US20160064350A1 - Connection arrangement of an electric and/or electronic component - Google Patents

Connection arrangement of an electric and/or electronic component Download PDF

Info

Publication number
US20160064350A1
US20160064350A1 US14/834,569 US201514834569A US2016064350A1 US 20160064350 A1 US20160064350 A1 US 20160064350A1 US 201514834569 A US201514834569 A US 201514834569A US 2016064350 A1 US2016064350 A1 US 2016064350A1
Authority
US
United States
Prior art keywords
layer
connection
reinforcement
solder
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/834,569
Inventor
Christiane Frueh
Andreas Fix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to US14/834,569 priority Critical patent/US20160064350A1/en
Assigned to ROBERT BOSCH GMBH reassignment ROBERT BOSCH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRUEH, Christiane, FIX, ANDREAS
Publication of US20160064350A1 publication Critical patent/US20160064350A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • B23K2203/56
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26122Auxiliary members for layer connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/26125Reinforcing structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26155Reinforcing structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/2732Screen printing, i.e. using a stencil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29016Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/29076Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29105Gallium [Ga] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29113Bismuth [Bi] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29118Zinc [Zn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • H01L2224/3051Function
    • H01L2224/30515Layer connectors having different functions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32013Structure relative to the bonding area, e.g. bond pad the layer connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32014Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • H01L2224/32505Material outside the bonding interface, e.g. in the bulk of the layer connector
    • H01L2224/32507Material outside the bonding interface, e.g. in the bulk of the layer connector comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83194Lateral distribution of the layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/83825Solid-liquid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/8392Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Definitions

  • the invention relates to a connection arrangement of at least one electric and/or electronic component comprising a join partner, composite element and a method for configuring the connection arrangement.
  • electronic components such as, e.g., integrated circuits (IC), transistors or diodes are used within electrical circuit arrangements.
  • a variety of electronic components are hereby fixed to a base part, e.g. substrate or something similar.
  • the electronic components are fixed, for example, to the base part by means of a connection layer, such as, e.g., an adhesive, solder or sintered layer. Due to the difference between ambient, joining and operating temperature, the rigidity of the connection layer and the distinctly different expansion coefficients of, for example, IC and substrate, very high mechanical or thermomechanical stresses can however occur in the electronic components. As a result, thermal stresses can lead to a so-called “clam-shell marked fracture” on the electronic component, wherein partial regions of the surface of the electronic component have broken away. This can lead to a very short service life of such electronic assemblies.
  • the introduction of the dimples entails an additional manufacturing step in providing the substrate.
  • An arrangement of a semiconductor chip on a metal substrate is known from the first publication of the American patent application US 2010/0187678 A1.
  • the semiconductor chip is thereby attached to the metal substrate at low pressure by means of sintering a silver paste.
  • the semiconductor chip has bonded connections which connect said semiconductor chip to contacting points.
  • the arrangement previously described together with the bonded connections is completely coated from the outside with a metal oxide coating (SnO, AlO).
  • the arrangement coated in this manner is furthermore encapsulated by a polymer material.
  • the metal oxide coating achieves a stress reduction for the semiconductor chip.
  • Such a coating is expensive because it must be applied to the entire arrangement.
  • the application of the coating to the arrangement as a spatial entity is difficult and entails effort and expense.
  • only methods can be used in which regions adjacent to the arrangement can be omitted from such a coating.
  • the aim of the invention is to design a connection arrangement of an electric and/or electronic component such that the component, in particular a semiconductor chip, can be used during operation in a manner resistant to temperature fluctuations, in particular within a circuit arrangement of a motor vehicle.
  • connection arrangement of at least one electric and/or electronic component and furthermore by a composite element for configuring the connection arrangement as well as by a method for producing the same according to the invention.
  • connection arrangement comprises at least one electric and/or electronic component.
  • the at least one electric and/or electronic component has at least one connection face, which is connected in a bonded manner to a join partner by means of a connection layer.
  • the connection layer can, for example, be an adhesive, soldered, welded, sintered connection or another known connection that connects joining partners by means of forming a material connection.
  • a distinguishing characteristic for the connection arrangement according to the invention is that a reinforcement layer is arranged adjacent to the connection layer in a bonded manner.
  • the reinforcement layer has a higher modulus of elasticity than the connection layer.
  • a crack formation in the connection layer can advantageously be prevented, which occurs in otherwise known connection arrangements as a result of mechanical and/or thermomechanical stresses, in particular when temperature fluctuations due to operating conditions occur.
  • This effect is explained by the fact that a material having a high elasticity module can be very resistant to material deformation.
  • the reinforcement layer therefore prevents a supercritical expansion of the connection layer or of the at least one electric and/or electronic component connected to the connection layer.
  • a particularly good protective effect is achieved if the reinforcement layer is formed in a frame-like manner by an outer and an inner boundary and, at least with the outer boundary thereof, encloses the connection face of the at least one electric and/or electronic component.
  • a frame-like manner refers in this context in particular to the fact that the reinforcement layer, due to the outer and/or inner boundary thereof, has a closed circumferential course at least in one plane, in particular in a plane substantially parallel to the connection face of the at least one electric and/or electronic component.
  • the outer and/or inner boundary runs preferably for the most part parallel to the outer contour of the connection face.
  • the connection face can have besides a square or rectangular base also a base that is annular, oval or shaped otherwise. It is particularly advantageous if the reinforcement layer is embodied free of interruptions. As a result, inherently different expansions of the at least one electric and/or electronic component, of the connection layer and of the join partner, for example a carrier substrate, can be suppressed by the connection layer.
  • the reinforcement layer acts like a rigid belt which can absorb forces and at the same time does not permit any deformations.
  • connection layer to have a surface region which protrudes beyond the connection face of the at least one electric and/or electronic component.
  • the reinforcement layer is disposed on the connection layer in said surface region. It is particularly advantageous if the reinforcement layer disposed on said region extends with the inner boundary thereof at least up to the connection face of the at least one electric an/or electronic component. It is furthermore advantageous if the reinforcement layer is designed in this arrangement at least in certain regions such that said reinforcement layer surrounds a housing of the at least one electric and/or electronic component at least above a minimum height.
  • connection face as well as of the housing of the at least one electric and/or electronic component is thereby effectively protected from a crack initiation and/or crack expansion, for example as a result of temperature fluctuations due to operating conditions.
  • the reinforcement layer delimits with the inner boundary thereof the lateral expansion of the connection layer.
  • the inner boundary of the reinforcement layer encloses the connection layer at least partially or preferably completely across the layer thickness thereof.
  • a partial delimitation across the layer thickness of the connection layer can, for example, be embodied in such a manner that the reinforcement layer is arranged adjacent to the connection layer on the join partner and is embodied smaller in layer thickness than the connection layer.
  • the reinforcement layer can be arranged within the connection layer at least partially in a spatially integrated manner.
  • connection layer arranged on the connection layer
  • connection arrangement for the inner boundary of the reinforcement layer to extend partially—preferably completely—to within the connection face of the at least one electric and/or electronic component.
  • the side of the reinforcement layer facing in the direction of the connection face of the at least one electric and/or electronic component and said connection face itself comprise an overlapping surface region.
  • said connection face is connected in a bonded manner to the reinforcement layer in the overlapping region. In this way, the edge region of the connection face of the at least one electric and/or electronic component is directly fixed to the reinforcement layer so that the possibilities for the component to expand are as a whole limited to the small possibility for expansion of the reinforcement layer. As a result, the risk of a crack forming and expanding within the component is maximally reduced.
  • the reinforcement layer is preferably to be selected as a function of the selected connection layer. Care is therefore, for example, to be taken that a bonded connection can be formed between the connection layer and the reinforcement layer and also preferably between the connection face of the at least one electric and/or electronic component and/or the join partner. Mechanical and/or thermomechanical stresses which result from the different expansion behavior of the at least one electric and/or electronic component, the connection layer and the join partner can thereby be absorbed by the reinforcement layer. In order to meet this end, care furthermore must be taken that the reinforcement layer has a higher modulus of elasticity than the connection layer.
  • connection arrangement which comprises at least one intermetallic phase.
  • Intermetallic phases have a high proportion of covalent bonds. This leads to a high modulus of elasticity and a higher melting or decomposition temperature, for example greater than 250 degrees Celsius, particularly 300 degrees Celsius and above. This is then particularly advantageous if the connection arrangement is exposed to high temperatures when joining the at least one electric and/or electronic component to the join partner or during operation. In this way, the reliability of the connection arrangement can be ensured even at high temperatures.
  • a preferred inventive connection arrangement comprises a connection layer, which includes at least one metal, for example a metallic sintered connection, in particular consisting of silver.
  • the reinforcement layer is formed from a soldering material, in particular a tin-, bismuth-, zinc-, gallium- or aluminum-based soldering material, wherein, after the connection layer and/or the soldering material has been thermally treated, the reinforcement layer comprises at least one intermetallic phase or is formed from at least one metallic phase and thus replaces the former soldering material.
  • connection layer for example embodied as a sintered molded part
  • solder layer are configured in the form of a composite element, which is then disposed between the at least one electric and/or electronic component and the join element in order to form the connection arrangement according to the invention.
  • the solder layer is formed in a frame-like manner within the composite element and is arranged on the connection layer and/or arranged adjacent to the connection layer such that the inner boundary thereof delimits the lateral surface expansion of the connection layer.
  • the thermal treatment is preferably based on the required soldering profile. On the whole, a very simple and cost effective option is thus provided, to form a temperature resistant, intermetallic phase by means of conventional connection materials and connection methods.
  • connection arrangement is particularly suited for semiconductor components, for example made of silicon, in particular comprising a planar connection face, for example IGBT, MOSFET, DIODEN and semiconductor chip.
  • Such components are attached by means of the connection layer, for example, to a DBC substrate (direct copper bonded), a metallic lead frame, an organic or ceramic interconnect device or an IMS substrate (insulated metal substrate) as join partner.
  • the connection layer in particular as a sintered layer, preferably has a layer thickness of 10-500 ⁇ m, in particular 10-300 ⁇ m, particularly preferred 10-100 ⁇ m.
  • the reinforcement layer can be embodied similarly to the connection layer in the layer thickness thereof.
  • solder layer is selected as the reinforcement layer, which is to be replaced by at least one intermetallic phase in particular after a thermal treatment, smaller layer thicknesses are preferred, for example 0.5-100 ⁇ m, in particular 0.5-60 ⁇ m, particularly preferred 1 ⁇ m-30 ⁇ m.
  • connection layer and/or the at least one electric and/or electronic component to be counteracted in a simple and cost effective manner.
  • conventional connection materials can be used, which allow among other things the connection arrangement formed to be used at high operating temperatures.
  • FIG. 1 a shows schematically a first embodiment of the connection arrangement according to the invention in a side view
  • FIG. 1 b shows schematically the embodiment from FIG. 1 a in a top view
  • FIG. 2 a shows schematically a second embodiment of the connection arrangement according to the invention in a side view
  • FIG. 2 b shows schematically a third embodiment of the connection arrangement according to the invention in a side view
  • FIG. 2 c shows schematically a fourth embodiment of the connection arrangement according to the invention in a side view.
  • FIGS. 1 a and 1 b show a first embodiment of the connection arrangement 100 according to the invention.
  • a circuit substrate for example a DBC substrate
  • a semiconductor chip 10 is connected in a bonded manner to the DBC substrate.
  • the semiconductor chip 10 has a connection face 11 on the side facing the DBC substrate 40 .
  • the connection face 11 serves, for example, to electrically contact the semiconductor chip 10 and/or to cool the same.
  • a sintered layer 20 consisting of silver is disposed between the connection face 11 and the DBC substrate.
  • the sintered layer 20 can, for example, be present in paste form and be applied to the DBC substrate 40 by means of know paste printing methods.
  • the sintered layer 20 can likewise be formed as a sintered molded part and be applied to the DBC substrate 40 in a form that is then solid and fitted to the connection face 11 .
  • the sintered layer 20 is formed in such a manner that an upper surface region 21 facing the connection face 11 protrudes beyond said connection face 11 of the semiconductor chip 10 .
  • a tin-based solder layer 30 for example consisting of SnAg3.5 or of SnCu0.7—is applied to this surface region 21 , said solder layer having a layer thickness s, for example of 50 ⁇ m.
  • the solder layer 30 is formed having an inner boundary 35 and an outer boundary 36 .
  • the inner boundary 35 of the solder layer 30 extends in this instance to the connection face 11 .
  • the housing of the semiconductor chip 10 is surrounded on all sides by the solder layer 20 at the height of the layer thickness s.
  • connection arrangement formed in this manner is subsequently thermally treated.
  • the thermal treatment preferably occurs in the range of the melting temperature of the solder layer 30 .
  • the sintering temperature of the sintered layer 20 lies below the melting temperature of the solder layer 30
  • a sintering process is triggered as a result of the thermal treatment, whereby the semiconductor chip 10 is connected in a bonded manner to the DBC substrate 40 by means of the sintered layer 20 .
  • solid body diffusion processes begin between the sintered layer 20 and the solder layer 30 as a result of the thermal treatment.
  • the metals and/or metal alloys of both layers 20 , 30 mix at least in the boundary regions, i.e. within the surface region 21 , and form a reinforcement layer 30 ′, comprising at least one intermetallic phase.
  • a reinforcement layer 30 ′ comprising at least one intermetallic phase.
  • Ag3Sn forms as the intermetallic phase.
  • SnCu0.7 being the soldered material
  • Ag3Sn as well as Cu6Sn5 form as intermetallic phases.
  • solder layer 30 By the solder layer 30 being embodied very thin, for example having a layer thickness of 50 ⁇ m, the metals and/or metal alloys of both layers 20 , 30 diffuse very far into the solder layer 30 .
  • a duration of the thermal treatment is preferably selected, in which the solder layer 30 is substantially replaced by the formed, at least one intermetallic phase and in so doing totally forms the reinforcement layer 30 ′.
  • the formed intermetallic phase also generally extends in certain regions into the sintered layer 20 .
  • connection arrangement 200 , 300 , 400 differ primarily in the arrangement of the solder layer 30 and the reinforcement layer 30 ′ formed therefrom within the connection arrangement 200 , 300 , 400 .
  • the solder layer 30 is applied laterally adjacent to the sintered layer 20 on the DBC substrate.
  • the reinforcement layer 30 ′ formed after the thermal treatment joins in a bonded manner with the sintered layer 20 as well as with the DBC substrate.
  • the inner boundary 35 delimits the lateral surface expansion of the sintered layer 20 .
  • the third exemplary embodiment of the inventive connection arrangement 300 corresponding to FIG. 2 b resembles the second embodiment.
  • the sintered layer 20 in the third embodiment is substantially flush with the connection face 11 or with the housing of the semiconductor chip 10 .
  • the solder layer 30 is formed in the layer thickness thereof at least in the region of the housing of the semiconductor chip 10 in such a way that at least a minimum height of the housing is surrounded on all sides by a portion of the solder layer 30 or, respectively, (after the thermal treatment) then by the reinforcement layer 30 ′.
  • the solder layer 30 is integrated within the sintered layer 20 .
  • the side of the solder layer 30 facing the connection face 11 planarly closes with the sintered layer 20 which is bounded at least over the layer thickness s of the solder layer 30 by means of the inner boundary 35 thereof.
  • the side of the solder layer 30 facing away from the connection face is covered by the sintered layer 20 .
  • the formed reinforcement layer 30 ′ joins in a bonded manner with the sintered layer 20 as well as with the surface region extending into the contact face 11 .
  • solder layer can basically be applied and/or disposed even after formation of the bonded connection of the electric and/or electronic component, for example the semiconductor chip 10 , to the join partner, for example to the DBC substrate.
  • the application of the solder layer 30 to the sintered layer 20 in the form of a sintered molded part or the lateral disposal of the solder layer 30 adjacent to the connection layer 20 such that the solder layer 30 delimits the lateral surface expansion of the connection layer 20 with the inner boundary 35 thereof can also take place already prior to formation of the connection arrangement 100 , 200 , 300 , 400 by means of forming a composite element.
  • the composite element is disposed between the at least one electric and/or electronic component, for example the semiconductor chip 10 , and the join partner, for example the DBC substrate, and the thermal treatment for forming the reinforcement layer 30 ′ is subsequently performed.
  • connection layer 20 which comprises at least one metal as a solder layer, for example from a tin-, bismuth-, zinc-, gallium- or aluminum-based soft solder.
  • the reinforcement layer 30 ′ can likewise in general be formed from a metal layer, in particular one containing tin, silver, copper, zinc, bismuth, gallium and/or aluminum, said metal layer being applied, for example, by a chemical and/or physical coating procedure.
  • materials for the connection layer 20 and the reinforcement layer 30 ′ can be selected such that the reinforcement layer 30 ′ comprises at least on intermetallic phase due to a thermal treatment and the diffusion processes thereby taking place between both layers 20 , 30 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Casings For Electric Apparatus (AREA)
  • Die Bonding (AREA)

Abstract

A connection arrangement includes at least one electric and/or electronic component. The at least one electric and/or electronic component has at least one connection face, which is connected in a bonded manner to a join partner by means of a connection layer. The connection layer can for example be an adhesive, soldered, welded, sintered connection or another known connection that connects joining partners while forming a material connection. Furthermore, a reinforcement layer is arranged adjacent to the connection layer in a bonded manner. The reinforcement layer has a higher modulus of elasticity than the connection layer. A particularly good protective effect is achieved if the reinforcement layer is formed in a frame-like manner by an outer and an inner boundary and, at least with the outer boundary thereof, encloses the connection face of the at least one electric and/or electronic component.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 14/377,895, filed Aug. 11, 2014, which is a 35 USC 371 national stage of PCT/EP2013/051400, filed Jan. 25, 2013, the entire contents of both of which are incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • The invention relates to a connection arrangement of at least one electric and/or electronic component comprising a join partner, composite element and a method for configuring the connection arrangement.
  • In many areas of technology, electronic components, such as, e.g., integrated circuits (IC), transistors or diodes are used within electrical circuit arrangements. A variety of electronic components are hereby fixed to a base part, e.g. substrate or something similar. The electronic components are fixed, for example, to the base part by means of a connection layer, such as, e.g., an adhesive, solder or sintered layer. Due to the difference between ambient, joining and operating temperature, the rigidity of the connection layer and the distinctly different expansion coefficients of, for example, IC and substrate, very high mechanical or thermomechanical stresses can however occur in the electronic components. As a result, thermal stresses can lead to a so-called “clam-shell marked fracture” on the electronic component, wherein partial regions of the surface of the electronic component have broken away. This can lead to a very short service life of such electronic assemblies.
  • In order to reduce the occurrence of mechanical stresses within the electronic component, it is known to introduce round depressions, so-called dimples, into the substrate surface around the region of the fixed electronic component. The substrate is now more elastic in this region on account of the round depressions; thus enabling mechanical stresses resulting from differing expansion coefficients of the substrate, the connection layer and the electronic component to already be broken down in the region of the substrate enclosed by the round depressions.
  • The introduction of the dimples entails an additional manufacturing step in providing the substrate.
  • An arrangement of a semiconductor chip on a metal substrate is known from the first publication of the American patent application US 2010/0187678 A1. The semiconductor chip is thereby attached to the metal substrate at low pressure by means of sintering a silver paste. In addition, the semiconductor chip has bonded connections which connect said semiconductor chip to contacting points. The arrangement previously described together with the bonded connections is completely coated from the outside with a metal oxide coating (SnO, AlO). The arrangement coated in this manner is furthermore encapsulated by a polymer material. The metal oxide coating achieves a stress reduction for the semiconductor chip. Such a coating is expensive because it must be applied to the entire arrangement. Furthermore, the application of the coating to the arrangement as a spatial entity is difficult and entails effort and expense. In addition, only methods can be used in which regions adjacent to the arrangement can be omitted from such a coating.
  • SUMMARY OF THE INVENTION
  • The aim of the invention is to design a connection arrangement of an electric and/or electronic component such that the component, in particular a semiconductor chip, can be used during operation in a manner resistant to temperature fluctuations, in particular within a circuit arrangement of a motor vehicle.
  • It is further the aim of the invention to specify a method for configuring such a connection arrangement.
  • These aims are met by a connection arrangement of at least one electric and/or electronic component and furthermore by a composite element for configuring the connection arrangement as well as by a method for producing the same according to the invention.
  • The connection arrangement comprises at least one electric and/or electronic component. The at least one electric and/or electronic component has at least one connection face, which is connected in a bonded manner to a join partner by means of a connection layer. The connection layer can, for example, be an adhesive, soldered, welded, sintered connection or another known connection that connects joining partners by means of forming a material connection.
  • A distinguishing characteristic for the connection arrangement according to the invention is that a reinforcement layer is arranged adjacent to the connection layer in a bonded manner. To this end, the reinforcement layer has a higher modulus of elasticity than the connection layer. In so doing, a crack formation in the connection layer can advantageously be prevented, which occurs in otherwise known connection arrangements as a result of mechanical and/or thermomechanical stresses, in particular when temperature fluctuations due to operating conditions occur. This effect is explained by the fact that a material having a high elasticity module can be very resistant to material deformation. The reinforcement layer therefore prevents a supercritical expansion of the connection layer or of the at least one electric and/or electronic component connected to the connection layer. A particularly good protective effect is achieved if the reinforcement layer is formed in a frame-like manner by an outer and an inner boundary and, at least with the outer boundary thereof, encloses the connection face of the at least one electric and/or electronic component.
  • In a frame-like manner refers in this context in particular to the fact that the reinforcement layer, due to the outer and/or inner boundary thereof, has a closed circumferential course at least in one plane, in particular in a plane substantially parallel to the connection face of the at least one electric and/or electronic component. The outer and/or inner boundary runs preferably for the most part parallel to the outer contour of the connection face. The connection face can have besides a square or rectangular base also a base that is annular, oval or shaped otherwise. It is particularly advantageous if the reinforcement layer is embodied free of interruptions. As a result, inherently different expansions of the at least one electric and/or electronic component, of the connection layer and of the join partner, for example a carrier substrate, can be suppressed by the connection layer. By means of the frame-like configuration, the reinforcement layer acts like a rigid belt which can absorb forces and at the same time does not permit any deformations.
  • Provision is made in an advantageous embodiment of the connection arrangement according to the invention for the connection layer to have a surface region which protrudes beyond the connection face of the at least one electric and/or electronic component. In an advantageous manner, the reinforcement layer is disposed on the connection layer in said surface region. It is particularly advantageous if the reinforcement layer disposed on said region extends with the inner boundary thereof at least up to the connection face of the at least one electric an/or electronic component. It is furthermore advantageous if the reinforcement layer is designed in this arrangement at least in certain regions such that said reinforcement layer surrounds a housing of the at least one electric and/or electronic component at least above a minimum height.
  • Overall, the vulnerable edge region of the connection face as well as of the housing of the at least one electric and/or electronic component is thereby effectively protected from a crack initiation and/or crack expansion, for example as a result of temperature fluctuations due to operating conditions.
  • In an alternative or continuative embodiment of the connection arrangement according to the invention, the reinforcement layer delimits with the inner boundary thereof the lateral expansion of the connection layer. In so doing, the inner boundary of the reinforcement layer encloses the connection layer at least partially or preferably completely across the layer thickness thereof. A partial delimitation across the layer thickness of the connection layer can, for example, be embodied in such a manner that the reinforcement layer is arranged adjacent to the connection layer on the join partner and is embodied smaller in layer thickness than the connection layer. Furthermore, the reinforcement layer can be arranged within the connection layer at least partially in a spatially integrated manner. As a result, the side of the reinforcement layer facing in the direction of the connection face of the at least one electric and/or electronic component and/or the side of said reinforcement layer facing in the direction of the join partner are at least partially, preferably completely, covered by the connecting layer.
  • All in all, a further option which is improved in combination with the reinforcement layer arranged on the connection layer is thereby provided to effectively protect the vulnerable edge region of both the connection face and the housing of the at least one electric and/or electronic component from a crack initiation and/or crack expansion.
  • Provision is made in an advantageous modification to the connection arrangement according to the invention for the inner boundary of the reinforcement layer to extend partially—preferably completely—to within the connection face of the at least one electric and/or electronic component. In this case, the side of the reinforcement layer facing in the direction of the connection face of the at least one electric and/or electronic component and said connection face itself comprise an overlapping surface region. It is particularly advantageous if said connection face is connected in a bonded manner to the reinforcement layer in the overlapping region. In this way, the edge region of the connection face of the at least one electric and/or electronic component is directly fixed to the reinforcement layer so that the possibilities for the component to expand are as a whole limited to the small possibility for expansion of the reinforcement layer. As a result, the risk of a crack forming and expanding within the component is maximally reduced.
  • The reinforcement layer is preferably to be selected as a function of the selected connection layer. Care is therefore, for example, to be taken that a bonded connection can be formed between the connection layer and the reinforcement layer and also preferably between the connection face of the at least one electric and/or electronic component and/or the join partner. Mechanical and/or thermomechanical stresses which result from the different expansion behavior of the at least one electric and/or electronic component, the connection layer and the join partner can thereby be absorbed by the reinforcement layer. In order to meet this end, care furthermore must be taken that the reinforcement layer has a higher modulus of elasticity than the connection layer.
  • An advantageous modification to the connection arrangement according to the invention is provided by a reinforcement layer which comprises at least one intermetallic phase. Intermetallic phases have a high proportion of covalent bonds. This leads to a high modulus of elasticity and a higher melting or decomposition temperature, for example greater than 250 degrees Celsius, particularly 300 degrees Celsius and above. This is then particularly advantageous if the connection arrangement is exposed to high temperatures when joining the at least one electric and/or electronic component to the join partner or during operation. In this way, the reliability of the connection arrangement can be ensured even at high temperatures.
  • A preferred inventive connection arrangement comprises a connection layer, which includes at least one metal, for example a metallic sintered connection, in particular consisting of silver. In addition, the reinforcement layer is formed from a soldering material, in particular a tin-, bismuth-, zinc-, gallium- or aluminum-based soldering material, wherein, after the connection layer and/or the soldering material has been thermally treated, the reinforcement layer comprises at least one intermetallic phase or is formed from at least one metallic phase and thus replaces the former soldering material.
  • It is particularly advantageous if the connection layer, for example embodied as a sintered molded part, and the solder layer are configured in the form of a composite element, which is then disposed between the at least one electric and/or electronic component and the join element in order to form the connection arrangement according to the invention. In this regard, the solder layer is formed in a frame-like manner within the composite element and is arranged on the connection layer and/or arranged adjacent to the connection layer such that the inner boundary thereof delimits the lateral surface expansion of the connection layer. A particular advantage then becomes evident in that the composite element can be manufactured in advance in large quantities independently of the use within the a connection arrangement. In addition, an easy handling and an equipping comparable with each electric and/or electronic component are provided.
  • The thermal treatment is preferably based on the required soldering profile. On the whole, a very simple and cost effective option is thus provided, to form a temperature resistant, intermetallic phase by means of conventional connection materials and connection methods.
  • The connection arrangement according to the invention is particularly suited for semiconductor components, for example made of silicon, in particular comprising a planar connection face, for example IGBT, MOSFET, DIODEN and semiconductor chip. Such components are attached by means of the connection layer, for example, to a DBC substrate (direct copper bonded), a metallic lead frame, an organic or ceramic interconnect device or an IMS substrate (insulated metal substrate) as join partner. The connection layer, in particular as a sintered layer, preferably has a layer thickness of 10-500 μm, in particular 10-300 μm, particularly preferred 10-100 μm. The reinforcement layer can be embodied similarly to the connection layer in the layer thickness thereof. If a solder layer is selected as the reinforcement layer, which is to be replaced by at least one intermetallic phase in particular after a thermal treatment, smaller layer thicknesses are preferred, for example 0.5-100 μm, in particular 0.5-60 μm, particularly preferred 1 μm-30 μm.
  • The method of the invention enables a crack formation and crack expansion within the connection layer and/or the at least one electric and/or electronic component to be counteracted in a simple and cost effective manner. In this regard, conventional connection materials can be used, which allow among other things the connection arrangement formed to be used at high operating temperatures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further advantages, features and details of the invention ensue from the following description of preferred exemplary embodiments as well as with the aid of the drawings. In the drawings:
  • FIG. 1 a: shows schematically a first embodiment of the connection arrangement according to the invention in a side view;
  • FIG. 1 b: shows schematically the embodiment from FIG. 1 a in a top view;
  • FIG. 2 a: shows schematically a second embodiment of the connection arrangement according to the invention in a side view;
  • FIG. 2 b: shows schematically a third embodiment of the connection arrangement according to the invention in a side view;
  • FIG. 2 c: shows schematically a fourth embodiment of the connection arrangement according to the invention in a side view.
  • DETAILED DESCRIPTION
  • In the figures, functionally identical components are denoted in each case with the same reference numerals.
  • The FIGS. 1 a and 1 b show a first embodiment of the connection arrangement 100 according to the invention. In order to form the connection arrangement 100, a circuit substrate, for example a DBC substrate, is provided. A semiconductor chip 10 is connected in a bonded manner to the DBC substrate. To this end, the semiconductor chip 10 has a connection face 11 on the side facing the DBC substrate 40. The connection face 11 serves, for example, to electrically contact the semiconductor chip 10 and/or to cool the same. In order to form the bonded connection, a sintered layer 20 consisting of silver is disposed between the connection face 11 and the DBC substrate. For this purpose, the sintered layer 20 can, for example, be present in paste form and be applied to the DBC substrate 40 by means of know paste printing methods. The sintered layer 20 can likewise be formed as a sintered molded part and be applied to the DBC substrate 40 in a form that is then solid and fitted to the connection face 11. In the concrete exemplary embodiment, the sintered layer 20 is formed in such a manner that an upper surface region 21 facing the connection face 11 protrudes beyond said connection face 11 of the semiconductor chip 10. Said surface region 21 protrudes—as can be seen in the top view of FIG. 1 b—generally on all sides with respect to the semiconductor chip 10. Furthermore, a tin-based solder layer 30—for example consisting of SnAg3.5 or of SnCu0.7—is applied to this surface region 21, said solder layer having a layer thickness s, for example of 50 μm. In this way, the solder layer 30 is formed having an inner boundary 35 and an outer boundary 36. The inner boundary 35 of the solder layer 30 extends in this instance to the connection face 11. In addition, the housing of the semiconductor chip 10 is surrounded on all sides by the solder layer 20 at the height of the layer thickness s.
  • The connection arrangement formed in this manner, in particular the sintered layer 20 and/or the solder layer 30, is subsequently thermally treated. The thermal treatment preferably occurs in the range of the melting temperature of the solder layer 30. In the case that the sintering temperature of the sintered layer 20 lies below the melting temperature of the solder layer 30, a sintering process is triggered as a result of the thermal treatment, whereby the semiconductor chip 10 is connected in a bonded manner to the DBC substrate 40 by means of the sintered layer 20. At the same time, solid body diffusion processes begin between the sintered layer 20 and the solder layer 30 as a result of the thermal treatment. In so doing, the metals and/or metal alloys of both layers 20, 30 mix at least in the boundary regions, i.e. within the surface region 21, and form a reinforcement layer 30′, comprising at least one intermetallic phase. In the case of, for example, SnAg3.5 as solder material, Ag3Sn forms as the intermetallic phase. In the case of, for example, SnCu0.7 being the soldered material, Ag3Sn as well as Cu6Sn5 form as intermetallic phases.
  • By the solder layer 30 being embodied very thin, for example having a layer thickness of 50 μm, the metals and/or metal alloys of both layers 20, 30 diffuse very far into the solder layer 30. A duration of the thermal treatment is preferably selected, in which the solder layer 30 is substantially replaced by the formed, at least one intermetallic phase and in so doing totally forms the reinforcement layer 30′. For reasons of simplification, the fact is not depicted that the formed intermetallic phase also generally extends in certain regions into the sintered layer 20.
  • In the FIGS. 2 a-2 c, further exemplary embodiments of the inventive connection arrangement 200, 300, 400 are shown. They differ primarily in the arrangement of the solder layer 30 and the reinforcement layer 30′ formed therefrom within the connection arrangement 200, 300, 400.
  • In the second embodiment of the inventive connection arrangement pursuant to FIG. 2 a, the solder layer 30 is applied laterally adjacent to the sintered layer 20 on the DBC substrate. As a result, the reinforcement layer 30′ formed after the thermal treatment joins in a bonded manner with the sintered layer 20 as well as with the DBC substrate. In addition, the inner boundary 35 delimits the lateral surface expansion of the sintered layer 20.
  • The third exemplary embodiment of the inventive connection arrangement 300 corresponding to FIG. 2 b resembles the second embodiment. In contrast thereto, the sintered layer 20 in the third embodiment is substantially flush with the connection face 11 or with the housing of the semiconductor chip 10. In addition, the solder layer 30 is formed in the layer thickness thereof at least in the region of the housing of the semiconductor chip 10 in such a way that at least a minimum height of the housing is surrounded on all sides by a portion of the solder layer 30 or, respectively, (after the thermal treatment) then by the reinforcement layer 30′.
  • In the fourth exemplary embodiment of the inventive connection arrangement 400 pursuant to FIG. 2 c, the solder layer 30 is integrated within the sintered layer 20. As a result, the side of the solder layer 30 facing the connection face 11 planarly closes with the sintered layer 20 which is bounded at least over the layer thickness s of the solder layer 30 by means of the inner boundary 35 thereof. Furthermore, the side of the solder layer 30 facing away from the connection face is covered by the sintered layer 20. After the thermal treatment, the formed reinforcement layer 30′ joins in a bonded manner with the sintered layer 20 as well as with the surface region extending into the contact face 11.
  • Further embodiments are generally possible, which, for example, constitute a combination of or a modification to the embodiments previously described.
  • In addition, the solder layer can basically be applied and/or disposed even after formation of the bonded connection of the electric and/or electronic component, for example the semiconductor chip 10, to the join partner, for example to the DBC substrate.
  • The application of the solder layer 30 to the sintered layer 20 in the form of a sintered molded part or the lateral disposal of the solder layer 30 adjacent to the connection layer 20 such that the solder layer 30 delimits the lateral surface expansion of the connection layer 20 with the inner boundary 35 thereof can also take place already prior to formation of the connection arrangement 100, 200, 300, 400 by means of forming a composite element. In this case, the composite element is disposed between the at least one electric and/or electronic component, for example the semiconductor chip 10, and the join partner, for example the DBC substrate, and the thermal treatment for forming the reinforcement layer 30′ is subsequently performed.
  • In principle, it is also possible to provide the connection layer 20 which comprises at least one metal as a solder layer, for example from a tin-, bismuth-, zinc-, gallium- or aluminum-based soft solder. The reinforcement layer 30′ can likewise in general be formed from a metal layer, in particular one containing tin, silver, copper, zinc, bismuth, gallium and/or aluminum, said metal layer being applied, for example, by a chemical and/or physical coating procedure. In general, materials for the connection layer 20 and the reinforcement layer 30′ can be selected such that the reinforcement layer 30′ comprises at least on intermetallic phase due to a thermal treatment and the diffusion processes thereby taking place between both layers 20, 30.

Claims (20)

What is claimed is:
1. A connection arrangement (100, 200, 300, 400) of at least one electric and/or electronic component (10), wherein the at least one electric and/or electronic component (10) has a connection face (11), which is connected in a bonded manner to the join partner (40) by a connection layer (20), wherein
a reinforcement layer (30′) is arranged adjacent to the connection layer (20), said reinforcement layer (30′) having a higher modulus of elasticity than the connection layer (20), wherein the reinforcement layer (30′) is formed in a frame-like manner by an outer boundary and an inner boundary (36, 35) and, at least with the outer boundary (36) thereof, encloses the connection face (11) of the at least one electric and/or electronic component (10), and
wherein the reinforcement layer (30′) comprises at least one intermetallic phase.
2. The connection arrangement according to claim 1, characterized in that the connection layer (20) comprises at least one metal and the reinforcement layer (30′) is formed from a soldering material (30), wherein, after a thermal treatment of at least one of the connection layer (20) and the soldering material (30), the reinforcement layer (30′) comprises at least one intermetallic phase.
3. The connection arrangement (100, 200, 300, 400) according to claim 2, characterized in that the soldering material (30) contains tin, bismuth, zinc, gallium and/or aluminum.
4. The connection arrangement (100, 200, 300, 400) according to claim 2, characterized in that the inner boundary (35) of the reinforcement layer (30′) extends to within the connection face (11) of the at least one electric and/or electronic component (10).
5. The connection arrangement according to claim 4, characterized in that the connection layer (20) has a surface region (21) which protrudes beyond the connection face (11), wherein the reinforcement layer (30′) is arranged on the connection layer (20) in said surface region (21) and/or the reinforcement layer (30′) delimits the lateral surface expansion of the connection layer (20) with the inner boundary (35) thereof.
6. The connection arrangement (100, 200, 300, 400) according to claim 5, characterized in that the connection layer (20) is a metal layer containing tin, silver, copper, zinc, bismuth, gallium and/or aluminum.
7. The connection arrangement (100, 200, 300, 400) according to claim 6, characterized in that the connection layer (20) is a silver sintered layer.
8. The connection arrangement (100, 200, 300, 400) according to claim 1, characterized in that the inner boundary (35) of the reinforcement layer (30′) extends to within the connection face (11) of the at least one electric and/or electronic component (10).
9. The connection arrangement according to claim 1, characterized in that the connection layer (20) has a surface region (21) which protrudes beyond the connection face (11), wherein the reinforcement layer (30′) is arranged on the connection layer (20) in said surface region (21) and/or the reinforcement layer (30′) delimits the lateral surface expansion of the connection layer (20) with the inner boundary (35) thereof.
10. The connection arrangement (100, 200, 300, 400) according to claim 1, characterized in that the connection layer (20) is a metal layer containing tin, silver, copper, zinc, bismuth, gallium and/or aluminum.
11. The connection arrangement (100, 200, 300, 400) according to claim 1, characterized in that the connection layer (20) is a silver sintered layer.
12. A composite element, comprising a connection layer (20), which contains at least one metal, and a solder layer (30) arranged adjacent to the connection layer (20),
characterized in that the solder layer (30) is formed in a frame-like manner by an outer boundary and an inner boundary (36, 35) and is arranged on at least one of the connection layer (20) and the solder layer (30), with the inner boundary (35) thereof, delimits a lateral surface expansion of the connection layer (20), wherein the composite element is designed in such a way that, during a thermal treatment of at least one of the connection layer (20) and the solder layer (30), a reinforcement layer (30′) comprising at least one intermetallic phase is formed between the connection layer (20) and the solder layer (30), the reinforcement layer (30′) having a higher modulus of elasticity than the connection layer (20).
13. The composite element according to claim 12, characterized in that after the thermal treatment, at least the solder layer (30) is replaced by the reinforcement layer (30′).
14. The composite element according to claim 13, characterized in that the solder layer (30) contains tin, bismuth, zinc, gallium and/or aluminum, and/or the connection layer (20) is a silver sintered layer or a silver sintered molded part.
15. The composite element according to claim 12, characterized in that the solder layer (30) contains tin, bismuth, zinc, gallium and/or aluminum, and/or the connection layer (20) is a silver sintered layer or a silver sintered molded part.
16. A joining method wherein a connection layer (20) is disposed between the connection face (11) of at least one electric and/or electronic component (10) and a join partner (40) in order to form a bonded connection, characterized in that a reinforcement layer (30′) is arranged adjacent to the connection layer (20), said reinforcement layer having a higher modulus of elasticity than the connection layer (20), wherein the reinforcement layer (30′) is formed in a frame-like manner by an outer boundary and an inner boundary (36, 35) and the connection face (11) is enclosed by at least the outer boundary (36) of the reinforcement layer (30′),
characterized in that the connection layer (20) comprises at least one metal and the reinforcement layer (30′) is formed from a solder layer (30), wherein the solder layer (30) is formed in a frame-like manner by the outer boundary and the inner boundary (36, 35) and is applied to a surface region (21) of the connection layer (20), said surface region protruding beyond the connection face (11), and the solder layer (30) is arranged such that said solder layer, with the inner boundary (35) thereof, delimits lateral surface expansion of the connection layer (20), and at least one of the connection layer (20) and the solder layer (30) are thermally treated and the reinforcement layer (30′) is formed between the connection layer (20) and the solder layer (30), wherein the formed reinforcement layer (30′) has a higher modulus of elasticity than the connection layer (20) and wherein at least the solder layer (30) is replaced by the formed reinforcement layer (30′).
17. The joining method according to claim 16, characterized in that the solder layer (30) is applied and/or disposed after the bonded connection of the at least one electric and/or electronic component (10) to the connection layer (20) has been formed.
18. The joining method according to claim 17, characterized in that the connection layer (20) is configured as a silver sintered layer or silver sintered molded part.
19. The joining method according to claim 16, characterized in that the solder layer (30) contains tin, bismuth, zinc, gallium and/or aluminum.
20. The joining method according to claim 16, characterized in that the connection layer (20) is configured as a sintered layer or sintered molded part.
US14/834,569 2012-02-09 2015-08-25 Connection arrangement of an electric and/or electronic component Abandoned US20160064350A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/834,569 US20160064350A1 (en) 2012-02-09 2015-08-25 Connection arrangement of an electric and/or electronic component

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102012201935.9 2012-02-09
DE102012201935A DE102012201935A1 (en) 2012-02-09 2012-02-09 Connecting arrangement of an electrical and / or electronic component
PCT/EP2013/051400 WO2013117438A2 (en) 2012-02-09 2013-01-25 Connection arrangement of an electric and/or electronic component
US201414377895A 2014-08-11 2014-08-11
US14/834,569 US20160064350A1 (en) 2012-02-09 2015-08-25 Connection arrangement of an electric and/or electronic component

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2013/051400 Continuation WO2013117438A2 (en) 2012-02-09 2013-01-25 Connection arrangement of an electric and/or electronic component
US14/377,895 Continuation US9177934B2 (en) 2012-02-09 2013-01-25 Connection arrangement of an electric and/or electronic component

Publications (1)

Publication Number Publication Date
US20160064350A1 true US20160064350A1 (en) 2016-03-03

Family

ID=47666103

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/377,895 Active US9177934B2 (en) 2012-02-09 2013-01-25 Connection arrangement of an electric and/or electronic component
US14/834,569 Abandoned US20160064350A1 (en) 2012-02-09 2015-08-25 Connection arrangement of an electric and/or electronic component

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/377,895 Active US9177934B2 (en) 2012-02-09 2013-01-25 Connection arrangement of an electric and/or electronic component

Country Status (5)

Country Link
US (2) US9177934B2 (en)
EP (1) EP2812912A2 (en)
CN (1) CN104094387B (en)
DE (1) DE102012201935A1 (en)
WO (1) WO2013117438A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022047647A1 (en) * 2020-09-02 2022-03-10 Qualcomm Incorporated Power-saving techniques in computing devices through communication bus control

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011083931A1 (en) * 2011-09-30 2013-04-04 Robert Bosch Gmbh Layer composite of an electronic substrate and a layer arrangement comprising a reaction solder
WO2014152533A1 (en) * 2013-03-15 2014-09-25 Conformis, Inc. Posterior-stabilized knee implant components and instruments
JP2015115481A (en) * 2013-12-12 2015-06-22 株式会社東芝 Semiconductor component and method of manufacturing semiconductor component
US9875987B2 (en) 2014-10-07 2018-01-23 Nxp Usa, Inc. Electronic devices with semiconductor die attached with sintered metallic layers, and methods of formation of such devices
US9589860B2 (en) * 2014-10-07 2017-03-07 Nxp Usa, Inc. Electronic devices with semiconductor die coupled to a thermally conductive substrate
US9698116B2 (en) 2014-10-31 2017-07-04 Nxp Usa, Inc. Thick-silver layer interface for a semiconductor die and corresponding thermal layer
DE102015200989A1 (en) * 2015-01-22 2016-07-28 Robert Bosch Gmbh Connecting arrangement between a carrier element and an electronic circuit component and circuit carrier
DE102015113421B4 (en) * 2015-08-14 2019-02-21 Danfoss Silicon Power Gmbh Method for producing semiconductor chips
EP3154079A1 (en) * 2015-10-08 2017-04-12 Heraeus Deutschland GmbH & Co. KG Method for connecting a substrate arrangement with an electronic component using a pre-fixing agent on a contact material layer, corresponding substrate arrangement and method of manufacturing thereof
KR20170059833A (en) * 2015-11-23 2017-05-31 삼성전기주식회사 Strip substrate and manufacturing method thereof
US10969118B2 (en) 2016-05-26 2021-04-06 Electrolux Home Products, Inc. Steam cooking appliance
US9941210B1 (en) 2016-12-27 2018-04-10 Nxp Usa, Inc. Semiconductor devices with protruding conductive vias and methods of making such devices
DE102018221148A1 (en) * 2018-12-06 2020-06-10 Heraeus Deutschland GmbH & Co. KG Method for producing a substrate adapter and substrate adapter for connecting to an electronic component
DE102019207341A1 (en) * 2019-05-20 2020-11-26 Robert Bosch Gmbh Electronics assembly and electronics assembly
CN113133327B (en) * 2019-10-31 2024-01-26 京东方科技集团股份有限公司 Bearing backboard, preparation method thereof and backboard
DE102020117678B3 (en) 2020-07-03 2021-08-12 Infineon Technologies Ag SEMI-CONDUCTOR DEVICE WITH HETEROGENIC SOLDER JOINT AND METHOD OF MANUFACTURING IT
NL2027068B1 (en) 2020-12-08 2022-07-07 Stichting Chip Integration Tech Centre Integrated circuit comprising improved die attachment layer
EP4047648A1 (en) * 2021-02-18 2022-08-24 Siemens Aktiengesellschaft Power module with a power component bonded to a substrate by sintering and soldering and corresponding manufacturing method
DE102023202634A1 (en) 2023-03-23 2024-09-26 Robert Bosch Gesellschaft mit beschränkter Haftung Method for producing a line module with sintered heat sink

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293539A (en) * 1988-05-23 1989-11-27 Fuji Xerox Co Ltd Forming method for bump of semiconductor device
US5200612A (en) * 1989-12-08 1993-04-06 Fujitsu Limited Photodetector carrier for improving the high speed of a photodetector and method for producing same
JP2001230351A (en) * 2000-02-14 2001-08-24 Shibafu Engineering Corp Joining material for electronic module, module type semiconductor device, and method of manufacturing the same
JP2007201314A (en) * 2006-01-30 2007-08-09 Toyota Central Res & Dev Lab Inc Semiconductor device
US20120061812A1 (en) * 2010-09-09 2012-03-15 Ralf Otremba Power Semiconductor Chip Package
US20130049204A1 (en) * 2011-08-22 2013-02-28 Infineon Technologies Ag Semiconductor device including diffusion soldered layer on sintered silver layer
US20130213697A1 (en) * 2010-11-03 2013-08-22 3M Innovative Properties Company Flexible led device with wire bond free die
US20140048942A1 (en) * 2011-12-27 2014-02-20 Panasonic Corporation Mounted structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244566A (en) * 1975-10-06 1977-04-07 Mitsubishi Electric Corp Method of alloying semiconductor pellet
JPS5966131A (en) * 1982-10-08 1984-04-14 Nec Corp Mounting structure of semiconductor pellet
JPH0545009Y2 (en) * 1987-04-06 1993-11-16
JP2956617B2 (en) * 1996-10-31 1999-10-04 日本電気株式会社 Resin-sealed semiconductor device
US6144104A (en) * 1999-03-24 2000-11-07 Visteon Corporation High-operating-temperature electronic component
DE102004058878A1 (en) * 2004-12-06 2006-06-14 Infineon Technologies Ag Semiconductor device and method for manufacturing a semiconductor device
JP4765098B2 (en) * 2005-10-13 2011-09-07 富士電機株式会社 Semiconductor device and manufacturing method thereof
US8283756B2 (en) * 2007-08-20 2012-10-09 Infineon Technologies Ag Electronic component with buffer layer
JP2010171271A (en) 2009-01-23 2010-08-05 Renesas Technology Corp Semiconductor device and method of manufacturing the same
JP5250524B2 (en) * 2009-10-14 2013-07-31 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US20110303448A1 (en) * 2010-04-23 2011-12-15 Iowa State University Research Foundation, Inc. Pb-Free Sn-Ag-Cu-Al or Sn-Cu-Al Solder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293539A (en) * 1988-05-23 1989-11-27 Fuji Xerox Co Ltd Forming method for bump of semiconductor device
US5200612A (en) * 1989-12-08 1993-04-06 Fujitsu Limited Photodetector carrier for improving the high speed of a photodetector and method for producing same
JP2001230351A (en) * 2000-02-14 2001-08-24 Shibafu Engineering Corp Joining material for electronic module, module type semiconductor device, and method of manufacturing the same
JP2007201314A (en) * 2006-01-30 2007-08-09 Toyota Central Res & Dev Lab Inc Semiconductor device
US20120061812A1 (en) * 2010-09-09 2012-03-15 Ralf Otremba Power Semiconductor Chip Package
US20130213697A1 (en) * 2010-11-03 2013-08-22 3M Innovative Properties Company Flexible led device with wire bond free die
US20130049204A1 (en) * 2011-08-22 2013-02-28 Infineon Technologies Ag Semiconductor device including diffusion soldered layer on sintered silver layer
US20140048942A1 (en) * 2011-12-27 2014-02-20 Panasonic Corporation Mounted structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Machine translation of JP 2001-230351 A *
Machine translation of JP 2007-201314 A *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022047647A1 (en) * 2020-09-02 2022-03-10 Qualcomm Incorporated Power-saving techniques in computing devices through communication bus control

Also Published As

Publication number Publication date
EP2812912A2 (en) 2014-12-17
DE102012201935A1 (en) 2013-08-14
CN104094387A (en) 2014-10-08
WO2013117438A2 (en) 2013-08-15
WO2013117438A3 (en) 2013-10-03
US9177934B2 (en) 2015-11-03
CN104094387B (en) 2017-08-08
US20150014865A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
US9177934B2 (en) Connection arrangement of an electric and/or electronic component
US8736052B2 (en) Semiconductor device including diffusion soldered layer on sintered silver layer
KR101244834B1 (en) Power semiconductor device
US8253233B2 (en) Module including a sintered joint bonding a semiconductor chip to a copper surface
US20170092611A1 (en) Porous metallic film as die attach and interconnect
CN107112316B (en) Semiconductor module
US20170033024A1 (en) Method For Mounting An Electrical Component In Which A Hood Is Used, And A Hood That Is Suitable For Use In This Method
US8860196B2 (en) Semiconductor package and method of fabricating the same
US20120175755A1 (en) Semiconductor device including a heat spreader
JPWO2015151273A1 (en) Semiconductor device
KR20170044105A (en) Joined body, substrate for power module provided with heat sink, heat sink, method for manufacturing joined body, method for manufacturing substrate for power module provided with heat sink, and method for manufacturing heat sink
JP4989552B2 (en) Electronic components
JPWO2011042982A1 (en) Manufacturing method of semiconductor device
US9392713B2 (en) Low cost high strength surface mount package
JP7483955B2 (en) Power module substrate and power module
US7445965B2 (en) Method of manufacturing radiating plate and semiconductor apparatus using the same
JP5898575B2 (en) Semiconductor device
JP7117960B2 (en) Substrates for power modules and power modules
JP7018756B2 (en) Power module board and power module
JP6221590B2 (en) Bonding structure of insulating substrate and cooler, manufacturing method thereof, power semiconductor module, and manufacturing method thereof
JP2020024998A (en) Semiconductor device and manufacturing method therefor
US20140091444A1 (en) Semiconductor unit and method for manufacturing the same
JP6011410B2 (en) Semiconductor device assembly, power module substrate and power module
JP2011056555A (en) Joining material, method for manufacturing joining material, and semi-conductor device
WO2017077729A1 (en) Semiconductor module and method for manufacturing same

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERT BOSCH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRUEH, CHRISTIANE;FIX, ANDREAS;SIGNING DATES FROM 20140202 TO 20140203;REEL/FRAME:036408/0975

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION