US20160261168A1 - Conveyor Belt Driven Generator - Google Patents

Conveyor Belt Driven Generator Download PDF

Info

Publication number
US20160261168A1
US20160261168A1 US14/640,810 US201514640810A US2016261168A1 US 20160261168 A1 US20160261168 A1 US 20160261168A1 US 201514640810 A US201514640810 A US 201514640810A US 2016261168 A1 US2016261168 A1 US 2016261168A1
Authority
US
United States
Prior art keywords
rotor
stator
conveyor belt
roller
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/640,810
Other languages
English (en)
Inventor
Paul B. Harrison
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Martin Engineering Co
Original Assignee
Martin Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martin Engineering Co filed Critical Martin Engineering Co
Priority to US14/640,810 priority Critical patent/US20160261168A1/en
Assigned to MARTIN ENGINEERING COMPANY reassignment MARTIN ENGINEERING COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARRISON, PAUL B.
Priority to PL16762135T priority patent/PL3265409T3/pl
Priority to BR112017019146-6A priority patent/BR112017019146B1/pt
Priority to MX2017011437A priority patent/MX362673B/es
Priority to AU2016229358A priority patent/AU2016229358B2/en
Priority to KR1020177027976A priority patent/KR20170132780A/ko
Priority to JP2017546942A priority patent/JP2018509873A/ja
Priority to PCT/US2016/020173 priority patent/WO2016144605A1/en
Priority to CA2978704A priority patent/CA2978704C/en
Priority to RU2017134735A priority patent/RU2701295C2/ru
Priority to CN201680014225.XA priority patent/CN107406199B/zh
Priority to ES16762135T priority patent/ES2830761T3/es
Priority to EP16762135.8A priority patent/EP3265409B1/de
Priority to PE2017001502A priority patent/PE20171465A1/es
Publication of US20160261168A1 publication Critical patent/US20160261168A1/en
Priority to US15/605,045 priority patent/US9948163B2/en
Priority to ZA2017/06033A priority patent/ZA201706033B/en
Priority to CL2017002253A priority patent/CL2017002253A1/es
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1846Rotary generators structurally associated with wheels or associated parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G39/00Rollers, e.g. drive rollers, or arrangements thereof incorporated in roller-ways or other types of mechanical conveyors 
    • B65G39/02Adaptations of individual rollers and supports therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators

Definitions

  • This invention pertains to electrical generators and methods related to the same. More specifically, the present invention pertains to a generator configured to attach to a conveyor belt roller of a bulk material conveyor belt assembly in a manner such that the roller rotationally drives the generator.
  • the present invention addresses and overcomes some of the problems that currently exist in conveyor belt assemblies that utilize generators.
  • the generator of the present invention is directly connected to a conventional conveyor belt idler roller.
  • the rotor of the generator is preferably configured to rotationally slip relative to that idler roller in the event the resistive torque between the rotor and stator of the generator exceeds a threshold torque or the generator completely seizes.
  • a generator for generating electricity from a rotating conveyor belt roller of a bulk material conveyor belt assembly comprises a stator and a rotor.
  • the stator has a center axis and is configured and adapted to be supported by a portion of conveyor belt support structure from a first axial end of the stator.
  • the stator has an opposite second axial end that is configured and adapted to support an end of a conveyor belt roller in a manner such that the stator is able to structurally support the end of the conveyor belt roller from the portion of conveyor belt support structure.
  • the stator further comprises armature windings spaced circumferentially about the center axis.
  • the rotor encircles the stator and is configured and adapted to operatively connect to the conveyor belt roller in a manner such that the rotor can be rotationally driven by the conveyor belt roller about the stator.
  • the rotor comprises a plurality of permanent magnets spaced circumferentially about the central axis of the stator.
  • a conveyor belt roller has a main body and a generator.
  • the main body has a cylindrical outer surface that is configured and adapted to engage a conveyor belt of a conveyor belt assembly and that defines an axis of rotation.
  • the generator is connected to an axial end portion of the main body and comprises a stator and a rotor.
  • the rotor is configured and adapted to rotate relative to the stator about the axis of rotation.
  • the stator comprises a plurality of armature windings circumferentially spaced around the axis of rotation.
  • the rotor comprises a cylindrical outer surface and a plurality of permanent magnets. The cylindrical outer surface of the rotor and the cylindrical outer surface of the main body have equal diameters.
  • the permanent magnets are circumferentially spaced around the axis of rotation.
  • the cylindrical outer surface of the rotor and the permanent magnets encircle the armature windings of the stator.
  • the main body is connected to the rotor in a manner such that rotation of the roller can rotationally drive the rotor relative to the stator.
  • Yet another aspect of the invention is directed to supporting a conveyor belt roller from support structure via a generator.
  • the generator comprises a rotor and a stator.
  • the rotor is configured to rotate around the stator.
  • the method comprises supporting an axial end portion of the conveyor belt roller via an axial end portion of the stator.
  • the method further comprises supporting an opposite axial end of the stator from the support structure in a manner such that the stator indirectly supports the conveyor belt roller from the support structure.
  • FIG. 1 depicts a perspective view of a portion of conveyor belt assembly incorporating a generator in accordance with the present invention.
  • FIG. 2 depicts a front view of the conveyor belt assembly shown in FIG. 1 .
  • FIG. 3 depicts a perspective view of the conveyor belt assembly shown in FIGS. 1 and 2 with the conveyor belt omitted for clarity.
  • FIG. 4 depicts an exploded view of the generator and roller assembly shown in FIGS. 1-3 .
  • FIG. 5 depicts a cross-sectional view of the generator shown in FIGS. 1-4 .
  • FIG. 6 depicts a perspective view of part of the stator encircled by the permanent magnets or the rotor.
  • the generator 10 comprises a stator 12 and a rotor 14 .
  • the generator 10 further comprises a plurality of permanent drive magnets 16 , a drive dog 18 , and a drive coupling 20 .
  • the stator 12 comprises a central axis 22 , a central shaft 24 , and armature windings 26 .
  • the stator 12 is configured and adapted to be supported by a rigid portion of conveyor belt support structure 28 .
  • the stator 12 is supported by the portion of conveyor belt support structure 28 via the shaft 24 of the stator.
  • the armature windings 26 are wound around armature teeth 30 that extend from and around the shaft 24 of the stator 12 .
  • An axial passageway 32 extends through the shaft 24 of the stator 12 and serves as a conduit for lead wires 34 that are connected to the windings 26 .
  • the lead wires 34 extend from the generator 12 to transmit electricity out of the generator.
  • the opposite axial end of the shaft 24 of the stator 12 comprises a recess 36 that is aligned with the central axis 22 .
  • the recess 36 is configured and adapted to receive and support the end of a shaft of a conveyor belt roller 38 (as is explained in greater detail below) and can be cylindrical, hexagonal, or any other shape suitable for supporting the end of the shaft.
  • the stator 12 is adapted to support one of a conveyor belt roller from conveyor belt support structure.
  • the stator 12 preferably further comprises a first end cap 40 and a second end cap 42 that are rigidly attached to the shaft 24 of the stator 12 (preferably via press-fit or adhesive).
  • the rotor 14 comprises an outer cylindrical casing 44 and a plurality of permanent magnets 46 .
  • the permanent magnets 46 are attached to the inner surface of the cylindrical casing 44 and are circumferentially spaced from each other around the central axis 22 of the stator 12 .
  • the rotor 14 further comprises a first inner cap 48 and an axially spaced second inner cap 50 .
  • the first and second inner end caps 48 , 50 extend radially inward toward the shaft 24 of the stator 12 , but stop short of engaging the shaft in a manner creating an annular gap.
  • Assembling the rotor 14 to the stator 12 includes the use of a pair of bearings 52 , a pair of annular resilient seals 54 and a few c-clips/e-clips 56 .
  • the inboard most c-clips 56 can be snapped into annular grooves formed in the shaft 24 of the stator. Then, with the stator 12 fully assembled except for its first and second end caps 40 , 42 , and with the rotor 14 fully assembled except for its first and second inner caps 48 , 50 , the rotor is axially slid around the stator.
  • the permanent magnets 46 of the rotor 14 encircle the armature teeth 30 and windings 26 of the stator 12 .
  • the first and second inner caps 48 , 50 of the rotor 14 can be slid into the cylindrical casing 44 of the rotor until they hit stops formed on the inner surface of the casing (which axially position the inner caps correctly).
  • the inner caps 48 , 50 preferably are then press-fit into to the cylindrical casing 44 (alternatively other methods of attaching the inner caps to the cylindrical casing can be used).
  • the bearings 52 are slipped into the annular gaps between the inner caps 48 , 50 of the rotor and the shaft of the stator 12 .
  • the inboard c-clips 56 prevent the over insertion of the bearings 52 .
  • the outboard c-clips 56 can then be snapped into additional annular grooves formed in the shaft 24 of the stator 12 to axially secure the bearings 52 in place (which thereby also axially secures the rotor 14 in place relative to the stator 12 ).
  • the seals 54 can be slid into the cylindrical casing 44 of the rotor 14 until they hit additional stops formed on the inner surface of the casing.
  • the end caps 40 , 42 of the stator can be axially press-fit onto the shaft 24 until they engage against outboard c-clips 56 (at which point they will also engage against and slightly compress the seals 54 ). With, the end caps 40 , 42 press-fit onto the shaft 24 , the process of assembling the rotor 14 to the stator 12 is complete.
  • the drive dog 18 is annular with radial protrusions and the drive coupling 20 is configured to encircle the drive dog. Together, the radial protrusions of the drive dog and the drive coupling are configured to interlock with corresponding recesses formed in the cylindrical casing 44 of the rotor 14 . Thus, the rotor 14 is configured to rotate with the drive dog 18 relative to the stator 12 .
  • the drive coupling 20 is made of polyurethane or some other appreciably resilient material. In addition to absorbing oscillations in torque (described infra) the drive coupling is able to account for manufacturing tolerances between the drive dog 18 and the outer casing 48 .
  • the drive magnets 16 are secured in recesses formed in the axial side of the drive dog 18 that faces away from the rotor 14 .
  • the drive magnets 16 are preferably circumferentially spaced and encircle the central axis 22 of the stator 12 .
  • the generator 10 is connected to a conveyor belt idler roller 38 (which is preferably axially symmetric) by inserting the shaft 60 of the roller 38 into the recess 36 formed in the shaft 24 of the stator 12 .
  • the drive magnets 16 magnetically attach the drive dog 18 to the main cylindrical body 60 of the roller 38 in a manner creating torsional friction between the roller and the drive.
  • rotation of the roller 38 will cause the rotor 14 of the generator 10 to rotate therewith, unless the torsional friction is overcome be resistive torque. This allows the rotor 14 to rotationally slip relative to the roller 38 in the event the rotational friction between the rotor and the stator 12 exceeds the torsional friction.
  • the roller 38 and generator 10 assembly can then be secured to conveyor belt support structure 28 via the shaft 58 of the roller 38 and the shaft 24 of the stator 12 .
  • one axial end of the shaft 58 of the roller 38 is supported directly by the support structure 28 and the other axial end of the shaft 58 of the roller 38 is supported by the structure indirectly through the stator 12 of the generator 10 .
  • the cylindrical outer casing 44 of the rotor 14 has a diameter matching that of the cylindrical main body 60 of the roller 38 such that, if the conveyor belt 62 that rides on the roller 38 tracks off toward the generator 10 , the belt can partially ride on the rotor 14 of the generator 10 .
  • the drive dog of the preferred embodiment is distinct from the outer casing of the rotor, the drive dog could be formed in a manner such that it is integral with or permanently connected to the outer casing of the rotor.
  • the drive dog could be an extension of the conveyor belt roller and configured to rotationally slip relative to the rotor.
  • the generator can be formed in a manner such that the generator is integral with the conveyor belt roller.
  • the rotor casing could be an integral extension of the main body of the roller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Rollers For Roller Conveyors For Transfer (AREA)
US14/640,810 2015-03-06 2015-03-06 Conveyor Belt Driven Generator Abandoned US20160261168A1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
US14/640,810 US20160261168A1 (en) 2015-03-06 2015-03-06 Conveyor Belt Driven Generator
PE2017001502A PE20171465A1 (es) 2015-03-06 2016-03-01 Generador accionado mediante una cinta transportadora
CA2978704A CA2978704C (en) 2015-03-06 2016-03-01 Conveyor belt driven generator
CN201680014225.XA CN107406199B (zh) 2015-03-06 2016-03-01 传送带驱动的发电机
MX2017011437A MX362673B (es) 2015-03-06 2016-03-01 Generador accionado mediante una cinta transportadora.
AU2016229358A AU2016229358B2 (en) 2015-03-06 2016-03-01 Conveyor belt driven generator
KR1020177027976A KR20170132780A (ko) 2015-03-06 2016-03-01 컨베이어 벨트 피동 제너레이터
JP2017546942A JP2018509873A (ja) 2015-03-06 2016-03-01 コンベアベルトで駆動される発電機
PCT/US2016/020173 WO2016144605A1 (en) 2015-03-06 2016-03-01 Conveyor belt driven generator
PL16762135T PL3265409T3 (pl) 2015-03-06 2016-03-01 Generator napędzany przenośnikiem taśmowym
RU2017134735A RU2701295C2 (ru) 2015-03-06 2016-03-01 Генератор, работающий от конвейерной ленты
BR112017019146-6A BR112017019146B1 (pt) 2015-03-06 2016-03-01 Gerador acionado por correia transportadora
ES16762135T ES2830761T3 (es) 2015-03-06 2016-03-01 Generador accionado por cinta transportadora
EP16762135.8A EP3265409B1 (de) 2015-03-06 2016-03-01 Förderbandbetriebener generator
US15/605,045 US9948163B2 (en) 2015-03-06 2017-05-25 In-line conveyor belt roller generator with magnetic torque limiting coupling
ZA2017/06033A ZA201706033B (en) 2015-03-06 2017-09-05 Conveyor belt driven generator
CL2017002253A CL2017002253A1 (es) 2015-03-06 2017-09-06 Generador accionado mediante una cinta transportadora

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/640,810 US20160261168A1 (en) 2015-03-06 2015-03-06 Conveyor Belt Driven Generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/605,045 Continuation US9948163B2 (en) 2015-03-06 2017-05-25 In-line conveyor belt roller generator with magnetic torque limiting coupling

Publications (1)

Publication Number Publication Date
US20160261168A1 true US20160261168A1 (en) 2016-09-08

Family

ID=56850928

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/640,810 Abandoned US20160261168A1 (en) 2015-03-06 2015-03-06 Conveyor Belt Driven Generator
US15/605,045 Active US9948163B2 (en) 2015-03-06 2017-05-25 In-line conveyor belt roller generator with magnetic torque limiting coupling

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/605,045 Active US9948163B2 (en) 2015-03-06 2017-05-25 In-line conveyor belt roller generator with magnetic torque limiting coupling

Country Status (16)

Country Link
US (2) US20160261168A1 (de)
EP (1) EP3265409B1 (de)
JP (1) JP2018509873A (de)
KR (1) KR20170132780A (de)
CN (1) CN107406199B (de)
AU (1) AU2016229358B2 (de)
BR (1) BR112017019146B1 (de)
CA (1) CA2978704C (de)
CL (1) CL2017002253A1 (de)
ES (1) ES2830761T3 (de)
MX (1) MX362673B (de)
PE (1) PE20171465A1 (de)
PL (1) PL3265409T3 (de)
RU (1) RU2701295C2 (de)
WO (1) WO2016144605A1 (de)
ZA (1) ZA201706033B (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160137304A1 (en) * 2014-11-14 2016-05-19 Top Flight Technologies, Inc. Micro hybrid generator system drone
WO2018210473A1 (de) * 2017-05-15 2018-11-22 Sms Group Gmbh Hüttentechnische vorrichtung
CN110206581A (zh) * 2019-07-09 2019-09-06 张海滨 一种滚筒式发电机
WO2020082105A1 (en) * 2018-10-25 2020-04-30 Vayeron Pty Ltd Improvements in conveyor idler and components thereof
CN113162324A (zh) * 2021-03-02 2021-07-23 包头市国安科技有限公司 传送带能量回收设备
US11608230B2 (en) 2018-10-30 2023-03-21 Superior Industries, Inc. Conveyor idler monitoring apparatus, systems, and methods
WO2023193028A1 (en) * 2022-03-31 2023-10-05 Laubscher Bernard Allen Conveyor pulley electric generator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190226876A1 (en) * 2018-01-23 2019-07-25 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Sensor
CN112850002B (zh) * 2020-12-28 2022-08-19 山东宇能电气有限公司 一种高强度耐磨聚合物托辊
CN113247530A (zh) * 2021-06-04 2021-08-13 山西东昌实业有限公司 一种越野带式输送机动能回收发电装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1725740A (en) * 1924-12-10 1929-08-20 Schulte Karl Roller conveyer
US3918561A (en) * 1973-04-02 1975-11-11 Brake Roller Company Conveyor brake roller
US5970712A (en) * 1995-12-04 1999-10-26 Stein; Allan Patrick Combined material conveyor and electrical power generating system
US6206181B1 (en) * 1997-09-16 2001-03-27 Motion Systems, L.C. Gearless motorized conveyor roller
US6244427B1 (en) * 1997-09-16 2001-06-12 Motion Systems, L.C. Modular gearless motorized conveyor roller
US6443295B1 (en) * 2000-01-05 2002-09-03 Emerson Electric Co. Motorized conveyor pulley with reduced internal loading
US6527097B2 (en) * 1999-11-02 2003-03-04 Rollerbrak (Proprietary) Limited Conveyor idler
US6612422B2 (en) * 2000-12-29 2003-09-02 Lucas Western Inc. Conveyor roller assembly
US20090033166A1 (en) * 2007-07-31 2009-02-05 Seiko Epson Corporation Brushless motor
US7510073B2 (en) * 2003-11-25 2009-03-31 Van Der Graaf, Inc. Motorized drum roller with stationary ends
US20090166157A1 (en) * 2005-09-29 2009-07-02 Kraetz Hans-Peter Roller Drive and Roller Transportation Device
US8348813B2 (en) * 2009-06-24 2013-01-08 Yihsuan Enterprise Co., Ltd. Treadmill having roller structure
US20140346906A1 (en) * 2011-08-11 2014-11-27 Mol Belting Systems, Inc. Motorized drum shell arrangement

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987307A (en) 1974-12-11 1976-10-19 Giconi Renell A Particulate material powered prime mover
US4469220A (en) * 1981-12-16 1984-09-04 Tri-Veyor Corp. Magnetic coupling assembly for accumulating power roll conveyor
US4823941A (en) 1985-11-20 1989-04-25 Alex Mindich High speed tubular belt conveyor and system and method for making
JP2790164B2 (ja) * 1994-06-30 1998-08-27 ヤマハ株式会社 真空チャンバ用移送装置
CA2190689C (fr) * 1996-06-11 2006-05-30 Zmaj Petrovic Rouleau pour convoyeur motorise
JP3798494B2 (ja) * 1997-02-12 2006-07-19 Ntn株式会社 コンベアローラの異常検出装置
JP2002153009A (ja) * 2000-11-10 2002-05-24 Matsushita Electric Ind Co Ltd 外周駆動形電動機およびそれを用いたベルトコンベア
US6615975B2 (en) * 2001-07-27 2003-09-09 Gebo Convoyeurs Consultants & Systems Inc. Magnetic coupling assembly for conveyor rollers
JP2003333800A (ja) * 2002-05-16 2003-11-21 Ishikawajima Harima Heavy Ind Co Ltd ローラ発電装置およびベルトコンベヤ
US7750253B2 (en) * 2006-02-21 2010-07-06 New Enterprise Stone And Lime Co. Conveyor belt scale system
US7864067B2 (en) * 2007-11-27 2011-01-04 United Parcel Service Of America, Inc. Self-powered wireless sensor system
GB2458161A (en) * 2008-03-07 2009-09-09 William Taylor Cattle power generation and feeding arrangement
CN101841217A (zh) * 2009-03-19 2010-09-22 石为民 一种高效发电机
CH701945A2 (de) 2009-10-05 2011-04-15 Wrh Walter Reist Holding Ag Fördervorrichtung zur energiegewinnung.
WO2011046912A2 (en) 2009-10-12 2011-04-21 Rosendall Fredrick D System for harvesting power and method thererof
RU107138U1 (ru) * 2011-03-17 2011-08-10 Общество с ограниченной ответственностью "Научно-производственная фирма "Автоматика" Генерирующий электроэнергию ролик конвейера
US20140305773A1 (en) * 2013-04-16 2014-10-16 Charles Agnoff Slip clutch and roller conveyor incorporating same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1725740A (en) * 1924-12-10 1929-08-20 Schulte Karl Roller conveyer
US3918561A (en) * 1973-04-02 1975-11-11 Brake Roller Company Conveyor brake roller
US5970712A (en) * 1995-12-04 1999-10-26 Stein; Allan Patrick Combined material conveyor and electrical power generating system
US6206181B1 (en) * 1997-09-16 2001-03-27 Motion Systems, L.C. Gearless motorized conveyor roller
US6244427B1 (en) * 1997-09-16 2001-06-12 Motion Systems, L.C. Modular gearless motorized conveyor roller
US6527097B2 (en) * 1999-11-02 2003-03-04 Rollerbrak (Proprietary) Limited Conveyor idler
US6443295B1 (en) * 2000-01-05 2002-09-03 Emerson Electric Co. Motorized conveyor pulley with reduced internal loading
US6612422B2 (en) * 2000-12-29 2003-09-02 Lucas Western Inc. Conveyor roller assembly
US7510073B2 (en) * 2003-11-25 2009-03-31 Van Der Graaf, Inc. Motorized drum roller with stationary ends
US20090166157A1 (en) * 2005-09-29 2009-07-02 Kraetz Hans-Peter Roller Drive and Roller Transportation Device
US20090033166A1 (en) * 2007-07-31 2009-02-05 Seiko Epson Corporation Brushless motor
US8348813B2 (en) * 2009-06-24 2013-01-08 Yihsuan Enterprise Co., Ltd. Treadmill having roller structure
US20140346906A1 (en) * 2011-08-11 2014-11-27 Mol Belting Systems, Inc. Motorized drum shell arrangement

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10266262B2 (en) 2014-11-14 2019-04-23 Top Flight Technologies, Inc. Micro hybrid generator system drone
US20160311544A1 (en) * 2014-11-14 2016-10-27 Top Flight Technologies, Inc. Micro Hybrid Generator System Drone
US9751626B2 (en) 2014-11-14 2017-09-05 Top Flight Technologies, Inc. Micro hybrid generator system drone
US9751625B2 (en) * 2014-11-14 2017-09-05 Top Flight Technologies, Inc. Micro hybrid generator system drone
US9764837B2 (en) * 2014-11-14 2017-09-19 Top Flight Technologies, Inc. Micro hybrid generator system drone
US10035596B2 (en) 2014-11-14 2018-07-31 Top Flight Technologies, Inc. Micro hybrid generator system drone
US20160137304A1 (en) * 2014-11-14 2016-05-19 Top Flight Technologies, Inc. Micro hybrid generator system drone
WO2018210473A1 (de) * 2017-05-15 2018-11-22 Sms Group Gmbh Hüttentechnische vorrichtung
US11638942B2 (en) 2017-05-15 2023-05-02 Sms Group Gmbh Metallurgical device with self-powered sensing
CN110636909A (zh) * 2017-05-15 2019-12-31 Sms集团有限公司 冶金设备
RU2735408C1 (ru) * 2017-05-15 2020-11-02 Смс Груп Гмбх Металлургическое устройство
WO2020082105A1 (en) * 2018-10-25 2020-04-30 Vayeron Pty Ltd Improvements in conveyor idler and components thereof
US11993463B2 (en) 2018-10-30 2024-05-28 Superior Industries, Inc. Conveyor idler monitoring apparatus, systems, and methods
US11608230B2 (en) 2018-10-30 2023-03-21 Superior Industries, Inc. Conveyor idler monitoring apparatus, systems, and methods
CN110206581A (zh) * 2019-07-09 2019-09-06 张海滨 一种滚筒式发电机
CN113162324A (zh) * 2021-03-02 2021-07-23 包头市国安科技有限公司 传送带能量回收设备
WO2023193028A1 (en) * 2022-03-31 2023-10-05 Laubscher Bernard Allen Conveyor pulley electric generator

Also Published As

Publication number Publication date
AU2016229358A1 (en) 2017-09-21
US20170264166A1 (en) 2017-09-14
MX2017011437A (es) 2017-12-20
CN107406199A (zh) 2017-11-28
JP2018509873A (ja) 2018-04-05
EP3265409A4 (de) 2018-10-31
AU2016229358B2 (en) 2019-04-18
RU2017134735A (ru) 2019-04-04
ZA201706033B (en) 2019-08-28
MX362673B (es) 2019-01-30
CL2017002253A1 (es) 2018-03-09
ES2830761T3 (es) 2021-06-04
RU2701295C2 (ru) 2019-09-25
BR112017019146A2 (pt) 2018-05-02
RU2017134735A3 (de) 2019-08-29
CN107406199B (zh) 2019-11-19
EP3265409B1 (de) 2020-09-30
US9948163B2 (en) 2018-04-17
EP3265409A1 (de) 2018-01-10
CA2978704A1 (en) 2016-09-15
KR20170132780A (ko) 2017-12-04
WO2016144605A1 (en) 2016-09-15
PE20171465A1 (es) 2017-10-11
PL3265409T3 (pl) 2021-04-06
CA2978704C (en) 2023-01-10
BR112017019146B1 (pt) 2021-12-14

Similar Documents

Publication Publication Date Title
US9948163B2 (en) In-line conveyor belt roller generator with magnetic torque limiting coupling
CN205283281U (zh) 转子构件、转子以及旋转电机
US9030071B2 (en) Electrical machines
US8499916B2 (en) Rotational coupling device with flux leakage path insulator
CN105370584B (zh) 电动泵
US9837867B2 (en) Electric machine, rotor and associated method
US9455602B2 (en) Motor
US20050109585A1 (en) Motorized drum roller with stationary ends
RU2008108535A (ru) Муфта, использующая магнитное отталкивание для передачи вращательного движения от ведущей детали к ведомой детали
CN110062742B (zh) 用于输送机的轴向磁通电机
WO2014096095A3 (de) Elektrische maschine
EP2746199B1 (de) Angetriebene Rolle
US20200052564A1 (en) Improvements to rotary generators
US20150318754A1 (en) Rotor-holding structure of rotating electrical machine for hybrid vehicle
JP5283283B2 (ja) モータ、モータ内蔵ローラおよびローラコンベア装置
WO2007143692A3 (en) Electromagnetic engine
CN204992820U (zh) 马达转子和马达
CN209184369U (zh) 一种盘式电机
CN209283018U (zh) 新型滚筒电机
CN103707758B (zh) 一种复合驱动车轮组件
CN108253038A (zh) 一种具有台阶状旋转轴的电磁离合器
CN204030844U (zh) 同步电机
MX2021011651A (es) Dispositivo de acoplamiento giratorio con escudo de cojinete conductor de flujo.
CN108988568A (zh) 磁悬浮式电机

Legal Events

Date Code Title Description
AS Assignment

Owner name: MARTIN ENGINEERING COMPANY, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HARRISON, PAUL B.;REEL/FRAME:035106/0288

Effective date: 20150305

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION