US20140134218A1 - Rinse-off skin care compositions containing cellulosic materials - Google Patents

Rinse-off skin care compositions containing cellulosic materials Download PDF

Info

Publication number
US20140134218A1
US20140134218A1 US13/799,365 US201313799365A US2014134218A1 US 20140134218 A1 US20140134218 A1 US 20140134218A1 US 201313799365 A US201313799365 A US 201313799365A US 2014134218 A1 US2014134218 A1 US 2014134218A1
Authority
US
United States
Prior art keywords
hydrophobic
rinse
particles
composition according
compositions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/799,365
Other languages
English (en)
Inventor
Patricia Bonner
Claudia Kaminski
Danielle Lima Lorenzetti
Prithwiraj Maitra
Juliana Salles Moscardi
Jeffrey M. Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Consumer Inc
Original Assignee
Johnson and Johnson Consumer Companies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/799,365 priority Critical patent/US20140134218A1/en
Application filed by Johnson and Johnson Consumer Companies LLC filed Critical Johnson and Johnson Consumer Companies LLC
Assigned to JOHNSON & JOHNSON CONSUMER COMPANIES, INC. reassignment JOHNSON & JOHNSON CONSUMER COMPANIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LORENZETTI, DANIELLE LIMA, MOSCARDI, JULIANA SALLES, MAITRA, PRITHWIRAJ, BONNER, PATRICIA, KAMINSKI, CLAUDIA, WU, JEFFREY M.
Assigned to JOHNSON & JOHNSON CONSUMER COMPANIES, INC. reassignment JOHNSON & JOHNSON CONSUMER COMPANIES, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE TITLE AS IT APPEARS ON THE ACTUAL ASSIGNMENT DOCUMENT WHICH CONTAINED A TYPOGRAPHIC ERROR PREVIOUSLY RECORDED ON REEL 030410 FRAME 0839. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECT TITLE IS ON ASSIGNMENT DOCUMENTS (NOTICE OF RECORDATION IS CORRECT). Assignors: LORENZETTI, DANIELLE LIMA, MOSCARDI, JULIANA SALLES, MAITRA, PRITHWIRAJ, BONNER, PATRICIA, KAMINSKI, CLAUDIA, WU, JEFFREY M.
Priority to CN201380058819.7A priority patent/CN104768528B/zh
Priority to IN3942DEN2015 priority patent/IN2015DN03942A/en
Priority to BR112015010395A priority patent/BR112015010395A8/pt
Priority to PCT/US2013/068694 priority patent/WO2014074581A1/en
Priority to US14/259,224 priority patent/US9549889B2/en
Publication of US20140134218A1 publication Critical patent/US20140134218A1/en
Priority to US14/521,581 priority patent/US9549890B2/en
Priority to HK15111434.4A priority patent/HK1210697A1/zh
Priority to US15/412,132 priority patent/US20170128345A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0245Specific shapes or structures not provided for by any of the groups of A61K8/0241
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/027Fibers; Fibrils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/42Amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9794Liliopsida [monocotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/008Preparations for oily skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • A61K2800/524Preservatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/59Mixtures
    • A61K2800/596Mixtures of surface active compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/61Surface treated
    • A61K2800/62Coated
    • A61K2800/624Coated by macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/70Biological properties of the composition as a whole

Definitions

  • compositions of this invention relate to rinse-off skin care compositions containing hydrophobic, linear cellulosic particles that reduce the presence of oil-related substances on skin.
  • Oily skin is shiny, thick and dull colored. Often, chronically oily skin has coarse pores and pimples and other embarrassing blemishes. Furthermore, chronically oily skin can be prone to developing blackheads. In this type of skin, the oil-producing sebaceous glands are overactive and produce more oil than is needed. The oil flows out of the follicles and gives the skin an undesirable greasy shine. The pores are enlarged and the skin has a coarse look. While oily skin is common in teenagers, it can occur at any age.
  • Oil absorbing powders such as silica, aluminum starch, and talc have been used in the cleansing products to help dry the skin surface oil, but they also tend to dry the skin and oily and shiny skin tend to come back quickly, usually in two to three hours.
  • Such benefits as reducing the appearance of oil on skin are particularly difficult to deliver out of a rinse-off composition such as a cleanser. This is due to the relatively short contact time between the application of a cleansing composition to the skin and the activity of rinsing the cleansing composition off the skin.
  • compositions and methods of treatment that address the condition of oily skin while keeping skin hydrated.
  • compositions and methods of this invention relate to a rinse-off skin care composition
  • a rinse-off skin care composition comprising hydrophobic, linear cellulose particles having an average length of from about 1 to about 1000 ⁇ m, a particle aspect ratio from about 1000 to about 2 and a thickness of from about 1 to about 500 ⁇ m; at least one cleansing agent selected from the group consisting of saponified fat and surfactants; and a cosmetically acceptable carrier.
  • FIG. 1 is a graph of Infrared spectra of various cotton particles and cellulose.
  • FIG. 2 is a graph of Infrared spectra of various solvent extracts from hydrophobic cotton particles and dimethicone.
  • FIG. 3 is a graph illustrating oil absorption rates of hydrophilic and hydrophobic cotton particles.
  • FIG. 4 is a graph of the speed of water absorption measured from various hydrophobic and hydrophilic cotton particles.
  • FIG. 5 is a graph illustrating average oil absorption capacity of various hydrophobic and hydrophilic cotton particles.
  • FIG. 6 is a graph illustrating average water absorption capacity of various hydrophobic and hydrophilic cotton particles.
  • FIG. 7 is a graph illustrating average sebum measurements of various cleanser formulations over time.
  • hydrophobic means materials having a surface contact angle with squalene of less than 40 degrees and/or a surface contact angle with water of greater than 90 degrees.
  • surface contact angle means the internal angle between a surface and a liquid droplet resting on that surface. Surface tension (liquid) or surface free energy (solid) is considered to be a resulting balance between the molecular interactions of the liquid-liquid and air-liquid or solid-solid and air-solid phase at the interfacial layer.
  • contact angle is a convenient and useful parameter to determine the surface free energy and wettability of any given solid surface due to the non-deformability of the solid.
  • the contact angle is determined by measuring the angle formed between substrate surface where a liquid droplet is placed and the tangent to the drop surface from the contact point. High contact angles correspond to poor wetting of the surface by the liquid and low contact angles signify good wetting. If a liquid spreads on the surface, the contact angle is considered to be zero and complete wetting is said to occur.
  • Contact angle measurements can be employed to determine the wettability of human skin by a variety of liquids, including hydrophobic liquids such as squalene and hydrophilic liquids, including water.
  • hydrophobic liquids such as squalene and hydrophilic liquids, including water.
  • a smaller contact angle with a non-polar liquid (such as squalene) corresponds to a more hydrophobic material while a smaller water contact angle corresponds to a more hydrophilic material.
  • the water contact angle of the hydrophobic, linear cellulose particles is preferably greater than 90 degrees, preferably greater than 100 degrees and more preferably greater than 120 degrees.
  • oil absorption capacity and retention refers to the weight percentage of the oil absorbed by the hydrophobic, linear cellulose particles useful in the compositions and methods of this invention. High oil absorption capacity and retention corresponds to an increased hydrophobic property.
  • the oil absorption capacity and retention of the hydrophobic, linear cellulose particles of the compositions of this invention is preferably from about 150 to about 500, and more preferably from about 300 to about 500 (% weight oil/weight particles).
  • particle means a small localized object to which can be ascribed physical properties such as volume or mass.
  • binder is used synonymously to “particle”, as defined herein.
  • linear particle means a particle having one dimension (“length”) that is greater than another dimension (“width”).
  • Linear particles may be measured and defined by size by subjecting such particles to analysis with respect to a series of sieves having different mesh sizes.
  • a sample of linear particles may have a distribution of particle sizes throughout the sample.
  • linear particle sizes as expressed herein are expressed as an average particle size and reflect the average length of the particles contained within the sample.
  • the size of linear particles useful in the compositions and methods of this invention is less than about 1000 ⁇ m in length, more preferably, it ranges from about 1 to about 1000 ⁇ m, and most preferably from about 10 to about 500 ⁇ m.
  • the preferred width of linear particles useful in the compositions and methods of this invention are about 5 to about 25 ⁇ m. More preferably, they are from about 5 to about 20 ⁇ m in width.
  • the term “particle aspect ratio” means the ratio of the length of a particle to its width.
  • the particle aspect ratio of the particles useful in the compositions and methods of this invention is from about 2 to about 1000. More preferably, the particle aspect ratio is from about 2 to about 500 and most preferably, from about 5 to about 200.
  • cellulose refers to a polysaccharide material consisting of long unbranched chains of linked glucose units, having the chemical structure set forth in Formula I below:
  • Cellulose materials useful in the compositions and methods of this invention may be derived from cotton, corn, wood pulp and bamboo pulp, silk, cork and the like.
  • the cellulose materials useful in the compositions of this invention are derived from cotton.
  • the cellulosic particles are from fibers recovered from post-industrial scrap. Such scrap is derived from waste or other pre-consumer cotton products from, for example, the apparel, carpet, furniture and household goods industries.
  • Synthetic or regenerated cotton or cellulose materials may also be used as sources for the cellulose particles useful in the compositions and methods of this invention, including rayon, viscose, cellophane, and other cellulosic materials with a uniform and reproducible molecular size and distribution.
  • the cellulose materials useful in the compositions and methods of this invention may be derived directly from the source plant (referred to herein as, “raw” particles) or may be generated from cloth or nonwoven materials previously formed from plant or cellulose fibers (referred to herein as “regenerated” particles).
  • raw particles referred to herein as, “raw” particles
  • regenerated particles cloth or nonwoven materials previously formed from plant or cellulose fibers
  • cotton cloth may be processed so as to break the cloth into small particles and/or uniform fiber length by cutting the length of the cotton fibers from inches to microns.
  • This random-cut fiber is available in several grades, white, dark, and unbleached, with average fiber lengths from about 1 micron to about 1000 microns and preferably from about 2 microns to about 500 microns.
  • hydrophilic, raw cellulose particles having similar size, aspect ratio and other characteristics to those of hydrophobic linear particles useful in the present invention may also be useful in the rinse-off and cleansing compositions of this invention.
  • hydrophobic cellulose particles useful in the compositions of this invention may be processed according to the following methods.
  • One such method comprises mixing a cellulosic material derived from post-industrial scrap, as defined above, with at least one of grinding aids selected from the group including water, fatty acids, synthetic polymers and organic solvents, and, after mixing, mechanically grinding the mixture.
  • grinding aids selected from the group including water, fatty acids, synthetic polymers and organic solvents
  • Another method of obtaining hydrophobic cellulose particles is freezing a cellulosic material derived from post-industrial scrap at a low temperature, and then mechanically grinding said frozen material.
  • the cellulose particles useful in the compositions and methods of this invention may be further treated with hydrophobic agents to yield hydrophobic cellulose particles.
  • a hydrophobic coating agent may be used to treat the cellulose particles.
  • the hydrophobic coating agent may be any such agent known to one of skill in the art.
  • Preferred hydrophobic coating agents react chemically with the cellulose particle to provide a durable covalent bond thereto and have hydrophobic chemical backbones or substituents that can provide a hydrophobic outer layer around each individual cellulosic particle.
  • the coating agent may react, for example, with hydroxyl groups, available oxygen atoms present on the surface of the cellulose particle being coated.
  • Hydrophobic agents may include, but are not limited to, low water soluble organic compounds such as metal soap, e.g., a metal myristate, metal stearate, a metal palmitate, a metal laurate or other fatty acid derivatives known to one of skill in the art.
  • Other hydrophobic agents may include an organic wax, such as a synthetic wax like polyethylene or a natural wax like carnauba wax.
  • Hydrophobic agents useful in coating the cellulose particles useful in the compositions and methods of this invention may also be long chain fatty acids or esters such as stearic acid, oleic acid, castor oil, isododecane, silicone, and their derivatives, non-water soluble polymers, e.g.
  • hydrophobic linear cotton particles useful in the present invention include, but are not limited to, Cotton Fiber Flock CD60, available from Goonvean Fiber and W200 White Cotton Flock, available from International Fiber Corporation.
  • hydrophobic cellulose particles of this invention may be formulated into a variety of “rinse-off” skin care applications.
  • rinse-off indicates that the compositions of the present invention are used in a context whereby the composition is ultimately rinsed or washed from the treated surface, (e.g. skin or hard surfaces) either after or during the application of the product. These rinse-off compositions are to be distinguished from compositions which are applied to the skin and allowed to remain on the skin subsequent to application.
  • the rinse-off, cellulose particle-containing compositions of this invention may be formulated into a wide variety of rinse-off compositions for personal care, including but not limited to liquid cleansers, creamy cleansers, gel cleansers, soaps and makeup removers.
  • the topical cosmetic compositions of this invention may contain a carrier, which should be a cosmetically and/or pharmaceutically acceptable carrier.
  • the carrier should be suitable for topical application to the skin, should have good aesthetic properties and should be compatible with other components in the composition.
  • These product types may comprise several types of cosmetically acceptable topical carriers including, but not limited to solutions, emulsions (e.g., microemulsions and nanoemulsions), gels, solids and liposomes.
  • emulsions e.g., microemulsions and nanoemulsions
  • gels e.g., gels, solids and liposomes.
  • solids e.g., gels, solids and liposomes.
  • liposomes e.g., liposomes.
  • Other carriers can be formulated by those of ordinary skill in the art.
  • the rinse-off compositions of this invention preferably contain at least one cleansing agent selected from the group consisting of fatty acid soaps and synthetic surfactants and/or a mixture of such materials.
  • the compositions of this invention contain one or more skin conditioning agents.
  • the compositions of this invention may also contain one or more skin therapeutic agents.
  • the pH of the compositions of this invention ranges from about 2 to about 11. More preferably, the pH ranges from about 3 to about 10.
  • compositions of this invention may contain a saponified fat, for example, fatty acid soaps containing from about 6 to about 22 carbon atoms, preferably form about 8 to about 18 carbon atoms, and more preferably from about 12 to about 18 carbon atoms.
  • Fatty acid soaps having from about 8 to about 18 carbon atoms are preferably present in the compositions of this invention in an amount of from about 1 to about 60% by weight.
  • the fatty acid soaps useful in the compositions of this invention are organic soaps obtained using organic neutralizers including, but not limited to, ammonium soap, trialkanolamine soap, aminomethyl propanol soap, aminomethyl propanedial soap and tromethamine soap, more preferably triethanolamine soap and aminomethyl propanol soap and the like.
  • the synthetic surfactants useful in the compositions of this invention are preferably synthetic surfactants selected from anionic, nonionic, amphoteric and zwitterionic surfactants. Preferably, they are present in the compositions of this invention in amounts from about 1 to about 40%, more preferably from about 1 to about 30% and most preferably from about 5 to about 30% by weight of the composition.
  • Ampholytic synthetic detergents can be broadly described as derivatives of aliphatic amines which contain a long chain of about 8 to 18 carbon atoms and an anionic water-solubilizing group, e.g., carboxy, sulfo or sulfato. Examples of compounds falling within this definition are sodium 3-dodecylaminopropionate, sodium-3-dodecylamino propane sulfonate, and dodecyl dimethylammonium hexanoate. Other examples of ampholytic and amphoteric surfactants are found in U.S. Pat. No. 3,318,817, issued to Cunningham 15 on May 9, 1967, and hereby incorporated herein by reference.
  • amphoteric surfactants are those having the formula:
  • Zwitterionic surface active agents are broadly described as internally neutralized derivatives of aliphatic quaternary ammonium, phosphonium and tertiary sulfonium compounds, in which the aliphatic radical can be straight chain or branched, and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and one contains an anionic water-solubilizing group, e.g., carboxy, sulfo, sulfato, phosphato, or phosphono.
  • Some of these zwitterionic surfactants are described in the following U.S. Pat. Nos. 2,129,264; 2,178,353; 2,774,786; 2,813,898; and 2,828,332.
  • zwitterionic surfactants are those having the formula:
  • the water-soluble betaine surfactants are another example of a zwitterionic surfactant useful herein. These materials have the general formula:
  • betaine compounds of this type include dodecyldimethylammonium acetate, tetradecyldimethylammonium acetate, hexadecyldimethylammonium acetate, alkyldimethylammonium acetate wherein the alkyl group averages about 12 to 18 carbon atoms in length, dodecyldimethylammonium butanoate, tetradecyldimethylammonium butanoate, hexadecyldimethylammonium butanoate, dodecyldimethylammonium hexanoate, hexadecyldimethylammonium hexanoate, tetradecyldimethylammonium pentanoate and tetradecyldipropyl ammonium pentanoate.
  • Especially preferred betaine surfactants include dodecyldimethylammonium acetate, dodecyldimethylammonium hexanoate, hexadecyldimethylammonium acetate, and hexadecyldimethylammonium hexanoate.
  • low molecular weight polymer refers to a polymer having a number average molecular weight (M n ) of about 100,000 or less as measured by gel permeation chromatography (GPC) calibrated with a poly(methyl methacrylate) (PMMA) standard.
  • M n number average molecular weight
  • PMMA poly(methyl methacrylate)
  • low-molecular weight polymers are those having molecular weight ranges of from about 5,000 to about 80,000 M n , more preferably from about 10,000 to about 50,000 M n , and more preferably between about 15,000 and 40,000 M n .
  • the polymeric material useful in the composition of this invention is preferably a polymeric material suitable for associating anionic and/or amphoteric surfactant thereto and is preferably a non-crosslinked, linear acrylic copolymer that mitigates the impaired dermal barrier damage typically associated with surfactant systems without substantially increasing viscosity build.
  • the non-crosslinked, linear polymers are preferably of low molecular weight having a number average molecular weight of 100,000 or less as measured by gel permeation chromatography (GPC) calibrated with a poly(methyl methacrylate) (PMMA) standard (as used herein, unless otherwise specified, all number average molecular weights (M n ) refer to molecular weight measured in such manner).
  • the polymeric material functions as a copolymeric mitigant.
  • the copolymeric mitigant is polymerized from at least two monomeric components.
  • the first monomeric component is selected from one or more ⁇ , ⁇ -ethylenically unsaturated monomers containing at least one carboxylic acid group.
  • This acid group can be derived from monoacids or diacids, anhydrides of dicarboxylic acids, monoesters of diacids, and salts thereof.
  • the second monomeric component is hydrophobically modified (relative to the first monomeric component) and is selected from one or more ⁇ , ⁇ -ethylenically unsaturated non-acid monomers containing a C 1 to C 9 alkyl group, including linear and branched C 1 to C 9 alkyl esters of (meth)acrylic acid, vinyl esters of linear and branched C 1 to C 10 carboxylic acids, and mixtures thereof.
  • the second monomeric component is represented by the formula:
  • R is hydrogen or methyl; X is —C(O)OR 1 or —OC(O)R 2 ; R 1 is linear or branched C 1 to C 9 alkyl; and R 2 is hydrogen or linear or branched C 1 to C 9 alkyl.
  • R 1 and R 2 is linear or branched C 1 to C 8 alkyl and in a further aspect R 1 and R 2 are linear or branched C 2 to C 5 alkyl.
  • Exemplary first monomeric components include (meth)acrylic acid, itaconic acid, citraconic acid, maleic acid, fumaric acid, crotonic acid, aconitic acid, and mixtures thereof.
  • Exemplary second monomeric components include ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, vinyl formate, vinyl acetate, 1-methylvinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl pivalate, vinyl neodecanoate, and mixtures thereof.
  • (meth)acrylic acid and “(meth)acrylate” are meant to include the corresponding methyl derivatives of acrylic acid and the corresponding alkyl acrylate.
  • (meth)acrylic” acid refers to acrylic acid and/or methacrylic acid
  • (meth)acrylate” refers to alkyl acrylate and/or alkyl methacrylate.
  • said first monomeric component is selected from the group consisting of (meth)acrylic acid and said second monomeric component is selected from the group consisting of at least one C 1 to C 9 alkyl (meth)acrylate.
  • the non-crosslinked, linear acrylic copolymer mitigants of the invention can be synthesized via free radical polymerization techniques known in the art.
  • the amount of the first monomeric component to the second monomeric component utilized ranges from about 20:80% to about 50:50% by weight, based on the total weight of all of the monomers in the polymerization medium.
  • the weight ratio of the first monomeric component to the second monomeric component is about 35:65% by weight, and in a further aspect the weight ratio of first monomeric component to second monomeric component is about 25:75% by weight, all based on the total weight of all monomers in the polymerization medium.
  • emulsion polymerization techniques can be used to synthesize the non-crosslinked, linear acrylic copolymer mitigants that may be useful in the invention.
  • a mixture of the disclosed monomers is added with mixing agitation to a solution of emulsifying surfactant, such as, for example, an anionic surfactant (e.g., fatty alcohol sulfates or alkyl sulfonates), in a suitable amount of water, in a suitable reactor, to prepare a monomer emulsion.
  • emulsifying surfactant such as, for example, an anionic surfactant (e.g., fatty alcohol sulfates or alkyl sulfonates)
  • the emulsion is deoxygenated by any convenient method, such as by sparging with nitrogen, and then a polymerization reaction is initiated by adding a polymerization catalyst (initiator) such as sodium persulfate, or any other suitable addition polymerization catalyst, as is well known in the emulsion polymerization art.
  • a polymerization catalyst such as sodium persulfate, or any other suitable addition polymerization catalyst, as is well known in the emulsion polymerization art.
  • the polymerization medium is agitated until the polymerization is complete, typically for a time in the range of about 4 to about 16 hours.
  • the monomer emulsion can be heated to a temperature in the range of about 70 to about 95° C. prior to addition of the initiator, if desired. Unreacted monomer can be eliminated by addition of more catalyst, as is well known in the emulsion polymerization art.
  • the resulting polymer emulsion product can then be discharged from the reactor and packaged for storage or use.
  • the pH or other physical and chemical characteristics of the emulsion can be adjusted prior to discharge from the reactor.
  • the product emulsion has a total solids content in the range of about 10 to about 50% by weight.
  • the total polymer content (polymer solids) of the product emulsion is in the range of about 15 to about 45% by weight, generally not more than about 35% by weight.
  • the number average molecular weight (M n ) of the linear copolymeric mitigants that may be useful in the invention as measured by gel permeation chromatography (GPC) calibrated with a poly(methyl methacrylate) (PMMA) standard is 100,000 or less.
  • the molecular weight ranges between about 5,000 and about 80,000 M n , in a further aspect between about 10,000 and 50,000 M n , and in a still further aspect between about 15,000 and 40,000 M n .
  • the linear copolymeric mitigants have a viscosity of 500 mPa ⁇ s or less (Brookfield RVT, 20 rpm, spindle no. 1) at a 5% by weight polymer solids concentration in deionized water and neutralized to pH 7 with an 18% by weight NaOH solution.
  • the viscosity can range from about 1 to about 500 mPa ⁇ s in another aspect, from about 10 to about 250 mPa ⁇ s in a further aspect, and from about 15 to about 150 mPa ⁇ s in a still further aspect.
  • the low molecular weight, non-crosslinked linear acrylic copolymer is potassium acrylates copolymer.
  • Non-ethoxylated anionic surfactants are surfactants that have a negative charge and do not contain any ethoxylated segments, that is to say there are no —(C—C—O) v segments on the surfactants.
  • suitable non-ethoxylated anionic surfactants include those selected from the following classes of surfactants: alkyl sulfates, alkyl sulfonates, alkyl monoglyceride sulfonates, alkylaryl sulfonates, alkyl sulfosuccinates, alkyl sulfosuccinamates, alkyl carboxylates, fatty alkyl sulfoacetates, alkyl phosphates, acylglutamates, sarcosinates, taurates, and mixtures of two or more thereof.
  • examples of certain preferred anionic surfactants include:
  • alkyl monoglyceride sulfates of the formula
  • alkyl monoglyceride sulfonates of the formula
  • alkyl sulfonates of the formula
  • alkylaryl sulfonates of the formula
  • alkyl sulfosuccinates of the formula:
  • the anionic surfactant of this invention is preferably a non-ethoxylated SO x anionic surfactant conforming to the structure below
  • SO 3 ⁇ is the anionic hydrophilic group
  • M + is a monovalent cation (such as NH 4 + , Na + , K + , (HOCH 2 CH 2 ) 3 N + , etc.)
  • R comprises any of a broad range of hydrophobic groups and optionally, a) functional groups to link the hydrophilic and hydrophobic moieties and/or b) additional hydrophilic groups. Examples include:
  • Alkyl sulfonates where R equals C 6 -C 20 alkyl, (linear or branched, saturated or unsaturated), preferably C 10 -C 18 , and most preferably C 12 -C 17 .
  • R equals C 6 -C 20 alkyl, (linear or branched, saturated or unsaturated), preferably C 10 -C 18 , and most preferably C 12 -C 17 .
  • R 1 ⁇ C 4 -C 16 alkyl or mixtures thereof preferably C 6 -C 12 , more preferably C 8 -C 12 , and most preferably C 10 -C 12 .
  • Specific examples include Sodium C 12-14 Olefin Sulfonate (R 1 ⁇ C 8 -C 10 alkyl, M + ⁇ Na + ) and Sodium C 14-16 Olefin Sulfonate (R 1 ⁇ C 10 -C 12 alkyl, M + ⁇ Na + ).
  • Alkyl sulfate esters where R 1 ⁇ C 6 -C 20 ,
  • amphoteric means: 1) molecules that contain both acidic and basic sites such as, for example, an amino acid containing both amino (basic) and acid (e.g., carboxylic acid, acidic) functional groups; or 2) zwitterionic molecules which possess both positive and negative charges within the same molecule.
  • the charges of the latter may be either dependent on or independent of the pH of the composition.
  • zwitterionic materials include, but are not limited to, alkyl betaines and amidoalkyl betaines as set forth above and below.
  • the amphoteric surfactants are disclosed herein without a counter ion.
  • amphoteric surfactants are either electrically neutral by virtue of having balancing positive and negative charges, or they have counter ions such as alkali metal, alkaline earth, or ammonium counter ions.
  • amphoteric surfactants suitable for use in this invention include, but are not limited to, amphocarboxylates such as alkylamphoacetates (mono or di); alkyl betaines; amidoalkyl betaines; alkyl sultaines; amidoalkyl sultaines; amphophosphates; phosphorylated imidazolines such as phosphobetaines and pyrophosphobetaines; carboxyalkyl alkyl polyamines; alkylimino-dipropionates; alkylamphoglycinates (mono or di); alkylamphoproprionates (mono or di),); N-alkyl ⁇ -aminoproprionic acids; alkylpolyamino carboxylates; and mixtures thereof.
  • amphocarboxylates such as alkylamphoacetates (mono or di); alkyl betaines; amidoalkyl betaines; alkyl sultaines; amidoalkyl sul
  • amphocarboxylate compounds include those of the formula:
  • alkyl betaines examples include those compounds of the formula:
  • a preferred betaine for use in this invention is lauryl betaine, available commercially from Albright & Wilson, Ltd. of West Midlands, United Kingdom as “Empigen BB/J.”
  • amidoalkyl betaines examples include those compounds of the formula:
  • amidoalkyl betaine is cocamidopropyl betaine, available commercially from Goldschmidt Chemical Corporation of Hopewell, Va. under the tradename, “Tegobetaine L7.”
  • amidoalkyl sultaines examples include those compounds of the formula
  • the amidoalkyl sultaine is cocamidopropyl hydroxysultaine, available commercially from Rhone-Poulenc Inc. of Cranbury, N.J. under the tradename, “Mirataine CBS.”
  • amphophosphate compounds include those of the formula:
  • amphophosphate compounds are sodium lauroampho PG-acetate phosphate, available commercially from Mona Industries of Paterson, N.J. under the tradename, “Monateric 1023,” and those disclosed in U.S. Pat. No. 4,380,637, which is incorporated herein by reference.
  • Suitable phosphobetaines include those compounds of the formula:
  • the phosphobetaine compounds are those disclosed in U.S. Pat. Nos. 4,215,064, 4,617,414, and 4,233,192, which are all incorporated herein by reference.
  • Suitable pyrophosphobetaines include those compounds of the formula:
  • the pyrophosphobetaine compounds are those disclosed in U.S. Pat. Nos. 4,382,036, 4,372,869, and 4,617,414, which are all incorporated herein by reference.
  • carboxyalkyl alkylpolyamines examples include those of the formula:
  • I is an alkyl or alkenyl group containing from about 8 to about 22, e.g. from about 8 to about 16 carbon atoms;
  • R 22 is a carboxyalkyl group having from about 2 to about 3 carbon atoms
  • R 21 is an alkylene group having from about 2 to about 3 carbon atoms and
  • compositions of this invention may comprise from greater than zero to about 6 weight percent of polymeric material (based on active amount of polymeric material in the total weight of composition). In certain more preferred embodiments, the compositions comprise from about 0.1 to about 4.5 weight percent of polymeric material, more preferably from about 0.1 to about 3.5 weight percent of polymeric material, and even more preferably from about 0.2 to about 2.5 weight percent of polymeric material.
  • the polymeric material should be present in an amount between about 0.03 and about 2.1 weight percent of the composition. Where cocobetaine is present as a surfactant, there should be less than about 0.03 weight percent or more than about 1.6 weight percent of polymeric material in the composition.
  • the compositions of this invention comprise from about 0.0015 to about 15 weight percent of surfactants based on total active amount of surfactant(s) in the total weight of composition. In certain more preferred embodiments, the compositions comprise from about 2 to about 12 weight percent of total surfactants. Preferred embodiment formulas have from about 2 to about 9 weight percent total surfactants. Preferred embodiments have from about 2 to about 7 weight percent total surfactants. In cases in which cocobetaine is present, said cocobetaine should be present in an amount less than about 0.065 weight percent or greater than about 3.5 weight percent in the composition.
  • the pH of the composition should be between 4.8 and about 6.
  • the pH of the composition can be less than or equal to 6, preferably between 2.5 and 6.
  • the non-crosslinked, linear acrylic copolymers useful in the compositions of this invention can be synthesized via free radical polymerization techniques known in the art.
  • the amount of the first monomeric component to the second monomeric component utilized ranges from about 20:80 wt. % to about 50:50 wt. %, based on the total weight of all of the monomers in the polymerization medium.
  • the weight ratio of the first monomeric component to the second monomeric component is about 35:65 wt. %, and in a further aspect the weight ratio of first monomeric component to second monomeric component is about 25:75 wt. %, all based on the total weight of all monomers in the polymerization medium.
  • the cleansing compositions produced, as well as any of the compositions containing polymeric material and a surfactant component having at least one non-ethoxylated anionic surfactant and at least one amphoteric surfactant that are combined in the combining step according to the methods of this invention may further contain any of a variety of other components nonexclusively including additives which enhance the appearance, feel and fragrance of the compositions, such as colorants, fragrances, preservatives, pH adjusting agents and the like.
  • nonionic surfactants are suitable for use in the compositions of this invention, keeping in mind that total surfactant load should not exceed about 14 weight percent of the compositions set forth herein.
  • suitable nonionic surfactants include, but are not limited to, fatty alcohol acid or amide ethoxylates, monoglyceride ethoxylates, sorbitan ester ethoxylates, alkyl polyglucosides, polyglyceryl esters, mixtures thereof, and the like.
  • Certain preferred nonionic surfactants include alkyl polyglucosides, such as but not limited to coco-glucoside and decyl-glucoside, and polyglyceryl esters, such as but not limited to polyglyceryl-10 laurate and polyglyceryl-10 oleate.
  • the volatile silicone conditioning agent has an atmospheric pressure boiling point less than about 220° C.
  • the volatile silicone conditioner may be present in an amount of from about 0 percent to about 3 percent, e.g. from about 0.25 percent to about 2.5 percent or from about 0.5 percent to about 1 percent, based on the overall weight of the composition.
  • suitable volatile silicones nonexclusively include polydimethylsiloxane, polydimethylcyclosiloxane, hexamethyldisiloxane, cyclomethicone fluids such as polydimethylcyclosiloxane available commercially from Dow Corning Corporation of Midland, Mich. under the tradename, “DC-345” and mixtures thereof, and preferably include cyclomethicone fluids.
  • humectants which are capable of providing moisturization and conditioning properties to the personal cleansing composition, are suitable for use in this invention.
  • the humectant may be present in an amount of from about 0 percent to about 10 percent, e.g. from about 0.5 percent to about 5 percent or from about 0.5 percent to about 3 percent, based on the overall weight of the composition.
  • humectants nonexclusively include: 1) water soluble liquid polyols selected from the group comprising glycerine, propylene glycol, hexylene glycol, butylene glycol, dipropylene glycol, and mixtures thereof; 2)polyalkylene glycol of the formula: HO—(R′′O) b —H, wherein R′′ is an alkylene group having from about 2 to about 3 carbon atoms and b is an integer of from about 2 to about 10; 3) polyethylene glycol ether of methyl glucose of formula CH 3 —C 6 H 10 O 5 —(OCH 2 CH 2 ) c —OH, wherein c is an integer from about 5 to about 25; 4) urea; and 5) mixtures thereof, with glycerine being the preferred humectant.
  • chelating agents include those which are capable of protecting and preserving the compositions of this invention.
  • the chelating agent is ethylenediamine tetracetic acid (“EDTA”), and more preferably is tetrasodium EDTA, available commercially from Dow Chemical Company of Midland, Mich. under the tradename, “Versene 100XL” and is present in an amount, based upon the total weight of the composition, from about 0 to about 0.5 percent or from about 0.05 percent to about 0.25 percent.
  • EDTA ethylenediamine tetracetic acid
  • Versene 100XL available commercially from Dow Chemical Company of Midland, Mich. under the tradename, “Versene 100XL”
  • Suitable preservatives include organic acid preservatives may include benzoic acid and alkali metal and ammonium salts thereof (e.g. sodium benzoate), sorbic acid and alkali metal and ammonium salts thereof (e.g. potassium sorbate), p-Anisic acid and alkali metal and ammonium salts thereof, and salicylic acid and alkali metal and ammonium salts thereof.
  • organic acid preservatives may include benzoic acid and alkali metal and ammonium salts thereof (e.g. sodium benzoate), sorbic acid and alkali metal and ammonium salts thereof (e.g. potassium sorbate), p-Anisic acid and alkali metal and ammonium salts thereof, and salicylic acid and alkali metal and ammonium salts thereof.
  • the pH of the composition may be adjusted to the appropriate acidic value using any cosmetically acceptable organic or inorganic acid, such as citric acid, acetic acid, glycolic acid, lactic acid, malic acid, tartaric acid, or hydrochloric acid.
  • any cosmetically acceptable organic or inorganic acid such as citric acid, acetic acid, glycolic acid, lactic acid, malic acid, tartaric acid, or hydrochloric acid.
  • sodium benzoate is present in the composition in an amount, based upon the total weight of the composition, from about 0 to about 0.5 percent.
  • potassium sorbate is present in the composition in an amount, based upon the total weight of the composition, from about 0 to about 0.6 percent, more preferably from about 0.3 to about 0.5 percent.
  • the methods of this invention may further comprise any of a variety of steps for mixing or introducing one or more of the optional components described hereinabove with or into a composition comprising a polymeric material before, after, or simultaneously with the combining step described above. While in certain embodiments, the order of mixing is not critical, it is preferable, in other embodiments, to pre-blend certain components, such as the fragrance and the nonionic surfactant before adding such components into a composition comprising a polymeric material and/or an anionic surfactant.
  • the cleansing methods of this invention may further include any of a variety of additional, optional steps associated conventionally with cleansing hair and skin including, for example, lathering, rinsing steps, and the like.
  • compositions useful in the compositions of this invention may be formulated as solutions.
  • Solutions typically include an aqueous solvent (e.g., from about 50% to about 99.99% or from about 90% to about 99% of a cosmetically acceptable aqueous solvent).
  • Topical compositions useful in the subject invention may be formulated as a solution comprising an emollient.
  • Such compositions preferably contain from about 2% to about 50% of an emollient(s).
  • emollients refer to materials used for the prevention or relief of dryness, as well as for the protection of the skin.
  • suitable emollients is known and may be used herein. Sagarin, Cosmetics, Science and Technology, 2nd Edition, Vol. 1, pp. 32-43 (1972) and the International Cosmetic Ingredient Dictionary and Handbook, eds. Wenninger and McEwen, pp. 1656-61, 1626, and 1654-55 (The Cosmetic, Toiletry, and Fragrance Assoc., Washington, D.C., 7 th Edition, 1997) (hereinafter “ICI Handbook”) contains numerous examples of suitable materials.
  • the rinse-off compositions of this invention contain from about 1% to about 20% (e.g., from about 5% to about 10%) of an emollient(s) and from about 50% to about 90% (e.g., from about 60% to about 80%) of water.
  • Topical compositions useful in the subject invention may be formulated as a solution containing an emulsifier. Such compositions preferably contain from about 0.1% to about 1% of an emulsifier.
  • Emulsifiers may be nonionic, anionic or cationic. Suitable emulsifiers are disclosed in, for example, U.S. Pat. No. 3,755,560, U.S. Pat. No. 4,421,769, McCutcheon's Detergents and Emulsifiers, North American Edition, pp. 317-324 (1986), and the ICI Handbook, pp. 1673-1686.
  • a creamy cleanser preferably contains from about 5% to about 50% (e.g., from about 10% to about 20%) of an emollient(s) and from about 45% to about 85% (e.g., from about 50% to about 75%) of water.
  • compositions useful in this invention formulated as emulsions.
  • the carrier is an emulsion, from about 1% to about 10% (e.g., from about 2% to about 5%) of the carrier comprises an emulsifier(s).
  • Emulsifiers may be nonionic, anionic or cationic. Suitable emulsifiers are disclosed in, for example, U.S. Pat. No. 3,755,560, U.S. Pat. No. 4,421,769, McCutcheon's Detergents and Emulsifiers, North American Edition, pp. 317-324 (1986), and the ICI Handbook, pp. 1673-1686.
  • the topical rinse-off compositions of this invention may also be formulated as emulsions.
  • lotions comprise from 0.5% to about 5% of an emulsifier(s).
  • Such creams would typically comprise from about 1% to about 20% (e.g., from about 5% to about 10%) of an emollient(s); from about 20% to about 80% (e.g., from 30% to about 70%) of water; and from about 1% to about 10% (e.g., from about 2% to about 5%) of an emulsifier(s).
  • Single emulsion skin care preparations such as lotions and creams, of the oil-in-water type and water-in-oil type are well-known in the cosmetic art and are useful in the subject invention.
  • Multiphase emulsion compositions such as the water-in-oil-in-water type, as disclosed in U.S. Pat. Nos. 4,254,105 and 4,960,764, are also useful in the subject invention.
  • such single or multiphase emulsions contain water, emollients, and emulsifiers as essential ingredients.
  • the topical compositions of this invention can also be formulated as a gel (e.g., an aqueous gel using a suitable gelling agent(s)).
  • suitable gelling agents for aqueous gels include, but are not limited to, natural gums, acrylic acid and acrylate polymers and copolymers, and cellulose derivatives (e.g., hydroxymethyl cellulose and hydroxypropyl cellulose).
  • Suitable gelling agents for oils include, but are not limited to, hydrogenated butylene/ethylene/styrene copolymer and hydrogenated ethylene/propylene/styrene copolymer.
  • Such gels typically comprises between about 0.1% and 5%, by weight, of such gelling agents.
  • compositions of this invention may also be formulated as suspensions.
  • the compositions of this invention preferably contain a suspending agent.
  • suspending agent means any material known or otherwise effective in providing suspending, gelling, viscosifying, solidifying and/or thickening properties to the composition or which otherwise provide structure to the final product form.
  • suspending agents include gelling agents, and polymeric or nonpolymeric or inorganic thickening or viscosifying agents. Such materials will typically be solids under ambient conditions and include organic solids, silicone solids, crystalline or other gellants, inorganic particulates such as clays or silicas, or combinations thereof.
  • suspending agent selected for use in the topical leave-on compositions of this invention will vary depending upon the desired product hardness, rheology, and/or other related product characteristics. For most suspending agents suitable for use herein, total concentrations range from about 0.1% to about 40%, more typically from about 0.1% to about 35%, by weight of the composition. Suspending agent concentrations will tend to be lower for liquid embodiments (e.g., pressurized or other liquid sprays, roll-ons, etc) and higher for semi-solid (e.g., soft solids or creams) or solid cleanser embodiments.
  • the suspending agents are present in the compositions of this invention in an amount from about 0.1% to about 40%, more preferably, the suspending agents are present in an amount from about 0.1% to about 30.
  • Non limiting examples of suitable suspending agents include hydrogenated castor oil (e.g., Castor wax MP80, Castor Wax, etc.), fatty alcohols (e.g., stearyl alcohol), solid paraffins, triglycerides and other similar solid suspending esters or other microcrystalline waxes, silicone and modified silicone waxes.
  • suitable suspending agents include hydrogenated castor oil (e.g., Castor wax MP80, Castor Wax, etc.), fatty alcohols (e.g., stearyl alcohol), solid paraffins, triglycerides and other similar solid suspending esters or other microcrystalline waxes, silicone and modified silicone waxes.
  • suitable suspending agents suitable for use herein are described in U.S. Pat. No. 5,976,514 (Guskey et al.), U.S. Pat. No. 5,891,424 (Bretzler et al.), which descriptions are incorporated herein by reference.
  • Suitable suspending agents include silicone elastomers at concentrations ranging from about 0.1% to about 10%, by weight of the composition.
  • silicone elastomer materials suitable for use as a suspending agent herein are described in U.S. Pat. No. 5,654,362 (Schulz, Jr. et al.); U.S. Pat. No. 6,060,546 (Powell et al.) and U.S. Pat. No. 5,919,437 (Lee et al.), which descriptions are incorporated herein by reference.
  • These silicone elastomers materials can also be added for their skin feel or other cosmetic benefits alone, or for such benefits in combination with suspending agent benefits.
  • topical compositions of this invention can also be formulated into a solid formulation (e.g., a wax-based stick, soap bar composition, powder, or a wipe containing powder).
  • a solid formulation e.g., a wax-based stick, soap bar composition, powder, or a wipe containing powder.
  • compositions useful in the subject invention may contain, in addition to the aforementioned components, a wide variety of additional oil-soluble materials and/or water-soluble materials conventionally used in compositions for use on skin, hair, and nails at their art-established levels.
  • the topical composition further comprises another cosmetically active agent in addition to the cellulose particles.
  • a “cosmetically active agent” is a compound that has a cosmetic or therapeutic effect on the skin, hair, or nails, e.g., lightening agents, darkening agents such as self-tanning agents, anti-acne agents, shine control agents, anti-microbial agents, anti-inflammatory agents, anti-mycotic agents, anti-parasite agents, external analgesics, sunscreens, photoprotectors, antioxidants, keratolytic agents, detergents/surfactants, moisturizers, nutrients, vitamins, energy enhancers, anti-perspiration agents, astringents, deodorants, hair removers, firming agents, anti-callous agents, and agents for hair, nail, and/or skin conditioning.
  • the agent is selected from, but not limited to, the group consisting of hydroxy acids, benzoyl peroxide, sulfur resorcinol, ascorbic acid, D-panthenol, hydroquinone, octyl methoxycinnimate, titanium dioxide, octyl salicylate, homosalate, avobenzone, polyphenolics, carotenoids, free radical scavengers, spin traps, retinoids such as retinol and retinyl palmitate, ceramides, polyunsaturated fatty acids, essential fatty acids, enzymes, enzyme inhibitors, minerals, hormones such as estrogens, steroids such as hydrocortisone, 2-dimethylaminoethanol, copper salts such as copper chloride, peptides containing copper such as Cu:Gly-His-Lys, coenzyme Q10, peptides such as those disclosed in U.S.
  • composition of the invention will typically be present in the composition of the invention in an amount of from about 0.001% to about 20% by weight of the composition, e.g., about 0.01% to about 10% such as about 0.1% to about 5%.
  • vitamins include, but are not limited to, vitamin A, vitamin Bs such as vitamin B3, vitamin B5, and vitamin B12, vitamin C, vitamin K, and vitamin E and derivatives thereof.
  • hydroxy acids include, but are not limited, to glycolic acid, lactic acid, malic acid, salicylic acid, citric acid, and tartaric acid and the like.
  • antioxidants include, but are not limited to, water-soluble antioxidants such as sulfhydryl compounds and their derivatives (e.g., sodium metabisulfite and N-acetyl-cysteine), lipoic acid and dihydrolipoic acid, resveratrol, lactoferrin, and ascorbic acid and ascorbic acid derivatives (e.g., ascorbyl palmitate and ascorbyl polypeptide).
  • water-soluble antioxidants such as sulfhydryl compounds and their derivatives (e.g., sodium metabisulfite and N-acetyl-cysteine), lipoic acid and dihydrolipoic acid, resveratrol, lactoferrin, and ascorbic acid and ascorbic acid derivatives (e.g., ascorbyl palmitate and ascorbyl polypeptide).
  • Oil-soluble antioxidants suitable for use in the compositions of this invention include, but are not limited to, butylated hydroxytoluene, retinoids (e.g., retinol and retinyl palmitate), tocopherols (e.g., tocopherol acetate), tocotrienols, and ubiquinone.
  • Natural extracts containing antioxidants suitable for use in the compositions of this invention include, but not limited to, extracts containing flavonoids and isoflavonoids and their derivatives (e.g., genistein and diadzein), extracts containing resveratrol and the like. Examples of such natural extracts include grape seed, green tea, pine bark, and propolis. Other examples of antioxidants may be found on pages 1612-13 of the ICI Handbook.
  • compositions useful in the subject invention include humectants, proteins and polypeptides, preservatives and an alkaline agent. Examples of such agents are disclosed in the ICI Handbook, pp. 1650-1667.
  • compositions of this invention may also comprise chelating agents (e.g., EDTA) and preservatives (e.g., parabens). Examples of suitable preservatives and chelating agents are listed in pp. 1626 and 1654-55 of the ICI Handbook.
  • topical compositions useful herein can contain conventional cosmetic adjuvants, such as dyes, opacifiers (e.g., titanium dioxide), pigments, and fragrances.
  • hydrophobic cellulose particles useful in the compositions of this invention have excellent water and oil absorption properties. It is believed that the compositions of this invention contain hydrophobic cellulose particles may absorb excess sebum from the skin, thus reducing skin shininess.
  • the compositions of this invention also are believed to protect the skin barrier by forming a hydrophobic layer on the surface of the skin and preventing the penetration of surfactants, emulsifiers or other potentially irritating ingredients.
  • a hydrophobic layer formed on the surface of the skin should reduce trans-epithelial water loss and increase hydration of the skin.
  • it may be desired that the cellulose particles have enhanced or decreased hydrophobic or hydrophilic properties.
  • hydrophobic cellulose particles useful in the compositions of this invention may be treated with additional hydrophobic agents or hydrophilic agents, thus further enhancing hydophobic and/or hydrophilic properties respectively, as desired.
  • Hydrophobic agents may include but not limited to low water soluble organic compounds such as long chain fatty acids or esters such as stearic acid, oleic acid, castor oil, isododecane, silicone, and their derivatives, non-water soluble polymers, e.g.
  • high molecular weight methylcellulose and ethylcellulose, and high molecular water insoluble fluoropolymers etc. polymerized siloxanes or polysiloxanes with the chemical formula [R2SiO]n, where R is an organic group such as methyl, ethyl, or phenyl, such as dimethicone, dimethicone copolyol, dimethicone ester; methicone and their derivatives.
  • Hydrophilic agents such as water soluble polymers, e.g. low molecular weight methyl cellulose or hydroxypropyl methyl cellulose (PMC); sugars, e.g.
  • cellulose particles used in the compositions of this invention.
  • monosaccharides such as fructose and glucose
  • disaccharides such as lactose, sucrose
  • polysaccharides such as cellulose, amylose, dextran, etc. and low molecular polyvinyl alcohol, and hydrated silica may also be used to enhance the hydrophilic properties of the cellulose particles used in the compositions of this invention.
  • the textures of the compositions formulated with the hydrophobic linear cellulose particles of this invention are “fluffy”, silky and soft and aesthetically pleasing to the touch during and after the application.
  • the term “fluffy” as used herein refers to the bulk density of the hydrophobic linear cellulose particles useful in the compositions of this invention.
  • the bulk density of the hydrophobic linear cellulose particles useful in the compositions of this invention is preferably from about 0.1 to about 2 (g/cm 3 ), more preferably from about 0.15 to about 1.8 g/cm 3 , and most preferably from about 0.15 to about 1.6 g/cm 3 .
  • the cellulose particles useful in the compositions of this invention are present in the compositions in an amount of from about 1 to about 20% by weight of the compositions, more preferably from about 1 to about 10% by weight of the compositions and most preferably in an amount of from about 1 to about 6% by weight of the compositions.
  • the methods of this invention also relate to methods of cleansing and conditioning the skin or hair with a personal cleansing product of the present invention. These methods comprise the steps of wetting with water a substantially dry, disposable, single use personal cleansing product comprising a water insoluble substrate, a lathering surfactant, and a conditioning component, and contacting the skin or hair with said wetted product. In further embodiments, the methods and compositions of this invention are also useful for delivering various active ingredients to the skin or hair.
  • compositions of this invention may be substantially dry and may be wetted with water prior to use.
  • the product may be wetted by immersion in a container filled with water or by placing it under a stream of water.
  • Lather may be generated from the product by mechanically agitating and/or deforming the product either prior to or during contact of the product with the skin or hair. The resulting lather is useful for cleansing and conditioning the skin or hair.
  • the conditioning agents and active ingredients are deposited onto the skin or hair. Deposition of conditioning agents and active ingredients are enhanced by the physical contact of the substrate with the skin or hair.
  • the particle size of the cellulose materials was determined by Mie/Fraunhofer Laser Scattering method using a Malvern Hydro 2000S Particle Size Analyzer by the following procedure:
  • hydrophobic cotton particles exhibited a larger water contact angle compared to the hydrophilic cotton particles.
  • the spectra showed extract residues from the two hydrophobic linear cotton particles (#2 and #1) along with a dimethicone reference spectrum.
  • the #2 residue includes a long chain hydrocarbon wax-like material (as indicated by split peaks around 1375 and 725 cm ⁇ 1) while the #1 residue includes an ester component (as indicated by IR peaks around 1735 and 1250 cm ⁇ 1).
  • the hydrophilic cotton particles (Virgin Cotton Flock) showed negligible extractable residue.
  • the morphology of this material was significantly different from the other two materials indicating a higher degree of processing, reducing much of the cotton fiber into a fine powdery material.
  • the hydrophilic nature of this material is likely due to the inherent absorbent properties of cotton, and the lack of a repellant finish treatment.
  • ILC Inverse Gas Chromatography
  • the absorption capacity of olive oil by the dry cotton particles in Table 1 was measured in standard conditions (i.e. ambient temperature and pressure). The saturated particles were also subjected to centrifugal force to measure their retention power.
  • porous media containing liquid When porous media containing liquid is subjected to a force, the liquid is gradually evacuated from large pores then from increasingly small pores as pressure increases.
  • Media containing a high pore volume distribution of smaller pores (or effective pores) can retain more liquid under higher constraint and this retentive power may be a useful feature when the desired role of the media is to retain a liquid (sponge effect).
  • the two Hydrophobic Linear Cotton particles (#1 and #2) demonstrated very high absorption of oil in the dry, loosely packed state. Further, the Hydrophobic Linear Cotton Particles (#1) retained a high amount of triglyceride even under applied acceleration.
  • the speed of oil absorption by a material may be determined by Procedures as follows:
  • a template of a 6 ⁇ 4 cm rectangle was cut from a 0.25 mm thick paper. With a 4 ⁇ 2 cm rectangle window cut in the middle with 1 cm of paper around the edge of the window.
  • a glass microscope slide was weighed and its mass recorded.
  • the template was placed on the slide and the test material dispensed in the window of the template. The material was spread across the window with a metal spatula to create an even rectangular layer with a mass of ⁇ 0.24 g ( ⁇ 0.01 g).
  • the template was carefully removed, edges of the slide cleaned off with a spatula or gloved fingertip as necessary, and the mass of the slide+material recorded.
  • the slide (with oil-absorbing particle layer) was placed flat in an incubator at 32° C.
  • 0.0858 g of the sebum component of interest was dispensed via 0-100 ⁇ L pipette (liquids) to the slide at one side of and in contact with the particle layer.
  • pipette liquids
  • the slide was left undisturbed in the incubator for 15 seconds for follow-up test), with a timer started just as the drop was dispensed. After 15 seconds, the slide was removed from the incubator and any unabsorbed sebum component was carefully wiped from the slide using a Kimwipe. The slide was weighed to determine the amount of the sebum component absorbed by the particles during the absorbance period.
  • FIG. 3 demonstrates that cotton particles (#1 cotton particles) absorbs both squalene and triglyceride much faster than hydrophilic cotton particles.
  • a gravimetric absorption test (GAT) Method was used to determine the water absorption kinetics of hydrophobic cotton particles vs. hydrophilic cotton particles.
  • the cotton particles sample was loaded into a small cylinder container, and the water was introduced in contact with the cotton particles through a water reservoir on a scale, the change in water weight arising from water transfer or absorption by cotton particles was recorded electronically by a computer over the study duration.
  • the absorption rate was calculated and plotted for different cotton particles samples.
  • hydrophobic cotton particles had a slower water absorption rate than hydrophilic cotton particles.
  • the water absorption capacity and oil absorption capacity of materials may be determined by the following procedures set forth below in Examples 6A and 6B.
  • Example 7a Example 7b
  • Example 7c Example 7d
  • Example 7e Water QS QS QS QS QS QS Glycerin 0.00-15.00 0.00-15.00 0.00-15.00 0.00-15.00 0.00-15.00 0.00-15.00 Acrylates Copolymer 0.00-12.00 — — — — — — — Acrylates/C10-30 — — — — — 0.00-1.00 — Alkyl Acrylate Crosspolymer Carbomer — — — — — 0.00-1.00 Xanthan Gum — — — — 0.00-2.00 — — Sodium Laureth 0.00-40.00 — — — 0.00-40.00 0.00-40.00 Sulfate Decyl Glucoside — 0.00-14.00 — 0.00-14.00 — — Lauryl Glucoside — 0.00-17.00 — — 0.00-17.00 0.00-17.00 Ammonium Laureth — 0.00-16.00 — — — — —
  • a baseline reading of sebum quantity was taken from selected skin testing sites on the skin surface of nine subjects (Three points—opposite ends and in the middle of the forehead) prior to wetting the skin with water from running faucet.
  • the sebum quantity was measured using a sebumeter.
  • 0.5 cc gel Cleanser (placebo) was applied to skin then the skin massaged for ten seconds. Water was added to the skin and the skin was lathered for additional twenty seconds. Cleanser was rinsed from the skin and any excess residue with water for thirty seconds then blot dried with a Kimwipe.
  • sebum count was measured with a sebumeter cartridge consecutively 4 hours and 6 hours after washing, respectively.
  • each sebum count should be conducted on a fresh skin area (i.e. the same area cannot be measured more than once). Once sebum is measured by the sebumeter cartridge, that particular site will have been disrupted so as to affect accuracy of the measurement of sebum as sebum is produced throughout the day on the skin.
  • Example 9C Results of the sebum absorption measurements for Example 9A and 9B are set forth in FIG. 7 hereto (Example 9C was not tested in this example). As can be observed from the graph in FIG. 7 , sebum production of skin cleansed with composition containing hydrophobic and hydrophilic cotton particles was slowed as compared with that cleansed with a gel cleanser.
  • Example 9A Hydrophilic Hydrophobic (Gel Cleanser) Cotton Cotton CTFA/INCI Name % w/w % w/w % w/w Water 54.08 48.71 49.26 Sodium Laureth 29.00 29.00 Sulfate; Water Glycerin 3.00 3.00 3.00 Cocamidopropyl 4.00 4.00 4.00 Betaine Sodium Hydroxide 0.32 0.32 0.32 Disodium EDTA 0.20 0.20 0.20 Phenoxyethanol 1.00 0.00 0.00 (and) Caprylyl Glycol Phenoxyethanol; 0.28 0.00 0.00 Methylparaben; Ethylparaben; Propylparaben Phenoxyethanol 0.00 0.60 0.60 Caprylyl Glycol 0.00 0.00 0.50 (and) Caprylhydroxamic Acid Phenoxyethanol 0.00 0.80 0.00 (and) Caprylyl Glycol Chlorphensin 0.00 0.25 0.00 Citric Acid 0.12 0.12 0.12 Cotton P

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Cosmetics (AREA)
  • Detergent Compositions (AREA)
US13/799,365 2012-11-09 2013-03-13 Rinse-off skin care compositions containing cellulosic materials Abandoned US20140134218A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US13/799,365 US20140134218A1 (en) 2012-11-09 2013-03-13 Rinse-off skin care compositions containing cellulosic materials
CN201380058819.7A CN104768528B (zh) 2012-11-09 2013-11-06 包含纤维素材料的洗去型护肤组合物
IN3942DEN2015 IN2015DN03942A (zh) 2012-11-09 2013-11-06
BR112015010395A BR112015010395A8 (pt) 2012-11-09 2013-11-06 Composição para tratamento da pele com enxágue
PCT/US2013/068694 WO2014074581A1 (en) 2012-11-09 2013-11-06 Rinse-off skin care compositions containing cellulosic materials
US14/259,224 US9549889B2 (en) 2012-11-09 2014-04-23 Rinse-off skin care compositions containing cellulosic materials
US14/521,581 US9549890B2 (en) 2012-11-09 2014-10-23 Rinse-off skin care compositions containing cellulosic materials
HK15111434.4A HK1210697A1 (zh) 2012-11-09 2015-11-19 包含纖維素材料的洗去型護膚組合物
US15/412,132 US20170128345A1 (en) 2012-11-09 2017-01-23 Rinse-off skin care compositions containing cellulosic materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201213673477A 2012-11-09 2012-11-09
US13/799,365 US20140134218A1 (en) 2012-11-09 2013-03-13 Rinse-off skin care compositions containing cellulosic materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US201213673477A Continuation-In-Part 2012-11-09 2012-11-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/259,224 Continuation US9549889B2 (en) 2012-11-09 2014-04-23 Rinse-off skin care compositions containing cellulosic materials

Publications (1)

Publication Number Publication Date
US20140134218A1 true US20140134218A1 (en) 2014-05-15

Family

ID=49620310

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/799,365 Abandoned US20140134218A1 (en) 2012-11-09 2013-03-13 Rinse-off skin care compositions containing cellulosic materials
US14/259,224 Active US9549889B2 (en) 2012-11-09 2014-04-23 Rinse-off skin care compositions containing cellulosic materials
US14/521,581 Active 2032-11-20 US9549890B2 (en) 2012-11-09 2014-10-23 Rinse-off skin care compositions containing cellulosic materials
US15/412,132 Abandoned US20170128345A1 (en) 2012-11-09 2017-01-23 Rinse-off skin care compositions containing cellulosic materials

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/259,224 Active US9549889B2 (en) 2012-11-09 2014-04-23 Rinse-off skin care compositions containing cellulosic materials
US14/521,581 Active 2032-11-20 US9549890B2 (en) 2012-11-09 2014-10-23 Rinse-off skin care compositions containing cellulosic materials
US15/412,132 Abandoned US20170128345A1 (en) 2012-11-09 2017-01-23 Rinse-off skin care compositions containing cellulosic materials

Country Status (6)

Country Link
US (4) US20140134218A1 (zh)
CN (1) CN104768528B (zh)
BR (1) BR112015010395A8 (zh)
HK (1) HK1210697A1 (zh)
IN (1) IN2015DN03942A (zh)
WO (1) WO2014074581A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150305989A1 (en) * 2014-04-11 2015-10-29 Cristina Lupano Methods and Products for Removing Sunscreen
JP2016041669A (ja) * 2014-08-19 2016-03-31 ロート製薬株式会社 皮膚外用剤
US20170087063A1 (en) * 2015-09-30 2017-03-30 Johnson & Johnson Consumer Inc. Triphasic cleansing composition
US9737473B2 (en) 2012-11-09 2017-08-22 Johnson & Johnson Consumer Inc. Leave-on compositions containing cellulose materials
EP3256100B1 (fr) 2014-12-12 2022-06-29 L'Oréal Composition cosmetique comprenant des olefine sulfonates lineaires et des tensioactifs anioniques non oxyalkylenes
US11478522B2 (en) * 2016-11-13 2022-10-25 Kamedis Ltd Synergistic herbal compositions with prebiotic properties for treatment of acne
EP3943530A4 (en) * 2019-03-18 2022-10-26 Daicel Corporation CELLULOSIC ACETATE PARTICLES, COSMETIC COMPOSITION AND PROCESS FOR PRODUCTION OF CELLULOSIC ACETATE PARTICLES

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140134218A1 (en) 2012-11-09 2014-05-15 Johnson & Johnson Consumer Companies, Inc. Rinse-off skin care compositions containing cellulosic materials
US9370478B2 (en) 2012-11-09 2016-06-21 Johnson & Johnson Consumer Inc. Skin care compositions containing cotton and citrus-derived materials
CA3075983C (en) 2016-09-30 2023-09-19 Novaflux, Inc. Compositions for cleaning and decontamination
CN106727059A (zh) * 2017-03-08 2017-05-31 张仕英 一种适合干性皮肤使用的洗面奶的配方以及制备工艺
AU2019249171A1 (en) 2018-04-03 2020-11-26 Novaflux, Inc. Cleaning composition with superabsorbent polymer
CN108938454B (zh) * 2018-04-17 2020-08-04 江南大学 一种球状脱脂棉纤维素颗粒及其应用
US12064495B2 (en) 2019-10-03 2024-08-20 Protegera, Inc. Oral cavity cleaning composition, method, and apparatus
CA3156824A1 (en) 2019-10-03 2021-04-08 Novaflux Inc. Oral cavity cleaning composition, method, and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606958A (en) * 1983-06-27 1986-08-19 Lever Brothers Company Highly absorbent substrate article
US20030086962A1 (en) * 2001-07-11 2003-05-08 Westerfield Kelly J. Cleansing products
US20060029625A1 (en) * 2004-08-06 2006-02-09 Niebauer Michael F Personal cleansing composition containing fibers

Family Cites Families (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1873030A (en) 1930-12-26 1932-08-23 Pinaud Inc Powder puff
US2129264A (en) 1935-03-29 1938-09-06 Du Pont Nitrogen-containing organic compounds
US2178353A (en) 1937-07-21 1939-10-31 Du Pont High molecular weight tetravalent sulphur compounds and process for their production
US2774786A (en) 1953-08-10 1956-12-18 Gen Mills Inc Phosphono-ammonium surface active agents
US2828332A (en) 1955-08-23 1958-03-25 Monsanto Chemicals Phosphonium compounds
US2813898A (en) 1955-09-13 1957-11-19 Monsanto Chemicals Sulfonium sulfonates
US3278383A (en) 1962-06-13 1966-10-11 Cleveland J White Alpha-cellulose powder compositions and methods of absorbing body fluids from human skin
US3318817A (en) 1965-07-16 1967-05-09 Procter & Gamble Process for preparing detergent tablets
US3755560A (en) 1971-06-30 1973-08-28 Dow Chemical Co Nongreasy cosmetic lotions
GB1541463A (en) 1975-10-11 1979-02-28 Lion Dentifrice Co Ltd Process for prparing a multiple emulsion having a dispersing form of water-phase/oil-phase/water-phase
US4215064A (en) 1978-11-30 1980-07-29 Johnson & Johnson Phosphobetaines
US4380637A (en) 1978-11-30 1983-04-19 Johnson & Johnson/Mona Industries, Inc. Imidazoline phosphobetaines
US4233192A (en) 1978-11-30 1980-11-11 Johnson & Johnson Detergent compositions
US4272514A (en) 1979-11-06 1981-06-09 Spenco Medical Corporation High absorption body powder
US4382036A (en) 1981-05-15 1983-05-03 Johnson & Johnson Baby Products Company Pyrophosphobetaines
US4372869A (en) 1981-05-15 1983-02-08 Johnson & Johnson Baby Products Company Detergent compositions
US4421769A (en) 1981-09-29 1983-12-20 The Procter & Gamble Company Skin conditioning composition
DE3140784A1 (de) 1981-10-14 1983-04-28 Freudenberg, Carl, 6940 Weinheim "saugfaehiges flaechengebilde und verfahren zu seiner herstellung"
US4490764A (en) 1982-05-10 1984-12-25 Data Packaging Corporation Disc pack assembly
US4617414A (en) 1984-09-10 1986-10-14 Johnson & Johnson Baby Products Company Process for the preparation of phosphate surfactants
US4960764A (en) 1987-03-06 1990-10-02 Richardson-Vicks Inc. Oil-in-water-in-silicone emulsion compositions
JPS63238008A (ja) * 1987-03-25 1988-10-04 Daicel Chem Ind Ltd 化粧品
JPH02174709A (ja) * 1988-12-27 1990-07-06 Asahi Chem Ind Co Ltd セルロース粒子含有化粧料
DE69229619T2 (de) 1991-09-30 2000-03-16 Asahi Kasei Kogyo K.K. In Wasser dispergierbares Komplex und Verfahren zu dessen Herstellung
FR2703587B1 (fr) 1993-04-06 1995-06-16 Oreal Composition cosmetique coloree.
US5763497A (en) 1994-07-21 1998-06-09 Shiseido Company, Ltd. Oil-in-water type cosmetic composition
FR2730252B1 (fr) 1995-02-08 1997-04-18 Generale Sucriere Sa Cellulose microfibrillee et son procede d'obtention a partir de pulpe de vegetaux a parois primaires, notamment a partir de pulpe de betteraves sucrieres.
FR2744632B1 (fr) 1996-02-13 1998-03-27 Oreal Utilisation d'une suspension aqueuse de microfibrilles d'origine naturelle pour la preparation de compositions cosmetiques ou dermatologiques, compositions cosmetiques ou dermatologiques et applications
US5654362A (en) 1996-03-20 1997-08-05 Dow Corning Corporation Silicone oils and solvents thickened by silicone elastomers
US5919437A (en) 1996-05-24 1999-07-06 Colgate-Palmolive Company Cosmetic cream composition containing silicone gel material
DE19628324A1 (de) 1996-07-13 1998-01-15 Hocepro Gmbh I G Fibrillen aus Cellulose
EP0829259A1 (en) 1996-09-04 1998-03-18 Warner-Lambert Company Foam/gel with microbeads and/or fine particles
US6060546A (en) 1996-09-05 2000-05-09 General Electric Company Non-aqueous silicone emulsions
DE19640099A1 (de) 1996-09-28 1998-04-09 Wella Ag Verwendung von wasserunlöslichen Fasern in kosmetischen Mitteln zur Behandlung, Gestaltung oder Pflege der Frisur
US5902570A (en) 1996-10-29 1999-05-11 Procter & Gamble Company Antiperspirant cream compositions having improved rheology
TW520990B (en) 1997-09-29 2003-02-21 Kao Corp Disintegrating particles and cleanser or detergent composition
JPH11152206A (ja) * 1997-11-19 1999-06-08 Hakusan Sangyo Kk 化粧料
FR2783169B1 (fr) 1998-09-15 2001-11-02 Sederma Sa Utilisation cosmetique ou dermopharmaceutique de peptides pour la cicatrisation et pour l'amelioration de l'aspect cutane lors du vieillissement naturel ou accelere (heliodermie, pollution)
US5976514A (en) 1998-11-20 1999-11-02 Procter & Gamble Company Low-irritation antiperspirant and deodorant compositions containing a volatile, nonpolar hydrocarbon liquid
FR2793683B1 (fr) 1999-05-20 2003-07-25 Oreal Composition anhydre de soin ou de maquillage contenant des fibres et des polyols
FR2794466B1 (fr) 1999-06-02 2001-06-29 Oreal Composition sous forme d'emulsion huile-dans-eau contenant des fibrilles de cellulose et ses utilisations notamment cosmetiques
FR2795640B1 (fr) 1999-07-01 2001-08-31 Oreal Composition de soin ou de maquillage contenant des fibres et un organopolysiloxane hydrophile
FR2795950B1 (fr) 1999-07-08 2003-05-09 Oreal Mascara comprenant un polyurethane et des fibres
FR2795957B1 (fr) 1999-07-08 2001-09-28 Oreal Composition de maquillage comprenant des fibres
FR2799646B1 (fr) 1999-10-15 2001-12-07 Oreal Composition sous forme d'emulsion eau-dans-huile, contenant des fibres, et son utilisation dans le domaine cosmetique
FR2799647B1 (fr) 1999-10-15 2001-12-07 Oreal Composition sous forme d'emulsion eau-dans-huile, contenant des fibres, et son utilisation dans le domaine cosmetique
FR2808441B1 (fr) 2000-05-04 2004-06-18 Oreal Utilisation de fibres dans une composition de soin ou de maquillage pour matifier la peau
FR2809009B1 (fr) 2000-05-22 2002-06-28 Oreal Utilisation de fibres comme agent anti-pollution, notamment dans une composition cosmetique
FR2815847B1 (fr) 2000-10-27 2002-12-13 Oreal Composition cosmetique comprenant des fibres et une cire
FR2817476B1 (fr) 2000-12-05 2003-01-03 Oreal Composition de soin de maquillage contenant des fibres et un copolymere dispersant
FR2822375B1 (fr) 2001-03-20 2003-05-02 Oreal Composition contenant des fibres, et ses utilisations notamment cosmetiques
US20020197289A1 (en) 2001-03-23 2002-12-26 L'oreal Compositions and methods for combating the appearance of ageing
DE60211581D1 (de) 2001-03-23 2006-06-29 Oreal Hautbehandlungsmittel enthaltend Fasern und Ubichinone
FR2822377A1 (fr) 2001-03-23 2002-09-27 Oreal Utilisation de fibres comme agent anti-irritant dans une composition cosmetique ou dermatologique
FR2822679A1 (fr) 2001-03-30 2002-10-04 Oreal Composition cosmetique comprenant un melange de fibres
FR2824265A1 (fr) 2001-05-03 2002-11-08 Oreal Creme cosmetique moussante contenant des fibres
US7094317B2 (en) 2002-11-06 2006-08-22 Fiberstar, Inc. Process of manufacturing and using highly refined fiber mass
US20040142008A1 (en) 2002-11-06 2004-07-22 L'oreal Composition containing fibers and polyurethane, methods
US9629790B2 (en) 2002-11-06 2017-04-25 Fiberstar, Inc Stabilization of cosmetic compositions
US20040161435A1 (en) 2003-02-14 2004-08-19 Gupta Shyam K. Skin Firming Anti-Aging Cosmetic Mask Compositions
US20050002996A1 (en) 2003-07-02 2005-01-06 Milan Sojka Sustained release compositions and controlled delivery method
US20050175650A1 (en) 2003-07-08 2005-08-11 Anke Hadasch Composition comprising an elastomeric organopolysiloxane and additional particles
DE10350322A1 (de) 2003-10-23 2005-06-09 Coty B.V. Klimabeständiger kosmetischer Komplex
DE10353486B4 (de) 2003-11-10 2009-07-09 Coty B.V. Mascara mit Faserbestandteilen
ATE398443T1 (de) 2004-02-13 2008-07-15 Oreal Beschichtungszusammensetzung für keratinfasern enthaltend ein klebriges mikrokristallines wachs and fasern
FR2866231B3 (fr) 2004-02-13 2005-12-16 Oreal Composition de revetement des fibres keratiniques comprenant une cire collante et des fibres
JP4082618B2 (ja) 2004-03-22 2008-04-30 ロレアル ポリグリセロール化されたシリコーンエラストマーを含有する化粧品用組成物
US20050276771A1 (en) 2004-06-10 2005-12-15 Lewis Farsedakis Color-giving lip covering, color for lips, peelable cosmetics, and other cosmetics
US20060008485A1 (en) 2004-07-12 2006-01-12 Ferone James J Packaged cosmetic compositions and related methods
US8147853B2 (en) 2005-02-15 2012-04-03 The Procter & Gamble Company Personal care compositions containing hydrophobically modified non-platelet particles
US20060246027A1 (en) 2005-05-02 2006-11-02 Tanner Paul R Personal care composition
WO2006121806A1 (en) 2005-05-10 2006-11-16 Johnson & Johnson Consumer Companies, Inc. Low-irritation compositions and methods of making the same
US20060275232A1 (en) 2005-06-01 2006-12-07 L'oreal Two-composition product, uses thereof, and makeup kit containing this product
GB0513350D0 (en) * 2005-06-29 2005-08-03 Torres Manel Non-woven fabric
WO2007007403A1 (ja) 2005-07-13 2007-01-18 Miyoshi Kasei, Inc. 表面処理粉体及びこれを含有する化粧料
WO2007014161A2 (en) 2005-07-22 2007-02-01 Sustainable Solutions, Inc. Cotton fiber particulate and method of manufacture
JP4897289B2 (ja) * 2005-07-27 2012-03-14 大東化成工業株式会社 疎水性セルロース粉体およびその製造方法
FR2892304B1 (fr) 2005-10-21 2008-01-04 Oreal Procede cosmetique utile pour lisser la peau
US20070141095A1 (en) 2005-12-15 2007-06-21 L'oreal Aqueous dispersion of colloidal particles of mineral filler and fibres
EP1981468A2 (en) 2005-12-29 2008-10-22 Avon Products, Inc. Use of non-straight fibers dispersed in a composition and compositions thereof
DE102006004355A1 (de) 2006-01-30 2007-08-02 Henkel Kgaa Kosmetische Zusammensetzungen zur Mattierung der Kopfhaut
US9045716B2 (en) 2006-11-08 2015-06-02 Cp Kelco U.S., Inc. Surfactant thickened systems comprising microfibrous cellulose and methods of making same
US8772359B2 (en) 2006-11-08 2014-07-08 Cp Kelco U.S., Inc. Surfactant thickened systems comprising microfibrous cellulose and methods of making same
US7803403B2 (en) 2006-11-09 2010-09-28 Johnson & Johnson Consumer Companies, Inc. Low-irritation compositions and methods of making the same
JP2010138074A (ja) 2007-04-13 2010-06-24 Dai Ichi Kogyo Seiyaku Co Ltd 水系分散体及び水系化粧料
US8894980B2 (en) 2007-11-19 2014-11-25 U.S. Cosmetics Corporation Wet cake composition for cosmetic products and methods of use
FR2921261B1 (fr) 2007-09-20 2009-11-20 Oreal Composition cosmetique anhydre comprenant des fibres
KR101438371B1 (ko) * 2007-11-30 2014-09-12 (주)아모레퍼시픽 메이크업 제거용 세정제 조성물
ES2809493T3 (es) 2008-04-16 2021-03-04 Procter & Gamble Proceso para formar un artículo de higiene personal no espumante en forma de una espuma sólida soluble
US20090291057A1 (en) 2008-05-21 2009-11-26 Debora W Chang Animal care composition
US7776807B2 (en) * 2008-07-11 2010-08-17 Conopco, Inc. Liquid cleansing compositions comprising microfibrous cellulose suspending polymers
EP2332519B1 (en) * 2008-09-03 2018-11-28 Ohken Co., Ltd. Powder cosmetic material
US20110300499A1 (en) * 2009-10-07 2011-12-08 Leung Kwok Wai Simon Multiple temperature point control heater system
JP5932633B2 (ja) 2010-02-25 2016-06-08 株式会社オーケン 両親媒性物質処理扁平セルロース粉体およびこれを含有する化粧料
BRPI1005345B1 (pt) 2010-04-13 2017-06-13 U.S. Cosmetics Corporation Strengthening composition of sun protection factor
DE102010028313A1 (de) 2010-04-28 2011-11-03 Henkel Ag & Co. Kgaa Kosmetische Zusammensetzung zur optischen Kaschierung von Falten
US8329626B2 (en) 2010-06-24 2012-12-11 Johnson & Johnson Consumer Companies, Inc. Low-irritating, clear cleansing compositions with relatively low pH
US8343902B2 (en) 2010-06-24 2013-01-01 Johnson & Johnson Consumer Companies, Inc. Low-irritating, clear cleansing compositions with relatively low pH
US8884002B2 (en) 2010-12-01 2014-11-11 Fiberstar Bio-Ingredient Technologies, Inc. Viscosity control in compositions comprising plant fiber materials
FI126259B (fi) 2011-02-11 2016-09-15 Upm Kymmene Corp Mikrofibrilloitu selluloosa käytettäväksi erityisesti atooppisen ihotulehduksen ja psoriasiksen hoidossa
JP6069189B2 (ja) 2011-03-28 2017-02-01 株式会社オーケン 金属酸化物複合化高扁平セルロース粉体およびこれを含有する化粧料
EP2755628A4 (en) 2011-09-13 2015-07-01 Us Cosmetics Corp ENHANCED COLORED BULK POWDERS WITH IMPROVED SPF AND METHODS OF MAKING SAME
JP5373177B2 (ja) 2012-02-02 2013-12-18 株式会社 資生堂 再分散型粉末分散化粧料
DE102012203307A1 (de) 2012-03-02 2013-09-05 Evonik Industries Ag Verwendung von Pulvercellulose in Kosmetika
US9089502B2 (en) 2012-03-12 2015-07-28 L'oreal Cosmetic compositions based on a supramolecular polymer, a hyperbranched functional polymer, a light silicone fluid, a copolymer of a silicone resin and a fluid silicone, and a functional filler
FR2991582B1 (fr) 2012-06-11 2014-06-13 Isp Investments Inc Extrait de fibres de coton et composition cosmetique et leur utilisation pour proteger, nourrir et hydrater la peau
FR2991581B1 (fr) 2012-06-12 2014-09-05 Oreal Composition a rincer comprenant un compose adhesif sensible a la pression sous forme de billes
FR2991580B1 (fr) 2012-06-12 2014-09-26 Oreal Composition a rincer comprenant un polymere filmogene
US20130340781A1 (en) 2012-06-20 2013-12-26 Frank Thomas Liebel Oil absorbing comb
US9370478B2 (en) 2012-11-09 2016-06-21 Johnson & Johnson Consumer Inc. Skin care compositions containing cotton and citrus-derived materials
US20140134218A1 (en) 2012-11-09 2014-05-15 Johnson & Johnson Consumer Companies, Inc. Rinse-off skin care compositions containing cellulosic materials
US20140134217A1 (en) 2012-11-09 2014-05-15 Johnson & Johnson Consumer Companies, Inc. Leave-on compositions containing cellulose materials
JPWO2014088034A1 (ja) 2012-12-04 2017-01-05 日産化学工業株式会社 化粧料用添加剤およびそれを配合した化粧料
US20140286887A1 (en) 2013-03-22 2014-09-25 L'oreal Stable, long wearing cosmetic compositions comprising film forming polymers and a microcrystalline wax
JP6125896B2 (ja) 2013-05-14 2017-05-10 富士フイルム株式会社 皮膚洗浄料
EP2907498A1 (en) 2014-02-13 2015-08-19 Induchem Ag Exfoliating cellulose beads and cosmetic uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606958A (en) * 1983-06-27 1986-08-19 Lever Brothers Company Highly absorbent substrate article
US20030086962A1 (en) * 2001-07-11 2003-05-08 Westerfield Kelly J. Cleansing products
US20060029625A1 (en) * 2004-08-06 2006-02-09 Niebauer Michael F Personal cleansing composition containing fibers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Olson Eric "Particle shape factors and their use in image analysis part II: Practical Applications" Autumn 2011. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9737473B2 (en) 2012-11-09 2017-08-22 Johnson & Johnson Consumer Inc. Leave-on compositions containing cellulose materials
US20150305989A1 (en) * 2014-04-11 2015-10-29 Cristina Lupano Methods and Products for Removing Sunscreen
JP2016041669A (ja) * 2014-08-19 2016-03-31 ロート製薬株式会社 皮膚外用剤
EP3256100B1 (fr) 2014-12-12 2022-06-29 L'Oréal Composition cosmetique comprenant des olefine sulfonates lineaires et des tensioactifs anioniques non oxyalkylenes
US20170087063A1 (en) * 2015-09-30 2017-03-30 Johnson & Johnson Consumer Inc. Triphasic cleansing composition
WO2017058441A1 (en) * 2015-09-30 2017-04-06 Johnson & Johnson Consumer Inc. Triphasic cleansing composition
CN108135790A (zh) * 2015-09-30 2018-06-08 强生消费者公司 三相清洁组合物
US10780029B2 (en) * 2015-09-30 2020-09-22 Johnson & Johnson Consumer Inc. Triphasic cleansing composition
US11478522B2 (en) * 2016-11-13 2022-10-25 Kamedis Ltd Synergistic herbal compositions with prebiotic properties for treatment of acne
EP3943530A4 (en) * 2019-03-18 2022-10-26 Daicel Corporation CELLULOSIC ACETATE PARTICLES, COSMETIC COMPOSITION AND PROCESS FOR PRODUCTION OF CELLULOSIC ACETATE PARTICLES

Also Published As

Publication number Publication date
IN2015DN03942A (zh) 2015-10-02
HK1210697A1 (zh) 2016-05-06
US9549889B2 (en) 2017-01-24
US20150040933A1 (en) 2015-02-12
WO2014074581A1 (en) 2014-05-15
CN104768528B (zh) 2018-05-29
BR112015010395A8 (pt) 2022-08-16
US20170128345A1 (en) 2017-05-11
BR112015010395A2 (pt) 2017-07-11
US9549890B2 (en) 2017-01-24
US20140227331A1 (en) 2014-08-14
CN104768528A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
US9549890B2 (en) Rinse-off skin care compositions containing cellulosic materials
US9370478B2 (en) Skin care compositions containing cotton and citrus-derived materials
US9737473B2 (en) Leave-on compositions containing cellulose materials
CA2589044C (en) Personal care compositions containing hydrophobically modified non-platelet particles
EP2585174B1 (en) Low-irritating, clear cleansing compositions with relatively low ph
EP2585173B1 (en) Low-irritating, clear cleansing compositions with relatively low ph
JP2007522080A (ja) 疎水性に修飾された干渉顔料を含有するパーソナルケア組成物
MXPA06012191A (es) Composiciones para el cuidado personal que depositan agentes beneficos solidos hidrofilos.
US20110277796A1 (en) Method of cleansing skin having an impaired barrier
CA2605395C (en) Silicone elastomer exfoliating compositions
KR20160021445A (ko) 변형된 갈락토만난을 기초로 한 콜로이드적으로 안정한 분산액
CN108135790B (zh) 三相清洁组合物
JP2009501209A (ja) シワの処理のための美容方法
AU2009248453A1 (en) Dilute structured compositions comprising a branched fatty alcohol
CN105992582B (zh) 皮肤外用剂
FR2949058A1 (fr) Lingette impregnee d'une emulsion comprenant un polymere epaississant et une inuline modifiee hydrophobe
CN101217931A (zh) 靶向皱纹的化妆方法
FR2930726A1 (fr) Compositions a base de complexes polymere poreux-peroxyde d'hydrogene et leurs utilisations

Legal Events

Date Code Title Description
AS Assignment

Owner name: JOHNSON & JOHNSON CONSUMER COMPANIES, INC., NEW JE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BONNER, PATRICIA;KAMINSKI, CLAUDIA;LORENZETTI, DANIELLE LIMA;AND OTHERS;SIGNING DATES FROM 20130502 TO 20130507;REEL/FRAME:030410/0839

AS Assignment

Owner name: JOHNSON & JOHNSON CONSUMER COMPANIES, INC., NEW JE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE TITLE AS IT APPEARS ON THE ACTUAL ASSIGNMENT DOCUMENT WHICH CONTAINED A TYPOGRAPHIC ERROR PREVIOUSLY RECORDED ON REEL 030410 FRAME 0839. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECT TITLE IS ON ASSIGNMENT DOCUMENTS (NOTICE OF RECORDATION IS CORRECT);ASSIGNORS:BONNER, PATRICIA;KAMINSKI, CLAUDIA;LORENZETTI, DANIELLE LIMA;AND OTHERS;SIGNING DATES FROM 20130502 TO 20130507;REEL/FRAME:031558/0449

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION