US20150082766A1 - Slubbing Machine with an Arrangement for Detecting and Removing Yarn Flaws - Google Patents
Slubbing Machine with an Arrangement for Detecting and Removing Yarn Flaws Download PDFInfo
- Publication number
- US20150082766A1 US20150082766A1 US14/389,009 US201314389009A US2015082766A1 US 20150082766 A1 US20150082766 A1 US 20150082766A1 US 201314389009 A US201314389009 A US 201314389009A US 2015082766 A1 US2015082766 A1 US 2015082766A1
- Authority
- US
- United States
- Prior art keywords
- rove
- yarn
- spinning nozzle
- flaw
- removal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000009987 spinning Methods 0.000 claims abstract description 84
- 239000000835 fiber Substances 0.000 claims abstract description 35
- 238000004804 winding Methods 0.000 claims abstract description 20
- 230000001681 protective effect Effects 0.000 claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 15
- 238000001514 detection method Methods 0.000 abstract description 13
- 238000011144 upstream manufacturing Methods 0.000 abstract 1
- 239000004753 textile Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 4
- 238000003490 calendering Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000007378 ring spinning Methods 0.000 description 2
- 238000007665 sagging Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H1/00—Spinning or twisting machines in which the product is wound-up continuously
- D01H1/11—Spinning by false-twisting
- D01H1/115—Spinning by false-twisting using pneumatic means
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H13/00—Other common constructional features, details or accessories
- D01H13/14—Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements
- D01H13/16—Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements responsive to reduction in material tension, failure of supply, or breakage, of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H51/00—Forwarding filamentary material
- B65H51/20—Devices for temporarily storing filamentary material during forwarding, e.g. for buffer storage
- B65H51/205—Devices for temporarily storing filamentary material during forwarding, e.g. for buffer storage by means of a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H51/00—Forwarding filamentary material
- B65H51/20—Devices for temporarily storing filamentary material during forwarding, e.g. for buffer storage
- B65H51/22—Reels or cages, e.g. cylindrical, with storing and forwarding surfaces provided by rollers or bars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H63/00—Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
- B65H63/06—Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to presence of irregularities in running material, e.g. for severing the material at irregularities ; Control of the correct working of the yarn cleaner
- B65H63/062—Electronic slub detector
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H69/00—Methods of, or devices for, interconnecting successive lengths of material; Knot-tying devices ;Control of the correct working of the interconnecting device
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H13/00—Other common constructional features, details or accessories
- D01H13/14—Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements
- D01H13/22—Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements responsive to presence of irregularities in running material
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H15/00—Piecing arrangements ; Automatic end-finding, e.g. by suction and reverse package rotation; Devices for temporarily storing yarn during piecing
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H7/00—Spinning or twisting arrangements
- D01H7/92—Spinning or twisting arrangements for imparting transient twist, i.e. false twist
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/30—Handled filamentary material
- B65H2701/31—Textiles threads or artificial strands of filaments
Definitions
- the invention relates to a slubbing machine for producing a rove from a fiber web, wherein the slubbing machine has at least one spinning nozzle with an inlet opening for the fiber web, wherein at least one air nozzle is assigned to the spinning nozzle through which air nozzle the air can be channeled into the spinning nozzle in order to impart a protective rotation to the fiber web within the spinning nozzle, wherein the spinning nozzle has an outlet through which the rove can be drawn out of the spinning nozzle, and wherein the slubbing machine comprises at least one receiving device arranged downstream of the spinning nozzle in the transport direction of the rove, particularly in the form of a winding device to receive the rove leaving the spinning nozzle.
- a method for producing a rove from a fiber web using a slubbing machine wherein the fiber web is introduced into a spinning nozzle through an inlet opening, wherein, using an air flow, a protective rotation is imparted to the fiber web within the spinning nozzle, wherein the rove can be drawn out of the spinning nozzle through an outlet and wherein the rove leaving the spinning nozzle is received using a receiving device, for example a winding device, arranged downstream of the spinning nozzle in the transport direction of the rove.
- a rove is received that, despite a strength increased compared to the fiber web, still features a certain capability of being drafted, such that, in a subsequent textile machine (for example, a ring spinning machine), it can be drafted using a drafting system, i.e. homogenized.
- the task of the present invention is to propose a slubbing machine or a method for producing a rove, with the assistance of which a rove of the highest possible quality can be produced.
- the slubbing machine includes an arrangement to be passed by the rove, for detecting and removing yarn flaws, wherein the arrangement is placed between the outlet of the spinning nozzle producing the rove and the receiving device downstream of the spinning nozzle in the conveying direction of the rove.
- the receiving device may be designed, for example, as a winding device, with the assistance of which the rove drawn out of the spinning nozzle can be spooled onto a coil, in order to be able to feed a downstream textile machine at a later point in time.
- the receiving device it is also conceivable to design the receiving device as an intermediary component which feeds the produced rove, without an interposed spool, directly to the downstream textile machine. In such an event, it is conceivable, for example, to design the receiving device as a (preferably driven or drivable) pair of rollers, with the assistance of which the rove can be collected and selectively fed for its further use.
- the invention provides that the device for the detection and removal of a yarn flaw is assigned to the slubbing machine, such that yarn flaws are immediately removed after the production of the rove on the slubbing machine itself (if the slubbing machine has two or more spinning nozzles, it is advantageous if a separate device for the detection and removal of a yarn flaw is assigned to each spinning nozzle). Thus, a subsequent rewinding for the purposes of the removal of yarn flaws is no longer necessary. Rather, the slubbing machine delivers an error-free rove, which can be further processed without additional intermediate steps.
- optical sensors or ultrasonic, microwave or other sensors suitable for the detection of a yarn flaw can be used.
- the sensors are preferably connected to a control unit, which also may be connected to components of the slubbing machine and/or its drives (more specifically described below), in order to control the respective rotational speeds and/or conveying speeds.
- the arrangement comprises, in addition to a device for the detection and a device for the removal of the yarn flaw, a yarn accumulator for the interim storage of the rove leaving the spinning nozzle during the removal of the yarn flaw.
- the yarn accumulator is preferably placed between the outlet of the spinning nozzle and the device for the removal of the yarn flaw.
- the yarn accumulator has, for example, a drivable coil bobbin, in order to loop the rove around several times, starting from a first front side, and draw it out again in the area of a second front side.
- the filling level of the yarn accumulator remains constant (the quantity of the rove taken from the yarn accumulator is equivalent to the quantity of rove dispensed again). If a yarn flaw is now detected by the device for the detection of a yarn flaw, the receiving device (for example, in the form of the specified winding device) is stopped in such a manner that the section with a yarn flaw comes to a stop in the device for the removal of the yarn flaw, and the yarn flaw can be removed from the yarn. In such an event, through the yarn accumulator, it is possible that the spinning nozzle still produces rove that can now be stored in the yarn accumulator on an interim basis.
- the receiving device After the removal of the yarn flaw and the linkage of the ends of the yarn that arose upon the removal, the receiving device is once again put into operation. If the receiving speed is selected so high that more yarn is received than that produced by the spinning nozzle, the yarn accumulator gradually empties. After reaching a defined filling level, the receiving speed is once again adjusted to the production or delivery speed of the spinning nozzle, such that the filling level of the yarn accumulator is once again constant.
- the yarn accumulator is placed between the device for the detection of a yarn flaw and the device for the removal of the yarn flaw.
- the device for the detection of the yarn flaw may be arranged, for example, immediately after the outlet of the spinning nozzle, such that yarn flaws can be detected as early as possible.
- the receiving speed i.e., the quantity of rove that will be received by the receiving device
- the receiving speed may be gently throttled to zero, since the section of the rove featuring the yarn flaw must still pass a certain distance until it comes to a stop inside the device for the removal of the yarn flaw.
- a first conveying device for the rove is arranged between the outlet of the spinning nozzle and the yarn accumulator, and a second conveying device for the rove is arranged between the yarn accumulator and the device for the removal of the yarn flaw.
- the conveying speed of the second conveying device is adjustable independent of the conveying speed of the first conveying device. If a yarn flaw is to be removed in the device for the removal of the yarn flaw, the second conveying device may be stopped, while the first conveying device continues to draw out rove from the spinning nozzle and deliver it to the yarn accumulator.
- the two conveying devices may be designed, for example, as a pair of rollers, wherein the rove may pass the pair of rollers between each corresponding roller and, when the rollers are at a standstill, may be kept in place by them in a clamping manner.
- the yarn accumulator is placed between the first conveying device and the second conveying device.
- the first conveying device serves the purpose of drawing out the rove during and after the removal of the yarn flaw
- the second conveying device downstream of the yarn accumulator serves the purpose of, while it is at a standstill, fixing the rove locally and thereby holding the yarn flaw in the device for the removal of the yarn flaw.
- the device for the removal of the yarn flaw preferably has a cutting or separating unit, with the assistance of which the rove is able to be severed before and after the yarn flaw.
- An additional device is also integrated, with the assistance of which the ends of the yarn that arose after the cutting of the yarn flaw can be linked together again.
- a linking through a rubbing, needling or calendering process is conceivable.
- Air jets can also be used to achieve the link, with the assistance of a selected air flow.
- a pneumatic yarn accumulator which accumulator is designed to suck the rove produced during the removal of the yarn flaw into a recess.
- the negative pressure prevailing in the recess can thereby be controlled. It is also conceivable that there is a constant negative pressure, such that the (otherwise sagging) section of the rove drawn out from the spinning nozzle that is not received by the receiving device (for example, because a yarn flaw is removed) is always sucked from the yarn accumulator into the recess.
- the recess may have a screen on which the rove is placed, wherein the screen separates the recess from a subsequent vacuum line.
- the slubbing machine comprises a control unit that is designed to continue to operate the first conveying device during the removal of the yarn flaw, and to abort the conveying of the rove using the second conveying device.
- the production of the rove may take place continuously, even if the rove leaving the spinning nozzle has a yarn flaw, which must be removed from the rove.
- the second conveying device stops, the rove drawn out of the first conveying device is stored in the yarn accumulator on an interim basis. After the removal of the yarn flaw, the second conveying device and, with it, the receiving device, is once again put into operation using the control.
- the slubbing machine includes a control unit that is designed to stop the receiving of the rove carried out using the receiving device during the removal of the yarn flaw, and resumes after the removal of the yarn flaw.
- the rove may be freed of existing yarn flaws in the device for removing a yarn flaw, without causing an unwanted tear of the rove after the specified device.
- the rove passes an arrangement for the detection and removal of yarn flaws placed between the outlet of the spinning nozzle and the receiving device, wherein, using the arrangement, yarn flaws are detected prior to receiving the rove and removed from the rove.
- a slubbing machine with one or more of the preceding characteristics is thereby used.
- the rove is severed after the detection of a yarn flaw using a device for removing the yarn flaw, before and after the yarn flaw, and the section featuring the yarn flaw is led away.
- the remaining ends of the yarn i.e., the sections of the rove adjacent to the originally yarn flaw
- the link takes place, for example, using a known splicing procedure or using air currents, which can achieve the link or a convergence of the fibers of the ends of the yarn.
- the spinning nozzle may continuously produce rove, while the rove produced upon the linking of the ends of the yarn that arose upon the removal of a yarn flaw is stored on an interim basis until the yarn is received by the receiving device (for example, in the form of a winding device).
- the rove is drawn out of a spinning nozzle using a first conveying device and fed to the yarn accumulator, and drawn out of the yarn accumulator using a second conveying device and fed to the device for the removal of a yarn flaw.
- the first conveying device ensures that the rove continuously produced by the spinning nozzle is led away, while, when necessary, the second conveying device can be halted, in order to allow for the removal of a yarn flaw.
- the second conveying device may fix, in a clamping manner, the rove also during the removal of the yarn flaw, such that an unintentional movement is prevented.
- the first conveying device continues during the removal of the yarn flaw with the drawing out of the rove from the spinning nozzle, while the conveying of the rove using the second conveying device is interrupted.
- the yarn accumulator takes the rove produced by the spinning nozzle, and releases it again after the removal the yarn flaw or the subsequent linking of the ends of the yarn.
- the receiving of the rove using the receiving device is stopped during the removal of the yarn flaw and resumed after the removal of the yarn flaw. In such an event, a tearing of the rove that is stopped during removal in the area of the device for the removal of the yarn flaw can be prevented.
- the receiving device and, if present, the second conveying device are once again put into operation, wherein it is preferable that startup occurs synchronously.
- a winding device is used as a receiving device, wherein the length of the rove stored on an interim basis using the yarn accumulator is held within defined limits using a control unit, by increasing the spooling speed of the winding device upon exceeding an upper limit and decreasing the spooling speed upon falling below a lower limit. This prevents an overflow of the yarn accumulator or a tearing of the rove. If the second conveying device described above is present between the yarn accumulator and the receiving device, its conveying speed at the spool device is also adjusted, in order to prevent a tearing or excessive sagging of the rove in this area.
- the second conveying device may also be omitted if the rotational speed of the coil is controlled in such a manner that the filling level of the yarn accumulator (regardless of a cleaner cut that might have occurred) is always kept within the specified limits.
- the slubbing machine in accordance with the invention has only the described first conveying device, since the drawing out of the rove from the yarn accumulator is realized using the winding device.
- the winding device preferably has a drive roller for the coil, the rotational speed of which is adjustable, depending on the filling level of the yarn accumulator.
- a shaft bearing the coil may be directly drivable, wherein, in such an event, the rotational speed of the corresponding drive should be correspondingly adjustable.
- FIG. 1 a schematic side view of a slubbing machine
- FIG. 2 a schematic side view of a slubbing machine in accordance with the present invention
- FIG. 3 a schematic side view of a cut-out of a slubbing machine in accordance with the present invention
- FIG. 4 a schematic side view of a cut-out of an additional slubbing machine in accordance with the present invention.
- FIG. 5 a schematic side view of an additional slubbing machine in accordance with the present invention.
- FIG. 1 shows a schematic view of a cut-out of a slubbing machine in accordance with the invention.
- This preferably comprises a delivery device 20 (for example, in the form of a pair of rollers) along with a downstream drafting system 19 .
- the drafting system 19 is in turn fed with a fiber web 2 (for example, a doubled drafting band) drawn out of a can 21 using the delivery device 20 .
- the slubbing machine that is shown has a spinning nozzle 3 downstream of the drafting system 19 in the transport direction of the fiber web 2 and having an inlet opening 4 for the fiber web 2 .
- a vortex chamber that is not seen is arranged within the spinning nozzle 3 ; in this, the fiber web 2 is provided with a protective rotation (the mode of action of the spinning position will be described in more detail below).
- a pair of draw-off rollers 27 along with a winding device 6 downstream of the pair of draw-off rollers 27 may finally be arranged for the rove 1 leaving the spinning nozzle 3 through an outlet 5 .
- the winding device 6 may also (as well as in the cases of the remaining figures) comprise a coil 17 for the rove 1 and a drive roller 18 driving the coil 17 through direct contact with the coil bobbin or the rove 1 spooled thereupon.
- the slubbing machine in accordance with the invention need not necessarily have a drafting system 19 , as is shown or indicated in the figures. Moreover, the pair of draw-off rollers 27 is not absolutely necessary.
- the production of the rove 1 then takes place according to a special air spinning process, which was originally employed to produce a finished yarn.
- a special air spinning process which was originally employed to produce a finished yarn.
- conventional air spinning devices impart to the fiber web 2 a rotation that is so strong that the necessary drafting following the yarn production is no longer possible. This is also desirable in this case, since conventional air spinning machines are designed to produce a finished yarn that is usually characterized by a high degree of strength.
- the fiber web 2 within the spinning nozzle 3 of the slubbing machine in accordance with the invention receives only a protective rotation.
- the fiber web 2 is collected by an air flow generated by air jets assigned to the inner vortex chamber.
- One part of the fibers is pulled out from the fiber web 2 at least to some extent, and wound around the top of a spindle protruding into the vortex chamber.
- the fiber web 2 is drawn out from the vortex chamber through an inlet mouth of the spindle by means of a draw-off channel arranged within the spindle, the free ends of the fiber are drawn in the direction of the inlet mouth and thereby looped, as wrapped fibers, around the centrally running and preferably untwisted core fibers.
- a rove 1 having the desired protective rotation arises, which can be drawn out of the spinning nozzle 3 through the outlet 5 .
- a flaw spot is a section of the rove 1 , whose diameter, strength, density, weight per length or other physical dimension present for further processing lies outside of a predefined range of tolerance.
- Such flaw spots must eventually be removed in a separate step that is subsequent to the spooling onto the slubbing machine, such that the rove coil produced on the slubbing machine cannot be delivered directly to a subsequent spinning machine, knitting machine or other textile machine processing a rove 1 .
- the receiving device 28 may be formed, for example, by the winding device 6 that is shown. Alternatively, it is also possible to deliver the rove 1 directly to an additional textile machine, wherein, in this event, the receiving device 28 may be formed by a pair of rollers, which ensures the transport of the rove 1 (leaving the device 10 for removing the yarn flaw 8 ) to the subsequent textile machine.
- the following describes by example the case in which the rove 1 is spooled onto a coil 17 using the specified winding device 6 .
- FIG. 2 shows the basic structure of a possible embodiment of a slubbing machine in accordance with the invention.
- the slubbing machine initially has a first conveying device 12 (such as a pair of rollers), with the assistance of which the rove 1 produced in the spinning nozzle 3 is drawn out of the spinning nozzle 3 .
- the rove 1 is not only drawn out, but is ultimately spooled onto a coil 17 using a winding device 6 .
- the yarn is monitored for yarn flaws 8 using a device 9 for detecting a yarn flaw 8 .
- optical or ultrasonic sensors which monitor, for example, the diameter of the rove 1 and transmit the measured values through a wire 16 or wirelessly to a control unit 14 , are employed; these ultimately compare the values with corresponding target values or permissible ranges of tolerance.
- a yarn accumulator 11 (which is to be described in more detail), a second conveying device 13 (which in turn may be designed as a pair of rollers) and a device 10 for removing a yarn flaw 8 follow; together with the device 9 for detecting a yarn flaw 8 , these form the arrangement 7 in accordance with the invention for detecting and removing a yarn flaw 8 .
- the rove 1 is spooled onto a coil 17 using a winding device 6 , wherein yarn flaws 8 , as described below, are removed prior to spooling, such that the coil 17 bearing the rove 1 can be fed immediately to a textile machine processing the rove 1 .
- the conveying of the rove 1 in the direction of the receiving device 28 continues until the yarn flaw 8 is found in the area of the device 10 for removing the yarn flaw 8 (the time can be calculated from the conveying speed of the rove 1 and the covered distance). Subsequently, the receiving device 28 (in the example shown, the winding device 6 ) and the second conveying device 12 are stopped, such that the section of the rove 1 having the yarn flaw 8 is fixed within the device 10 for removing the yarn flaw 8 .
- the rove 1 is then severed within the device 10 for removing the yarn flaw 8 by a separator or a cutter before and after the yarn flaw 8 .
- the removed section of the rove 1 is finally disposed of, for example, sucked away.
- the original sections of the rove 1 adjacent to the yarn flaw 8 and then forming two ends of the yarn are linked to each other.
- the receiving device 28 against the transport direction are driven, in order to convey a small amount of rove 1 into the device 10 for removing the yarn flaw 8 .
- This can ensure that, despite the removal of the yarn flaw 8 , there is sufficient rove 1 for linking the ends of the yarn.
- the link may ultimately take place through splicing, needling, rubbing, calendering, through the use of air currents or through other known linking methods.
- a yarn accumulator 11 is arranged between the first conveying device 12 (with the assistance of which the yarn is drawn out of the spinning nozzle 3 ) and the second conveying device 13 .
- This may be designed, for example, as a feeder 23 or a pneumatic yarn accumulator 11 .
- a drivable coil bobbin is provided, the circumferential speed of which during the production of rove approximately corresponds to the delivery speed of the spinning nozzle 3 .
- the drawn out rove 1 is wrapped on the coil bobbin several times and ultimately drawn out once again through one of the front sides and under the interposition of a guide 22 .
- the receiving speed of the receiving device 28 corresponds to the draw-off speed of the first conveying device 12 , the length of the rove 1 wound on the coil bobbin remains constant.
- the yarn accumulator 11 fills up, i.e. the rove 1 drawn out of the spinning nozzle 3 is wound on the coil bobbin through its rotation, without the rove 1 being drawn out on its front side.
- the second conveying device 13 and the receiving device 28 are once again put into operation.
- the conveying speeds of the specified units can be increased in respect of the draw-off speed of the first conveying device 12 , such that the yarn accumulator 11 is once again emptied, to a defined minimum value.
- the first and second conveying devices 12 , 13 driven by means of the drive 15 along with the receiving device 28 i.e., in the example shown, the drive roller 18 of the coil 17
- the first and second conveying devices 12 , 13 driven by means of the drive 15 along with the receiving device 28 i.e., in the example shown, the drive roller 18 of the coil 17
- the receiving device 28 i.e., in the example shown, the drive roller 18 of the coil 17
- the quantity of rove 1 that leaves the spinning nozzle 3 is received by the receiving device 28 .
- the filling level of the yarn accumulator 11 remains constant until the removal of the next yarn flaw 8 .
- a pneumatic yarn accumulator in 11 with a recess 29 may also be used ( FIG. 4 ).
- This has, for example, a vacuum chamber 24 connected to a vacuum line 26 , in which the rove 1 in the form of a loop may be sucked in.
- a screen 25 may be present within the vacuum chamber 24 , such that rove 1 with a length that exceeds the length of the vacuum chamber 24 can be stored on an interim basis.
- the pressure in the vacuum chamber 24 is finally adjustable in a manner analogous to the rotation speed of the coil bobbin of the feeder 23 described above.
- the negative pressure increases, and the yarn accumulator 11 is thus filled, if the removal of a yarn flaw 8 is pending, and is once again reduced if the removal of the yarn flaw 8 has taken place, such that the yarn accumulator 11 may once again be emptied up to a minimum filling level.
- FIG. 5 shows an additional slubbing machine in accordance with the invention.
- the second conveying device 13 was omitted. Rather, the drawing out of the yarn accumulator 11 can be realized only through the drive of the winding device 6 , which in turn can take place using the drive roller 18 that is shown. For example, it would thereby be possible to vary the rotational speed of the coil 17 , and thus the spooling speed of the rove 1 , by changing its drive speed (or the rotational speed of the drive roller 18 ).
- the variation could take place in such a manner, for example, that the rotational speed is selected so high that the draw-off speed of the rove 1 (i.e., the length of the rove 1 spooled per unit of time) is higher than the delivery speed (i.e., the length of the rove 1 produced per unit of time) of the spinning nozzle 3 .
- the yarn accumulator 11 would be gradually emptied at this stage.
- the rotational speed of the coil 17 would be reduced to the extent that the draw-off speed is less than the delivery speed of the spinning nozzle 3 . As a result, the filling up of the yarn accumulator 11 would once again occur. If the filling level exceeds a maximum value, the rotational speed of the coil 17 would be increased again to its initial value, such that the emptying of the yarn accumulator 11 would once again occur. Thus, through the corresponding governing of the rotational speed of the coil 17 (or the drive unit), the filling level (even during a cleaner cut, for which the coil 17 would be at a standstill) could always be kept between the specified limits.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Quality & Reliability (AREA)
- Spinning Or Twisting Of Yarns (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012102695A DE102012102695A1 (de) | 2012-03-29 | 2012-03-29 | Vorspinnmaschine mit einer Anordnung zur Detektion und Entfernung von Garnfehlern |
DE102012102695.5 | 2012-03-29 | ||
PCT/EP2013/055335 WO2013143874A1 (de) | 2012-03-29 | 2013-03-15 | Vorspinnmaschine mit einer anordnung zur detektion und entfernung von garnfehlern |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150082766A1 true US20150082766A1 (en) | 2015-03-26 |
Family
ID=48013940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/389,009 Abandoned US20150082766A1 (en) | 2012-03-29 | 2013-03-15 | Slubbing Machine with an Arrangement for Detecting and Removing Yarn Flaws |
Country Status (7)
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170362746A1 (en) * | 2016-06-15 | 2017-12-21 | Rieter Ingolstadt Gmbh | Method for Optimizing the Production of a Rotor Spinning Machine |
US10329693B2 (en) | 2014-05-26 | 2019-06-25 | Maschinenfabrik Rieter Ag | Spinning preparation machine |
US10378126B2 (en) | 2014-05-26 | 2019-08-13 | Maschinenfabrik Rieter Ag | Spinning preparation machine |
US10563326B2 (en) | 2014-05-08 | 2020-02-18 | Maschinenfabrik Rieter Ag | Textile machine for producing roving and method for starting the roving production on a corresponding textile machine |
US10683188B2 (en) | 2014-05-26 | 2020-06-16 | Maschinenfabrik Rieter Ag | Method for operating a textile machine, and textile machine for producing roving |
CN112011840A (zh) * | 2020-09-09 | 2020-12-01 | 高阳县高东电子科技有限公司 | 纺丝瑕疵去除装置 |
US20210348306A1 (en) * | 2020-04-27 | 2021-11-11 | Saurer Spinning Solutions Gmbh & Co. Kg | Textile machine and service cart for textile machines |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH709749A1 (de) * | 2014-06-12 | 2015-12-15 | Rieter Ag Maschf | Luftspinnmaschine sowie Verfahren zum Betrieb einer solchen. |
JP2016016957A (ja) * | 2014-07-10 | 2016-02-01 | 村田機械株式会社 | 糸巻取機及び糸巻取方法 |
DE102015119143A1 (de) * | 2015-11-03 | 2017-05-04 | TRüTZSCHLER GMBH & CO. KG | Faserbandtransportvorrichtung und damit bildbare Anordnung |
CH712663A1 (de) * | 2016-07-14 | 2018-01-15 | Rieter Ag Maschf | Verfahren zum Verarbeiten eines strangförmigen Faserverbands sowie Vorspinnmaschine. |
DE102017107424A1 (de) * | 2017-04-06 | 2018-10-11 | Maschinenfabrik Rieter Ag | Vorrichtung und Verfahren zum Ansaugen, Zwischenspeichern und Abführen eines Fadens sowie Textilmaschine |
DE102018112801A1 (de) * | 2018-05-29 | 2019-12-05 | Maschinenfabrik Rieter Ag | Verfahren zum Ermitteln von Eigenschaften eines Fasermaterials an einer Arbeitsstelle einer Textilmaschine und eine Textilmaschine |
DE102019103193A1 (de) * | 2019-02-08 | 2020-08-13 | Saurer Spinning Solutions Gmbh & Co. Kg | Fadenspeicherrohr für eine Arbeitsstelle einer Textilmaschine sowie Arbeitsstelle einer Textilmaschine |
DE102019116671A1 (de) * | 2019-06-19 | 2020-12-24 | Maschinenfabrik Rieter Ag | Spinnmaschine sowie Verfahren zum Betreiben einer Spinnstelle einer Spinnmaschine |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2939644C2 (de) * | 1979-09-29 | 1982-10-14 | Schubert & Salzer Maschinenfabrik Ag, 8070 Ingolstadt | Verfahren und Vorrichtung zur Beseitigung einer Unregelmäßigkeit am laufenden Faden an einer Offenend-Spinnstelle während des Spinnens |
JPS6081323A (ja) * | 1983-10-08 | 1985-05-09 | Toyoda Autom Loom Works Ltd | 結束紡績装置における糸端処理装置 |
JPS60167858A (ja) * | 1984-02-09 | 1985-08-31 | Toyoda Autom Loom Works Ltd | パツケ−ジ糸端の端面落ち防止方法 |
BG41937A1 (en) * | 1985-07-16 | 1987-09-15 | Nikhtjanov | Device for detecting defects in textile threads |
JPS61146825A (ja) * | 1985-11-01 | 1986-07-04 | Toray Ind Inc | 高速精紡機による紡績糸の製造方法 |
DE102005022187A1 (de) * | 2005-05-13 | 2006-11-16 | Saurer Gmbh & Co. Kg | Anspinnverfahren an einer Luftspinnmaschine sowie Spinnvorrichtung und Luftspinnmaschine |
JP2007211363A (ja) * | 2006-02-08 | 2007-08-23 | Murata Mach Ltd | 糸欠点のクリアリング判定方法と糸処理装置 |
JP2007262645A (ja) * | 2006-02-28 | 2007-10-11 | Murata Mach Ltd | 紡績装置および紡績方法 |
TWI471469B (zh) * | 2007-10-02 | 2015-02-01 | Rotorcraft Ag | 用於製造針織布的方法和裝置 |
DE102007052190A1 (de) * | 2007-10-25 | 2009-04-30 | Wilhelm Stahlecker Gmbh | Qualitätsverbesserung eines ein Streckwerk verlassenden Faserverbandes |
JP5007826B2 (ja) * | 2008-03-31 | 2012-08-22 | 村田機械株式会社 | 糸巻取装置及びこの糸巻取装置を備える自動ワインダ |
JP5526885B2 (ja) * | 2009-10-07 | 2014-06-18 | 村田機械株式会社 | 紡績ユニット |
-
2012
- 2012-03-29 DE DE102012102695A patent/DE102012102695A1/de not_active Withdrawn
-
2013
- 2013-03-15 CN CN201380016734.2A patent/CN104204318A/zh active Pending
- 2013-03-15 US US14/389,009 patent/US20150082766A1/en not_active Abandoned
- 2013-03-15 EP EP13712715.5A patent/EP2831319A1/de not_active Withdrawn
- 2013-03-15 WO PCT/EP2013/055335 patent/WO2013143874A1/de active Application Filing
- 2013-03-15 JP JP2015502194A patent/JP2015513009A/ja active Pending
- 2013-03-15 IN IN8655DEN2014 patent/IN2014DN08655A/en unknown
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10563326B2 (en) | 2014-05-08 | 2020-02-18 | Maschinenfabrik Rieter Ag | Textile machine for producing roving and method for starting the roving production on a corresponding textile machine |
US10329693B2 (en) | 2014-05-26 | 2019-06-25 | Maschinenfabrik Rieter Ag | Spinning preparation machine |
US10378126B2 (en) | 2014-05-26 | 2019-08-13 | Maschinenfabrik Rieter Ag | Spinning preparation machine |
US10683188B2 (en) | 2014-05-26 | 2020-06-16 | Maschinenfabrik Rieter Ag | Method for operating a textile machine, and textile machine for producing roving |
US20170362746A1 (en) * | 2016-06-15 | 2017-12-21 | Rieter Ingolstadt Gmbh | Method for Optimizing the Production of a Rotor Spinning Machine |
US10519574B2 (en) * | 2016-06-15 | 2019-12-31 | Rieter Ingolstadt Gmbh | Method for optimizing the production of a rotor spinning Machine |
US11280029B2 (en) | 2016-06-15 | 2022-03-22 | Rieter Ingolstadt Gmbh | Method for optimizing the production of a rotor spinning machine |
US20210348306A1 (en) * | 2020-04-27 | 2021-11-11 | Saurer Spinning Solutions Gmbh & Co. Kg | Textile machine and service cart for textile machines |
CN112011840A (zh) * | 2020-09-09 | 2020-12-01 | 高阳县高东电子科技有限公司 | 纺丝瑕疵去除装置 |
Also Published As
Publication number | Publication date |
---|---|
IN2014DN08655A (enrdf_load_stackoverflow) | 2015-05-22 |
JP2015513009A (ja) | 2015-04-30 |
EP2831319A1 (de) | 2015-02-04 |
DE102012102695A1 (de) | 2013-10-02 |
WO2013143874A1 (de) | 2013-10-03 |
CN104204318A (zh) | 2014-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150082766A1 (en) | Slubbing Machine with an Arrangement for Detecting and Removing Yarn Flaws | |
US9353463B2 (en) | Spinning point of a spinning machine and method for the operation of the same | |
CN103014960B (zh) | 纺纱机和用于中断纺纱机的纱线制造的方法 | |
EP2573017B1 (en) | Yarn winding unit, yarn winding apparatus and spinning machine | |
EP1889956B1 (en) | Method and device for detecting the presence of a core fiber in a core yarn during core yarn spinning | |
US10683188B2 (en) | Method for operating a textile machine, and textile machine for producing roving | |
US9670601B2 (en) | Air jet spinning machine and method for operating the same | |
EP2361867A2 (en) | Yarn winding machine | |
CN103014946B (zh) | 纺纱机和用于中断纺纱机上的纱线制造的方法 | |
CN101994174B (zh) | 纺纱机械 | |
EP3072840B1 (en) | Yarn winding machine and yarn winding method | |
EP2966200B1 (en) | Spinning machine and spinning method | |
EP2365115B1 (en) | Yarn winding machine with yarn slack eliminating roller | |
US10472740B2 (en) | Textile machine and method for operating same | |
EP2977493B1 (en) | Spinning machine and spinning method | |
CN103569780A (zh) | 驱动状态检测装置、卷绕单元、卷绕机、纺纱单元及纺纱机 | |
CN103898641B (zh) | 纺纱机 | |
JP5889064B2 (ja) | 精紡機に設けられた集束装置を備えたドラフト機構 | |
EP1726695B1 (en) | Core yarn production method and apparatus | |
EP2985371B1 (en) | Spinning machine | |
US10533267B2 (en) | Textile machine for the production of roving and method for operating the same | |
JP2019214476A (ja) | リング紡績コップの巻成状態に影響を及ぼすための方法もしくは装置 | |
JP7561778B2 (ja) | 紡糸機及び紡糸機の紡糸ステーションを操作する方法 | |
EP3505661A1 (en) | Spinning machine and spinning method | |
EP3178974B1 (en) | Method for preparing a workstation for the resumption of the spinning process on an air-jet spinning machine and an air-jet spinning machine for performing the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MASCHINENFABRIK RIETER AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STAHLECKER, GERD;HARDI, RUDOLF;SIGNING DATES FROM 20140918 TO 20140926;REEL/FRAME:035082/0687 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |