US20140010991A1 - Solder transfer base, method for producing solder transfer base, and method for transferring solder - Google Patents

Solder transfer base, method for producing solder transfer base, and method for transferring solder Download PDF

Info

Publication number
US20140010991A1
US20140010991A1 US14/005,874 US201214005874A US2014010991A1 US 20140010991 A1 US20140010991 A1 US 20140010991A1 US 201214005874 A US201214005874 A US 201214005874A US 2014010991 A1 US2014010991 A1 US 2014010991A1
Authority
US
United States
Prior art keywords
solder
adhesive layer
transfer substrate
peeling
solder transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/005,874
Other versions
US9238278B2 (en
Inventor
Daisuke Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Assigned to PANASONIC CORPORATION reassignment PANASONIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAKURAI, DAISUKE
Publication of US20140010991A1 publication Critical patent/US20140010991A1/en
Assigned to PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. reassignment PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PANASONIC CORPORATION
Application granted granted Critical
Publication of US9238278B2 publication Critical patent/US9238278B2/en
Assigned to PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. reassignment PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY FILED APPLICATION NUMBERS 13/384239, 13/498734, 14/116681 AND 14/301144 PREVIOUSLY RECORDED ON REEL 034194 FRAME 0143. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: PANASONIC CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0607Solder feeding devices
    • B23K3/0623Solder feeding devices for shaped solder piece feeding, e.g. preforms, bumps, balls, pellets, droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the bump preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/111Manufacture and pre-treatment of the bump connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11332Manufacturing methods by local deposition of the material of the bump connector in solid form using a powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/11848Thermal treatments, e.g. annealing, controlled cooling
    • H01L2224/11849Reflowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1356Disposition
    • H01L2224/13562On the entire exposed surface of the core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1357Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13575Plural coating layers
    • H01L2224/13578Plural coating layers being disposed next to each other, e.g. side-to-side arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13609Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13611Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0425Solder powder or solder coated metal powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3478Applying solder preforms; Transferring prefabricated solder patterns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet

Definitions

  • the present invention relates to a solder transfer substrate, a manufacturing method of a solder transfer substrate and a solder transfer method.
  • mounting is carried out by forming protruding electrodes such as solder bumps and the like on the electrode terminals of a semiconductor element such as an LSI and the like, melting the solder layers formed beforehand on the electrode terminals through pressing with heating of the semiconductor element turned face down against the connection terminals of the mounting board, and allowing connection to be carried out.
  • protruding electrodes such as solder bumps and the like
  • melting the solder layers formed beforehand on the electrode terminals through pressing with heating of the semiconductor element turned face down against the connection terminals of the mounting board, and allowing connection to be carried out.
  • solder paste with a mixture of solder powders such that oxide films have been formed on the surfaces and a flux is applied to the whole area on the circuit board on which the connection terminals are formed. And, by heating the circuit board in that state, the solder powders are allowed to be melted, and the solder layers are selectively formed on the connection terminals without causing short circuits between the contiguous connection terminals.
  • solder layer formation technique of allowing solder powders to selectively attach onto the electrode terminals by superposing a support medium, to which the solder powders are attached, on a semiconductor element or a circuit board, and carrying out heating and pressurization (for example, see WO2006/067827 pamphlet).
  • FIGS. 9( a )-( e ) are explanatory drawings of the step of performing solder layer formation (precoating) proposed in WO2006/067827 pamphlet, which allows the solder to attach to the soldering part of the work beforehand. In what follows, that step is described.
  • the adhesive agent 52 is applied to one side of the support medium 51 ( FIG. 9( a )).
  • the powder solders 53 are sprinkled on the adhesive agent 52 , which has been applied to the support medium 51 , to an extent such that the adhesive agent 52 is hidden ( FIG. 9( b )).
  • the liquid flux 58 is applied, with the spray fluxer 57 , to the face on which the soldering part 56 of the work 55 is formed ( FIG. 9( d )).
  • the numeral 59 denotes the resist.
  • the flux application face of the work 55 and the powder solder adhesion face of the support medium 51 are superposed. At this time a pressure is exerted between the work 55 and the support medium 51 from above the support medium 51 with a pressing machine that is not shown. Then, because the adhesive agent 52 has flexibility and followability, the powder solders 53 that have been adhered to the adhesive agent 52 come into contact with the soldering part 56 when the pressure is exerted against the support medium 51 ( FIG. 9( e )).
  • the powder solders 53 are diffused at the interface with the soldering part 56 and joined thereto. And, after cooling, when the support medium 51 is removed from the work 55 , the powder solders 53 that have been diffused at the interface with the soldering part 56 and joined thereto are left on the soldering part 56 , and the powder solders 53 on the resist 59 are removed along with the support medium 51 .
  • solder layers are formed, in case the work 55 is a semiconductor element, on the electrode terminals by melting the powder solders 53 on the soldering part 56 with a reflow furnace.
  • solder layers can be formed also on the narrow-pitch electrode terminals, it is not necessary to perform a complicated step with a large-sized facility line like electrolytic plating, and production can be easily carried out with high productivity.
  • a low-dielectric-constant film for the purpose of coping with a design rule becoming finer or high-speed signal processing that is required in recent years, a low-dielectric-constant film (so-called a low-k film, a ULK (Ultra Low-k) film or the like) has been used as the interlayer insulating film of a semiconductor element.
  • a low-dielectric-constant film itself is allowed to be porous and have many empty holes of several nanometers in order to lower the dielectric constant (the density for a low dielectric constant is 1.0-1.4 g/cm 3 , for example).
  • FIGS. 10( a ) and ( b ) show enlarged sectional views that conceptually show the step of forming solder layers, using the solder layer formation technique of WO2006/067827 pamphlet mentioned above, on such electrode terminals on a semiconductor element having the fragile low-dielectric-constant film 67 .
  • the solder transfer substrate 65 comprises the substrate 64 with the thickness s 1 , the adhesive agent 62 with the thickness a 1 formed thereon, and the solder powders 63 arranged thereon.
  • the semiconductor element 66 having the fragile low-dielectric-constant film 67 on its surface on the side near to the solder transfer substrate 65 , the protruding electrode 68 is formed on the electrode pad 69 .
  • the adhesive agent 62 and the protruding electrode 68 are bonded with each other.
  • the present invention in consideration of the problems of the conventional solder transfer substrate, furnishes a solder transfer substrate, a manufacturing method of a solder transfer substrate, and a solder transfer method using a solder transfer substrate such that a solder transfer substrate is easy to smoothly peel off.
  • the 1 st aspect of the present invention is
  • a solder transfer substrate comprising:
  • a plurality of holes which allow at least a peeling-off liquid to pass therethrough, are formed from a side thereof on which the adhesive layer is not arranged to a side thereof on which the adhesive layer is arranged.
  • the 2 nd aspect of the present invention is
  • the adhesive layer has a characteristic of expanding with the peeling-off liquid infused.
  • the 3 rd aspect of the present invention is
  • the base layer is a porous member.
  • the 4 th aspect of the present invention is
  • the plurality of holes are provided so as to penetrate from a face of the base layer, which does not touch the adhesive layer, towards a face of the base layer, which touches the adhesive layer.
  • the 5 th aspect of the present invention is
  • the plurality of holes are formed at least to an inside of the adhesive layer.
  • the 6 th aspect of the present invention is
  • the base layer is larger than the adhesive layer in respect of a compression rate at a time of heating.
  • the 7 th aspect of the present invention is
  • a manufacturing method of a solder transfer substrate comprising:
  • the 8 th aspect of the present invention is
  • a manufacturing method of a solder transfer substrate comprising:
  • a penetration step of forming a hole penetrating at least the base layer a penetration step of forming a hole penetrating at least the base layer.
  • the 9 th aspect of the present invention is
  • a solder transfer method comprising:
  • solder joining step of superposing the solder transfer substrate according to the 1 st aspect of the present invention, and a circuit board or an electronic component with an electrode formed on a surface thereof, so that a face on which the solder powders have been loaded faces a face on which the electrode has been formed, carrying out heating and pressurization, and allowing the solder powders to be joined to the electrode;
  • the 10 th aspect of the present invention is
  • a solder transfer method comprising:
  • solder joining step of superposing the solder transfer substrate according to the 1 st aspect of the present invention, and a circuit board or an electronic component with an electrode formed on a surface thereof, so that a face on which the solder powders have been loaded faces a face on which the electrode has been formed, carrying out heating and pressurization, and allowing the solder powders to be diffused and joined to the electrode;
  • solder transfer substrate can be furnished a solder transfer substrate, a manufacturing method of a solder transfer substrate, and a solder transfer method using a solder transfer substrate such that it is easier to smoothly peel off.
  • FIG. 1 is a sectional constitution view that conceptually shows the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 2( a ) is a sectional constitution view for describing the solder powder loading step in Embodiment 1 of the present invention.
  • FIG. 2( b ) is a sectional constitution view for describing the solder powder loading step in Embodiment 1 of the present invention.
  • FIG. 2( c ) is a sectional constitution view for describing the solder powder loading step in Embodiment 1 of the present invention.
  • FIG. 2( d ) is a sectional constitution view for describing the solder powder loading step in Embodiment 1 of the present invention.
  • FIG. 3( a ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 3( b ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 3( c ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 3( d ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 3( e ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 3( f ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 3( g ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 4( a ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 of the present invention.
  • FIG. 4( b ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 of the present invention.
  • FIG. 4( c ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 of the present invention.
  • FIG. 4( d ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 of the present invention.
  • FIG. 4( e ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 of the present invention.
  • FIG. 4( f ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 of the present invention.
  • FIG. 4( g ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 of the present invention.
  • FIG. 5( a ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 of the present invention.
  • FIG. 5( b ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 of the present invention.
  • FIG. 5( c ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 of the present invention.
  • FIG. 5( d ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 of the present invention.
  • FIG. 5( e ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 of the present invention.
  • FIG. 5( f ) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 of the present invention.
  • FIG. 6( a ) is a sectional constitution view that conceptually shows the solder transfer substrate in Embodiment 4 of the present invention
  • FIG. 6( b ) is a plan constitution view that conceptually shows the solder transfer substrate in Embodiment 4 of the present invention.
  • FIGS. 7( a )-( d ) are sectional constitution views that conceptually show the solder transfer method in the manufacturing method of the semiconductor device using the solder transfer substrate of Embodiment 4 of the present invention.
  • FIG. 8 is a sectional constitution view that shows the solder transfer substrate of Embodiment 1 of the present invention and the circuit board arranged to face it.
  • FIGS. 9( a )-( e ) are explanatory drawings of the step of performing solder layer formation (precoating) in a conventional embodiment.
  • FIGS. 10( a )-( c ) are enlarged sectional constitution views that conceptually show the step of forming, on the electrode terminals on a semiconductor element having a fragile low-dielectric-constant film by a conventional solder layer formation technique, solder layers.
  • solder transfer substrate the manufacturing method of the solder transfer substrate, and the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 pertaining to the present invention.
  • FIG. 1 is a sectional constitution view that conceptually shows the solder transfer substrate in Embodiment 1 of the present invention.
  • the solder transfer substrate 5 of present Embodiment 1 comprises the base layer 1 , the adhesive layer 2 arranged on the base layer 1 , and the plural solder powders 3 that have been loaded so as to be bonded to the adhesive layer 2 .
  • the base layer 1 is a substrate having a plurality of holes, and its thickness s 1 is 0.020-2.0 mm.
  • the said substrate having a plurality of holes is a material made of fibers, and can be used, for example, a cellulose base material such as Rintaashi (produced by TOKYO TOKUSHU SHIGYO CO., LTD., trade name), Pakopaddo (produced by Material Co., ltd., trade name) or the like, or a woven-fabric material such as Toppuboodo (produced by Yamauchi Corporation, trade name), Eesuboodo (produced by Ichikawa Keori Kabushikigaisha, trade name), ChuukoofurooNSboodo (produced by Chukoh Chemical Industries Ltd., trade name) or the like, or a composite material such that these are combined.
  • a cellulose base material such as Rintaashi (produced by TOKYO TOKUSHU SHIGYO CO., LTD., trade name), Pakop
  • the base layer 1 absorbs, because being a substrate made of fibers and being of the structure having plural holes inside, the inclination of parallelism of the mold at the time of heating and pressurization to be mentioned later, and plays the role of a cushion material that carries out uniform heating and pressurization of the solder transfer sheet. Moreover, which will be mentioned later in detail, the base layer 1 plays the role of an infiltration material that allows the peeling-off liquid to reach the adhesive agent easily infiltrating into the material of the base layer. Additionally, this base layer 1 corresponds to one example of the porous member of the present invention.
  • the adhesive layer 2 is, for example, made of an adhesive agent of the acrylic system, the silicone system, the rubber system and the like.
  • solder powders 3 SnAgCu, SnAgBiIn, SnZnBi, Sn, In, SnBi and the like would be used.
  • the thickness a 1 of the adhesive layer 2 can be set freely, correspondingly to the diameter of the solder powder 3 .
  • the thickness a 1 of the adhesive layer 2 is allowed to be 5-100 ⁇ m.
  • the adhesive layer 2 with the thickness a 1 is formed on the base layer 1 made of cellulose with the thickness s 1 .
  • This step corresponds to one example of the adhesive layer forming step of the present invention.
  • FIGS. 2( a )-( d ) are sectional constitution views for describing the solder powder loading step of present Embodiment 1.
  • the mask 70 is arranged in which the plural arrangement parts 71 are punched where the solder powders 3 are to be arranged. And, as shown in FIG. 2( b ), after the plural solder powders 3 have been supplied from above the mask 70 by using a brush and the like, for example, the mask 70 is removed. Subsequently, as shown in FIG. 2( c ), by the air blow 72 , the solder powders 3 supplied except for the arrangement parts 71 are blown away, as shown in FIG. 2( d ), the solder powder 3 arranged in the respective plural arrangement parts 71 are left on the adhesive layer 2 , and thereby the solder transfer substrate 5 is fabricated.
  • solder powders 3 are stuck to the adhesive layer 2 like this by using the mask 70 , a space is formed between each of the solder powders 3 . Moreover, by removing the superfluous solder powders 3 , the solder powder 3 can be arranged so that the thickness is substantially constant. Additionally, this step of FIGS. 2( a )-( d ) corresponds to one example of the solder powder loading step of the present invention. Moreover, the solder powders 3 may be supplied by sifting, which is not limited to a brush.
  • the solder transfer substrate 5 is created.
  • the thickness s 1 of the base layer 1 is set to 1.5 mm
  • the thickness a 1 of the adhesive layer 2 is 0.050 mm
  • the particle diameter of the solder powder 3 is 0.002-0.012 mm.
  • the respective materials, densities and the like are set so that, in a case where the same load has been imposed in a high-temperature state (for example, 190-210° C.), for the adhesive layer 2 the compression rate becomes large in comparison with the base layer 1 .
  • FIGS. 3( a )-( g ) are sectional constitution views that conceptually show the manufacturing method of the semiconductor device using the solder transfer substrate in present Embodiment 1. In the following, using FIGS. 3( a )-( g ) descriptions are given regarding the manufacturing method of the semiconductor device of present Embodiment 1.
  • the semiconductor element 6 is provided on the lower side of the solder transfer substrate 5 in the figure. Inside this semiconductor element 6 is formed the fragile low-dielectric-constant film (Ultra LowK) 7 and, in FIG. 3( a ), on its surface on the side of the solder transfer substrate 5 are formed on the electrode pads 12 a plurality of the protruding electrodes 8 made of Au/NiP, for example. Additionally, the protruding electrodes 8 are in plan view formed in the form of a matrix. Moreover, the surface of the semiconductor element 6 of the portions on which the protruding electrodes 8 are not formed is covered with the insulating film 9 of silicon nitride and the like, for example.
  • the protruding electrodes 8 are, with the height being 0.008-0.013 mm, formed with a pitch of 0.050 mm by an electroless plating construction method.
  • the semiconductor element 6 that is here being allowed to be a target of the solder layer formation corresponds to one example of the electronic component of the present invention.
  • the solder transfer substrate 5 and the semiconductor element 6 are arranged so that the solder powders 3 of the solder transfer substrate 5 and the protruding electrodes 8 of the semiconductor element 6 face each other.
  • the face of the solder transfer substrate 5 on which the solder powders 3 have been loaded is superposed with the face on which the protruding electrodes 8 are formed, and heating and pressurization is performed.
  • the adhesive layer 2 softens by the heating and, as the solder powders 3 are getting buried into the adhesive layer 2 , the solder powders 3 and the protruding electrodes 8 are diffused and joined with each other at the interface with the protruding electrodes 8 . Additionally, because there is a space between each of the solder powders 3 , and the adhesive layer 2 gets in between the solder powders 3 , each of the solder powders 3 is thus not melted to get continuous with the adjacent ones. Moreover, the adhesive layer 2 that has softened is bonded with the solder powders 3 on the protruding electrodes 8 and the protruding electrodes 8 .
  • the adhesive layer 2 in a high-temperature state (for example, 190-210° C.) is high in comparison with the compression rate of the base layer 1 , the adhesive layer 2 is largely transformed in comparison with the base layer 1 , and the thicknesses of the adhesive layer 2 differ between the portions that do not touch the protruding electrodes 8 and the portions that touch them.
  • the thickness a 2 of the portions that do not touch them is roughly equal to the initial thickness before the heating and pressurization is carried out, while the thickness b 2 of the portions that touch the protruding electrodes 8 is largely compressed.
  • a 2 is 0.045 mm
  • b 2 has become 0.030-0.035 mm.
  • the semiconductor element 6 to which the solder transfer substrate 5 has been stuck is dipped in the peeling-off liquid.
  • the peeling-off liquid for example, ethanol, isopropyl alcohol and the like would be used.
  • the peeling-off liquid infiltrates into the base layer 1 , and is conveyed to the adhesive layer 2 .
  • the peeling-off liquid gets into the adhesive layer (see the black arrows), and the adhesive layer 2 swells in the thickness direction (see the white arrows). Further, the peeling-off liquid gets in the interface between the adhesive agent of the adhesive layer 2 and the solder powders 3 , and the bonding strength between the adhesive agent and the solder powder 3 , and between the adhesive agent and the protruding electrode 8 declines.
  • the expansion rate becomes large, because in comparison with the portions that do not touch the protruding electrodes 8 , the compression rate is high.
  • the bonding strength between the adhesive layer 2 and the protruding electrodes 8 lowers, and is also generated an effect such that the solder transfer substrate 5 becomes easy to peel off.
  • solder transfer substrate 5 becomes able to be peeled off with a weaker force.
  • any kind of method might be used provided that it is a method such that the peeling-off liquid is supplied to the whole of the solder transfer substrate 5 , with a spin coat, a dispenser, potting, a coater and the like.
  • This step shown in FIG. 3( c ) corresponds to one example of the peeling-off liquid infiltrating step of the present invention.
  • the solder transfer substrate 5 is peeled off from the semiconductor element 6 .
  • the solder powders 3 on the protruding electrodes 8 are, because joined with the protruding electrodes 8 , left on the protruding electrodes 8 .
  • the solder powders 3 on the insulating film 9 outside the protruding electrodes 8 are, because the bonding strength between the solder and the adhesive agent (the adhesive layer 2 ) is more than the bonding strength between the adhesive agent (the adhesive layer 2 ) and the insulating film 9 , taken away by the adhesive layer 2 on the side of the solder transfer substrate 5 . In this way, the solder powders 3 become in a state of being joined onto the protruding electrodes 8 .
  • the bonding strength between the bonding agent of the adhesive layer 2 and the protruding electrodes 8 is less than the interface strength of the low-dielectric-constant film 7 under the protruding electrodes 8 , without causing peeling-off or fissures of the low-dielectric-constant film 7 , the solder transfer substrate 5 can be peeled off.
  • This step shown in FIG. 3( d ) corresponds to one example of the transfer substrate peeling-off step of the present invention.
  • the solder powders 3 are, being deposited in a reflow furnace, completely melted as in FIG. 3( f ), and the solder layer 30 is formed.
  • the solder height becomes uniform by allowing them to be melted like this and, at the time of later flip-chip mounting, joining becomes able to be more surely carried out.
  • the flux may be removed with washing as FIG. 3( g ) shows.
  • the semiconductor device can be fabricated.
  • the interface strength in the 180° peel test method between the solder transfer substrate 5 and the Au—Ni electrodes after melting of the solder powders 3 is, in a case where, as conventionally, a base layer without holes through which the peeling-off liquid passes is used and, besides no peeling-off liquid is used, 10N/25 mm, while it is decreased to 2N/25 mm with present Embodiment 1.
  • solder transfer substrate of present Embodiment 1 because in the base layer are formed a plurality of holes that allow the peeling-off liquid to infiltrate, also in a semiconductor element possessing a fragile dielectric film, occurrence of peeling-off and fissures of the fragile dielectric film, or peeling-off and fissures of the fragile dielectric film particularly under the electrode pads can be decreased, and it becomes easy to peel off the solder transfer substrate.
  • the plural solder powder 3 are arranged so that the thickness is substantially constant, and they are transferred to the protruding electrodes, the dispersion of the solder transfer quantities is suppressed, and a solder layer with an appropriate thickness can be more surely formed.
  • the base layer 1 absorbs, because being a substrate made of fibers and having a cushioning property, the inclination of parallelism of the mold at the time of heating and pressurization, and plays the role of a cushion material that carries out uniform heating and pressurization of the solder transfer sheet.
  • solder transfer substrate the manufacturing method of the solder transfer substrate, and the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 pertaining to the present invention.
  • the basic constitution of the solder transfer substrate of present Embodiment 2 is the same as that of Embodiment 1, but the compression rates of the base layer and the adhesive layer in high-temperature states are different from those of Embodiment 1. Additionally, identical reference numerals have been assigned regarding the constitution similar to that of Embodiment 1.
  • FIGS. 4( a )-( g ) are sectional constitution views that conceptually show the manufacturing method of the semiconductor device using the solder transfer substrate 50 in present Embodiment 2.
  • the solder transfer substrate 50 of present Embodiment 2 comprises the base layer 11 , the adhesive layer 21 arranged on the base layer 11 , and the plural solder powders 3 that have been loaded so as to be bonded to the adhesive layer 21 .
  • the base layer 11 is a substrate having a plurality of holes, and its thickness s 1 is 0.020-2.0 mm.
  • the said substrate having a plurality of holes is a material made of fibers, and can be used, for example, a cellulose base material such as Rintaashi (produced by TOKYO TOKUSHU SHIGYO CO., LTD., trade name), Pakopaddo (produced by Material Co., Ltd., trade name) or the like, or a woven-fabric material such as Toppuboodo (produced by Yamauchi Corporation, trade name), Eesuboodo (produced by Ichikawa Keori Kabushikigaisha, trade name), ChuukoofurooNSboodo (produced by Chukoh Chemical Industries Ltd., trade name) or the like, or a composite material such that these are combined.
  • a cellulose base material such as Rintaashi (produced by TOKYO TOKUSHU SHIGYO CO., LTD., trade name), Pakopaddo (
  • the adhesive layer 21 is, for example, made of an adhesive agent of the acrylic system, the silicone system, the rubber system and the like.
  • solder powders 3 SnAgCu, SnAgBiIn, SnZnBi, Sn, In, SnBi and the like would be used.
  • the compression rate of the base layer 11 in a high-temperature state (for example, 190-210° C.) is large in comparison with the compression rate of the adhesive layer 21 .
  • the size relation of the compression rate of the base layer 11 and the adhesive layer 21 in high-temperature states is opposite to that of the base layer 1 and the adhesive layer 2 of Embodiment 1.
  • the adhesive layer 21 with the thickness a 1 is formed on the base layer 11 made of cellulose with the thickness s 1 .
  • a rubber system resin is used as the adhesive agent of the adhesive layer 21 .
  • the solder powders 3 are stuck onto this adhesive layer 21 , and the solder transfer substrate 50 is fabricated.
  • the solder powder 3 for example, one of components with Sn3Ag0.5Cu is used, and for the adhesive agent has been used one made of a rubber system resin, for example.
  • the thickness s 1 of the base layer 11 is set to 1.5 mm, the thickness a 1 of the adhesive layer 21 to 0.050 mm, and the solder particle diameter to 0.002-0.012 mm.
  • the base layer 11 one such that the cellulose density has been adjusted has been used, so that the compression rate becomes 70-95% (the result with a tensilon measuring machine at the time of 0.5 MPa application).
  • the compression rate of the base layer 11 can be allowed to be one different from that of Embodiment 1.
  • the respective materials, densities and the like are set so that, in a case where the same load has been imposed in a high-temperature state (for example, 190-210° C.), for the base layer 11 the compression rate becomes large in comparison with the adhesive layer 21 .
  • the fragile low-dielectric-constant film (Ultra LowK) 7 is formed as an insulating film and, on its surface on the side of the solder transfer substrate are formed on the electrode pads 12 a plurality of the protruding electrodes 8 made of Au/Ni, for example. Additionally, the protruding electrodes 8 are in plan view formed in the form of a matrix. Moreover, the surface of the semiconductor element 6 of the portions on which the protruding electrodes 8 are not formed is covered with the insulating film 9 of silicon nitride and the like, for example.
  • the protruding electrodes 8 are, with the height being 0.008-0.013 mm, formed with a pitch of 0.050 mm by an electroless plating construction method.
  • the solder transfer substrate 50 and the semiconductor element 6 are arranged so that on the solder powders 3 of the solder transfer substrate 50 , the protruding electrodes 8 of the semiconductor element 6 face.
  • the base layer 11 works as a cushion material, absorbs the difference in the flatness and parallelism between each of the molds, and can uniformly confer the stress on the protruding electrodes in the 300 mm wafer of an area arrangement.
  • the base layer 11 absorbs the thickness of the protruding electrode 8 , and is largely transformed in comparison with the adhesive layer 21 .
  • both the thickness a 4 of the adhesive layer 21 of the portions that touch the protruding electrodes 8 and the thickness a 2 of the portions that do not touch the protruding electrodes 8 being the initial thickness a 1 (before the heating and pressurization is carried out), roughly do not change.
  • a 1 is 0.025 mm, while a 2 and a 4 become 0.022-0.025 mm.
  • This step shown in FIG. 4( b ) corresponds to one example of the solder joining step of the present invention.
  • the semiconductor element 6 to which the solder transfer substrate 50 has been stuck is dipped in the liquid tank in which a peeling-off liquid has been put.
  • a peeling-off liquid for example, ethanol, isopropyl alcohol and the like would be used.
  • the peeling-off liquid infiltrates into the base layer and is conveyed to the adhesive layer 21 .
  • the peeling-off liquid gets into the adhesive layer 21 (see the black arrows), and the adhesive layer 21 swells in the thickness direction (see the white arrows). Further, the peeling-off liquid gets in the interface between the adhesive agent of the adhesive layer 21 and the solder powders 3 , and the bonding strength between the adhesive agent of the adhesive layer 21 , and the solder powder 3 and protruding electrode 8 declines.
  • the contraction rate of the thickness of the adhesive layer 21 by pressurization is small, the bonding strength between the adhesive layer and the protruding electrodes 8 becomes low, and is also generated an effect such that the solder transfer substrate 50 becomes easy to peel off.
  • heating or ultrasonic-wave application might be carried out in the peeling-off liquid.
  • the solder transfer substrate 50 becomes able to be peeled off with a weaker force.
  • any kind of method might be used provided that it is a method such that the peeling-off liquid is supplied to the whole of the solder transfer substrate 50 , with a spin coat, a dispenser, potting, a coater and the like.
  • This step shown in FIG. 4( c ) corresponds to one example of the peeling-off liquid infiltrating step of the present invention.
  • the solder transfer substrate 50 is peeled off.
  • the solder powders on the protruding electrodes 8 are, because joined with the protruding electrodes 8 , left on the protruding electrodes 8 .
  • the solder powders 3 on the insulating film 9 outside the protruding electrodes 8 are, because the bonding strength between the solder and the adhesive agent (the adhesive layer 21 ) is more than the bonding strength between the adhesive agent (the adhesive layer 21 ) and the insulating film 9 , taken away to the adhesive layer 21 on the side of the solder transfer substrate 50 . In this way, the solder powders 3 become in a state of being joined onto the protruding electrodes 8 .
  • the solder transfer substrate 50 can be peeled off.
  • This step shown in FIG. 4( d ) corresponds to one example of the transfer substrate peeling-off step of the present invention.
  • the solder powders 3 are, being deposited in a reflow furnace, completely melted as in FIG. 4( f ), and the solder layer 30 is formed.
  • the flux may be removed with washing as FIG. 4( g ) shows.
  • the solder height becomes uniform by allowing them to be melted and, at the time of flip-chip mounting, joining becomes able to be more surely carried out. And, by carrying out the flip-chip mounting of the semiconductor element 6 , the semiconductor device can be fabricated.
  • Embodiment 2 not only the bonding strength is lowered by allowing the adhesive layer 21 to expand similarly to Embodiment 1, but it becomes possible to peel off the solder transfer substrate from the semiconductor element 6 with weaker peeling-off strength, because the bonding strength with the protruding electrodes, by the compression rate of the adhesive layer 21 being smaller compared to Embodiment 1, also becomes smaller.
  • the interface strength between the solder transfer substrate 50 and the Au—Ni electrodes after melting of the solder powders 3 , by the 180° peel test method is decreased from 10N/25 mm to 1N/25 mm.
  • solder transfer substrate the manufacturing method of the solder transfer substrate, and the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 pertaining to the present invention.
  • the solder transfer substrate 50 similar to that of Embodiment 2 is used, but it is different in the supplying method of the peeling-off liquid and in that the peeling-off liquid contains a flux component. Because of that, descriptions are given mainly on the points of difference from Embodiment 2. Additionally, for the constitution similar to that of Embodiment 2, identical reference numerals have been assigned.
  • FIGS. 5( a )-( f ) are sectional constitution views that conceptually show the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 of the present invention.
  • FIGS. 5( a ) and ( b ) are similar to FIGS. 4( a ) and ( b ) of Embodiment 2, descriptions are omitted.
  • a peeling-off liquid supplying means such as a dispenser, a spin coater, potting, a bar coater and the like
  • the peeling-off liquid is supplied to the whole area of the reverse face 11 a of the base layer 11 .
  • the flux component is included in this peeling-off liquid.
  • the said peeling-off liquid gradually infiltrates into the said base layer 11 having air holes inside and, after having been conveyed in the adhesive layer 21 , is conveyed to the interface between the protruding electrodes 8 and the adhesive layer 21 . And, the adhesive layer 21 swells in the thickness direction.
  • FIG. 5( c ) corresponds to one example of the peeling-off liquid infiltrating step of the present invention.
  • the flux component As is shown in FIG. 5( d ), while the solder transfer substrate 50 is peeled off, the solder powders on the protruding electrodes 8 are covered over with the flux component.
  • the flux component because having a function of a releasing material, can lower the bonding strength between the adhesive layer 21 and the protruding electrodes 8 , and it becomes possible to carry out peeling-off with lower strength. Additionally, in FIG. 5( d ), the flux component is shown with the reference numeral 13 .
  • the semiconductor element 6 covered with the flux component 13 is deposited in a reflow furnace, the solder powders 3 are melted, and the solder layer 30 is formed.
  • This step shown in FIG. 5( e ) countervails one example of the solder layer forming step of the present invention.
  • the flux covers the protruding electrodes after the peeling-off, a flux supplying step by a fluxer, a flux supplying device or the like becomes unnecessary, the manufacturing steps are reduced, and an effect such that the productivity improves is also generated.
  • the semiconductor device is fabricated by carrying out to the board the mounting of the semiconductor element 6 by flip-chip mounting and the like.
  • the supplying means of the peeling-off liquid of present Embodiment 3 since the supplying is not carried out on the reverse face 6 a of the semiconductor element 6 or the reverse face of the board where supplying of the peeling-off liquid is not necessary, because the supplying quantity and supplying place of the peeling-off liquid can be controlled, the step of removing the peeling-off liquid that has attached to the reverse face becomes unnecessary, and an effect such that the productivity improves is generated.
  • the peeling-off liquid before supplying is stored in an airtight container such as a syringe, for example, the exchanging life of the peeling-off liquid can be prolonged, and also is generated an effect such that the productivity improves.
  • the peeling-off liquid containing a flux component has been supplied with a dispenser and the like, but dipping in the liquid tank in which such a peeling-off liquid has been put may be carried out.
  • solder transfer substrate the manufacturing method of the solder transfer substrate, and the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 4 pertaining to the present invention.
  • the solder transfer substrate of present Embodiment is the same as that of Embodiment 1 in the basic constitution, but is different in the constitution of the base layer and in that through holes are formed that penetrate the base layer and the adhesive layer, and is different in the supplying method of the peeling-off liquid. Because of that, descriptions are given mainly on the present points of difference. Additionally, regarding the constitution identical to that of Embodiment 1 have been assigned identical reference numerals.
  • FIG. 6( a ) is a sectional constitution view that conceptually shows the solder transfer substrate 500 in Embodiment 4 of the present invention
  • FIG. 6( b ) is a plan constitution view that conceptually shows the solder transfer substrate 500 in Embodiment 4 of the present invention
  • FIG. 6( b ) is a view with the solder transfer substrate 500 viewed from below in FIG. 6( a ).
  • the solder transfer substrate 500 in Embodiment 4 of the present invention comprises the base layer 110 , the adhesive layer 2 that has been formed on the said base layer 110 , the solder powders 3 that have been bonded onto the said adhesive layer 2 , and the through holes 15 that have been provided so as to penetrate the said base layer 110 and the said adhesive layer 2 .
  • the base layer 110 is a material with a cushioning property and, for example, silicone, rubber, PET, PEN and the like can be used. Additionally, in the raw material itself of the base layer 110 of present Embodiment 4, a plurality of holes such that it is possible for the peeling-off liquid to pass through are not formed.
  • the adhesive layer 2 is, for example, made of an adhesive agent of the acrylic system, the silicone system, the rubber system and the like.
  • the solder powders 3 are made of SnAgCu, SnAgBiIn, SnZnBi, Sn, In, SnBi and the like.
  • the adhesive layer 2 with the thickness a 1 is formed on the base layer 110 with the thickness s 1 .
  • This step corresponds to one example of the adhesive layer forming step of the present invention.
  • This step corresponds to one example of the solder powder loading step of the present invention.
  • the through holes 15 are formed that have penetrated the base layer 110 and the adhesive layer 2 .
  • These through holes 15 can be formed by punching and the like. This step corresponds to one example of the penetration step of the present invention.
  • the solder transfer substrate 5 is created. Additionally, for the solder powder 3 , for example, one of components with Sn3Ag0.5Cu is used, and for the adhesive agent has been used one made of a rubber system resin, for example. In present Embodiment 4, similarly to Embodiment 1, for example, the thickness s 1 of the base material is set to 1.5 mm, the thickness a 1 of the adhesive layer to 0.050 mm, and the solder particle diameter to 0.002-0.012 mm.
  • FIGS. 7( a )-( d ) are sectional constitution views that conceptually show the solder transfer method in the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 4 of the present invention.
  • the protruding electrodes 8 are plurally provided on a matrix in an area arrangement.
  • the protruding electrodes 8 are formed on the electrode pads 12 , are made of Cu, for example, and are provided with a pitch of 0.040 mm at equal intervals, with the height being 0.020 mm.
  • the said solder transfer substrate 500 is arranged so that its solder powders 3 face the protruding electrodes 8 of the semiconductor element 6 .
  • the peeling-off liquid is supplied to the reverse face 110 a of the solder transfer substrate 500 . Then, the peeling-off liquid goes through the through holes 15 , gets to the adhesive layer 2 , and allows the adhesive layer 2 to swell. By this function, the bonding strength between the adhesive layer 2 and the protruding electrodes 8 is decreased.
  • the flow of the peeling-off liquid is shown with the black arrows, and the swelling is shown with the white arrows.
  • This step shown in FIG. 7( c ) corresponds to one example of the peeling-off liquid infiltrating step of the present invention.
  • FIG. 7( d ) in the step of peeling off the solder transfer substrate 500 from the semiconductor element 6 , it can be peeled off with lower strength.
  • This step shown in FIG. 7( d ) corresponds to one example of the transfer substrate peeling-off step of the present invention.
  • the later steps are similar to those of Embodiment 1.
  • the base layer 110 can, even if being a dense raw material that does not hold a plurality of air holes such that it is possible for the peeling-off liquid to pass through, infuse the peeling-off liquid via the through holes, it becomes easy to infuse the peeling-off liquid into the interface between the solder transfer substrate and the protruding electrode. Further, with the present infusing method, is generated an effect such that, in comparison to the case of utilizing the plural holes, the peeling-off liquid becomes easier to convey particularly to the in-between of the solder powders that have been bonded with the protruding electrodes and the adhesive layer.
  • the base layer 110 itself is a material with a cushioning property, also with respect to the protruding electrodes on a large-sized glass epoxy board of 450 mm ⁇ 450 mm, for example, the base layer 110 absorbs the parallelism and flatness between the molds, and can uniformly confer the stress on the protruding electrodes.
  • a flux component may be included in the peeling-off liquid.
  • the base layer 1 or 11 may be used in which a plurality of holes as in Embodiment 1 or Embodiment 2 have been formed that allow the peeling-off liquid to pass through towards the side of the adhesive layer 2 .
  • the peeling-off liquid then passes through from the through holes 15 and the holes of the raw material itself of the base layer 1 or 11 .
  • the through holes 15 have penetrated both of the base layer 110 and the adhesive layer 2 , but the constitution may be that they penetrate in the middle of the adhesive layer 2 , or the constitution may be that they have penetrated only the base layer 110 .
  • the through holes 15 have been formed, but the order is not limited to this. Namely, in a case where the through holes are formed only in the base layer 110 , the through holes may be formed in the base layer 110 before the adhesive layer 2 is formed and, in a case where the through holes are formed in the base layer 110 and the adhesive layer 2 , before the plural solder powders 3 are stuck, the through holes may be formed.
  • FIG. 8 is a sectional constitution view that shows the solder transfer substrate 5 shown with Embodiment 1, and the circuit board 16 that has been arranged so as to face the solder transfer substrate 5 .
  • the electrode pads 12 are formed on the substrate of the circuit board 16
  • the protruding electrodes 8 are formed on the electrode pads 12 .
  • the peeling-off liquid can be, because having a plurality of holes in the substrate, allowed to infiltrate into the adhesive layer and, as a result, the peeling-off strength of the solder transfer substrate is less than the interface strength under the electrode pads or the destruction strength of the fragile film, also in the step of peeling off the solder transfer substrate, peeling-off of the electrode pads or the fragile low-dielectric-constant film under the electrode pads for instance can be prevented.
  • solder transfer substrate of the present invention with respect to an electronic component such as a semiconductor element and the like having a fragile film like a low-dielectric-constant film or a circuit board, occurrence of peeling-off and fissures of the fragile film is decreased, and a solder layer with an appropriate thickness can be more surely formed with transfer.
  • present Embodiments 1-4 may be implemented at the same time.
  • the adhesive layer 2 has a characteristic of expanding by infusing a peeling-off liquid, but need not have it.
  • the base layers 1 , 11 and 110 in above-mentioned Embodiments 1-4 need not have a cushioning property. Even in a case like this, by supplying a peeling-off liquid through a plurality of holes, compared with the conventional, it becomes possible to allow the solder transfer substrate to be easy to peel off from the semiconductor element.
  • a solder transfer substrate, a manufacturing method of a solder transfer substrate and a solder transfer method pertaining to the present invention have an effect of more easily peeling off a solder transfer substrate, and are useful particularly in the mounting field of mounting semiconductor elements with progress for narrow pitch, or semiconductor elements and the like having interlayer insulating films made of low-dielectric-constant materials and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

A solder transfer substrate, including: a base layer; an adhesive layer arranged on the base layer; and plural solder powders arranged on the adhesive layer, wherein in the base layer, which is a porous member, a plurality of holes, which allow at least a peeling-off liquid to pass therethrough, are formed from a side thereof on which the adhesive layer is not arranged to a side thereof on which the adhesive layer is arranged. Particularly, the adhesive layer has a characteristic of expanding with the peeling-off liquid infused.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a U.S. national phase application of PCT International Patent Application No. PCT/JP2012/000462 filed Jan. 25, 2012, claiming the benefit of priority of Japanese Patent Application No. 2011-073235 filed Mar. 29, 2011, all of which are incorporated by reference herein in their entirety.
  • TECHNICAL FIELD
  • The present invention relates to a solder transfer substrate, a manufacturing method of a solder transfer substrate and a solder transfer method.
  • BACKGROUND ART
  • In recent years, to further cope with both high density of a semiconductor element and high pin count of electrode terminals, narrow pitch and area reduction of electrode terminals of a semiconductor element have been aimed for.
  • Usually, in flip-chip mounting, mounting is carried out by forming protruding electrodes such as solder bumps and the like on the electrode terminals of a semiconductor element such as an LSI and the like, melting the solder layers formed beforehand on the electrode terminals through pressing with heating of the semiconductor element turned face down against the connection terminals of the mounting board, and allowing connection to be carried out.
  • But, because the progress for narrow pitch is remarkable, when one line or two lines of the electrode terminals of the semiconductor element are arranged, as conventionally, in the outer periphery part by a means in a staggered manner, a short circuit may occur between the electrode terminals, and connection inferiority and the like may occur due to a difference in thermal expansion coefficients between the semiconductor element and the mounting board. Accordingly, a method of widening, by arranging the electrode terminals in the form of an area, the pitch between the electrode terminals has been taken, but the progress for narrow pitch becomes remarkable in recent years also in an area arrangement, and strict requirements are demanded also regarding the solder layer formation technique on the electrode terminals of a semiconductor element or a mounting board.
  • Conventionally, as a technique for solder layer formation onto electrode terminals of the semiconductor element, a plating method or a screen printing method, a ball mounting method and the like are used, but the plating method, which is suited for narrow pitch, has problems of productivity in that the step becomes complicated, and in that a facility line increases in size.
  • Moreover, it is difficult for the screen printing method or the ball mounting method, which is superior in productivity, to deal with narrow pitch because a mask is used.
  • In a situation like this, several techniques are proposed for selectively forming solder on the electrode terminals of an LSI element or the connection terminals of a circuit board in recent years (for example, see Japanese published patent application 2000-094179). These techniques, which are not only suited for formation of fine bumps but also superior in productivity because the solder layers can be formed en bloc, begin to be noticed.
  • As for the above mentioned techniques, in the technique proposed in Japanese published patent application 2000-094179, in the first place, a solder paste with a mixture of solder powders such that oxide films have been formed on the surfaces and a flux is applied to the whole area on the circuit board on which the connection terminals are formed. And, by heating the circuit board in that state, the solder powders are allowed to be melted, and the solder layers are selectively formed on the connection terminals without causing short circuits between the contiguous connection terminals.
  • However, in this solder layer formation method, because the intervals between the electrode terminals are narrow, even if washing after the solder paste melting is performed, unmelted solder powders or flux components remain between the electrode terminals, and the problem is that, under a usage environment after the flip-chip mounting, bridge inferiority or migration inferiority occurs.
  • As a method of solving these problems, proposed is a solder layer formation technique of allowing solder powders to selectively attach onto the electrode terminals by superposing a support medium, to which the solder powders are attached, on a semiconductor element or a circuit board, and carrying out heating and pressurization (for example, see WO2006/067827 pamphlet).
  • FIGS. 9( a)-(e) are explanatory drawings of the step of performing solder layer formation (precoating) proposed in WO2006/067827 pamphlet, which allows the solder to attach to the soldering part of the work beforehand. In what follows, that step is described.
  • In the first place, the adhesive agent 52 is applied to one side of the support medium 51 (FIG. 9( a)).
  • Next, the powder solders 53 are sprinkled on the adhesive agent 52, which has been applied to the support medium 51, to an extent such that the adhesive agent 52 is hidden (FIG. 9( b)).
  • After that, by raking the powder solders 53 on the support medium 51 with the brush 54, the redundant powder solders 53 that are not adhered to the adhesive agent 52 are removed, and the powder solders 53 are allowed to be uniform (FIG. 9( c)).
  • On the other hand, the liquid flux 58 is applied, with the spray fluxer 57, to the face on which the soldering part 56 of the work 55 is formed (FIG. 9( d)). The numeral 59 denotes the resist.
  • Next, the flux application face of the work 55 and the powder solder adhesion face of the support medium 51 are superposed. At this time a pressure is exerted between the work 55 and the support medium 51 from above the support medium 51 with a pressing machine that is not shown. Then, because the adhesive agent 52 has flexibility and followability, the powder solders 53 that have been adhered to the adhesive agent 52 come into contact with the soldering part 56 when the pressure is exerted against the support medium 51 (FIG. 9( e)).
  • And, when the superposed work 55 and support medium 51 are heated and pressurized with a heating device that is not shown, the powder solders 53 are diffused at the interface with the soldering part 56 and joined thereto. And, after cooling, when the support medium 51 is removed from the work 55, the powder solders 53 that have been diffused at the interface with the soldering part 56 and joined thereto are left on the soldering part 56, and the powder solders 53 on the resist 59 are removed along with the support medium 51.
  • After that, the solder layers are formed, in case the work 55 is a semiconductor element, on the electrode terminals by melting the powder solders 53 on the soldering part 56 with a reflow furnace.
  • With this solder layer formation method, solder layers can be formed also on the narrow-pitch electrode terminals, it is not necessary to perform a complicated step with a large-sized facility line like electrolytic plating, and production can be easily carried out with high productivity.
  • SUMMARY OF THE INVENTION Problems to be Solved by the Invention
  • However, when the solder layer formation technique of WO2006/067827 pamphlet as mentioned above is used with respect to a semiconductor element with a low-dielectric-constant film used as the interlayer insulating film or a circuit board on which fragile electrode terminals are formed, the problem is that, while the solder transfer substrate that is one example of the solder attaching support medium described above is peeled off, a low-dielectric-constant film or electrode pads peel off.
  • For the purpose of coping with a design rule becoming finer or high-speed signal processing that is required in recent years, a low-dielectric-constant film (so-called a low-k film, a ULK (Ultra Low-k) film or the like) has been used as the interlayer insulating film of a semiconductor element. A low-dielectric-constant film itself is allowed to be porous and have many empty holes of several nanometers in order to lower the dielectric constant (the density for a low dielectric constant is 1.0-1.4 g/cm3, for example).
  • FIGS. 10( a) and (b) show enlarged sectional views that conceptually show the step of forming solder layers, using the solder layer formation technique of WO2006/067827 pamphlet mentioned above, on such electrode terminals on a semiconductor element having the fragile low-dielectric-constant film 67.
  • As is shown in FIG. 10( a), the solder transfer substrate 65 comprises the substrate 64 with the thickness s1, the adhesive agent 62 with the thickness a1 formed thereon, and the solder powders 63 arranged thereon. On the other hand, for the semiconductor element 66 having the fragile low-dielectric-constant film 67, on its surface on the side near to the solder transfer substrate 65, the protruding electrode 68 is formed on the electrode pad 69.
  • As is shown in FIG. 10( b), in the step of pushing the solder transfer substrate 65 against the semiconductor element 66 having the protruding electrodes 68 and carrying out heating, the adhesive agent 62 and the protruding electrode 68 are bonded with each other.
  • At this time, small is the compression quantity of the adhesive layer thickness a2 at the locations where it does not come into contact with the protruding electrode 68, while the adhesive layer thickness b2 that touches the protruding electrode 68 is largely compressed. Namely, there is a relation such that a1≅a2>b2. Because of that, a large compression stress is added on the adhesive layer on the protruding electrode 68, and the adhesive agent 62, and the solder powders 63 and protruding electrode 68 are rigidly bonded.
  • Since such bonding strength between the adhesive agent 62 and the protruding electrodes 68 is more than the strength of the fragile low-dielectric-constant film 67, the problem is that, as shown in FIG. 10( c), in the step of peeling off the solder transfer substrate 65, in the fragile low-dielectric-constant film 67 under the electrode pads 69, separation is generated.
  • Moreover, in a case where a circuit board is used as the work 55, for example, also in a circuit board and the like such that electrode pads made of Cu, whose adhesion force with Si is weak, are formed on the circuit board made of silicone, in the case where the solder layers are formed by using the solder layer formation technique of WO2006/067827 pamphlet mentioned above, similarly to the above-mentioned, the problem is, while a solder transfer substrate is peeled off, fragile electrode pads peel off from the circuit board.
  • The present invention, in consideration of the problems of the conventional solder transfer substrate, furnishes a solder transfer substrate, a manufacturing method of a solder transfer substrate, and a solder transfer method using a solder transfer substrate such that a solder transfer substrate is easy to smoothly peel off.
  • Means for Solving the Problem
  • In order to solve the problems mentioned above, the 1st aspect of the present invention is
  • a solder transfer substrate, comprising:
  • a base layer;
  • an adhesive layer arranged on the base layer; and
  • plural solder powders arranged on the adhesive layer, wherein
  • in the base layer, a plurality of holes, which allow at least a peeling-off liquid to pass therethrough, are formed from a side thereof on which the adhesive layer is not arranged to a side thereof on which the adhesive layer is arranged.
  • The 2nd aspect of the present invention is
  • a solder transfer substrate according to the 1st aspect of the present invention, wherein
  • the adhesive layer has a characteristic of expanding with the peeling-off liquid infused.
  • The 3rd aspect of the present invention is
  • a solder transfer substrate according to the 1st aspect of the present invention, wherein
  • the base layer is a porous member.
  • The 4th aspect of the present invention is
  • a solder transfer substrate according to the 1st aspect of the present invention, wherein
  • the plurality of holes are provided so as to penetrate from a face of the base layer, which does not touch the adhesive layer, towards a face of the base layer, which touches the adhesive layer.
  • The 5th aspect of the present invention is
  • a solder transfer substrate according to the 4th aspect of the present invention, wherein
  • the plurality of holes are formed at least to an inside of the adhesive layer.
  • The 6th aspect of the present invention is
  • a solder transfer substrate according to the 1st aspect of the present invention, wherein
  • the base layer is larger than the adhesive layer in respect of a compression rate at a time of heating.
  • The 7th aspect of the present invention is
  • a manufacturing method of a solder transfer substrate, comprising:
  • an adhesive layer forming step of forming an adhesive layer on a surface of a base layer having a plurality of holes; and
  • a solder powder loading step of loading, on the adhesive layer, plural solder powders with in-between spaces.
  • The 8th aspect of the present invention is
  • a manufacturing method of a solder transfer substrate, comprising:
  • an adhesive layer forming step of forming an adhesive layer on a surface of a base layer;
  • a solder powder loading step of loading, on the adhesive layer, plural solder powders with in-between spaces; and
  • a penetration step of forming a hole penetrating at least the base layer.
  • The 9th aspect of the present invention is
  • a solder transfer method, comprising:
  • a solder joining step of superposing the solder transfer substrate according to the 1st aspect of the present invention, and a circuit board or an electronic component with an electrode formed on a surface thereof, so that a face on which the solder powders have been loaded faces a face on which the electrode has been formed, carrying out heating and pressurization, and allowing the solder powders to be joined to the electrode;
  • a peeling-off liquid infiltrating step of allowing a peeling-off liquid to infiltrate the adhesive layer via a plurality of holes provided in the base layer; and
  • a transfer substrate peeling-off step of peeling off the solder transfer substrate from the circuit board or the electronic component.
  • The 10th aspect of the present invention is
  • a solder transfer method, comprising:
  • a solder joining step of superposing the solder transfer substrate according to the 1st aspect of the present invention, and a circuit board or an electronic component with an electrode formed on a surface thereof, so that a face on which the solder powders have been loaded faces a face on which the electrode has been formed, carrying out heating and pressurization, and allowing the solder powders to be diffused and joined to the electrode;
  • a peeling-off liquid infiltrating step of allowing a peeling-off liquid containing a flux component to infiltrate the adhesive layer via a plurality of holes provided in the base layer;
  • a transfer substrate peeling-off step of peeling off the solder transfer substrate from the circuit board or the electronic component; and
  • a solder layer forming step of performing heating at a melting point of solder or more to allow the solder powders to be melted.
  • EFFECTS OF THE INVENTION
  • With the present invention, can be furnished a solder transfer substrate, a manufacturing method of a solder transfer substrate, and a solder transfer method using a solder transfer substrate such that it is easier to smoothly peel off.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a sectional constitution view that conceptually shows the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 2( a) is a sectional constitution view for describing the solder powder loading step in Embodiment 1 of the present invention.
  • FIG. 2( b) is a sectional constitution view for describing the solder powder loading step in Embodiment 1 of the present invention.
  • FIG. 2( c) is a sectional constitution view for describing the solder powder loading step in Embodiment 1 of the present invention.
  • FIG. 2( d) is a sectional constitution view for describing the solder powder loading step in Embodiment 1 of the present invention.
  • FIG. 3( a) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 3( b) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 3( c) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 3( d) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 3( e) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 3( f) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 3( g) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 of the present invention.
  • FIG. 4( a) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 of the present invention.
  • FIG. 4( b) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 of the present invention.
  • FIG. 4( c) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 of the present invention.
  • FIG. 4( d) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 of the present invention.
  • FIG. 4( e) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 of the present invention.
  • FIG. 4( f) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 of the present invention.
  • FIG. 4( g) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 of the present invention.
  • FIG. 5( a) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 of the present invention.
  • FIG. 5( b) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 of the present invention.
  • FIG. 5( c) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 of the present invention.
  • FIG. 5( d) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 of the present invention.
  • FIG. 5( e) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 of the present invention.
  • FIG. 5( f) is a sectional constitution view that conceptually shows the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 of the present invention.
  • FIG. 6( a) is a sectional constitution view that conceptually shows the solder transfer substrate in Embodiment 4 of the present invention; and FIG. 6( b) is a plan constitution view that conceptually shows the solder transfer substrate in Embodiment 4 of the present invention.
  • FIGS. 7( a)-(d) are sectional constitution views that conceptually show the solder transfer method in the manufacturing method of the semiconductor device using the solder transfer substrate of Embodiment 4 of the present invention.
  • FIG. 8 is a sectional constitution view that shows the solder transfer substrate of Embodiment 1 of the present invention and the circuit board arranged to face it.
  • FIGS. 9( a)-(e) are explanatory drawings of the step of performing solder layer formation (precoating) in a conventional embodiment.
  • FIGS. 10( a)-(c) are enlarged sectional constitution views that conceptually show the step of forming, on the electrode terminals on a semiconductor element having a fragile low-dielectric-constant film by a conventional solder layer formation technique, solder layers.
  • MODES FOR IMPLEMENTING THE INVENTION
  • In the following, regarding embodiments of the present invention descriptions are given referring to the drawings.
  • Embodiment 1
  • In what follows, descriptions are given regarding the solder transfer substrate, the manufacturing method of the solder transfer substrate, and the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 1 pertaining to the present invention.
  • FIG. 1 is a sectional constitution view that conceptually shows the solder transfer substrate in Embodiment 1 of the present invention.
  • As is shown in FIG. 1, the solder transfer substrate 5 of present Embodiment 1 comprises the base layer 1, the adhesive layer 2 arranged on the base layer 1, and the plural solder powders 3 that have been loaded so as to be bonded to the adhesive layer 2.
  • The base layer 1 is a substrate having a plurality of holes, and its thickness s1 is 0.020-2.0 mm. The said substrate having a plurality of holes is a material made of fibers, and can be used, for example, a cellulose base material such as Rintaashi (produced by TOKYO TOKUSHU SHIGYO CO., LTD., trade name), Pakopaddo (produced by Material Co., ltd., trade name) or the like, or a woven-fabric material such as Toppuboodo (produced by Yamauchi Corporation, trade name), Eesuboodo (produced by Ichikawa Keori Kabushikigaisha, trade name), ChuukoofurooNSboodo (produced by Chukoh Chemical Industries Ltd., trade name) or the like, or a composite material such that these are combined.
  • Like this, the base layer 1 absorbs, because being a substrate made of fibers and being of the structure having plural holes inside, the inclination of parallelism of the mold at the time of heating and pressurization to be mentioned later, and plays the role of a cushion material that carries out uniform heating and pressurization of the solder transfer sheet. Moreover, which will be mentioned later in detail, the base layer 1 plays the role of an infiltration material that allows the peeling-off liquid to reach the adhesive agent easily infiltrating into the material of the base layer. Additionally, this base layer 1 corresponds to one example of the porous member of the present invention.
  • The adhesive layer 2 is, for example, made of an adhesive agent of the acrylic system, the silicone system, the rubber system and the like.
  • For the solder powders 3, SnAgCu, SnAgBiIn, SnZnBi, Sn, In, SnBi and the like would be used.
  • The thickness a1 of the adhesive layer 2 can be set freely, correspondingly to the diameter of the solder powder 3. For example, when the diameter of the solder powder 3 is 2-12 μm, it is preferable that the thickness a1 of the adhesive layer 2 is allowed to be 5-100 μm.
  • Next, descriptions are given regarding the manufacturing method of the solder transfer substrate of present Embodiment 1.
  • In the beginning, on the base layer 1 made of cellulose with the thickness s1, the adhesive layer 2 with the thickness a1 is formed. This step corresponds to one example of the adhesive layer forming step of the present invention.
  • Next, the solder powders 3 are stuck onto this adhesive layer 2. As the adhesive agent of this adhesive layer 2, a rubber system resin is used. Moreover, for the solder powder 3, for example, one of components with Sn3Ag0.5Cu is used. FIGS. 2( a)-(d) are sectional constitution views for describing the solder powder loading step of present Embodiment 1.
  • As shown in FIG. 2( a), on the adhesive layer 2, the mask 70 is arranged in which the plural arrangement parts 71 are punched where the solder powders 3 are to be arranged. And, as shown in FIG. 2( b), after the plural solder powders 3 have been supplied from above the mask 70 by using a brush and the like, for example, the mask 70 is removed. Subsequently, as shown in FIG. 2( c), by the air blow 72, the solder powders 3 supplied except for the arrangement parts 71 are blown away, as shown in FIG. 2( d), the solder powder 3 arranged in the respective plural arrangement parts 71 are left on the adhesive layer 2, and thereby the solder transfer substrate 5 is fabricated.
  • Because the solder powders 3 are stuck to the adhesive layer 2 like this by using the mask 70, a space is formed between each of the solder powders 3. Moreover, by removing the superfluous solder powders 3, the solder powder 3 can be arranged so that the thickness is substantially constant. Additionally, this step of FIGS. 2( a)-(d) corresponds to one example of the solder powder loading step of the present invention. Moreover, the solder powders 3 may be supplied by sifting, which is not limited to a brush.
  • As illustrated in the aforementioned, the solder transfer substrate 5 is created. In present Embodiment 1, for example, the thickness s1 of the base layer 1 is set to 1.5 mm, the thickness a1 of the adhesive layer 2 to 0.050 mm, and the particle diameter of the solder powder 3 to 0.002-0.012 mm. Here, for the base layer 1 and the adhesive layer 2, the respective materials, densities and the like are set so that, in a case where the same load has been imposed in a high-temperature state (for example, 190-210° C.), for the adhesive layer 2 the compression rate becomes large in comparison with the base layer 1.
  • In present Embodiment 1, as the base layer 1, one such that the cellulose density has been adjusted has been used, so that the compression rate becomes 20-40% (the result with a tensilon measuring machine at the time of 0.5 MPa application).
  • Next, while the manufacturing method of the semiconductor device using the solder transfer substrate of present Embodiment 1 is described, mention is made at the same time also regarding one example of the solder transfer method of the present invention.
  • FIGS. 3( a)-(g) are sectional constitution views that conceptually show the manufacturing method of the semiconductor device using the solder transfer substrate in present Embodiment 1. In the following, using FIGS. 3( a)-(g) descriptions are given regarding the manufacturing method of the semiconductor device of present Embodiment 1.
  • As is shown in FIG. 3( a), on the lower side of the solder transfer substrate 5 in the figure, the semiconductor element 6 is provided. Inside this semiconductor element 6 is formed the fragile low-dielectric-constant film (Ultra LowK) 7 and, in FIG. 3( a), on its surface on the side of the solder transfer substrate 5 are formed on the electrode pads 12 a plurality of the protruding electrodes 8 made of Au/NiP, for example. Additionally, the protruding electrodes 8 are in plan view formed in the form of a matrix. Moreover, the surface of the semiconductor element 6 of the portions on which the protruding electrodes 8 are not formed is covered with the insulating film 9 of silicon nitride and the like, for example.
  • For example, the protruding electrodes 8 are, with the height being 0.008-0.013 mm, formed with a pitch of 0.050 mm by an electroless plating construction method.
  • Additionally, the semiconductor element 6 that is here being allowed to be a target of the solder layer formation corresponds to one example of the electronic component of the present invention.
  • In the first place, as is shown in FIG. 3( a), the solder transfer substrate 5 and the semiconductor element 6 are arranged so that the solder powders 3 of the solder transfer substrate 5 and the protruding electrodes 8 of the semiconductor element 6 face each other.
  • Next, as is shown in FIG. 3( b), the face of the solder transfer substrate 5 on which the solder powders 3 have been loaded is superposed with the face on which the protruding electrodes 8 are formed, and heating and pressurization is performed. The adhesive layer 2 softens by the heating and, as the solder powders 3 are getting buried into the adhesive layer 2, the solder powders 3 and the protruding electrodes 8 are diffused and joined with each other at the interface with the protruding electrodes 8. Additionally, because there is a space between each of the solder powders 3, and the adhesive layer 2 gets in between the solder powders 3, each of the solder powders 3 is thus not melted to get continuous with the adjacent ones. Moreover, the adhesive layer 2 that has softened is bonded with the solder powders 3 on the protruding electrodes 8 and the protruding electrodes 8.
  • Here, because the compression rate of the adhesive layer 2 in a high-temperature state (for example, 190-210° C.) is high in comparison with the compression rate of the base layer 1, the adhesive layer 2 is largely transformed in comparison with the base layer 1, and the thicknesses of the adhesive layer 2 differ between the portions that do not touch the protruding electrodes 8 and the portions that touch them. The thickness a2 of the portions that do not touch them is roughly equal to the initial thickness before the heating and pressurization is carried out, while the thickness b2 of the portions that touch the protruding electrodes 8 is largely compressed. For example, a2 is 0.045 mm, while b2 has become 0.030-0.035 mm. It is known that, generally, the stronger the stress at the time of bonding is, namely the more the bonding agent is compressed, the stronger the bonding strength becomes. Because of that, the protruding electrodes 8 with large compression quantities and the adhesive layer 2 are rigidly bonded. This step shown in FIG. 3( b) corresponds to one example of the solder joining step of the present invention.
  • Next, as is shown in FIG. 3( c), the semiconductor element 6 to which the solder transfer substrate 5 has been stuck is dipped in the peeling-off liquid. For the peeling-off liquid, for example, ethanol, isopropyl alcohol and the like would be used. Here, by a plurality of holes being formed in the base layer 1, by the dipping, the peeling-off liquid infiltrates into the base layer 1, and is conveyed to the adhesive layer 2. And, the peeling-off liquid gets into the adhesive layer (see the black arrows), and the adhesive layer 2 swells in the thickness direction (see the white arrows). Further, the peeling-off liquid gets in the interface between the adhesive agent of the adhesive layer 2 and the solder powders 3, and the bonding strength between the adhesive agent and the solder powder 3, and between the adhesive agent and the protruding electrode 8 declines.
  • At this time, for the adhesive layer 2 of the portions that touch the protruding electrodes 8, the expansion rate becomes large, because in comparison with the portions that do not touch the protruding electrodes 8, the compression rate is high. Particularly, in the portions that touch the protruding electrodes 8, the bonding strength between the adhesive layer 2 and the protruding electrodes 8 lowers, and is also generated an effect such that the solder transfer substrate 5 becomes easy to peel off.
  • Additionally, heating or ultrasonic-wave application might be carried out in the liquid. In the next peeling-off step, the solder transfer substrate 5 becomes able to be peeled off with a weaker force.
  • Additionally, for the supplying method of the peeling-off liquid to the solder transfer substrate 5, which need not be carried out by a dipping method, any kind of method might be used provided that it is a method such that the peeling-off liquid is supplied to the whole of the solder transfer substrate 5, with a spin coat, a dispenser, potting, a coater and the like. This step shown in FIG. 3( c) corresponds to one example of the peeling-off liquid infiltrating step of the present invention.
  • Next, as is shown in FIG. 3( d), the solder transfer substrate 5 is peeled off from the semiconductor element 6. The solder powders 3 on the protruding electrodes 8 are, because joined with the protruding electrodes 8, left on the protruding electrodes 8. On the other hand, the solder powders 3 on the insulating film 9 outside the protruding electrodes 8 are, because the bonding strength between the solder and the adhesive agent (the adhesive layer 2) is more than the bonding strength between the adhesive agent (the adhesive layer 2) and the insulating film 9, taken away by the adhesive layer 2 on the side of the solder transfer substrate 5. In this way, the solder powders 3 become in a state of being joined onto the protruding electrodes 8.
  • Moreover, because by the peeling-off liquid dipping of the former step, the bonding strength between the bonding agent of the adhesive layer 2 and the protruding electrodes 8 is less than the interface strength of the low-dielectric-constant film 7 under the protruding electrodes 8, without causing peeling-off or fissures of the low-dielectric-constant film 7, the solder transfer substrate 5 can be peeled off. This step shown in FIG. 3( d) corresponds to one example of the transfer substrate peeling-off step of the present invention.
  • After this, after the flux 10 has been supplied to the surface as in FIG. 3( e), the solder powders 3 are, being deposited in a reflow furnace, completely melted as in FIG. 3( f), and the solder layer 30 is formed. The solder height becomes uniform by allowing them to be melted like this and, at the time of later flip-chip mounting, joining becomes able to be more surely carried out. After that, the flux may be removed with washing as FIG. 3( g) shows.
  • And, by carrying out to the board the flip-chip mounting of the semiconductor element 6 with the flux removed, the semiconductor device can be fabricated.
  • Here, regarding the peeling-off step of the solder transfer substrate 5, a comparison result is described.
  • The interface strength in the 180° peel test method between the solder transfer substrate 5 and the Au—Ni electrodes after melting of the solder powders 3 is, in a case where, as conventionally, a base layer without holes through which the peeling-off liquid passes is used and, besides no peeling-off liquid is used, 10N/25 mm, while it is decreased to 2N/25 mm with present Embodiment 1.
  • As illustrated in the aforementioned, with the solder transfer substrate of present Embodiment 1, because in the base layer are formed a plurality of holes that allow the peeling-off liquid to infiltrate, also in a semiconductor element possessing a fragile dielectric film, occurrence of peeling-off and fissures of the fragile dielectric film, or peeling-off and fissures of the fragile dielectric film particularly under the electrode pads can be decreased, and it becomes easy to peel off the solder transfer substrate.
  • Moreover, with present Embodiment 1, because the plural solder powder 3 are arranged so that the thickness is substantially constant, and they are transferred to the protruding electrodes, the dispersion of the solder transfer quantities is suppressed, and a solder layer with an appropriate thickness can be more surely formed.
  • Moreover, in recent years, in order to allow the productivity to improve, there is a demand for diameter-increasing of a semiconductor element (for example, a diameter of 300 mm) and size-increasing of a board but, in a mold with a large area, it is exceedingly difficult to ensure the flatness and parallelism of the upper mold and lower mold of the heating and pressurization device, and the problem is that there is a case where, the heating and pressurization in the face under the same heating condition is unable to be carried out, so that solder bridge inferiority or solder transfer quantity insufficiency occurs. However, in present Embodiment 1, the base layer 1 absorbs, because being a substrate made of fibers and having a cushioning property, the inclination of parallelism of the mold at the time of heating and pressurization, and plays the role of a cushion material that carries out uniform heating and pressurization of the solder transfer sheet.
  • Because of that, also in a semiconductor element with a large diameter, it becomes possible to carry out heating and pressurization in the face under a more uniform heating condition.
  • Embodiment 2
  • In what follows, descriptions are given regarding the solder transfer substrate, the manufacturing method of the solder transfer substrate, and the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 2 pertaining to the present invention.
  • The basic constitution of the solder transfer substrate of present Embodiment 2 is the same as that of Embodiment 1, but the compression rates of the base layer and the adhesive layer in high-temperature states are different from those of Embodiment 1. Additionally, identical reference numerals have been assigned regarding the constitution similar to that of Embodiment 1.
  • FIGS. 4( a)-(g) are sectional constitution views that conceptually show the manufacturing method of the semiconductor device using the solder transfer substrate 50 in present Embodiment 2.
  • As is shown in FIG. 4( a), the solder transfer substrate 50 of present Embodiment 2 comprises the base layer 11, the adhesive layer 21 arranged on the base layer 11, and the plural solder powders 3 that have been loaded so as to be bonded to the adhesive layer 21.
  • The base layer 11 is a substrate having a plurality of holes, and its thickness s1 is 0.020-2.0 mm. The said substrate having a plurality of holes is a material made of fibers, and can be used, for example, a cellulose base material such as Rintaashi (produced by TOKYO TOKUSHU SHIGYO CO., LTD., trade name), Pakopaddo (produced by Material Co., Ltd., trade name) or the like, or a woven-fabric material such as Toppuboodo (produced by Yamauchi Corporation, trade name), Eesuboodo (produced by Ichikawa Keori Kabushikigaisha, trade name), ChuukoofurooNSboodo (produced by Chukoh Chemical Industries Ltd., trade name) or the like, or a composite material such that these are combined.
  • The adhesive layer 21 is, for example, made of an adhesive agent of the acrylic system, the silicone system, the rubber system and the like. For the solder powders 3, SnAgCu, SnAgBiIn, SnZnBi, Sn, In, SnBi and the like would be used.
  • Here, as a result of pushing-in of the base layer and the adhesive layer 21 with the same load, the compression rate of the base layer 11 in a high-temperature state (for example, 190-210° C.) is large in comparison with the compression rate of the adhesive layer 21. Namely, in present Embodiment 2, the size relation of the compression rate of the base layer 11 and the adhesive layer 21 in high-temperature states is opposite to that of the base layer 1 and the adhesive layer 2 of Embodiment 1.
  • Additionally, for the manufacturing method of the solder transfer substrate 50 of present Embodiment 2, similarly to Embodiment 1, on the base layer 11 made of cellulose with the thickness s1, the adhesive layer 21 with the thickness a1 is formed. As the adhesive agent of the adhesive layer 21, a rubber system resin is used. Next, the solder powders 3 are stuck onto this adhesive layer 21, and the solder transfer substrate 50 is fabricated. Additionally, for the solder powder 3, for example, one of components with Sn3Ag0.5Cu is used, and for the adhesive agent has been used one made of a rubber system resin, for example.
  • In present Embodiment 2, for example, the thickness s1 of the base layer 11 is set to 1.5 mm, the thickness a1 of the adhesive layer 21 to 0.050 mm, and the solder particle diameter to 0.002-0.012 mm. Here, in present Embodiment 2, as the base layer 11, one such that the cellulose density has been adjusted has been used, so that the compression rate becomes 70-95% (the result with a tensilon measuring machine at the time of 0.5 MPa application). Like this, by adjusting the cellulose density, the compression rate of the base layer 11 can be allowed to be one different from that of Embodiment 1.
  • As illustrated in the above-mentioned, for the base layer 11 and the adhesive layer 21, the respective materials, densities and the like are set so that, in a case where the same load has been imposed in a high-temperature state (for example, 190-210° C.), for the base layer 11 the compression rate becomes large in comparison with the adhesive layer 21.
  • Next, while descriptions are given regarding the manufacturing method of the semiconductor device using the solder transfer substrate of present Embodiment 2, mention is made at the same time also regarding one example of the solder transfer method of the present invention.
  • As shown in FIG. 4( a), inside the semiconductor element 6, the fragile low-dielectric-constant film (Ultra LowK) 7 is formed as an insulating film and, on its surface on the side of the solder transfer substrate are formed on the electrode pads 12 a plurality of the protruding electrodes 8 made of Au/Ni, for example. Additionally, the protruding electrodes 8 are in plan view formed in the form of a matrix. Moreover, the surface of the semiconductor element 6 of the portions on which the protruding electrodes 8 are not formed is covered with the insulating film 9 of silicon nitride and the like, for example.
  • For example, the protruding electrodes 8 are, with the height being 0.008-0.013 mm, formed with a pitch of 0.050 mm by an electroless plating construction method.
  • In the first place, as is shown in FIG. 4( a), the solder transfer substrate 50 and the semiconductor element 6 are arranged so that on the solder powders 3 of the solder transfer substrate 50, the protruding electrodes 8 of the semiconductor element 6 face.
  • Next, as is shown in FIG. 4( b), with the face of the solder transfer substrate 50 on which the solder powders 3 have been loaded is superposed the face of the semiconductor element 6 on which the protruding electrodes 8 have been formed, and heating and pressurization is performed. Because the compression rate is high in comparison with the adhesive layer 21, even if the semiconductor element 6 is a wafer with a large diameter such as a diameter of 300 mm, for example, the base layer 11 works as a cushion material, absorbs the difference in the flatness and parallelism between each of the molds, and can uniformly confer the stress on the protruding electrodes in the 300 mm wafer of an area arrangement.
  • Moreover, because the compression rate of the base layer 11 is high in comparison with the compression rate of the adhesive layer 21, the base layer 11 absorbs the thickness of the protruding electrode 8, and is largely transformed in comparison with the adhesive layer 21. For that, both the thickness a4 of the adhesive layer 21 of the portions that touch the protruding electrodes 8 and the thickness a2 of the portions that do not touch the protruding electrodes 8, being the initial thickness a1 (before the heating and pressurization is carried out), roughly do not change. For example, a1 is 0.025 mm, while a2 and a4 become 0.022-0.025 mm. This step shown in FIG. 4( b) corresponds to one example of the solder joining step of the present invention.
  • Next, as is shown in FIG. 4( c), the semiconductor element 6 to which the solder transfer substrate 50 has been stuck is dipped in the liquid tank in which a peeling-off liquid has been put. For the peeling-off liquid, for example, ethanol, isopropyl alcohol and the like would be used. By the dipping into the liquid tank, the peeling-off liquid infiltrates into the base layer and is conveyed to the adhesive layer 21. And, the peeling-off liquid gets into the adhesive layer 21 (see the black arrows), and the adhesive layer 21 swells in the thickness direction (see the white arrows). Further, the peeling-off liquid gets in the interface between the adhesive agent of the adhesive layer 21 and the solder powders 3, and the bonding strength between the adhesive agent of the adhesive layer 21, and the solder powder 3 and protruding electrode 8 declines.
  • Moreover, since the contraction rate of the thickness of the adhesive layer 21 by pressurization is small, the bonding strength between the adhesive layer and the protruding electrodes 8 becomes low, and is also generated an effect such that the solder transfer substrate 50 becomes easy to peel off.
  • Additionally, heating or ultrasonic-wave application might be carried out in the peeling-off liquid. By doing in this way, in the next peeling-off step, the solder transfer substrate 50 becomes able to be peeled off with a weaker force.
  • Additionally, for the supplying method of the peeling-off liquid to the solder transfer substrate 50, which need not be carried out by a dipping method, any kind of method might be used provided that it is a method such that the peeling-off liquid is supplied to the whole of the solder transfer substrate 50, with a spin coat, a dispenser, potting, a coater and the like. This step shown in FIG. 4( c) corresponds to one example of the peeling-off liquid infiltrating step of the present invention.
  • Next, as is shown in FIG. 4( d), the solder transfer substrate 50 is peeled off. The solder powders on the protruding electrodes 8 are, because joined with the protruding electrodes 8, left on the protruding electrodes 8. On the other hand, the solder powders 3 on the insulating film 9 outside the protruding electrodes 8 are, because the bonding strength between the solder and the adhesive agent (the adhesive layer 21) is more than the bonding strength between the adhesive agent (the adhesive layer 21) and the insulating film 9, taken away to the adhesive layer 21 on the side of the solder transfer substrate 50. In this way, the solder powders 3 become in a state of being joined onto the protruding electrodes 8.
  • Moreover, because by the peeling-off liquid dipping of the former step, the bonding strength between the adhesive layer 21 and the protruding electrodes 8 is less than the interface strength of the low-dielectric-constant film 7 under the protruding electrodes 8, without causing peeling-off or fissures of the low-dielectric-constant film 7, the solder transfer substrate 50 can be peeled off. This step shown in FIG. 4( d) corresponds to one example of the transfer substrate peeling-off step of the present invention.
  • After this, after the flux 10 has been supplied to the surface as in FIG. 4( e), the solder powders 3 are, being deposited in a reflow furnace, completely melted as in FIG. 4( f), and the solder layer 30 is formed. After that, the flux may be removed with washing as FIG. 4( g) shows. The solder height becomes uniform by allowing them to be melted and, at the time of flip-chip mounting, joining becomes able to be more surely carried out. And, by carrying out the flip-chip mounting of the semiconductor element 6, the semiconductor device can be fabricated.
  • With present Embodiment 2, not only the bonding strength is lowered by allowing the adhesive layer 21 to expand similarly to Embodiment 1, but it becomes possible to peel off the solder transfer substrate from the semiconductor element 6 with weaker peeling-off strength, because the bonding strength with the protruding electrodes, by the compression rate of the adhesive layer 21 being smaller compared to Embodiment 1, also becomes smaller. For example, the interface strength between the solder transfer substrate 50 and the Au—Ni electrodes after melting of the solder powders 3, by the 180° peel test method is decreased from 10N/25 mm to 1N/25 mm.
  • Embodiment 3
  • In what follows, descriptions are given regarding the solder transfer substrate, the manufacturing method of the solder transfer substrate, and the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 pertaining to the present invention.
  • In present Embodiment 3, the solder transfer substrate 50 similar to that of Embodiment 2 is used, but it is different in the supplying method of the peeling-off liquid and in that the peeling-off liquid contains a flux component. Because of that, descriptions are given mainly on the points of difference from Embodiment 2. Additionally, for the constitution similar to that of Embodiment 2, identical reference numerals have been assigned.
  • FIGS. 5( a)-(f) are sectional constitution views that conceptually show the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 3 of the present invention.
  • Because FIGS. 5( a) and (b) are similar to FIGS. 4( a) and (b) of Embodiment 2, descriptions are omitted.
  • As is shown in FIG. 5( c), for example, by a peeling-off liquid supplying means such as a dispenser, a spin coater, potting, a bar coater and the like, the peeling-off liquid is supplied to the whole area of the reverse face 11 a of the base layer 11. The flux component is included in this peeling-off liquid. The said peeling-off liquid gradually infiltrates into the said base layer 11 having air holes inside and, after having been conveyed in the adhesive layer 21, is conveyed to the interface between the protruding electrodes 8 and the adhesive layer 21. And, the adhesive layer 21 swells in the thickness direction. In the figure, the flow of the peeling-off liquid is shown with the black arrows, and the swelling is shown with the white arrows. This step shown in FIG. 5( c) corresponds to one example of the peeling-off liquid infiltrating step of the present invention.
  • As is shown in FIG. 5( d), while the solder transfer substrate 50 is peeled off, the solder powders on the protruding electrodes 8 are covered over with the flux component. Here, the flux component, because having a function of a releasing material, can lower the bonding strength between the adhesive layer 21 and the protruding electrodes 8, and it becomes possible to carry out peeling-off with lower strength. Additionally, in FIG. 5( d), the flux component is shown with the reference numeral 13.
  • Next, as is shown in FIG. 5( e) and FIG. 5( f), the semiconductor element 6 covered with the flux component 13 is deposited in a reflow furnace, the solder powders 3 are melted, and the solder layer 30 is formed. This step shown in FIG. 5( e) countervails one example of the solder layer forming step of the present invention.
  • Subsequently, as is shown in FIG. 5( f), the flux residue is removed by washing.
  • Here, because the flux covers the protruding electrodes after the peeling-off, a flux supplying step by a fluxer, a flux supplying device or the like becomes unnecessary, the manufacturing steps are reduced, and an effect such that the productivity improves is also generated.
  • And, the semiconductor device is fabricated by carrying out to the board the mounting of the semiconductor element 6 by flip-chip mounting and the like.
  • With the supplying means of the peeling-off liquid of present Embodiment 3, since the supplying is not carried out on the reverse face 6 a of the semiconductor element 6 or the reverse face of the board where supplying of the peeling-off liquid is not necessary, because the supplying quantity and supplying place of the peeling-off liquid can be controlled, the step of removing the peeling-off liquid that has attached to the reverse face becomes unnecessary, and an effect such that the productivity improves is generated. Moreover, with the present supplying means, because the peeling-off liquid before supplying is stored in an airtight container such as a syringe, for example, the exchanging life of the peeling-off liquid can be prolonged, and also is generated an effect such that the productivity improves.
  • Additionally, in present Embodiment 3, the peeling-off liquid containing a flux component has been supplied with a dispenser and the like, but dipping in the liquid tank in which such a peeling-off liquid has been put may be carried out.
  • Embodiment 4
  • In what follows, descriptions are given regarding the solder transfer substrate, the manufacturing method of the solder transfer substrate, and the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 4 pertaining to the present invention.
  • The solder transfer substrate of present Embodiment is the same as that of Embodiment 1 in the basic constitution, but is different in the constitution of the base layer and in that through holes are formed that penetrate the base layer and the adhesive layer, and is different in the supplying method of the peeling-off liquid. Because of that, descriptions are given mainly on the present points of difference. Additionally, regarding the constitution identical to that of Embodiment 1 have been assigned identical reference numerals.
  • FIG. 6( a) is a sectional constitution view that conceptually shows the solder transfer substrate 500 in Embodiment 4 of the present invention, and FIG. 6( b) is a plan constitution view that conceptually shows the solder transfer substrate 500 in Embodiment 4 of the present invention. Additionally, FIG. 6( b) is a view with the solder transfer substrate 500 viewed from below in FIG. 6( a).
  • As is shown in FIG. 6( a), the solder transfer substrate 500 in Embodiment 4 of the present invention comprises the base layer 110, the adhesive layer 2 that has been formed on the said base layer 110, the solder powders 3 that have been bonded onto the said adhesive layer 2, and the through holes 15 that have been provided so as to penetrate the said base layer 110 and the said adhesive layer 2.
  • The base layer 110 is a material with a cushioning property and, for example, silicone, rubber, PET, PEN and the like can be used. Additionally, in the raw material itself of the base layer 110 of present Embodiment 4, a plurality of holes such that it is possible for the peeling-off liquid to pass through are not formed.
  • Moreover, the adhesive layer 2 is, for example, made of an adhesive agent of the acrylic system, the silicone system, the rubber system and the like. Further, the solder powders 3 are made of SnAgCu, SnAgBiIn, SnZnBi, Sn, In, SnBi and the like.
  • Next, descriptions are given regarding the manufacturing method of the solder transfer substrate 500 in present Embodiment 4.
  • In the beginning, on the base layer 110 with the thickness s1, the adhesive layer 2 with the thickness a1 is formed. This step corresponds to one example of the adhesive layer forming step of the present invention.
  • Next, the solder powders 3 are stuck onto this adhesive layer 2. This step corresponds to one example of the solder powder loading step of the present invention.
  • Subsequently, the through holes 15 are formed that have penetrated the base layer 110 and the adhesive layer 2. These through holes 15 can be formed by punching and the like. This step corresponds to one example of the penetration step of the present invention.
  • By the steps in the aforementioned, the solder transfer substrate 5 is created. Additionally, for the solder powder 3, for example, one of components with Sn3Ag0.5Cu is used, and for the adhesive agent has been used one made of a rubber system resin, for example. In present Embodiment 4, similarly to Embodiment 1, for example, the thickness s1 of the base material is set to 1.5 mm, the thickness a1 of the adhesive layer to 0.050 mm, and the solder particle diameter to 0.002-0.012 mm.
  • Next, while descriptions are given regarding the manufacturing method of the semiconductor device using the solder transfer substrate of present Embodiment 4, mention is made at the same time also regarding one example of the solder transfer method of the present invention.
  • FIGS. 7( a)-(d) are sectional constitution views that conceptually show the solder transfer method in the manufacturing method of the semiconductor device using the solder transfer substrate in Embodiment 4 of the present invention.
  • As is shown in FIG. 7( a), on the semiconductor element 6 having the fragile low-dielectric-constant film 7 (for example, Extremely Low-k), the protruding electrodes 8 are plurally provided on a matrix in an area arrangement. The protruding electrodes 8 are formed on the electrode pads 12, are made of Cu, for example, and are provided with a pitch of 0.040 mm at equal intervals, with the height being 0.020 mm. The said solder transfer substrate 500 is arranged so that its solder powders 3 face the protruding electrodes 8 of the semiconductor element 6.
  • Next, as is shown in FIG. 7( b), the face on which the solder powders 3 of the solder transfer substrate 500 are loaded, and the face on which the protruding electrodes 8 of the semiconductor element 6 are formed are superposed to carry out heating and pressurization, and the adhesive layer 2 is compressed and transformed. Here, the adhesive layer 2 and the protruding electrodes are bonded. This step shown in FIG. 7( b) corresponds to one example of the solder joining step of the present invention.
  • Next, as is shown in FIG. 7( c), to the reverse face 110 a of the solder transfer substrate 500, the peeling-off liquid is supplied. Then, the peeling-off liquid goes through the through holes 15, gets to the adhesive layer 2, and allows the adhesive layer 2 to swell. By this function, the bonding strength between the adhesive layer 2 and the protruding electrodes 8 is decreased. In the figure, the flow of the peeling-off liquid is shown with the black arrows, and the swelling is shown with the white arrows. This step shown in FIG. 7( c) corresponds to one example of the peeling-off liquid infiltrating step of the present invention.
  • As is shown in FIG. 7( d), in the step of peeling off the solder transfer substrate 500 from the semiconductor element 6, it can be peeled off with lower strength. This step shown in FIG. 7( d) corresponds to one example of the transfer substrate peeling-off step of the present invention. The later steps are similar to those of Embodiment 1.
  • As illustrated in the aforementioned, in present Embodiment 4, because the base layer 110 can, even if being a dense raw material that does not hold a plurality of air holes such that it is possible for the peeling-off liquid to pass through, infuse the peeling-off liquid via the through holes, it becomes easy to infuse the peeling-off liquid into the interface between the solder transfer substrate and the protruding electrode. Further, with the present infusing method, is generated an effect such that, in comparison to the case of utilizing the plural holes, the peeling-off liquid becomes easier to convey particularly to the in-between of the solder powders that have been bonded with the protruding electrodes and the adhesive layer.
  • Moreover, since the base layer 110 itself is a material with a cushioning property, also with respect to the protruding electrodes on a large-sized glass epoxy board of 450 mm×450 mm, for example, the base layer 110 absorbs the parallelism and flatness between the molds, and can uniformly confer the stress on the protruding electrodes.
  • Additionally, also in present Embodiment 4, similarly to above-mentioned Embodiment 3, a flux component may be included in the peeling-off liquid.
  • Moreover, also in present Embodiment 4, the base layer 1 or 11 may be used in which a plurality of holes as in Embodiment 1 or Embodiment 2 have been formed that allow the peeling-off liquid to pass through towards the side of the adhesive layer 2. In this case, the peeling-off liquid then passes through from the through holes 15 and the holes of the raw material itself of the base layer 1 or 11.
  • Additionally, in the solder transfer substrate 500 of present Embodiment 4, the through holes 15 have penetrated both of the base layer 110 and the adhesive layer 2, but the constitution may be that they penetrate in the middle of the adhesive layer 2, or the constitution may be that they have penetrated only the base layer 110.
  • Moreover, in the present embodiment, after on the base layer 110 the plural solder powders 3 have been stuck to the adhesive layer 2, the through holes 15 have been formed, but the order is not limited to this. Namely, in a case where the through holes are formed only in the base layer 110, the through holes may be formed in the base layer 110 before the adhesive layer 2 is formed and, in a case where the through holes are formed in the base layer 110 and the adhesive layer 2, before the plural solder powders 3 are stuck, the through holes may be formed.
  • Moreover, in present Embodiment 4, descriptions have been given supposing that regarding the base layer 110 a cushioning property is involved, but rigidity may be involved.
  • Additionally, in above-mentioned Embodiments 1-4, descriptions are given using an electronic component such as a semiconductor element and the like, but it may be, not an electronic component, a circuit board. FIG. 8 is a sectional constitution view that shows the solder transfer substrate 5 shown with Embodiment 1, and the circuit board 16 that has been arranged so as to face the solder transfer substrate 5. As shown in FIG. 8, the electrode pads 12 are formed on the substrate of the circuit board 16, and the protruding electrodes 8 are formed on the electrode pads 12. In the circuit board 16 like this, even with constitution of weak adhesion force between the substrate and the electrode pads such that, for example, the substrate is formed of silicone and that the electrode pads 12 are formed of Cu, whose adhesion force with Si is weak, by applying the present invention, peeling-off of electrode pads from the circuit board can be decreased that takes place while the solder transfer substrate is peeled off.
  • In the aforementioned, as has been described in Embodiments 1-4, with the solder transfer substrate of the present invention and the manufacturing method thereof, since the peeling-off liquid can be, because having a plurality of holes in the substrate, allowed to infiltrate into the adhesive layer and, as a result, the peeling-off strength of the solder transfer substrate is less than the interface strength under the electrode pads or the destruction strength of the fragile film, also in the step of peeling off the solder transfer substrate, peeling-off of the electrode pads or the fragile low-dielectric-constant film under the electrode pads for instance can be prevented.
  • Moreover, since the inclination of the mold, also with respect to a transfer to a large-sized board, can be absorbed, because the solder transfer substrate itself has a cushioning property, it becomes possible to carry out transfer.
  • Like this, with the solder transfer substrate of the present invention and the manufacturing method thereof, with respect to an electronic component such as a semiconductor element and the like having a fragile film like a low-dielectric-constant film or a circuit board, occurrence of peeling-off and fissures of the fragile film is decreased, and a solder layer with an appropriate thickness can be more surely formed with transfer.
  • Additionally, present Embodiments 1-4 may be implemented at the same time.
  • Additionally, in above-mentioned Embodiments 1-4, the adhesive layer 2 has a characteristic of expanding by infusing a peeling-off liquid, but need not have it.
  • Moreover, the base layers 1, 11 and 110 in above-mentioned Embodiments 1-4, any of which is a member having a cushioning property, need not have a cushioning property. Even in a case like this, by supplying a peeling-off liquid through a plurality of holes, compared with the conventional, it becomes possible to allow the solder transfer substrate to be easy to peel off from the semiconductor element.
  • INDUSTRIAL APPLICABILITY
  • A solder transfer substrate, a manufacturing method of a solder transfer substrate and a solder transfer method pertaining to the present invention have an effect of more easily peeling off a solder transfer substrate, and are useful particularly in the mounting field of mounting semiconductor elements with progress for narrow pitch, or semiconductor elements and the like having interlayer insulating films made of low-dielectric-constant materials and the like.
  • DESCRIPTION OF THE REFERENCE NUMERALS
      • 1, 11, 110 base layer
      • 2, 21 adhesive layer
      • 3 solder powder
      • 5, 50, 500 solder transfer substrate
      • 6 semiconductor element
      • 7 low-dielectric-constant film
      • 8 protruding electrode
      • 9 insulating film
      • 10 flux
      • 12 electrode pad
      • 13 flux component
      • 15 through hole
      • 16 circuit board
      • 30 solder layer

Claims (10)

1. A solder transfer substrate, comprising:
a base layer;
an adhesive layer arranged on the base layer; and
plural solder powders arranged on the adhesive layer, wherein
in the base layer, a plurality of holes, which allow at least a peeling-off liquid to pass therethrough, are formed from a side thereof on which the adhesive layer is not arranged to a side thereof on which the adhesive layer is arranged.
2. A solder transfer substrate according to claim 1, wherein
the adhesive layer has a characteristic of expanding with the peeling-off liquid infused.
3. A solder transfer substrate according to claim 1, wherein
the base layer is a porous member.
4. A solder transfer substrate according to claim 1, wherein
the plurality of holes are provided so as to penetrate from a face of the base layer, which does not touch the adhesive layer, towards a face of the base layer, which touches the adhesive layer.
5. A solder transfer substrate according to claim 4, wherein
the plurality of holes are formed at least to an inside of the adhesive layer.
6. A solder transfer substrate according to claim 1, wherein
the base layer is larger than the adhesive layer in respect of a compression rate at a time of heating.
7. A manufacturing method of a solder transfer substrate, comprising:
an adhesive layer forming step of forming an adhesive layer on a surface of a base layer having a plurality of holes; and
a solder powder loading step of loading, on the adhesive layer, plural solder powders with in-between spaces.
8. A manufacturing method of a solder transfer substrate, comprising:
an adhesive layer forming step of forming an adhesive layer on a surface of a base layer;
a solder powder loading step of loading, on the adhesive layer, plural solder powders with in-between spaces; and
a penetration step of forming a hole penetrating at least the base layer.
9. A solder transfer method, comprising:
a solder joining step of superposing the solder transfer substrate according to claim 1, and a circuit board or an electronic component with an electrode formed on a surface thereof, so that a face on which the solder powders have been loaded faces a face on which the electrode has been formed, carrying out heating and pressurization, and allowing the solder powders to be joined to the electrode;
a peeling-off liquid infiltrating step of allowing a peeling-off liquid to infiltrate the adhesive layer via a plurality of holes provided in the base layer; and
a transfer substrate peeling-off step of peeling off the solder transfer substrate from the circuit board or the electronic component.
10. A solder transfer method, comprising:
a solder joining step of superposing the solder transfer substrate according to claim 1, and a circuit board or an electronic component with an electrode formed on a surface thereof, so that a face on which the solder powders have been loaded faces a face on which the electrode has been formed, carrying out heating and pressurization, and allowing the solder powders to be diffused and joined to the electrode;
a peeling-off liquid infiltrating step of allowing a peeling-off liquid containing a flux component to infiltrate the adhesive layer via a plurality of holes provided in the base layer;
a transfer substrate peeling-off step of peeling off the solder transfer substrate from the circuit board or the electronic component; and
a solder layer forming step of performing heating at a melting point of solder or more to allow the solder powders to be melted.
US14/005,874 2011-03-29 2012-01-25 Solder transfer substrate, manufacturing method of solder transfer substrate, and solder transfer method Active 2032-04-17 US9238278B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011073235 2011-03-29
JP2011-073235 2011-03-29
PCT/JP2012/000462 WO2012132175A1 (en) 2011-03-29 2012-01-25 Solder transfer base, method for producing solder transfer base, and method for transferring solder

Publications (2)

Publication Number Publication Date
US20140010991A1 true US20140010991A1 (en) 2014-01-09
US9238278B2 US9238278B2 (en) 2016-01-19

Family

ID=46929972

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/005,874 Active 2032-04-17 US9238278B2 (en) 2011-03-29 2012-01-25 Solder transfer substrate, manufacturing method of solder transfer substrate, and solder transfer method

Country Status (5)

Country Link
US (1) US9238278B2 (en)
JP (1) JP5647335B2 (en)
KR (1) KR101493340B1 (en)
TW (1) TWI579096B (en)
WO (1) WO2012132175A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170209948A1 (en) * 2014-07-28 2017-07-27 GM Global Technology Operations LLC Systems and methods for reinforced adhesive bonding
US20180021892A1 (en) * 2016-02-19 2018-01-25 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method and device for reversibly attaching a phase changing metal to an object
CN112786514A (en) * 2019-11-11 2021-05-11 成都辰显光电有限公司 Temporary transfer substrate of micro-component and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5944979B1 (en) * 2014-12-26 2016-07-05 千住金属工業株式会社 Solder transfer sheet, solder bump, and solder pre-coating method using solder transfer sheet
CN114446805A (en) * 2020-11-04 2022-05-06 中强光电股份有限公司 Method for bonding electronic components
US11631650B2 (en) * 2021-06-15 2023-04-18 International Business Machines Corporation Solder transfer integrated circuit packaging

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366573A (en) * 1989-07-12 1994-11-22 Siemens Nixdorf Informationssysteme Ag UV-curable adhesive semiconductor chip mounting process
JPH1070151A (en) * 1996-08-26 1998-03-10 Ricoh Co Ltd Method and apparatus for arraying conductive particle
US6145735A (en) * 1998-09-10 2000-11-14 Lockheed Martin Corporation Thin film solder paste deposition method and tools
US6239013B1 (en) * 1998-02-19 2001-05-29 Texas Instruments Incorporated Method for transferring particles from an adhesive sheet to a substrate
US6287891B1 (en) * 2000-04-05 2001-09-11 Hrl Laboratories, Llc Method for transferring semiconductor device layers to different substrates
US20040231793A1 (en) * 2002-12-20 2004-11-25 Werner Kroninger Method of processing a workpiece, and a work carrier, in particular of porous ceramic
US20050173064A1 (en) * 2003-12-01 2005-08-11 Tokyo Ohka Kogyo Co., Ltd. Substrate supporting plate and stripping method for supporting plate

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3202774B2 (en) 1992-01-20 2001-08-27 昭和電工株式会社 Solder pattern transfer film and method of manufacturing the same
US5591037A (en) * 1994-05-31 1997-01-07 Lucent Technologies Inc. Method for interconnecting an electronic device using a removable solder carrying medium
TW250620B (en) 1994-05-31 1995-07-01 At & T Corp Method for interconnecting an electronic device using a transferable soldercarrying medium
JPH08288632A (en) 1995-04-17 1996-11-01 Ibiden Co Ltd Solder carrier and manufacture of printed wiring board
JP3390822B2 (en) 1996-08-29 2003-03-31 トヨタ自動車株式会社 Flux for soldering circuit boards and circuit boards
US7654432B2 (en) * 1997-05-27 2010-02-02 Wstp, Llc Forming solder balls on substrates
JP3880027B2 (en) * 1998-09-17 2007-02-14 千住金属工業株式会社 Method of forming solder bump
JP3996276B2 (en) 1998-09-22 2007-10-24 ハリマ化成株式会社 Solder paste, manufacturing method thereof, and solder pre-coating method
US6512183B2 (en) 2000-10-10 2003-01-28 Matsushita Electric Industrial Co., Ltd. Electronic component mounted member and repair method thereof
JP2002190661A (en) 2000-10-10 2002-07-05 Matsushita Electric Ind Co Ltd Package of electronic component and its repair method
JP4703833B2 (en) 2000-10-18 2011-06-15 日東電工株式会社 Energy ray-curable heat-peelable pressure-sensitive adhesive sheet and method for producing cut pieces using the same
JP4462755B2 (en) * 2000-12-15 2010-05-12 京セラ株式会社 Wafer support substrate
JP2004311744A (en) 2003-04-08 2004-11-04 Nec Kansai Ltd Method for manufacturing semiconductor device
JP4855667B2 (en) 2004-10-15 2012-01-18 ハリマ化成株式会社 Method for removing resin mask layer and method for producing substrate with solder bumps
CN101084083B (en) 2004-12-20 2010-07-07 千住金属工业株式会社 Solder precoating method and work for electronic device
JP2009010302A (en) 2007-06-29 2009-01-15 Senju Metal Ind Co Ltd Method for forming solder paste layer
KR101211724B1 (en) * 2009-04-30 2012-12-12 엘지이노텍 주식회사 Semiconductor package with nsmd type solder mask and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366573A (en) * 1989-07-12 1994-11-22 Siemens Nixdorf Informationssysteme Ag UV-curable adhesive semiconductor chip mounting process
JPH1070151A (en) * 1996-08-26 1998-03-10 Ricoh Co Ltd Method and apparatus for arraying conductive particle
US6239013B1 (en) * 1998-02-19 2001-05-29 Texas Instruments Incorporated Method for transferring particles from an adhesive sheet to a substrate
US6145735A (en) * 1998-09-10 2000-11-14 Lockheed Martin Corporation Thin film solder paste deposition method and tools
US6287891B1 (en) * 2000-04-05 2001-09-11 Hrl Laboratories, Llc Method for transferring semiconductor device layers to different substrates
US20040231793A1 (en) * 2002-12-20 2004-11-25 Werner Kroninger Method of processing a workpiece, and a work carrier, in particular of porous ceramic
US20050173064A1 (en) * 2003-12-01 2005-08-11 Tokyo Ohka Kogyo Co., Ltd. Substrate supporting plate and stripping method for supporting plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine Translation of JP 10070151 A, 03/1998 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170209948A1 (en) * 2014-07-28 2017-07-27 GM Global Technology Operations LLC Systems and methods for reinforced adhesive bonding
US20180021892A1 (en) * 2016-02-19 2018-01-25 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method and device for reversibly attaching a phase changing metal to an object
US10675718B2 (en) * 2016-02-19 2020-06-09 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method and device for reversibly attaching a phase changing metal to an object
CN112786514A (en) * 2019-11-11 2021-05-11 成都辰显光电有限公司 Temporary transfer substrate of micro-component and preparation method thereof

Also Published As

Publication number Publication date
US9238278B2 (en) 2016-01-19
CN103444274A (en) 2013-12-11
WO2012132175A1 (en) 2012-10-04
TW201240761A (en) 2012-10-16
JP5647335B2 (en) 2014-12-24
KR20130129280A (en) 2013-11-27
TWI579096B (en) 2017-04-21
JPWO2012132175A1 (en) 2014-07-24
KR101493340B1 (en) 2015-02-16

Similar Documents

Publication Publication Date Title
US9238278B2 (en) Solder transfer substrate, manufacturing method of solder transfer substrate, and solder transfer method
JP4145730B2 (en) Module with built-in semiconductor
JP3663938B2 (en) Flip chip mounting method
CN102256452B (en) Circuit board with built-in semiconductor chip and method of manufacturing the same
JP2006324642A (en) Semiconductor device and manufacturing method thereof
US9027822B2 (en) Manufacturing method of solder transfer substrate, solder precoating method, and solder transfer substrate
JP6057224B2 (en) Component mounting structure
JP2012069903A (en) Semiconductor device, and method of manufacturing the same
JP2014120773A (en) Package structure and package method
JP2010263199A (en) Manufacturing method of semiconductor device, and semiconductor device
TWI669792B (en) Method for producing semiconductor chip
JP5182296B2 (en) Manufacturing method of electronic component device
JP5228479B2 (en) Manufacturing method of electronic device
KR101374146B1 (en) Method for manufacturing semiconductor package
TW200919605A (en) Method for manufacturing wiring substrate having solder bumps
JP4161605B2 (en) Printed wiring board and manufacturing method thereof
WO2023279485A1 (en) Packaging method and packaging structure thereof
JP3718190B2 (en) Method for forming surface mount structure and surface mount structure
Asahi et al. 3D-IC thermo-compression collective bonding process using high temperature stage
TW201212136A (en) Manufacturing method of wiring substrate having solder bump, and mask for mounting solder ball
JP2007141914A (en) Connection method of printed wiring boards
JP5696852B2 (en) Solder connection sheet and electronic component mounting method using the same
JP2009016414A (en) Electronic circuit device and electronic apparatus using the same, and manufacturing method of the electronic circuit device
JP2006093178A (en) Method for manufacturing electronic equipment
JP2009060017A (en) Solid printed circuit board

Legal Events

Date Code Title Description
AS Assignment

Owner name: PANASONIC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAKURAI, DAISUKE;REEL/FRAME:031474/0659

Effective date: 20130603

AS Assignment

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:034194/0143

Effective date: 20141110

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:034194/0143

Effective date: 20141110

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD., JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY FILED APPLICATION NUMBERS 13/384239, 13/498734, 14/116681 AND 14/301144 PREVIOUSLY RECORDED ON REEL 034194 FRAME 0143. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:056788/0362

Effective date: 20141110

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8