US20170072469A1 - Method of making cermet or cemented carbide powder - Google Patents

Method of making cermet or cemented carbide powder Download PDF

Info

Publication number
US20170072469A1
US20170072469A1 US15/305,760 US201515305760A US2017072469A1 US 20170072469 A1 US20170072469 A1 US 20170072469A1 US 201515305760 A US201515305760 A US 201515305760A US 2017072469 A1 US2017072469 A1 US 2017072469A1
Authority
US
United States
Prior art keywords
powder
spherically shaped
granules
accordance
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/305,760
Other languages
English (en)
Inventor
Carl-Johan Maderud
Johan Sundstrom
Magnus Ekelund
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik Intellectual Property AB
Original Assignee
Sandvik Intellectual Property AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Intellectual Property AB filed Critical Sandvik Intellectual Property AB
Assigned to SANDVIK INTELLECTUAL PROPERTY AB reassignment SANDVIK INTELLECTUAL PROPERTY AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUNDSTROM, JOHAN, EKELUND, MAGNUS, MADERUD, CARL-JOHAN
Publication of US20170072469A1 publication Critical patent/US20170072469A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1216Container composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/003Pressing by means acting upon the material via flexible mould wall parts, e.g. by means of inflatable cores, isostatic presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/10Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to a method of making a powder of dense and spherically shaped cemented carbide or cermet granules.
  • the present disclosure also relates to a powder produced by the method and use of said powder in additive manufacturing such as 3D printing by the binder jetting technique.
  • the present disclosure relates to a Hot Isostatic Pressing (HIP) process for manufacturing a product by using said powder.
  • HIP Hot Isostatic Pressing
  • Additive manufacturing alias 3D (three dimensional) printing is a process of making three-dimensional solid components from a digital model using an additive process. In such a process layers of material are successively laid down and the component is built up layer by layer. 3D printing differs from traditional machining techniques in that it is a process building up the shape, whereas traditional machining typically relies on the removal of material from a work piece by methods such as cutting or drilling and thereby forming the final shape.
  • a first layer of powder is spread over a surface.
  • a liquid binder is deposited (printed) over the surface in a pattern predetermined by a digital model.
  • a second layer of powder is spread out for the next predetermined pattern to be printed. This process is repeated until the forming of the 3D printed green body is completed.
  • a subsequent curing process for improving the strength of certain thermosetting polymers might also be required.
  • the 3D printed green body is after removal of loose (binder-less) powder ready for a subsequent debinding and sintering process.
  • components of cermet, cemented carbide or metal can be produced by the described procedure.
  • the final density and quality of the sintered product depends on for example the sintering conditions and the powder properties.
  • a further aspect is to provide a method of making a powder that overcomes at least some of the above mentioned demands.
  • a further aspect of the present disclosure is to present a HIP process using the powder as defined hereinabove or hereinafter which will provide cemented carbides or cermets with enhanced hardness and wear resistance.
  • One advantage with the method according to claim 1 is that it is possible to convert powder of spherically shaped granules comprising agglomerated (porous) constituents of cermet or cemented carbide to a powder comprising dense and spherically shaped cermet or cemented carbide granules.
  • Said powder may be produced with less problems of granules sticking or sintering together (hereafter denoted “inter-granule sintering”) since the inhibitor powder prevents contact between individual spherically shaped granules during the sintering densification.
  • Inter-granule sintering typically causes the sintered powder to stick together and thereby co-sintered granule agglomerates or even a sintered cake of the powder is formed.
  • a sintered powder cake could possibly be milled to form a powder again with a certain degree of breakage of granules, loss of the spherical shape of some granules and a decreased amount of the finest spherical granules.
  • Another advantage of the method as defined hereinabove or hereinafter is that the spherical shape from the granulated state as porous granules can be preserved during sintering and thus resulting in a powder comprising dense and spherically shaped cermet or cemented carbide granules.
  • a spherical shape of the granules is advantageous as a powder of spherically shaped granules has good flowing properties and good packing properties.
  • Another advantage of the method as defined hereinabove or hereinafter is that the produced powder of dense and spherically shaped cermet or cemented carbide granules exhibits a high or even full density in every granule and therefore the total volume of pores in a 3D printed body would be less than the total volume would be if using porous and less densely packed cermet or cemented carbide granules.
  • Such aspects of density have large impact on the shrinkage and ability to conform to the predicted body geometry after a subsequent sintering or HIP process. It is to be noted that larger hollow space in a granule originating from a spray drying might still exist.
  • yet another advantage of the method as defined hereinabove or hereinafter is that the produced powder in virtue of the dense and spherically shaped cermet or cemented carbide granules confers high packing density to the green body. This is advantageous due to limited shrinkage during a subsequent sintering treatment of the green body.
  • a high packing density promotes the achievement of a high sintered density, which can be decisive for the achievement of a closed porosity (i.e. not inter-connected porosity). Only by the obtained state of closed porosity, the body can be further densified to full density by a subsequent post-sintering HIP process.
  • a powder produced in accordance with the present disclosure can be used in powder metallurgy (PM) area for example for manufacturing of near net shaped cermet or cemented carbide components.
  • the application area of the present disclosure is as powder feedstock for binder jetting 3D-printing techniques and also near net shape HIP of encapsulated powder.
  • the powder can be used in other types of additive manufacturing techniques as well as other PM-techniques in general.
  • the obtained component can be a fully dense net- or near net shaped component, thus the obtained component will almost have no voids or have no voids.
  • Another advantage with the process as defined hereinabove or hereinafter is that when zirconium alloy or titanium alloy is used as capsule material, a layer of ZrC or TiC is formed in the contact interface between the capsule and the cemented carbide or cermet.
  • This carbide layer is dense and has almost no cracks and prevents therefore most of the interdiffusion between the capsule and the powder as defined hereinabove or hereinafter.
  • this carbide layer thereby limits the loss of carbon from the cemented carbide or the cermet to the capsule material and maintains the chemical balance and stability of the cemented carbide or cermet.
  • this carbide layer provides conditions to avoid formation of low carbon containing carbides such as e.g. M2C, M6C and M12C.
  • different grades of the Zr (Zirconium) or Ti (Titanium) alloy may be used for capsule material.
  • pure Ti or pure Zr may be used as capsule material.
  • FIGS. 1 shows a Scanning Electron Microscope (SEM) image at about 1500 ⁇ magnification of dense cemented carbide granules made in accordance with Example 2.
  • ceramic is herein intended to denote a material comprising a ceramic phase, i.e. hard constituents, and a metallic binder phase.
  • cemented carbide is herein intended to denote a material comprising a ceramic phase, i.e. hard constituents, and a metallic binder phase, where the ceramic phase comprises WC and the metallic phase comprises Co and optionally one or more of Ni, Fe, Cr and Mo.
  • granule refers to the agglomerated state of a mixture that is produced by e.g. spray drying.
  • ense granule refers to the sintered and densified granule.
  • the term “sintering” is a generic term for a process wherein heating under controlled atmosphere is conducted in order to minimize the surface of a particulate system, which mostly is associated with generation of bonds between neighboring particles or granules and shrinkage of the aggregated particles or granules.
  • intra-granule sintering refers to the sintering inside a granule causing the individual granules to densify and shrink and to form a dense and spherically shaped granule.
  • inter-granule sintering refers to the creation of sintering bonds between neighboring granules.
  • green body refers to a body comprising granules that are bonded by organic binder.
  • solidus refers to a certain temperature that when being exceeded leads to the inception of liquid phase formation.
  • the present disclosure relates to a method of making a powder of dense and spherically shaped cermet or cemented carbide granules, wherein the method comprises the steps of:
  • the forming of spherically shaped granules comprising metal, hard constituents and organic binder is preferably performed by spray drying.
  • the organic binder can for example be PEG (polyethylene glycol).
  • the metal is typically Cobalt (Co) or a mixture of Co and one or more of Nickel (Ni), Iron (Fe), Chromium (Cr) and Molybdenium (Mo).
  • the hard constituents may for example be WC, TiC, TiN, Ti(C,N) and/or NbC.
  • the step of providing the granules with a spherical shape is important since the subsequent heating process will ideally make the granules to shrink but preserve their original spherical shape.
  • the step of mixing the spherically shaped granules with a sintering inhibitor powder to form a mixture of spherically shaped granules and sintering inhibitor powder may be performed in a conventional mixing equipment, but care should be taken not to deform the spherical shape of the granules or to unintentionally reduce the size of the spherically shaped granules.
  • the step of loading the mixture of spherically shaped granules and sintering inhibitor powder in a furnace chamber may typically be performed by placing said mixture in a tray or in a vessel that can be loaded in the furnace chamber.
  • the step of heat-treating the mixture of spherically shaped granules and sintering inhibitor in the furnace chamber at a sintering temperature is performed in order to remove the organic binder from the spherically shaped granules and to sinter the hard constituents with the metal in each spherically shaped granule and thereby form a mixture of sintered dense spherically shaped granules and sintering inhibitor powder.
  • the organic binder will evaporate and will leave the spherically shaped granules by degassing.
  • the metal and the hard constituents will sinter and form dense spherically shaped granules.
  • the step of unloading the mixture of sintered dense spherically shaped granules and sintering inhibitor powder from the furnace chamber may be performed after a cooling step wherein the mixture of sintered dense spherically shaped granules and sintering inhibitor powder has reached a temperature of about room temperature.
  • the step of separating the sintering inhibitor powder from the sintered spherically shaped dense granules may be performed in one or several subsequent steps using one or several techniques.
  • the result from the separation is a powder of dense and spherically shaped cermet or cemented carbide granules and a separate inhibitor powder.
  • the inhibitor powder may preferably be reused in a subsequent process following the method in accordance with the present disclosure.
  • the purpose of the inhibitor powder is to prevent the spherically shaped granules from building inter-granule bonds during sintering. Without any sintering inhibitor powder, strong inter-granule bonds will be formed during sintering at temperatures above the solidus temperature of the metal. Mechanical forces must then be applied (e.g. in a disintegrator mill) in order to break the inter-granule bonds. However, during such an operation, a certain fraction of the granules will most probably be cracked and fractured, whilst yet another fraction might not be separated into their individual granule entities. The latter case is mostly evident for the finest granules that are difficult to break apart from other fine granules or those bigger in size.
  • inhibitor powder in the sintering heat-treatment will allow intra-granule sintering while avoiding the extent of inter-granule sintering.
  • cermet or cemented carbide granules that are both dense and spherical in a cost effective manner.
  • One advantage with the method in accordance with the present disclosure is that it is possible to produce a powder of dense and spherically shaped granules with a wide granule size distribution and/or with a considerable amount of small granules ( ⁇ 30 ⁇ m). Without the use of sintering inhibitor in accordance to the present disclosure, it becomes subsequently very difficult to separate these small dense granules from each other or from larger granules by milling or other methods. This leads to a decreased amount of fine dense granules in the powder.
  • One important advantage with using sintering inhibitor powder is that the granules can be sintered at high temperatures (far exceeding the solidus temperature) without the disadvantage associated to such high temperatures when sintering without inhibitor powder.
  • This freedom may be of importance, especially if the furnace is lacking the ability to control temperature in a precise manner throughout the furnace charge; but may also be of importance for the purpose of high throughput rate in the furnace.
  • a high throughput rate means here as fast sintering cycle as possible, being equivalent with high heating loads that inevitably leads to high overheating in some parts of the batch relative others.
  • the temperature control of the batch must be very precise, probably within +/ ⁇ 5° C., in order to adjust between the opposing goals of achieving high density granules versus avoiding too hard sintered cake.
  • the inhibitor powder has to be adapted in particle size and in amount to reach the advantageous effects as associated with the present disclosure.
  • the average particle size of the inhibitor powder should preferably not be larger than the average spherically shaped granule size, since the mixing of the powders would then most probably not lead to full separation of the spherically shaped granules and thereby not fulfil the object of inter-granule sintering inhibition.
  • the amount of inhibitor powder needed to separate the spherically shaped granules from each other during the sintering step demands an optimization to be performed by the person skilled in the art.
  • the amount of inhibitor powder needs to be high enough to separate the spherically shaped granules but not more than necessary in order to maintain high throughput through the furnace.
  • the porosity inside each dense cermet or cemented carbide spherically shaped granule is less than 5 vol %, such as ⁇ 1 vol %, such as ⁇ 0.5 vol %.
  • a low porosity is advantageous in applications benefitted by high green body densities and for which the obtainment of a high green density depends upon solid incompressible granules' ability to redistribute into a dense packing arrangement (e.g. gauged by TAP density).
  • the internal porosity of the spherically shaped granules adds to the porosity between the granules to make up the overall porosity and thereby shrinkage of the finally produced dense body.
  • 3D printing by binder jetting and HIP constitute examples of such applications.
  • the size of the sintered dense spherically shaped granules in the cermet or cemented carbide powder is distributed between 1-500 ⁇ m, more typically between 5-200 ⁇ m.
  • the sintered dense spherically shaped granules are ⁇ 50 ⁇ m, such as ⁇ 30 ⁇ m.
  • the spherically shaped granule size is preferably below 50 ⁇ m, such as below 30 ⁇ m.
  • the granule size fraction below 10 ⁇ m constitutes more than 10 wt % or more preferably 20 wt % of the complete distribution.
  • the preferred continuous particle size distribution of the spherically shaped granules size is in the range of from about 5 to about 500 ⁇ m, such as about 10 to about 200 ⁇ m.
  • a narrow granule size distribution may be advantageous in virtue of less segregation problems, e.g. during handling, storage and transferring of the powder.
  • a wide granule size distribution can be advantageous in applications relying on high green strength and high green density; e.g. in HIP when a capsule is being filled with powder having a wide distribution will obtain a higher packing density compared to a more narrowly distributed granule size.
  • the free flowing properties are of prime interest for the given application a narrow distribution can be preferred.
  • the heat treatment in the furnace chamber is performed at a sintering temperature above the solidus temperature of the metal in the spherically shaped granules.
  • a sintering temperature is above the solidus temperature, liquid phase is formed.
  • the metal cools down to solid phase again, the spherically shaped granules, as prevented from contact by the inhibitor powder, will form the dense and spherically shaped granules separated by inhibitor powder.
  • the heat treatment in the furnace chamber is performed at a sintering temperature ranging of about 30° C. to about 100° C., or from 30° C. to 100° C., above the solidus temperature of the metal in the spherically shaped granules.
  • the sintering is performed at a sintering temperature of more than about 100° C., or from 100° C., above the solidus temperature.
  • the inhibitor powder comprises an oxide, preferably yttrium oxide.
  • Yttrium oxide is an oxide that can withstand sintering at a temperature of more than 1000° C. without chemically reacting with the granules.
  • the inhibitor powder comprises carbon, preferably graphite.
  • carbon as an inhibitor can be removed by thermochemical methods besides physical separation, e.g. air classification or sieving.
  • Another advantage with carbon is that sintering of for example cemented carbide granules tends to deplete carbon, and with carbon as the inhibitor this will be compensated for.
  • the main advantage with carbon is that carbon does not bring any contamination to the sintered dense spherically shaped granules since carbon already is part of the overall chemistry of cermets and cemented carbides.
  • the solidus temperature of the metallic phase is important. Proximity of carbon to the metal typically influences the solidus temperature of the metal since the carbon partly dissolves into the metal. This can be analysed in detail by studying phase diagrams comprising carbon for the relevant metallic phase. The solidus temperature decreases by dissolution of carbon, at least until full saturation is achieved. The optimum sintering temperature can be chosen based on this influence of solidus temperature exerted by carbon. In fact, it provides an exact measure of the solidus temperature since the saturation with respect to carbon is a rule that can be applied in general.
  • the inhibitor powder is separated from the sintered dense spherically shaped granules by means of physical methods such as sieving, air classification, hydrocyclone, flotation and/or fluidization.
  • the inhibitor powder comprising carbon is separated from the sintered dense spherically shaped granules by means of thermochemical methods using a gas at elevated temperature, preferably using a gas comprising hydrogen.
  • thermochemical method is performed in a continuous belt furnace loaded with fixed powder beds, a rotating tube furnace or in a fluidized bed furnace.
  • the present disclosure also relates to a powder of cermet or cemented carbide made in accordance with the disclosed method.
  • the present disclosure also relates to the use of a powder made in accordance with the disclosed method in 3D printing, preferably 3D printing of green body aimed for sintering to closed porosity.
  • Closed porosity is considered to be porosity where the majority of the pores are closed by being surrounded by material, comparable to open pores which are open to the surroundings, i.e. not closed.
  • the present disclosure also relates to the use of a powder made in accordance with the disclosed method in HIP applications.
  • the present disclosure relates to a process for manufacturing a component comprising the following steps:
  • a form is provided, the form is sealable.
  • more than one form may also be provided.
  • the terms “form” and “capsule” are used herein interchangeably, the term “mould” could be used as well.
  • the form is manufactured from an alloy of zirconium or an alloy of titanium and may be a manufactured of e.g. sheets or tubes, which are welded together.
  • the form may have any shape.
  • the form may also define a portion of the final component.
  • the powder as defined hereinabove or hereinafter is poured/filled into the form, which form defines the shape of the component.
  • the form is thereafter sealed, for example by welding.
  • air Prior to sealing the form, air is evacuated from the form.
  • the air is removed (evacuated) as air typically contains argon, which has a negative effect on ductility.
  • the evacuation is usually performed by using vacuum pump(s).
  • the filled, evacuated, and thereafter sealed form is then subjected to HIP in a heatable pressure chamber, normally referred to as a Hot Isostatic Pressing-chamber at a predetermined temperature, a predetermined isostatic pressure and a predetermined time so that said powder particles bond metallurgical to each other and so that the voids between the powder particles are closed and a solid and dense body is formed, thus a certain shrinkage of the total volume of said powder is obtained.
  • the obtained component has a dense structure.
  • the heating chamber is pressurized with gas, e.g. argon gas, to a predetermined pressure (isostatic pressure) of above 500 bar.
  • gas e.g. argon gas
  • isostatic pressure is of from about 900 to about 1500 bar, such as of from 1000 to 1200 bar.
  • the heating chamber is heated to a predetermined and suitable temperature allowing said powder particles to metallurgically bond and thereby allowing the voids in-between the powder particles to close, whereby a component having a dense structure is obtained.
  • the predetermined temperature may be above 900° C., such as of from 900 to about 1350° C., such as about 1100 to 1350° C.
  • the form is held in the heating chamber at said predetermined pressure and said predetermined temperature for a predetermined time period.
  • the diffusion processes that take place between the powder particles during HIP are time dependent so long times are preferred.
  • the form should be HIP treated for a time period of about 0.5 to about 3 hours, such as about 1 to about 2 hours, such as about 1 hour.
  • a cermet or cemented carbide component obtained according to the process as defined hereinabove or hereinafter may be used in any product requiring good wear resistant properties and/or high stiffness.
  • Granules were formed from a slurry comprising powders of WC, Co, Cr, PEG and ethanol.
  • the average grain size of the WC and the Co powder were 0.8 ⁇ m any 1.3 ⁇ m respectively.
  • the slurry was spray dried in a Niro-spray drying equipment.
  • the spray dried granules formed were sieved on a 63 ⁇ m net to leave only the smallest fraction from the granulated powder.
  • the final cemented carbide to be formed was a 10 wt % Co, 0.45 wt % Cr 3 C 2 and 89.44 wt % WC material and the relative composition of the powders in the slurry were adapted therefor.
  • the spray dried granules comprised about 2 wt % PEG.
  • the granules were mixed with yttrium oxide in a ratio of 50 wt % spherically shaped granule powder and 50 wt % yttrium oxide powder.
  • the yttrium oxide powder had a particle size of about 3 ⁇ m in average.
  • the mixture of spherically shaped granules and yttrium oxide was distributed on yttrium oxide coated graphite trays.
  • the trays were filled to a height of about 2 cm mixture.
  • the sintering was performed in vacuum conditions of about 5 mbar.
  • the heating cycle comprised an increase in temperature in hydrogen flow, where the temperature was held constant at 300° C. in 60 minutes to allow binder degassing. Thereafter the temperature was increased by 500° C. per minute. At the reached sintering temperature (maximum temperature) the temperature was hold constant for 90 minutes. Thereafter a cooling step was performed whereby the temperature was decreased down to room temperature.
  • the sintered spherically shaped granules were separated from the yttrium oxide powder by two steps, first the sintered cake was gently dry milled for 10 minutes and then the spherically shaped granules were separated from the oxide powder in a magnetic separation step.
  • the spherically shaped sintered granules were separated from the yttrium oxide utilizing the magnetism of the cemented carbide.
  • the powder mixture was dispersed in ethanol.
  • the cemented carbide powder could be kept at the bottom of the vessel by placing a Ferro magnet close to the bottom of the vessel, while the yttrium oxide could be decanted together with ethanol. 50 repetitions of the decanting were performed.
  • the dense cemented carbide spherically shaped granules were dried in a furnace at a temperature of 50° C.
  • the granule size of the sintered dense spherically shaped granules of the cemented carbide powder sintered at 1410° C. was d(0.1): 22.4 ⁇ m, d(0.5): 32 ⁇ m and d(0.9): 46 ⁇ m.
  • Several through cuts spherically shaped granules were studied showing a porosity of less than 0.02 vol % ( ⁇ A02).
  • One way of measuring the density of the dense and spherically shaped granule powder is to study the density of tapped powder.
  • the full theoretical density is 14.45 g/cm 3 .
  • the density of the tapped powder produced and 1370° C. and 1410° C. was 8.10 and 7.92 g/cm 3 , respectively.
  • the slight difference in tapped density is most probably due to differences in particle (granule) size distribution.
  • Granules were formed from a slurry comprising powders of WC, Co, Cr, PEG and ethanol.
  • the average grain size of the WC and the Co powder were 0.8 my any 1.3 my (Fischer) respectively.
  • the slurry was spray dried in a Niro-spray drying equipment.
  • the spherically shaped granules formed were sieved on a 63 ⁇ m net to use only the smallest fraction of the granulated powder.
  • the final cemented carbide to be formed was a 10 wt % Co, 0.45 wt % Cr 3 C 2 and 89.44 wt % WC material and the relative composition of the powders in the slurry were adapted therefor.
  • the spray dried spherically shaped granules comprised about 2 wt % PEG.
  • the size of the granules was ⁇ 63 ⁇ m.
  • the spherically shaped granules were mixed with graphite in a ratio of 75 wt % granule powder and 25 wt % graphite powder.
  • the graphite powder had a particle size maximum size of about 45 ⁇ m.
  • the shape of the graphite particles was typically flaky.
  • the mixture of spherically shaped granules and graphite was distributed on graphite trays.
  • the trays were filled to a height of at least 2 cm and sometimes up to 5 or 10 cm.
  • the heating cycle comprised heating during a constant flow of hydrogen up to 300° C., whereat the temperature was held constant for 60 minutes to allow binder degassing. Thereafter the temperature was increased by 500° C. per hour under vacuum pumping down to vacuum conditions. At the reached sintering temperature (maximum temperature), the temperature was hold constant for 90 minutes. Thereafter a cooling step was performed whereby the temperature was decreased down to room temperature.
  • the sintered spherically shaped granules were separated from the graphite powder by two steps, first in an air classification step and then in a decarburization step.
  • the air classification was performed in a laboratory air classification machine from Hosokawa Alpine (ATP50). By adjusting the parameters of the air classification machine to optimized performance a complete separation of loose graphite powder was obtained.
  • the final dense and spherically shaped cemented carbide powder was studied in a scanning electron microscope and a cross section of some granules can be seen in FIG. 1 .
  • Several through cuts granules were studied showing a porosity of about 0 vol % for the granules that were heat treated with an inhibitor powder of graphite at a temperature of 1290° C. or above.
  • One way of measuring the density of the powder of dense and spherically shaped granules is to study the density of tapped powder.
  • the theoretical density is 14.45 g/cm 3 .
  • the density of the tapped powder of dense granules with a size distribution between 10-50 ⁇ m was 8.8 g/cm 3 .
  • Example 2 The powder manufactured according the method described in Example 2 having a continuous particle size distribution within the range of about 10-200 ⁇ m was filled in a capsule made of zirconium grade 702 and which had the form as a simple bottomed tube in this case. The filling was performed under tapping action for maximized powder packing density (67 vol-% was reached).
  • a press-fitting lid was fitted on top of the tube and the tube was sealed by welding.
  • the tube interior atmosphere was evacuated via a manifold and crimped and welded according to industrial practice for HIP.
  • the tube was put in a HIP-furnace and a maximum temperature was applied in slight excess of the solidus-temperature (e.g. 30° C. above the solidus temperature of the particular cemented carbide grade). A peak temperature of 1310° C. was used during 30 minutes. The HIP-pressure was 150 MPa during that period.
  • the tube material was removed by pickling by using a mixture of 2% HF and 20% HNO 3 .
  • microstructure was characterized by slightly deformed prior powder-particles from which Co-rich binder phase have been partially squeezed out to fill the remaining powder inter-particle interstices.
  • a bulk microstructure i.e. within a distance of 100-200 ⁇ m from the capsule wall
  • Only a thin (about 100 ⁇ m) surface zone of the cemented carbide was found to be severely affected by sub-carbide formation and capsule metal (Zr-alloy) enrichment of the binder phase.
  • the ZrC-layer in contact with the Zr-metal was only about 10 ⁇ m thick.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
US15/305,760 2014-04-24 2015-04-23 Method of making cermet or cemented carbide powder Abandoned US20170072469A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14165842 2014-04-24
EP14165842.7 2014-04-24
PCT/EP2015/058790 WO2015162206A2 (en) 2014-04-24 2015-04-23 A method of making cermet or cemented carbide powder

Publications (1)

Publication Number Publication Date
US20170072469A1 true US20170072469A1 (en) 2017-03-16

Family

ID=50513823

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/305,760 Abandoned US20170072469A1 (en) 2014-04-24 2015-04-23 Method of making cermet or cemented carbide powder
US16/985,508 Abandoned US20200360995A1 (en) 2014-04-24 2020-08-05 Method of making cermet or cemented carbide powder
US17/830,401 Pending US20220288683A1 (en) 2014-04-24 2022-06-02 Method of making cermet or cemented carbide powder

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/985,508 Abandoned US20200360995A1 (en) 2014-04-24 2020-08-05 Method of making cermet or cemented carbide powder
US17/830,401 Pending US20220288683A1 (en) 2014-04-24 2022-06-02 Method of making cermet or cemented carbide powder

Country Status (8)

Country Link
US (3) US20170072469A1 (pt)
EP (1) EP3134222B1 (pt)
JP (1) JP6590833B2 (pt)
KR (1) KR102297842B1 (pt)
CN (1) CN106573298B (pt)
BR (1) BR112016024706A2 (pt)
RU (2) RU2019113090A (pt)
WO (1) WO2015162206A2 (pt)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180036945A1 (en) * 2015-02-26 2018-02-08 Corning Incorporated Additive manufacturing processes for making transparent 3d parts from inorganic materials
US20180236687A1 (en) * 2017-02-20 2018-08-23 Kennametal Inc. Cemented carbide powders for additive manufacturing
WO2019246321A1 (en) * 2018-06-20 2019-12-26 Desktop Metal, Inc. Methods and compositions for the preparation of powders for binder-based three-dimensional additive metal manufacturing
CN111646800A (zh) * 2020-05-13 2020-09-11 株洲天成金属激光高科有限公司 一种无粘结相全致密碳化钛型材的制备工艺
US10858295B2 (en) 2016-03-01 2020-12-08 Hitachi Metals, Ltd. Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member
WO2021126324A1 (en) * 2019-12-17 2021-06-24 Kennametal Inc. Additive manufacturing techniques and applications thereof
US11065862B2 (en) 2015-01-07 2021-07-20 Kennametal Inc. Methods of making sintered articles
US11123801B2 (en) * 2015-05-13 2021-09-21 Kennametal Inc. Cutting tool made by additive manufacturing
EP3881953A4 (en) * 2018-11-12 2021-12-15 Fujimi Incorporated POWDERED MATERIAL FOR USE IN MOLDING POWDER LAMINATE, POWDER LAMINATE MOLDING PROCESS USING IT, AND MOLDED ARTICLE
CN114985748A (zh) * 2022-06-15 2022-09-02 西安铂力特增材技术股份有限公司 硬质合金复杂构件成形方法
CN115121811A (zh) * 2022-06-29 2022-09-30 中国航发动力股份有限公司 一种铺粉3d打印机匣的焊接方法及一种发动机机匣
EP4112206A1 (en) 2021-07-01 2023-01-04 Sandvik Machining Solutions AB Method of making a powder for additive manufacturing
EP4166262A1 (en) * 2021-10-15 2023-04-19 Sandvik Machining Solutions AB A method for manufacturing a sintered article and a sintered article
WO2023062158A1 (en) * 2021-10-15 2023-04-20 Sandvik Machining Solutions Ab A method for manufacturing a sintered article and a sintered article
US11713496B2 (en) 2017-12-19 2023-08-01 Proterial, Ltd. Powder material, powder material for additive manufacturing, and method for producing powder material
US11986974B2 (en) 2019-03-25 2024-05-21 Kennametal Inc. Additive manufacturing techniques and applications thereof
US11998987B2 (en) 2017-12-05 2024-06-04 Kennametal Inc. Additive manufacturing techniques and applications thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10780631B2 (en) * 2015-11-04 2020-09-22 Imerys Usa, Inc. Compositions and methods for additive manufacturing
GB201522503D0 (en) 2015-12-21 2016-02-03 Element Six Gmbh Method of manufacturing a cemented carbide material
JP6764228B2 (ja) * 2015-12-22 2020-09-30 株式会社フジミインコーポレーテッド 粉末積層造形に用いるための造形用材料
JP6170994B2 (ja) 2015-12-22 2017-07-26 株式会社フジミインコーポレーテッド 粉末積層造形に用いるための造形用材料
JP6656911B2 (ja) 2015-12-22 2020-03-04 株式会社フジミインコーポレーテッド 粉末積層造形に用いるための造形用材料
AT15102U1 (de) * 2016-02-04 2016-12-15 Ceratizit Austria Gmbh Verfahren zum schichtweisen Herstellen eines dreidimensionalen Hartmetall Körpers
EP3442728B1 (en) 2016-04-15 2021-05-19 Sandvik Intellectual Property AB Cermet or cemented carbide powder and three dimensional printing thereof
CN106086572A (zh) * 2016-07-29 2016-11-09 柳州豪祥特科技有限公司 一种硬质合金的制备工艺
DE102017101050A1 (de) * 2017-01-20 2018-07-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur herstellung von hartmetallkörpern mittels 3d-druck
US20190030606A1 (en) * 2017-07-31 2019-01-31 General Electric Company Automatic powder compaction
US10662716B2 (en) 2017-10-06 2020-05-26 Kennametal Inc. Thin-walled earth boring tools and methods of making the same
DE102017125734A1 (de) 2017-11-03 2019-05-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gesintertes Hartmetallgranulat und seine Verwendung
FR3086953B1 (fr) * 2018-10-09 2023-01-06 Saint Gobain Ct Recherches Billes frittees en carbure(s) de tungstene
JP7336843B2 (ja) * 2018-11-12 2023-09-01 株式会社フジミインコーポレーテッド 粉末積層造形用粉末材料及び粉末積層造形方法
US20200346365A1 (en) * 2019-05-03 2020-11-05 Kennametal Inc. Cemented carbide powders for additive manufacturing
CN111663067A (zh) * 2020-06-04 2020-09-15 杭州科技职业技术学院 一种用于3d打印的硬质合金材料及其制备工艺
WO2024089236A1 (de) 2022-10-28 2024-05-02 H. C. Starck Tungsten GmbH Granulat-mischung für die additive fertigung
EP4368312A1 (en) 2022-11-10 2024-05-15 Sandvik SRP AB A cemented carbide based composite article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608318A (en) * 1981-04-27 1986-08-26 Kennametal Inc. Casting having wear resistant compacts and method of manufacture
JP2001303106A (ja) * 2000-04-26 2001-10-31 Sanalloy Industry Co Ltd 多孔性焼結成形体の製造方法
US20020009411A1 (en) * 2000-02-08 2002-01-24 Zucker Gordon L. Method for producing tungsten carbide
US20030000339A1 (en) * 2001-06-28 2003-01-02 Woka Schweisstechnik Gmbh Sintered material of spheroidal sintered particles and process for producing thereof
US20070009373A1 (en) * 2003-10-03 2007-01-11 Tomoaki Omoto Mold powder for continuous casting of steel
CN102360584A (zh) * 2011-09-21 2012-02-22 江苏泓源光电科技有限公司 含有炭黑助剂的光伏电池用导电浆料及其制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007251A (en) * 1972-09-19 1977-02-08 Allmanna Svenska Elektriska Aktiebolaget Method of manufacturing powder bodies of borides, carbides or nitrides
US4872904A (en) * 1988-06-02 1989-10-10 The Perkin-Elmer Corporation Tungsten carbide powder and method of making for flame spraying
US5051232A (en) * 1990-01-16 1991-09-24 Federal-Mogul Corporation Powdered metal multiple piece component manufacturing
US6209420B1 (en) * 1994-03-16 2001-04-03 Baker Hughes Incorporated Method of manufacturing bits, bit components and other articles of manufacture
JPH1088311A (ja) * 1996-09-17 1998-04-07 Showa Denko Kk タングステンカーバイド/コバルト溶射粉末及びその製造方法
SE518885C2 (sv) * 1998-02-20 2002-12-03 Seco Tools Ab Sätt att tillverka skär i submikron hårdmetall
JPH11322443A (ja) * 1998-05-08 1999-11-24 Tdk Corp セラミックス焼結体の製造方法
US6659206B2 (en) * 2001-10-29 2003-12-09 Smith International, Inc. Hardfacing composition for rock bits
CN1827264A (zh) * 2006-03-24 2006-09-06 自贡市天恒合金应用技术有限公司 超细硬质合金生产用复合原料粉的生产方法
CN100496817C (zh) * 2007-01-31 2009-06-10 哈尔滨工业大学 一种预合金化粉末制备TiAl合金复合板材的方法
WO2008096402A1 (ja) * 2007-02-02 2008-08-14 Sumitomo Electric Hardmetal Corp. ダイヤモンド焼結体
JP5225274B2 (ja) * 2007-06-27 2013-07-03 京セラ株式会社 超硬合金、切削工具ならびに切削加工装置
CN100575515C (zh) * 2007-08-14 2009-12-30 北京科技大学 一种超细晶WC-Co硬质合金制备方法
SE533922C2 (sv) * 2008-12-18 2011-03-01 Seco Tools Ab Sätt att tillverka hårdmetallprodukter
US8609196B2 (en) * 2009-06-10 2013-12-17 Kennametal Inc. Spallation-resistant multilayer thermal spray metal coatings
GB0919857D0 (en) * 2009-11-13 2009-12-30 Element Six Holding Gmbh Near-nano cemented carbides and process for production thereof
CN101838755A (zh) * 2010-06-13 2010-09-22 上海交通大学 局域化颗粒增强金属基复合材料及其制备方法
GB2490087B (en) * 2010-11-29 2016-04-27 Halliburton Energy Services Inc Forming objects by infiltrating a printed matrix
US20120192760A1 (en) 2011-01-28 2012-08-02 Baker Hughes Incorporated Non-magnetic hardfacing material
CN102828105B (zh) * 2011-06-18 2015-01-07 无锡鑫群新材料科技有限公司 碳化钛基钢结硬质合金材料的制备方法
EP2700459B1 (en) * 2012-08-21 2019-10-02 Ansaldo Energia IP UK Limited Method for manufacturing a three-dimensional article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608318A (en) * 1981-04-27 1986-08-26 Kennametal Inc. Casting having wear resistant compacts and method of manufacture
US20020009411A1 (en) * 2000-02-08 2002-01-24 Zucker Gordon L. Method for producing tungsten carbide
JP2001303106A (ja) * 2000-04-26 2001-10-31 Sanalloy Industry Co Ltd 多孔性焼結成形体の製造方法
US20030000339A1 (en) * 2001-06-28 2003-01-02 Woka Schweisstechnik Gmbh Sintered material of spheroidal sintered particles and process for producing thereof
US20070009373A1 (en) * 2003-10-03 2007-01-11 Tomoaki Omoto Mold powder for continuous casting of steel
CN102360584A (zh) * 2011-09-21 2012-02-22 江苏泓源光电科技有限公司 含有炭黑助剂的光伏电池用导电浆料及其制备方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11065862B2 (en) 2015-01-07 2021-07-20 Kennametal Inc. Methods of making sintered articles
US20180036945A1 (en) * 2015-02-26 2018-02-08 Corning Incorporated Additive manufacturing processes for making transparent 3d parts from inorganic materials
US11123801B2 (en) * 2015-05-13 2021-09-21 Kennametal Inc. Cutting tool made by additive manufacturing
US10858295B2 (en) 2016-03-01 2020-12-08 Hitachi Metals, Ltd. Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member
US20180236687A1 (en) * 2017-02-20 2018-08-23 Kennametal Inc. Cemented carbide powders for additive manufacturing
US11065863B2 (en) * 2017-02-20 2021-07-20 Kennametal Inc. Cemented carbide powders for additive manufacturing
US11998987B2 (en) 2017-12-05 2024-06-04 Kennametal Inc. Additive manufacturing techniques and applications thereof
US11713496B2 (en) 2017-12-19 2023-08-01 Proterial, Ltd. Powder material, powder material for additive manufacturing, and method for producing powder material
WO2019246321A1 (en) * 2018-06-20 2019-12-26 Desktop Metal, Inc. Methods and compositions for the preparation of powders for binder-based three-dimensional additive metal manufacturing
EP3881953A4 (en) * 2018-11-12 2021-12-15 Fujimi Incorporated POWDERED MATERIAL FOR USE IN MOLDING POWDER LAMINATE, POWDER LAMINATE MOLDING PROCESS USING IT, AND MOLDED ARTICLE
US11986974B2 (en) 2019-03-25 2024-05-21 Kennametal Inc. Additive manufacturing techniques and applications thereof
WO2021126324A1 (en) * 2019-12-17 2021-06-24 Kennametal Inc. Additive manufacturing techniques and applications thereof
CN111646800A (zh) * 2020-05-13 2020-09-11 株洲天成金属激光高科有限公司 一种无粘结相全致密碳化钛型材的制备工艺
EP4112206A1 (en) 2021-07-01 2023-01-04 Sandvik Machining Solutions AB Method of making a powder for additive manufacturing
WO2023274818A1 (en) 2021-07-01 2023-01-05 Sandvik Machining Solutions Ab Method of making a powder for additive manufacturing
WO2023062156A1 (en) * 2021-10-15 2023-04-20 Sandvik Machining Solutions Ab A method for manufacturing a sintered article and a sintered article
WO2023062158A1 (en) * 2021-10-15 2023-04-20 Sandvik Machining Solutions Ab A method for manufacturing a sintered article and a sintered article
EP4166262A1 (en) * 2021-10-15 2023-04-19 Sandvik Machining Solutions AB A method for manufacturing a sintered article and a sintered article
CN114985748A (zh) * 2022-06-15 2022-09-02 西安铂力特增材技术股份有限公司 硬质合金复杂构件成形方法
CN115121811A (zh) * 2022-06-29 2022-09-30 中国航发动力股份有限公司 一种铺粉3d打印机匣的焊接方法及一种发动机机匣

Also Published As

Publication number Publication date
RU2019113090A (ru) 2019-09-06
JP6590833B2 (ja) 2019-10-16
RU2687332C2 (ru) 2019-05-13
CN106573298A (zh) 2017-04-19
KR102297842B1 (ko) 2021-09-02
US20220288683A1 (en) 2022-09-15
CN106573298B (zh) 2019-03-05
BR112016024706A2 (pt) 2017-08-15
US20200360995A1 (en) 2020-11-19
EP3134222B1 (en) 2018-05-23
JP2017519101A (ja) 2017-07-13
WO2015162206A2 (en) 2015-10-29
EP3134222A2 (en) 2017-03-01
KR20160146729A (ko) 2016-12-21
WO2015162206A3 (en) 2015-12-17
RU2016145399A3 (pt) 2018-11-02
RU2016145399A (ru) 2018-05-24

Similar Documents

Publication Publication Date Title
US20220288683A1 (en) Method of making cermet or cemented carbide powder
Frykholm et al. Solid state sintered 3-D printing component by using inkjet (binder) method
CN104736274B (zh) 制造耐火金属构件
US11111400B2 (en) Multimaterial powder with composite grains for additive synthesis
TW201219132A (en) Potassium/molybdenum composite metal powders, powder blends, products thereof, and methods for producing photovoltaic cells
US20230084462A1 (en) Method for Manufacturing Porous Metal Body, and Porous Metal Body
Yadav et al. Binder jetting 3D printing of titanium aluminides based materials: a feasibility study
CN107636182A (zh) 辐射屏蔽组合物及其制备方法
EP4041510A1 (en) Printable and sinterable cemented carbide and cermet powders for powder bed-based additive manufacturing
CN104072139A (zh) 金属钛碳化物陶瓷的制备方法
WO2017068153A1 (en) A process of manufacturing cermet or cemeted carbide component
US8802004B2 (en) Component produced or processed by powder metallurgy, and process for producing it
Imam et al. Cost effective developments for fabrication of titanium components
CN105345007B (zh) 一种高致密铬钨合金靶材的制备方法
Xu et al. Titanium compacts with controllable porosity by slip casting of binary powder mixtures
WO2006114849A1 (ja) 超小型軸受及びその製造方法
CN105364074A (zh) 一种高致密铬钨合金靶材的制备方法
RU2754864C1 (ru) Способ получения неиспаряемого геттера и композитный геттер для рентгеновской трубки
JP2024013999A (ja) チタン焼結材の製造方法
Hernández–Rojas et al. A Device with a Controllable Internal Atmosphere, Independent from the Heating Furnace, for Sintering Metal Particles
송준일 A Study on the Compaction of Iron Nanopowder and Related Sintering Property
JP6770369B2 (ja) マイクロカプセルおよびそれを用いたセラミックスの製造方法
CN108603280A (zh) Cu-Ga合金溅射靶的制造方法及Cu-Ga合金溅射靶
Joensson et al. W-Cu gradient materials-processing, properties and application possibilities
JP4081762B2 (ja) 焼結体の製造方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANDVIK INTELLECTUAL PROPERTY AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUNDSTROM, JOHAN;MADERUD, CARL-JOHAN;EKELUND, MAGNUS;SIGNING DATES FROM 20161011 TO 20161013;REEL/FRAME:040100/0794

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION