-05 上海交通大学 Lithium negative electrode hot melting filling device and method for all-solid-state lithium battery
CN110444788A (en) * 2019-09-06 2019-11-12 中国华能集团清洁能源技术研究院有限公司 A kind of device of molten carbonate fuel cell addition electrolyte
JP7247064B2 (en) 2019-09-13 2023-03-28 株式会社東芝 Electrodes, secondary batteries, battery packs, and vehicles
JP7330028B2 (en) * 2019-09-13 2023-08-21 株式会社東芝 Electrodes, secondary batteries, battery packs, and vehicles
CN112542561A (en) * 2019-09-20 2021-03-23 青岛九环新越新能源科技股份有限公司 Double-roller composite production equipment for solid energy storage device
US20210091372A1 (en) * 2019-09-23 2021-03-25 International Business Machines Corporation High capacity compact lithium thin film battery
US11329267B2 (en) * 2019-11-12 2022-05-10 Enevate Corporation Heat treatment of whole cell structures
GB202000467D0 (en) * 2020-01-13 2020-02-26 Sigma Lithium Ltd Alkali metal materials
US20220416221A1 (en) * 2020-02-27 2022-12-29 Lg Energy Solution, Ltd. Method for manufacturing lithium metal negative electrode, lithium metal negative electrode manufactured thereby, and lithium-sulfur battery comprising same
KR20230079480A (en) 2020-04-23 2023-06-07 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. Ion conductive layer and methods of forming
EP4104232A4 (en) 2020-04-23 2024-08-21 Saint Gobain Ceramics & Plastics Inc Ion conductive layer and methods of forming
US20230275263A1 (en) * 2020-07-03 2023-08-31 Oerlikon Surface Solutions Ag, Pfäffikon Method for manufacturing a solid-state battery
WO2022008745A1 (en) * 2020-07-10 2022-01-13 Sabic Global Technologies B.V. Breakable separator for battery
KR20230165869A (en) 2020-08-07 2023-12-05 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. Electrolyte material and methods of forming
CN114447417B (en) * 2020-11-02 2024-08-20 中国石油化工股份有限公司 Modified inorganic fast ion conductor and preparation method and application thereof
CN112397770A (en) * 2020-11-19 2021-02-23 华南理工大学 Preparation method of organic-inorganic composite solid electrolyte and electrolyte thereof
US11824165B2 (en) * 2021-01-25 2023-11-21 Blue Current, Inc. Solid-state lithium ion multilayer battery and manufacturing method
CN113140872B (en) * 2021-04-14 2022-10-14 湖南农业大学 Double-sided asymmetric lithium battery composite coating diaphragm, production process and lithium battery
KR102549831B1 (en) * 2021-04-22 2023-06-30 주식회사 비이아이랩 Method for manufacturing All Solid-State Battery
CN113363667A (en) * 2021-05-06 2021-09-07 惠州锂威新能源科技有限公司 Production equipment of battery diaphragm and diaphragm
US20230275206A1 (en) * 2021-05-25 2023-08-31 Lg Energy Solution, Ltd. Apparatus for manufacturing positive electrode film, manufacturing method using same, and positive electrode film manufactured using same
US20220399571A1 (en) * 2021-06-10 2022-12-15 Brightvolt, Inc. Processes for making batteries comprising polymer matrix electrolytes
KR102443704B1 (en) 2021-06-10 2022-09-15 주식회사 비이아이랩 Formation of Solid Electrolytes by Coating Metal Colloidal Particles, Followed by Sulfidation via Roll-to-roll method
JP7155360B1 (en) * 2021-08-02 2022-10-18 株式会社日本製鋼所 Reactor, reaction system, material manufacturing system, battery material manufacturing system, battery manufacturing system, reaction product manufacturing method, battery material manufacturing method, and battery manufacturing method
WO2023049507A2 (en) 2021-09-27 2023-03-30 Quantumscape Battery, Inc. Electrochemical stack and method of assembly thereof
CN118451577A (en) * 2021-11-01 2024-08-06 坚固力量营运公司 Protected electrode structure for solid state battery cells
KR20230091667A (en) * 2021-12-16 2023-06-23 주식회사 엘지에너지솔루션 Apparatus and method for preparing positive electrode, and lithium secondary battery comprising the same
CN114335741B (en) * 2021-12-29 2023-07-21 蜂巢能源科技(无锡)有限公司 Preparation method and system of battery cell, battery cell and application of battery cell
WO2023128388A1 (en) * 2021-12-31 2023-07-06 Samsung Electro-Mechanics Co., Ltd. All-solid-state battery and manufacturing method thereof
JP2023134867A (en) * 2022-03-15 2023-09-28 株式会社リコー Electrode manufacturing device, electrode manufacturing method, manufacturing device for electrochemical element, and manufacturing method for electrochemical element
DE102022112525A1 (en) 2022-05-18 2023-11-23 Volkswagen Aktiengesellschaft Method and device for producing a solid-state separator for a battery cell
DE102022114925A1 (en) * 2022-06-14 2023-12-14 Volkswagen Aktiengesellschaft Method and device for producing a solid-state separator for a battery cell
CN115000338B (en) * 2022-07-29 2022-11-04 楚能新能源股份有限公司 Method for reducing rejection rate of pole pieces in lithium battery rolling process
CN115347322B (en) * 2022-08-30 2024-02-02 新乡市中科膜材料科技有限公司 Preparation method and application of porous polyolefin composite membrane
DE102023105276A1 (en) 2023-03-03 2024-09-05 Bayerische Motoren Werke Aktiengesellschaft Method and device for producing a layer arrangement for a solid-state battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100308278A1 (en) * 2009-06-03 2010-12-09 Kepler Keith D Composite for li-ion cells and the preparation process thereof
US20110086274A1 (en) * 2009-01-06 2011-04-14 Lg Chem, Ltd. Cathode active material for lithium secondary battery
US20110177397A1 (en) * 2010-01-19 2011-07-21 Ohara Inc. All solid state battery
US20120008422A1 (en) * 2010-07-07 2012-01-12 Hyung-Soo Kim Semiconductor memory device and method for operating the same

Family Cites Families (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3237078A (en) 1963-03-14 1966-02-22 Mallory & Co Inc P R Rechargeable batteries and regulated charging means therefor
US3393355A (en) 1965-08-09 1968-07-16 Mallory & Co Inc P R Semiconductor charge control through thermal isolation of semiconductor and cell
US4303877A (en) 1978-05-05 1981-12-01 Brown, Boveri & Cie Aktiengesellschaft Circuit for protecting storage cells
DE2901303C2 (en) 1979-01-15 1984-04-19 Max Planck Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Solid ionic conductor material, its use and process for its manufacture
EP0014896B1 (en) 1979-02-27 1984-07-25 Asahi Glass Company Ltd. Gas diffusion electrode
DE2918940C2 (en) 1979-05-10 1984-08-09 Max Planck Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Solid ionic conductor material, its use and process for its manufacture
DE2926172C2 (en) 1979-06-28 1982-05-06 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Procedure for measuring activities with solid ion conductors
DE3004571A1 (en) 1980-02-07 1981-08-13 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen SOLID ELECTRODE IN AN ELECTROLYTIC CELL
DE3127820A1 (en) 1981-07-14 1983-02-03 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen GALVANIC ELEMENT
DE3127821A1 (en) 1981-07-14 1983-02-03 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen FIXED PROTON LADDER AND THEIR USE
SE451924B (en) 1982-10-12 1987-11-02 Ericsson Telefon Ab L M REGULATOR FOR REGULATING A CHARGING CURRENT TO A SINGLE CELL IN A BATTERY OF CELLS
US4885267A (en) 1984-09-03 1989-12-05 Nippon Telegraph And Telephone Corporation Perovskite ceramic and fabrication method thereof
DE3436597A1 (en) 1984-10-05 1986-04-10 Max Planck Gesellschaft OXIDIC BODY WITH IONIC AND ELECTRONIC CONDUCTIVITY
DE3503264A1 (en) 1985-01-31 1986-08-07 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen METHOD FOR MODIFYING THE LOCAL, ATOMARIC COMPOSITION OF SOLID BODIES, IN PARTICULAR SEMICONDUCTORS
DE3511703A1 (en) 1985-03-29 1986-10-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen LITHIUMION LADDER
DE3529335A1 (en) 1985-08-16 1987-02-26 Draegerwerk Ag SOLID CHAIN FOR ACTIVITY MEASUREMENT WITH FIXED ION CONDUCTOR
US4719401A (en) 1985-12-04 1988-01-12 Powerplex Technologies, Inc. Zener diode looping element for protecting a battery cell
DE3543753A1 (en) 1985-12-11 1987-06-19 Draegerwerk Ag METHOD FOR GENERATING A SENSITIVE PHASE IN A FIXED SOLID CHAIN CONTAINING A FIXED ION CONDUCTOR, AND ION CONDUCTOR THEREFOR
DE3543768C1 (en) 1985-12-11 1986-09-11 Draegerwerk Ag Galvanic solid chain for measuring the oxygen partial pressure
DE3543818A1 (en) 1985-12-12 1987-06-25 Draegerwerk Ag GAS SENSOR WITH A FIXED ELECTROLYTE MADE OF TETRAGONAL ZIRCONDIOXIDE
EP0256031B1 (en) 1986-01-29 1992-03-04 Hughes Aircraft Company Method for developing poly(methacrylic anhydride) resists
US4654281A (en) 1986-03-24 1987-03-31 W. R. Grace & Co. Composite cathodic electrode
DE3614686C1 (en) 1986-04-30 1987-11-05 Max Planck Gesellschaft Electrochemical temperature sensor
DE3620092A1 (en) 1986-06-14 1987-12-17 Draegerwerk Ag GALVANIC SOLID CHAIN FOR MEASURING O (ARROW DOWN) 2 (ARROW DOWN) PARTIAL PRESSURE
US5270635A (en) 1989-04-11 1993-12-14 Solid State Chargers, Inc. Universal battery charger
DE3923193A1 (en) 1989-07-13 1991-01-24 Max Planck Gesellschaft LIMIT CURRENT SENSOR FOR MEASURING THE PARTIAL PRESSURE OF A GAS
DE4025032A1 (en) 1990-08-07 1992-02-13 Max Planck Gesellschaft ELECTROCHROME DEVICE
JP3231801B2 (en) 1991-02-08 2001-11-26 本田技研工業株式会社 Battery charger
DE4111944A1 (en) 1991-04-12 1992-10-15 Battelle Institut E V ELECTROCHROMIC SYSTEM
DE4112302A1 (en) 1991-04-15 1992-10-22 Max Planck Gesellschaft AMPEROMETRIC GAS SENSOR FOR SELECTIVE DETERMINATION OF PARTIAL PRESSURES OF A GAS
DE4122586C1 (en) 1991-07-08 1992-06-25 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Ev, 3400 Goettingen, De Prodn. of e.g. potassium beta- or beta alumina powder giving ceramics of good ion conduction etc. - by attrition of cubic densely packed alumina with dopant, calcination in atmos. contg. oxygen@, potassium oxide or rubidium oxide then in atmos. contg. oxygen@
US5291116A (en) 1992-01-27 1994-03-01 Batonex, Inc. Apparatus for charging alkaline zinc-manganese dioxide cells
DE69330799T2 (en) 1992-04-03 2002-05-29 Jeol Ltd., Akishima Power supply with storage capacitor
US5338625A (en) 1992-07-29 1994-08-16 Martin Marietta Energy Systems, Inc. Thin film battery and method for making same
US5362581A (en) 1993-04-01 1994-11-08 W. R. Grace & Co.-Conn. Battery separator
US5336573A (en) 1993-07-20 1994-08-09 W. R. Grace & Co.-Conn. Battery separator
US5314765A (en) 1993-10-14 1994-05-24 Martin Marietta Energy Systems, Inc. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method
US5569520A (en) 1994-01-12 1996-10-29 Martin Marietta Energy Systems, Inc. Rechargeable lithium battery for use in applications requiring a low to high power output
US5821733A (en) 1994-02-22 1998-10-13 Packard Bell Nec Multiple cell and serially connected rechargeable batteries and charging system
US5561004A (en) 1994-02-25 1996-10-01 Bates; John B. Packaging material for thin film lithium batteries
US5411592A (en) 1994-06-06 1995-05-02 Ovonic Battery Company, Inc. Apparatus for deposition of thin-film, solid state batteries
US5522955A (en) 1994-07-07 1996-06-04 Brodd; Ralph J. Process and apparatus for producing thin lithium coatings on electrically conductive foil for use in solid state rechargeable electrochemical cells
JP2812427B2 (en) 1994-07-18 1998-10-22 科学技術振興事業団 Cesium lithium borate crystal
US5654084A (en) 1994-07-22 1997-08-05 Martin Marietta Energy Systems, Inc. Protective coatings for sensitive materials
US5445906A (en) 1994-08-03 1995-08-29 Martin Marietta Energy Systems, Inc. Method and system for constructing a rechargeable battery and battery structures formed with the method
US5582623A (en) * 1994-11-23 1996-12-10 Polyplus Battery Company, Inc. Methods of fabricating rechargeable positive electrodes
FR2729009B1 (en) 1994-12-28 1997-01-31 Accumulateurs Fixes BIFUNCTIONAL ELECTRODE FOR ELECTROCHEMICAL GENERATOR OR SUPERCAPACITOR AND ITS MANUFACTURING PROCESS
AU4987997A (en) 1996-10-11 1998-05-11 Massachusetts Institute Of Technology Polymer electrolyte, intercalation compounds and electrodes for batteries
JP4038699B2 (en) 1996-12-26 2008-01-30 株式会社ジーエス・ユアサコーポレーション Lithium ion battery
US5705293A (en) 1997-01-09 1998-01-06 Lockheed Martin Energy Research Corporation Solid state thin film battery having a high temperature lithium alloy anode
JP3210593B2 (en) 1997-02-17 2001-09-17 日本碍子株式会社 Lithium secondary battery
US5778515A (en) 1997-04-11 1998-07-14 Valence Technology, Inc. Methods of fabricating electrochemical cells
US6201123B1 (en) 1998-07-08 2001-03-13 Techno Polymer Co., Ltd. Catalyst composition, catalyst solution and process for preparing optically active epoxide
US6182340B1 (en) 1998-10-23 2001-02-06 Face International Corp. Method of manufacturing a co-fired flextensional piezoelectric transformer
US6413672B1 (en) 1998-12-03 2002-07-02 Kao Corporation Lithium secondary cell and method for manufacturing the same
US6242129B1 (en) 1999-04-02 2001-06-05 Excellatron Solid State, Llc Thin lithium film battery
US6168884B1 (en) 1999-04-02 2001-01-02 Lockheed Martin Energy Research Corporation Battery with an in-situ activation plated lithium anode
JP2000311710A (en) 1999-04-27 2000-11-07 Kyocera Corp Solid electrolyte battery and its manufacture
US6255122B1 (en) 1999-04-27 2001-07-03 International Business Machines Corporation Amorphous dielectric capacitors on silicon
JP2000331684A (en) 1999-05-24 2000-11-30 Kyocera Corp Laminated solid secondary battery
JP2000331680A (en) 1999-05-24 2000-11-30 Kyocera Corp Lithium secondary battery and manufacture thereof
JP3068092B1 (en) 1999-06-11 2000-07-24 花王株式会社 Method for producing positive electrode for non-aqueous secondary battery
JP4845244B2 (en) 1999-10-25 2011-12-28 京セラ株式会社 Lithium battery
JP2001243954A (en) 2000-03-01 2001-09-07 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery
US6387563B1 (en) 2000-03-28 2002-05-14 Johnson Research & Development, Inc. Method of producing a thin film battery having a protective packaging
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6827921B1 (en) 2001-02-01 2004-12-07 Nanopowder Enterprises Inc. Nanostructured Li4Ti5O12 powders and method of making the same
US20030118897A1 (en) 2001-02-15 2003-06-26 Shinji Mino Solid electrolyte cell and production method thereof
US20020119375A1 (en) 2001-02-28 2002-08-29 Meijie Zhang Use of lithium borate in non-aqueous rechargeable lithium batteries
DE10130783A1 (en) 2001-06-26 2003-01-02 Basf Ag fuel cell
US6541161B1 (en) 2001-09-10 2003-04-01 The United States Of America As Represented By The Secretary Of The Air Force Lithium ion conducting channel via molecular self-assembly
CN100367542C (en) 2002-05-24 2008-02-06 日本电气株式会社 Negative electrode for secondary cell and secondary cell using the same
JP2004127613A (en) 2002-09-30 2004-04-22 Matsushita Electric Ind Co Ltd Thin film laminate, secondary battery, and method for manufacturing thin film laminate
US7390591B2 (en) 2002-10-15 2008-06-24 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
KR100682883B1 (en) * 2002-11-27 2007-02-15 삼성전자주식회사 Solid electrolyte and battery employing the same
JP4777593B2 (en) 2002-11-29 2011-09-21 株式会社オハラ Method for producing lithium ion secondary battery
JP2006508509A (en) * 2002-12-02 2006-03-09 アヴェスター リミティッド パートナーシップ Thin film electrochemical cell coextrusion manufacturing process for lithium polymer batteries and apparatus therefor
EP1431423A1 (en) 2002-12-16 2004-06-23 Basf Aktiengesellschaft Method for manufacturing a lithium ion-conductor
ATE348204T1 (en) 2002-12-16 2007-01-15 Basf Ag METHOD FOR OBTAINING LITHIUM
KR100513726B1 (en) * 2003-01-30 2005-09-08 삼성전자주식회사 Solid electrolytes, batteries employing the same and method for preparing the same
US7732096B2 (en) 2003-04-24 2010-06-08 Uchicago Argonne, Llc Lithium metal oxide electrodes for lithium batteries
US6886240B2 (en) 2003-07-11 2005-05-03 Excellatron Solid State, Llc Apparatus for producing thin-film electrolyte
US6852139B2 (en) 2003-07-11 2005-02-08 Excellatron Solid State, Llc System and method of producing thin-film electrolyte
KR100666821B1 (en) 2004-02-07 2007-01-09 주식회사 엘지화학 Organic/inorganic composite porous layer-coated electrode and electrochemical device comprising the same
US10566669B2 (en) 2004-02-20 2020-02-18 Johnson Ip Holding, Llc Lithium oxygen batteries having a carbon cloth current collector and method of producing same
DE102004010892B3 (en) 2004-03-06 2005-11-24 Christian-Albrechts-Universität Zu Kiel Chemically stable solid Li ion conductor of garnet-like crystal structure and high Li ion conductivity useful for batteries, accumulators, supercaps, fuel cells, sensors, windows displays
SI1723080T1 (en) 2004-03-06 2014-08-29 Basf Se Chemically stable solid lithium ion conductors
JP5122063B2 (en) 2004-08-17 2013-01-16 株式会社オハラ Lithium ion secondary battery and solid electrolyte
EP1784876B1 (en) 2004-09-02 2018-01-24 LG Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
US7557055B2 (en) 2004-09-20 2009-07-07 Paratek Microwave, Inc. Tunable low loss material composition
JP4198658B2 (en) 2004-09-24 2008-12-17 株式会社東芝 Nonaqueous electrolyte secondary battery
TW200638568A (en) 2004-12-02 2006-11-01 Ohara Kk All solid lithium ion secondary battery and a solid electrolyte therefor
JP4352016B2 (en) * 2005-03-18 2009-10-28 株式会社東芝 Inorganic solid electrolyte battery and method for producing inorganic solid electrolyte battery
KR100659851B1 (en) 2005-04-27 2006-12-19 삼성에스디아이 주식회사 Lithium secondary battery
US20060287188A1 (en) 2005-06-21 2006-12-21 Borland William J Manganese doped barium titanate thin film compositions, capacitors, and methods of making thereof
US7993782B2 (en) 2005-07-01 2011-08-09 National Institute For Materials Science All-solid lithium battery
US7776478B2 (en) * 2005-07-15 2010-08-17 Cymbet Corporation Thin-film batteries with polymer and LiPON electrolyte layers and method
KR100753773B1 (en) 2005-08-04 2007-08-30 학교법인 포항공과대학교 Method for preparing perovskite oxide nanopowders
JP5153065B2 (en) 2005-08-31 2013-02-27 株式会社オハラ Lithium ion secondary battery and solid electrolyte
US20130118897A1 (en) 2005-10-04 2013-05-16 Gareth Glass Sacrificial anode and backfill combination
US7540886B2 (en) * 2005-10-11 2009-06-02 Excellatron Solid State, Llc Method of manufacturing lithium battery
US9580320B2 (en) 2005-10-13 2017-02-28 Ohara Inc. Lithium ion conductive solid electrolyte and method for manufacturing the same
US7968231B2 (en) 2005-12-23 2011-06-28 U Chicago Argonne, Llc Electrode materials and lithium battery systems
US7914932B2 (en) 2006-02-24 2011-03-29 Ngk Insulators, Ltd. All-solid-state battery
JP5078120B2 (en) 2006-02-24 2012-11-21 日本碍子株式会社 All solid battery
US20070231704A1 (en) 2006-03-30 2007-10-04 Ohara Inc. Lithium ion conductive solid electrolyte and production process thereof
JP4392618B2 (en) 2006-05-15 2010-01-06 住友電気工業株式会社 Method for forming solid electrolyte
JP5110850B2 (en) 2006-10-31 2012-12-26 株式会社オハラ Lithium ion conductive solid electrolyte and method for producing the same
JP5319879B2 (en) 2006-10-31 2013-10-16 株式会社オハラ Lithium secondary battery and electrode for lithium secondary battery
JP5281896B2 (en) 2006-11-14 2013-09-04 日本碍子株式会社 Solid electrolyte structure for all solid state battery, all solid state battery, and manufacturing method thereof
JP5226967B2 (en) 2007-04-27 2013-07-03 株式会社オハラ Lithium secondary battery and electrode for lithium secondary battery
US20120196189A1 (en) 2007-06-29 2012-08-02 Johnson Ip Holding, Llc Amorphous ionically conductive metal oxides and sol gel method of preparation
US9034525B2 (en) 2008-06-27 2015-05-19 Johnson Ip Holding, Llc Ionically-conductive amorphous lithium lanthanum zirconium oxide
US8211496B2 (en) 2007-06-29 2012-07-03 Johnson Ip Holding, Llc Amorphous lithium lanthanum titanate thin films manufacturing method
DE102007030604A1 (en) 2007-07-02 2009-01-08 Weppner, Werner, Prof. Dr. Ion conductor with garnet structure
US20090092903A1 (en) 2007-08-29 2009-04-09 Johnson Lonnie G Low Cost Solid State Rechargeable Battery and Method of Manufacturing Same
US20110223487A1 (en) 2007-08-29 2011-09-15 Excellatron Solid State Llc Electrochemical cell with sintered cathode and both solid and liquid electrolyte
JP5151692B2 (en) 2007-09-11 2013-02-27 住友電気工業株式会社 Lithium battery
JP4940080B2 (en) 2007-09-25 2012-05-30 株式会社オハラ Lithium ion conductive solid electrolyte and method for producing the same
US8778543B2 (en) 2007-12-03 2014-07-15 Seiko Epson Corporation Sulfide-based lithium-ion-conducting solid electrolyte glass, all-solid lithium secondary battery, and method for manufacturing all-solid lithium secondary battery
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
JP2009181873A (en) 2008-01-31 2009-08-13 Ohara Inc Manufacturing method of lithium ion secondary battery
JP5289080B2 (en) 2008-01-31 2013-09-11 株式会社オハラ Method for producing lithium ion secondary battery
JP5288816B2 (en) 2008-01-31 2013-09-11 株式会社オハラ Solid battery
JP5312966B2 (en) 2008-01-31 2013-10-09 株式会社オハラ Method for producing lithium ion secondary battery
JP5102056B2 (en) 2008-01-31 2012-12-19 株式会社オハラ Solid battery and method of manufacturing electrode thereof
JP5289072B2 (en) 2008-01-31 2013-09-11 株式会社オハラ Lithium ion secondary battery and manufacturing method thereof
EP2086046A1 (en) 2008-01-31 2009-08-05 Ohara Inc. Manufacture of lithium ion secondary battery
JP5358825B2 (en) * 2008-02-22 2013-12-04 国立大学法人九州大学 All solid battery
JP5319943B2 (en) 2008-03-19 2013-10-16 株式会社オハラ battery
JP5616002B2 (en) 2008-03-19 2014-10-29 株式会社オハラ Lithium ion conductive solid electrolyte and method for producing the same
JP2010080422A (en) 2008-04-10 2010-04-08 Sumitomo Electric Ind Ltd Electrode body and nonaqueous electrolyte battery
CN101325094B (en) 2008-07-25 2013-04-03 清华大学 Lithium lanthanum titanium oxygen LLTO composite solid-state electrolyte material and synthesizing method thereof
JP5536996B2 (en) 2008-07-29 2014-07-02 株式会社オハラ Method for producing lithium ion conductive glass ceramics
JP2010033918A (en) * 2008-07-30 2010-02-12 Idemitsu Kosan Co Ltd Manufacturing method of lithium battery, and lithium battery obtained by the same
JP5132639B2 (en) 2008-08-21 2013-01-30 日本碍子株式会社 Ceramic material and manufacturing method thereof
JP5697300B2 (en) 2008-09-11 2015-04-08 出光興産株式会社 Method for producing positive electrode mixture, and positive electrode mixture obtained using the same
JP5486253B2 (en) 2008-10-31 2014-05-07 株式会社オハラ Glass and crystallized glass
JP5293112B2 (en) 2008-11-25 2013-09-18 トヨタ自動車株式会社 Method for producing active material and method for producing electrode body
CN101434417A (en) 2008-11-28 2009-05-20 宁波金和新材料有限公司 Dry preparation of battery grade spherical cobaltosic oxide particle
JP5132614B2 (en) 2009-03-16 2013-01-30 京セラ株式会社 Lithium battery
JP5234118B2 (en) 2009-07-17 2013-07-10 トヨタ自動車株式会社 Solid electrolyte, solid electrolyte sheet, and method for producing solid electrolyte
WO2011020073A1 (en) 2009-08-14 2011-02-17 Seeo, Inc High energy polymer battery
JP5551542B2 (en) 2009-09-17 2014-07-16 株式会社オハラ All-solid battery and method for producing all-solid battery
US9614251B2 (en) 2009-09-25 2017-04-04 Lawrence Livermore National Security, Llc High-performance rechargeable batteries with nanoparticle active materials, photochemically regenerable active materials, and fast solid-state ion conductors
JP5625351B2 (en) 2009-12-25 2014-11-19 トヨタ自動車株式会社 Electrode layer, solid electrolyte layer, and all-solid secondary battery
US8586227B2 (en) 2010-03-10 2013-11-19 Lawrence Livermore National Security, Llc Low temperature sodium-beta battery
US9136544B2 (en) 2010-03-11 2015-09-15 Harris Corporation Dual layer solid state batteries
US8865354B2 (en) 2010-03-30 2014-10-21 West Virginia University Inorganic solid electrolyte glass phase composite and a battery containing an inorganic solid electrolyte glass phase composite
JP4762353B1 (en) 2010-03-31 2011-08-31 ナミックス株式会社 Lithium ion secondary battery and manufacturing method thereof
JP2011249254A (en) 2010-05-31 2011-12-08 Sumitomo Electric Ind Ltd Positive electrode body for nonaqueous electrolyte battery and manufacturing method thereof
EP2577777B1 (en) 2010-06-07 2016-12-28 Sapurast Research LLC Rechargeable, high-density electrochemical device
JP5564649B2 (en) 2010-06-23 2014-07-30 日本碍子株式会社 Positive electrode of lithium secondary battery and lithium secondary battery
JP5587052B2 (en) 2010-06-23 2014-09-10 日本碍子株式会社 Positive electrode of lithium secondary battery and lithium secondary battery
CN102844929A (en) 2010-07-12 2012-12-26 株式会社村田制作所 All-solid-state battery
JP2012099315A (en) 2010-11-01 2012-05-24 Sumitomo Electric Ind Ltd Positive electrode for all-solid lithium battery and method for manufacturing the same, and all-solid lithium battery
JP2012146479A (en) 2011-01-12 2012-08-02 Idemitsu Kosan Co Ltd Lithium ion battery
US8852816B2 (en) 2011-03-15 2014-10-07 Ohara Inc. All-solid secondary battery
JP5708467B2 (en) 2011-03-18 2015-04-30 トヨタ自動車株式会社 Slurry, solid electrolyte layer manufacturing method, electrode active material layer manufacturing method, and all solid state battery manufacturing method
KR101312275B1 (en) 2011-03-30 2013-09-25 삼성에스디아이 주식회사 Composite, electrode active material for lithium secondary battery including the composite, preparing method thereof, electrode for lithium secondary battery using the same, and lithium secondary battery employing the same
CN103443969A (en) 2011-03-30 2013-12-11 三洋电机株式会社 Non-aqueous electrolyte secondary battery, and process for producing same
JP6284364B2 (en) 2011-04-18 2018-02-28 日本碍子株式会社 Cathode active material for lithium secondary battery
JP5336007B2 (en) 2011-04-19 2013-11-06 本田技研工業株式会社 Lithium ion oxygen battery
US9598320B2 (en) 2011-04-22 2017-03-21 Toho Material Co., Ltd. Method of producing composite metal oxide, metal oxide sintered body, and rotary kiln
US9093717B2 (en) 2011-05-20 2015-07-28 Board Of Trustees Of Michigan State University Methods of making and using oxide ceramic solids and products and devices related thereto
JP5721540B2 (en) 2011-05-30 2015-05-20 株式会社オハラ Lithium ion conductive inorganic material
JP5204333B2 (en) 2011-07-04 2013-06-05 本田技研工業株式会社 Metal oxygen battery
JP5204335B2 (en) 2011-07-05 2013-06-05 本田技研工業株式会社 Metal oxygen battery
JP5204334B2 (en) 2011-07-06 2013-06-05 本田技研工業株式会社 Metal oxygen battery
JP5919673B2 (en) 2011-08-10 2016-05-18 株式会社豊田中央研究所 Solid electrolyte and method for producing the same
WO2013027760A1 (en) 2011-08-22 2013-02-28 京セラ株式会社 Acoustic wave device and electronic component
JP5254483B2 (en) 2011-09-13 2013-08-07 本田技研工業株式会社 Metal oxygen battery
WO2013049460A1 (en) 2011-09-28 2013-04-04 Excellatron Solid State, Llc Lithium oxygen batteries having a carbon cloth current collector and method of producing same
WO2013085557A1 (en) 2011-12-05 2013-06-13 Johnson Ip Holding, Llc Amorphous ionically-conductive metal oxides, method of preparation, and battery
JP5720589B2 (en) 2012-01-26 2015-05-20 トヨタ自動車株式会社 All solid battery
WO2013130983A2 (en) 2012-03-01 2013-09-06 Excellatron Solid State, Llc Impregnated sintered solid state composite electrode, solid state battery, and methods of preparation
CN110416478A (en) 2012-03-01 2019-11-05 约翰逊Ip控股有限责任公司 Solid union barrier film, its manufacturing method and solid state rechargeable lithium battery
US20130230777A1 (en) 2012-03-05 2013-09-05 Johnson Ip Holding, Llc Lithium based anode with nano-composite structure and method of manufacturing such
JP5918019B2 (en) 2012-05-18 2016-05-18 株式会社オハラ All solid state secondary battery
US20140011095A1 (en) 2012-07-03 2014-01-09 Electronics And Telecommunications Research Institute Organic/inorganic hybrid electrolyte, methods for preparing the same, and lithium battery including the same
US20140008006A1 (en) 2012-07-03 2014-01-09 Electronics And Telecommunications Research Institute Method of manufacturing lithium battery
US9123970B2 (en) 2012-07-03 2015-09-01 Electronics And Telecommunications Research Institute Lithium battery binder composition, method for preparing the same and lithium battery including the same
JP2014053178A (en) 2012-09-07 2014-03-20 Ngk Insulators Ltd All-solid battery
JP6164812B2 (en) 2012-09-19 2017-07-19 株式会社オハラ All solid lithium ion secondary battery
US10084168B2 (en) 2012-10-09 2018-09-25 Johnson Battery Technologies, Inc. Solid-state battery separators and methods of fabrication
EP2976798B1 (en) 2013-03-21 2018-11-07 University of Maryland, College Park Ion-conducting batteries with solid state electrolyte materials
CA2820635A1 (en) 2013-06-21 2014-12-21 Hydro-Quebec All-solid state polymer li-s electrochemical cells and their manufacturing processes
JP2015032355A (en) 2013-07-31 2015-02-16 日本碍子株式会社 All-solid battery
JP6233049B2 (en) 2014-01-24 2017-11-22 富士通株式会社 Composite solid electrolyte and all solid state battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110086274A1 (en) * 2009-01-06 2011-04-14 Lg Chem, Ltd. Cathode active material for lithium secondary battery
US20100308278A1 (en) * 2009-06-03 2010-12-09 Kepler Keith D Composite for li-ion cells and the preparation process thereof
US20110177397A1 (en) * 2010-01-19 2011-07-21 Ohara Inc. All solid state battery
US20120008422A1 (en) * 2010-07-07 2012-01-12 Hyung-Soo Kim Semiconductor memory device and method for operating the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11577314B2 (en) 2015-12-16 2023-02-14 6K Inc. Spheroidal titanium metallic powders with custom microstructures
US11471941B2 (en) 2018-06-19 2022-10-18 6K Inc. Process for producing spheroidized powder from feedstock materials
US11273491B2 (en) 2018-06-19 2022-03-15 6K Inc. Process for producing spheroidized powder from feedstock materials
US11465201B2 (en) 2018-06-19 2022-10-11 6K Inc. Process for producing spheroidized powder from feedstock materials
US11611130B2 (en) 2019-04-30 2023-03-21 6K Inc. Lithium lanthanum zirconium oxide (LLZO) powder
KR102644961B1 (en) 2019-04-30 2024-03-11 6케이 인크. Lithium Lanthanum Zirconium Oxide (LLZO) Powder
WO2020223374A1 (en) * 2019-04-30 2020-11-05 6K Inc. Lithium lanthanum zirconium oxide (llzo) powder
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
KR20220002999A (en) * 2019-04-30 2022-01-07 6케이 인크. Lithium Lanthanum Zirconium Oxide (LLZO) Powder
US11311938B2 (en) 2019-04-30 2022-04-26 6K Inc. Mechanically alloyed powder feedstock
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US12042861B2 (en) 2021-03-31 2024-07-23 6K Inc. Systems and methods for additive manufacturing of metal nitride ceramics
US12040162B2 (en) 2022-06-09 2024-07-16 6K Inc. Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows
US12094688B2 (en) 2022-08-25 2024-09-17 6K Inc. Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP)

Also Published As

Publication number Publication date
EP3168914B1 (en) 2019-02-27
CN104718641B (en) 2020-07-31
EP2965369B1 (en) 2016-12-07
CN104704653A (en) 2015-06-10
EP3168914A1 (en) 2017-05-17
JP2015534242A (en) 2015-11-26
JP6407870B2 (en) 2018-10-17
HK1220041A1 (en) 2017-04-21
EP2907179A1 (en) 2015-08-19
US20200335756A1 (en) 2020-10-22
WO2014058684A3 (en) 2014-06-19
JP2015534243A (en) 2015-11-26
WO2014058683A1 (en) 2014-04-17
WO2014058684A2 (en) 2014-04-17
DK2965369T3 (en) 2017-03-13
US20140099556A1 (en) 2014-04-10
KR20150067237A (en) 2015-06-17
EP2965369A2 (en) 2016-01-13
EP2907179B1 (en) 2017-12-06
EP3174153A1 (en) 2017-05-31
CN104718641A (en) 2015-06-17
US20140099538A1 (en) 2014-04-10
US9793525B2 (en) 2017-10-17
US10084168B2 (en) 2018-09-25
KR20150067238A (en) 2015-06-17

Similar Documents

Publication Publication Date Title
US20200335756A1 (en) Solid-state battery separators and methods of fabrication
US11417873B2 (en) Solid-state batteries, separators, electrodes, and methods of fabrication
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
CN103746089B (en) A kind of solid lithium battery with gradient-structure and preparation method thereof
EP3043406B1 (en) Solid-state batteries and methods for fabrication
EP2814091B1 (en) Solid state battery with surface ion-diffusion enhancement coating and method for manufacturing thereof.
US20160308243A1 (en) Electrochemical cell with solid and liquid electrolytes
US20180309163A1 (en) Bipolar all solid-state battery
CN102668190A (en) Solid electrolyte cell and cathode active material
JP2004127743A (en) Thin film battery
JP2016184483A (en) All solid-state lithium secondary battery
JP2016058335A (en) All-solid battery, manufacturing method thereof, and method for recovering capacity
US20230198009A1 (en) Method for the manufacture of an energy storage device utilizing lithium and solid inorganic electrolytes
JP2017111891A (en) Electrode for all-solid battery, all-solid battery, and manufacturing methods thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: JOHNSON BATTERY TECHNOLOGIES, INC., GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOHNSON, LONNIE G.;JOHNSON, DAVID KETEMA;REEL/FRAME:046765/0085

Effective date: 20180821

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION