US20170370093A1 - Assembly channel embedded in concrete structure - Google Patents

Assembly channel embedded in concrete structure Download PDF

Info

Publication number
US20170370093A1
US20170370093A1 US15/633,229 US201715633229A US2017370093A1 US 20170370093 A1 US20170370093 A1 US 20170370093A1 US 201715633229 A US201715633229 A US 201715633229A US 2017370093 A1 US2017370093 A1 US 2017370093A1
Authority
US
United States
Prior art keywords
support member
support
fixed member
concrete structure
assembly channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/633,229
Other languages
English (en)
Inventor
Seung Il Lyu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Octagon Engineering Co Ltd
Original Assignee
Octagon Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Octagon Engineering Co Ltd filed Critical Octagon Engineering Co Ltd
Assigned to OCTAGON ENGINEERING CO., LTD. reassignment OCTAGON ENGINEERING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LYU, SEUNG IL
Assigned to OCTAGON ENGINEERING CO., LTD. reassignment OCTAGON ENGINEERING CO., LTD. CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE FROM ASSIGNMENT OF ASSIGNORS INTEREST" TO "TRANSFER OF 50% INTEREST" PREVIOUSLY RECORDED AT REEL: 042993 FRAME: 0053. ASSIGNOR(S) HEREBY CONFIRMS THE TRANSFER OF 50% INTEREST. Assignors: LYU, SEUNG IL
Publication of US20170370093A1 publication Critical patent/US20170370093A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry
    • E04B1/4107Longitudinal elements having an open profile, with the opening parallel to the concrete or masonry surface, i.e. anchoring rails
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/04Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
    • E04B1/043Connections specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/20Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
    • E04B1/21Connections specially adapted therefor
    • E04B1/215Connections specially adapted therefor comprising metallic plates or parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B13/00Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose
    • F16B13/02Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose in one piece with protrusions or ridges on the shaft
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/14Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements being composed of two or more materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry
    • E04B2001/4192Connecting devices specially adapted for embedding in concrete or masonry attached to concrete reinforcing elements, e.g. rods or wires

Definitions

  • the present invention relates to an assembly channel embedded in a concrete structure, and more particularly, to an assembly channel embedded in a concrete structure that is capable of increasing the strength and durability in fixing a bracket of an object to be supported, while also improving the coupling force to the concrete structure.
  • a channel which is embedded in a concrete structure, is used to fix a bracket of an object to be supported such as a curtain wall and the like.
  • the channel embedded in the concrete structure has a channel-shaped body and support members using bolts, and the curtain wall as an outer wall that does not support any load thereagainst serves as a curtain for just partitioning space.
  • the curtain wall and the channel are connected to each other through the bracket that supports the curtain wall and is fixed to the channel by means of the bolts.
  • the body of the channel has a given length and is made of a steel plate. Also, the body of the channel has top ends of both side surfaces bent inwardly therefrom.
  • the bolts are disposed between both side surfaces bent of the body of the channel to allow the bracket and the channel to be coupled to each other, and the body of the channel has coupling grooves formed on the underside thereof in such a manner as to be coupled to the support members.
  • the support members disposed on the underside of the body are fixedly coupled to the body by means of welding, and the support members are formed of anchor bolts insertedly coupled to the coupling grooves formed on the underside of the body.
  • a jig should be laboriously disposed on a deck plate.
  • the top of the channel So as to allow the top of the channel to have the same height as the top of the concrete structure through the jig, that is, one side of the jig is disposed on the deck plate and the other side thereof is welded or bolt-coupled to the underside of the body so as to fix the channel to the jig.
  • the conventional channel does not have any means for resisting a pull-out force, further, it is weak in the pull-out force.
  • the present invention has been made in view of the above-mentioned problems occurring in the prior art, and it is an object of the present invention to provide an assembly channel embedded in a concrete structure that is configured wherein a spiral-shaped fixed member is coupled to the underside of the support member, and further, it is fixed to the concrete structure over a relatively large area through position-fixing members, thereby allowing the strength transferred to the support member to be distributed and improving the durability thereof.
  • an assembly channel embedded in a concrete structure including: bolts coupled to a bracket adapted to support an object to be supported; a support member open on top thereof and having both side ends bent inwardly therefrom in such a manner as to prevent heads of the bolts inserted thereinto from being escaped therefrom; a fixed member fixedly coupled to the underside of the support member in such a manner as to be embedded in the concrete structure; at least one or more length reinforcing materials mounted on the inner surface of the fixed member in a longitudinal direction of the fixed member so as to reinforce the strength of the fixed member; and a horizontal plate disposed between the support member and the fixed member in such a manner as to be coupled to the support member by means of bolting and to the fixed member by means of welding, wherein the fixed member has a given height larger than a width thereof in such a manner as to be arch-shaped spirally and has tops welded to the underside of the support member.
  • the assembly channel further includes position-fixing members weldedly coupled selectively to the undersides of the fixed member.
  • the assembly channel further includes auxiliary support members spaced apart from each other along the edge of the underside of the support member in such a manner as to be fixedly coupled to the underside of the support member, each auxiliary support member having a shape of a rod or a bolt.
  • the assembly channel further includes a plurality of fixing protrusions spaced apart from each other on the outer surfaces of the support member and on the outer peripheral surface of the fixed member so as to fix the support member and the fixed member to the concrete structure.
  • the assembly channel further includes support grooves formed on both sides of the inner surface of the support member and bolt-pressurizing means mounted on the support grooves so as to support the bolts, the bolt-pressurizing means having a bolt-supporting plate moving along the support grooves and a plurality of pressurizing springs mounted between the bolt-supporting plate and the support member.
  • FIGS. 1 and 2 are front and side views showing an assembly channel embedded in a concrete structure according to a first embodiment of the present invention
  • FIGS. 3 and 4 are front and side views showing an assembly channel embedded in a concrete structure according to a second embodiment of the present invention.
  • FIGS. 5 and 6 are front and side views showing an assembly channel embedded in a concrete structure according to a third embodiment of the present invention.
  • FIGS. 7 and 8 are front and side views showing an assembly channel embedded in a concrete structure according to a fourth embodiment of the present invention.
  • FIGS. 9 a to 9 c are perspective views showing examples of the support member and the fixed member constituting the assembly channel embedded in the concrete structure according to the present invention.
  • FIGS. 10 and 11 are front views showing assembly channels embedded in a concrete structure according to fifth and sixth embodiments of the present invention.
  • FIGS. 12 and 13 are sectional views showing the use states of the assembly channels according to the present invention.
  • FIGS. 1 and 2 are front and side views showing an assembly channel embedded in a concrete structure according to a first embodiment of the present invention
  • FIGS. 3 and 4 are front and side views showing an assembly channel embedded in a concrete structure according to a second embodiment of the present invention
  • FIGS. 5 and 6 are front and side views showing an assembly channel embedded in a concrete structure according to a third embodiment of the present invention
  • FIGS. 7 and 8 are front and side views showing an assembly channel embedded in a concrete structure according to a fourth embodiment of the present invention
  • FIGS. 9 a to 9 c are perspective views showing examples of the support member and the fixed member constituting the assembly channel embedded in the concrete structure according to the present invention
  • FIGS. 10 and 11 are front views showing assembly channels embedded in a concrete structure according to fifth and sixth embodiments of the present invention.
  • An assembly channel embedded in a concrete structure according to the present invention includes bolts 20 , a support member 30 and a fixed member 40 .
  • each bolt 20 is coupled to the support member 30 and the upper portion thereof to a bracket 3 supporting an object to be supported.
  • each bolt 20 includes: a body 21 having given diameter and height and a spiral portion 22 formed on the outer peripheral surface thereof; and a head 23 formed unitarily with the underside of the body 21 and having a top surface 24 inclined inwardly from both sides thereof.
  • each bolt 20 is provided in such a manner that the head 23 having the top surface 24 inclined inwardly from both sides thereof is formed unitarily with the underside of the body 21 having the spiral portion 22 formed on the outer peripheral surface thereof.
  • the support member 30 is disposed in a concrete structure 1 and at least two or more bolts 20 are coupled to the interior of the support member 30 .
  • the support member 30 has given length and width in such a manner as to be open on top thereof, a sliding mounting space portion 31 formed in the interior thereof, and both side ends 32 bent inwardly therefrom.
  • the support member has a -shaped section, the sliding mounting space portion 31 formed therein to move the head 23 of each bolt 20 inserted thereinto, and both side ends 32 bent inwardly therefrom to prevent the head 23 located in the sliding mounting space portion 31 from being deviated from the sliding mounting space portion 31 .
  • both side ends 32 of the support member 30 may be changed according to the shapes of the head 23 of each bolt 20 , and a plurality of non-slip protrusions or a non-slip pad as well known may be selectively disposed on both side ends 32 of the support member 30 .
  • the fixed member 40 is fixedly coupled to the underside of the support member 30 and is thus embedded in the concrete structure 1 .
  • the fixed member 40 has a given height larger than a width thereof in a longitudinal direction of the support member 30 and is arch-shaped spirally in a width direction thereof.
  • the fixed member 40 is spirally formed and disposed on the underside of the support member 30 , and after that, tops 42 of the fixed member 40 coming into contact with the support member 30 are fixed to the underside of the support member 30 by means of welding W.
  • the fixed member 40 is spirally disposed on the underside of the support member 30 in the longitudinal direction of the support member 30 to allow the load transferred to the support member 30 to be distributed and also to provide a strong fastening force to the concrete structure 1 .
  • the fixed member 40 fixedly coupled to the underside of the support member 30 is not limited to the manner as shown in the drawings, and accordingly, two fixed members or a plurality of fixed members may be disposed on the underside of the support member 30 in a width direction thereof.
  • At least one or more length reinforcing materials 80 are mounted on the fixed member 40 in the longitudinal direction of the fixed member 40 so as to reinforce the strength of the fixed member 40 .
  • the at least one or more length reinforcing materials 80 are mounted inside the fixed member 40 in the longitudinal direction of the fixed member 40 so as to reinforce the strength of the fixed member 40 , and according to the present invention, for example, two length reinforcing materials 80 are coupled to the fixed member 40 .
  • the assembly channel 10 embedded in the concrete structure may be configured as shown in FIGS. 3 to 11 .
  • the assembly channel 10 embedded in the concrete structure according to a second embodiment of the present invention is configured wherein position-fixing members 50 are mounted selectively on the undersides 44 of the fixed member 40 .
  • the position-fixing members 50 are not limited to the shapes as shown, and according to the present invention, for example, the position-fixing members 50 have a semicircular shape.
  • the position-fixing members 50 are weldedly coupled to the undersides 44 of the fixed member 40 to prevent the position of the fixed member 40 from being changed and also to provide a strong coupling force to the concrete structure 1 .
  • the assembly channel 10 embedded in the concrete structure according to a third embodiment of the present invention is configured wherein auxiliary support members 60 are spaced apart from each other along the edge of the underside of the support member 30 in such a manner as to be fixedly coupled to the underside of the support member 30 , each auxiliary support member 60 having a shape of a rod or a bolt.
  • the auxiliary support members 60 are not limited to the shapes and heights as shown, and accordingly, they may have various shapes and heights. According to the present invention, for example, the auxiliary support members 60 have the shapes of bolts.
  • auxiliary support members 60 are spaced apart from each other along the edge of the underside of the support member 30 to allow the support member 30 to be fixed to the concrete structure 1 , together with the fixed member 40 , and at the same time to support the load transferred to the support member 30 .
  • the ends of the auxiliary support members 60 protrude in a horizontal direction thereof, as shown, so as to provide a strong coupling force to the concrete structure 1 .
  • the assembly channel 10 embedded in the concrete structure according to a fourth embodiment of the present invention is configured wherein a horizontal plate 72 having a coupling structure is mounted between the support member 30 and the fixed member 40 .
  • the support member 30 and the horizontal plate 72 are coupled to each other by means of bolting 74 , and the fixed member 40 and the horizontal plate 72 to each other by means of welding 76 .
  • the assembly channel 10 embedded in the concrete structure according to the fourth embodiment of the present invention is configured wherein the support member 30 and the fixed member 40 are separated from each other, thereby making the assembling and disassembling easily carried out and preventing the residual stress generated upon welding between the support member 30 and the fixed member 40 from being transferred to the support member 30 .
  • the assembly channel 10 embedded in the concrete structure is configured wherein a plurality of fixing protrusions 90 is spaced apart from each other on the outer surfaces of the support member 30 and on the outer peripheral surface of the fixed member 40 so as to fix the support member 30 and the fixed member 40 to the concrete structure 1 .
  • the plurality of fixing protrusions 90 which is spaced apart from each other, is fixedly formed on the outer surfaces of the support member 30 and on the outer peripheral surface of the fixed member 40 by means of welding, so that the support member 30 and the fixed member 40 can be firmly coupled to the concrete structure 1 .
  • the assembly channel 10 embedded in the concrete structure according to a sixth embodiment of the present invention is configured wherein support grooves 33 are formed on both sides of the inner surface of the support member 30 and bolt-pressurizing means 100 is mounted on the support grooves 33 so as to support the bolts 20 , thereby preventing the bolts 20 from sagging and at the same time allowing the assembling work with the object to be supported to be gently carried out.
  • the bolt-pressurizing means 100 includes a bolt-supporting plate 102 moving along the support grooves 33 and a plurality of pressurizing springs 104 mounted between the bolt-supporting plate 102 and the support member 30 .
  • the bolt-pressurizing means 100 is configured to allow the bolt-supporting plate 102 to move vertically along the support grooves 33 and also to allow the pressurizing springs 104 to support the bolt-supporting plate 102 .
  • the support member 30 is provided to have the given length and width in such a manner as to be open on top thereof, the sliding mounting space portion 31 formed in the interior thereof, and both side ends 32 bent inwardly therefrom.
  • the fixed member 40 which has the given height larger than the width thereof in such a manner as to be arch-shaped spirally, is located on the underside of the support member 30 , and after that, the tops 42 of the fixed member 40 coming into contact with the support member 30 are welded to the support member 30 .
  • each bolt 20 includes: the body 21 having the given diameter and height and the spiral portion 22 formed on the outer peripheral surface thereof; and the head 23 formed unitarily with the underside of the body 21 and having the top surface 24 inclined inwardly from both sides thereof.
  • the order in assembling the assembly channel 10 to be embedded in the concrete structure may be different from the order as mentioned above.
  • the assembly channel 10 which is configured to have the support member 30 and the fixed member 40 formed integrally with each other and the bolts 20 coupled to the top of the support member 30 , is embeddedly mounted in the concrete structure 1 .
  • the fixed member 40 is embedded into the concrete structure 1 , and if the concrete structure 1 is cured, the assembly channel 10 according to the present invention is fixed to the concrete structure 1 .
  • the bracket 3 is fitted to the body 21 of each bolt 20 , and the fixing nut 25 is fastened to the body 21 located on top of the bracket 3 , so that the object to be supported is just mounted on the bracket 3 .
  • the assembly channel 10 embedded in the concrete structure 1 according to the present invention is used for a floor (as shown in FIG. 12 ) or for a wall (as shown in FIG. 13 ), but in addition thereto, of course, it should be understood that it may have various structures according to environments and purposes thereof.
  • the assembly channel embedded in the concrete structure according to the present invention is configured wherein the spiral-shaped fixed member is coupled to the underside of the support member, and further, it is fixed to the concrete structure over a relatively large area through the position-fixing members, thereby allowing the strength transferred to the support member to be distributed and improving the durability thereof.
  • the assembly channel embedded in the concrete structure according to the present invention is configured wherein through the auxiliary support members mounted on the underside of the support member and the position-fixing members mounted on the undersides of the fixed member, the changes in positions of the support member can be prevented and the strength of the fixed member can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Bridges Or Land Bridges (AREA)
US15/633,229 2016-06-27 2017-06-26 Assembly channel embedded in concrete structure Abandoned US20170370093A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160079828A KR101677210B1 (ko) 2016-06-27 2016-06-27 콘크리트 구조물에 매입되는 조립형 채널
KR10-2016-0079828 2016-06-27

Publications (1)

Publication Number Publication Date
US20170370093A1 true US20170370093A1 (en) 2017-12-28

Family

ID=57537708

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/633,229 Abandoned US20170370093A1 (en) 2016-06-27 2017-06-26 Assembly channel embedded in concrete structure

Country Status (3)

Country Link
US (1) US20170370093A1 (zh)
KR (1) KR101677210B1 (zh)
CN (1) CN107542168A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723199A (zh) * 2020-12-25 2021-04-30 江苏攀登能源科技有限公司 一种带有加固装置的塔式起重机的起重臂
CN114382152A (zh) * 2022-01-29 2022-04-22 浙江汇博水泥制品有限公司 一种混凝土排水管高强度承口结构及其悬辊生产工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101977447B1 (ko) * 2016-12-13 2019-05-10 주식회사 포스코 외벽구조체
CN114961341B (zh) * 2022-04-06 2024-02-20 南通苏中建设有限公司 一种深基坑施工圆形梯笼

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191329749A (en) * 1913-12-24 1915-07-22 Anders Jordahl Means for Securing and Supporting Brackets, Plummer-blocks,or other Fittings on Ceilings, Beams, Walls or the like constructed of Reinforced Concrete.
KR950014271B1 (ko) 1992-07-15 1995-11-24 현대전자산업주식회사 폴리실리콘막의 식각 잔류물 제거 방법
KR20030013103A (ko) 2001-08-07 2003-02-14 이승호 시비율 제어와 주파수 제어를 이용한 종속 접속 스위칭전력 변환장치
KR100668112B1 (ko) * 2005-08-05 2007-01-11 알루텍 (주) 콘크리트 구조물에 매입되는 조립형 채널
GB2430206B (en) * 2005-09-16 2007-09-12 Laing O Rourke Plc Fixing embedments in reinforced concrete
KR20090088107A (ko) * 2008-02-14 2009-08-19 김향순 콘크리트 구조물에 매입되는 고정수단
CA2921147C (en) * 2012-08-20 2018-01-23 Thomas M. Espinosa Anchor holders and anchor assemblies for metal decks
KR101302458B1 (ko) * 2012-10-11 2013-09-02 이재호 서브 앵커를 갖는 선시공 앵커 채널

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723199A (zh) * 2020-12-25 2021-04-30 江苏攀登能源科技有限公司 一种带有加固装置的塔式起重机的起重臂
CN114382152A (zh) * 2022-01-29 2022-04-22 浙江汇博水泥制品有限公司 一种混凝土排水管高强度承口结构及其悬辊生产工艺

Also Published As

Publication number Publication date
KR101677210B1 (ko) 2016-11-18
CN107542168A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
US20170370093A1 (en) Assembly channel embedded in concrete structure
US10047528B1 (en) Structure for supporting access floor panel
KR101030320B1 (ko) 구조보강형 내,외장패널 시공장치
KR102105915B1 (ko) 건축물 철거용 잭 서포트 조립체
JP6599931B2 (ja) 内側フランジを備えるクロスメンバ
KR102209129B1 (ko) 내진패널과 무용접 내진트러스의 구조
JP6652461B2 (ja) 橋梁用防護柵
CN102439247B (zh) 可调夹层
KR101642110B1 (ko) 탈형 데크 플레이트
KR101833293B1 (ko) 이중 바닥 패널 지지용 포스트
JP2017137697A (ja) 柱又は梁構造
KR102459395B1 (ko) 조립식 트러스용 슬라이드 방식 너트 홀더
JP4430553B2 (ja) 床構造
KR200356062Y1 (ko) 이층침대 프레임의 구조
KR101886351B1 (ko) 자동차용 프레임 보강구조
KR20220015681A (ko) 익스펜션 조인트 및 그 시공방법
JP7009729B2 (ja) 階段
KR200482005Y1 (ko) 변형 방지 기능을 가지는 데크로드용 십자형 보강프레임 및 데크로드 시스템
JP7002525B2 (ja) 検査路およびそれに用いられる主桁
JP6652462B2 (ja) 橋梁用防護柵
KR20200094353A (ko) 수직벽 지지 장치용 지지 조립체
KR20160043802A (ko) 조립식 목재 교량
KR102126280B1 (ko) 수직벽용 지지 장치
JP2016176268A (ja) 取付部材
JP6748418B2 (ja) 耐力壁構造

Legal Events

Date Code Title Description
AS Assignment

Owner name: OCTAGON ENGINEERING CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LYU, SEUNG IL;REEL/FRAME:042993/0053

Effective date: 20170622

AS Assignment

Owner name: OCTAGON ENGINEERING CO., LTD., KOREA, REPUBLIC OF

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE FROM ASSIGNMENT OF ASSIGNORS INTEREST" TO "TRANSFER OF 50% INTEREST" PREVIOUSLY RECORDED AT REEL: 042993 FRAME: 0053. ASSIGNOR(S) HEREBY CONFIRMS THE TRANSFER OF 50% INTEREST;ASSIGNOR:LYU, SEUNG IL;REEL/FRAME:044323/0940

Effective date: 20170831

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION