US20140357816A1 - Propylene random copolymer - Google Patents

Propylene random copolymer Download PDF

Info

Publication number
US20140357816A1
US20140357816A1 US14/368,645 US201214368645A US2014357816A1 US 20140357816 A1 US20140357816 A1 US 20140357816A1 US 201214368645 A US201214368645 A US 201214368645A US 2014357816 A1 US2014357816 A1 US 2014357816A1
Authority
US
United States
Prior art keywords
group
compound
branched
alkyl
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/368,645
Other languages
English (en)
Inventor
Ville Virkkunen
Torvald Vestberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Borealis AG
Original Assignee
Borealis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47471822&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20140357816(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Borealis AG filed Critical Borealis AG
Assigned to BOREALIS AG reassignment BOREALIS AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VESTBERG, TORVALD, VIRKKUNEN, Ville
Publication of US20140357816A1 publication Critical patent/US20140357816A1/en
Assigned to BOREALIS AG reassignment BOREALIS AG CHANGE OF ADDRESS Assignors: BOREALIS AG
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/50Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkaline earth metals, zinc, cadmium, mercury, copper or silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/06Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
    • C08F4/16Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of silicon, germanium, tin, lead, titanium, zirconium or hafnium

Definitions

  • the present invention relates to specific propylene random copolymers prepared by copolymerisation of propylene with a comonomer, the comonomer being ethylene or an alpha-olefin comprising at least four carbon atoms, in particular ethylene, the propylene random copolymers being free of from catalyst originating phthalates and showing low randomness.
  • Propylene homopolymers have high resistance to heat and chemicals as well as beneficial mechanical properties. However, other properties of propylene homopolymers such as impact strength, in particular at low temperature, flexibility, clarity or haze need to be improved for specific applications.
  • Propylene random copolymers in particular with the comonomer being ethylene, have found widespread applications for example in the production of polymer films, of articles produced by blow moulding or injection moulding, of fibres and of pipes.
  • the randomness which has important effects on the final properties of the random copolymer, is defined as follows:
  • Randomness for random propylene ethylene copolymers
  • the used comonomers preferably ethylene are inserted randomly between the propylene molecules in the polymer chain and their incorporation level can be up to 10 wt %.
  • the comonomer incorporation results in defects in the regularity of chain configuration causing changes in physical properties.
  • Such polymer chains are more flexible so their flexural modulus and thus stiffness is reduced.
  • a further aspect of the present invention is to avoid the presence of substances which are considered as potential harmful compounds regarding health as well as environmental aspects.
  • One class of substances which have been considered as potential harmful compounds is phthalates, which have been commonly used as internal electron donors in Ziegler-Natta type catalysts. Although the amount of these phthalate compounds, used as internal donors in catalysts, in the final polymer is very small, it is still desirable to find alternative propylene random copolymers containing no catalyst originating phthalates and showing the desired polymer properties, namely low randomness.
  • propylene random copolymers being free of from catalyst originating phthalates and having lower randomness compared to known Ziegler-Natta catalysts using phthalate compounds as internal donor.
  • special solid catalyst components prepared in different ways (e.g. precipitation or emulsion/solidification method) but with a common mechanism and without the use of phthalates as internal electron donor.
  • the present invention provides new propylene random copolymers as defined in claim 1 .
  • the present invention provides a process for preparing such propylene random copolymers as defined in claim 1 .
  • the present invention provides a process for preparing such propylene random copolymers by copolymerising propylene with a comonomer selected from ethylene, C 4 -C 20 -alpha olefin, and any combination thereof using a catalyst system comprising a co-catalyst, preferably an alkyl aluminum co-catalyst and optionally an external electron donor and an olefin polymerisation catalyst component in the form of solid particles being produced by
  • the propylene random copolymers according to the invention comprise units derived from propylene and at least one comonomer selected from ethylene and C 4 -C 20 alpha-olefins, preferably at least ethylene or a C 4 -C 10 alpha-olefin.
  • random propylene copolymers comprise units derived from propylene and at least one comonomer selected from the group consisting of ethylene, C 4 alpha-olefin, C 5 alpha-olefin, C 6 alpha-olefin, C 7 alpha-olefin, C 8 alpha-olefin, C 9 alpha-olefin and C 10 alpha-olefin.
  • the random propylene copolymers comprise units derived from propylene and at least one comonomer selected from the group consisting of ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene and 1-decene, wherein ethylene, 1-butene and 1-hexene are preferred.
  • random propylene copolymers consist of units derived from propylene and ethylene.
  • the amount of units derived from C 2 -C 20 alpha-olefins other than propylene in the random propylene copolymers (R—PP) is in the range of 1.5 to at most 5.0 wt %, preferably 2.0 to 4.9 wt %, more preferably 2.5 to 4.8 wt %, still more preferably 3.0 to 4.7 wt %.
  • One requirement in the present invention is that units derived from C 2 -C 20 alpha-olefins other than propylene within the propylene copolymer s(R—PP) are randomly distributed.
  • the randomness indicates the amount of isolated comonomer units, i.e. those which have no other comonomer units in the neighbour, compared to the total amount of comonomers in the polymer chain.
  • the randomness of the random propylene copolymers (R—PP) is in the range 55% to at most 95%, preferably 60% to 90%, more preferably in the range of 65% to 85% and still more preferably in the range of 70% to 80%.
  • the randomness of the phthalate free random propylene copolymers is—at a given comonomer content—at least 3% lower than the randomness of random propylene copolymers prepared by comparable Ziegler-Natta catalysts comprising a phthalate compound as internal donor.
  • xylene soluble (XS) content of the random propylene copolymers (R—PP) is rather low.
  • random propylene copolymers (R—PP) have a xylene cold soluble fraction (XCS) measured according to ISO 6427 (23° C.) in the range of 2.0 to ⁇ 12.0 wt %, preferably in the range of 3.0 to ⁇ 11.5 wt.-% and more preferably in the range of 4.0 to ⁇ 11.0 wt %.
  • XCS xylene cold soluble fraction
  • the random propylene copolymers are further characterized in that they are free of any phthalate which originates from the catalyst used during preparation of the random propylene copolymers.
  • the random propylene copolymers of the present invention are characterized through an excellent balance of comonomer content, randomness and xylene soluble content, which makes them suitable for use in many applications where stiffer copolymers are needed, like for example pipes.
  • the random propylene copolymer (R—PP) can be unimodal or multimodal, like bimodal in view of the molecular weight distribution and/or the comonomer content distribution.
  • the random propylene copolymer (R—PP) When the random propylene copolymer (R—PP) is unimodal with respect to the molecular weight distribution and/or comonomer content, it may be prepared in a single stage process e.g. as slurry or gas phase process in a slurry or gas phase reactor. Preferably, the unimodal random propylene copolymer (R—PP) is polymerised as a slurry polymerisation.
  • the unimodal the random propylene copolymer (R—PP) may be produced in a multistage process using at each stage process conditions which result in similar polymer properties.
  • multimodal refers to the modality of the polymer, i.e.
  • the polymer components of the random propylene copolymers can be produced in a sequential step process, using reactors in serial configuration and operating at different reaction conditions.
  • each fraction prepared in a specific reactor will have its own molecular weight distribution and/or comonomer content distribution.
  • the random propylene copolymer (R—PP) may be multimodal, like bimodal, in view of the comonomer content and/or molecular weight. It is in particular appreciated that the random propylene copolymers (R—PP) are multimodal, like bimodal, in view of the comonomer content.
  • the random propylene copolymers (R—PP) are of multimodal, like bimodal, character, in particular multimodal, like bimodal, in view of the comonomer content
  • the individual fractions are present in amounts influencing the properties of the material. Accordingly it is appreciated that each of these fractions is at least present in the amount of 10 wt % based on the random propylene copolymers (R—PP). Accordingly in case of a bimodal system, in particular in view of the comonomer content, the split of the two fractions is preferably 40:60 to 60:40, like roughly 50:50.
  • Polymerisation processes which are suitable for producing the random propylene copolymers of the present invention, are known in the state of the art and comprise at least one polymerisation stage, where polymerisation is typically carried out in solution, slurry, bulk or gas phase.
  • the polymerisation process comprises additional polymerisation stages or reactors.
  • the process contains at least one bulk reactor zone and at least one gas phase reactor zone, each zone comprising at least one reactor and all reactors being arranged in cascade.
  • the polymerisation process for polymerising olefins, in particular propylene optionally with comonomers, like ethylene or other alpha-olefins comprises at least one bulk reactor and at least one gas phase reactor arranged in that order.
  • the process comprises one bulk reactor and at least two, e.g. two or three gas phase reactors.
  • the process may further comprise pre- and post reactors.
  • Pre-reactors comprise typically prepolymerisation reactors.
  • higher polymerisation temperature 70° C. or higher, preferably 80° C. or higher, even 85° C. or higher
  • the random propylene copolymers of the present invention are prepared by polymerising propylene and a comonomer, as defined above in the presence of a catalyst system.
  • the catalyst system being suitable for producing the random propylene copolymers of the present invention comprises a cocatalyst, optionally an external donor and a special olefin polymerisation catalyst component in the form of solid particles.
  • the special olefin polymerisation catalyst component in the form of solid particles is prepared by
  • the catalyst preparation is based on a liquid/liquid two-phase system (emulsion/solidification method) or on a precipitation method where no separate external carrier materials such as silica or MgCl 2 are needed in order to get solid catalyst particles.
  • This process for preparing solid catalyst particles is in particular characterized in that the formation of the catalyst component comprises use of at least one alkoxy compound (Ax) being the reaction product of at least one compound of Group 2 metal and at least a monohydric alcohol (A) and further characterized that non-phthalic compounds as internal electron donor are used in the catalyst preparation as such or formed in situ.
  • Ax alkoxy compound
  • A monohydric alcohol
  • the alkoxy compound (Ax) is a reaction product of at least one compound of Group 2 metal and a monohydric alcohol (A) or a reaction product of at least one compound of Group 2 metal and a mixture of monohydric alcohol (A) with a further alcohol (B) comprising in addition to the hydroxyl moiety at least one further oxygen bearing group being different to a hydroxyl moiety.
  • At least one alkoxy compound (Ax) being a reaction product of at least one compound of Group 2 metal and a monohydric alcohol (A) it is possible to use at least one additional alkoxy compound (Bx) being a reaction product of at least one compound of Group 2 metal and an alcohol comprising in addition to the hydroxyl moiety at least one further oxygen bearing group being different to a hydroxyl moiety, as defined below (alcohol B).
  • the alkoxy compound is alkoxy compound (Ax) being a reaction product of at least one compound of Group 2 metal, as described further below, and said alcohol (A) or said mixture of alcohol (A) and (B).
  • the alkoxy compounds (Ax and Bx) can be prepared in situ in the first step of the catalyst preparation process by reacting said compounds of Group 2 metal with the alcohol or alcohol mixture as described above, or said alkoxy compounds can be separately prepared reaction products, or they can be even commercially available as ready compounds and used as such in the catalyst preparation process of the invention.
  • a donor or a donor precursor can be added into the reaction mixture, whereby a Group 2 metal complex (Complex Ac or Bc) is formed, which is defined in this application to be a complex of at least the Group 2 metal compound, the alcohol or alcohol mixture and a donor.
  • a Group 2 metal complex (Complex Ac or Bc) is formed, which is defined in this application to be a complex of at least the Group 2 metal compound, the alcohol or alcohol mixture and a donor.
  • alkoxy compounds (Ax) and/or (Bx) are formed without using any donor(s) or donor precursor(s), donor(s) as such is added separately to the reaction product solution or during preparation of the catalyst component.
  • Group 2 metal is selected from the group comprising, preferably consisting of Group 2 metal dialkyls, alkyl Group 2 metal alkoxides, alkyl Group 2 metal halides and Group 2 metal dihalides. It can further be selected from the group consisting of dialkyloxy Group 2 metal, diaryloxy Group 2 metal, alkyloxy Group 2 metal halides, aryloxy Group 2 metal halides, alkyl Group 2 metal alkoxides, aryl Group 2 metal alkoxides and alkyl Group 2 metal aryloxides.
  • Group 2 metal is magnesium.
  • Monohydric alcohols (A) are those of formula ROH in which R is a linear or branched C 1 -C 20 alkyl.
  • Typical C 1 -C 5 monohydric alcohols are methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec.butanol, tert.butanol, n-amyl alcohol, iso-amyl alcohol, sec. amyl alcohol, tert. amyl alcohol, diethyl carbinol, sec. isoamyl alcohol, tert. butyl carbinol.
  • Typical C 6 -C 10 monohydric alcohols are hexanol, 2-ethyl-1-butanol, 4-methyl-2-pentanol, 1-heptanol, 2-heptanol, 4-heptanol, 2,4-dimethyl-3-pentanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, 1-nonanol, 5-nonanol, diisobutyl carbinol, 1-decanol and 2,7-dimethyl-2-octanol.
  • Typical >C 10 monohydric alcohols are n-1-undecanol, n-1-dodecanol, n-1-tridecanol, n-1-tetradecanol, n-1-pentadecanol, 1-hexadecanol, n-1-heptadecanol and n-1 octadecanol.
  • the monohydric alcohols may be unsaturated, as long as they do not act as catalyst poisons.
  • Preferable monohydric alcohols are those of formula ROH in which R is a C 2 -C 16 alkyl group, most preferably a C 4 -C 12 alkyl group, particularly 2-ethyl-1-hexanol.
  • Alcohol (B) is an alcohol which comprises in addition to the hydroxyl moiety at least one further oxygen bearing group being different to a hydroxyl moiety
  • Such further oxygen bearing group is an ether moiety.
  • the alcohol (B) as defined above may be aliphatic or aromatic although aliphatic compounds are preferred.
  • the aliphatic compounds may be linear, branched or cyclic or any combination thereof and in particular preferred alcohols are those comprising one ether moiety.
  • Illustrative examples of such preferred ether moiety containing alcohols (B) to be employed in accordance with the present invention are glycol monoethers, in particular C 2 to C 4 glycol monoethers, such as ethylene or propylene glycol monoethers wherein the ether moieties comprise from 2 to 18 carbon atoms, preferably from 2 to 12 carbon atoms.
  • Preferred monoethers are C 2 to C 4 glycol monoethers and derivatives thereof.
  • Illustrative and preferred examples are ethylene glycol butyl ether, ethylene glycol hexyl ether, ethylene glycol 2-ethylhexyl ether, propylene glycol n-butyl ether, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol n-hexyl ether, propylene glycol 2-ethylhexyl ether, with ethylene glycol hexyl ether, 1,3-propylene glycol ethyl ether and 1,3-propylene glycol n-butyl ether, being particularly preferred.
  • the most preferred alcohol (B) is 1,3-propylene glycol ethyl ether or 1,3-propylene glycol n-butyl ether.
  • the different complexes or alcohols are usually employed in a mole ratio of from 10:1 to 1:10, preferably this mole ratio is from 8:1 to 1:8, more preferably 6:1 to 1:6, even more preferably 4:1 to 1:4 and in embodiments also 2:1 to 1:2.
  • This ratio can be adjusted depending on the used donor e.g. donors with short chains require longer chain alcohols and vice versa.
  • the reaction for the preparation of the alkoxy compounds (Ax) and (Bx) may in embodiments, be carried out preferably in an aromatic or aromatic/aliphatic medium at a temperature of 20° to 80° C., and in case that the Group 2 metal is magnesium, the preparation of the alkoxy magnesium compound may be carried out at a temperature of 50° to 70° C.
  • the reaction medium used as solvent can be aromatic or a mixture of aromatic and aliphatic hydrocarbons, the latter one containing 5-20 carbon atoms, preferably 5-16 carbon atoms more preferably 5-12 carbon atoms and most preferably 5 to 9 carbon atoms.
  • the aromatic hydrocarbon is selected substituted and unsubstituted benzenes, preferably from alkylated benzenes, even more preferably from toluene and xylenes, and is most preferably toluene.
  • the molar ratio of said reaction medium to magnesium is preferably less than 10, for instance from 4 to 10, preferably from 5 to 9.
  • Alkoxy compounds (Ax) and (Bx) are preferably alkoxy magnesium compounds.
  • the alkoxy magnesium compound group is preferably selected from the group consisting of magnesium dialkoxides, complexes of a magnesium dihalide and an alcohol, and complexes of a magnesium dihalide and a magnesium dialkoxide, or mixtures therefrom. More preferably the alkoxy magnesium compound is a magnesium dialkoxide compound.
  • the alkoxy magnesium compound group is the a reaction product of an alcohol (A) respectively alcohol (B) or a mixture of alcohol (A) and alcohol (B) with a magnesium compound selected from the group consisting of dialkyl magnesiums, alkyl magnesium alkoxides, alkyl magnesium halides and magnesium dihalides. It can further be selected from the group consisting of dialkyloxy magnesium, diaryloxy magnesium, alkyloxy magnesium halides, aryloxy magnesium halides, alkyl magnesium alkoxides, aryl magnesium alkoxides and alkyl magnesium aryloxides.
  • the magnesium dialkoxide may be the reaction product of dialkyl magnesium of the formula R 2 Mg, wherein each one of the two Rs is a similar or different C 1 -C 20 alkyl, preferably a similar or different C 2 -C 10 alkyl, and a monohydric alcohol of formula ROH, with R being C 1 -C 20 alkyl, preferably C 2 -C 16 alkyl.
  • Typical magnesium alkyls are ethylbutyl magnesium, dibutyl magnesium, dipropyl magnesium, propylbutyl magnesium, dipentyl magnesium, butylpentylmagnesium, butyloctyl magnesium and dioctyl magnesium.
  • one R of the formula R 2 Mg is a butyl group and the other R is an ethyl or octyl group, i.e. the dialkyl magnesium compound is butyl octyl magnesium or ethyl butyl magnesium.
  • Typical alkyl-alkoxy magnesium compounds RMgOR when used, are ethyl magnesium butoxide, butyl magnesium pentoxide, octyl magnesium butoxide and octyl magnesium octoxide.
  • the phthalate free electron donor compound used in the preparation of the catalyst of the present invention is preferably selected from benzoates, alkylene glycol dibenzoates, maleates, 1-cyclohexene-1,2-dicarboxylic dialkylester, and 1,3-diethers or mixtures therefrom.
  • phthalate free internal donors are selected from:
  • R being a linear or branched C 1 -C 12 -alkyl group, preferably a linear or branched C 2 -C 10 -alkyl group, more preferably a linear or branched C 4 -C 9 -alkyl group and most preferably a branched C 6 -C 8 -alkyl group, like 2-ethylhexyl, and R′ being H or a linear or branched C 1 -C 12 -alkyl group, preferably a linear or branched C 2 -C 10 -alkyl group more preferably a linear or branched C 4 -C 8 -alkyl group, like tert.-butyl or n-hexyl, whereby the alkyl group can contain one or more heteroatoms selected from O, N or S, preferably O or N, more preferably O, in the alkyl chain, or can be substituted by one or more substituents selected from ⁇ O, halogen, like chlorine, flu
  • the C 6 -C 14 -aryl group is preferably a phenyl group
  • the optional substituents on the aryl group can be linear or branched C 1 -C 12 -alkyl, preferably linear or branched C 1 -C 10 -alkyl and more preferably linear or branched C 1 -C 8 -alkyl or halogen, like chlorine, fluorine or bromine, preferably chlorine or bromine and more preferably chlorine.
  • the number of substituents on the aryl group can be 0 to 4, preferably 0 to 2, more preferably 0 or 1.
  • R′ being not H can be in ortho-meta or para position, preferably in para or ortho-position.
  • More preferred compounds are 2-ethylhexyl benzoate, 2-ethylhexyl (4-n-hexylbenzoate), 2-ethylhexyl (4-tert.-butylbenzoate), 2-ethylhexyl ((2-(4-chlorobenzoyl)benzoate).
  • n 1 or 2
  • More preferred compounds are ethylene glycol dibenzoate, 1,2-propylene glycol dibenzoate and 1,3-propylene glycol dibenzoate.
  • R 1 and R 2 being the same or different and being a linear or branched C 1 -C 12 -alkyl group, preferably a linear or branched C 1 -C 8 -alkyl group, more preferably a linear or branched C 1 -C 4 -alkyl group and most preferably ethyl, whereby R 1 and R 2 are preferably the same and with R being H or a linear, branched or cyclic C 1 to C 12 -alkyl, preferably a branched or cyclic C 3 to C 8 -alkyl, like iso-butyl, cyclopentyl or cyclohexyl, whereby it is preferred that R is not H.
  • More preferred compounds are diethyl-2-isobutyl maleate, diethyl-2-cyclopentyl maleate and diethyl-2-cyclohexyl maleate.
  • R 1 and R 2 can be identical or different and can be a linear or branched C 5 -C 20 -alkyl, preferably a C 6 -C 16 -alkyl and more preferably linear or branched C 8 -C 12 -alkyl.
  • R 1 and R 2 are identical.
  • More preferred compound is 1-cyclohexene-1,2-(bis-(2-ethylhexyl)dicarboxylate.
  • R 1 and R 2 are the same or different and can be a linear or branched C 1 -C 12 -alkyl, or R 1 with R 5 and/or R 2 with R 6 can form a ring with 4 to 6 C-atoms
  • R 3 and R 4 of formula (V) are the same or different and can be H or a linear or branched C 1 -C 12 -alkyl or R 3 and R 4 can form together a ring with 5 to 10 C-atoms, which can be part of an aliphatic or aromatic polycyclic ring system with 9 to 20 C atoms
  • R 5 and R 6 in formula (V) are the same or different and can be H or a linear or branched C 1 -C 12 -alkyl or can form together an aliphatic ring with 5 to 8 C-atoms
  • R 51 , R 61 and R 7 in formula (VI) are the same or different and can be H or a linear or branched C 1 -C
  • R 1 and R 2 are preferably the same in formula (V) and (VI) and can be a linear or branched C 1 -C 10 -alkyl, more preferably C 1 -C 8 -alkyl, like methyl, ethyl, n-propyl, i-propyl, n-butyl or tert.-butyl or 2-ethylhexyl.
  • R 1 with R 5 and/or R 2 with R 6 can form together with the oxygen atom a ring with 4 to 6 C-atoms, preferably 4 to 5 C-atoms, like a tetrahydrofuran ring or a tetrahydropyrane ring.
  • R 3 is preferably a linear or branched C 1 -C 10 -alkyl, more preferably a C 1 -C 9 -alkyl, like methyl, ethyl, i-propyl, i-butyl or n-nonyl.
  • R 4 is preferably H or a linear or branched C 1 -C 10 -alkyl, more preferably a C 1 -C 6 -alkyl, like methyl, i-propyl, n-butyl, i-butyl, i-pentyl.
  • R 3 and R 4 can form together a ring, preferably an alicyclic ring with preferably 5 to 7 C-atoms, more preferably 5 to 6 C-atoms, like cyclopentan, 2- or 3-cyclopenten, cyclohexene, 2- or 3- or 4-cyclohexene.
  • this ring is part of an alicyclic or aromatic polycyclic ring system with 9 to 18 C-atoms, like decaline, hydroindane, fluorene or indane.
  • R 5 in formula (V) can be preferably H or a linear or branched C 2 -C 8 -alkyl, more preferably can be H or C 2 -C 6 -alkyl and most preferably H.
  • R 6 in formula (V) can be preferably H or a linear or branched C 2 -C 8 -alkyl, preferably H or a linear C 3 -C 6 -alkyl, like i-propyl or i-butyl.
  • R 5 and R 6 can form together an aliphatic ring with 5 to 8 C-atoms, like cyclopentan, cyclohexene or cycloheptane.
  • R 51 , R 61 and R 7 are the same or different and are preferably H or a linear or branched C 1 -C 10 -alkyl, more preferably H or a linear or branched C 1 -C 8 -alkyl like methyl, i-propyl, n-butyl, i-butyl, i-pentyl.
  • R 51 , R 61 and R 7 form together with C 1 to C 3 an aromatic ring or ring system with 6 to 14 C-atoms, preferably 10 to 14 C-atoms.
  • aromatic rings or ring systems are phenyl, naphthalene, anthracene or phenanthrene.
  • ring system is naphthalene.
  • More preferred compounds are 1,8-bis(2-ethylhexyloxy)naphthalene, 3,3-bis(ethoxymethyl)-2-methyldodecane and 3,3-bis(ethoxymethyl)-2,6-dimethylheptane.
  • the phthalate free internal donors are selected from 3,3-bis(ethoxymethyl)-2,6-dimethylheptane, diethyl-2-isobutyl maleate, diethyl-2-cyclopentyl maleate, diethyl-2-cyclohexyl maleate, 2-ethylhexyl (4-tert.-butylbenzoate), 2-ethylhexyl ((2-(4-chlorobenzoyl)benzoate) and 1-cyclohexene-1,2-(bis-(2-ethylhexyl)dicarboxylate or mixtures therefrom.
  • the compound of a transition metal is preferably a compound of a Group 4 metal.
  • the Group 4 metal is preferably titanium, and its compound to be reacted with the complex of a Group 2 is preferably a halide.
  • Equivalent to titanium tetrahalide is the combination of an alkoxy titanium halide and a halogenation agent therefore, which are able to form a titanium tetrahalide in situ.
  • the most preferred halide is the chloride.
  • a compound of a transition metal used in the process can also contain organic ligands typically used in the field known as a single site catalyst.
  • a compound of a transition metal can also be selected from Group 5 metals, Group 6 metals, Cu, Fe, Co, Ni and/or Pd compounds.
  • said olefin polymerisation catalyst components can be obtained in several ways all based on the same mechanism.
  • step (a1) it is possible to use an alkoxy compound (Ax) being a reaction product of at least one Group 2 metal compound and a monohydric alcohol (A), as defined above.
  • an alkoxy compound (Ax) being a reaction product of at least one Group 2 metal compound and a mixture of alcohol (A) with alcohol (B) comprising in addition to the hydroxyl moiety at least one further oxygen bearing group being different to a hydroxyl moiety, as defined above.
  • the third possibility is to use a mixture of an alkoxy compound (Ax) being a reaction product of at least one Group 2 metal compound and a monohydric alcohol (A) and an alkoxy compound (Bx) being a reaction product of at least one Group 2 metal compound and an alcohol (B) comprising in addition to the hydroxyl moiety at least one further oxygen bearing group being different to a hydroxyl moiety, as defined above.
  • the process of solids precipitation can be carried out by several methods:
  • the addition of solution (S1) to the at least one transition metal compound (CT) in step (b1) is done at a temperature of at least 50° C., preferably in the temperature range of 50 to 110° C., more preferably in the range of 70 to 100° C., most preferably in the range of 85 to 95° C., at which temperature the at least one transition metal compound (CT) is in a liquid form, resulting in the precipitation of said solid catalyst components.
  • the whole reaction mixture is kept at least at 50° C., more preferably is kept in the temperature range of 50 to 110° C., more preferably in the range of 70 to 100° C., most preferably in the range of 85 to 95° C., to secure full precipitation of the catalyst component in form of a solid particle.
  • surfactants include polymer surfactants, such as poly(alkyl methacrylate) and poly(alkyl acrylate), and the like.
  • a polyalkyl methacrylate is a polymer that may contain one or more methacrylate monomers, such as at least two different methacrylate monomers, at least three different methacrylate monomers, etc.
  • the acrylate and methacrylate polymers may contain monomers other than acrylate and methacrylate monomers, so long as the polymer surfactant contains at least about 40% by weight acrylate and methacrylate monomers.
  • surfactants examples include those under the trade marks VISCOPLEX® available from RohMax Additives, GmbH, especially those having product designations 1-254, 1-256 and those under the trade designations CARBOPOL® and PEMULEN® available from Noveon/Lubrizol.
  • the solution (S1) is mixed with at least one transition metal compound (CT) in liquid form at a temperature of about ⁇ 20° C. to about 30° C. and precipitating the solid catalyst components by subsequently slowly raising the temperature to at least 50° C., preferably in the temperature range of 50 to 110° C., more preferably in the range of 70 to 100° C., most preferably in the range of 85 to 95° C., whereby the rate of temperature increase is in the range from 0.1° C. to 30° C. per minute, preferably 0.5 to 10° C. per minute.
  • CT transition metal compound
  • a surfactant is added to the solution (S1) before step (b1). Suitable surfactants are described above.
  • the catalyst component as prepared in the previous paragraphs is a precipitated solid particle.
  • Precipitation means that during the catalyst component preparation a chemical reaction in a solution takes place leading to the desired catalyst component insoluble in said solution.
  • Suitable electron donors and their precursors as well as suitable transition metal compounds are also described above.
  • TiCl 4 is used as transition metal compound.
  • the electron donor is added to the alkoxy compound (Ax), or alkoxy compound (Bx) if present, or to the mixture of the alkoxy compounds (Ax) and (Bx), obtained by mixing alkoxy compound (Ax) being a reaction product of at least one Group 2 metal compound as described above with the monohydric alcohol (A) as described above and alkoxy compound (Bx) being a reaction product of at least one Group 2 metal compound as described above and the alcohol (B), as described above, whereby the reaction medium used as solvent for the Group 2 metal compound can be aromatic or a mixture of aromatic and aliphatic hydrocarbons, the latter one containing 5-20 carbon atoms, preferably 5-16 carbon atoms more preferably 5-12 carbon atoms and most preferably 5 to 9 carbon atoms.
  • the aromatic hydrocarbon is selected from substituted and unsubstituted benzenes, preferably from alkylated benzenes, even more preferably from toluene and xylenes, and is most preferably toluene.
  • the electron donor can also be introduced in form of a precursor as described above, which is then transformed in situ to the electron donor by reaction with a corresponding Mg-alkoxide.
  • the Mg-alkoxide is prepared as described above by reacting a magnesium compound with the corresponding alcohol (A) or alcohol (B).
  • Additional donors can be added, if so desired into the catalyst preparation in any of steps (a1) to (b1).
  • additional donors if used, are non-phthalic acid ester as well.
  • the reaction medium corresponds to the organic liquid reaction medium (OM1) of step (a1).
  • the organic liquid reaction medium (OM2) where TiCl 4 can be solved, can be the same as the organic liquid reaction medium (OM1) or can be different thereto, the latter being preferred.
  • the organic liquid reaction medium (OM2) is C 5 to C 10 hydrocarbon, more preferably of a C 6 to C 10 alkane, like heptane, octane or nonane, or any mixtures thereof.
  • the organic liquid reaction medium (OM1) is a C 6 to C 10 aromatic hydrocarbon, most preferably toluene
  • the organic liquid reaction medium (OM2) is a C 6 to C 10 alkane, most preferably heptane.
  • organic liquid reaction media (OM1) and (OM2) are selected in a way which supports the precipitation of the solid catalyst particle.
  • Suitable mixing techniques include the use of mechanical as well as the use of ultrasound for mixing, as known to the skilled person.
  • solid catalyst particle is washed at least once up to 6 times, preferably at least twice, most preferably at least three times with a hydrocarbon, which preferably is selected from aromatic and aliphatic hydrocarbons, preferably with toluene, heptane or pentane, more preferably toluene, particularly with hot (e.g. 80 to 100° C.) toluene, which might include a smaller or higher amount of TiCl 4 in it.
  • the amount of TiCl 4 can vary from a few vol % to more than 50-vol %, such as from 5-vol % to 50-vol %, preferably from 5 to 15-vol %. It is also possible that at least one wash is done with 100-vol % TiCl 4 .
  • One or several further washes after aromatic and/or TiCl 4 washes can be run with aliphatic hydrocarbons of 4 to 8 carbon atoms. Preferable these latter washings are performed with heptane and/or pentane. Washings can be done with hot (e.g. 90° C.) or cold (room temperature) hydrocarbons or combinations thereof. It is also possible that all washings will be done with the same solvent, e.g. toluene.
  • a reducing agent which decreases the amount of titanium present in said solidified particles of the olefin polymerisation catalyst component being present in the oxidation state +4, can be added.
  • Suitable reducing agents are aluminium alkyl compounds, aluminium alkyl alkoxy compounds as well as magnesium compounds as defined in the present specification.
  • Suitable aluminium compounds have a general formula AlR 3-n X n , wherein R stands for a straight chain or branched alkyl or alkoxy group having 1 to 20, preferably 1 to 10 and more preferably 1 to 6 carbon atoms, X independently represents a residue selected from the group of halogen, preferably chloride, and n stands for 0, 1 or 2. At least one of the R residues has to be an alkyl group.
  • the compound can be added as an optional compound to the catalyst component synthesis and can be added at any step (b1) to (c1), or during the washing step as described above, however, before step (d1).
  • the reducing compound is added during the washing step, more preferably during the first washing step with hot toluene.
  • aluminium alkyl and alkoxy compounds to be employed in accordance with the present invention are:
  • Suitable magnesium compounds are magnesium compounds as defined herein in connection with the complex of a Group 2 metal. The respective disclosure is incorporated herein by reference with respect to the magnesium compound to be added in accordance with the process of the present invention.
  • suitable magnesium compounds are dialkyl magnesium compounds or halogenated alkyl magnesium compounds of the general formula MgR 2-n X n , where each n is 0 or 1, and each R are same or different alkyl groups with 1 to 8 carbon atoms and X is halogen, preferably Cl.
  • One preferred magnesium compound is butyloctyl magnesium (commercially available under the trade name BOMAG), which is already preferably used in the preparation of the Mg complex.
  • the added amount of the optional Al compound depends on the desired degree of reduction of amount of titanium present in the solidified particles of the olefin polymerisation catalyst component being present in the oxidation state +4.
  • the preferred amounts of Al in the catalyst component depend to some extent on the Al compound, e.g. if an Al alkoxy compound is used, the preferred final Al amounts seem to be lower than if e.g. Al alkyl chloride compounds are used.
  • the final catalyst component particles have an Al content of 0.0 to 0.8 wt %, preferably 0.0 to 0.5 wt % or 0.0 to 0.4 wt %.
  • the magnesium compound to be added in accordance with the present invention is added in corresponding amounts.
  • a chlorinated aluminium alkyl compounds especially diethyl aluminium chloride; is added.
  • the preparation of the catalyst component in form of solid particles comprises the steps of
  • step (a2) it is possible to use an alkoxy compound (Ax) being a reaction product of at least one Group 2 metal compound and a monohydric alcohol (A), as defined above.
  • an alkoxy compound (Ax) being a reaction product of at least one Group 2 metal compound and a mixture of alcohol (A) with alcohol (B) comprising in addition to the hydroxyl moiety at least one further oxygen bearing group being different to a hydroxyl moiety, as defined above.
  • the third possibility is to use a mixture of an alkoxy compound (Ax) being a reaction product of at least one Group 2 metal compound and a monohydric alcohol (A) and an alkoxy compound (Bx) being a reaction product of at least one Group 2 metal compound and an alcohol (B) comprising in addition to the hydroxyl moiety at least one further oxygen bearing group being different to a hydroxyl moiety, as defined above.
  • Suitable electron donors and their precursors as well as suitable transition metal compounds are also described above.
  • the solution (S1) is typically a solution of at least one alkoxy compound (Ax) and optionally an alkoxy compound (Bx) in liquid hydrocarbon reaction medium, which can be provided in situ by reacting an alcohol (A) or a mixture of alcohol (A) and alcohol (B) with the Group 2 metal compound in a liquid hydrocarbon medium to form alkoxy compound (Ax), as described above, and optionally mixing alkoxy compound (Ax) with alkoxy compound (Bx), prepared by reacting an alcohol (B) with the Group 2 metal compound in a liquid hydrocarbon medium.
  • step (a2) The internal donor or precursor thereof as defined above is added preferably in step (a2) to said solution.
  • the solution of step (a2) is then typically added to the at least one compound of a transition metal, such as titanium tetrachloride.
  • This addition preferably is carried out at a low temperature, such as from ⁇ 10 to 40° C., preferably from ⁇ 5 to 30° C., such as about 0° C. to 25° C.
  • an organic reaction medium or solvent may be present, typically selected among aromatic and/or aliphatic hydrocarbons as described above.
  • Additional donors can be added, if so desired into the catalyst preparation in any of steps (a2) to (c2).
  • additional donors if used, are non-phthalic acid ester as well. It is also possible to use mixtures of the above described mixtures.
  • the process in accordance with the present invention yields as intermediate stage, as identified above an emulsion of a denser, transition metal compound/toluene-insoluble, oil dispersed phase typically having a transition metal metal/Group 2 mol ratio of 0.1 to 10 in an oil disperse phase having a transition metal/Group 2 mol ratio of 10 to 100.
  • Transition metal compound is preferably Group 4 metal compound, and is most preferably TiCl 4 .
  • Group 2 metal is preferably Mg.
  • This emulsion is then typically agitated, optionally in the presence of an emulsion stabilizer and/or a turbulence minimizing agent, in order to maintain the droplets of said dispersed phase, typically within an average size range of 2 to 500 ⁇ m.
  • the catalyst particles are obtained after solidifying said particles of the dispersed phase e.g. by heating.
  • the said disperse and dispersed phases are thus distinguishable from one another by the fact that the denser oil, if contacted with a solution of Group 4 metal compound preferably TiCl 4 in toluene, will not dissolve in it.
  • a suitable solution for establishing this criterion would be one having a toluene mol ratio of 0.1 to 0.3. They are also distinguishable by the fact that the great preponderance of the Mg provided (as complex) for the reaction with the Group 4 metal compound is present in the dispersed phase, as revealed by comparison of the respective Group 4 metal/Mg mol ratios.
  • the production of a two-phase reaction product is encouraged by carrying out the Mg complex/Group 4 metal compound reaction at low temperature, specifically above ⁇ 10° C. but below 50° C., preferably between above ⁇ 5° C. and below 40° C. Since the two phases will naturally tend to separate into a lower, denser phase and supernatant lighter phase, it is necessary to maintain the reaction product as an emulsion by agitation, preferably in the presence of an emulsion stabilizer.
  • the emulsion i.e. the two phase liquid-liquid system may be formed in all embodiments of the present invention by simple stirring and optionally adding (further) solvent(s) and additives, such as the turbulence minimizing agent (TMA) and/or the emulsifying agents described further below.
  • TMA turbulence minimizing agent
  • Emulsifying agents/emulsion stabilizers can be used additionally in a manner known in the art for facilitating the formation and/or stability of the emulsion.
  • surfactants e.g. a class based on acrylic or methacrylic polymers can be used.
  • said emulsion stabilizers are acrylic or methacrylic polymers, in particular those with medium sized ester side chains having more than 10, preferably more than 12 carbon atoms and preferably less than 30, and preferably 12 to 20 carbon atoms in the ester side chain.
  • unbranched C 12 to C 20 (meth)acrylates such as poly(hexadecyl)-methacrylate and poly(octadecyl)-methacrylate.
  • Suitable examples of commercially available surfactants are e.g. those sold under the name of Viscoplex®, like Viscoplex®, 1-124 and 1-126, as indicated earlier in this application.
  • TMA turbulence minimizing agent
  • Said TMA agent has to be inert and soluble in the reaction mixture under the reaction conditions, which means that polymers without polar groups are preferred, like polymers having linear or branched aliphatic carbon backbone chains.
  • Said TMA is in particular preferably selected from alpha-olefin polymers of alpha-olefin monomers with 6 to 20 carbon atoms, like polyoctene, polynonene, polydecene, polyundecene or polydodecene or mixtures thereof. Most preferable it is polydecene.
  • TMA can be added to the emulsion in an amount of e.g. Ito 1.000 ppm, preferably 5 to 100 ppm and more preferable 5 to 50 ppm, based on the total weight of the reaction mixture.
  • the ratio of the mol ratio Group 4 metal/Mg in the disperse phase oil to that in the denser oil is at least 10.
  • Solidification of the dispersed phase droplets by heating is suitably carried out at a temperature of 70 to 150° C., usually at 80 to 110° C., preferably at 90 to 110° C.
  • reaction mixture For isolating the solidified particles the reaction mixture is allowed to settle and the solidified particles are recovered from this reaction mixture for example by syphoning or by an in-stream filtering unit.
  • the solidified particulate product may be washed at least once up to 6 times, preferably at least twice, most preferably at least three times with a hydrocarbon, which preferably is selected from aromatic and aliphatic hydrocarbons, preferably with toluene, heptane or pentane, more preferably toluene, particularly with hot (e.g. 80 to 100° C.) toluene, which might include a smaller or higher amount of TiCl 4 in it.
  • the amount of TiCl 4 can vary from a few vol % to more than 50-vol %, such as from 5-vol % to 50-vol %, preferably from 5 to 15-vol %. It is also possible that at least one wash is done with 100-vol % TiCl 4 .
  • One or several further washes after aromatic and/or TiCl 4 washes can be run with aliphatic hydrocarbons of 4 to 8 carbon atoms. Preferable these latter washings are performed with heptane and/or pentane. Washings can be done with hot (e.g. 90° C.) or cold (room temperature) hydrocarbons or combinations thereof. It is also possible that all washings will be done with the same solvent, e.g. toluene.
  • the washing can be optimized to give a catalyst component with novel and desirable properties.
  • It can further be dried, as by evaporation or flushing with nitrogen or it can be slurred to an oily liquid with or without any drying step.
  • a reducing agent which decreases the amount of titanium present in said solidified particles of the olefin polymerisation catalyst component being present in the oxidation state +4, can be added.
  • Suitable reducing agents are aluminium alkyl compounds, aluminium alkyl alkoxy compounds as well as magnesium compounds as defined in the present specification.
  • Suitable aluminium compounds have a general formula AlR 3-n X n , wherein R stands for a straight chain or branched alkyl or alkoxy group having 1 to 20, preferably 1 to 10 and more preferably 1 to 6 carbon atoms, X independently represents a residue selected from the group of halogen, preferably chloride, and n stands for 0, 1 or 2. At least one of the R residues has to be an alkyl group.
  • the compound can be added as an optional compound to the catalyst component synthesis and brought into contact with the droplets of the dispersed phase of the agitated emulsion before recovering the solidified particles in step (e2).
  • the Al compound can be added at any step (b2) to (d2), or during the washing step as described above, however, before step (e2).
  • aluminium alkyl and alkoxy compounds to be employed in accordance with the present invention are:
  • Tri-(C 1 -C 6 )-alkyl aluminium compounds and chlorinated aluminium (C 1 -C 6 )-alkyl compounds preferably tri-ethyl aluminium, ethyl aluminium dichloride, diethyl aluminium chloride, especially diethyl aluminium chloride; Diethyl aluminium ethoxide, ethyl aluminium diethoxide, diethyl aluminium methoxide, diethyl aluminium propoxide, diethyl aluminium butoxide, dimethyl aluminium ethoxide, of which in particular diethyl aluminium ethoxide is preferred.
  • Suitable magnesium compounds are magnesium compounds as defined herein in connection with the complex of a Group 2 metal. The respective disclosure is incorporated herein by reference with respect to the magnesium compound to be added in accordance with the process of the present invention.
  • suitable magnesium compounds are dialkyl magnesium compounds or halogenated alkyl magnesium compounds of the general formula MgR 2 X n , where each n is 0 or 1, and each R are same or different alkyl groups with 1 to 8 carbon atoms and X is halogen, preferably Cl.
  • One preferred magnesium compound is butyloctyl magnesium (commercially available under the trade name BOMAG), which is already preferably used in the preparation of the Mg complex.
  • the added amount of the optional Al compound depends on the desired degree of reduction of amount of titanium present in the solidified particles of the olefin polymerisation catalyst component being present in the oxidation state +4.
  • the preferred amounts of Al in the catalyst component depend to some extent on the Al compound, e.g. if an Al alkoxy compound is used, the preferred final Al amounts seem to be lower than if e.g. Al alkyl chloride compounds are used.
  • the final catalyst component particles have an Al content of 0.0 to 0.8 wt %, preferably 0.0 to 0.5 wt % or 0.0 to 0.4 wt %.
  • the magnesium compound to be added in accordance with the present invention is added in corresponding amounts.
  • Al alkyl or Al alkyl alkoxy compound is added.
  • the aluminium alkyl or alkoxy compound and the magnesium compound can be used alone or in combination.
  • the optional Al or Mg compound or a mixture thereof is preferably added before step (e2), more preferably during the washing step, which comprises at least one, preferably two and more preferably three washing procedures with the same or preferably different hydrocarbons as washing medium.
  • aluminium alkyl or alkoxy compound and/or magnesium compound to be used in the catalyst component preparation of the invention can be added to any of the washing mediums, which are, as described above, preferably toluene, heptane and/or pentane.
  • the procatalyst preparation according to the inventive method can be carried out batch-wise, it is also preferable and possible to prepare the catalyst component semi-continuously or continuously.
  • the solution of the alkoxy compound of the group 2 metal and said electron donor which is prepared by reacting the alkoxy compound with said electron donor in an organic liquid reaction medium, is mixed with at least one compound of a transition metal, which might be solved in the same or different organic liquid reaction medium.
  • the so obtained solution is then agitated, possibly in the presence of an emulsion stabilizer, and then the so-agitated emulsion is fed into a temperature gradient reactor, in which the emulsion is subjected a temperature gradient, thus leading to solidifying the droplets of a dispersed phase of the emulsion.
  • the optional TMA is preferably contained in the solution of the complex or added to the solution before feeding the agitated solution to the temperature gradient reactor.
  • an inert solvent in which the droplets are not soluble, can additionally be fed into that gradient reactor in order to improve the droplet formation and thus leading to a uniform grain size of the particles of the catalyst component, which are formed in the temperature gradient reactor when passing through said line.
  • additional solvent might be the same as the organic liquid reaction medium, which is used for preparing the solution of the alkoxy compound of the group 2 metal as explained above in more detail.
  • the solidified particles of the olefin polymerisation catalyst component can subsequently be recovered by an in-stream filtering unit and then, optionally after some additional washing and drying steps in order to remove unreacted starting components, can be stored for further use.
  • the catalyst can be fed after washing steps into the olefin polymerisation reactor, so that a continuous preparation and feed to the reactor is guaranteed. It is also possible to mix the solidified and washed catalyst component with an oily fluidic liquid and store and use the catalyst component as catalyst component-oil slurry. In this way the drying steps can be avoided, which might be sometimes detrimental to the catalyst components morphology.
  • This oil-slurry method is described in general in EP-A-1489110 of the applicant, incorporated herein by reference.
  • the formation of the solidified particles could be carried out in the temperature gradient line in the kind of pipe reactor, which is sufficiently long and which is subjected said temperature gradient from the starting temperature in the lower range of 20 to 80° C. up to a “solidifying” temperature of 70 to 150° C.
  • the temperature gradient is preferably obtained by means of heating the pipe reactor from the outside by applying normal heaters, microwaves, etc.
  • a filtering unit might preferably be used for filtering the solidified particles from the solvent stream.
  • various drums and sieving systems can be used, depending on the specific particle sizes.
  • the finally obtained solid catalyst component is desirably in the form of particles having generally an average size range, determined by using a Coulter Counter LS200 at room temperature (20° C.) with n-heptane as medium, of 2 to 500 ⁇ m, preferably 5 to 200 ⁇ m and more preferably 10 to 100, even an average size range of 20 to 60 ⁇ m is possible.
  • the particle size distribution measured by Coulter method and defined as SPAN of the catalysts of the invention depends on the way of preparation. With the emulsion/solidification method the particle size distribution is usually lower than with the precipitation method. Nevertheless it is desired that the particle size distribution of the solid catalyst components prepared according to the precipitation method is as low as possible and even more preferred similar to that of solid catalyst components prepared according to the emulsion/solidification method.
  • the particle size distribution is in the range of 0.5 to at most 4.0, more preferable from 0.5 to at most 3.0 and even more preferably 0.5 to at most 2.0.
  • SPAN is defined as
  • d90 indicates the particle diameter at 90% cumulative size
  • d10 indicates the particle diameter at 10% cumulative size
  • d50 indicates the particle diameter at 50% cumulative size
  • the catalyst component in form of solid particles is prepared by the emulsion/solidification method.
  • the catalyst has a narrow particle size distribution (PSD), below 1.5, preferably below 1.2.
  • the catalyst components according to the invention have good morphology, good particle size distribution and result in polymerisation catalysts having highly suitable polymerisation activities.
  • the catalysts of the invention have, as mentioned above, a Group 4 metal, preferably Ti content in the range of 1.0 to 10.0 wt %, preferably 1.5 to 8.5 wt % and more preferably 2.0 to 7.0 wt %; a Group 2 metal, preferably Mg content in the range of 5.0 to 22.0 wt %, preferably 6.0 to 20.0 wt % and more preferably 6.5 to 18.0 wt %; an Al content in the range of 0.0 to 0.8 wt %, preferably 0.0 to 0.5 wt % and more preferably 0.0 to 0.4 wt %.
  • a Group 4 metal preferably Ti content in the range of 1.0 to 10.0 wt %, preferably 1.5 to 8.5 wt % and more preferably 2.0 to 7.0 wt %
  • a Group 2 metal preferably Mg content in the range of 5.0 to 22.0 wt %, preferably 6.0 to 20.0 wt % and more preferably
  • the amount of Ti, Mg and Al is determined by ICP Analysis as described in the Experimental Part.
  • the amount of internal donor is in the range of 1.0 to 60.0 wt %, preferably 10 to 58 wt % and more preferably 20 to 55 wt % and is determined by HPLC or by GC.
  • the maximum amount of donor being possible in the solid catalyst components can be calculated according to the formula
  • a cocatalyst is used for producing the random propylene copolymers of the present invention. It is preferred to select the cocatalyst from the group consisting of trialkylaluminium, like triethylaluminium (TEA), triisobutylaluminium, tri-n-butylaluminium; dialkyl aluminium chloride, like dimethyl- or diethyl aluminium chloride; and alkyl aluminium sesquichloride. More preferably the cocatalyst is triethylaluminium or diethylaluminium chloride, most preferably triethylaluminium is used as cocatalyst.
  • TAA triethylaluminium
  • TAA triisobutylaluminium
  • dialkyl aluminium chloride like dimethyl- or diethyl aluminium chloride
  • alkyl aluminium sesquichloride alkyl aluminium sesquichloride. More preferably the cocatalyst is trieth
  • one or more external donor are used, which may be typically selected e.g. from silanes or any other well known external donors in the field.
  • External donors are known in the art and are used as stereoregulating agent in propylene polymerisation.
  • the external donors are preferably selected from hydrocarbyloxy silane compounds, amino silane compounds and hydrocarbyloxy alkane compounds.
  • Typical hydrocarbyloxy silane compounds have the formula (II)
  • R 7 is an alpha- or beta-branched C 3 -C 12 -hydrocarbyl
  • R 8 a C 1 -C 12 -hydrocarbyl
  • p is an integer 1-3.
  • the alkoxy silane compound having the formula (II) is dicyclopentyl dimethoxy silane or cyclohexylmethyl dimethoxy silane.
  • Typical amino silane compounds have the formula (III)
  • R 9 is a hydrocarbon group having 1 to 6 carbon atoms
  • R 10 is a hydrocarbon group having 1 to 12 carbon atoms or hydrogen atom
  • R 11 is a hydrocarbon group having 1 to 12 carbon atoms.
  • R 10 and R 11 are independently selected from the group consisting of linear aliphatic hydrocarbon group having 1 to 12 carbon atoms, branched aliphatic hydrocarbon group having 1 to 12 carbon atoms and cyclic aliphatic hydrocarbon group having 1 to 12 carbon atoms.
  • R 10 and R 11 are independently selected from the group consisting of methyl, ethyl, n-propyl, n-butyl, octyl, decanyl, iso-propyl, iso-butyl, iso-pentyl, tert.-butyl, tert.-amyl, neopentyl, cyclopentyl, cyclohexyl, methylcyclopentyl and cycloheptyl.
  • both R 10 and R 11 are the same and have 1 to 6 carbon atoms, yet more preferably both R 10 and R 11 are a C 1 -C 4 -alkyl group.
  • the external donor represented by the formula (III) or (IV) is diethylaminotriethoxy silane.
  • the external donor used for the catalyst system is therefore preferably diethyl aminotriethoxy silane, dicyclopentyl dimethoxy silane or cyclohexyl methyldimethoxy silane.
  • the elemental analysis of a catalyst was performed by taking a solid sample of mass, M, cooling over dry ice. Samples were diluted up to a known volume, V, by dissolving in nitric acid (HNO 3 , 65%, 5% of V) and freshly deionised (DI) water (5% of V). The solution was further diluted with DI water up to the final volume, V, and left to stabilize for two hours.
  • nitric acid HNO 3 , 65%, 5% of V
  • DI freshly deionised
  • Thermo Elemental iCAP 6300 Inductively Coupled Plasma—Optical Emmision Spectrometer ICP-OES which was calibrated using a blank (a solution of 5% HNO 3 ), and standards of 0.5 ppm, 1 ppm, 10 ppm, 50 ppm, 100 ppm and 300 ppm of Al, Mg and Ti in solutions of 5% HNO 3 .
  • a quality control sample (20 ppm Al, Mg and Ti in a solution of 5% HNO 3 , 3% HF in DI water) is run to confirm the reslope.
  • the QC sample is also run after every 5 th sample and at the end of a scheduled analysis set.
  • the content of Mg was monitored using the 285.213 nm line and the content for Ti using 336.121 nm line.
  • the content of aluminium was monitored via the 167.079 nm line, when Al concentration in ICP sample was between 0-10 ppm (calibrated only to 100 ppm) and via the 396.152 nm line for Al concentrations above 10 ppm.
  • the reported values are an average of three successive aliquots taken from the same sample and are related back to the original catalyst by inputting the original mass of sample and the dilution volume into the software.
  • the determination of donor amounts in the catalyst components is performed using HPLC (UV-detector, RP-8 column, 250 mm ⁇ 4 mm). Pure donor compounds are used to prepare standard solutions. 50-100 mg of the catalyst component is weighed in a 20 ml vial (accuracy of weighing 0.1 mg). 10 ml acetonitrile is added and the sample suspension is sonicated for 5-10 min in an ultrasound bath. The acetonitrile suspension is diluted appropriately and a liquid sample is filtered using 0.45 ⁇ m filter to the sample vial of HPLC instrument. Peak heights are obtained from HPLC.
  • the percentage of donor in the catalyst component is calculated using the following equation:
  • the donor analysis of a catalyst was performed by taking a solid sample of mass, M, approximately 2 ml of solvent, dichloromethane, was added. Following this approximately 1 ml of deionised water was added to the vial. Finally, a known mass, N, of an internal standard, nonane, was added. The mixture was then sonicated for 15 min, to ensure full dissolution. After sonication the sample is left to settle into two phases and an aliquot of the organic phase is removed, this is then filtered through a 0.45 ⁇ m nylon filter into a vial suitable for the gas chromatography instrument.
  • the analysis is performed on a Perkin Elmer Auto System XL Gas Chromatograph containing a split loop injector and flame ionization detector.
  • the column is a DB-1, 30 m long with an inner diameter of 0.32 mm and a phase thickness of 0.25 ⁇ m.
  • the system stays at 40° C. for 5 minutes before ramping at 10° C./min up to 250° C., the system is kept at temperature for a further 4 minutes. If required the peak temperature could be raised to 300° C.
  • Component ⁇ ⁇ ( wt ⁇ ⁇ % ) Ax ⁇ F ⁇ N Ay ⁇ Fistd ⁇ M ⁇ 100
  • the solution from the first 100 ml vessel is evaporated in nitrogen flow and the residue is dried under vacuum at 90° C. until constant weight is reached.
  • Infrared (IR) spectroscopy was undertaken on Nicolet Magna IR Spectrometer 550. A 220-250 ⁇ m film was prepared from the polymer powder at 230° C. followed by rapid cooling to room temperature. All IR analysis was done within two hours of film preparation. Quantitative comonomer contents were obtained using peak areas normalised to the peak height of an internal reference band calibrated to previous 13 C NMR results. Ethylene was quantified using the band at 733 cm ⁇ 1 (baseline 690-780 cm ⁇ 1 ) the reference band at 809 cm ⁇ 1 (baseline 750-890 cm ⁇ 1 ). The amount of isolated ethylene units (randomness) was estimated using the peak height of the band at 733 cm ⁇ 1 (baseline 690-780 cm ⁇ 1 ) and the same reference band described above. Calibration was made to previously obtained 13 C NMR results.
  • Randomness random ethylene (—P-E-P—) content/the total ethylene content ⁇ 100%.
  • BOMAG Mg(Bu) 1,5 (Oct) 0,5
  • reaction mixture was stirred for 20 minutes at 25° C.
  • the temperature of the reaction mixture was then increased to 90° C. over a period of 20 minutes (linear heat-up profile) and held at that level for 30 minutes with stirring. Afterwards stirring was stopped, and the reaction mixture was allowed to settle for 15 minutes at 90° C.
  • Triethyl aluminium (TEA) (from Witco, used as received) as a co-catalyst, dicyclopentyl dimethoxy silane (DCDS) (from Wacker, dried with molecular sieves) as an external donor and 30 ml n-pentane were mixed and allowed to react for 5 minutes. Half of the mixture was then added to the polymerisation reactor and the other half was mixed with the catalyst. After additional 5 minutes the catalyst/TEA/donor/n-pentane mixture was added to the reactor. Hydrogen and 1400 g propylene were introduced into the reactor and the temperature was raised within ca 15 minutes to the polymerisation temperature (70° C.). Ethylene feed was started 5 minutes after starting the temperature increase (at about 40° C.) and ethylene was fed continuously throughout the polymerisation. The polymerisation time at 70° C. was 60 minutes, after which the polymer formed was taken out from the reactor.
  • TSA Triethyl aluminium
  • DCDS dicyclopenty
  • the randomness of the random propylene copolymers is—at a given comonomer content—at least 3% lower than the randomness of the comparative random propylene copolymer produced with a phthalate containing donor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
US14/368,645 2011-12-30 2012-12-19 Propylene random copolymer Abandoned US20140357816A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11196169.4A EP2610274A1 (en) 2011-12-30 2011-12-30 Propylene random copolymer
EP11196169.4 2011-12-30
PCT/EP2012/076118 WO2013098150A1 (en) 2011-12-30 2012-12-19 Propylene random copolymer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/076118 A-371-Of-International WO2013098150A1 (en) 2011-12-30 2012-12-19 Propylene random copolymer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/470,422 Division US10113021B2 (en) 2011-12-30 2017-03-27 Propylene random copolymer

Publications (1)

Publication Number Publication Date
US20140357816A1 true US20140357816A1 (en) 2014-12-04

Family

ID=47471822

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/368,645 Abandoned US20140357816A1 (en) 2011-12-30 2012-12-19 Propylene random copolymer
US15/470,422 Active US10113021B2 (en) 2011-12-30 2017-03-27 Propylene random copolymer

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/470,422 Active US10113021B2 (en) 2011-12-30 2017-03-27 Propylene random copolymer

Country Status (7)

Country Link
US (2) US20140357816A1 (ja)
EP (1) EP2610274A1 (ja)
JP (1) JP5860552B2 (ja)
KR (1) KR101639497B1 (ja)
CN (1) CN104039845B (ja)
BR (1) BR112014014954A2 (ja)
WO (1) WO2013098150A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016102430A1 (en) * 2014-12-22 2016-06-30 Borealis Ag Process for producing polypropylene
WO2016168108A1 (en) * 2015-04-13 2016-10-20 Basf Corporation Olefin polymerization catalyst component with auxiliary internal electron donor
US10457766B2 (en) * 2014-11-05 2019-10-29 Borealis Ag Long-chain branched polypropylene for film application
US11390700B2 (en) * 2017-05-18 2022-07-19 Borealis Ag Propylene-ethylene random copolymer with improved irradiation resistance

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2665889T3 (es) * 2011-12-30 2018-04-30 Borealis Ag Componente catalítico
RU2648675C2 (ru) * 2013-05-22 2018-03-28 Бореалис Аг Полипропилен для применения в пленках
EP2965908B1 (en) * 2014-07-09 2018-03-21 Borealis AG Propylene random copolymer for film applications
EP3018153B1 (en) 2014-11-05 2019-02-27 Borealis AG Long-chain branched polypropylene for foam application
WO2017009405A1 (en) * 2015-07-16 2017-01-19 Borealis Ag Catalyst component
US11873355B2 (en) 2018-06-11 2024-01-16 W.R. Grace & Co.-Conn. Propylene-ethylene copolymer compositions suitable for hot fill packaging of foodstuffs
EP3617238A1 (en) 2018-08-28 2020-03-04 Borealis AG Propylene random copolymer with specific comonomer distribution
KR102038778B1 (ko) * 2018-10-04 2019-10-30 한화토탈 주식회사 프로필렌 중합용 고체 촉매의 제조방법
KR102259306B1 (ko) * 2019-10-21 2021-05-31 한화토탈 주식회사 프로필렌 중합용 고체 촉매의 제조 방법
EP4375303A1 (en) 2022-11-22 2024-05-29 Hanwha TotalEnergies Petrochemical Co., Ltd. Method for producing propylene copolymer using catalyst system having improved copolymerization activity

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117509A (ja) * 1982-12-24 1984-07-06 Mitsui Petrochem Ind Ltd オレフインの重合方法
ATE103617T1 (de) * 1988-05-12 1994-04-15 Union Carbide Corp Verfahren zur herstellung statistischer copolymere.
IL117114A (en) 1995-02-21 2000-02-17 Montell North America Inc Components and catalysts for the polymerization ofolefins
IT1282691B1 (it) * 1996-02-27 1998-03-31 Montell North America Inc Processo per la preparazione di copolimeri random del propilene e prodotti cosi' ottenuti
AU7921198A (en) * 1997-06-24 1999-01-04 Borealis As Process for preparing propylene polymers
DE69918069T2 (de) * 1998-12-25 2005-07-07 Toho Titanium Co., Ltd., Chigasaki Feste katalysatorkomponente für die propylenpolymerisation und katalysator
JP4240870B2 (ja) * 2001-10-15 2009-03-18 出光興産株式会社 プロピレン−エチレンランダム共重合体及びその製造方法
CN1169845C (zh) * 2002-02-07 2004-10-06 中国石油化工股份有限公司 用于烯烃聚合的固体催化剂组分和含该催化剂组分的催化剂及其应用
EP1403292B1 (en) * 2002-09-30 2016-04-13 Borealis Polymers Oy Process for preparing an olefin polymerisation catalyst component with improved high temperature activity
EP1489110B1 (en) 2003-06-20 2012-01-18 Borealis Polymers Oy Method for preparing an olefin polymerisation catalyst composition
US7067451B1 (en) * 2004-12-17 2006-06-27 Fina Technology, Inc. Soluble magnesium complexes useful for the production of polyolefin catalysts and catalysts prepared therewith
KR20080022101A (ko) 2005-05-12 2008-03-10 바셀 폴리올레핀 이탈리아 에스.알.엘 프로필렌-에틸렌 공중합체 및 그 제조 방법
JP5394231B2 (ja) * 2006-04-24 2014-01-22 トタル リサーチ アンド テクノロジー フエリユイ 高い溶融流動性を有するプロピレンの単独重合体またはランダム共重合体の製造でのチーグラー‐ナッタ触媒の使用
EP1862480B1 (en) 2006-05-31 2016-07-27 Borealis Technology Oy Process for preparing an olefin polymerisation catalyst component with improved high temperature activity
ES2594859T3 (es) 2006-05-31 2016-12-23 Borealis Technology Oy Catalizador con componente de Al-alcoxilo
ES2353430T3 (es) * 2007-11-30 2011-03-02 Borealis Technology Oy Copolímero aleatorio de propileno con alto contenido de comonómeros.
PL2065087T3 (pl) * 2007-11-30 2012-06-29 Borealis Tech Oy Sposób wytwarzania statystycznych kopolimerów propylenu
EP2225288B1 (en) * 2007-12-21 2018-08-29 W.R. Grace & CO. - CONN. Self-limiting catalyst composition with bidentate internal donor
CN101724111B (zh) * 2008-10-24 2012-02-01 中国石油化工股份有限公司 一种宽分子量分布聚丙烯的制备方法及其聚合物
CN102203179B (zh) * 2008-10-27 2013-09-11 北欧化工公司 具有高刚度和透明度的挤出吹塑成型瓶子
US8945460B2 (en) * 2008-10-27 2015-02-03 Borealis Ag Extrusion blown molded bottles with high stiffness and transparency
BRPI0918348A8 (pt) * 2008-12-31 2017-10-10 Dow Global Technologies Llc Processo de polimerização e composição
EP2338931A1 (en) * 2009-12-23 2011-06-29 Borealis AG Blown grade showing superior stiffness, transparency and processing behaviour
EP2338930A1 (en) * 2009-12-23 2011-06-29 Borealis AG Blownfilm grade showing superior stiffness, transparency and processing behaviour
ES2665889T3 (es) * 2011-12-30 2018-04-30 Borealis Ag Componente catalítico
ES2727405T3 (es) * 2011-12-30 2019-10-16 Borealis Ag Preparación de catalizadores de ZN PP libres de ftalato

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10457766B2 (en) * 2014-11-05 2019-10-29 Borealis Ag Long-chain branched polypropylene for film application
WO2016102430A1 (en) * 2014-12-22 2016-06-30 Borealis Ag Process for producing polypropylene
US10626199B2 (en) 2014-12-22 2020-04-21 Borealis Ag Process for producing polypropylene
WO2016168108A1 (en) * 2015-04-13 2016-10-20 Basf Corporation Olefin polymerization catalyst component with auxiliary internal electron donor
US11390700B2 (en) * 2017-05-18 2022-07-19 Borealis Ag Propylene-ethylene random copolymer with improved irradiation resistance

Also Published As

Publication number Publication date
WO2013098150A1 (en) 2013-07-04
JP2015506391A (ja) 2015-03-02
US10113021B2 (en) 2018-10-30
EP2610274A1 (en) 2013-07-03
US20170218104A1 (en) 2017-08-03
CN104039845A (zh) 2014-09-10
KR101639497B1 (ko) 2016-07-13
JP5860552B2 (ja) 2016-02-16
KR20140107598A (ko) 2014-09-04
CN104039845B (zh) 2017-06-06
BR112014014954A2 (pt) 2017-06-13

Similar Documents

Publication Publication Date Title
US10113021B2 (en) Propylene random copolymer
US20170066852A1 (en) Catalyst component
US20230183395A1 (en) Preparation of phthalate free zn pp catalysts
EP2610270B1 (en) Catalyst component
EP2610272B1 (en) Catalyst component
US10184016B2 (en) Process for producing a Ziegler Natta procatalyst for ethylene polymerisation
EP2960257B1 (en) Improved process for preparing a particulate olefin polymerisation catalyst component
US11859030B2 (en) Process for producing a heterophasic propylene copolymer having a high xylene cold soluble fraction (XCS)
US20100240846A1 (en) Catalyst component for the polymerization of olefins based on 1,3-diethers
US8592536B2 (en) Catalyst preparation using H2
EP3898720A1 (en) Catalyst and preparation thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOREALIS AG, AUSTRIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VIRKKUNEN, VILLE;VESTBERG, TORVALD;SIGNING DATES FROM 20140509 TO 20140512;REEL/FRAME:033821/0038

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BOREALIS AG, AUSTRIA

Free format text: CHANGE OF ADDRESS;ASSIGNOR:BOREALIS AG;REEL/FRAME:059219/0949

Effective date: 20220201