US20160075811A1 - Transparent article made of pvc graft copolymers - Google Patents
Transparent article made of pvc graft copolymers Download PDFInfo
- Publication number
- US20160075811A1 US20160075811A1 US14/767,257 US201314767257A US2016075811A1 US 20160075811 A1 US20160075811 A1 US 20160075811A1 US 201314767257 A US201314767257 A US 201314767257A US 2016075811 A1 US2016075811 A1 US 2016075811A1
- Authority
- US
- United States
- Prior art keywords
- graft
- vinyl chloride
- copolymer
- graft copolymer
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000578 graft copolymer Polymers 0.000 title claims abstract description 98
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims abstract description 65
- 239000000203 mixture Substances 0.000 claims abstract description 36
- 238000007720 emulsion polymerization reaction Methods 0.000 claims abstract description 10
- 229920001577 copolymer Polymers 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 32
- 239000002245 particle Substances 0.000 claims description 29
- 230000009477 glass transition Effects 0.000 claims description 24
- 239000007787 solid Substances 0.000 claims description 20
- 239000003995 emulsifying agent Substances 0.000 claims description 12
- 239000000178 monomer Substances 0.000 claims description 12
- 238000002834 transmittance Methods 0.000 claims description 10
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 10
- -1 vinyl compound Chemical class 0.000 claims description 9
- 229920002554 vinyl polymer Polymers 0.000 claims description 9
- 239000004816 latex Substances 0.000 claims description 8
- 229920000126 latex Polymers 0.000 claims description 8
- 230000000379 polymerizing effect Effects 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims 3
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 239000006185 dispersion Substances 0.000 description 27
- 238000002360 preparation method Methods 0.000 description 26
- 239000004800 polyvinyl chloride Substances 0.000 description 18
- 229920000915 polyvinyl chloride Polymers 0.000 description 17
- PYJBVGYZXWPIKK-UHFFFAOYSA-M potassium;tetradecanoate Chemical compound [K+].CCCCCCCCCCCCCC([O-])=O PYJBVGYZXWPIKK-UHFFFAOYSA-M 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 14
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 13
- 229920001485 poly(butyl acrylate) polymer Polymers 0.000 description 13
- 238000005259 measurement Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 11
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001110 calcium chloride Substances 0.000 description 9
- 229910001628 calcium chloride Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 9
- 238000000967 suction filtration Methods 0.000 description 9
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000004014 plasticizer Substances 0.000 description 8
- 239000004641 Diallyl-phthalate Substances 0.000 description 7
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 229960005070 ascorbic acid Drugs 0.000 description 4
- 235000010323 ascorbic acid Nutrition 0.000 description 4
- 239000011668 ascorbic acid Substances 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 229920002725 thermoplastic elastomer Polymers 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229920012485 Plasticized Polyvinyl chloride Polymers 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- SRBSSROHORQGBO-UHFFFAOYSA-N 11-methyldodecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCC(C)C SRBSSROHORQGBO-UHFFFAOYSA-N 0.000 description 1
- JJBFVQSGPLGDNX-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)COC(=O)C(C)=C JJBFVQSGPLGDNX-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- ULYIFEQRRINMJQ-UHFFFAOYSA-N 3-methylbutyl 2-methylprop-2-enoate Chemical compound CC(C)CCOC(=O)C(C)=C ULYIFEQRRINMJQ-UHFFFAOYSA-N 0.000 description 1
- ZVYGIPWYVVJFRW-UHFFFAOYSA-N 3-methylbutyl prop-2-enoate Chemical compound CC(C)CCOC(=O)C=C ZVYGIPWYVVJFRW-UHFFFAOYSA-N 0.000 description 1
- GFLJTEHFZZNCTR-UHFFFAOYSA-N 3-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OCCCOC(=O)C=C GFLJTEHFZZNCTR-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229920003314 Elvaloy® Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 229920002633 Kraton (polymer) Polymers 0.000 description 1
- 229920003346 Levapren® Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004824 Multi-part adhesive Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- 239000012935 ammoniumperoxodisulfate Substances 0.000 description 1
- 125000005228 aryl sulfonate group Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000005670 ethenylalkyl group Chemical group 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- KCAMXZBMXVIIQN-UHFFFAOYSA-N octan-3-yl 2-methylprop-2-enoate Chemical compound CCCCCC(CC)OC(=O)C(C)=C KCAMXZBMXVIIQN-UHFFFAOYSA-N 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- GYDSPAVLTMAXHT-UHFFFAOYSA-N pentyl 2-methylprop-2-enoate Chemical compound CCCCCOC(=O)C(C)=C GYDSPAVLTMAXHT-UHFFFAOYSA-N 0.000 description 1
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000009757 thermoplastic moulding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/04—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
- C08F2/24—Emulsion polymerisation with the aid of emulsifying agents
- C08F2/26—Emulsion polymerisation with the aid of emulsifying agents anionic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/04—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
- C08F265/06—Polymerisation of acrylate or methacrylate esters on to polymers thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/003—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F14/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F14/02—Monomers containing chlorine
- C08F14/04—Monomers containing two carbon atoms
- C08F14/06—Vinyl chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/10—Transparent films; Clear coatings; Transparent materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
Definitions
- the invention relates to a method for preparing vinyl chloride graft copolymers by emulsion polymerization, and to a method for producing blends of such graft copolymers.
- the invention also relates to transparent moldings (i.e. molded articles) manufactured by using the graft copolymers and their blends, respectively, according to the invention.
- Plasticized polyvinyl chloride does not belong to the group of thermoplastic elastomers (TPE) although it has TPE properties (PVC Handbook, Charles E. Wilkes, James W. Summers, Charles Anthony Daniels—2005, page 14). Due to the low costs for the raw materials, the multifaceted processing properties and the good product features it takes a special position among the thermoplastic elastomers. Plasticized PVC shows very good stretchability and tensile strength due to the formation of microcrystallites and the dipole-dipole interactions between chlorine and hydrogen atoms. By varying the percentage of plasticizer in PVC the rigidity and flexibility of a product can be adjusted in a very easy manner.
- oligomeric and polymeric plasticizers have been employed, which, due to their high molecular weights, show only little to none tendency to migrate (Domininghaus-Kunstscher, 7 th revised and extended edition 2008).
- Known examples are copolymers consisting of ethylene-vinyl acetate-vinyl chloride (EVA-VC), ethylene-vinyl acetate (EVA, Levapren®), acrylonitrile-butadiene (NBR), styrene-butadiene (SBR), ethylene-vinyl acetate-carbon monoxide (Elvaloy®), styrene-butadiene-styrene (SBS, Kraton®) etc.
- EVA-VC ethylene-vinyl acetate-vinyl chloride
- EVA ethylene-vinyl acetate
- EVA ethylene-vinyl acetate
- NBR acrylonitrile-butadiene
- SBR st
- the high-molecular weight plasticizers are blended with PVC or grafted with PVC in a suspension polymerization process. These products are only used for special requirements (low-temperature flexibility, low migration, fat resistance, etc.), since otherwise the disadvantages will prevail, such as low plasticizing, more complex processing, inferior tear resistance, etc. To be considered a particularly serious drawback is the fact that moldings which were produced from a blend of PVC and the majority of polymeric plasticizers (elastomers) are opaque.
- PBA-g-PVC graft copolymers described in the prior art and prepared in emulsion or suspension processes can only be processed into translucent or opaque moldings.
- Cross-linked polyacrylic esters can be employed to improve the notch impact strength of rigid PVC (EP 0472852).
- DE 3803036 a suspension process is described which allows to obtain a PVC that contains 65 wt % of a cross-linked PAE.
- This product can be employed as an impact resistance modifier or as a polymeric plasticizer for PVC.
- An object of the present invention is a method for producing a vinyl chloride graft copolymer by using emulsion polymerization, wherein the graft copolymer contains a graft base and a grafted copolymer phase, which at least partially consists of vinyl chloride, comprising the steps of:
- the glass transition temperature T g of the grafted copolymer phase typically lies in the range of above 20 to 120° C. and/or the one of the graft base in the range of ⁇ 80 to 20° C. In a preferred embodiment of the invention the glass transition temperature T g of the grafted copolymer phase lies between 40 and 90° C., and the one of the graft base between ⁇ 60 and ⁇ 20° C.
- the T g 's of the grafted copolymer phase and of the graft base result from the composition of the respectively used monomers.
- the vinyl chloride graft copolymers are prepared in an emulsion process.
- the graft base can be prepared by copolymerizing vinyl compounds.
- the grafted compound can be prepared from 60 to 100 wt % of vinyl chloride, preferably 80 to 100 wt %, and from 0 to 40 wt % of other polymerizable vinyl compounds, preferably 0 to 20 wt %.
- the graft base and/or the grafted copolymer phase are cross-linked.
- the emulsion polymerization is preferably carried out semi-continuously.
- water, initiators, monomers, emulsifiers and other additives can be pre-charged into a reactor and partly added in small amounts.
- water and the total amount of emulsifier are pre-charged and both the monomers and the initiators are added.
- the feeding speed of the additives is based upon the conversion speed.
- the duration of the polymerization is adjusted to one to three hours by the amount of the initiator employed.
- the graft base is processed and pre-charged for the preparation of the graft copolymer.
- Vinyl chloride and, if applicable, other polymerizable vinyl compounds, are added within 10 min to 180 min.
- the amount of VC is divided into a portion to be pre-charged and a portion to be added.
- 5 to 20 parts of VC are pre-charged (at once), then polymerized until the pressure drops, and then the addition of the residual amount of VC is started.
- the temperature is regulated to adjust the desired K-value.
- an initiator is added simultaneously.
- An emulsifier can be added to increase the stability of the dispersion.
- the content of solids in the fully polymerized dispersion lies between 20 and 60 wt %, and preferably between 30 and 55 wt %.
- Suitable vinyl compounds for the graft base are, for example, acrylic acid esters or methacrylic acid esters (in brief: (meth)acrylic acid ester). Also, butadiene, 2-chloro-butadiene, 1-butene, isoprene, vinylidene chloride, vinyl acetate, vinyl alkyl ether, etc. can be used as vinyl compound.
- preferably merely vinyl chloride is used for the grafting.
- (meth)acrylic acid esters which contain 1 to 12 carbon atoms in the alkyl chain of the esterified linear, branched or cyclic alcohol, such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, t-butyl acrylate, pentyl acrylate, isopentyl acrylate, cyclohexyl acrylate, ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, t-butyl methacrylate, pentyl methacrylate, isopentyl methacrylate, ethylhexyl methacrylate, cyclohexyl methacrylate, etc.
- step b) of the method according to the invention the copolymer phase is typically grafted by emulsion polymerization using at least one emulsifier, in which preferably 60 to 100 wt % of the emulsifier amount is pre-charged, based on the total amount of emulsifier.
- the polymerization temperature in the process of preparing each of the graft bases typically lies between 20 and 90° C., preferably between 60 and 95° C.
- the polymerization temperature in the process of preparing each of the grafted copolymer phases typically lies between 45 and 90° C., preferably between 55 and 70° C.
- the percentage of the graft base is preferably 5 to 70 wt %, and the percentage of the grafted copolymer phase is preferably 30 to 95 wt %, in each case based on the vinyl chloride copolymer.
- Suitable ionic emulsifiers are alkyl sulfonates, aryl sulfonates, alkyl sulfates, alkyl ether sulfates, fatty acid salts, diaryl sulfonates, etc. It is also possible to use non-ionic emulsifiers, such as alkyl ether alcohols having 2 to 20 carbon atoms in the alkyl chain and 1 to 20 ethylene glycol units, fatty alcohols, etc., alone or in combination with ionic emulsifiers. The total amount of emulsifier used lies between 0.1 to 5 wt %, based on the amount of monomers employed.
- Suitable initiators are water-soluble peroxides, which form radicals by thermal decomposition alone or which can be caused to decompose in combination with a reducing agent and, if necessary, a catalyst.
- the amount of the initiators employed usually lies between 0.01 and 0.5 wt %, based on the monomers employed.
- the graft base is cross-linked by copolymerization with one or more different monomers that contain two or more non-conjugated ethylenically unsaturated double bonds.
- both the graft base and the graft shell will not be cross-linked, or b) the graft base will not be cross-linked and the graft shell will be cross-linked.
- Suitable compounds for cross-linking are diallyl phthalate, allyl methacrylate, allyl acrylate, ethylene glycol dimethacrylate, propylene glycol dimethacrylate, butylene glycol diacrylate, trimethylene glycol diacrylate, glycidyl methacrylate, glycidyl acrylate, etc.
- a vinyl chloride graft copolymer-containing latex is obtained by way of emulsion polymerization.
- the solid will be separated either by adding an electrolyte, coagulation and mechanical separation methods such as filtration, decantation, centrifugation of the latex, followed by drying, or by spray drying.
- At least two different vinyl chloride graft copolymers are prepared independently of each other and mixed subsequently, giving a blend in which the at least two different graft copolymers differ from each other by their respective percentage weight distribution of the graft base and the grafted copolymer phase.
- the steps a), b), and c) and the blending are carried out in such a way that the blend contains:
- steps a), b) and c) and the blending are carried out in such a way that a blend is obtained consisting of:
- an object of the invention is a vinyl chloride graft copolymer prepared according to the method described above.
- a further object of the invention is a blend that contains different vinyl chloride graft copolymers prepared according to the method described above.
- an object of the invention is an article prepared by using a vinyl chloride graft copolymer prepared according to the method described above or by using a blend that contains different vinyl chloride graft copolymers prepared according to the method described above.
- Preferred articles according to the invention have a transmittance of at least 65%, preferably of at least 75%, and particularly preferred of at least 85%, and/or a haze value of at most 60, preferably of at most 50, and particularly preferred of at most 40.
- an object of the invention is the use of a vinyl chloride graft copolymer and the use of the blends described above for manufacturing an article, preferably for manufacturing films by way of extrusion and/or calendering or for manufacturing molded articles by way of extrusion or injection molding or other thermoplastic molding methods.
- the average volume-based particle size (PSV) was 12 nm.
- the solid content of the dispersion was 30.7 wt %, the surface tension was 56.7 mN/m, the pH was 7.7.
- the average volume-based particle size was 61 nm.
- the preparation was precipitated with calcium chloride and filtered by suction filtration. The residue was dried at 30° C. in a recirculating-air dryer to a residual moisture of ⁇ 0.3% and finely ground with a centrifugal mill (Retsch ZM 200).
- the PBA content was determined to be 46.9 wt % by an oxygen analysis.
- Example 1 The graft base of Example 1 was used.
- the solid content of the dispersion was 30.5 wt %, the surface tension was 58.5 mN/m, the pH was 8.0.
- the average volume-based particle size was 58 nm.
- the preparation was precipitated with calcium chloride and filtered by suction filtration. The residue was dried at 30° C. in a recirculating-air dryer to a residual moisture of ⁇ 0.3% and finely ground with a centrifugal mill (Retsch ZM 200).
- the PBA content was determined to be 33 wt % by an oxygen analysis.
- Example 1 The preparation of Example 1 was repeated. 7909 g of an aqueous dispersion were discharged. The solid content of the dispersion was 30 wt %, the surface tension was 54.4 mN/m, the pH was 7.4. The average volume-based particle size was 12 nm.
- the average volume-based particle size was 92 nm.
- the preparation was precipitated with calcium chloride and filtered by suction filtration.
- the residue was dried at 30° C. in a recirculating-air dryer to a residual moisture of ⁇ 0.3% and finely ground with a centrifugal mill (Retsch ZM 200).
- the PBA content was determined to be 41.1 wt % by an oxygen analysis.
- the interior reactor temperature was maintained for 60 min and the preparation was cooled down subsequently. 6963 g of the dispersion were discharged, having a solid content of 29.6 wt %, the surface tension was 56.4 mN/m and the pH was 8.1. The average volume-based particle size was 74 nm.
- the preparation was prepared following Example 1.
- the solid content of the dispersion was 32.4 wt %, the surface tension was 48.8 mN/m, the pH was 8.0.
- the average volume-based particle size was 131 nm.
- the preparation was precipitated with calcium chloride and filtered by suction filtration.
- the residue was dried at 30° C. in a recirculating-air dryer to a residual moisture of ⁇ 0.3% and finely ground with a centrifugal mill (Retsch ZM 200).
- the PBA content was determined to be 50.0 wt % by an oxygen analysis.
- the samples according to the invention can be processed to transparent press plates.
- the samples according to the invention are characterized in that both the graft base and the graft shell are non-cross-linked, or that the graft base is non-cross-linked while the graft shell is cross-linked, or that the average particle size is below 150 nm when both the graft base and the graft shell are cross-linked, or when only the graft base is cross-linked while the graft shell is non-cross-linked.
- the interior reactor temperature was maintained for 60 min and the preparation was cooled down subsequently. 6925 g of the dispersion were discharged, having a solid content of 29.6 wt %, a surface tension of 52.6 mN/m and a pH of 8.2.
- the average volume-based particle size was 135 nm.
- the preparation was prepared following Example 1.
- the solid content of the dispersion was 28.3 wt %, the surface tension was 42.5 mN/m, the pH was 8.4.
- the average volume-based particle size was 176 nm.
- the preparation was precipitated with calcium chloride and filtered by suction filtration.
- the residue was dried at 30° C. in a recirculating-air dryer to a residual moisture of ⁇ 0.3% and finely ground with a centrifugal mill (Retsch ZM 200).
- the PBA content was determined to be 49.6 wt % by an oxygen analysis.
- the preparation was prepared following Example 1.
- the solid content of the dispersion was 26.3 wt %, the surface tension was 40.8 mN/m, the was pH 8.8.
- the preparation was precipitated with calcium chloride and filtered by suction filtration.
- the residue was dried at 30° C. in a recirculating-air dryer to a residual moisture of ⁇ 0.3% and finely ground with a centrifugal mill (Retsch ZM 200).
- the PBA content was determined to be 52 wt % by an oxygen analysis.
- the average volume-based particle size was 224 nm.
- the solid content of the dispersion was 27.1 wt %, the surface tension was 38.8 mN/m, the pH was 8.2.
- the preparation was precipitated with calcium chloride and filtered by suction filtration. The residue was dried at 30° C. in a recirculating-air dryer to a residual moisture of ⁇ 0.3% and finely ground with a centrifugal mill (Retsch ZM 200).
- the PBA content was determined to be 56.6 wt % by an oxygen analysis.
- the average volume-based particle size was 336 nm.
- the powdered graft copolymers were processed and pressed into rolled sheets.
- Table 1 the poly(butyl acrylate) content, the degree of cross-linking, the particle sizes of the graft copolymers and the optical properties (transmittance, haze) are given.
- the particle size distributions were measured with a Microtrac Blue-Wave of the S3500 series by Particle-Metrix.
- the valid measuring range lies between 0.01 and 2000 ⁇ m.
- a standard procedure for dispersions was created, where certain physical properties of the dispersion were given.
- three drops of Hellmanex® by Hellmanex-Analytics Inc.
- the cleanliness of the measurement system was validated by a baseline measurement. Dispersion was added carefully to the sample unit until a loading factor of about 0.004 was reached. Normally, 1 or 2 drops of dispersion are sufficient.
- the measurement time was 30 s. Evaluation of the measurement is carried out automatically.
- the average volume-based particle size is used.
- test samples have to be provided.
- the preparation of the rolled sheets is performed under the following conditions.
- the powder compound is placed onto the roller. After formation of the sheet, it is “cut” and “turned” for 3 min. Then set the thickness of the rolled sheet to 1.1 mm and continue to plasticize on the roller for further 2 min without cutting and turning. When the specified rolling time is over, the rolled sheet is taken off.
- the previously rolled sheets were cut corresponding to the frame size used, inserted into the frame and placed into the laboratory press together with the press plates that form the outer surfaces.
- the sheets are formed into a press plate under the conditions described below.
- the sample to be measured is illuminated perpendicularly and the transmitted light is photoelectrically measured in an integrating sphere.
- the perpendicularly transmitted light is measured in order to evaluate the transmittance, and the light that is scattered in an angle of 2° to the axis of irradiation is measured to evaluate the opaqueness (haze).
- the measurements are carried out according to ISO 13468. This guarantees that the measurement conditions are the same during calibration as well as during measurement.
- the graft copolymers Vinnolit VK 710 and Vinnolit K707 E, having an acrylate content of about 50 wt %, represent the prior art. Especially due to the high haze value (which characterizes the large-angle scattering), the press plates appear translucent to opaque. The examples according to the invention have a considerably better transparency, which features a substantially lower scattering. The test and comparative samples prove the effect of particle sizes of the graft copolymers on the transparency of the PVC articles made therefrom.
- the Examples 8 to 12 according to the invention have a higher transparency than the Comparative Examples 1 to 3, which are cross-linked in the same manner and which have particle sizes of above 170 nm.
- the transparency of a press plate made therefrom will be improved substantially by reducing the particle size to below 200 nm.
- Blends consisting of the graft copolymers according to the invention that differ from each other in their PBA content have a higher transparency than Comparative Examples 1 to 4.
- blends of a transparent graft copolymer with S-PVC are opaque.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Graft Or Block Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2013/052656 WO2014121851A1 (de) | 2013-02-11 | 2013-02-11 | Transparente artikel aus pfropfcopolymeren des pvc's |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/052656 A-371-Of-International WO2014121851A1 (de) | 2013-02-11 | 2013-02-11 | Transparente artikel aus pfropfcopolymeren des pvc's |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/993,309 Continuation US10407529B2 (en) | 2013-02-11 | 2018-05-30 | Transparent article made of PVC graft copolymers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160075811A1 true US20160075811A1 (en) | 2016-03-17 |
Family
ID=47739234
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/767,257 Abandoned US20160075811A1 (en) | 2013-02-11 | 2013-02-11 | Transparent article made of pvc graft copolymers |
US15/993,309 Active US10407529B2 (en) | 2013-02-11 | 2018-05-30 | Transparent article made of PVC graft copolymers |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/993,309 Active US10407529B2 (en) | 2013-02-11 | 2018-05-30 | Transparent article made of PVC graft copolymers |
Country Status (10)
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9957385B2 (en) | 2013-02-11 | 2018-05-01 | Vestolit Gmbh & Co. Kg | Plasticizer-free article made of PVC graft copolymers |
US10125208B2 (en) | 2013-02-11 | 2018-11-13 | Vestolit Gmbh & Co. Kg | Transparent article made of PVC graft copolymers |
US10407529B2 (en) | 2013-02-11 | 2019-09-10 | Vestolit Gmbh & Co. Kg | Transparent article made of PVC graft copolymers |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7181054B2 (ja) * | 2018-10-31 | 2022-11-30 | 株式会社カネカ | グラフト共重合体の製造方法、及び成形体の製造方法。 |
EP4071213A1 (de) * | 2021-04-06 | 2022-10-12 | Vinnolit GmbH & Co. KG | Weichmacherfreie flexible formmassen auf basis von vinylchlorid-pfropfcopolymeren |
CN114196136B (zh) * | 2021-12-27 | 2023-02-28 | 广东远华新材料股份有限公司 | 一种pvc瑜伽垫及其制备方法 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2123384A1 (en) | 1971-05-12 | 1972-11-23 | Deutsche Solvay-Werke Gmbh, 5650 Solingen-Ohligs | Non-tacky vinyl chloride (co) polymer for moulded sheet - film,articles prodn |
CH566354A5 (enrdf_load_stackoverflow) * | 1972-06-08 | 1975-09-15 | Lonza Ag | |
CH586722A5 (enrdf_load_stackoverflow) * | 1973-12-07 | 1977-04-15 | Lonza Ag | |
FR2350361A1 (fr) | 1976-05-03 | 1977-12-02 | Solvay | Procede pour la polymerisation en suspension aqueuse du chlorure de vinyle |
JPS6213414A (ja) * | 1985-07-12 | 1987-01-22 | Tokuyama Soda Co Ltd | 塩化ビニル架橋共重合体の製造方法 |
DE3544235C2 (de) | 1985-12-14 | 1993-10-07 | Hoechst Ag | Formmasse zur Verarbeitung als Plastisol |
DE3886677D1 (de) * | 1987-10-23 | 1994-02-10 | Hoechst Ag | Verfahren zur Herstellung eines Acrylsäureester-Vinylchlorid-Pfropfpolymerisates. |
DE3803036A1 (de) | 1988-02-02 | 1989-08-10 | Wacker Chemie Gmbh | Verfahren zur herstellung eines elastomerhaltigen vinylchloridpfropfcopolymerisats |
DE4027640A1 (de) | 1990-08-31 | 1992-03-05 | Huels Chemische Werke Ag | Herstellung eines schlagzaehen polyacrylsaeureester-vinylchlorid- pfropfpolymerisats |
DE4233052A1 (de) | 1992-10-01 | 1994-04-07 | Wacker Chemie Gmbh | Verfahren zur Herstellung von Vinylchlorid-Polymerisatmassen mit stufenlos einstellbaren Stoffeigenschaften |
DE4334727A1 (de) | 1993-10-12 | 1995-04-13 | Vinnolit Kunststoff Gmbh | Thermoplastische Elastomere auf der Basis von Vinylchlorid-Pfropfcopolymerisaten |
DE4338374A1 (de) * | 1993-11-10 | 1995-05-11 | Wacker Chemie Gmbh | Verwendung von wäßrigen Dispersionen zweiphasiger Emulsions-Pfropfcopolymerisate als Bindemittel für Versteifungsmaterialien in der Textil- und Lederindustrie |
CN1053202C (zh) * | 1997-01-06 | 2000-06-07 | 中国石油化工集团公司北京化工研究院 | 高透明耐冲击聚氯乙烯的制造方法 |
JP2000119349A (ja) | 1998-10-19 | 2000-04-25 | Sekisui Chem Co Ltd | 塩化ビニル系樹脂、その製造方法及び成形体 |
DE19958820B4 (de) * | 1999-12-07 | 2010-04-01 | Vestolit Gmbh & Co. Kg | Verfahren zur Herstellung thermoplastischer Formmassen, nach diesem Verfahren hergestellte Formmassen und deren Verwendung |
JP2002285105A (ja) | 2001-01-22 | 2002-10-03 | Sony Chem Corp | 粘着剤組成物及び粘着シート |
DE10121580A1 (de) | 2001-05-03 | 2002-11-14 | Vinnolit Gmbh & Co Kg | Schlagzähmodifier, Verfahren zu dessen Herstellung und Verwendung |
JP2003253082A (ja) * | 2002-02-27 | 2003-09-10 | Sekisui Chem Co Ltd | ポリ塩化ビニル系樹脂組成物 |
WO2003078499A2 (en) | 2002-03-12 | 2003-09-25 | Dow Global Technologies Inc. | Linear ethylene/vinyl alcohol and ethylene/vinyl acetate polymers and process for making same |
US20070149713A1 (en) | 2004-12-14 | 2007-06-28 | Kanaeka Corporation | Soft vinyl chloride copolymer resin, resin composition and process for preparing the same |
US20090143547A1 (en) * | 2007-11-29 | 2009-06-04 | Cheng-Jung Lin | Method for producing a functional vinyl halide polymer |
EP2067795A1 (en) * | 2007-12-04 | 2009-06-10 | Formosa Plastics Corporation | A method for producing a functional vinyl halide polymer |
EP2953981B1 (de) | 2013-02-11 | 2023-06-14 | Vestolit GmbH | Transparente artikel aus pfropfcopolymeren des pvc's |
EP2954007B8 (de) | 2013-02-11 | 2017-04-19 | Vestolit GmbH | Weichmacherfreie artikel aus pfropfcopolymeren des pvc's |
CN105229037B (zh) | 2013-02-11 | 2020-02-21 | 氯乙烯树脂有限公司 | 由pvc的接枝共聚物制成的透明制品 |
-
2013
- 2013-02-11 EP EP13704922.7A patent/EP2953981B1/de active Active
- 2013-02-11 US US14/767,257 patent/US20160075811A1/en not_active Abandoned
- 2013-02-11 RU RU2015138701A patent/RU2622383C2/ru active
- 2013-02-11 MX MX2015010335A patent/MX382495B/es unknown
- 2013-02-11 JP JP2015556402A patent/JP6259837B2/ja active Active
- 2013-02-11 BR BR112015019105-3A patent/BR112015019105B1/pt not_active IP Right Cessation
- 2013-02-11 CA CA2900843A patent/CA2900843C/en active Active
- 2013-02-11 WO PCT/EP2013/052656 patent/WO2014121851A1/de active Application Filing
- 2013-02-11 CN CN201380074420.8A patent/CN105246921B/zh not_active Expired - Fee Related
- 2013-02-11 UA UAA201508726A patent/UA117237C2/uk unknown
-
2018
- 2018-05-30 US US15/993,309 patent/US10407529B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9957385B2 (en) | 2013-02-11 | 2018-05-01 | Vestolit Gmbh & Co. Kg | Plasticizer-free article made of PVC graft copolymers |
US10125208B2 (en) | 2013-02-11 | 2018-11-13 | Vestolit Gmbh & Co. Kg | Transparent article made of PVC graft copolymers |
US10407530B2 (en) | 2013-02-11 | 2019-09-10 | Vestolit Gmbh & Co. Kg | Transparent article made of PVC graft copolymers |
US10407529B2 (en) | 2013-02-11 | 2019-09-10 | Vestolit Gmbh & Co. Kg | Transparent article made of PVC graft copolymers |
Also Published As
Publication number | Publication date |
---|---|
CN105246921B (zh) | 2020-01-31 |
CA2900843C (en) | 2019-09-03 |
BR112015019105B1 (pt) | 2021-05-11 |
JP6259837B2 (ja) | 2018-01-10 |
UA117237C2 (uk) | 2018-07-10 |
CA2900843A1 (en) | 2014-08-14 |
JP2016506984A (ja) | 2016-03-07 |
RU2622383C2 (ru) | 2017-06-15 |
US20180273666A1 (en) | 2018-09-27 |
EP2953981A1 (de) | 2015-12-16 |
WO2014121851A1 (de) | 2014-08-14 |
CN105246921A (zh) | 2016-01-13 |
BR112015019105A2 (pt) | 2017-07-18 |
RU2015138701A (ru) | 2017-03-16 |
MX2015010335A (es) | 2016-09-19 |
MX382495B (es) | 2025-03-13 |
EP2953981B1 (de) | 2023-06-14 |
US10407529B2 (en) | 2019-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10407530B2 (en) | Transparent article made of PVC graft copolymers | |
US10407529B2 (en) | Transparent article made of PVC graft copolymers | |
US9957385B2 (en) | Plasticizer-free article made of PVC graft copolymers | |
JP6920022B2 (ja) | 溶融強度及び透明度の加工助剤としてアクリル酸コポリマーを含む熱可塑性組成物 | |
JP2019502804A5 (enrdf_load_stackoverflow) | ||
RU2447101C2 (ru) | Композиция, по крайней мере, одного винилиденхлоридного полимера | |
EP3390474B1 (en) | Thermoplastic compositions containing multi-stage copolymers as melt strength process aids with lubrication properties | |
JP2010502802A (ja) | 塩化ビニリデンポリマー組成物の製造方法ならびにその組成物から得られるフィルムおよびパッケージング |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VESTOLIT GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRIZZOLARA, DAVIDE;FISCHER, INGO;GEHRKE, JAN-STEPHAN;AND OTHERS;SIGNING DATES FROM 20151029 TO 20151104;REEL/FRAME:037180/0971 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |