US20140271851A1 - Antiemetic extended release solid dosage forms - Google Patents

Antiemetic extended release solid dosage forms Download PDF

Info

Publication number
US20140271851A1
US20140271851A1 US14/212,954 US201414212954A US2014271851A1 US 20140271851 A1 US20140271851 A1 US 20140271851A1 US 201414212954 A US201414212954 A US 201414212954A US 2014271851 A1 US2014271851 A1 US 2014271851A1
Authority
US
United States
Prior art keywords
ondansetron
pharmaceutical formulation
core
release
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/212,954
Other languages
English (en)
Inventor
Reza Fathi
Gilead Raday
Patrick Gosselin
Guy Goldberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Redhill Biopharma Ltd
Original Assignee
Redhill Biopharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51528070&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20140271851(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Redhill Biopharma Ltd filed Critical Redhill Biopharma Ltd
Priority to US14/212,954 priority Critical patent/US20140271851A1/en
Publication of US20140271851A1 publication Critical patent/US20140271851A1/en
Assigned to REDHILL BIOPHARMA LTD. reassignment REDHILL BIOPHARMA LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FATHI, REZA, RADAY, Gilead, GOLDBERG, Guy, GOSSELIN, PATRICK
Priority to US15/678,386 priority patent/US20180028452A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • A61K9/286Polysaccharides, e.g. gums; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2086Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat
    • A61K9/209Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat containing drug in at least two layers or in the core and in at least one outer layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • A61K9/286Polysaccharides, e.g. gums; Cyclodextrin
    • A61K9/2866Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2886Dragees; Coated pills or tablets, e.g. with film or compression coating having two or more different drug-free coatings; Tablets of the type inert core-drug layer-inactive layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/08Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • A61K9/284Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone
    • A61K9/2846Poly(meth)acrylates

Definitions

  • the 5-HT 3 antagonists are a class of drugs that act as receptor antagonists at the 5-HT 3 receptor, a subtype of serotonin receptor found in terminals of the vagus nerve and in certain areas of the brain.
  • 5-HT 3 antagonists are antiemetics, used in the prevention and treatment of nausea and vomiting. They are particularly effective in controlling the nausea and vomiting produced by cancer chemotherapy and are considered the gold standard for this purpose.
  • Ondansetron is a serotonin 5-HT 3 receptor antagonist used alone or with other medications to prevent nausea and vomiting, and is used for preventing nausea and vomiting caused by cancer drug treatment (chemotherapy) and radiation therapy. It is also used to prevent and treat nausea and vomiting after surgery.
  • Extended release solid dosage forms are disclosed herein. More particularly, antiemetic extended release solid dosage forms are disclosed herein for preventing nausea and vomiting.
  • a pharmaceutical formulation that includes (1) a first dosage component comprising: a core comprising a non-ionic polymer matrix providing sustained release, a first amount of ondansetron or an equivalent amount of an ondansetron salt thereof dispersed within the matrix, and an electrolyte dispersed within the matrix; a first seal coat surrounding the core, the first seal coat comprising a non-ionic polymer matrix; and an immediate release drug layer surrounding the first seal coat, wherein the immediate release drug layer comprises a non-ionic polymer and a second amount of ondansetron or an equivalent amount of an ondansetron salt thereof dispersed therein; and (2) a second dosage component comprising: a core comprising a third amount of ondansetron or an equivalent amount of an ondansetron salt thereof, at least one filler, and a lubricant; and a coating surrounding the core, the coating comprising water and a mixture of methacrylic acid-alkyl acrylate copoly
  • the coating of the second dosage component comprises: from about 30% (w/w) to about 55% (w/w) of purified water; from about 25% (w/w) to about 45% (w/w) of Eudragit® RS 30D; from about 3.0% (w/w) to about 25% (w/w) of Eudragit® RL 30D; and from about 1.0% (w/w) to about 6.0% (w/w) of talc.
  • the pharmaceutical formulation is sufficiently designed to meet the two stage test dissolution profile in a basket apparatus: (a) release of not more than 25% of the total amount of ondansetron in 2 hours in an acid stage comprising 900 ml 0.1N HCl at 50 rpm; and (b) release of not less than 40% of the total amount of ondansetron in 30 hours in 900 ml phosphate buffer pH 6.8 at 50 rpm following the acid stage.
  • a packaged pharmaceutical preparation that includes a plurality of the pharmaceutical formulations of the present invention in a sealed container and instructions for administering the pharmaceutical formulations orally to effect prevention of nausea and vomiting
  • a pharmaceutical preparation that includes a plurality of the pharmaceutical formulations of the present invention each in a discrete sealed housing, and instructions for administering the pharmaceutical formulations orally to effect prevention of nausea and vomiting.
  • a method for reducing side effects of chemotherapy treatment that includes administering a pharmaceutical formulation of the present invention to a patient, wherein side effects including nausea and vomiting are reduced after an amount of ondansetron has been released from the pharmaceutical formulation, is absorbed by the patient, and reaches the systemic circulation of the patient.
  • an extended release ondansetron tablet that includes a core comprising a hydrophilic swellable matrix comprising ondansetron, or a pharmaceutically acceptable salt thereof, and sodium citrate anhydrous; a first seal coating comprising hypromellose and plasACRYLTM; an immediate release drug layer surrounding the first seal coating comprising ondansetron, or a pharmaceutically acceptable salt thereof, hypromellose and plasACRYLTM; and a second seal coating comprising hypromellose and plasACRYLTM T20, wherein the immediate release layer is sufficiently designed to release about 1 ⁇ 4 of a total dose of ondansetron within about 1 hour after oral administration, and wherein the core is sufficiently designed to release the remaining dose of ondansetron for a period of up to 24-hours via zero-order release.
  • the core comprises about 18 mg of ondansetron free base. In an embodiment, the core comprises about 20 mg of ondansetron free base. In an embodiment, the core comprises about 28 mg of ondansetron free base.
  • the sodium citrate anhydrous is present at a concentration in the range of about 50% to about 100% by weight of the hydrophilic swellable matrix. In an embodiment, the hydrophilic swellable matrix of the core is METHOCELTM K4M Premium CR, the hypromellose of the first seal coating and the second seal coating is METHOCELTM E5 Premium LV, and the hypromellose of the immediate release drug layer is METHOCELTM E5 Premium LV. In an embodiment, the immediate release layer comprises about 6 mg of ondansetron.
  • an extended release solid dosage form that includes an internal portion, wherein the internal portion comprises a first dose of at least one serotonin antagonist; a first coating, wherein the first coating directly encapsulates the internal portion of the solid dosage form; a drug layer coating, wherein the drug layer coating directly encapsulates the first coating, wherein the drug layer coating comprises a second dose of the at least one serotonin antagonist, wherein the drug layer coating is at least 4%, by weight, of the solid dosage form, wherein the second dose is equal to at least 15%, by weight, of a total dose of the at least one serotonin antagonist in the solid dosage form, and wherein the first dose is equal to the total dose minus the second dose; and a second coating, wherein the second coating directly encapsulates the drug layer coating, wherein the internal portion has solubility in water of X, wherein the first coating, the drug layer coating, and the second coating have solubility in water of at least Y, and wherein X is less than
  • the at least one serotonin-3 receptor antagonist is ondansetron hydrochloride.
  • the second dose is equal to at least 20%, by weight, of the total dose of the at least one serotonin-3 receptor antagonist in the solid dosage form.
  • the at least one serotonin-3 receptor antagonist is ondansetron hydrochloride.
  • the second dose is equal to at least 25%, by weight, of the total dose of the at least one serotonin-3 receptor antagonist in the solid dosage form.
  • the first coating and the second coating comprise a hydrophilic material.
  • the drug layer further comprises a hydrophilic material.
  • the hydrophilic material is hypromellose.
  • the first coating and the second coating are each of at least 1.5%, by weight, of the solid dosage form.
  • the ratio of the hypromellose to the at least one serotonin-3 receptor antagonist in the drug layer is about 4:6.
  • a total amount of hypromellose in the first coating, the drug layer, and the second coating is less than 4%, by weight, of the solid dosage form.
  • the core further comprises sodium citrate in an amount of less than 15%, by weight, of the core.
  • X is sufficiently less than Y so that the second dose is substantially released from the solid dosage form within less than 12 hours after the solid dosage form is exposed to an aqueous environment, and the first dose is substantially released from the solid dosage in a zero-order release profile over a period of 12 to 24 hours after the solid dosage form is exposed to the aqueous environment.
  • the aqueous environment has a pH in the range of pH 1.5 to pH 7.5.
  • the solid dosage form is compressed into a tablet.
  • the solid dosage form is formed as a capsule.
  • the core further comprises glycine in an amount of less than 20%, by weight, of the core.
  • an extended release ondansetron tablet made by compressing a sustained release core tablet and then coating the core tablet with a first seal coat followed by drug coat and finally a second seal coat
  • the core tablet comprises a hydrophilic swellable matrix comprising ondansetron hydrochloride and sodium citrate anhydrous
  • the first seal coat comprises comprising hypromellose and plasACRYLTM
  • the drug coat comprises ondansetron hydrochloride, hypromellose and plasACRYLTM
  • the second seal coat comprises hypromellose and plasACRYLTM T20.
  • a solid oral dosage form that includes a core comprising a non-ionic polymer matrix, a first amount of a first antiemetic drug or a pharmaceutically acceptable salt thereof dispersed within the matrix, and a salt dispersed within the matrix; a first seal coat surrounding the core, wherein the first seal coat is comprised of a non-ionic polymer matrix; and an immediate release drug layer surrounding the first seal coat, wherein the immediate release drug layer comprises a non-ionic polymer and a second amount of a second antiemetic drug or a pharmaceutically acceptable salt thereof dispersed therein, wherein the drug layer is sufficiently designed to release the second amount of the antiemetic drug over a period of at least 1 hour, wherein the solid oral dosage form is sufficiently designed to release the first amount of the first antiemetic drug and the second amount of the second antiemetic drug over a minimum period of 16 hours.
  • a solid oral dosage form that includes a core comprising hypromellose, 18 mg of ondansetron or an equivalent amount of an ondansetron salt thereof, and sodium citrate anhydrous; a first seal coat surrounding the core and comprising hypromellose; and an immediate release drug layer surrounding the first seal coat and comprising hypromellose and 6 mg of ondansetron or an equivalent amount of an ondansetron salt thereof, the immediate release drug layer sufficient to release the ondansetron over a period of at least 1 hour, wherein the total amount of ondansetron in the dosage form is released over 24 hours.
  • a solid oral dosage form that includes a core comprising a non-ionic polymer matrix, a first amount of ondansetron or an equivalent amount of an ondansetron salt thereof dispersed within the matrix, and a salt dispersed within the matrix; a first seal coat surrounding the core, wherein the first seal coat is comprised of a non-ionic polymer matrix; and an immediate release drug layer surrounding the first seal coat, wherein the immediate release drug layer comprises a non-ionic polymer and a second amount of ondansetron or an equivalent amount of an ondansetron salt thereof dispersed therein, wherein the solid oral dosage form results in an in vitro ondansetron dissolution profile when measured in a type 2 paddle dissolution apparatus at 37° C.
  • aqueous solution containing distilled water at 50 rpm that exhibits: a) from about 20% to 50% of the total ondansetron is released after two and a half hours of measurement in the apparatus; b) from about 50% to 70% of the total ondansetron is released after five hours of measurement in the apparatus; and c) no less than about 90% of the total ondansetron is released after fifteen hours of measurement in the apparatus.
  • a packaged pharmaceutical preparation that includes a plurality of the solid oral dosage forms of the present invention in a sealed container and instructions for administering the dosage forms orally to effect prevention of nausea and vomiting
  • a pharmaceutical preparation that includes a plurality of the solid oral dosage forms of the present invention each in a discrete sealed housing, and instructions for administering the dosage forms orally to effect prevention of nausea and vomiting.
  • a method for controlling nausea and vomiting that includes administering a solid dosage form of the present invention to a patient, wherein nausea and vomiting are controlled after an amount of ondansetron has been released from the solid dosage form, is absorbed by the patient, and reaches the systemic circulation of the patient.
  • a method for reducing side effects of chemotherapy treatment that includes administering a solid dosage form of the present invention to a patient, wherein side effects including nausea and vomiting are reduced after an amount of ondansetron has been released from the solid dosage form, is absorbed by the patient, and reaches the systemic circulation of the patient.
  • a method for reducing side effects of motion sickness that includes administering a solid dosage form of the present invention to a patient, wherein side effects including nausea and vomiting are reduced after an amount of ondansetron has been released from the solid dosage form, is absorbed by the patient, and reaches the systemic circulation of the patient.
  • a method for reducing side effects of anesthetics that includes administering a solid dosage form of the present invention to a patient after the patient has been exposed to an anesthetic, wherein side effects including nausea and vomiting are reduced after an amount of ondansetron has been released from the solid dosage form, is absorbed by the patient, and reaches the systemic circulation of the patient.
  • FIG. 1 shows a process flow diagram for formulating extended release ondansetron hydrochloride lot numbers L004-04001, -04003, -04005, -04007 and -04009 of an embodiment of the present disclosure.
  • FIG. 2 shows a process flow diagram for formulating extended release chronodosed ondansetron hydrochloride lot numbers L004-04002, -04004, -04006 and -04008 of an embodiment of the present disclosure.
  • FIG. 3 shows a process flow diagram for seal coat solution preparation of an extended release dosage form of an embodiment of the present disclosure.
  • FIG. 4 shows a process flow diagram for enteric coat suspension preparation of an extended release dosage form of an embodiment of the present disclosure.
  • FIG. 5 shows a process flow diagram for immediate release layer suspension preparation of an extended release dosage form of an embodiment of the present disclosure.
  • FIG. 6 shows a process flow diagram for chronodosed suspension preparation for lot numbers L004-04002A to -04002E of an embodiment of the present disclosure.
  • FIG. 7 shows a process flow diagram for chronodosed suspension preparation for lot numbers L004-04002F to -04002J, -04004A to -04004D, -04006A to -04006F and for -04008A and -04008B of an embodiment of the present disclosure.
  • FIG. 8 shows the dissolution profiles for Ondansetron bimodal tablets, 28 mg L004-04001 and -04001A, and Ondansetron bimodal tablets 36 mg -04003.
  • FIG. 9 shows the dissolution profile for Ondansetron core tablets 28 mg L004-04005.
  • FIG. 10 shows the dissolution profiles for Ondansetron core tablet L004-007 28 mg and Ondansetron bimodal tablets 36 mg -04007A.
  • FIG. 11 shows the dissolution profiles (in mg) for Ondansetron bimodal tablets, 28 mg L004-004001 and -04001A, and Ondansetron bimodal tablets 36 mg L004-04003, -04007A and -04007B.
  • FIG. 12 shows the dissolution profiles (in mg/time) of the Ondansetron bimodal drug products L004-04003, -04007A, -04007B, -04009A and -04009B.
  • FIG. 13 shows the dissolution profiles (in %) for Ondansetron bimodal drug products L004-04003, -04007A, -04007B, -04009A and -04009B.
  • FIG. 14 shows the dissolution profiles (in %) for Ondansetron bimodal tablets, 28 mg L004-04001 and -04001A, and Ondansetron bimodal tablets 36 mg -04003, -04007A and -04007B.
  • FIG. 15 shows the dissolution profiles for chronodosed Ondansetron tablets, 8 mg L004-04002D, -04002D-04002HC, -04002E, -04002F-2HC and -04002J.
  • FIG. 16 shows the dissolution profiles for chronodosed Ondansetron tablets, 8 mg L004-04004A to -04004D.
  • FIG. 17 shows the dissolution profiles for chronodosed Ondansetron tablets, 8 mg L004-04006A to -04006D.
  • FIG. 18 shows the dissolution profiles for chronodosed Ondansetron tablets, 8 mg L-008A to L-008B.
  • FIGS. 19 and 20 shows dissolution curves in % and mg dissolved, respectively, up to 48 hours combining 36 mg lot L004-04007A with 8 mg lot L004-04002J (chronodosed) within the same vessels for a total of 44 mg instead of 48 mg.
  • the chronodosd contribution to further increase the dissolution after 36 hours can be appreciated versus the plateau observed for the CR formulation.
  • “Hydropathy” refers to a scale of solubility characteristics combining hydrophobicity and hydrophilicity of amino acids. More particularly this term refers to a sliding scale, similar to a pH scale, which assigns relative values which represent the relative balance between hydrophobic and hydrophilic components of an amino acid.
  • a typical scale is set forth in Pliska et al., J. Chromatog.
  • glycine has a value of 0, representing a relatively equal balance between hydrophobic and hydrophilic components and may be referred to as relatively ‘neutral’, ‘balanced’, ‘slightly hydrophilic’; or ‘weakly hydrophobic’, iso-leucine has a positive value of 1.83 and is strongly hydrophobic, and on the opposite end of the scale, aspartic acid has a negative value of ⁇ 2.15 and may be characterized as strongly hydrophilic.
  • Such a scale and the hydropathy characteristics described herein are well known and understood by those skilled in the art.
  • “Monolithic” refers to tablets that do not require multiple layers, special shapes, osmotic compartments and/or specialized coatings, typically without joints or seams, and are capable of being tableted on modern high speed tableting equipment.
  • bimodal refers to bimodal drug release profiles (fast release/slow release).
  • a “serotonin antagonist” or “5-HT 3 receptor antagonist” refers to a class of medications useful in preventing and relieving nausea and vomiting caused by chemotherapy and anesthesia. It is believed that serotonin antagonists work by blocking the effects of the chemical serotonin, which is produced in the brain and the stomach. 5-HT 3 receptor antagonists efficacious in treating chemotherapy-induced emesis include, but are not limited to, dolasetron, granisetron, ondansetron, palonosetron, tropisetron.
  • an extended release solid dosage form includes an internal portion, wherein the internal portion comprises a first dose of ondansetron; a first coating, wherein the first coating directly encapsulates the internal portion of the solid dosage form; a drug layer coating, wherein the drug layer coating directly encapsulates the first coating, wherein the drug layer coating comprises a second dose of ondansetron, wherein the drug layer coating is at least 4%, by weight, of the solid dosage form, wherein the second dose is equal to at least 15%, by weight, of a total dose of the ondansetron in the solid dosage form, and wherein the first dose is equal to the total dose minus the second dose; and a second coating, wherein the second coating directly encapsulates the drug layer coating, wherein the internal portion has solubility in water of X, wherein the first coating, the drug layer coating, and the second coating have so
  • the extended release solid dosage form is capable of producing a burst of approximately 25% ondansetron, followed by a zero-order release of the remaining ondansetron over a period of between 16-20 hours. In an embodiment, the extended release solid dosage form is capable of producing a burst of approximately 25% ondansetron, followed by a zero-order release of the remaining ondansetron over a period of between 20-30 hours.
  • Ondansetron is an effective antiemetic agent that has greatly improved the quality of life of patients undergoing chemotherapy.
  • the usual dose administered to patients ranges between 8 mg and 32 mg per day, administered once a day or in divided doses.
  • Ondansetron displays central and/or peripheral action by preferentially blocking the serotonin 5-HT 3 receptors.
  • Ondansetron hydrochloride (HCl) is the dihydrate, the racemic form of ondansetron.
  • Ondansetron has the empirical formula C18H19N30.HCl.2H2O, representing a molecular weight of 365.9.
  • Ondansetron HCl dihydrate is a white to off-white powder that is soluble in water and normal saline.
  • the saliva of the mouth has a neutral pH
  • the stomach has a pH varying from about 1.5-4.0
  • the pH of the intestines carries a pH between about 5.0-7.5.
  • the internal portion (“core”) of a dosage form of the present disclosure may approach zero order delivery of a drug.
  • the internal portion is comprised of a hydrophilic swellable matrix, in which is disposed a pharmaceutically active agent (“API”) and one or more electrolytes.
  • the “electrolyte core” is a slow release (“SR”) formulation.
  • the one or more electrolytes either in combination with the API or another salt upon reaction in an aqueous medium, causes a hardening reaction of the matrix. The rate of outward diffusion is controlled by exposing the internal portion to an aqueous medium.
  • the internal portion employs the colloidal chemistry phenomenon of “salting-out” to moderate the swelling and erosion kinetics of a non-ionic polymer matrix containing the API and one or more electrolytes.
  • the presence of these electrolytic compounds in the form of ionizable salts allows for non-collapsible diffusion channels to form; channelization agents used in the past were not ionizable, therefore, the diffusion channels were unpredictable leading to poor release profiles and lack of control.
  • the electrolytes also contribute to a contracting micro-environment within the tablet, whose pH is mediated by the pKa of the electrolyte, thus either enhancing or suppressing the solubility of the API itself.
  • the electrolytes and polymer compete for water of hydration with the API, resulting in a programmable rate of release.
  • the internal portion is thus capable of zero-order, pH-independent release of an API for up to 24-hours, without regard to the solubility of the API itself.
  • swellable polymer such as hydroxypropylmethylcellulose (HPMC)
  • HPMC hydroxypropylmethylcellulose
  • solvent penetrates the periphery of the tablet and a rapid initial interaction between drug and electrolyte embedded in the polymeric matrix causes immediate hardening of the outer tablet boundary, the rate of hardening consistently decreases toward the center of the matrix core in a time-dependent manner over a long period of time (e.g. 24 hours).
  • the differential rate of matrix hardening is the driving principle in the internal portion, which is dependent on and controlled by the rate of liquid ingress to the internal portion core.
  • the rate of drug diffusion decreases. This phenomenon compensates for the increase in diffusion path length and decrease in the surface area of the receding core which arises from the swelling property of the polymer.
  • the drug release process can be tailored for up to 24 hours. Control of the changes in core hardness and synchronization of the rubbery/swelling front and described receding phase boundaries as well as erosion of the dissolution front boundary (i.e. erosion of the tablet periphery) results in controlled drug release, preferably including zero order kinetics.
  • polymer matrix hardenings is also easily achievable through double salt interaction.
  • This binary salt combination is also uniformly dispersed in the polymeric matrix, which through ionic interaction/complexation/molecular and/or self association, increases the relative strength and rigidity of the matrix, resulting in controlled drug release with a similar mechanism to that described above.
  • HPMC K4M hydrophilic matrix material useful in the internal portion.
  • HPMC K4M is a nonionic swellable hydrophillic polymer manufactured by “The Dow Chemical Company” under the tradename “Methocel”.
  • HPMC K4M is also abbreviated as HPMC K4 MP, in which the “P” refers to premium cellulose ether designed for controlled release formulations.
  • the “4” in the abbreviation suggests that the polymer has a nominal viscosity (2% in water) of 4000.
  • the percent of methoxyl and hydroxypropryl groups are 19-24 and 7-12, respectively.
  • HPMC K4M is a free-flowing, off-white powder with a particle size limitation of 90% ⁇ 100 mesh screen.
  • HPMC K4M is a free-flowing, off-white powder with a particle size limitation of 90% ⁇ 100 mesh screen.
  • HPMC K4M is a free-flowing, off-white powder with a particle size limitation of 90% ⁇ 100 mesh screen.
  • the manufacturing process is a fundamentally two-step process of dry-blending and direct compression.
  • a salt is dispersed in the matrix at a concentration in the range of about 50% to about 100% by weight of the polymeric matrix.
  • the salt is selected from one or two members of the group consisting of sodium chloride, sodium bicarbonate, potassium bicarbonate, sodium citrate, sodium bisulfate, sodium sulfite, magnesium sulfate, calcium chloride, potassium chloride, and sodium carbonate.
  • a binary salt system e.g. calcium chloride and sodium carbonate
  • the hardening reaction may be a function of interaction between the salts.
  • Calcium chloride may be incorporated to form a complex with sodium carbonate.
  • the reaction products are insoluble calcium carbonate and soluble channel former, sodium chloride.
  • the calcium carbonate embeds itself in the polymer matrix, initiates hardening and slowly dissolves with liquid ingress and the subsequent creation of diffusion channels as drug diffuses out.
  • other binary salt combinations display time-dependent “hardening/de-hardening” behavior.
  • the amount of salt to be used may be determined taking into consideration the solubility of the drug, the nature of the polymer and the required degree of matrix hardening desired.
  • 100 mg of sodium bicarbonate provides suitable matrix hardening for zero order controlled release, while in the case of the same amount of drug in a different polymer such as polyethylene oxide, 50 mg of sodium bicarbonate appears to be ideal for the attainment of controlled zero order release.
  • the pharmaceutically active ingredient can be selected from the group consisting of Aprepitant (Emend), Dexamethasone, Dolasetron (Anzemet), Dronabinol (Marinol), Droperidol (Insapsine), Granisetron (Kytril), Haloperidol (Haldol), Methylprednisolone (Medrol), Metoclopramide (Reglan), Nabilone (Cesamet), Ondansetron (Zofran), Palonosetron (Aloxi), Prochlorperazine (Procomp), and pharmaceutically acceptable salts thereof, or combinations thereof.
  • the internal portion of a solid dosage form of the present disclosure is a hydrophilic swellable polymeric matrix having dispersed within the matrix a pharmaceutically effective amount of at least one serotonin antagonist whose degree of solubilization is substantially independent of pH over a pH in the range of pH 1.5 to pH 7.5 and an inorganic salt, wherein the inorganic salt is present at a concentration in the range of 50% to 100% by weight of the polymeric matrix.
  • the inorganic salt is sodium citrate.
  • the hydrophilic swellable polymeric matrix is hydroxypropylmethylcellulose or polyethylene oxide.
  • the internal portion is comprised of a hydrophilic extragranular polymer in which is dispersed a plurality of granules of an API, granulated with at least one amino acid, and an intragranular polymer.
  • the “amino acid core” or “AA core” is a slow release (“SR”) formulation.
  • the granules are dispersed within a hydrophilic extragranular polymer to form a monolithic matrix. The extragranular polymer more rapidly hydrates relative to the intragranular polymer.
  • the rapid hydration of the extragranular polymer assists in the approximation of a linear release profile of the drug and facilitates near 100% dissolution, while extending the duration of release and reducing the burst effect frequently encountered with extended release dosage forms.
  • the linear release rate can be tailored to fit the needs of each application by selecting polymers for different dissolution rates, as understood by one of ordinary skill in the art, a release time of 12 to 24 hours is most preferred.
  • the intragranular polymer is combined with an API, and at least one amino acid to form granules.
  • the intragranular polymer may be one or more of the following: polyvinyl acetate, a galactomannan polysaccharide such as hydroxypropyl guar, guar gum, locust bean gum, pectin, gum acacia, gum tragacanth, karaya gum, cellulose ethers such as hydroxyproplymethyl cellulose (HPMC), as well as other gums and cellulose ethers to be chosen by one of skill in the art for properties consistent with the teaching of this invention.
  • HPMC hydroxyproplymethyl cellulose
  • the intragranular polymer is a galactomannan polysaccharide such as guar gum (with a viscosity range of 75-6000 cps for a 1% solution at 25° C. in water and a particle size 10-300 ⁇ m).
  • guar gum with a viscosity range of 75-6000 cps for a 1% solution at 25° C. in water and a particle size 10-300 ⁇ m.
  • the intragranular polymer in the internal portion is present in amounts between 4% and 45% of the total dosage form weight.
  • the specific type of intragranular polymer and amount of intragranular polymer used is chosen depending on the desired rate of drug release, viscosity of the polymer, the desired drug load, and the drug solubility.
  • the intragranular polymer hydrates less rapidly than the extragranular polymer.
  • the relative difference in hydration rates between the two polymers creates a less viscous intragranular polymer and a more viscous extragranular polymer. Over time, the difference in viscosity contributes to the continuous erosion and disintegration of the solid dosage form.
  • Amino acids are useful in this embodiment for two primary reasons.
  • the amino acids are a factor in determining the viscosity of the polymers.
  • the difference in viscosity between the extragranular and intragranular polymers contributes to the continuous erosion and disintegration of the core, facilitating about 100% release of the drug.
  • Another important aspect of using an amino acid in the granule is that the hydropathy of the amino acid may be exploited to modulate the solubility and release of a drug.
  • the amino acid is selected for hydropathy characteristics depending on the solubility characteristics of the active compound.
  • the compound is at least sparingly water soluble, that is, for example, sparingly soluble, soluble or has a higher level of solubility, as defined by the United States Pharmacopeia
  • an amino acid is utilized which has a relatively equal balance between hydrophilic and hydrophobic components, i.e. is neutral or balanced or within close proximity to neutrality, or is relatively more strongly hydrophilic.
  • dissolution and release of soluble or sparingly soluble ionizable drugs such as verapamil HCl can be controlled by the inclusion of one or more amino acids in the granules.
  • soluble or sparingly soluble ionizable drugs such as verapamil HCl
  • dissolution and release of soluble or sparingly soluble ionizable drugs such as verapamil HCl
  • the nature of the granulation process is such that as the formulation components come into close molecular contact, granulation reduces the available surface area of the particles, thus reducing the initial rate of hydration.
  • the amino acid carboxyl (COOH—) groups and amino groups (NH 2 /NH 3+ ) to interact with hydroxyl groups on the polymer, thus mediating the swelling, viscosity, and gel properties of the polymer and thereby exerting control on the swelling mediated drug diffusion.
  • the amino acid carboxyl groups may also interact with suitable polar substituents on the drug molecule such as secondary or tertiary amines.
  • suitable polar substituents on the drug molecule such as secondary or tertiary amines.
  • the hydrophilic and ionic nature of amino acids results in their extensive hydration in aqueous solution. Consequently, the amino acid promotes erosion, but also competes with both the polymer and the drug for water uptake necessary for hydration and dissolution.
  • the active compound when the active compound is less than sparingly soluble, including active compounds which are slightly soluble to insoluble, a combination of at least two amino acids is utilized, one of which is strongly hydrophobic, the other of which is relatively more hydrophilic than the hydrophobic component, that is, about neutral or balanced to strongly hydrophilic.
  • the amino acid component of the granules may comprise any pharmaceutically acceptable ⁇ -amino or ⁇ -amino acids, salts of ⁇ - or ⁇ -amino acids, or any combination thereof.
  • suitable ⁇ -amino acids are glycine, alanine, valine, leucine, iso-leucine, phenylalanine, proline, aspartic acid, glutamic acid, lysine, arginine, histidine, serine, threonine, cysteine, asparagine, and glutamine.
  • An example of a ⁇ -amino acid is ⁇ -alanine
  • the type of amino acids used in this embodiment of the internal portion can be described as hydrophilic, hydrophobic, salts of hydrophilic or hydrophobic amino acids, or any combination thereof.
  • Suitablehydrophobic amino acids for use include, but are not limited to, iso-leucine, phenylalanine, leucine, and valine.
  • hydrophilic amino acids such as glycine, aspartate and glutamate can be used in the granule.
  • any amino acid, and any amino acid in combination with another amino acid can be employed in the present invention to enhance the solubility of a drug.
  • amino acids that can be used in the present invention and the hydropathy of each see Albert L. Lehninger et al., Principles of Biochemistry 113 (2nd ed. Worth Publishers 1993).
  • the type and amount of amino acid may be chosen depending on the desired drug load, desired rate of drug release, and the solubility of the drug.
  • the amino acid in the dosage form is typically between 4% and 45% of the total dosage form weight. However, the amount of amino acid is preferably between 11% and 29% by weight of the total dosage form.
  • the granules may optionally be blended with a coating material, for example magnesium stearate or other hydrophobic derivatives of stearic acid.
  • a coating material for example magnesium stearate or other hydrophobic derivatives of stearic acid.
  • the amount of coating material used can vary from 1% to 3% of the total weight of the dosage form.
  • magnesium stearate is used to facilitate processing, for example as a flow aid, but in the present invention magnesium stearate has the additional benefit of retarding dissolution, due to the hydrophobic nature of the coating material. Therefore, magnesium stearate can be used to further adjust the solubility of the dosage form and further retard drug release from the granules.
  • the granules may also contain small amounts of inert pharmaceutical fillers and binders/granulating agents as is conventional to the art.
  • inert pharmaceutical fillers include: lactose, sucrose, maltose, maltodextrins, dextrins, starch, microcrystalline cellulose, fructose, sorbitol, di- and tri-calcium phosphate.
  • granulating agents/binders include starch, methylcellulose, hydroxy propyl- or hydroxypropylmethyl cellulose, sodium carboxymethyl cellulose, or poly-vinyl pyrrolidone, gum accacia tragacanth and sucrose.
  • Suitable fillers may also be employed as understood by one of skill in the art.
  • a wet granulation procedure using either an aqueous or organic granulating fluid
  • a dry granulation procedure e.g. slugging or roller compaction
  • the granule is then blended with and dispersed within an extragranular polymer.
  • the extragranular polymer may be one or more of the following: polyethylene oxide, a galactomannan polysaccharide such as hydroxypropyl guar, guar gum, locust bean gum, pectin, gum accacia, gum tragacanth, karaya gum, cellulose ethers such as hydroxypropylmethyl cellulose (HPMC), as well as other gums and cellulose ethers to be chosen by one of skill in the art for properties consistent with the teaching of this invention.
  • the extragranular polymer may be a galactomannan polysaccharide such as guar gum (with a viscosity range of 75-6000 cps for a 1% solution at 25° C. in water and a particle size 10-300 ⁇ m). As noted above, the extragranular polymer should hydrate rapidly and achieve a high level of viscosity in a shorter period of time relative to the intragranular polymer.
  • the difference in hydration rates between the extragranular polymer and intragranular polymer is achieved by three principle means, (1) by choosing polymers based on differences in particle size, (2) by choosing polymers based on differences in molecular weight and chemical composition and (3) by choosing polymers based on a combination of (1) and (2).
  • this disclosure focuses primarily on polymers chosen for differences in particle size, it is possible to achieve the results of this invention by using an intragranular polymer with a different molecular weight and/or chemical composition than the extragranular polymer.
  • polyethylene oxide may be used as the intragranular polymer and guar gum as the extragranular polymer.
  • Particle size is another characteristic of commercial guar gum because coarser particles ensure rapid dispersion, while finer particles are ideal for fast hydration. Therefore, in order to achieve the desired result of the present invention.
  • the finer particles are used for the extragranular polymer and less fine particles are used for the intragranular polymer particles.
  • the brochure by HERCULES Incorporated, entitled “Supercol® Guar Gum, 1997” contains the typical properties of guar gum of different grades and particles sizes.
  • extragranular polymers which may be used include: polyethylene oxide (PEO), cellulose ethers and polysaccharides such as hydroxypropyl guar, pectin, gum accacia and tragacanth, karaya gum, mixtures of the aforementioned polymers and any other polymers to be chosen by one of skill in the art for properties consistent with the teaching of this invention.
  • PEO polyethylene oxide
  • cellulose ethers and polysaccharides such as hydroxypropyl guar, pectin, gum accacia and tragacanth, karaya gum
  • the amounts and the types of extragranular polymer are chosen depending on the desired drug load, rate of drug release and drug solubility. A range of about 4-47% (by total tablet weight) of extragranular polymer has been found to be feasible, but a range of about 15%-47% is particularly
  • a therapeutic amount of an API for example up to about 75% of the total dosage form weight, can be included in the internal portion.
  • the internal portion approximates a linear release profile, with a minimal, or elimination of, burst effect.
  • the extragranular polymer may contain additional amounts of the pharmaceutically active compound to achieve more rapid drug release or an induced burst effect, as well as contain amino acids to mediate dissolution of the pharmaceutically active compound, as described above.
  • the tableted oral extended release dosage form optionally may be coated with polymers, plasticizers, opacifiers, and colourants as is conventional in the art.
  • the internal portion of a solid dosage form of the present disclosure is (1) a plurality of granules comprising (a) at least one serotonin antagonist; (b) at least one amino acid; and (c) an intragranular polymer; the intragranular polymer comprising 4% to 45% of the total dosage form by weight and, (2) a hydrophilic extragranular polymer in which the granules are dispersed, the extragranular polymer comprising 4% to 47% of the total dosage form by weight and being more rapidly hydrating than the intragranular polymer, wherein the amino acid is selected for hydropathy characteristics depending on solubility characteristics of the at least one serotonin antagonist and comprises 11% to 29% of the total dosage form by weight.
  • the amino acid when the at least one serotonin antagonist is at least sparingly soluble in water, the amino acid has a relatively equal balance between hydrophobic and hydrophilic components or is relatively more hydrophilic In an embodiment, when the at least one serotonin antagonist is less than sparingly soluble in water, the amino acid is a combination of at least two amino acids, one of which is moderately or strongly hydrophobic, the other of which is relatively more hydrophilic.
  • the intragranular polymer comprises at least one of the following: polyvinyl acetate, a galactomannan polysaccharide selected from the group consisting of hydroxypropyl guar, guar gum, locust bean gum, pectin, gum accacia, tragacanth, karaya gum, or cellulose ethers.
  • the amino acid is selected from the group consisting of: a) ⁇ -amino acids b) ⁇ -amino acids c) a combination of ⁇ - and ⁇ -amino acids.
  • the ⁇ -amino acid is at least one member selected from the group consisting of glycine, alanine, valine, leucine, iso-leucine, phenylalanine, proline, aspartic acid, glutamic acid, lysine, arginine, histidine, serine, threonine, cysteine, asparagine and glutamine.
  • the combination of ⁇ and ⁇ amino acids comprises ⁇ -alanine and at least one ⁇ -amino acid selected from the group consisting of glycine, alanine, valine, leucine, iso-leucine, phenylalanine, proline, aspartic acid, glutamic acid, lysine, arginine, histidine, serine, threonine, cysteine, asparagine, and glutamine.
  • the amino acid is selected from the group consisting of: a) a balanced amino acid having a relatively equal balance between hydrophobic and hydrophilic components or a relatively more hydrophilic amino acid, or b) a combination of (i) a balanced amino acid or a relatively more hydrophilic amino acid and (ii) a hydrophobic amino acid.
  • the balanced amino acid comprises glycine.
  • the internal portion comprises glycine and a hydrophobic amino acid selected from iso-leucine, valine, and phenylalanine.
  • the plurality of granules are blended with a hydrophobic coating material.
  • the hydrophobic coating material is magnesium stearate.
  • the hydrophobic coating material is 1% to 3% of the total dosage form weight.
  • the first coating and the second coating of an extended release bimodal solid dosage form of the present disclosure are non-functional coatings that act as processing aids.
  • the first coating and the second coating do not substantially affect the release of the API from the dosage form.
  • the first and the second coating comprise a hydrophilic material.
  • the hydrophilic material is hypromellose.
  • the hypromellose is Methocel E5.
  • the first and the second coating further comprise the coating additive plasACRYLTM, an aqueous emulsion of glyceryl monostearate and triethyl citrate (developed by Emerson Resources, Inc. of Norristown, Pa., USA).
  • the plasACRYLTM used in the first and second coatings is T20 grade.
  • the PlasACRYLTM T20 is a 20% aqueous suspension, containing an anti-tacking agent, a plasticizer and a stabilizer.
  • Hypromellose is a pH independent non-ionic polymer formed by partial substitution with O-methylated and O-(2-hydroxypropylated) groups. The grades of hypromellose can vary upon extent to substitution which affects the viscosity.
  • HPMC K4M Premium exhibits a viscosity of 3550 mPas
  • HPMC E5 premium LV is a low viscosity grade polymer having a viscosity of 5 mPas.
  • Hypromellose is soluble in cold water and forms a colloidal viscous liquid.
  • the drug layer overcoat of an extended release solid dosage form of the present disclosure is an immediate release (“IR”) drug layer.
  • the drug layer overcoat is sufficiently designed to yield a burst of about 25% API, which, when the solid dosage form is ingested orally, would result in about 25% API being released in the stomach.
  • the drug layer overcoat, or immediate release drug layer comprises ondansetron hydrochloride, hypromellose and plasACRYLTM.
  • the hypromellose used in the IR layer is Methocel E5.
  • an extended release solid dosage form of the present disclosure further includes an enteric coating.
  • an enteric coating layer is positioned between the first coating and the drug layer overcoat.
  • the enteric coating layer is EUDRAGIT® L30D-55.
  • the enteric coating layer is EUDRAGIT® FS 30D.
  • the enteric coating layer is SURETERIC®.
  • Measurement of weight Raw materials composing the core tablet as well as tablets' weight and coating system components weight was carried out using a Mettler Toledo balance model PR5001, AT200 or AG104. Measurement of crushing strength: Crushing strength was determined via a diametral crushing using a Vanderkamp VK 200RC hardness tester. Measurement of thickness: Thickness of tablets was measured via a Mitutoyo model CD-6′′ CS. Measurement of disintegration time: The disintegration times were determined according to USP method ⁇ 701> in purified water at 37° C. using a disintegration bath (Hanson Research, model QC-21, Chatsworth, Calif.).
  • Friability will be evaluated from the percentage weight loss of 6.5 g or more of core tablets tumbled in a friabilator (model EF-2, Electrolab) for 100 rotations at 25 rpm. The tablets will be dedusted, and the loss in weight caused by fracture or abrasion recorded. Friability below 1% is considered acceptable for immediate release oral tablets.
  • Ondansetron Internal Electrolyte core (“Electrolyte core”) Dry Blend Formulation Prototypes Lab scale L004-04 ⁇ 001 003 005 007 (20 mg free base) (28 mg free base) Ingredient Name % (w/w) Ondansetron HCl 6.64 9.30 9.30 9.30 Methocel K4M 26.70 41.30 34.30 30.00 premium DC Sodium dihydrogen 13.35 13.55 13.35 13.35 citrate anhydrous Microcrystalline 52.78 35.52 42.52 46.82 Cellulose type 102 (TABULOSE ®-102) Magnesium stearate 0.53 0.53 0.53 0.53 (Ligamed MF-2-V) Total 100.0 100.0 100 100.0
  • Table 3 presents the dry blend direct compression composition of core tablet 8 mg of Ondansetron free base formulation assessed to be chronodosed coated.
  • a dry blend was processed using a PK Blend Master laboratory blender (Patterson-Kelly, East Stroudsburg, Pa., USA) equipped with 1.5 L V-blender capacity for the laboratory scale formulation L004-04001 to -04008 (Tables 4A and 4B and Tables 5A and 5B respectively). All the materials were screened separately through a 30 mesh hand screen, charged into the V-blender and mixed for 15 minutes at 25 rpm without the lubricant which was then added and mixed for 3 additional minutes. The same blending method was applied to the lots -04002, -04004, -04006 and -04004 intended to be chronodosed coated.
  • the extended release bimodal tablet and chronodosed formulations processes flow are presented in FIG. 1 and FIG. 2 respectively.
  • the compression trials of lots L004-04001, -04001A, -04005 and -04007 extended release formulation were performed using a hydraulic laboratory hand press with 10.0 mm diameter standard concave round tooling while the lot -04003 the compression was conducted using a 6 stations rotary tablet press machine type PR6 (SVIAC, Antony, France) equipped with a gravity powder feeder with 8.0 ⁇ 16.0 ⁇ 2.0 deep oval concave ‘D’ type tooling.
  • the core tablets -04007B were also compressed using 6 stations rotary tablet press machine type PR6 with 7.0 ⁇ 14.0 mm ‘D’ type tooling model capsule with the number “20” embedded in upper punch.
  • the core tablets L004-04002, -04002C, -04004, -04006 and -04008 intended to be chronodosed coated were also compressed using also the SVIAC with 6.0 mm round standard concave ‘D’ type tooling.
  • Seal, enteric and immediate release layer coating for bimodal drug product from formulations L004-04001, -04001A, -04003, -04007A, -04007B, -04009A and -04009B as well as for chronodosed film coating for drug products from formulation -04002, -04004, -04006 and -04008 were performed using an Aeromatic-Fielder fluid bed laboratory unit (model Strea-1, Columbia, Md., USA) equipped with a Wurster column. The coating suspensions were sprayed using a Cole-Parmer peristaltic pump (model 77521-40, Vernon Hills, Ill., USA) with Masterflex tubing #16.
  • Aqueous coating composition for the seal and enteric coat, as well as for the immediate release layer applied on sustained release enteric coated tablets can be found in Tables 6, 7 and 8 respectively.
  • the core tablets 28 mg from the first compression trial of extended release formulation -04005 were not coated. They were intended to evaluate and compare the dissolution profile in pH 6.8 medium against those of -04003.
  • Table 9 displays different composition of diverse chronodosed aqueous coat suspension trials applied on the 8 mg core tablet.
  • the coat suspension trials #1 and #2 were formulated without talk.
  • Trials #3, #4, #7 and #9 included 5.88% of talk while for the trials #5 and #6, the talc ratio was reduced down to 1%.
  • a mixture of Eudragit® polymers (a methacrylic acid-alkyl acrylate copolymer) was tested.
  • the Eudragit® polymers are selected from the group consisting of methacrylic acid-alkyl acrylate copolymers with alkaline groups, such as Eudragit® RL and RS polymers.
  • a mixture of Eudragit® RL and Eudragit® RS is used.
  • the ratio of Eudragit® RS to Eudragit® RL is 8 to 2. In an embodiment, the ratio of Eudragit® RS to Eudragit® RL is 6 to 4. In an embodiment, the ratio of Eudragit® RS to Eudragit® RL is 7 to 3.
  • the seal aqueous coating solution of 6.12% w/w was manufactured by dissolving the METHOCELTM E5 in water, then adding the plasACRYLTM using a marine propeller ( ⁇ 50.0 mm of diameter) as shown in FIG. 3 .
  • Table 10 presents the seal coating process parameters.
  • the inlet air temperature was set at 46° C.
  • a 24.58% w/w aqueous enteric coating system was used and prepared by mixing the water, triethyl citrate and plasACRYLTM using also a marine propeller ( ⁇ 50.0 mm of diameter) as shown in FIG. 4 .
  • the EUDRAGIT® dispersion was added; the suspension was mixed for 30 minutes at 400 rpm then screened through a 60 mesh screen.
  • the enteric coating parameters are reported in Table 11. During the final drying stage, the inlet air temperature was set at 46° C.
  • a 6.18% w/w aqueous active suspension was prepared by first dissolving the METHOCELTM E5 in water half of water to be used, and separately dispersing the ondansetron in water into the remaining water and stirring at high speed (750-950 rpm) using the 50.0 mm diameter marine propeller for 90 minutes.
  • the METHOCELTM solution was then added to the drug suspension, and finally the plasACRYLTM was added as presented in FIG. 5 .
  • the enteric coating parameters are reported in Table 12.
  • the inlet air temperature was set at 46° C. for -04001 and maintained at 56-58° C. for -04001A and -04003 as well as subsequent bimodal tablets formulations.
  • the Table 13 presents chronodose coating parameters. From the chronodosed drug product L004-04002D to -04008B, a curing process step by spraying a few amount of purified water equivalent to around a quarter of total chronodosed aqueous suspension applied or to half (when very few quantity of chronodosed aqueous was applied) at 50° C. outlet temperature was added immediately before final drying phase as recommended by Eudragit Evonik supplier. However, for 04006E and 04008A, the curing step was not performed to evaluate the impact of curing on coated tablets.
  • the dry blend DC of extended release core tablet formulation L004-04001, -04003, -04005 and -04007 were prepared with 6.64% and 9.30% of API load respectively while the chronodose core formulation 04002, 04004, 04006 and 04008 was manufactured with 12.44% of API load. All the formulations generated a high yield of 99.6% or more from laboratory batches size of 0.1 kg.
  • Tables 14 and 15 summarizes embodiments of different formulations developed.
  • FIG. 8 presents comparison dissolution profiles of Ondansetron bimodal round convex 28 mg tablets lots -04001 and -04001A compressed at low and high hardness respectively, and the oval convex tablets 36 mg lot -04003.
  • FIG. 10 presents comparison dissolution profiles of Ondansetron core tablets -04007 28 mg and bimodal -04007A. It appeared that the coating had a real impact on dissolution profiles.
  • FIG. 11 presents comparison dissolution profiles in mg of Ondansetron bimodal from formulations -04001, -04003, and -04007.
  • Drug products -04001, -04001A and -04007A were compressed with 10.0 mm round convex standard toolings while the lot -04003 was compressed with Oval, concave, (8.0 ⁇ 16.0 ⁇ 2.0 mm) and the lot -04007B with Oblong, Capsule, (7.0 ⁇ 14.0 mm upper Emb. “20”).
  • lots 04007A (24.4 kP hardness value) and -04007B (20.2 kP hardness value) showed the highest API mg dissolved slightly over 30 mg out of 36 mg expected.
  • lot -04007B showed faster dissolution profile compared to that of -04007A.
  • FIG. 14 presents comparison dissolution profiles in percentage of Ondansetron bimodal from formulations showed above in FIG. 11 with corrected values of the expected results taking into consideration the actual average core tablet weight of 360.0 mg.
  • Lot -04009A (with 12.6 kP hardness value) and 04009B (16.7 kP hardness value) were compressed using oval concave new toolings (7.6 ⁇ 14.0 mm) with an average core tablet weight of 376.40 mg and to 386.87 mg respectively.
  • the compression force increased five times from 400 Kgf to 2200 Kgf for lots 04009A and 04009B, respectively, suggesting a plastic deformation of the tablet core at higher hardness that could explain the faster release.
  • FIG. 12 presents the dissolution profiles in mg/time of the bimodal drug products 04003, 04007A, 04007B, 04009A and 04009B. More than 32 mg out of 36 mg expected were recovered from bimodal tablet 04009B, slightly better than the lot 04007B but a little bit faster.
  • FIG. 13 shows same results in percentage dissolved.
  • FIG. 15 presents comparison dissolution profiles of chronodosed round convex tablets, 8 mg *04002D and *04002D-04002HC using coating composition trial #1 (EUDRAGIT® RS/RL ratio: 3-7); -04002E using coating composition trial #2 (EUDRAGIT® RS/RL ratio: 7-3), -04002F using coating composition trial #3 (EUDRAGIT® RS/RL ratio: 9-1) and -04002J using coating composition trial #4 (EUDRAGIT® RS/RL ratio: 8-2).
  • the formulation -04002 was formulated with only MCC-102 as filler and showed a core disintegration time over 15 minutes.
  • FIG. 16 displays comparison dissolution profiles of chronodosed round convex tablets, 8 mg from formulation -04004 prepared with MCC-102 and Tablettose 80 with a core disintegration time less than 8 minutes.
  • the lots -04004A and -04004B were chronodose coated using coating composition trial #5 (EUDRAGIT® RS/RL ratio: 8-2 and 1% of talk) for a weight gain of 4.9 and 11.0% respectively while the lots -04004C and -04004D were coated using coating composition trial #6 (EUDRAGIT® RS/RL ratio: 6-4 with 1% of talk) with a weight gain of 4.9 and 10.1%. All the four lots showed a fast dissolution profiles during the first 3 hours but failed to release more than 75% over 36 hours. For an unknown reason, the lot -04004D with double weight gain compared to the lot -04004C showed faster dissolution profile.
  • FIG. 17 displays comparison dissolution profiles of chronodosed round convex tablets, 8 mg from formulation -04006 prepared with MCC-102, TABLETOSSE® 80 and 4% of sodium starch glycolate as disintegrant and whose core disintegration time was less than 2 minutes.
  • the lots -04006A and -04006B were chronodose coated using coating composition trial #4 as per -04002J, (EUDRAGIT® RS/RL ratio: 8-2 and 5.9% of talk) for a weight gain of 4.8 and 9.8% respectively while the lots -04006C and -04006D were coated using coating composition trial #7 (EUDRAGIT® RS/RL ratio: 7-3 with 5.9% of talk) with a weight gain of 4.9 and 9.8%.
  • the maximum API released over 36 hours was 40% for -04006C.
  • FIG. 18 displays comparison dissolution profiles of chronodosed round convex tablets, 8 mg from formulation -04008 prepared same excipient as per -04006 but with increased sodium starch glycolate up to 8% and for which the core disintegration time was less than 1 minutes.
  • the lots 04008A and -04008B were chronodose coated using coating composition trial #8 (EUDRAGIT® RS/RL ratio: 6-4 and 5.9% of talk) for a weight gain of 10.1%.
  • the only difference between both lots in formulation process was that the lot -04008A was not cured after chronodose film coating.
  • the dissolution profiles of both lots were almost similar.
  • dissolution profile improved but still not reached over 40% over 36 hours.
  • a pharmaceutical formulation of the present invention combines a first component selected from the group consisting of lots L004-04001, -04001A, -04003, -04007, -04007A, -04007B, -04009A, -04009B) with a second component selected from the group consisting of lots L004-04002A, -04002B, -04002C, -04002D, -04002E, -04002F, -04002G, -04002H, -040021, -04002J, -04004A, -04004B, -04004C, -04004D, -04006A, -04006B, -04006C, -04006D, -04006E, -04006F, -04008A, -04008B) to result in a multi-phase product.
  • a pharmaceutical formulation of the present invention combines lot L004-04007A with lot L004-04002J to result in a multi-phase product.
  • FIGS. 19 and 20 show dissolution curves in % and mg dissolved, respectively, up to 48 hours combining 36 mg lot L004-04007A with 8 mg lot L004-04002J within the same vessels for a total of 44 mg instead of 48 mg. The chronodose contribution to further increase the dissolution after 36 hours can be appreciated versus the plateau observed for the CR formulation.
  • a pharmaceutical formulation of the present invention includes a first component and a second component that are compressed together (an over compression). In an embodiment, a pharmaceutical formulation of the present invention includes a first component and a second component that are two separate units. In an embodiment, the pharmaceutical formulation is a granule or a microgranule. In an embodiment, the pharmaceutical formulation is a sachet. In an embodiment, the pharmaceutical formulation is a tablet or a mini-tablet. In an embodiment, the pharmaceutical formulation is a capsule. In an embodiment, the pharmaceutical formulation is a pellet or micropellet. In an embodiment, the single dosage form is a caplet or a mini-caplet. In an embodiment, the pharmaceutical formulation is a suppository.
  • the dose is chosen to achieve similar exposure as with the marketed immediate-release formulation (Zofran® 8 mg) when administered three-time daily.
  • Subjects will fast overnight for at least 10 hours prior to morning drug administration.
  • Fasting will continue for at least 4 hours following morning drug administration, after which a standardized lunch will be served.
  • the lunch should be completed no later than 5 hours following morning drug administration. All meals will be served at appropriate times thereafter, but not before 9 hours after morning drug administration.
  • the supper will not be served before 11 hours after the morning drug administration and should be completed no later than 13 hours following morning drug administration.
  • a light snack will be completed no later than 13 hours after the morning drug administration. Water will be allowed ad libitum until 1 hour pre-dose and beginning 1 hour after each drug administration.
  • Blood samples for pharmacokinetic measurements will be collected prior to and up to 32 hours (serial sampling) after each morning drug administration.
  • the direct measurements of this study will be the plasma concentrations of ondansetron. These concentrations will be obtained by analysis of the plasma derived from blood samples drawn during this study.
  • the total volume of blood collected per subject (639 mL for males and 653 mL for females) will be considered to have a negligible or no impact on the pharmacokinetic profiles of the drugs and the assessment of bioequivalence. Furthermore, it is considered to have a negligible impact on subjects' safety.
  • the primary objective of this study will be to compare the relative bioavailability and peak and trough concentrations between two FDA approved regimens of commercially available ondansetron 8 mg immediate-release tablet (twice daily Zofran® 8 mg regimen administered for two days and a single dose of Zofran® 24 mg regimen administered as three Zofran® 8 mg tablets taken together), and Test Product 1 of ondansetron 36 mg extended-release tablet of the present invention (administered once daily) and Test Product 2 of a combination of ondansetron 36 mg extended-release component with 8 mg chronodosed component (multi-phase product) of the present invention (administered once daily). Secondary objectives of the study will be:
  • Subjects should be in good health as determined by a medical history, complete physical examination (including vital signs), 12-lead Electrocardiogram (ECG) and the usual clinical laboratory tests (general biochemistry, hematology, urinalysis) including negative Human Immunodeficiency Virus (HIV), Hepatitis B and Hepatitis C tests as well as negative urine drug screening of alcohol, cotinine and drugs of abuse and negative beta Human Chorionic Gonadotropin (HCG) qualitative serum pregnancy test (for female subjects).
  • ECG Electrocardiogram
  • HAV Human Immunodeficiency Virus
  • HCV Human Immunodeficiency Virus
  • HCG Human Chorionic Gonadotropin
  • Dosage form/Route of administration A bimodal tablet of the present invention (Electrolyte CDT Core)/Oral (“Test Product 1”) Regimen for Treatment-1: Single 36 mg dose (1 ⁇ 36 mg) once daily for 5 consecutive days
  • Dosage form/Route of administration A multi-phase product administered as a capsule, caplet or suppository of the present invention (Electrolyte CDT Core/Chronodosed)/Oral (“Test Product 2”) Regimen for Treatment-1: Single 36 mg dose (1 ⁇ 36 mg) once daily for 5 consecutive days
  • Concentrations of ondansetron over time after dosing with the Test formulations will be compared with those after dosing with the reference regimens.
  • a single 24 mg dose of immediate release ondansetron will be considered effective for prevention of nausea and vomiting from highly emetogenic cancer chemotherapy, and twice daily 8 mg dosing will be considered effective for moderately emetogenic chemotherapy. Therefore, if the concentration of ondansetron after dosing with test formulations is found to be similar to or higher than that after dosing with one or both of the reference regimens at most time points over the first 24-hour period studied, one can conclude that the Test products will be at least as effective treatment with the existing regimens for moderately emetogenic cancer chemotherapy.
  • a pharmaceutical formulation includes (1) a first dosage component comprising: a core comprising a non-ionic polymer matrix providing sustained release, a first amount of ondansetron or an equivalent amount of an ondansetron salt thereof dispersed within the matrix, and an electrolyte dispersed within the matrix; a first seal coat surrounding the core, the first seal coat comprising a non-ionic polymer matrix; and an immediate release drug layer surrounding the first seal coat, wherein the immediate release drug layer comprises a non-ionic polymer and a second amount of ondansetron or an equivalent amount of an ondansetron salt thereof dispersed therein; and (2) a second dosage component comprising: a core comprising a third amount of ondansetron or an equivalent amount of an ondansetron salt thereof, at least one filler, and a lubricant; and a coating surrounding the core, the coating comprising water and a mixture of methacrylic acid-alkyl acrylate copolymers with alkaline groups.
  • the coating of the second dosage component comprises: from about 30% (w/w) to about 55% (w/w) of purified water; from about 25% (w/w) to about 45% (w/w) of Eudragit® RS 30D; from about 3.0% (w/w) to about 25% (w/w) of Eudragit® RL 30D; and from about 1.0% (w/w) to about 6.0% (w/w) of talc.
  • the pharmaceutical formulation is sufficiently designed to meet the two stage test dissolution profile in a basket apparatus: (a) release of not more than 25% of the total amount of ondansetron in 2 hours in an acid stage comprising 900 ml 0.1N HCl at 50 rpm; and (b) release of not less than 40% of the total amount of ondansetron in 30 hours in 900 ml phosphate buffer pH 6.8 at 50 rpm following the acid stage.
  • a pharmaceutical preparation includes a plurality of the pharmaceutical formulations of the present invention each in a discrete sealed housing, and instructions for administering the pharmaceutical formulations orally to effect prevention of nausea and vomiting.
  • a method for reducing side effects of chemotherapy treatment includes administering a pharmaceutical formulation of the present invention to a patient, wherein side effects including nausea and vomiting are reduced after an amount of ondansetron has been released from the pharmaceutical formulation, is absorbed by the patient, and reaches the systemic circulation of the patient.
  • a pharmaceutical formulation in an embodiment includes a core comprising a non-ionic polymer matrix, a first amount of a first antiemetic drug or a pharmaceutically acceptable salt thereof dispersed within the matrix, and a salt dispersed within the matrix; a first seal coat surrounding the core, wherein the first seal coat is comprised of a non-ionic polymer matrix; and an immediate release drug layer surrounding the first seal coat, wherein the immediate release drug layer comprises a non-ionic polymer and a second amount of a second antiemetic drug or a pharmaceutically acceptable salt thereof dispersed therein, wherein the drug layer is sufficiently designed to release the second amount of the antiemetic drug over a period of at least 1 hour, wherein the pharmaceutical formulation is sufficiently designed to release the first amount of the first antiemetic drug and the second amount of the second antiemetic drug over a minimum period of 16 hours.
  • the pharmaceutical formulation further includes an enteric coating surrounding the first seal coat.
  • the pharmaceutical formulation further includes a second seal coat surrounding the immediate release drug layer, wherein the second seal coat is comprised of a non-ionic polymer.
  • the first seal coat further comprises a coating additive such as plasACRYLTM.
  • the salt in the core is dispersed in the matrix at a concentration in the range of 50% to 100% by weight of the matrix.
  • the salt upon exposure of the pharmaceutical formulation to an aqueous medium, causes a hardened boundary around the periphery of the matrix, the boundary sequentially progressing inwardly toward the center thereof as the aqueous medium permeates the matrix, the hardened boundary limiting the rate at which the antiemetic drug in the matrix is released from the tablet.
  • the pharmaceutical formulation is sufficiently designed to release the first amount of the antiemetic drug and the second amount of the antiemetic drug over a minimum period of 20 hours. In an embodiment, the pharmaceutical formulation is sufficiently designed to release the first amount of the antiemetic drug and the second amount of the antiemetic drug over a minimum period of 24 hours.
  • first antiemetic drug and the second antiemetic drug are the same drug. In an embodiment, the first antiemetic drug and the second antiemetic drug are each ondansetron or an equivalent amount of an ondansetron salt thereof.
  • a pharmaceutical formulation in an embodiment, includes a core comprising hypromellose, 18 mg of ondansetron or an equivalent amount of an ondansetron salt thereof, and sodium citrate anhydrous; a first seal coat surrounding the core and comprising hypromellose; and an immediate release drug layer surrounding the first seal coat and comprising hypromellose and 6 mg of ondansetron or an equivalent amount of an ondansetron salt thereof, the immediate release drug layer sufficient to release the ondansetron over a period of at least 1 hour, wherein the total amount of ondansetron in the dosage form is released over 24 hours.
  • the pharmaceutical formulation further includes an enteric coating surrounding the first seal coat.
  • the pharmaceutical formulation further includes a second seal coat surrounding the immediate release drug layer, wherein the second seal coat is comprised of a non-ionic polymer.
  • the first seal coat further comprises a coating additive such as plasACRYLTM.
  • the sodium citrate anhydrous in the core is dispersed in the hypromellose at a concentration in the range of 50% to 100% by weight of the hypromellose.
  • the sodium citrate anhydrous upon exposure of the pharmaceutical formulation to an aqueous medium, causes a hardened boundary around the periphery of the hypromellose, the boundary sequentially progressing inwardly toward the center thereof as the aqueous medium permeates the hypromellose, the hardened boundary limiting the rate at which the ondansetron in the hypromellose is released from the tablet.
  • the pharmaceutical formulation when the pharmaceutical formulation is administered to a patient in a fasting state, achieves a C max of at least 50 ng/ml.
  • the pharmaceutical formulation when the pharmaceutical formulation is administered to a patient in a fasting state, achieves AUC of at least 600 nghr/ml.
  • a pharmaceutical formulation in an embodiment includes a core comprising a non-ionic polymer matrix, a first amount of ondansetron or an equivalent amount of an ondansetron salt thereof dispersed within the matrix, and a salt dispersed within the matrix; a first seal coat surrounding the core, wherein the first seal coat is comprised of a non-ionic polymer matrix; and an immediate release drug layer surrounding the first seal coat, wherein the immediate release drug layer comprises a non-ionic polymer and a second amount of ondansetron or an equivalent amount of an ondansetron salt thereof dispersed therein, wherein the pharmaceutical formulation results in an in vitro ondansetron dissolution profile when measured in a type 2 paddle dissolution apparatus at 37° C.
  • the pharmaceutical formulation when the pharmaceutical formulation is administered to a patient in a fasting state at a dose of 24 mg ondansetron, achieves a C max of at least 50 ng/ml.
  • when the pharmaceutical formulation is administered to a patient in a fasting state at to dose of 24 mg ondansetron achieves AUC of at least 600 nghr/ml.
  • a pharmaceutical preparation includes a plurality of any of the pharmaceutical formulations of the present invention each in a discrete sealed housing, and instructions for administering the pharmaceutical formulations orally to effect prevention of nausea and vomiting.
  • a unit dosage form for oral administration to a patient that is sufficiently designed for preventing nausea and vomiting in the patient, includes a combination of an immediate release ondansetron component containing a unit dosage of ondansetron or a pharmaceutically acceptable salt thereof in the range of 4 mg to 8 mg; and a controlled release ondansetron component containing a unit dosage of ondansetron or a pharmaceutically acceptable salt thereof in the range of 16 mg to 28 mg, the controlled release ondansetron component comprising a non-ionic polymer matrix, the ondansetron within the matrix, and a salt dispersed within the matrix, and wherein the unit dosage form exhibits a maximum plasma concentration (Cmax) at about 2 to about 5 hours (Tmax) after administration and exhibits a comparable Cmaxto a non-controlled release ondansetron formulation administered three times per day without decreasing total drug exposure defined by the area under the concentration-time curve (AUC), thereby enabling reduction of concentration-dependent side effects without a decrease in efficacy.
  • a packaged pharmaceutical preparation includes a plurality of the unit dosage forms of the present invention can be contained within a sealed container and include instructions for administering the dosage forms orally to effect prevention of nausea and vomiting.
  • a packaged pharmaceutical preparation includes a plurality of the unit dosage forms of the present invention can be contained within a discrete sealed housing and include instructions for administering the dosage forms orally to effect prevention of nausea and vomiting.
  • a method for preventing nausea and vomiting includes the step of administering a therapeutically-effective amount of a solid oral dosage form or a unit dosage form of the present invention to a patient.
  • a once-a-day composition includes: (a) a core comprising a non-ionic polymer matrix, a first amount of ondansetron or an equivalent amount of an ondansetron salt dispersed within the matrix, and a salt dispersed within the matrix; (b) a first seal coat surrounding the core, wherein the first seal coat is comprised of a non-ionic polymer matrix; and (c) an immediate release drug layer surrounding the enteric coating, wherein the immediate release drug layer comprises a non-ionic polymer and a second amount of ondansetron or an equivalent amount of an ondansetron salt dispersed therein, wherein the immediate release drug layer is sufficiently designed to release the second amount of ondansetron over a period of at least 1 hour, wherein the immediate release drug layer releases the second amount of ondansetron in the upper gastrointestinal tract of a human patient, wherein the core releases the first amount of ondansetron in the lower gastrointestinal tract of a human patient, wherein the composition is
  • the once-a-day composition when administered once-a-day to a human in a fasted state, is bioequivalent to administration to a human in a fasted state, three-times-a-day, a unit dosage form comprising 8 mg ondansetron.
  • the bioequivalency is established by a 90% Confidence Interval of between 0.80 and 1.25 for both C max and AUC, when administered to a human.
  • solubility and dissolution characteristics are pH-independent.
  • the core has a pH-independent dissolution release profile over a pH range of 1.2-6.8.
  • each of the core and the immediate release drug layer have a pH-independent dissolution release profile over a pH range of 1.2-6.8.
  • each of the core and the immediate release drug layer are surrounded by a seal coat comprised of a non-ionic polymer which increases hydrophilicity of the composition and as a result the dissolution profile of the composition is pH-independent.
  • a solid oral dosage form includes: a core comprising hypromellose, 28 mg of ondansetron or an equivalent amount of an ondansetron salt thereof, and sodium citrate anhydrous; a first seal coat surrounding the core and comprising hypromellose; and an immediate release drug layer surrounding the first seal coat and comprising hypromellose and 8 mg of ondansetron or an equivalent amount of an ondansetron salt thereof, the immediate release drug layer sufficient to release the ondansetron over a period of at least 1 hour, wherein the total amount of ondansetron in the dosage form is released over a minimum period of 16 hours.
  • the solid oral dosage form is sufficiently designed to release the ondansetron over a minimum period of 20 hours.
  • the solid oral dosage form is sufficiently designed to release the ondansetron over a minimum period of 26 hours. In an embodiment, the solid oral dosage form is sufficiently designed to release the ondansetron over a minimum period of 30 hours. In an embodiment, the solid oral dosage form is sufficiently designed to release the ondansetron over a minimum period of 36 hours. In an embodiment, the solid oral dosage form further comprises an enteric coating surrounding the first seal coat. In an embodiment, the solid oral dosage form further comprises a second seal coat surrounding the immediate release drug layer, wherein the second seal coat is comprised of a non-ionic polymer. In an embodiment, the first seal coat further comprises a coating additive such as plasACRYLTM.
  • a packaged pharmaceutical preparation includes a plurality of the solid oral dosage forms of the present invention can be contained within a sealed container and include instructions for administering the dosage forms orally to effect prevention of nausea and vomiting.
  • a packaged pharmaceutical preparation includes a plurality of the solid oral dosage forms of the present invention can be contained within a discrete sealed housing and include instructions for administering the dosage forms orally to effect prevention of nausea and vomiting.
  • a method for preventing nausea and vomiting includes the step of administering a therapeutically-effective amount of a solid oral dosage form of the present invention a patient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hospice & Palliative Care (AREA)
  • Otolaryngology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
US14/212,954 2013-03-14 2014-03-14 Antiemetic extended release solid dosage forms Abandoned US20140271851A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/212,954 US20140271851A1 (en) 2013-03-14 2014-03-14 Antiemetic extended release solid dosage forms
US15/678,386 US20180028452A1 (en) 2013-03-14 2017-08-16 Antiemetic extended release solid dosage forms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361782395P 2013-03-14 2013-03-14
US14/212,954 US20140271851A1 (en) 2013-03-14 2014-03-14 Antiemetic extended release solid dosage forms

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/678,386 Continuation US20180028452A1 (en) 2013-03-14 2017-08-16 Antiemetic extended release solid dosage forms

Publications (1)

Publication Number Publication Date
US20140271851A1 true US20140271851A1 (en) 2014-09-18

Family

ID=51528070

Family Applications (5)

Application Number Title Priority Date Filing Date
US14/212,954 Abandoned US20140271851A1 (en) 2013-03-14 2014-03-14 Antiemetic extended release solid dosage forms
US14/212,694 Active 2034-05-21 US9636305B2 (en) 2013-03-14 2014-03-14 Antiemetic extended release solid dosage forms
US15/466,214 Abandoned US20170189340A1 (en) 2013-03-14 2017-03-22 Antiemetic extended release solid dosage forms
US15/678,386 Abandoned US20180028452A1 (en) 2013-03-14 2017-08-16 Antiemetic extended release solid dosage forms
US16/918,538 Abandoned US20200330392A1 (en) 2013-03-14 2020-07-01 Bimodal release ondansetron tablets and methods of treating nausea and vomiting

Family Applications After (4)

Application Number Title Priority Date Filing Date
US14/212,694 Active 2034-05-21 US9636305B2 (en) 2013-03-14 2014-03-14 Antiemetic extended release solid dosage forms
US15/466,214 Abandoned US20170189340A1 (en) 2013-03-14 2017-03-22 Antiemetic extended release solid dosage forms
US15/678,386 Abandoned US20180028452A1 (en) 2013-03-14 2017-08-16 Antiemetic extended release solid dosage forms
US16/918,538 Abandoned US20200330392A1 (en) 2013-03-14 2020-07-01 Bimodal release ondansetron tablets and methods of treating nausea and vomiting

Country Status (19)

Country Link
US (5) US20140271851A1 (he)
EP (1) EP2983664B1 (he)
JP (1) JP6282676B2 (he)
KR (1) KR102270521B1 (he)
CN (2) CN112274489A (he)
AU (1) AU2014264342B2 (he)
BR (1) BR112015022398B1 (he)
CA (1) CA2905553C (he)
CL (1) CL2015002666A1 (he)
ES (1) ES2946985T3 (he)
HK (1) HK1223012A1 (he)
IL (1) IL241580B (he)
MX (1) MX2015012970A (he)
NZ (1) NZ712159A (he)
PH (1) PH12015502093A1 (he)
RU (1) RU2679448C2 (he)
SG (1) SG11201507450TA (he)
WO (2) WO2014184662A2 (he)
ZA (1) ZA201506961B (he)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9522119B2 (en) 2014-07-15 2016-12-20 Isa Odidi Compositions and methods for reducing overdose
US9636305B2 (en) 2013-03-14 2017-05-02 Redhill Biopharma Ltd. Antiemetic extended release solid dosage forms
US9675588B2 (en) 2014-03-11 2017-06-13 Redhill Biopharma Ltd. Ondansetron extended release solid dosage forms for treating either nausea, vomiting or diarrhea symptoms
US11969416B1 (en) * 2022-11-03 2024-04-30 Lumos Pharma, Inc. Compactable oral formulations of ibutamoren

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102300335B1 (ko) * 2018-10-19 2021-09-10 주식회사 삼양홀딩스 아프레피탄트의 경구용 조성물

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720353A (en) * 1987-04-14 1988-01-19 Richardson-Vicks Inc. Stable pharmaceutical w/o emulsion composition
US20020044962A1 (en) * 2000-06-06 2002-04-18 Cherukuri S. Rao Encapsulation products for controlled or extended release
US20020071863A1 (en) * 1999-12-09 2002-06-13 Dong Liang C. Antiviral medication
US6500457B1 (en) * 2000-08-14 2002-12-31 Peirce Management, Llc Oral pharmaceutical dosage forms for pulsatile delivery of an antiarrhythmic agent
WO2003013482A1 (en) * 2001-08-03 2003-02-20 Strakan Group Limited Transdermal delivery of 5-ht3 antagonists
US6733789B1 (en) * 1999-01-21 2004-05-11 Biovail Laboratories, Inc. Multiparticulate bisoprolol formulation
US20050287211A1 (en) * 2004-04-30 2005-12-29 Astellas Pharma Inc. Oral pharmaceutical compositions in timed-release particle form and fast-disintegrating tablets containing this composition
US20070190141A1 (en) * 2006-02-16 2007-08-16 Aaron Dely Extended release opiate composition
US20080004260A1 (en) * 2006-06-29 2008-01-03 Transcept Pharmaceuticals, Inc. Compositions of 5-HT3 antagonists and dopamine D2 antagonists for treatment of dopamine-associated chronic conditions
US20100028420A1 (en) * 2006-12-22 2010-02-04 3M Innovative Properties Company Controlled release composition and process
US20100196291A1 (en) * 2009-01-30 2010-08-05 Laurence Halimi Personal care sunscreen compositions having reduced eye irritation
US20120010213A1 (en) * 2009-03-04 2012-01-12 Fdc Limited Oral controlled release dosage forms for water soluble drugs

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090411A (en) 1998-03-09 2000-07-18 Temple University Monolithic tablet for controlled drug release
WO2003024427A1 (en) 1999-12-20 2003-03-27 Temple University Of The Commonwealth System Of Higher Education Tableted oral extended release dosage form
US6936275B2 (en) 1999-12-20 2005-08-30 Scolr, Inc. Amino acid modulated extended release dosage form
US20020172712A1 (en) 2001-03-19 2002-11-21 Alan Drizen Antiemetic, anti-motion sustained release drug delivery system
GB0129489D0 (en) * 2001-12-10 2002-01-30 Quadrant Healthcare Uk Ltd Sustained-release compositions
US20050131045A1 (en) * 2002-04-30 2005-06-16 Judith Aronhime Novel crystal forms of ondansetron, processes for their preparation, pharmaceutical, compositions containing the novel forms and methods for treating nausea using them
US7704527B2 (en) * 2002-10-25 2010-04-27 Collegium Pharmaceutical, Inc. Modified release compositions of milnacipran
US20040147510A1 (en) 2003-01-13 2004-07-29 Dynogen Pharmaceuticals, Inc. Method of treating nausea, vomiting, retching or any combination thereof
ATE552838T1 (de) 2003-11-14 2012-04-15 Senju Pharma Co Wässrige lösung mit aminoglykosid-antibiotikum und bromfenac
CA2590802A1 (en) * 2004-12-20 2006-06-29 Collegium Pharmaceutical, Inc. Pharmaceutical compositions for sleep disorders
WO2007073702A2 (es) * 2005-12-29 2007-07-05 Osmotica Corp. Comprimido multicapa con combinación de triple liberación
CN101484147B (zh) 2006-08-18 2015-07-08 赢创罗姆有限责任公司 对于具有水中良好溶解性的活性成分具有受控的活性成分释放性的药物组合物
CN100584319C (zh) 2006-10-16 2010-01-27 北京科信必成医药科技发展有限公司 群孔释放渗透泵控释片及其制备方法
CN101528205A (zh) 2006-10-25 2009-09-09 麦克内尔-Ppc股份有限公司 布洛芬组合物
GB0624087D0 (en) 2006-12-01 2007-01-10 Selamine Ltd Ramipril combination salt
WO2009118763A1 (en) * 2008-03-28 2009-10-01 Panacea Biotec Limited Multilayered pharmaceutical compositions and processes thereof
US20110003005A1 (en) * 2009-07-06 2011-01-06 Gopi Venkatesh Methods of Treating PDNV and PONV with Extended Release Ondansetron Compositions
RU2427389C2 (ru) * 2009-10-09 2011-08-27 Александр Владимирович Диковский Фармацевтическая композиция для профилактики и лечения инфекционных и неинфекционных диарей
EP2506714A4 (en) * 2009-11-30 2013-07-03 Aptalis Pharmatech Inc MOUTH ONDANSETRON TABLET COMPOSITIONS TO PREVENT EVIL AND CRUSH
WO2011077451A2 (en) * 2009-12-22 2011-06-30 Abbott Healthcare Private Limited Controlled release pharmaceutical composition
EP2519226A1 (en) 2009-12-28 2012-11-07 MonoSol Rx, LLC Orally administrable film dosage forms containing ondansetron
JP2013536832A (ja) 2010-08-30 2013-09-26 ルピン・リミテッド ミルナシプランの制御放出医薬組成物
US20120128730A1 (en) 2010-11-23 2012-05-24 Nipun Davar Compositions and methods for once-daily treatment of obsessive compulsive disorder with ondansetron
SG11201507450TA (en) 2013-03-14 2015-10-29 Redhill Biopharma Ltd Antiemetic extended release solid dosage forms

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720353A (en) * 1987-04-14 1988-01-19 Richardson-Vicks Inc. Stable pharmaceutical w/o emulsion composition
US6733789B1 (en) * 1999-01-21 2004-05-11 Biovail Laboratories, Inc. Multiparticulate bisoprolol formulation
US20020071863A1 (en) * 1999-12-09 2002-06-13 Dong Liang C. Antiviral medication
US20020044962A1 (en) * 2000-06-06 2002-04-18 Cherukuri S. Rao Encapsulation products for controlled or extended release
US6500457B1 (en) * 2000-08-14 2002-12-31 Peirce Management, Llc Oral pharmaceutical dosage forms for pulsatile delivery of an antiarrhythmic agent
WO2003013482A1 (en) * 2001-08-03 2003-02-20 Strakan Group Limited Transdermal delivery of 5-ht3 antagonists
US20050287211A1 (en) * 2004-04-30 2005-12-29 Astellas Pharma Inc. Oral pharmaceutical compositions in timed-release particle form and fast-disintegrating tablets containing this composition
US20070190141A1 (en) * 2006-02-16 2007-08-16 Aaron Dely Extended release opiate composition
US20080004260A1 (en) * 2006-06-29 2008-01-03 Transcept Pharmaceuticals, Inc. Compositions of 5-HT3 antagonists and dopamine D2 antagonists for treatment of dopamine-associated chronic conditions
US20100028420A1 (en) * 2006-12-22 2010-02-04 3M Innovative Properties Company Controlled release composition and process
US20100196291A1 (en) * 2009-01-30 2010-08-05 Laurence Halimi Personal care sunscreen compositions having reduced eye irritation
US20120010213A1 (en) * 2009-03-04 2012-01-12 Fdc Limited Oral controlled release dosage forms for water soluble drugs

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Opadry YS-1-7006 Technical Data Sheet (2011) *
Pygall et al. International Journal of Pharmaceutics 2009 379:110-120 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9636305B2 (en) 2013-03-14 2017-05-02 Redhill Biopharma Ltd. Antiemetic extended release solid dosage forms
US9675588B2 (en) 2014-03-11 2017-06-13 Redhill Biopharma Ltd. Ondansetron extended release solid dosage forms for treating either nausea, vomiting or diarrhea symptoms
US9522119B2 (en) 2014-07-15 2016-12-20 Isa Odidi Compositions and methods for reducing overdose
US9700516B2 (en) 2014-07-15 2017-07-11 Isa Odidi Compositions and methods for reducing overdose
US9700515B2 (en) 2014-07-15 2017-07-11 Isa Odidi Compositions and methods for reducing overdose
US9801939B2 (en) 2014-07-15 2017-10-31 Isa Odidi Compositions and methods for reducing overdose
US10293046B2 (en) 2014-07-15 2019-05-21 Intellipharmaceutics Corp. Compositions and methods for reducing overdose
US10653776B2 (en) 2014-07-15 2020-05-19 Intellipharmaceutics Corp. Compositions and methods for reducing overdose
US11969416B1 (en) * 2022-11-03 2024-04-30 Lumos Pharma, Inc. Compactable oral formulations of ibutamoren

Also Published As

Publication number Publication date
CA2905553A1 (en) 2014-11-13
EP2983664A4 (en) 2017-01-04
US20170189340A1 (en) 2017-07-06
BR112015022398A2 (pt) 2017-07-18
BR112015022398A8 (pt) 2019-11-26
JP2016512493A (ja) 2016-04-28
SG11201507450TA (en) 2015-10-29
JP6282676B2 (ja) 2018-02-21
RU2679448C2 (ru) 2019-02-11
AU2014264342A1 (en) 2015-10-01
RU2015143993A3 (he) 2018-03-21
CN105530935A (zh) 2016-04-27
IL241580B (he) 2020-08-31
KR102270521B1 (ko) 2021-06-30
WO2014181195A3 (en) 2015-12-17
WO2014184662A3 (en) 2015-04-02
CL2015002666A1 (es) 2017-02-17
HK1223012A1 (zh) 2017-07-21
ZA201506961B (en) 2017-03-29
MX2015012970A (es) 2016-04-11
KR20150127253A (ko) 2015-11-16
ES2946985T3 (es) 2023-07-31
PH12015502093B1 (en) 2016-01-18
NZ712159A (en) 2019-12-20
CA2905553C (en) 2021-04-06
US20200330392A1 (en) 2020-10-22
AU2014264342B2 (en) 2017-05-18
US20180028452A1 (en) 2018-02-01
US20140271887A1 (en) 2014-09-18
EP2983664A2 (en) 2016-02-17
RU2015143993A (ru) 2017-04-20
BR112015022398B1 (pt) 2022-01-11
PH12015502093A1 (en) 2016-01-18
US9636305B2 (en) 2017-05-02
EP2983664B1 (en) 2023-04-19
CN112274489A (zh) 2021-01-29
WO2014181195A2 (en) 2014-11-13
WO2014184662A2 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
US20180028452A1 (en) Antiemetic extended release solid dosage forms
US20120231080A1 (en) Controlled release dosage forms
US20060193912A1 (en) Controlled release O-desmethylvenlafaxine formulations
JP2006306893A (ja) 高度に可溶性の薬物のための徐放性マトリックス系
US20200253933A1 (en) Methods for treating diarrhea predominant irritable bowel syndrome
JP6059143B2 (ja) 溶出改善されたメサラジン錠
CN107530337B (zh) 治疗方法
JP2018154586A (ja) 錠剤

Legal Events

Date Code Title Description
AS Assignment

Owner name: REDHILL BIOPHARMA LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FATHI, REZA;RADAY, GILEAD;GOSSELIN, PATRICK;AND OTHERS;SIGNING DATES FROM 20140410 TO 20140911;REEL/FRAME:034106/0526

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION