US20130305758A1 - Refrigerating and air-conditioning apparatus - Google Patents

Refrigerating and air-conditioning apparatus Download PDF

Info

Publication number
US20130305758A1
US20130305758A1 US13/982,503 US201113982503A US2013305758A1 US 20130305758 A1 US20130305758 A1 US 20130305758A1 US 201113982503 A US201113982503 A US 201113982503A US 2013305758 A1 US2013305758 A1 US 2013305758A1
Authority
US
United States
Prior art keywords
indoor
heat exchanger
unit
temperature
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/982,503
Other languages
English (en)
Inventor
Kenji Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Assigned to MITSUBISHI ELECTRIC CORPORATION reassignment MITSUBISHI ELECTRIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MATSUI, KENJI
Publication of US20130305758A1 publication Critical patent/US20130305758A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger

Definitions

  • the present invention relates to refrigerating and air-conditioning apparatuses, and particularly, to a refrigerating and air-conditioning apparatus equipped with a plurality of use-side heat exchangers.
  • a relay unit In a refrigerating and air-conditioning apparatus in the related art that can simultaneously perform cooling and heating, a relay unit is provided with a plurality of branch ports for a refrigerant pipe, and indoor units are connected to the respective branch ports. Because the relay unit needs to control flow switching valves and the like based on whether the indoor units are in operation or are stopped or whether the indoor units are operating in a cooling mode or a heating mode, it is necessary to perform the control by identifying which indoor unit is connected to which branch port. Therefore, connected-branch-port numbers or connected-indoor-unit numbers need to be set at the indoor units or the relay unit by using DIP switches or the like.
  • each indoor unit or the relay unit requires setting means, such as a DIP switch, which involves a problem in that the component cost is increased and a troublesome task is required in the setting process.
  • setting means such as a DIP switch
  • FIG. 8 is a schematic diagram illustrating the configuration of an indoor-unit controller and a relay-unit controller in the related art provided with a function for controlling a flow control valve and measuring a temperature change in an indoor heat exchanger so as to automatically determine the connection.
  • a relay-unit controller 63 b and an indoor-unit controller 62 are connected by transmission lines 71 .
  • the transmission lines 71 connect transmission circuits and reception circuits of the relay-unit controller 63 b and the indoor-unit controller 62 .
  • the transmission circuit and the reception circuit in each controller are connected to a microcomputer in the controller, and the microcomputer performs a transmission process and a reception analysis process.
  • FIG. 9 illustrates the flow of data when transmitting temperature data of an indoor heat exchanger from the indoor-unit controller 62 to the relay-unit controller 63 b in the related art.
  • the temperature data is converted into a transmittable digital signal by a transmission process performed by the indoor-unit controller 62 .
  • the digital signal is converted into a signal waveform by the transmission circuit, and the signal waveform is transmitted to the relay unit via the transmission line.
  • the reception circuit reversely-converts the signal waveform into a digital signal.
  • the digital signal is reversely-converted into temperature data by a reception analysis process so that the temperature data can be received.
  • the relay unit and each indoor unit are connectable only if the combination thereof satisfies the limiting conditions thereof. This is a problem in that the units cannot be readily connected if they are products provided by different manufacturers.
  • the present invention has been made to solve the aforementioned problems, and a first object thereof is to provide a refrigerating and air-conditioning apparatus that achieves reduced limitations with respect to the communication of indoor units and can identify which indoor unit is connected to each branch port.
  • a second object is to provide a refrigerating and air-conditioning apparatus that can detect a setting error with respect to the connection between each branch port and each indoor unit.
  • a refrigerating and air-conditioning apparatus includes a refrigeration cycle that makes a refrigerant circulate therethrough by connecting a compressor, a heat-source-side heat exchanger, at least one expansion valve, and at least one intermediate heat exchanger; and a heat-medium circuit that makes a heat medium circulate therethrough by connecting at least one pump, a plurality of use-side heat exchangers, and the intermediate heat exchanger.
  • the at least one intermediate heat exchanger and the pump are accommodated in a relay unit.
  • the plurality of use-side heat exchangers are accommodated in respective indoor units.
  • Each indoor unit includes an indoor-unit controller that performs on-off control for operation performed by the use-side heat exchanger for exchanging heat between the heat medium and a thermal load.
  • the relay unit includes a plurality of branch ports that are connected to the plurality of use-side heat exchangers and make the heat medium circulate to the use-side heat exchangers, outlet temperature sensors that are provided for the respective branch ports and each detect an outlet temperature of the heat medium flowing out of the branch port to the corresponding use-side heat exchanger, inlet temperature sensors that are provided for the respective branch ports and each detect an inlet temperature of the heat medium flowing into the branch port from the corresponding use-side heat exchanger, and a relay-unit controller that is connected to the indoor-unit controllers by a transmission line and controls operation of each indoor-unit by transmitting an operation command or a stop command thereto via the transmission line.
  • the relay-unit controller makes the indoor units operate on a one-by-one basis and identifies which of the indoor units is connected to each branch port on the basis of a difference between the inlet temperature and the outlet temperature at the branch port.
  • the present invention can achieve reduced limitations with respect to the communication of indoor units and can identify which indoor unit is connected to each branch port.
  • FIG. 1 is a schematic circuit diagram illustrating the configuration of a refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram illustrating the configuration of a relay-unit controller and an indoor-unit controller according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart illustrating the flow of an process of automatic determination of connected branch ports to indoor units in the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic circuit diagram illustrating the configuration of a refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a flowchart illustrating the flow of an process of automatic determination of connected branch ports to indoor units in the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic circuit diagram illustrating the configuration of a refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention.
  • FIG. 7 is a flowchart illustrating the flow of an process of automatic determination of connected branch ports to indoor units in the refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic diagram illustrating the configuration of an indoor-unit controller and a relay-unit controller in the related art provided with a function for controlling a flow control valve and measuring a temperature change in an indoor heat exchanger so as to automatically determine the connection.
  • FIG. 9 illustrates the flow of data when transmitting temperature data of the indoor heat exchanger from an indoor-unit controller 62 to a relay-unit controller 63 b in the related art.
  • Embodiment 1 relates to a refrigerating and air-conditioning apparatus that performs an process of automatic determination of connected branch ports to indoor units during trial operation performed after installation of the apparatus.
  • FIG. 1 is a schematic circuit diagram illustrating the configuration of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the refrigerating and air-conditioning apparatus includes a single heat source device 1 serving as a heat source unit, a plurality of indoor units 2 , and a relay unit 3 interposed between the heat source device 1 and the indoor units 2 .
  • the heat source device 1 accommodates a compressor 10 , a four-way valve 11 , a heat-source-side heat exchanger 12 , and an accumulator 17 that are connected in series by a refrigerant pipe 4 , and serves as a system that supplies required heat by means of a refrigerant.
  • the indoor units 2 are individually equipped with use-side heat exchangers 26 .
  • the use-side heat exchangers 26 are connected to stop valves 24 and flow control valves 25 in a second relay unit 3 b via pipes 5 .
  • the indoor units 2 transfer heat from a heat medium circulated by the use-side heat exchangers 26 to indoor air by heat exchange.
  • the heat medium used may be water, an antifreeze, or the like. In Embodiment 1, water is used as the heat medium.
  • the relay unit 3 is constituted of a first relay unit 3 a and the second relay unit 3 b that are accommodated in separate housings.
  • the first relay unit 3 a is provided with a gas-liquid separator 14 and an expansion valve 16 e , and separates a transported refrigerant into three, that is, high-pressure gas, intermediate-pressure liquid, and low-pressure gas and supplies the refrigerant as a heat source for cooling and heating.
  • the second relay unit 3 b is provided with two intermediate heat exchangers 15 , four expansion valves 16 , two pumps 21 , four flow switching valves 22 , four flow switching valves 23 , four stop valves 24 , and four flow control valves 25 .
  • the second relay unit 3 b transfers required heat from a cooling or heating refrigerant to water and causes the water storing a required amount of heat to circulate to a heat-medium circuit (water circuit).
  • the second relay unit 3 b is further provided with two first temperature sensors 31 , two second temperature sensors 32 , four third temperature sensors 33 , four fourth temperature sensors 34 , a fifth temperature sensor 35 , a pressure sensor 36 , a sixth temperature sensor 37 , and a seventh temperature sensor 38 .
  • the four third temperature sensors 33 (third temperature sensors 33 a to 33 d ) are provided at the inlet side of heat-medium passages of the use-side heat exchangers 26 , are configured to detect the temperature of the heat medium flowing into the use-side heat exchangers 26 , and may be formed of thermistors or the like.
  • the number of third temperature sensors 33 provided corresponds the number of (four, in this case) indoor units 2 installed. In line with the indoor units 2 , the third temperature sensor 33 a , the third temperature sensor 33 b , the third temperature sensor 33 c , and the third temperature sensor 33 d are shown in that order from the lower side of the drawing.
  • the third temperature sensors 33 correspond to “inlet temperature sensors” in the present invention.
  • the four fourth temperature sensors 34 are provided at the outlet side of the heat-medium passages of the use-side heat exchangers 26 , are configured to detect the temperature of the heat medium flowing out of the use-side heat exchangers 26 , and may be formed of thermistors or the like.
  • the number of fourth temperature sensors 34 provided corresponds to the number of (four, in this case) indoor units 2 installed. In line with the indoor units 2 , the fourth temperature sensor 34 a , the fourth temperature sensor 34 b , the fourth temperature sensor 34 c , and the fourth temperature sensor 34 d are shown in that order from the lower side of the drawing.
  • the fourth temperature sensors 34 correspond to “outlet temperature sensors” in the present invention.
  • the pipes 5 that guide the water serving as a heat medium include a pipe (referred to as “pipe 5 a ” hereinafter) that is connected to the intermediate heat exchanger 15 a and a pipe (referred to as “pipe 5 b ” hereinafter) that is connected to the intermediate heat exchanger 15 b .
  • the pipe 5 a and the pipe 5 b each branch off into pipe segments (four pipe segments, in this case) in accordance with the number of indoor units 2 connectable to the relay unit 3 .
  • Combinations of branch pipe segments of the pipes 5 a and 5 b that are connectable to the indoor units 2 a to 2 d will be referred to as branch ports 6 a to 6 d .
  • the branch ports 6 a to 6 d are connected to each other by the flow switching valves 22 , the flow switching valves 23 , and the flow control valves 25 .
  • the flow switching valves 22 and the flow switching valves 23 By controlling the flow switching valves 22 and the flow switching valves 23 , the heat medium guided through the pipe 5 a can be made to flow into the use-side heat exchangers 26 , or the heat medium guided through the pipe 5 b can be made to flow into the use-side heat exchangers 26 .
  • the heat source device 1 is provided with a controller 61 that controls the operation of each of the devices included in the heat source device 1 .
  • the indoor units 2 a to 2 d are respectively provided with indoor-unit controllers 62 a to 62 d that control the operation of each of the devices included in each of the indoor units 2 a to 2 d .
  • the relay units 3 a and 3 b are respectively provided with relay-unit controllers 63 a and 63 b that control the operation of each of the devices included in the relay units 3 a and 3 b .
  • the relay-unit controller 63 b is provided with a switch 64 that is to be operated when commencing the automatic determination process for branch ports.
  • the controller 61 , the indoor-unit controllers 62 a to 62 d , and the relay-unit controllers 63 a and 63 b are capable of exchanging signals with each other.
  • the number of connected heat source devices 1 , indoor units 2 , and relay units 3 is not limited to that shown in the drawing.
  • the indoor units 2 are not limited to air-conditioning units, and may alternatively be hot-water-supply units.
  • the refrigerating and air-conditioning apparatus 100 can perform cooling operation or heating operation in each indoor unit 2 . Specifically, the refrigerating and air-conditioning apparatus 100 can perform the same operation in all of the indoor units 2 or perform different operations among the indoor units 2 .
  • Four operation modes executable by the refrigerating and air-conditioning apparatus 100 that is, a cooling only operation mode in which all of the driven indoor units 2 perform the cooling operation, a heating only operation mode in which all of the driven indoor units 2 perform the heating operation, a cooling main operation mode in which the cooling load is the greater, and a heating main operation mode in which the heating load is the greater, will be described below together with the flow of the refrigerant.
  • the following description relates to an example of a cooling only operation mode in a case where a cooling load is generated only in a use-side heat exchanger 26 a and a use-side heat exchanger 26 b.
  • the four-way valve 11 in the heat source device 1 is switched so that the refrigerant discharged from the compressor 10 flows into the heat-source-side heat exchanger 12 .
  • the pump 21 a is stopped, the pump 21 b is driven, the stop valve 24 a and the stop valve 24 b are opened, and the stop valve 24 c and the stop valve 24 d are closed, so that the heat medium circulates between the intermediate heat exchanger 15 b and the corresponding use-side heat exchangers 26 (the use-side heat exchanger 26 a and the use-side heat exchanger 26 b ).
  • the operation of the compressor 10 commences.
  • a low-temperature low-pressure gas refrigerant is compressed by the compressor 10 and is discharged therefrom as a high-temperature high-pressure gas refrigerant.
  • the high-temperature high-pressure gas refrigerant discharged from the compressor 10 travels through the four-way valve 11 so as to flow into the heat-source-side heat exchanger 12 . Then, the refrigerant condenses and liquefies while transferring heat to outdoor air at the heat-source-side heat exchanger 12 , thereby becoming a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out of the heat-source-side heat exchanger 12 flows out of the heat source device 1 via a check valve, and then travels through the refrigerant pipe 4 so as to flow into the first relay unit 3 a .
  • the high-pressure liquid refrigerant flowing into the first relay unit 3 a flows into the gas-liquid separator 14 and then travels through the expansion valve 16 e before flowing into the second relay unit 3 b.
  • the refrigerant flowing into the second relay unit 3 b is expanded by being throttled by an expansion valve 16 a , thereby becoming a low-temperature low-pressure two-phase gas-liquid refrigerant.
  • This two-phase gas-liquid refrigerant flows into the intermediate heat exchanger 15 b functioning as an evaporator and cools the heat medium circulating through the heat-medium circuit by receiving heat from the heat medium, thereby becoming a low-temperature low-pressure gas refrigerant.
  • the gas refrigerant flowing out of the intermediate heat exchanger 15 b flows out of the second relay unit 3 b and the first relay unit 3 a after traveling through an expansion valve 16 c , and then travels through the refrigerant pipe 4 so as to flow into the heat source device 1 .
  • the refrigerant flowing into the heat source device 1 travels through a check valve and is suctioned into the compressor 10 again via the four-way valve 11 and the accumulator 17 .
  • the expansion valve 16 b and the expansion valve 16 d are set to small opening degrees so as to prevent the refrigerant from flowing therethrough, whereas the expansion valve 16 c is completely opened so as to prevent the occurrence of pressure loss.
  • the heat medium circulates via the pipe 5 b since the pump 21 a is stopped.
  • the heat medium cooled by the refrigerant at the intermediate heat exchanger 15 b is made to flow through the pipe 5 b by the pump 21 b .
  • the heat medium pressurized by and flowing out of the pump 21 b travels through the stop valves 24 (the stop valve 24 a and the stop valve 24 b ) via the flow switching valves 22 (the flow switching valve 22 a and the flow switching valve 22 b ) so as to flow into the use-side heat exchangers 26 (the use-side heat exchanger 26 a and the use-side heat exchanger 26 b ).
  • the heat medium receives heat from indoor air (thermal load) at the use-side heat exchangers 26 , thereby cooling an air-conditioning target area, such as an indoor area, where the indoor units 2 are installed.
  • the heat medium flowing out of the use-side heat exchangers 26 flows into the flow control valves 25 (the flow control valve 25 a and the flow control valve 25 b ).
  • the flow control valves 25 only an amount of heat medium sufficient to cover the air-conditioning load required in the air-conditioning target area, such as an indoor area, flows into the use-side heat exchangers 26 , whereas the remaining heat medium bypasses the use-side heat exchangers 26 by flowing through bypass pipes 27 (a bypass pipe 27 a and a bypass pipe 27 b ).
  • the heat medium traveling through the bypass pipes 27 does not contribute to heat exchange and merges with the heat medium having traveled through the use-side heat exchangers 26 . Then, the heat medium flows into the intermediate heat exchanger 15 b via the flow switching valves 23 (the flow switching valve 23 a and the flow switching valve 23 b ), and is suctioned into the pump 21 b again.
  • the air-conditioning load required in the air-conditioning target area can be covered by performing control such that a temperature difference between the third temperature sensors 33 and the fourth temperature sensors 34 is maintained at a target value.
  • the passages therefor are closed by the corresponding stop valves 24 , thereby preventing the heat medium from flowing toward the use-side heat exchangers 26 . Since there is a thermal load in the use-side heat exchanger 26 a and the use-side heat exchanger 26 b , the heat medium is made to flow into these heat exchangers. In contrast, since there is no thermal load in the use-side heat exchanger 26 c and the use-side heat exchanger 26 d , the corresponding stop valves 24 c and 24 d are closed. If a cooling load is generated at the use-side heat exchanger 26 c or the use-side heat exchanger 26 d , the stop valve 24 c or the stop valve 24 d may be opened so as to circulate the heat medium.
  • the following description relates to an example of a heating only operation mode in a case where a heating load is generated only in the use-side heat exchanger 26 a and the use-side heat exchanger 26 b.
  • the four-way valve 11 in the heat source device 1 is switched so that the refrigerant discharged from the compressor 10 flows into the relay unit 3 without traveling through the heat-source-side heat exchanger 12 .
  • the pump 21 a is driven, the pump 21 b is stopped, the stop valve 24 a and the stop valve 24 b are opened, and the stop valve 24 c and the stop valve 24 d are closed, so that the heat medium circulates between the intermediate heat exchanger 15 a and the corresponding use-side heat exchangers 26 (the use-side heat exchanger 26 a and the use-side heat exchanger 26 b ).
  • the operation of the compressor 10 commences.
  • a low-temperature low-pressure gas refrigerant is compressed by the compressor 10 and is discharged therefrom as a high-temperature high-pressure gas refrigerant.
  • the high-temperature high-pressure gas refrigerant discharged from the compressor 10 travels through the four-way valve 11 , is guided through the refrigerant pipe 4 , and then passes through a check valve so as to flow out of the heat source device 1 .
  • the high-temperature high-pressure gas refrigerant flowing out of the heat source device 1 travels through the refrigerant pipe 4 so as to flow into the first relay unit 3 a .
  • the high-temperature high-pressure gas refrigerant flowing into the first relay unit 3 a flows into the gas-liquid separator 14 and subsequently flows into the intermediate heat exchanger 15 a .
  • the high-temperature high-pressure gas refrigerant flowing into the intermediate heat exchanger 15 a condenses and liquefies while transferring heat to the heat medium circulating through the heat-medium circuit, thereby becoming a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out of the intermediate heat exchanger 15 a is expanded by being throttled by the expansion valve 16 d , thereby turning into a low-temperature low-pressure two-phase gas-liquid state.
  • the two-phase gas-liquid refrigerant throttled by the expansion valve 16 d travels through the expansion valve 16 b and is guided through the refrigerant pipe 4 so as to flow into the heat source device 1 again.
  • the refrigerant flowing into the heat source device 1 flows into the heat-source-side heat exchanger 12 functioning as an evaporator via a check valve.
  • the refrigerant flowing into the heat-source-side heat exchanger 12 receives heat from outdoor air at the heat-source-side heat exchanger 12 , thereby becoming a low-temperature low-pressure gas refrigerant.
  • the low-temperature low-pressure gas refrigerant flowing out of the heat-source-side heat exchanger 12 returns to the compressor 10 via the four-way valve 11 and the accumulator 17 .
  • the expansion valve 16 a , the expansion valve 16 c , and the expansion valve 16 e are set to small opening degrees so as to prevent the refrigerant from flowing therethrough.
  • the heat medium circulates via the pipe 5 a since the pump 21 b is stopped.
  • the heat medium heated by the refrigerant at the intermediate heat exchanger 15 a is made to flow through the pipe 5 a by the pump 21 a .
  • the heat medium pressurized by and flowing out of the pump 21 a travels through the stop valves 24 (the stop valve 24 a and the stop valve 24 b ) via the flow switching valves 22 (the flow switching valve 22 a and the flow switching valve 22 b ) so as to flow into the use-side heat exchangers 26 (the use-side heat exchanger 26 a and the use-side heat exchanger 26 b ).
  • the heat medium transfers heat to indoor air (thermal load) at the use-side heat exchangers 26 , thereby heating the air-conditioning target area, such as an indoor area, where the indoor units 2 are installed.
  • the heat medium flowing out of the use-side heat exchangers 26 flows into the flow control valves 25 (the flow control valve 25 a and the flow control valve 25 b ).
  • the flow control valves 25 only an amount of heat medium sufficient to cover the air-conditioning load required in the air-conditioning target area, such as an indoor area, flows into the use-side heat exchangers 26 , whereas the remaining heat medium bypasses the use-side heat exchangers 26 by flowing through the bypass pipes 27 (the bypass pipe 27 a and the bypass pipe 27 b ).
  • the heat medium traveling through the bypass pipes 27 does not contribute to heat exchange and merges with the heat medium having traveled through the use-side heat exchangers 26 . Then, the heat medium flows into the intermediate heat exchanger 15 a via the flow switching valves 23 (the flow switching valve 23 a and the flow switching valve 23 b ), and is suctioned into the pump 21 a again.
  • the air-conditioning load required in the air-conditioning target area can be covered by performing control such that a temperature difference between the third temperature sensors 33 and the fourth temperature sensors 34 is maintained at a target value.
  • the passages therefor are closed by the corresponding stop valves 24 , thereby preventing the heat medium from flowing toward the use-side heat exchangers 26 . Since there is a thermal load in the use-side heat exchanger 26 a and the use-side heat exchanger 26 b , the heat medium is made to flow into these heat exchangers. In contrast, since there is no thermal load in the use-side heat exchanger 26 c and the use-side heat exchanger 26 d , the corresponding stop valves 24 c and 24 d are closed. If a heating load is generated at the use-side heat exchanger 26 c or the use-side heat exchanger 26 d , the stop valve 24 c or the stop valve 24 d may be opened so as to circulate the heat medium.
  • the following description relates to an example of a cooling main operation mode in a case where a heating load is generated at the use-side heat exchanger 26 a and a cooling load is generated at the use-side heat exchanger 26 b.
  • the four-way valve 11 in the heat source device 1 is switched so that the refrigerant discharged from the compressor 10 flows into the heat-source-side heat exchanger 12 .
  • the pump 21 a and the pump 21 b are driven, the stop valve 24 a and the stop valve 24 b are opened, and the stop valve 24 c and the stop valve 24 d are closed, so that the heat medium circulates between the intermediate heat exchanger 15 a and the use-side heat exchanger 26 a as well as between the intermediate heat exchanger 15 b and the use-side heat exchanger 26 b .
  • the operation of the compressor 10 commences.
  • a low-temperature low-pressure gas refrigerant is compressed by the compressor 10 and is discharged therefrom as a high-temperature high-pressure gas refrigerant.
  • the high-temperature high-pressure gas refrigerant discharged from the compressor 10 travels through the four-way valve 11 so as to flow into the heat-source-side heat exchanger 12 . Then, the refrigerant condenses by transferring heat to outdoor air at the heat-source-side heat exchanger 12 , thereby becoming a two-phase gas-liquid refrigerant.
  • the two-phase gas-liquid refrigerant flowing out of the heat-source-side heat exchanger 12 flows out of the heat source device 1 via a check valve, and then travels through the refrigerant pipe 4 so as to flow into the first relay unit 3 a .
  • the two-phase gas-liquid refrigerant flowing into the first relay unit 3 a flows into the gas-liquid separator 14 where the refrigerant is separated into a gas refrigerant and a liquid refrigerant, which then flow into the second relay unit 3 b.
  • the gas refrigerant separated at the gas-liquid separator 14 flows into the intermediate heat exchanger 15 a .
  • the gas refrigerant flowing into the intermediate heat exchanger 15 a condenses and liquefies while transferring heat to the heat medium circulating through the heat-medium circuit, thereby becoming a liquid refrigerant.
  • the liquid refrigerant flowing out of the intermediate heat exchanger 15 b travels through the expansion valve 16 d .
  • the liquid refrigerant separated at the gas-liquid separator 14 travels through the expansion valve 16 e , merges with the liquid refrigerant condensed and liquefied at the intermediate heat exchanger 15 a and having traveled through the expansion valve 16 d , and is expanded by being throttled by the expansion valve 16 a so as to flow into the intermediate heat exchanger 15 b as a low-temperature low-pressure two-phase gas-liquid refrigerant.
  • this two-phase gas-liquid refrigerant receives heat from the heat medium circulating through the heat-medium circuit so as to become a low-temperature low-pressure gas refrigerant while cooling the heat medium.
  • the gas refrigerant flowing out of the intermediate heat exchanger 15 b travels through the expansion valve 16 c and then flows out of the second relay unit 3 b and the first relay unit 3 a so as to flow into the heat source device 1 via the refrigerant pipe 4 .
  • the refrigerant having flowed into the heat source device 1 travels through a check valve and is suctioned into the compressor 10 again via the four-way valve 11 and the accumulator 17 .
  • the expansion valve 16 b is set to a small opening degree so as to prevent the refrigerant from flowing therethrough, whereas the expansion valve 16 c is completely opened so as to prevent the occurrence of pressure loss.
  • the heat medium circulates via both the pipe 5 a and the pipe 5 b since the pump 21 a and the pump 21 b are both driven.
  • the heat medium heated by the refrigerant at the intermediate heat exchanger 15 a is made to flow through the pipe 5 a by the pump 21 a .
  • the heat medium cooled by the refrigerant at the intermediate heat exchanger 15 b is made to flow through the pipe 5 b by the pump 21 b.
  • the heat medium pressurized by and flowing out of the pump 21 a travels through the stop valve 24 a via the flow switching valve 22 a so as to flow into the use-side heat exchanger 26 a . Then, the heat medium transfers heat to indoor air (thermal load) at the use-side heat exchanger 26 a , thereby heating the air-conditioning target area, such as an indoor area, where the indoor unit 2 is installed.
  • the heat medium pressurized by and flowing out of the pump 21 b travels through the stop valve 24 b via the flow switching valve 22 b so as to flow into the use-side heat exchanger 26 b . Then, the heat medium receives heat from indoor air (thermal load) at the use-side heat exchanger 26 b , thereby cooling the air-conditioning target area, such as an indoor area, where the indoor unit 2 is installed.
  • the heat medium having performed the heating flows into the flow control valve 25 a .
  • the function of the flow control valve 25 a only an amount of heat medium sufficient to cover the air-conditioning load required in the air-conditioning target area flows into the use-side heat exchanger 26 a , whereas the remaining heat medium bypasses the use-side heat exchanger 26 a by flowing through the bypass pipe 27 a .
  • the heat medium traveling through the bypass pipe 27 a does not contribute to heat exchange and merges with the heat medium having traveled through the use-side heat exchanger 26 a .
  • the heat medium flows into the intermediate heat exchanger 15 a via the flow switching valve 23 a , and is suctioned into the pump 21 a again.
  • the heat medium having performed the cooling flows into the flow control valve 25 b .
  • the function of the flow control valve 25 b only an amount of heat medium sufficient to cover the air-conditioning load required in the air-conditioning target area flows into the use-side heat exchanger 26 b , whereas the remaining heat medium bypasses the use-side heat exchanger 26 b by flowing through the bypass pipe 27 b .
  • the heat medium traveling through the bypass pipe 27 b does not contribute to heat exchange and merges with the heat medium having traveled through the use-side heat exchanger 26 b .
  • the heat medium flows into the intermediate heat exchanger 15 b via the flow switching valve 23 b , and is suctioned into the pump 21 b again.
  • the warm heat medium (the heat medium to be used for the heating load) and the cool heat medium (the heat medium to be used for the cooling load) respectively flow into the use-side heat exchanger 26 a with the heating load and the use-side heat exchanger 26 b with the cooling load without mixing with each other due to the functions of the flow switching valves 22 (the flow switching valve 22 a and the flow switching valve 22 b ) and the flow switching valves 23 (the flow switching valve 23 a and the flow switching valve 23 b ).
  • the air-conditioning load required in the air-conditioning target area such as an indoor area, can be covered by performing control such that a temperature difference between the third temperature sensors 33 and the fourth temperature sensors 34 is maintained at a target value.
  • the passages therefor are closed by the corresponding stop valves 24 , thereby preventing the heat medium from flowing toward the use-side heat exchangers 26 .
  • the heat medium since there is a thermal load in the use-side heat exchanger 26 a and the use-side heat exchanger 26 b , the heat medium is made to flow into these heat exchangers.
  • the corresponding stop valves 24 c and 24 d are closed. If a heating load or a cooling load is generated at the use-side heat exchanger 26 c or the use-side heat exchanger 26 d , the stop valve 24 c or the stop valve 24 d may be opened so as to circulate the heat medium.
  • the following description relates to an example of a heating main operation mode in a case where a heating load is generated at the use-side heat exchanger 26 a and a cooling load is generated at the use-side heat exchanger 26 b.
  • the four-way valve 11 in the heat source device 1 is switched so that the refrigerant discharged from the compressor 10 flows into the relay unit 3 without traveling through the heat-source-side heat exchanger 12 .
  • the pump 21 a and the pump 21 b are driven, the stop valve 24 a and the stop valve 24 b are opened, and the stop valve 24 c and the stop valve 24 d are closed, so that the heat medium circulates between the intermediate heat exchanger 15 a and the use-side heat exchanger 26 a as well as between the intermediate heat exchanger 15 b and the use-side heat exchanger 26 b .
  • the operation of the compressor 10 commences.
  • a low-temperature low-pressure refrigerant is compressed by the compressor 10 and is discharged therefrom as a high-temperature high-pressure gas refrigerant.
  • the high-temperature high-pressure gas refrigerant discharged from the compressor 10 travels through the four-way valve 11 , is guided through the refrigerant pipe 4 , and then passes through a check valve so as to flow out of the heat source device 1 .
  • the high-temperature high-pressure gas refrigerant flowing out of the heat source device 1 travels through the refrigerant pipe 4 so as to flow into the first relay unit 3 a .
  • the high-temperature high-pressure gas refrigerant having flowed into the first relay unit 3 a flows into the gas-liquid separator 14 and subsequently flows into the intermediate heat exchanger 15 a .
  • the high-temperature high-pressure gas refrigerant having flowed into the intermediate heat exchanger 15 a condenses and liquefies while transferring heat to the heat medium circulating through the heat-medium circuit, thereby becoming a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out of the intermediate heat exchanger 15 a is expanded by being throttled by the expansion valve 16 d , thereby turning into a low-temperature low-pressure two-phase gas-liquid state.
  • the two-phase gas-liquid refrigerant throttled by the expansion valve 16 d is distributed to a passage extending through the expansion valve 16 a and a passage extending through the expansion valve 16 b .
  • the refrigerant traveling through the expansion valve 16 a is further expanded by the expansion valve 16 a so as to become a low-temperature low-pressure two-phase gas-liquid refrigerant, which then flows into the intermediate heat exchanger 15 b functioning as an evaporator.
  • the refrigerant having flowed into the intermediate heat exchanger 15 b receives heat from the heat medium at the intermediate heat exchanger 15 b , thereby becoming a low-temperature low-pressure gas refrigerant.
  • the low-temperature low-pressure gas refrigerant flowing out of the intermediate heat exchanger 15 b travels through the expansion valve 16 c.
  • the refrigerant throttled by the expansion valve 16 d and flowing to the expansion valve 16 b merges with the refrigerant traveling through the intermediate heat exchanger 15 b and the expansion valve 16 c , thereby becoming a low-temperature low-pressure refrigerant with a greater quality.
  • the merged refrigerant flows out of the second relay unit 3 b and the first relay unit 3 a and then travels through the refrigerant pipe 4 so as to flow into the heat source device 1 .
  • the refrigerant having flowed into the heat source device 1 flows into the heat-source-side heat exchanger 12 functioning as an evaporator via a check valve.
  • the refrigerant having flowed into the heat-source-side heat exchanger 12 receives heat from outdoor air at the heat-source-side heat exchanger 12 , thereby becoming a low-temperature low-pressure gas refrigerant.
  • the low-temperature low-pressure gas refrigerant flowing out of the heat-source-side heat exchanger 12 returns to the compressor 10 via the four-way valve 11 and the accumulator 17 .
  • the expansion valve 16 e is set to a small opening degree so as to prevent the refrigerant from flowing therethrough.
  • the heat medium circulates via both the pipe 5 a and the pipe 5 b since the pump 21 a and the pump 21 b are both driven.
  • the heat medium heated by the refrigerant at the intermediate heat exchanger 15 a is made to flow through the pipe 5 a by the pump 21 a .
  • the heat medium cooled by the refrigerant at the intermediate heat exchanger 15 b is made to flow through the pipe 5 b by the pump 21 b.
  • the heat medium pressurized by and flowing out of the pump 21 a travels through the stop valve 24 a via the flow switching valve 22 a so as to flow into the use-side heat exchanger 26 a . Then, the heat medium transfers heat to indoor air (thermal load) at the use-side heat exchanger 26 a , thereby heating the air-conditioning target area, such as an indoor area, where the indoor unit 2 is installed.
  • the heat medium pressurized by and flowing out of the pump 21 b travels through the stop valve 24 b via the flow switching valve 22 b so as to flow into the use-side heat exchanger 26 b . Then, the heat medium receives heat from indoor air (thermal load) at the use-side heat exchanger 26 b , thereby cooling the air-conditioning target area, such as an indoor area, where the indoor unit 2 is installed.
  • the heat medium flowing out of the use-side heat exchanger 26 a flows into the flow control valve 25 a .
  • the function of the flow control valve 25 a only an amount of heat medium sufficient to cover the air-conditioning load required in the air-conditioning target area, such as an indoor area, flows into the use-side heat exchanger 26 a , whereas the remaining heat medium bypasses the use-side heat exchanger 26 a by flowing through the bypass pipe 27 a .
  • the heat medium traveling through the bypass pipe 27 a does not contribute to heat exchange and merges with the heat medium having traveled through the use-side heat exchanger 26 a .
  • the heat medium flows into the intermediate heat exchanger 15 a via the flow switching valve 23 a , and is suctioned into the pump 21 a again.
  • the heat medium flowing out of the use-side heat exchanger 26 b flows into the flow control valve 25 b .
  • the flow control valve 25 b only an amount of heat medium sufficient to cover the air-conditioning load required in the air-conditioning target area, such as an indoor area, flows into the use-side heat exchanger 26 b , whereas the remaining heat medium bypasses the use-side heat exchanger 26 b by flowing through the bypass pipe 27 b .
  • the heat medium traveling through the bypass pipe 27 b does not contribute to heat exchange and merges with the heat medium having traveled through the use-side heat exchanger 26 b .
  • the heat medium flows into the intermediate heat exchanger 15 b via the flow switching valve 23 b , and is suctioned into the pump 21 b again.
  • the warm heat medium and the cool heat medium respectively flow into the use-side heat exchanger 26 a with the heating load and the use-side heat exchanger 26 b with the cooling load without mixing with each other due to the functions of the flow switching valves 22 (the flow switching valve 22 a and the flow switching valve 22 b ) and the flow switching valves 23 (the flow switching valve 23 a and the flow switching valve 23 b ).
  • the air-conditioning load required in the air-conditioning target area can be covered by performing control such that a temperature difference between the third temperature sensors 33 and the fourth temperature sensors 34 is maintained at a target value.
  • the passages therefor are closed by the corresponding stop valves 24 , thereby preventing the heat medium from flowing toward the use-side heat exchangers 26 .
  • the heat medium since there is a thermal load in the use-side heat exchanger 26 a and the use-side heat exchanger 26 b , the heat medium is made to flow into these heat exchangers.
  • the corresponding stop valves 24 c and 24 d are closed. If a heating load or a cooling load is generated at the use-side heat exchanger 26 c or the use-side heat exchanger 26 d , the stop valve 24 c or the stop valve 24 d may be opened so as to circulate the heat medium.
  • the corresponding flow switching valves 22 a to 22 d and the corresponding flow switching valves 23 a to 23 d are switched to passages that are connected to the intermediate heat exchanger 15 a for heating.
  • a cooling load is generated at the use-side heat exchangers 26 a to 26 d
  • the corresponding flow switching valves 22 a to 22 d and the corresponding flow switching valves 23 a to 23 d are switched to passages that are connected to the intermediate heat exchanger 15 b for cooling. Consequently, heating operation or cooling operation can be performed freely in each indoor unit 2 .
  • the flow switching valves 22 a to 22 d and the flow switching valves 23 a to 23 d may each be a device that can switch passages, such as a device that can switch a three-way passage, like a three-way valve, or a combination of two devices, like two on-off valves, which can open and close a two-way passage.
  • the flow switching valves 22 a to 22 d and the flow switching valves 23 a to 23 d may each be a device that can change the flow rate in a three-way passage, such as a stepping-motor-driven mixing valve, or a combination of two devices, such as electronic expansion valves, which can change the flow rate in a two-way passage. In this case, the occurrence of water hammer caused by sudden opening or closing of a passage can also be prevented.
  • FIG. 2 is a schematic diagram illustrating the configuration of a relay-unit controller and an indoor-unit controller according to Embodiment 1 of the present invention.
  • the relay-unit controller 63 b includes a control unit 300 within a microcomputer 300 a , an output circuit 301 , an input circuit 302 , an input circuit 303 , and an input circuit 304 .
  • Each of the indoor-unit controllers 62 (the indoor-unit controllers 62 a to 62 d ) includes a control unit 200 , an input circuit 201 , an output circuit 202 , and an output circuit 203 .
  • the relay-unit controller 63 b and each indoor-unit controller 62 are connected by three transmission lines 71 .
  • a transmission line 71 a connects the output circuit 301 of the relay-unit controller 63 b to the input circuit 201 of the indoor-unit controller 62 .
  • a transmission line 71 b connects the input circuit 302 of the relay-unit controller 63 b to the output circuit 202 of the indoor-unit controller 62 .
  • a transmission line 71 c connects the input circuit 303 of the relay-unit controller 63 b to the output circuit 203 of the indoor-unit controller 62 .
  • the indoor-unit controllers 62 a of the indoor units have the same configuration and are each connected to the relay-unit controller 63 b by three transmission lines 71 . Furthermore, the number of output circuits 301 , input circuits 302 , and input circuits 303 provided in the relay-unit controller 63 b correspond to the number of indoor-unit controllers 62 connected thereto.
  • the output circuit 301 of the relay-unit controller 63 b transmits a binary signal corresponding to an operation command and a stop command via the transmission line 71 a in accordance with output processing from the control unit 300 .
  • the binary signal is, for example, an on/off signal that sets the operation command to a predetermined voltage value and the stop command to an output value of zero.
  • the input circuit 201 of each indoor-unit controller 62 receives the binary signal via the transmission line 71 a and inputs the binary signal to the control unit 200 .
  • the control unit 200 starts or stops the operation of the indoor unit 2 on the basis of the input binary signal.
  • start the operation of the indoor unit 2 refers to, for example, a state (thermostat-on state) in which a fan and the like within the indoor unit 2 are driven so as to facilitate heat exchange between the heat medium and indoor air (thermal load) by the use-side heat exchanger 26 .
  • stop the operation refers to, for example, a state (thermostat-off state) in which the driving of the fan and the like within the indoor unit 2 is stopped so as not to facilitate heat exchange between the heat medium and indoor air (thermal load) by the use-side heat exchanger 26 .
  • the output circuit 202 of the indoor-unit controller 62 transmits a binary signal corresponding to an operating state and a stopped state of the indoor unit via the transmission line 71 b in accordance with output processing from the control unit 200 .
  • This binary signal is, for example, an on/off signal that sets the operating state to a predetermined voltage value and the stopped state to an output value of zero.
  • the input circuit 302 of the relay-unit controller 63 b receives the binary signal via the transmission line 71 b and inputs the binary signal to the control unit 300 .
  • the control unit 300 determines whether the indoor unit 2 is in the operating state or the stopped state on the basis of the input binary signal.
  • the output circuit 203 of the indoor-unit controller 62 transmits a binary signal corresponding to a heating mode and a cooling mode of the indoor unit via the transmission line 71 c in accordance with output processing from the control unit 200 .
  • This binary signal is, for example, an on/off signal that sets the heating mode to a predetermined voltage value and the cooling mode to an output value of zero.
  • the input circuit 303 of the relay-unit controller 63 b receives the binary signal via the transmission line 71 c and inputs the binary signal to the control unit 300 .
  • the control unit 300 determines whether the indoor unit 2 is operating in the heating mode or the cooling mode on the basis of the input binary signal.
  • the input circuit 304 of the relay-unit controller 63 b inputs detection values of the third temperature sensors 33 a to 33 d and the fourth temperature sensors 34 a to 34 d provided in the relay unit 3 to the control unit 300 .
  • the control unit 300 performs a process of automatic determination of connected branch ports on the basis of input temperature data.
  • the control unit 300 may be achieved by software executed on the microcomputer 300 a but not limited to this.
  • the control unit 300 may be achieved with hardware, such as a circuit device that achieves the function of the control unit 300 .
  • control unit 200 may similarly be achieved by software executed on a microcomputer.
  • a relay circuit or the like may be used in place of a microcomputer.
  • the relay-unit controller 63 b and each indoor-unit controller 62 can exchange information by inputting and outputting binary signals (on/off signals).
  • the input circuits and the output circuits can be achieved at a lower cost, as compared with the configuration in FIG. 8 , which is a related-art technology.
  • the indoor-unit controllers 62 can also be achieved at a lower cost since microcomputers are not used therein.
  • the indoor-unit controllers 62 may start or stop the operation of the indoor units 2 in response to commands from remote controllers or the like provided in the indoor units 2 .
  • the relay-unit controller 63 b sets the operation mode to be executed by the refrigerating and air-conditioning apparatus 100 and switches the passages extending to the use-side heat exchangers 26 by controlling the stop valves 24 , the flow switching valves 22 , the flow switching valves 23 , and the like so that hot water or cold water is supplied from the corresponding branch ports 6 in accordance with the binary signals corresponding to the operating/stopped states and the binary signals corresponding to the heating/cooling modes received from the indoor-unit controllers 62 .
  • the relay-unit controller 63 b and the indoor-unit controllers 62 communicate with each other only by input and output of binary signals (on/off signals), so that limitations with respect to the communication of the indoor units 2 that can be connected to the relay unit 3 can be reduced.
  • the refrigerating and air-conditioning apparatus 100 having the above configuration performs the process of automatic determination of connected branch ports in which to identify which indoor unit 2 is connected to which branch port 6 during trial operation performed after installation of the apparatus.
  • FIG. 3 is a flowchart illustrating the flow of the process of automatic determination of connected branch ports of the indoor units in the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the refrigerating and air-conditioning apparatus 100 commences the automatic determination process when, for example, the switch 64 provided in the relay unit 3 is operated.
  • step 101 to step 113 correspond to a process performed by the relay unit 3 .
  • step 102 the relay unit 3 transmits a trial heating only operation command to the heat source device 1 and the process proceeds to step 103 .
  • step 103 the heat source device 1 receives the trial heating only operation command from the relay unit 3 and starts operating in the heating only operation mode described above.
  • the relay unit 3 starts operating in the heating only operation mode and supplies hot water (heated heat medium) to all of the branch ports 6 a to 6 d regardless of the operation modes (heating/cooling) of the indoor units 2 . Subsequently, the process proceeds to step 104 .
  • step 104 an operation command is transmitted to indoor units 2 to which an operation command is not transmitted yet.
  • no operation command has been transmitted yet, and an operation command is transmitted to the first indoor unit 2 a via the transmission line 71 a so that the indoor unit 2 a begins to operate.
  • the process proceeds to step 105 .
  • the hot water and indoor air exchange heat with each other in the use-side heat exchanger 26 a of the indoor unit 2 a , thereby heating the indoor area or the like in which the indoor unit 2 a is installed (heating mode).
  • step 105 after waiting for a predetermined time to elapse, the process proceeds to step 106 .
  • step 106 current water-temperature data of all of the branch ports 6 a to 6 d are acquired.
  • temperatures T 33 a to T 33 d of the four third temperature sensors 33 a to 33 d and temperatures T 34 a to T 34 d of the four fourth temperature sensors 34 a to 34 d are acquired.
  • the process then proceeds to step 107 .
  • step 107 the branch-port determination process is performed.
  • changes in the data of the temperatures T 33 a to T 33 d of the four third temperature sensors 33 a to 33 d and the temperatures T 34 a to T 34 d of the four fourth temperature sensors 34 a to 34 d are checked.
  • the temperatures detected by the third temperature sensors 33 a to 33 d are temperatures (outlet temperatures) of hot water supplied to the use-side heat exchangers 26 a to 26 d from the branch ports 6 a to 6 d.
  • the temperatures detected by the fourth temperature sensors 34 a to 34 d are temperatures (inlet temperatures) of hot water returning to the branch ports 6 a to 6 d from the use-side heat exchangers 26 a to 26 d.
  • the temperature difference ⁇ T at the branch port 6 connected to the indoor unit 2 a is a positive value.
  • the temperature difference ⁇ T at each of the branch ports 6 connected to the indoor units 2 b to 2 d is a value whose absolute value is small.
  • the relay unit 3 determines that an indoor unit 2 currently in operation is connected to the branch port 6 at which the aforementioned temperature difference ⁇ T is detected.
  • the value of a temperature difference ⁇ T is a positive value smaller than the predetermined determination value or is a negative value, it is determined that an indoor unit 2 currently in a stopped state or no indoor unit 2 is connected to the branch port 6 at which the aforementioned temperature difference ⁇ T is detected.
  • the relay unit 3 determines that the indoor unit 2 a is connected to the branch port 6 a.
  • the relay unit 3 can determine which one of the branch ports 6 is connected to an indoor unit 2 currently in operation.
  • the relay unit 3 determines there is a setting error.
  • the relay unit 3 proceeds to step 108 .
  • step 108 the relay unit 3 transmits a stop command to the indoor unit 2 a in operation via the transmission line 71 a so as to stop the operation of the indoor unit 2 a . Subsequently, the process proceeds to step 109 .
  • step 109 it is determined whether there are indoor units 2 to which an operation command has not been transmitted yet. If yes, the process proceeds to step 104 . If no, the process proceeds to step 110 .
  • step 104 since an operation command has not been transmitted to the indoor units 2 b to 2 d yet, the process proceeds to step 104 , and the same process is repeated.
  • the relay unit 3 makes all of the connected indoor units 2 operate on a one-by-one basis and performs the connected-branch-port determination process for identifying which indoor unit 2 is connected to each branch port 6 on the basis of the temperature difference ⁇ T at that time.
  • the relay unit 3 proceeds to step 110 .
  • step 110 the relay unit 3 stops the heating only operation mode and proceeds to step 111 .
  • step 111 a stop command is transmitted to the heat source device 1 , and the process proceeds to step 112 .
  • step 112 if a setting error is detected during the determination process in step 107 , the process proceeds to step 113 . If a setting error is not detected, the process ends.
  • the term “setting error” refers to a case where, for example, a connector that connects a wire extending from a temperature sensor to a substrate is not connected or is improperly connected, a connector that connects a wire extending from an actuator, such as a flow control valve, to a substrate is not connected or is improperly connected, or a normal temperature change cannot be detected during a failure in an input-output circuit.
  • an abnormal-state notification process is performed by, for example, displaying an abnormal state on display means provided in a remote controller or the like or turning on an error lamp provided in the heat source device 1 . Subsequently, the process ends.
  • the process of automatic determination of connected branch ports shown in FIG. 3 is performed in the heating only operation mode
  • the process can be performed similarly in the cooling only operation mode.
  • hot water may be supplied to an indoor unit 2 and may exchange heat with the cooling load in the heating only operation mode during wintertime
  • cold water may be supplied to an indoor unit 2 and may exchange heat with the heating load in the cooling only operation mode during summertime.
  • the indoor units 2 are made to operate on a one-by-one basis, and it is identified which indoor unit 2 is connected to each branch port 6 on the basis of the temperature difference ⁇ T between the inlet temperature and the outlet temperature of the branch port 6 at that time.
  • the interface between the relay unit 3 and each indoor unit 2 can be controlled based on simple transmission of information, which only includes the operation/stop commands, the operating/stopped states, and the heating/cooling modes.
  • the interface between the relay unit 3 and each indoor unit 2 can be achieved by inexpensive transmission means.
  • the communication between the relay-unit controller 63 b and each indoor-unit controller 62 information can be exchanged therebetween by input and output of binary signals (on/off signals). Therefore, as compared with the configuration of the related art shown in FIG. 8 , the need for performing digital-signal conversion during a transmission process and a reception analysis process during reception can be eliminated. Consequently, the program of the microcomputer 300 a in the relay-unit controller 63 b is simplified, thereby reducing limitations with respect to connectable indoor units 2 . Furthermore, the input-output circuits 302 and 303 can be achieved with a simple configuration at a lower cost. Moreover, the indoor-unit controllers 62 can also be achieved at a lower cost since microcomputers are not used therein.
  • a determination error can be prevented in advance. Moreover, improper connections, connection leak, and defects in the connectors on the substrates in the relay-unit controller 63 b and the indoor-unit controllers 62 can be detected at an early stage.
  • Embodiment 2 described below the time required for the process of automatic determination of connected branch ports of the indoor units 2 is shortened.
  • the process of automatic determination of connected branch ports is desirably performed within a shorter period of time.
  • Embodiment 2 a refrigerating and air-conditioning apparatus is obtained that can shorten the time required for the automatic determination process, as compared with the case where the determination process is performed by making the indoor units 2 operate on a one-by-one basis.
  • FIG. 4 is a schematic circuit diagram illustrating the configuration of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention.
  • Embodiment 1 The following description mainly relates to points different from Embodiment 1. Components that are the same as those in Embodiment 1 are given the same reference numerals.
  • the indoor units 2 in Embodiment 2 are each provided with a ninth temperature sensor 39 and a tenth temperature sensor 40 .
  • the four ninth temperature sensors 39 are provided at the inlet side of the heat-medium passages of the use-side heat exchangers 26 , are configured to detect the temperature of the heat medium flowing into the use-side heat exchangers 26 , and may be formed of thermistors or the like.
  • the number of ninth temperature sensors 39 provided corresponds to the number of (four, in this case) indoor units 2 installed.
  • the ninth temperature sensor 39 a In line with the indoor units 2 , the ninth temperature sensor 39 a , the ninth temperature sensor 39 b , the ninth temperature sensor 39 c , and the ninth temperature sensor 39 d are shown in that order from the lower side of the drawing.
  • the four tenth temperature sensors 40 are provided at the outlet side of the heat-medium passages of the use-side heat exchangers 26 , are configured to detect the temperature of the heat medium flowing out of the use-side heat exchangers 26 , and may be formed of thermistors or the like.
  • the number of tenth temperature sensors 40 provided corresponds to the number of (four, in this case) indoor units 2 installed. In line with the indoor units 2 , the tenth temperature sensor 40 a , the tenth temperature sensor 40 b , the tenth temperature sensor 40 c , and the tenth temperature sensor 40 d are shown in that order from the lower side of the drawing.
  • the number of connected heat source devices 1 , indoor units 2 , and relay units 3 is not limited to that shown in the drawing.
  • Detection values of the ninth temperature sensors 39 and the tenth temperature sensors 40 in the indoor units 2 are transmitted to the relay-unit controller 63 b from the indoor-unit controllers 62 via the transmission lines 71 .
  • temperature data is converted into a transmittable digital signal by signal processing performed by a microcomputer provided in each indoor-unit controller 62 , and the digital signal is converted into a signal waveform by a transmission circuit before being transmitted via the corresponding transmission line 71 .
  • the refrigerating and air-conditioning apparatus 100 having the above configuration performs the process of automatic determination of connected branch ports so as to identify which indoor unit 2 is connected to which branch port 6 during trial operation performed after installation of the apparatus.
  • FIG. 5 is a flowchart illustrating the flow of the process of automatic determination of connected branch ports of the indoor units in the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the refrigerating and air-conditioning apparatus 100 commences the automatic determination process when, for example, the switch 64 provided in the relay unit 3 is operated.
  • step 201 to step 217 correspond to a process performed by the relay unit 3 .
  • step 202 the relay unit 3 transmits a trial heating main operation command to the heat source device 1 and proceeds to step 203 .
  • step 203 the heat source device 1 receives the trial heating main operation command from the relay unit 3 and starts operating in the heating main operation mode described above.
  • the relay unit 3 starts operating in the heating main operation mode. In this case, all of the stop valves 24 a to 24 d are closed. Subsequently, the process proceeds to step 204 .
  • step 204 an operation command is transmitted to all of the indoor units 2 a to 2 d so that all of the indoor units 2 begin to operate. Subsequently, the process proceeds to step 205 .
  • step 205 hot water is supplied to the next branch port 6 .
  • the stop valve 24 a corresponding to the branch port 6 a is opened so as to switch the flow switching valve 22 a and the flow switching valve 23 a to the passage connected to the intermediate heat exchanger 15 a for heating.
  • hot water is supplied from the branch port 6 a .
  • the process proceeds to step 206 .
  • step 206 it is determined whether there are branch ports 6 that are not supplied with hot water or cold water yet. If yes, the process proceeds to step 207 . If no, the process proceeds to step 208 . In this case, since the branch ports 6 b to 6 d are not supplied with hot water or cold water yet, the process proceeds to step 207 .
  • step 207 cold water is supplied to the next branch port 6 .
  • the stop valve 24 b corresponding to the branch port 6 b is opened so as to switch the flow switching valve 22 b and the flow switching valve 23 b to the passage connected to the intermediate heat exchanger 15 b for cooling.
  • cold water is supplied from the branch port 6 b .
  • the process proceeds to step 208 .
  • step 208 after waiting for a predetermined time to elapse, the process proceeds to step 209 .
  • step 209 current water-temperature data of all of the indoor units 2 a to 2 d are acquired.
  • temperatures T 39 a to T 39 d of the four ninth temperature sensors 39 a to 39 d are acquired. Subsequently, the process proceeds to step 210 .
  • step 210 the branch-port determination process is performed. In this case, changes in the data of the temperatures T 39 a to T 39 d of the four ninth temperature sensors 39 a to 39 d are checked.
  • the temperature T 39 a of the ninth temperature sensor 39 a is substantially equal to the temperature of the hot water.
  • the temperature T 39 b of the ninth temperature sensor 39 b is substantially equal to the temperature of the cold water.
  • the relay unit 3 determines that the branch port 6 a is connected to the indoor unit 2 at which the aforementioned temperature T 39 is detected. For example, the temperature of the hot water is detected by the first temperature sensor 31 a .
  • the determination of whether or not a certain temperature T 39 is a value close to the temperature of the hot water is performed by determining whether or not a temperature difference between the temperature of the hot water and the temperature T 39 is within a predetermined temperature range.
  • the relay unit 3 determines that the branch port 6 b is connected to the indoor unit 2 at which the aforementioned temperature T 39 is detected. For example, the temperature of the cold water is detected by the first temperature sensor 31 b .
  • the determination of whether or not a certain temperature T 39 is a value close to the temperature of the cold water is performed by determining whether or not a temperature difference between the temperature of the cold water and the temperature T 39 is within a predetermined temperature range.
  • the relay unit 3 determines that the indoor unit 2 at which the aforementioned temperature T 39 is detected is connected to one of the remaining branch ports 6 c and 6 d or is not connected to any of the branch ports 6 .
  • the relay unit 3 can determine the indoor units 2 connected to the branch port 6 a supplying hot water and the branch port 6 b supplying cold water.
  • the relay unit 3 determines a setting error.
  • the relay unit 3 proceeds to step 211 .
  • step 211 the water supply to the branch ports supplying hot water and cold water is stopped. Subsequently, the process proceeds to step 212 .
  • step 212 it is determined whether there are branch ports 6 not supplied with hot water or cold water yet. If yes, the process proceeds to step 205 . If no, the process proceeds to step 213 .
  • step 205 since the branch ports 6 c and 6 d are not supplied with hot water or cold water yet, the process proceeds to step 205 , and the same process is repeated.
  • the relay unit 3 performs the determination process for all of the branch ports 6 by determining the indoor units 2 connected to the branch ports 6 simultaneously and on a two-by-two basis.
  • the relay unit 3 proceeds to step 213 .
  • step 213 the relay unit 3 transmits a stop command to all of the indoor units 2 and proceeds to step 214 .
  • step 214 the relay unit 3 stops the heating main operation mode and proceeds to step 215 .
  • step 215 a stop command is transmitted to the heat source device 1 , and the process proceeds to step 216 .
  • step 216 if a setting error is detected during the determination process in step 210 , the process proceeds to step 217 . If no setting error is detected, the process ends.
  • the term “setting error” refers to a case where, for example, a connector that connects a wire extending from a temperature sensor to a substrate is not connected or is improperly connected, a connector that connects a wire extending from an actuator, such as a flow control valve, to a substrate is not connected or is improperly connected, or where a normal temperature change cannot be detected during a failure in an input-output circuit.
  • an abnormal-state notification process is performed by, for example, displaying an abnormal state on display means provided in a remote controller or the like or turning on an error lamp provided in the heat source device 1 . Subsequently, the process ends.
  • Embodiment 2 hot water and cold water are simultaneously supplied to two branch ports 6 so that two indoor units 2 connected to these branch ports 6 are simultaneously identified on the basis of the temperatures of the heat medium flowing into the corresponding use-side heat exchangers 26 .
  • the time required for the automatic determination process can be shortened, as compared with the case where the branch ports 6 are determined on a one-by-one basis. Moreover, a setting error can be detected during the automatic determination process.
  • Embodiment 3 described below the time required for the process of automatic determination of connected branch ports of the indoor units 2 is shortened.
  • the process of automatic determination of connected branch ports is desirably performed within a shorter period of time.
  • Embodiment 3 a refrigerating and air-conditioning apparatus is obtained that can shorten the time required for the automatic determination process, as compared with the case where the determination process is performed by making the indoor units 2 operate on a one-by-one basis.
  • FIG. 6 is a schematic circuit diagram illustrating the configuration of the refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention.
  • Embodiment 1 The following description mainly relates to points different from Embodiment 1. Components that are the same as those in Embodiment 1 are given the same reference numerals.
  • the indoor units 2 in Embodiment 3 are each provided with an eleventh temperature sensor 41 and a twelfth temperature sensor 42 .
  • the four eleventh temperature sensors 41 are provided near air inlets of the indoor units 2 , are configured to detect the temperature of indoor air, and may be formed of thermistors or the like.
  • the number of eleventh temperature sensors 41 provided corresponds to the number of (four, in this case) indoor units 2 installed.
  • the eleventh temperature sensor 41 a , the eleventh temperature sensor 41 b , the eleventh temperature sensor 41 c , and the eleventh temperature sensor 41 d are shown in that order from the lower side of the drawing.
  • the four twelfth temperature sensors 42 are provided near air outlets of the indoor units 2 , are configured to detect the temperature of discharged air, and may be formed of thermistors or the like.
  • the number of twelfth temperature sensors 42 provided corresponds to the number of (four, in this case) indoor units 2 installed.
  • the twelfth temperature sensor 42 a , the twelfth temperature sensor 42 b , the twelfth temperature sensor 42 c , and the twelfth temperature sensor 42 d are shown in that order from the lower side of the drawing.
  • the number of connected heat source devices 1 , indoor units 2 , and relay units 3 is not limited to that shown in the drawing.
  • Detection values of the eleventh temperature sensors 41 and the twelfth temperature sensors 42 in the indoor units 2 are transmitted to the relay-unit controller 63 b from the indoor-unit controllers 62 via the transmission lines 71 .
  • temperature data is converted into a transmittable digital signal by signal processing performed by a microcomputer provided in each indoor-unit controller 62 , and the digital signal is converted into a signal waveform by a transmission circuit and transmitted via the corresponding transmission line 71 .
  • the refrigerating and air-conditioning apparatus 100 having the above configuration performs the process of automatic determination of connected branch ports so as to identify which indoor unit 2 is connected to which branch port 6 during trial operation performed after installation of the apparatus.
  • FIG. 7 is a flowchart illustrating the flow of the process of automatic determination of connected branch ports of the indoor units in the refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the refrigerating and air-conditioning apparatus 100 commences the automatic determination process when, for example, the switch 64 provided in the relay unit 3 is operated.
  • step 301 to step 315 correspond to a process performed by the relay unit 3 .
  • step 302 the relay unit 3 transmits a trial heating main operation command to the heat source device 1 and proceeds to step 303 .
  • step 203 when the heat source device 1 receives the trial heating main operation command from the relay unit 3 , it starts operating in the heating main operation mode described above.
  • the relay unit 3 starts operating in the heating main operation mode. In this case, all of the stop valves 24 a to 24 d are opened. Subsequently, the process proceeds to step 304 .
  • step 304 an operation command is transmitted to all of the indoor units 2 a to 2 d so that all of the indoor units 2 begin to operate. Subsequently, the process proceeds to step 305 .
  • step 305 the amount of hot water to be supplied, the amount of cold water to be supplied, and the flow rates thereof are calculated for the individual branch ports 6 .
  • hot water is supplied to the first half of the branch ports 6 , whereas cold water is supplied to the second half of the branch ports 6 .
  • hot water is supplied to the branch ports 6 a and 6 b
  • cold water is supplied to the branch ports 6 c and 6 d.
  • the flow rates are calculated with L as the number of branch ports 6 in the first half and M as the number of branch ports 6 in the second half.
  • the flow rate at the branch port 6 a is 50%
  • the flow rate at the branch port 6 b is 100%
  • the flow rate at the branch port 6 c is 50%
  • the flow rate at the branch port 6 d is 100%.
  • step 306 the process proceeds to step 306 .
  • step 306 hot water or cold water is supplied to each branch port 6 based on the calculation results obtained in step 305 , and the flow rate at each branch port 6 is set.
  • the flow switching valve 22 a and the flow switching valve 23 a corresponding to the branch port 6 a are switched to the passage connected to the intermediate heat exchanger 15 a for heating so that hot water is supplied from the branch port 6 a . Furthermore, the opening degree of the flow control valve 25 a is adjusted so that the flow rate at the branch port 6 a is set to 50%.
  • the flow switching valve 22 b and the flow switching valve 23 b corresponding to the branch port 6 b are switched to the passage connected to the intermediate heat exchanger 15 a for heating so that hot water is supplied from the branch port 6 b .
  • the opening degree of the flow control valve 25 b is adjusted so that the flow rate at the branch port 6 b is set to 100%.
  • the flow switching valve 22 c and the flow switching valve 23 c corresponding to the branch port 6 c are switched to the passage connected to the intermediate heat exchanger 15 b for cooling so that cold water is supplied from the branch port 6 b .
  • the opening degree of the flow control valve 25 c is adjusted so that the flow rate at the branch port 6 c is set to 50%.
  • the flow switching valve 22 d and the flow switching valve 23 d corresponding to the branch port 6 d are switched to the passage connected to the intermediate heat exchanger 15 b for cooling so that cold water is supplied from the branch port 6 d .
  • the opening degree of the flow control valve 25 d is adjusted so that the flow rate at the branch port 6 b is set to 100%.
  • step 307 the process proceeds to step 307 .
  • step 307 after waiting for a predetermined time to elapse, the process proceeds to step 308 .
  • step 308 current suction temperature data and current discharge temperature data of all of the indoor units 2 a to 2 d are acquired.
  • temperatures T 41 a to T 41 d of the four eleventh temperature sensors 41 a to 41 d and temperatures T 42 a to T 42 d of the four twelfth temperature sensors 42 a to 42 d are acquired.
  • the process proceeds to step 309 .
  • step 309 the branch-port determination process is performed.
  • changes in the data of the temperatures T 41 a to T 41 d of the four eleventh temperature sensors 41 a to 41 d and the temperatures T 42 a to T 42 d of the four twelfth temperature sensors 42 a to 42 d are checked.
  • the temperature difference ⁇ Ta is a positive value since heat is transferred from the hot water to air at the use-side heat exchanger 26 a of the indoor unit 2 a .
  • the temperature difference ⁇ Tb is a positive value. Because the flow rate at the branch port 6 a is 50% and the flow rate at the branch port 6 b is 100%, the temperature difference ⁇ Tb is a value larger than the temperature difference ⁇ Ta.
  • the temperature difference ⁇ Tc is a negative value since the cold water receives heat from air at the use-side heat exchanger 26 c of the indoor unit 2 c .
  • the temperature difference ⁇ Td is a negative value. Because the flow rate at the branch port 6 c is 50% and the flow rate at the branch port 6 d is 100%, the temperature difference ⁇ Td is a negative value whose absolute value is larger than that of the temperature difference ⁇ Tc.
  • the relay unit 3 determines that the indoor unit 2 a supplied with hot water at a flow rate of 50% is connected to the branch port 6 at which the aforementioned temperature difference ⁇ T is detected.
  • a certain temperature difference ⁇ T is a positive value that is larger than the predetermined determination value, it is determined that the indoor unit 2 b supplied with hot water at a flow rate of 100% is connected to the branch port 6 at which the aforementioned temperature difference ⁇ T is detected.
  • a certain temperature difference ⁇ T is a negative value and the absolute value thereof is smaller than the predetermined determination value, it is determined that the indoor unit 2 c supplied with cold water at a flow rate of 50% is connected to the branch port 6 at which the aforementioned temperature difference ⁇ T is detected.
  • a certain temperature difference ⁇ T is a negative value and the absolute value thereof is larger than the predetermined determination value, it is determined that the indoor unit 2 d supplied with cold water at a flow rate of 100% is connected to the branch port 6 at which the aforementioned temperature difference ⁇ T is detected.
  • the relay unit 3 can determine the indoor units connected to the branch ports.
  • the relay unit 3 determines there is a setting error.
  • the relay unit 3 proceeds to step 310 .
  • step 310 the water supply to the branch ports supplying hot water and cold water is stopped. Subsequently, the process proceeds to step 311 .
  • step 311 the relay unit 3 transmits a stop command to all of the indoor units 2 and proceeds to step 312 .
  • step 312 the relay unit 3 stops the heating main operation mode and proceeds to step 313 .
  • step 313 a stop command is transmitted to the heat source device 1 , and the process proceeds to step 314 .
  • step 314 if a setting error is detected during the determination process in step 309 , the process proceeds to step 315 . If a setting error is not detected, the process ends.
  • the term “setting error” refers to a case where, for example, a connector that connects a wire extending from a temperature sensor to a substrate is not connected or is improperly connected, a connector that connects a wire extending from an actuator, such as a flow control valve, to a substrate is not connected or is improperly connected, or a normal temperature change cannot be detected during to a failure in an input-output circuit.
  • an abnormal-state notification process is performed by, for example, displaying an abnormal state on display means provided in a remote controller or the like or turning on an error lamp provided in the heat source device 1 . Subsequently, the process ends.
  • Embodiment 3 hot water and cold water are simultaneously supplied to the branch ports 6 , and the flow rate at each branch port 6 is adjusted, so that a plurality of indoor units 2 connected to the branch ports 6 are simultaneously identified on the basis of the temperature differences between the discharge temperatures and the suction temperatures in the indoor units 2 .
  • the time required for the automatic determination process can be shortened, as compared with the case where the branch ports 6 are determined on a one-by-one basis. Moreover, a setting error can be detected during the automatic determination process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
US13/982,503 2011-03-01 2011-03-01 Refrigerating and air-conditioning apparatus Abandoned US20130305758A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/001174 WO2012117441A1 (ja) 2011-03-01 2011-03-01 冷凍空調装置

Publications (1)

Publication Number Publication Date
US20130305758A1 true US20130305758A1 (en) 2013-11-21

Family

ID=46757417

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/982,503 Abandoned US20130305758A1 (en) 2011-03-01 2011-03-01 Refrigerating and air-conditioning apparatus

Country Status (5)

Country Link
US (1) US20130305758A1 (de)
EP (1) EP2682686B1 (de)
JP (1) JP5558625B2 (de)
CN (1) CN103403464B (de)
WO (1) WO2012117441A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114704A1 (en) * 2014-01-30 2015-08-06 Mitsubishi Electric Corporation Air-conditioning apparatus and air-conditioning system
US20180195783A1 (en) * 2017-01-10 2018-07-12 Samsung Electronics Co., Ltd Air conditioner, control device thereof, and method of controlling the same
US20190032968A1 (en) * 2014-01-27 2019-01-31 Qingdao Hisense Hitachi Air-conditioning Systems Co., Ltd. Outdoor Unit of an Air Conditioning System, Air Conditioning System, and Control Method Thereof
EP3715735A1 (de) * 2019-03-27 2020-09-30 LG Electronics Inc. Klimatisierungsvorrichtung
EP3715736A1 (de) * 2019-03-27 2020-09-30 LG Electronics Inc. Klimatisierungsvorrichtung
EP3715732A1 (de) * 2019-03-27 2020-09-30 LG Electronics Inc. Klimatisierungsvorrichtung
EP3739278A1 (de) * 2019-05-17 2020-11-18 LG Electronics Inc. Klimaanlage und rohrsuchverfahren dafür
CN113251473A (zh) * 2020-01-28 2021-08-13 Lg电子株式会社 空调装置
US20210285673A1 (en) * 2018-09-21 2021-09-16 Mitsubishi Electric Corporation Air-conditioning apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927611B1 (de) * 2012-11-30 2020-04-08 Mitsubishi Electric Corporation Klimaanlagenvorrichtung
JP2017090002A (ja) * 2015-11-13 2017-05-25 株式会社コロナ 冷温水供給システム
FR3055334B1 (fr) * 2016-08-25 2018-08-03 Arkema France Copolymere a blocs porteur de groupes associatifs, son procede de preparation et ses utilisations

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333316A (en) * 1980-10-14 1982-06-08 General Electric Company Automatic control apparatus for a heat pump system
US5156014A (en) * 1990-04-23 1992-10-20 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
JPH07174388A (ja) * 1993-12-21 1995-07-14 Matsushita Electric Ind Co Ltd 多室空気調和機
US6126080A (en) * 1996-10-18 2000-10-03 Sanyo Electric Co., Ltd. Air conditioner
JP2004257686A (ja) * 2003-02-27 2004-09-16 Mitsubishi Electric Corp 空気調和機の冷媒中継ユニット
JP2007085673A (ja) * 2005-09-22 2007-04-05 Mitsubishi Heavy Ind Ltd 空調システムのアドレス設定方法及びプログラム
WO2009133644A1 (ja) * 2008-04-30 2009-11-05 三菱電機株式会社 空気調和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3113422B2 (ja) * 1992-11-11 2000-11-27 三洋電機株式会社 空気調和機のアドレス自動設定方式
JP3219568B2 (ja) * 1993-09-03 2001-10-15 三菱重工業株式会社 空調システムの自動アドレス制御装置
EP0857920B1 (de) * 1995-10-24 2004-03-31 Daikin Industries, Limited Klimagerät
JP3152615B2 (ja) 1996-02-26 2001-04-03 三洋電機株式会社 空気調和機のアドレス設定方法および接続検出方法
JP3152616B2 (ja) * 1996-02-26 2001-04-03 三洋電機株式会社 空気調和機のアドレス設定方法
JP4407089B2 (ja) * 2001-09-20 2010-02-03 株式会社富士通ゼネラル 空気調和機の冷媒系統アドレス設定方法
KR100459184B1 (ko) * 2002-08-24 2004-12-03 엘지전자 주식회사 냉난방 동시형 멀티공기조화기
WO2004040208A1 (ja) * 2002-10-30 2004-05-13 Mitsubishi Denki Kabushiki Kaisha 空気調和装置
JP2006118765A (ja) * 2004-10-20 2006-05-11 Matsushita Electric Ind Co Ltd 空気調和装置
JP4794176B2 (ja) * 2005-02-07 2011-10-19 三菱電機株式会社 アドレス自動設定方法及びアドレス自動設定システム
CN105180497B (zh) * 2008-10-29 2017-12-26 三菱电机株式会社 空气调节装置
WO2010049999A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置
WO2010109571A1 (ja) * 2009-03-23 2010-09-30 三菱電機株式会社 空気調和装置
US9121624B2 (en) * 2009-03-26 2015-09-01 Mitsubishi Electric Corporation Information transfer system for refrigeration air-conditioning apparatus
JP5545100B2 (ja) * 2009-08-31 2014-07-09 三洋電機株式会社 冷却管理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333316A (en) * 1980-10-14 1982-06-08 General Electric Company Automatic control apparatus for a heat pump system
US5156014A (en) * 1990-04-23 1992-10-20 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
JPH07174388A (ja) * 1993-12-21 1995-07-14 Matsushita Electric Ind Co Ltd 多室空気調和機
US6126080A (en) * 1996-10-18 2000-10-03 Sanyo Electric Co., Ltd. Air conditioner
JP2004257686A (ja) * 2003-02-27 2004-09-16 Mitsubishi Electric Corp 空気調和機の冷媒中継ユニット
JP2007085673A (ja) * 2005-09-22 2007-04-05 Mitsubishi Heavy Ind Ltd 空調システムのアドレス設定方法及びプログラム
WO2009133644A1 (ja) * 2008-04-30 2009-11-05 三菱電機株式会社 空気調和装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Atsushi et al., Address Setting Method and Program for Air Conditioning System, 4/5/2007, JP2007085673A, Whole Document *
Keiji et al., Multi-Chamber Air-Conditioning Machine, 7/14/1995, JPH07174388A, Whole Document *
Norihide et al., Refrigerant Relay Unit for Air Conditioner, 9/16/2004, JP2004257686A, Whole Document *
Shinichi et al., Air Conditioner, 11/5/2009, WO2009133644A1, Whole Document *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035597B2 (en) * 2014-01-27 2021-06-15 Qingdao Hisense Hitachi Air-conditioning Systems Co., Ltd. Outdoor unit of an air conditioning system, air conditioning system, and control method thereof
US20190032968A1 (en) * 2014-01-27 2019-01-31 Qingdao Hisense Hitachi Air-conditioning Systems Co., Ltd. Outdoor Unit of an Air Conditioning System, Air Conditioning System, and Control Method Thereof
US10077930B2 (en) 2014-01-30 2018-09-18 Mitsubishi Electric Corporation Air-conditioning apparatus and air-conditioning system
WO2015114704A1 (en) * 2014-01-30 2015-08-06 Mitsubishi Electric Corporation Air-conditioning apparatus and air-conditioning system
US20180195783A1 (en) * 2017-01-10 2018-07-12 Samsung Electronics Co., Ltd Air conditioner, control device thereof, and method of controlling the same
US11231216B2 (en) * 2017-01-10 2022-01-25 Samsung Electronics Co., Ltd. Air conditioner, control device thereof, and method of controlling the same
US11802701B2 (en) * 2018-09-21 2023-10-31 Mitsubishi Electric Corporation Air-conditioning apparatus
US20210285673A1 (en) * 2018-09-21 2021-09-16 Mitsubishi Electric Corporation Air-conditioning apparatus
EP3715735A1 (de) * 2019-03-27 2020-09-30 LG Electronics Inc. Klimatisierungsvorrichtung
EP3715732A1 (de) * 2019-03-27 2020-09-30 LG Electronics Inc. Klimatisierungsvorrichtung
US11359842B2 (en) * 2019-03-27 2022-06-14 Lg Electronics Inc. Air conditioning apparatus
US11499727B2 (en) 2019-03-27 2022-11-15 Lg Electronics Inc. Air conditioning apparatus
US11578898B2 (en) 2019-03-27 2023-02-14 Lg Electronics Inc. Air conditioning apparatus
EP3715736A1 (de) * 2019-03-27 2020-09-30 LG Electronics Inc. Klimatisierungsvorrichtung
EP3739278A1 (de) * 2019-05-17 2020-11-18 LG Electronics Inc. Klimaanlage und rohrsuchverfahren dafür
US11614252B2 (en) 2019-05-17 2023-03-28 Lg Electronics Inc. Air conditioner and pipe search method therefor
CN113251473A (zh) * 2020-01-28 2021-08-13 Lg电子株式会社 空调装置
US11519645B2 (en) 2020-01-28 2022-12-06 Lg Electronics Inc. Air conditioning apparatus

Also Published As

Publication number Publication date
JP5558625B2 (ja) 2014-07-23
EP2682686A4 (de) 2014-08-13
JPWO2012117441A1 (ja) 2014-07-07
WO2012117441A1 (ja) 2012-09-07
CN103403464B (zh) 2016-01-20
EP2682686B1 (de) 2019-11-06
CN103403464A (zh) 2013-11-20
EP2682686A1 (de) 2014-01-08

Similar Documents

Publication Publication Date Title
EP2682686B1 (de) Kälte-klimaanlage
US8844302B2 (en) Air-conditioning apparatus
CN102362126B (zh) 空调装置
US9285128B2 (en) Air-conditioning apparatus with multiple outdoor, indoor, and multiple relay units
EP1371914B1 (de) Klimaanlage mit mehreren Einheiten und Verfahren zur Steuerung derselben
EP3279580B1 (de) Klimatisierungsvorrichtung
CN102865646A (zh) 空气调节器
US10077930B2 (en) Air-conditioning apparatus and air-conditioning system
JP2018066518A (ja) 冷房機能付きヒートポンプ給湯機
JP5594278B2 (ja) 床暖房システム
JP2014173816A (ja) マルチ型空気調和機
KR20080060762A (ko) 냉난방 동시형 멀티 공기조화기 및 그 배관탐색방법
CN113203221A (zh) 热泵以及其动作方法
US20170198944A1 (en) Heat-recovery-type refrigeration apparatus
EP2600080A2 (de) Verfahren zur Überprüfung der Wärmepumpenposition in einem Wärmepumpensystem und Wärmepumpensystem
JPH0311256A (ja) マルチ形空気調和機
CN108954893B (zh) 空调器系统、空调器及空调器系统检测的方法
JP2002147824A (ja) 空気調和機
KR20090017006A (ko) 멀티형 공기조화기 및 그 제어방법
JPH03236554A (ja) 空気調和機
JP2024012950A (ja) 空気調和装置
KR20100019162A (ko) 멀티형 공기조화기
JPH076665B2 (ja) 空気調和装置の運転制御装置
JP2013079736A (ja) 多室形空気調和装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI ELECTRIC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MATSUI, KENJI;REEL/FRAME:030901/0972

Effective date: 20130528

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION