US20130102755A1 - Product containing epichlorohydrin, its preparation and its use in various applications - Google Patents

Product containing epichlorohydrin, its preparation and its use in various applications Download PDF

Info

Publication number
US20130102755A1
US20130102755A1 US13/709,218 US201213709218A US2013102755A1 US 20130102755 A1 US20130102755 A1 US 20130102755A1 US 201213709218 A US201213709218 A US 201213709218A US 2013102755 A1 US2013102755 A1 US 2013102755A1
Authority
US
United States
Prior art keywords
equal
product
epichlorohydrin
less
usually
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/709,218
Inventor
Noel Boulos
Philippe Krafft
Patrick Gilbeau
Dominique Balthasart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay SA
Original Assignee
Solvay SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0755696A external-priority patent/FR2917411B1/en
Application filed by Solvay SA filed Critical Solvay SA
Priority to US13/709,218 priority Critical patent/US20130102755A1/en
Publication of US20130102755A1 publication Critical patent/US20130102755A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/27Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms
    • C07D301/28Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms by reaction with hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/24Synthesis of the oxirane ring by splitting off HAL—Y from compounds containing the radical HAL—C—C—OY
    • C07D301/26Y being hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/27Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65502Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657163Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
    • C07F9/657172Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom the ring phosphorus atom and one oxygen atom being part of a (thio)phosphinic acid ester: (X = O, S)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule

Definitions

  • the present invention relates to an epichlorohydrin-based product, to a process for its preparation and to the use of the product in various applications.
  • Epichlorohydrin is a reaction intermediate in the manufacture of various products like for instance epoxy resins, synthetic elastomers, glycidyl ethers, polyamide resins, etc. (Ullmann's Encyclopedia of Industrial Chemistry, Fifth Edition, Vol. A9, p. 539).
  • Epichlorohydrin can be obtained by several routes, like for instance, epoxidation of allyl chloride with hydrogen peroxide or dehydrochlorination of dichloropropanol.
  • dichloropropanol route presents the advantage that dichloropropanol can be obtained by hydrochlorination of glycerol.
  • This glycerol can be obtained from fossil raw materials or from renewable raw materials, e.g., from fats or oils of animal or plant origin by transesterification processes.
  • the goal of the invention is to solve those problems by providing a new product containing epichlorohydrin suitable in all known applications.
  • the invention therefore relates in a first embodiment to a product containing epichlorohydrin and at least one alkyl glycidyl ether in an amount of less than 0.1 g/kg of product.
  • Glycidyl alkyl ethers have indeed been identified as unwanted impurities. They are very difficult to separate from epichlorohydrin because of similar boiling points. The presence of glycidyl alkyl ethers in epichlorohydrin may prove troublesome in some of these applications for various reasons. Glycidyl ethers are suspected to have reproductive toxicity, immunotoxicity and toxicity to the skin. Glycidyl methyl ether is also suspected to be mutagenic. Those ethers can interfere in the synthesis processes as the molecules could be inserted for example in a polymeric chain through the opening of the epoxide ring.
  • the content of alkyl glycidyl ether, in the product of the invention is preferably lower than or equal to 0.08 g/kg, more preferably lower than or equal to 0.06 g/kg, still more preferably lower than or equal to 0.04 g/kg, yet preferably lower than or equal to 0.020 g/kg, most preferably lower than or equal to 0.01 g/kg and particularly most preferably lower than or equal to 0.005 g/kg.
  • This content is usually higher than or equal to 0.0005 g/kg.
  • the product according to the invention has an epichlorohydrin content which is generally higher than or equal to 900 g/kg of product, preferably higher than or equal to 950 g/kg, more preferably higher than or equal to 990 g/kg, yet more preferably higher than or equal to 999 g/kg and most preferably higher than 999.5 g/kg.
  • the alkyl group of the alkyl glycidyl ether can be a linear or branched or alicyclic aliphatic alkyl group and is preferably a linear or branched aliphatic group.
  • the alkyl group of the alkyl glycidyl ether contains a number of carbon atoms which is generally higher than or equal to 1, often higher than or equal to 2 and frequently higher than or equal to 3. That number of carbon atoms is generally lower than or equal to 10, often lower than or equal to 8 and frequently lower than or equal to 6.
  • the alkyl group is preferably selected from the methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl groups and more preferably from the methyl, ethyl, propyl and butyl groups and particularly preferably from the methyl and ethyl groups.
  • the alkyl group is a methyl group.
  • the propyl group can be chosen from the n-propyl and isopropyl groups and is preferably an isopropyl group.
  • the butyl group can be chosen from the 1-butyl, 2-butyl, isobutyl and tert-butyl groups, preferably from the isobutyl and tert-butyl groups.
  • the product according to the invention may contain in addition to alkyl glycidyl ether and epichlorohydrin, at least one halogenated hydrocarbon.
  • the halogenated hydrocarbon may be an aliphatic or an aromatic halogenated hydrocarbon, optionally containing oxygen. It is often an aliphatic halogenated hydrocarbon and frequently an aromatic hydrocarbon.
  • the content of the halogenated hydrocarbon in the product is usually of less than 1 g/kg of product, preferably less than or equal to 0.8 g/kg of product, preferably less than or equal to 0.6 g/kg, more preferably less than or equal to 0.5 g/kg, yet more preferably less than or equal to 0.4 g/kg, still more preferably less than or equal to 0.2 g/kg, most preferably less than or equal to 0.1 g/kg, yet most preferably less than or equal to 0.05 g/kg, still most preferably less than or equal to 0.01 g/kg, and most particularly preferably less than or equal to 0.001 g/kg.
  • This content is generally greater than or equal to 0.001 mg/kg.
  • That halogenated hydrocarbon can be chosen from chloropropene, trichloropropene, trichloropropane, chloropropanol, chloropropenol, dichloropropene, dichloropropane, dichloropropanol, monochloropropanediol, chloroethers, monochlorobenzene, and any mixture of at least two of them.
  • the halogenated hydrocarbon can be chosen from aliphatic halogenated hydrocarbons such as
  • Aromatic halogenated hydrocarbons comprise at least one ring of aromatic nature and a halogen atom.
  • the halogen atom is preferably directly attached to the aromatic ring.
  • the halogen may be chosen from fluorine, chlorine, bromine, iodine and mixtures thereof. Chlorine is preferred.
  • the aromatic ring may be mononuclear or polynuclear, and is preferably mononuclear.
  • the aromatic halogenated hydrocarbons may be chosen from mono-, di-, tri-, tetra-, penta- and hexachloro-benzenes and/or naphthalenes. Monochlorobenzene is particularly preferred.
  • monochlorobenzene may come from the process for manufacturing epichlorohydrin, in particular when this is obtained by dehydrochlorination of dichloropropanol. More specifically, it is believed that monochlorobenzene may be present in the dichloropropanol, in particular when this is obtained by a process for chlorinating glycerol using a chlorinating agent containing hydrogen chloride.
  • chlorobenzene may be present in the hydrogen chloride, in particular when this comes from another manufacturing process, such as the manufacture of isocyanates, diisocyanates or polyisocyanates, such as for example 4,4-methylenediphenyl diisocyanate (MDI) or toluene diisocyanate (TDI) or hexamethylene-1,6-diisocyanate (HDI).
  • MDI 4,4-methylenediphenyl diisocyanate
  • TDI toluene diisocyanate
  • HDI hexamethylene-1,6-diisocyanate
  • the product according to the invention can contain chloropropene, in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg.
  • the chloropropene may be selected from 2-chloro-1-propene, 1-chloro-1-propene cis, 1-chloro-1-propene trans, 3-chloro-1-propene, and any mixture of at least two of them.
  • the product according to the invention can contain trichloropropane, in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg, in an amount of commonly less than or equal to 0.008 g/kg of product, more commonly of less than or equal to 0.006 g/kg, yet more often of less than or equal to 0.004 g/kg, still more often of less than or equal to 0.002 g/kg, most frequently of less than or equal to 0.001 g/kg, yet most frequently of less than or equal to 0.0005 g/kg.
  • the product according to the invention can contain trichloropropene, in an amount a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg.
  • That content is usually of at least 0.001 mg/kg. This content is at least 0.001 g/kg.
  • the trichloropropene may be selected from 1,3,3-trichloro-1-propene-cis, 1,3,3-trichloro-1-propene-trans, 1,2,3-trichloropropene-cis, specifically 1,2,3-trichloropropene-trans and any mixtures of at least two of them.
  • the product according to the invention can contain chloropropenol, in a content a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg.
  • the chloropropenol may be selected from 2-chloro-2-propen-1-ol, 3-chloro-2-propene-1-ol cis, 3-chloro-2-propene-1-ol trans and any mixtures of at least two of them.
  • the product according to the invention may contain dichloropropene, in a content a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg.
  • the dichloropropene may be selected from 3,3-dichloro-1-propene,2,3-dichloro-1-propene, 1,3-dichloro-1-propene-cis, 1,3-dichloro-1-propene-trans, and any mixtures of at least two of them.
  • the product according to the invention can contain dichloropropane, in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.2 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg . . . .
  • the dichloropropane may be selected from 1,3-dichloropropane, 1,2-dichloropropane, 2,2-dichloropropane, and any mixture of at least two of them.
  • the product according to the invention can contain dichloropropanol, in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg.
  • the dichloropropanol may be selected from 1,3-dichloropropan-2-ol, 2,3-dichloropropan-1-ol and any mixtures thereof.
  • the product according to the invention can contain monochloropropanediol, in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg.
  • the monochloropropanediol may be selected from 3-chloro-1,2-propanediol, 2-chloro-1,3-propanediol and any mixtures thereof.
  • the product according to the invention usually can contain chloroethers in in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg.
  • the chloroethers may be selected from chloroethers of crude formula C 6 H 10 Cl 2 O 2 , C 6 H 12 Cl 2 O, C 6 H 9 Cl 3 O 2 , C 6 H 11 Cl 3 O 2 , and any mixtures thereof.
  • the product according to the invention usually contains chlorobenzene, often monochlorobenzene, in an amount in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg.
  • the product according to the invention may also contain in addition to epichlorohydrin, alkyl glycidyl ethers and halogenated hydrocarbons, compounds such as for example:
  • the product according to the invention can contain at least one aldehyde, in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg.
  • the aldehyde may be selected from acetaldehyde, acrolein, isobutanal, isopentanal and any mixtures of at least two of them.
  • the product according to the invention usually can contain acrolein in an amount usually of less than 0.07 g/kg of product, preferably at most 0.01 g/kg and more preferably at most 0.005 g/kg. This content is at least 0.001 g/kg.
  • the product according to the invention can contain ketones, in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg.
  • the ketones may be selected from acetone, chloroacetone, 2-butanone, cyclopentanone, cyclohexanone, 2-methyl-2-cyclopentene-1-one, 3,5-dimethyl-2-cyclohexene-1-one, ketones of crude formula C 5 H 10 O, C 6 H 12 O, and any mixtures of at least two of them.
  • the product according to the invention can contain cyclopentanone in an amount usually higher than or equal to 0.001 mg/kg, often higher than or equal to 0.01 mg/kg, frequently higher than or equal to 0.1 mg/kg and in particular higher than or equal to 0.001 g/kg. That content is usually lower than or equal to 0.5 g/kg, often lower than or equal to 0.3 g/kg, frequently lower than or equal to 0.1 g/kg, more often lower than or equal to 0.05 g/kg, more frequently lower than or equal to 0.01 g/kg and particularly lower than or equal to 0.005 g/kg.
  • That content is usually higher than or equal to 0.001 mg/kg, often higher than or equal to 0.01 mg/kg, frequently higher than or equal to 0.1 mg/kg, more often higher than or equal to 0.5 mg/kg and in particular higher than or equal to 1 mg/kg
  • the product according to the invention can contain chloroacetone in an amount usually of less than 0.05 g/kg of product, preferably at most 0.03 g/kg and more preferably at most 0.01 g/kg. This content is at least 0.001 g/kg
  • the product according to the invention can contain aliphatic alcohols, in a content usually in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg.
  • the aliphatic alcohols may be selected from isopropanol, allyl alcohol, glycerol, and any mixtures of at least two of them.
  • the product according to the invention can contain hydroxyketones, in a content in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.2 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg.
  • the hydroxyketone is often hydroxyacetone.
  • the product according to the invention can contain epoxides different from epichlorohydrin, in a content in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.2 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg.
  • the epoxide may be selected from propylene oxide, 1,2-epoxyhexane, glycidol, and any mixtures of at least two of them.
  • the product according to the invention can contain glycidol in an amount in a content usually of at most 0.5 g/kg of product, generally of at most 0.2 g/kg, frequently of at most 0.10 g/kg of product, commonly of at most 0.05 g/kg of product, often of at most 0.01 g/kg and frequently of at most 0.005 g/kg.
  • the product according to the invention usually contains glycerol, hydroxyacetone and glycidol, of which the sum of the contents is less than 0.1 g/kg of product, preferably at most 0.01 g/kg and more preferably at most 0.005 g/kg. This content is at least 0.001 g/kg.
  • the product according to the invention can be obtained by dehydrochlorination of a composition containing dichloropropanol and at least one chloro alkoxy propanol in an amount usually of less than or equal to 0.1 g/kg of composition.
  • the alkoxy group of the chloro alkoxy propanol contains a number of carbon atoms which is generally higher than or equal to 1, often higher than or equal to 2 and frequently higher than or equal to 3. That number of carbon atoms is generally lower than or equal to 10, often lower than or equal to 8 and frequently lower than or equal to 6.
  • the alkoxy group of the chloro alkoxy propanol can be a linear or branched or alicyclic aliphatic alkoxy group and is preferably a linear or branched aliphatic group.
  • the alkoxy group is preferably selected from the methoxy, ethoxy, propoxy, butoxy, pentoxyl, hexoxy, heptoxy and octoxy groups and more preferably from the methoxy, ethoxy, propoxyl and butoxy groups and particularly preferably from the methoxy and ethoxy groups.
  • the alkoxy group is a methoxy group.
  • the propoxy group can be chosen from the n-propoxy and isopropoxy groups and is preferably an isopropoxy group.
  • the butoxy group can be chosen from the 1-butoxy, 2-butoxy, isobutoxy and tert-butoxy groups, preferably from the isobutoxy and tert-butoxy groups.
  • the alkyl group of the alkyl glycidyl ether is a methyl group and the alkoxy group of the chloro alkoxy propanol is a methoxy group.
  • the product according to the invention can be obtained from a composition containing dichloropropanol wherein the content of chloro alkoxy propanol, preferably chloro methoxy propanol is preferably lower than or equal to 0.08 g/kg, more preferably lower than or equal to 0.06 g/kg, still more preferably lower than or equal to 0.04 g/kg, yet preferably lower than or equal to 0.05 g/kg, most preferably lower than or equal to 0.01 g/kg and particularly most preferably lower than or equal to 0.005 g/kg.
  • This content is usually higher than or equal to 0.0005 g/kg.
  • the chloro methoxy propanol can be selected from 2-chloro-3-methoxy-propane-1-ol, 1-chloro-3-methoxy-propane-2-ol and mixtures thereof.
  • alkyl glycidyl ethers exhibit usually boiling points very close to that of epichlorohydrin and are, for this reason, very difficult to separate from it.
  • the chloro alkoxy propanols can be produced during the manufacture of dichloropropanol, especially when the dichloropropanol is obtained by hydrochlorination of a compound containing glycerol and at least one alkyl ether of glycerol.
  • the glycerol alkyl ethers can originate in the process for manufacturing glycerol especially when glycerol is obtained from trans esterification of oils and/or fats of animal and/or plant origin.
  • the composition containing dichloropropanol according to the invention can be obtained by hydrochlorination of a compound containing glycerol and at least one glycerol alkyl ether in an amount that is usually lower than or equal to 0.6 g/kg, preferably lower than or equal to 0.1 g/kg, more preferably lower than or equal to 0.02 g/kg, yet preferably lower than or equal to 0.015 g/kg and most preferably lower than or equal to 0.01 g/kg. This content is usually higher than or equal to 0.0005 g/kg of compound.
  • the alkyl group in the glycerol alkyl ether is as defined above and is preferably a methyl group.
  • the invention relates, in a second embodiment, to a process for obtaining a product containing epichlorohydrin and at least one alkyl glycidyl ether in an amount of less than 0.1 g/kg of product.
  • the product can be obtained by dehydrochlorination of a composition containing dichloropropanol and at least one chloro alkoxy propanol in an amount usually of less than or equal to 0.1 g/kg of composition.
  • the composition containing dichloropropanol and at least one chloro alkoxy propanol can be obtained by hydrochlorination of a compound containing glycerol and at least one glycerol alkyl ether in an amount of less than or equal to 0.6 g/kg of compound.
  • the process for producing the product according to the invention comprises the following steps:
  • the process comprises optionally the following steps:
  • step (a) of the process are such as described in the patent application PCT/EP2007/055742 filed in the name of SOLVAY SA, the content of which is incorporated herein by reference, more specifically the passages from page 18, lines 17 to 25, and page 19, line 4 to 19.
  • step (a) of the process are such as described in the patent application PCT/EP2007/055742 filed in the name of SOLVAY SA, the content of which is incorporated herein by reference, more specifically the passages from page 11, line 12, to page 17, line 24, and page 17, lines 31 to 35.
  • the catalyst can be based on dodecanoic acid.
  • steps (c) and (d) of the process are such as described in the patent application PCT/EP2007/055742 filed in the name of SOLVAY SA, the content of which is incorporated herein by reference, more specifically the passages from page 6, line 18, to page 11, line 11.
  • the invention also relates, in a third embodiment, to the use of the product of the invention described above containing epichlorohydrin and at least one alkyl glycidyl ether in an amount of less than or equal to 0.1 g/kg of product, in the manufacture of epoxy derivatives such epoxy resins, of products which will be used in food and drink applications, of cationization agents, of flame retardants, of products which will be used as detergent ingredients, and of epichlorohydrin elastomers.
  • FIG. 1 examples of chemical formula of epoxy resins
  • FIG. 2 examples of chemical formula of compounds having at least one aromatic hydroxyl group
  • FIG. 3 examples of chemical formula of compounds having at least one aromatic hydroxyl or aromatic amine group per molecule
  • FIG. 4 examples of chemical formula of polycyclopentadiene polyphenols or aromatic polyamines
  • FIG. 5 example of chemical formula of a coagulant molecule
  • FIG. 6 example of chemical formula of wet-strength resin polymers
  • FIG. 7 example of chemical formula of compounds used as phosphorus containing flame retardants.
  • Epoxy derivatives are for example, epoxy resins, glycidyl ethers, glycidyl esters and glycidyl amides and imides.
  • Examples of glycidyl esters are glycidyl acrylate and glycidyl methacrylate.
  • epoxy resin By epoxy resin, one intends to denote a polymer, the chemical formula of which contains at least one oxirane group, preferably one 2,3-epoxypropyloxy group.
  • polymer By polymer, one intends to denote molecules with many units joined to each other through chemical covalent bonds, often in a repeating manner, those units being referred as repeat units. The number of repeat units is higher than zero.
  • a polymer contains at least one type of repeat units. When the polymer contains only one type of repeat units, it is called a homopolymer. When the polymer contains more than one type of repeat units, it is called a copolymer.
  • the copolymers can be of the random type, of the alternating type or of the block type, such as described in “Polymer Science Dictionary, M.S.M., Elsevier Applied Science, London and New York 1989, page 86”.
  • glycidyl ether By glycidyl ether, one intends to denote an ether, the chemical formula of which contains at least one glycidyl (2,3-epoxypropyl) group and which is not a polymer.
  • glycidyl ethers are N-butyl glycidyl ether, C 12 -C 14 aliphatic glycidyl ethers, o-Cresol glycidyl ether, neopentylglycol diglycidyl ether and butanediol diglycidyl ether.
  • glycidyl ester By glycidyl ester, one intends to denote an ester, the chemical formula of which contains at least one glycidyl (2,3-epoxypropyl) group and which is not a polymer.
  • Examples of glycidyl ester are diglycidyl ester of hexahydrophthalic acid, glycidyl ester of neodecanoic acid, glycidyl acrylate and glycidyl methacrylate.
  • glycidyl amides and imides By glycidyl amides and imides, one intends to denote an amide or an imide, the chemical formula of which contains at least one glycidyl (2,3-epoxypropyl) group and which is not a polymer.
  • glycidyl amide and imide 1,3,5-tris(2,3-epoxypropyl)-1,3,5-perhydrotriazine-2,4,6-trione and 5,5-dimethyl-1,3-bis(2,3-epoxypropyl)-2,4-imidazolidinedione.
  • the product containing epichlorohydrin according to the invention is usually subjected to a reaction with at least one compound containing at least one active hydrogen atom, preferably at least two active hydrogen atoms, followed by dehydrochlorination as described in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, 1987, Vol. A9, pp. 547-553).
  • the compound containing one active hydrogen atom can be selected from mono alcohol, preferably from 1-butanol, a C 12 to C 14 primary alcohol or a cresol, and mixtures thereof, mono carboxylic acids, like for instance neodecanoic acid, acrylic acid, methacrylic acid, or mixtures thereof.
  • the compound containing at least two active hydrogen atoms can be selected from polyols, polyamines, amino alcohols, polyimides and amides, polycarboxylic acids, and mixtures thereof.
  • the polyols can be aromatic or aliphatic. Aromatic polyols are preferred.
  • Preferred aliphatic polyols are aliphatic diols, more preferably selected from butanediol, neopentyl glycol, hydrogenated Bisphenol A (4,4′-dihydroxy-2,2-dicyclohexylpropane), and aliphatic triols, preferably glycerol, poly(oxypropylene)glycol, and mixtures thereof.
  • Aromatic polyols can be selected from polyhydroxy benzenes, polyphenolic compounds, and mixtures thereof.
  • Poly hydroxybenzenes are preferably selected from dihydroxy benzenes, trihydroxy benzene, and mixtures thereof.
  • Dihydroxy benzenes are more preferably selected from 1,2-, 1,3-, 1,4-dihydroxy benzenes and mixture thereof.
  • Trihydroxy benzene is preferably 1,3,5-trihydroxy benzene.
  • Polyphenolic compounds are generally compounds the molecule of which contains at least one aromatic hydroxyl group.
  • Suitable compounds having at least one aromatic hydroxyl group which can be employed herein are such as described in U.S. Pat. No. 4,499,255, the content of which is incorporated herein by reference and include, for example, phenols, bisphenols, novolac resins, polyvinyl phenols, the corresponding amine compounds and the like, such as those represented by the formulas I to V of FIG. 2 wherein, each A is independently a divalent hydrocarbon group having from 1 to about 12, preferably from 1 to about 6 carbon atoms, —O—, —S—, —S—S—,
  • A′ is a trivalent hydrocarbon group having from 1 to about 12, preferably from 1 to about 6, carbon atoms; each R is independently hydrogen, a hydrocarbyl group having from 1 to about 10, preferably from 1 to about 4, carbon atoms, a halogen atom, preferably chlorine or bromine or a hydroxyl group or an amino group; each Z is independently —OH or NH 2 ; p has a value of from about 1 to about 100, preferably from about 2 to about 50; m has a value from about 1.00 to about 6 and n has a value of zero or 1.
  • each R is a divalent hydrocarbyl group having from 1 to about 18, preferably from about 2 to about 12 and most preferably from about 2 to about 6 carbon atoms, a group represented by the formulas IX, X, XI or XII of FIG.
  • each A is independently a divalent hydrocarbyl group having from 1 to about 10, preferably from 1 to about four carbon atoms, —O—, —S—, —S—S—, —(S ⁇ O) 2 —, —(S ⁇ O)— or —(C ⁇ O)—
  • each R 1 is independently hydrogen, a 2,3,-epoxypropyl group, a 2-alkyl-2,3-epoxypropyl group, a monovalent hydrocarbyl group or a hydroxyl substituted monovalent hydrocarbyl group, said hydrocarbyl groups having from 1 to about 9 carbon atoms, said alkyl having from 1 to about 4, preferably 1 to about 3 carbon atoms
  • each R 2 is independently hydrogen or an alkyl group having from 1 to about 4, preferably 1 to about 3 carbon atoms
  • each R 3 is independently hydrogen or an alkyl group having from 1 to about 4 carbon
  • polycyclopentadiene polyphenols or aromatic polyamines represented by the formula XIII of FIG. 4 , wherein Z is —OH or —NH2 and n has a value from 1 to about 5; n′ has a value of from about 1 to about 10, preferably from 3 to about 6; each R is independently hydrogen, a hydrocarbyl group having from 1 to about 10, preferably from 1 to about 4 carbon atoms, a halogen atom, preferably chlorine or bromine or a hydroxyl group or an amino group.
  • polycyclopentadiene polyphenols Suitable such polycyclopentadiene polyphenols and methods for their preparation can be found in U.S. Pat. No. 4,390,680 issued to Donald L. Nelson on Jun. 28, 1983 which is incorporated herein by reference.
  • the polycyclo-pentadiene aromatic polyamines can be prepared in a similar manner by substituting an aromatic amine for the phenolic compound.
  • the polyamines can be aliphatic or aromatic.
  • Aromatic diamines are preferred, like for instance 4,4′-diamino diphenyl methane.
  • the amino alcohol can be aliphatic or aromatic.
  • Aromatic amino alcohol are preferred like for instance, p-aminophenol.
  • the imides and amides can be aliphatic or aromatic. Heterocyclic imides and amides are preferred, like for instance 1,3,5-triazinetriol and imidazolidine-2,4-dione.
  • Polycarboxylic acids can be aliphatic or aromatic.
  • An example of dimeric fatty acid is linoleic dimer acid.
  • the polycarboxylic acid is preferably an aromatic dicarboxylic acid like for instance hexahydrophthalic acid.
  • the process for making epoxy resins, glycidyl ethers and glycidyl esters generally involve a reaction of the product containing epichlorohydrin and the compound containing at least one active hydrogen atom, followed by dehydrochlorination with a basic agent
  • the process for making epoxy resin usually involves two steps: the preparation of an uncured epoxy resin followed by a curing step.
  • the reaction between the product containing epichlorohydrin and the compound containing at least one, preferably two active hydrogen atoms can be carried out by any process known in the art like for instance the Caustic Coupling Process and the phase-transfer catalyst process, for making Liquid Epoxy Resins (LER), the Taffy and the Advancement or Fusion process for making Solid Epoxy Resins (SER).
  • any process known in the art like for instance the Caustic Coupling Process and the phase-transfer catalyst process, for making Liquid Epoxy Resins (LER), the Taffy and the Advancement or Fusion process for making Solid Epoxy Resins (SER).
  • caustic is used as a catalyst for the nucleophilic ring-opening (coupling reaction) of the epoxide group on the primary carbon atom of epichlorohydrin by the phenolic hydroxyl group and as a dehydrochlorinating agent for conversion of the chlorohydrin to the epoxide group.
  • Caustic (NaOH) can however be substituted by any basic compound.
  • the epichlorohydrin and the compound with active hydrogen atom are employed in a molar ratio of from about 2:1 to about 10:1, preferably from about 2:1 to about 6:1, respectively.
  • the basic compound may be an organic or inorganic basic compound.
  • Organic basic compounds are for example amines, phosphines and ammonium, phosphonium or arsonium hydroxides.
  • Inorganic basic compounds are preferred.
  • the expression “inorganic compounds” is understood to mean compounds which do not contain a carbon-hydrogen bond.
  • the inorganic basic compound may be chosen from alkali and alkaline-earth metal oxides, hydroxides, carbonates, hydrogencarbonates, phosphates, hydrogenphosphates and borates, and mixtures thereof. Alkali and alkaline-earth metal oxides and hydroxides are preferred.
  • Preferred alkali metal hydroxides which can be employed herein include, for example, sodium hydroxide, potassium hydroxide, lithium hydroxide or mixtures thereof. Sodium hydroxide is especially preferred.
  • the basic compound may be in the form of a liquid, an essentially anhydrous solid, a hydrated solid, an aqueous and/or organic solution or an aqueous and/or organic suspension.
  • the basic compound is preferably in the form of an essentially anhydrous solid, a hydrated solid, an aqueous solution or an aqueous suspension. It is preferred to use a solution or a suspension, preferably a solution of the basic compound, preferably sodium hydroxide, in water.
  • the content of the basic agent in the solution or suspension is generally higher than or equal to 5% by weight, preferably higher than or equal to 10% by weight, preferably higher than or equal to 20% by weight, and most preferably higher than or equal to 30% by weight. That content is usually lower than or equal to 70% by weight, preferably lower than or equal to 60% by weight, preferably lower than or equal to 50% by weight, and most preferably lower than or equal to 40% by weight.
  • the alkali metal hydroxide is preferably employed as an aqueous solution, usually at a concentration of from about 20 to about 50, preferably from about 40 to about 50 percent by weight.
  • the amount of basic compound, preferably alkali metal hydroxide, which is employed in the process of the present invention is from about 0.80 mole to about 1.2 mole of basic agent, preferably from about 0.90 mole to 1.0 mole per each, preferably aromatic, hydroxyl group and, preferably aromatic, amine hydrogen.
  • the basic agent, epichlorohydrin and the compound containing active hydrogen atom can be mixed in any order. It is preferred to add the basic compound to a mixture of the two other reactants.
  • the basic agent, preferably, alkali metal hydroxide can be added either continuously or incrementally, but never is all of the alkali metal hydroxide added in one increment.
  • the reaction can be carried out in a solvent.
  • suitable solvents which can be employed include any solvent which does not react with any component in the reaction mixture.
  • such solvent is partially or wholly miscible with water, forms a codistillate with the epichlorohydrin and water and the distillate has a boiling point below that of the lowest boiling component of the reaction mixture at the pressure employed.
  • Suitable such solvents include primary and secondary alcohols such as, for example, 1-methoxy-2-hydroxy propane, 1-butoxy-2-hydroxy ethane, cyclohexanol. The secondary alcohols are preferred.
  • the amount of solvent which is employed will depend on the particular solvent and the compound containing active hydrogen atom being employed.
  • the solvent generally ranges from about 5 to about 50 weight percent, preferably from about 10 to about 40 weight percent based on the total weight of reactants.
  • the pressure can be equal to 1 bar absolute, lower than 1 bar absolute or higher than 1 bar absolute.
  • suitable pressures which can be employed are those which will provide the codistillate with a boiling point of from about 45° C. to about 80° C., preferably from about 55° C. to about 70° C.
  • the temperature of the reaction is usually greater than or equal to 25° C., preferably greater than or equal to 50° C., more preferably greater than or equal to 90° C., and most preferably greater than or equal to 95° C.
  • the temperature of the reaction is usually lower than or equal to 200° C., preferably lower than or equal to 150° C., more preferably lower than or equal to 125° C., and most preferably lower than or equal to 120° C.
  • the reaction is usually conducted for a length of time such that the quantity of groups containing active hydrogen atom remaining in the reaction mixture is not greater than about 0.5, preferably not greater than about 0.2 percent by weight. That time is usually greater than or equal to 0.5 h, frequently greater than or equal to 1.0 h, often greater than or equal to 2.0 h, and most particularly greater than or equal to 3.0 h.
  • the time of reaction is usually lower than or equal to 20 h, often lower than or equal to 10 h, frequently lower than or equal to 5 h, and most particularly lower than or equal to 4 h.
  • the resultant epoxy resin is finished in any of the methods normally employed.
  • the excess epichlorohydrin is usually removed by distillation and the salt removed by filtration, centrifugation and/or water washing.
  • the epichlorohydrin distillation is generally carried out in two steps.
  • the first step is carried out generally at atmospheric pressure (1 bar absolute), at a temperature usually greater than or equal to 100° C., preferably greater than or equal to 120° C., more preferably greater than or equal to 130° C., and most preferably greater than or equal to 145° C. and usually lower than or equal to 200° C., preferably lower than or equal to 180° C., more preferably lower than or equal to 175° C., and most preferably lower than or equal to 155° C.
  • the second step is carried out usually at a subatmospheric pressure, usually lower than or equal to 0.1 bar absolute, preferably lower than or equal to 0.01 bar, more preferably lower than or equal to 0.005 bar, and most preferably lower than or equal to 0.002 bar, at a temperature usually greater than or equal to 150° C., preferably greater than or equal to 170° C., more preferably greater than or equal to 190° C., and most preferably greater than or equal to 195° C. and usually lower than or equal to 300° C., preferably lower than or equal to 250° C., more preferably lower than or equal to 220° C., and most preferably lower than or equal to 215° C.
  • a subatmospheric pressure usually lower than or equal to 0.1 bar absolute, preferably lower than or equal to 0.01 bar, more preferably lower than or equal to 0.005 bar, and most preferably lower than or equal to 0.002 bar, at a temperature usually greater than or equal to 150° C., preferably greater than
  • the salt which is formed can be separated from the crude product through addition of a solvent, e.g. toluene, followed by filtration and distillation to remove the solvent.
  • a solvent e.g. toluene
  • the coupling reaction and dehydrochlorination can be performed separately by using phase-transfer coupling catalysts, such as quaternary ammonium salts, which are not strong enough bases to promote dehydrochlorination.
  • phase-transfer coupling catalysts such as quaternary ammonium salts, which are not strong enough bases to promote dehydrochlorination.
  • the Taffy method is used to prepare higher molecular weight solid resins. It is directly from epichlorohydrin, the compound containing active hydrogen atoms, and a stoichiometric amount of NaOH. This process is very similar to the caustic coupling process used to prepare liquid epoxy resins. Lower epichlorohydrin to compound containing active hydrogen atoms ratios are used to promote formation of high molecular weight resins.
  • the mixture consists of an alkaline brine solution and a water-resin emulsion. The product is recovered by separating the phases, washing the resin with water, and removing the water under vacuum.
  • the epichlorohydrin and the compound with active hydrogen atom are employed in a molar ratio of from about 1:1 to about 2:1, preferably from about 1.3:1 to about 1.8:1, respectively.
  • the alkali metal hydroxide is preferably employed as an aqueous solution, usually at a concentration of from about 1 to about 20, preferably from about 5 to about 15 percent by weight.
  • the amount of basic compound, preferably alkali metal hydroxide, which is employed in the process of the present invention is from about 0.05 mole to about 2 mole of basic agent, preferably from about 0.1 mole to 0.5 mole per each, preferably aromatic, hydroxyl group and, preferably aromatic, amine hydrogen.
  • the temperature of the reaction is usually greater than or equal to 25° C., preferably greater than or equal to 50° C., more preferably greater than or equal to 90° C., and most preferably greater than or equal to 95° C.
  • the temperature of the reaction is usually lower than or equal to 200° C., preferably lower than or equal to 150° C., more preferably lower than or equal to 125° C., and most preferably lower than or equal to 120° C.
  • the time of reaction is usually greater than or equal to 0.1 h, frequently greater than or equal to 0.5 h, often greater than or equal to 1.0 h, and most particularly greater than or equal to 1.5 h.
  • the time of reaction is usually lower than or equal to 20 h, often lower than or equal to 10 h, frequently lower than or equal to 5 h, and most particularly lower than or equal to 4 h.
  • the basic agent, epichlorohydrin and the compound containing active hydrogen atom can be mixed in any order. It is preferred to add epichlorohydrin to a mixture of the two other reactants.
  • the reaction is usually carried out under vigorous agitation.
  • the mixture separates into two layers.
  • the heavier aqueous layer is drawn off and the molten, taffy-like product is washed with hot water until the wash water is neutral.
  • the taffy-like product is dried at a temperature generally higher than or equal to 100° C., preferably higher than or equal to 120° C.
  • epichlorohydrin and water can be removed by distillation at temperatures up to 180° C. under vacuum.
  • the crude resin/salt mixture can then be dissolved in a secondary solvent to facilitate water washing and salt removal.
  • the secondary solvent can then be removed via vacuum distillation to obtain the product.
  • the advancement or fusion process is an alternative method for making solid epoxy resin and is based on the chain-extension reaction of liquid epoxy resin (for example, crude DGEBA) with bisphenol A.
  • Epoxy Resins can be carried out using classical curing agents.
  • the cure can be done with coreactive curing agents, or it can be catalytic or photoinitiated cationic.
  • the coreactive curing agents can be selected from amine functional curing agents, carboxylic functional polyester and anhydride curing agents, phenolic-terminated curing agents, melamine-, urea-, and phenol-formaldehyde resins, mercaptans (polysulfides and polymercaptans) curing agents, cyclic amidines curing agents, isocyanate curing agents and cyanate ester curing agents
  • the amine functional curing agents can be primary and secondary amines, polyamides, amidoamines and dicyandiamide.
  • the amines can be aliphatic, cycloaliphatic, aromatic amines or arylyl amines.
  • the aliphatic amines can be selected from liquid aliphatic polyamines, such as polyethylene polyamines, hexamethylene diamine, polyether amines (polyglycol-based polyamines), ketimines (reaction products of ketones and primary aliphatic amines), mannich base adducts (reaction products of amine, phenol and formaldehyde), polyetheramines (reaction product of polyols derived from ethylene or propylene oxide with amines) and mixtures thereof.
  • liquid aliphatic polyamines such as polyethylene polyamines, hexamethylene diamine, polyether amines (polyglycol-based polyamines), ketimines (reaction products of ketones and primary aliphatic amines), mannich base adducts (reaction products of amine, phenol and formaldehyde), polyetheramines (reaction product of polyols derived from ethylene or propylene oxide with amines) and mixture
  • the cycloaliphatic amines can be selected from isophorone diamine, bis(4-amino-cyclohexyl)methane, 1,2-diamino-cyclohexane, trihexylmethylene diamines, metaxylylenediamine, and mixtures thereof.
  • the aromatic amines can be selected from meta-phenylenediamine, methylene dianiline, alkyl (tetraethyl-)-substituted methylene dianiline, 4,4′-diaminodiphenylmethane, 4,4′-diamino diphenyl sulfone, diethylenetoluenediamine
  • the arylyl amines can be selected from meta xylylenediamine, 1,3-bis(aminomethyl cyclohexane).
  • the amine can be more specifically selected from diethylenetriamine, triethylenetetramine, Poly(oxypropylene diamine), poly(oxypropylene triamine), poly(glycol amine), N-aminoethylpiperazine, isophorone diamine, 1,2-diaminocyclohexane, bis(4-aminocyclohexyl)methane, 4,4-diamino-diphenylmethane, 4,4-diaminodiphenyl sulfone, m-phenylenediamine, diethyltoluenediamine, meta-xylene diamine, 1,3-bis(aminomethyl cyclohexane, and mixtures thereof.
  • the polyamides can be obtained by reaction of dimerized and trimerized vegetable oil fatty acids (9,12 and 9,11-linoleic acids) with polyamines (diethylene triamine) or from polyamines and phenolic-conatining carboxylic acids (phenalkamines).
  • amidoamines can be obtained by reaction of mono functional acid like tall-oil fatty acid with a polyamine such diethylenediamine.
  • the carboxylic functional polyester can be obtained by reaction of terphthalic acid, trimellitic anhydride and neopentyl alcohol
  • the acid anhydrides can be phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl hexahydrophthalic anhydride, hexahydrophthalic anhydride, nadic methyl anhydride or methyl himic anhydride, benzophenonetetracarboxylic dianhydride, tetrachlorophthalic anhydride, and mixtures thereof.
  • the phenolic-terminated curing agents are products that can be obtained by reaction of phenol, creseol or bisphenol a with formaldehydes.
  • the mercaptans (polysulfides and polymercaptans) curing agents generally contain terminal thiols.
  • the cyclic amidines curing agents can be for instance 2-phenyl imidazolidine.
  • the cyanate ester curing agents can be for instance bisphenol a dicyante ester.
  • the catalytic cure can be carried out with Lewis bases or Lewis acids.
  • the Lewis bases are for instance tertiary amine, like 2-diethylamino-methylphenol, 2,4,6-tris(dimethylaminomethyl)phenol and imidazoles such as 2-methylimidazole and 2-phenylimidazole, cyclic amidines like 2-phenylimidazoline, substituted ureas like 3-phenyl-1,1-dimethylurea and quaternary ammonium salt like tetralkyl- and alkyl-triphenyl phosphonium salts.
  • tertiary amine like 2-diethylamino-methylphenol, 2,4,6-tris(dimethylaminomethyl)phenol and imidazoles
  • imidazoles such as 2-methylimidazole and 2-phenylimidazole
  • cyclic amidines like 2-phenylimidazoline
  • substituted ureas like 3-phenyl-1,1-dimethylurea
  • quaternary ammonium salt like tetralkyl-
  • the Lewis acid can be selected from boron trilhalides, preferably boron trifluoride.
  • the Photoinitiated Cationic Cure can be carried out with photoinitiators like aryldiazonium salts, diaryldiazonium salts, diaryldiionium salts and onium salts of Group VIa elements, such as triarylsulfonium salt, dialkylphenacyl sulfonium salts.
  • the epoxy resins can be used in coating applications and in structural applications.
  • the coating applications can be in the fields of marine and industrial maintenance (corrosion-resistant coatings for ships, shipping containers, offshore oil rigs and platforms, transportation infrastructures such as bridges, rail car coatings, coatings for industrial storage tanks, and primers for light industrial and agricultural equipment), metal container (aluminum and steel food and beverage cans) and coil coatings (metal can ends, can bodies, building products, appliance panels, transportation, and metal furniture applications), automotive coatings (primer surface coatings) and inks and resists.
  • Coating can be done using various technologies like low solids solventborne coating, high solid solventborne coating, solvent-free coating, waterborne coating, powder coating and radiation-curable coating.
  • the structural applications can be in the field of structural composites (fiber reinforcing materials based on glass, boron, graphite and aromatic polyaramides), of civil engineering, flooring (floor paints, self-leveling floors, trowelable floors, and pebble-finished floors) and construction, of electrical laminates, of electrical laminates (printed wiring boards and printed circuit boards), of other electrical and electronic applications, like casting, potting, encapsulation (switchgear components, transformers, insulators, high voltage cable accessories, and similar devices) and transfer molding (encapsulation of electronic components such as semiconductor chips, passive devices, and integrated circuits), of adhesives (cohesion between similar and dissimilar materials such as metals, glass, ceramics, wood, cloth, and many types of plastics) and of tooling (prototypes, master models, molds and other parts for aerospace, automotive, foundry, boat building, and various industrial molded items).
  • structural composites fiber reinforcing materials based on glass, boron, graphite and aromatic polyaramides
  • civil engineering
  • the product containing epichlorohydrin according to the invention can be used for the manufacture of products that will be used in applications where they will come in contact with food and drink, more specifically for the manufacture of synthetic organic coagulants.
  • Coagulation refers to the reduction or elimination of electrostatic repulsion forces between particles via addition of certain coagulants, and in technical terms, the first phase of floc formation after chemical mixing and destabilization, but before dosing of flocculants.
  • Coagulants are generally polymers with a high cationic charge density to neutralize negative charges of colloids and initiate the formation of flocs. They generally exhibit a relatively low molecular weight in order to permit a good diffusion of the charges around the particles and a low viscosity to allow a good distribution of the polymer in the effluents.
  • coagulant By coagulant, one intends to denote a polymer, comprising at least one repeat unit containing at least one 2-hydroxypropyldialkylammonium group.
  • FIG. 5 An example of a coagulant molecule is presented in FIG. 5 .
  • the product containing epichlorohydrin is usually subjected to a reaction with ammonia, an amine, a polyaminoamide or a polyimine.
  • the amine can be a mono-, a di- or a polyamine.
  • the amine can be aliphatic, alicyclic or aromatic, saturated or unsaturated, linear or substituted.
  • the amine has preferably at least one, more preferably at least two primary amino hydrogens.
  • the amine can be represented by the general formula:
  • R 22 and R 24 can be equal, except when equal to H, or different and can independently be selected from H, alkyl or alkenyl radical, linear, branched or carbocyclic, having from 1 to 30 carbon atoms
  • R 21 and R 23 can be equal or different, preferably equal, divalent aliphatic radical aromatic radicals having from 2 to 12 carbon atoms, each of r and s is an integer of from 0 to 6, r plus s equals 0 to 6.
  • Amines include lower alkyl and lower alkenyl primary monoamines, such as methylamine, ethylamine, isopropylamine, tertbutylamine, mixed amylamines, n-octylamine, branched-chain nonylamine, secondary amines such as dimethylamine, ethylmethylamine, diethylamine, propylmethylamine, propylethylamine, dipropylamine, dibutylamine, propylbutylamine, ethylbutylamine, methylbutylamine, pentylethylamine, pentylethylamine, and pentylpropylamine, tertiary amines, as well as alkylenediamines, triamines and polyamines, with or without an alkenyl or alkyl substituent bonded to nitrogen, such as ethylenediamine, propylenediamine, butylenediamine, pentylenediamine,
  • the monoamine is preferably a secondary amine, more preferably dimethylamine.
  • the diamine is more preferably selected from 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, a N-substituted diaminopropane, more preferably, 1-amino-3-dimethylaminopropane, 1-amino-3-diethylaminopropane, 1-amino-3-cyclohexylaminopropane, N,N,N′,N′-tetramethyl-1,3-propanediamine, 1,3-diaminobutane, 1,5-diaminopentane, 1,8-diaminooctane, 1,10-diaminodecane, 1,12-diaminododecane, 2-(diethylamino)ethylamine, 1-diethylamino-4-aminopentane, 3-aminomethyl-3,5,5-trimethylcyclohexylamine and N,N
  • Polyaminoamides are generally obtained from polyamide, preferably polyacrylamide, formaldehyde and an amine, preferably a secondary amine. Poly[N-(dialkylaminoalkyl)acrylamide] is particularly preferred.
  • Polyimines are usually obtained by ring opening polymerization of alkylene imine, preferably ethylene imine.
  • reaction between the product containing epichlorohydrin and the compound containing at least one, preferably two primary amino hydrogens can be carried out by any process known in the art.
  • the reaction is generally carried out in the liquid phase, possibly in the presence of a solvent.
  • the solvent may be selected from water, an organic solvent, preferably miscible with water, or mixtures thereof. Water is preferred. Monoalcohols, like methanol, ethanol, n-propanol, isopropanol and butanol are preferred organic solvents
  • the ammonia or amine content in the solvent-ammonia or amine mixture is usually higher than or equal to 5% by weight (% wt), preferably higher than or equal to 10 wt %, more preferably higher than or equal to 20 wt % and most preferably higher than or equal to 45 wt %. That content is usually lower than or equal to 90 wt %, preferably lower than or equal to 75 wt %, more preferably lower than or equal to 60 wt %, and most preferably lower than or equal to 55 wt %.
  • the molar ratio between epichlorohydrin and ammonia or amine is generally higher than or equal to 0.1, preferably higher than or equal to 0.5, more preferably higher than or equal to 0.75 and most preferably higher than or equal to 1. That ratio is usually lower than or equal to 10, preferably lower than or equal to 5, more preferably lower than or equal to 3, and most preferably lower than or equal to 2.
  • the temperature at which the reaction is carried out is generally higher than or equal to 10° C., preferably higher than or equal to 25° C., more preferably higher than or equal to 50° C. and most preferably higher than or equal to 60° C. That temperature is usually lower than or equal to 120° C., preferably lower than or equal to 110° C., more preferably lower than or equal to 100° C., and most preferably lower than or equal to 90° C.
  • the pressure at which the reaction is carried out is generally higher than or equal to 0.1 bar absolute, preferably higher than or equal to 0.2 bar, more preferably higher than or equal to 0.5 bar and most preferably higher than or equal to 1 bar. That pressure is usually lower than or equal to 20 bar, preferably lower than or equal to 10 bar, more preferably lower than or equal to 5 bar, and most preferably lower than or equal to 2 bar.
  • the duration of the reaction is generally higher than or equal to 10 min absolute, preferably higher than or equal to 20 min, more preferably higher than or equal to 30 min and most preferably higher than or equal to 60 min. That duration is usually lower than or equal to 10 h, preferably lower than or equal to 5 h, more preferably lower than or equal to 3 h, and most preferably lower than or equal to 2 h.
  • the manufacturing procedure usually involves the dissolution of the amines or ammonia in the solvent, followed by a slow addition of the epichlorohydrin, itself possibly dissolved in a solvent, possibly cooling in order to keep the temperature of the reaction between 10 and 50° C., often between 25 and 40° C., then after the epichlorohydrin addition is complete, raising the temperature to between 60 and 90° C.
  • the reaction product can be recovered as an aqueous solution, or a solid after further treatments, e.g. distillation of the solvents under vacuum, treatment of the solution with an acid or a base.
  • the monomer can also be copolymerized with acrylamide to produce higher molecular weight polymers also used for water treatment.
  • the obtained polymers usually exhibit a molecular weight that is higher than or equal to 5 000, often higher than or equal to 10 000, and frequently higher than or equal to 50 000. That molecular weight is usually lower than or equal to 500 000, often lower than or equal to 400 000, and frequently lower than or equal to 300 000. They can be obtained as aqueous solution containing from 40 to 50% by weight of polymers and exhibiting viscosities from 40 to 11 000 centipoise.
  • the product containing epichlorohydrin according to the invention can be used for the manufacture of products that will be used in applications where they will come in contact with food and drink, more specifically for the manufacture of wet-strength resins.
  • wet-strength resin one intends to denote a polyaminoamide polymer, the chemical formula of which contains at least one group selected from 2,3-epoxypropylamine, 2,3-epoxypropylammonium, 3-chloro-2-hydroxypropylamine, 3-chloro-2-hydroxypropylammonium, 3-hydroxyazetidinium, and any combination of at least two of them.
  • the product containing epichlorohydrin is usually subjected to a reaction with a polyamine or a polyamide.
  • the polyamine and the reactions conditions are as described above for the manufacture of coagulants.
  • the polyamide is usually obtained by reacting an amine, preferably a polyalkylene polyamine (in this case the polyamide is generally referred as a polyaminamide) and a dicarboxylic acid, preferably a saturated aliphatic dicarboxylic acid, as described in U.S. Pat. No. 865,727, the content of which is incorporated herein by reference.
  • the polyamide may be represented by the general formula
  • R 21 , R 22 , R 23 , r and s are as described above, and R 24 is the divalent hydrocarbon radical of the dibasic carboxylic acid, preferably selected from phenylene, naphthalene, methylene, ethylene, propylene, butylenes, pentylene, hexylene, octylene and nonylene.
  • the polyamide may be represented by the general formula
  • t and x are each 2 or more and wherein the —NH(C t H 2t HN) x — group is derived from the polyamines described above, preferably containing from 2 to 8 alkylene groups, more preferably from diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenetriamine and N-bis(aminopropyl)methylamine
  • the —COR 24 CO— group is derived from dibasic carboxylic acid containing from 2 to 12 carbon atoms, preferably selected from phenylene, naphthalene, methylene, ethylene, propylene, butylenes, pentylene, hexylene, octylene and nonylene.
  • the acid is more preferably selected from malonic, succinic, glutaric, adipic, diglycolic, sebacic or azelaic acid, and mixtures thereof.
  • the reaction between the polyamide and epichlorohydrin is usually carried out at a temperature generally higher than or equal to 45° C. That temperature is usually lower than or equal to 100° C., preferably lower than or equal to 70° C.
  • the temperature at which the reaction is conducted is preferably selected in two stages.
  • the reaction mixture is maintained at 30° C.-50° C., preferably 39°-41° C.
  • Reaction time for the first stage is preferably about 90-190 minutes to form an intermediate polyaminochlorohydrin.
  • the reaction temperature is gradually increased to 55°-75° C. such that the intermediate polyaminochlorohydrin is controllably cross-linked to a determined level.
  • the second stage is continued until the viscosity of the reaction mixture reaches the desired level (preferably level M to N on a Gardner-Holdt viscosity scale).
  • the reaction can be carried out neat or in an aqueous solution of up to 57 wt % in water.
  • the polyaminoamide is reacted with epichlorohydrin in an aqueous solution of 52-57 wt % in water that is, a solution of 43-48 wt % total solids (the weight percentage of the solution that is solubilized solid material), more preferably about 45 wt % total solids.
  • Reaction time varies depending on the temperature, with lower temperatures taking longer times.
  • the typical composition of these resins is 12.5% (10-40% solids).
  • due to the cost of transporting water companies have tried to produce resin solutions of higher concentration. It appears that at least one of the main issues making such concentrated solutions difficult to prepare is their high content of dichloropropanol so the level of this impurity is exceeded in the final application.
  • Reaction is preferably carried out until all, or substantially all of the available amine groups on the polyaminoamide are reacted with epichlorohydrin.
  • reaction times vary between about 1 and 19 hours, preferably between 3 and 6 hours.
  • the epichlorohydrin is added slowly over time to the polyaminoamide to allow for more effective heat transfer from the reaction medium.
  • Heat transfer from the reaction medium can be accomplished according to known procedures, such as immersing the reaction vessel in a refrigerated environment, e.g., an ice bath, or passing refrigerated coils inside the reaction vessel.
  • the reaction is usually carried out in aqueous solution to moderate the reaction.
  • the pH adjustment is usually not necessary but since the pH decreases during the reaction, it may be desirable in some cases, to add alkali to combine with at least some of the acid formed.
  • epichlorohydrin it is preferred to use sufficient epichlorohydrin to convert the entire secondary amine group to tertiary amine groups.
  • the molar ratio between epichlorhydrin and the secondary amine groups is usually higher than or equal to 0.1, preferably higher than or equal to 0.5, and more preferably higher than or equal to 1. That molar ratio is usually lower than or equal to 10, preferably lower than or equal to 5, and more preferably lower than or equal to 2.
  • the reaction between the polyamide and epichlorohydrin can also be carried in the presence of a quaternizing agent, the conditions of reaction and the reactants, except for the inclusion of the quaternizing agent, being essentially the same as described above.
  • the epichlorhydrin is first added to an aqueous solution of the polyamide at a temperature from 45 to 55° C.
  • the reaction mixture is then heated to a temperature from about 60 to 100° C., and preferably from about 50 to 80° C., depending on the rate of the polymerization desired.
  • the quaternizing agent is added and the reaction mixture heated, preferably at a temperature from 60° C. to 80° C.
  • the pH of the reaction mixture is then reduced to 4, preferably between 2 and 3 with any suitable acid such as sulphuric, hydrochloric formic and the like.
  • the amount of quaternizing agent should be sufficient to convert from 25% to 75%, preferably 50% of the tertiary amine group to quaternary group.
  • the quaternizing agent may be any compound capable of quaternizing a tertiary nitrogen atom in an aqueous medium.
  • these compounds are characterized by having as a principal part of their structure an alkyl group or substituted alkyl group which is readily available for alkylation under the conditions herein described.
  • These include the lower alkyl esters of mineral acids such the halides, sulfates and phosphates, and substituted alkyl halides.
  • Illustrative of these compounds which may be used are dimethyl, diethyl and dipropylsulfate, methyl chloride, methyl iodide, methyl bromide, ethyl bromide, propyl bromide, the mono-, di- or tri-methyl, ethyl and propyl phosphates, 1,3-dcihloropropanol-2 and 1-chloroglycerol.
  • Certain aromatic compounds may also be used like benzyl chloride and methyl p-toluene sulfonate.
  • the above products resulting from the reaction between epichlorohydrin and the polyamide can be further cross polymerized by treatment with a sodium carbonate or sodium hydroxide solution at a pH between 10.5 and 12.
  • resins are used in papers that will get wet such as paper towels, tea bags, coffee filters, milk cartons, meat wrapping, wallpaper. They can also be used in the production of high fructose corn syrup and to prevent wool from shrinking.
  • the product containing epichlorohydrin according to the invention can be used for the manufacture of cationization agents.
  • cationization agent By cationization agent, one intends to denote a quaternary ammonium salt, the chemical formula of which contains at least one group selected from 2,3-epoxypropyl, 3-chloro-2-hydroxypropyl, and their combination, and which is not a polymer.
  • Cationization agents are often quaternary ammonium salt containing a glycidyl or a 3-chloro-2-hydroxypropyl group attached to the nitrogen atom.
  • the cationization agent can be isolated as solids or as solution in water or in organic solvents.
  • cationization agents are 3-chloro-2-hydroxypropyl trimethylammonium chloride and glycidyl trimethyl ammonium chloride.
  • the product containing epichlorohydrin is usually subjected to a reaction with an amine, an amine salt, or a mixture thereof.
  • the amine is preferably a tertiary amine and the amine salt is preferably a tertiary amine salt.
  • the tertiary amine salt is for instance a salt obtained by treating an amine with an acid, preferably an inorganic acid, like for instance hydrochloric or sulphuric acid.
  • the tertiary amine may be represented by the formula
  • R 3 , R 32 and R 33 can be selected from the group consisting of alkyl, cycloalkyl, alkene, aryl, aralkyl, alkylaryl, two of them being possibly joined to form a ring and containing from 1 to 25 carbon atoms.
  • the group attached to the nitrogen can be linear or substituted, saturated or unsaturated.
  • R 31 , R 32 and R 33 are the same, they preferably each should not contain more than 4 carbon atoms. If all three of R 31 , R 32 and R 33 are not the same and if R 33 contains up to 18 carbon atoms, the R 31 and R 32 should preferably be of the group consisting of methyl and ethyl. If R 31 and R 32 are joined to form a ring, then R 33 should preferably be from the group consisting of methyl and ethyl.
  • tertiary amines examples include triethylamine, N-methyl and N-ethylmorpholine, N-ethyl and N-methylpiperidine and methyl diallylamine, trimethylamine, dimethylbenzylamine, dimethyldodecylamine, dimethylstearylamines, dimethylaniline, tri-npropylamine.
  • the tertiary amine possess two methyl groups attached to the nitrogen, like for instance, trimethylamine, dimethylbenzylamine, dimethyldodecylamine, dimethylstearylamine, and dimethylaniline.
  • the amine salt is preferably a salt obtained by reaction between the above described amines with hydrochloric or sulfuric acid, preferably with hydrochloric acid.
  • reaction between the product containing epichlorohydrin and the amine or the amine salt can be carried out by any process known in the art such as those described in U.S. Pat. No. 2,876,217 the content of which is incorporated herein by reference.
  • the reaction is generally carried out in the liquid phase, possibly in the presence of a solvent.
  • the solvent may be selected from water, an organic solvent e.g. an alcohol, a ketone, an ester or an aliphatic hydrocarbon, preferably miscible with water, or mixtures thereof. Water is preferred.
  • Monoalcohols like methanol, ethanol, n-propanol, isopropanol and butanol are preferred organic solvents, with methanol being particularly preferred.
  • the content of epichlorohydrin in the solvent is usually higher than or equal to 0.1 mol/l, often higher than or equal to 0.5 mol/l, frequently higher than or equal to 1.0 mol/l, particularly higher than or equal to 2 mol/l, specifically higher than or equal to 5 mol/l and sometimes higher than or equal to 10 mol/l. That epichlorohydrin content is usually lower than 20 mol/l.
  • the content of amine or amine salt in the solvent is usually higher than or equal to 0.1 mol/l, often higher than or equal to 0.5 mol/l, frequently higher than or equal to 1.0 mol/l, particularly higher than or equal to 2 mol/l, specifically higher than or equal to 5 mol/l and sometimes higher than or equal to 10 mol/l. That amine or amine salt content is usually lower than 20 mol/l.
  • the molar epichlorohydrine/amine or amine salt ratio is usually higher than or equal to 0.1, preferably higher than or equal to 0.5, more preferably higher than or equal to 1 and most preferably higher than or equal to 1.2. That ratio is usually lower than or equal to 10, more preferably lower than or equal to 5 and lost preferably lower than or equal to 2.
  • the temperature at which the reaction is carried out is generally higher than or equal to 0° C., preferably higher than or equal to 10° C., more preferably higher than or equal to 25° C. and most preferably higher than or equal to 40° C. That temperature is usually lower than or equal to 100° C., preferably lower than or equal to 80° C., more preferably lower than or equal to 60° C., and most preferably lower than or equal to 50° C.
  • the pressure at which the reaction is carried out is generally higher than or equal to 0.1 bar absolute, preferably higher than or equal to 0.2 bar, more preferably higher than or equal to 0.5 bar and most preferably higher than or equal to 1 bar. That pressure is usually lower than or equal to 20 bar, preferably lower than or equal to 10 bar, more preferably lower than or equal to 5 bar, and most preferably lower than or equal to 2 bar.
  • the duration of the reaction is generally higher than or equal to 10 min absolute, preferably higher than or equal to 20 min, more preferably higher than or equal to 30 min and most preferably higher than or equal to 60 min. That duration is usually lower than or equal to 72 h, preferably lower than or equal to 60 h, more preferably lower than or equal to 48 h, and most preferably lower than or equal to 10 h.
  • the pH of the reaction is usually at least 5, and preferably at least 6. That pH is usually at most 9, preferably at most 8.
  • the manufacturing procedure usually involves the mixing of the amine, epichlorohydrin and water, followed by heating at the desired temperature for the desired duration.
  • the aqueous solution is further concentrated by vacuum distillation.
  • the temperature of distillation is as described for the reaction.
  • the distillation pressure is usually lower than or equal to 100 mbar absolute, preferably lower than or equal to 75 mbar and most preferably lower than or equal to 50 mbar. That pressure is usually higher than or equal to 1 mbar absolute.
  • an aqueous solution of the amine is first added to hydrochloric acid until a pH between 8 and 9 is obtained.
  • Epichlorohydrin is further added to the resulting solution and the mixture stirred at the desired temperature for the desired duration.
  • the solution is further distilled under vacuum to the solid 3-chloro-2-trialkylammonium chloride.
  • the solid can be used as such or further cyclized into the glycidyl derivative by reaction with sodium hydroxide in aqueous solution.
  • an amine hydrochloride is dispersed in water. Sufficient sodium hydroxide is added to raise de pH from around 3 to around 8. Epichlorohydrin is further added to the resulting solution and the mixture stirred at the desired temperature for the desired duration. The chlorohydrin group is further cyclized into the glycidyl derivative by reaction with sodium hydroxide in aqueous solution.
  • the aqueous solution obtained at the end of the reaction can be further concentrated by vacuum evaporation or distillation at a temperature of less than 50° C. in order to obtain a slurry containing at least 90% by weight of solid, preferably at least 95% by weight.
  • a water miscible alcohol having 3 to 4 carbon atoms such as isopropanol, n-propanol, and tert-butanol, preferably isopropanol, is added to the slurry, such as to obtain an alcohol content from 10 to 70% wt, preferably from 25 to 50% wt, based on the total weight of the resulting alcohol-water slurry.
  • the precipitated solids are then recovered by filtration or by other means suitable for removing solids from liquid.
  • the solid may optionally be washed with additional volumes of alcohol or another non-solvent and/or dried to remove any trace of water and alcohol.
  • the reaction product can be recovered as an aqueous solution, or a solid after further treatments, e.g. distillation of the solvents under vacuum, treatment of the solution with an acid or a base.
  • Cationization agents are mainly used in the cationization of starch to be utilized by the paper industry for processing of high quality paper grades or for cationization of textile for dye fixing.
  • the product containing epichlorohydrin according to the invention can be used for the manufacture of flame retardants additives.
  • the product containing epichlorohydrin according to the invention can preferably be used for the manufacture of phosphorus containing flame retardants additives.
  • phosphorus containing flame retardants By phosphorus containing flame retardants, one intends to denote a compound, the chemical formula of which contains at least one phosphorus atom and at least one group selected from 2,3-epoxypropyloxy, 3-chloro-2-hydroxypropyl, and the combination of at least two of them.
  • the product containing epichlorohydrin is usually subjected to a reaction with an inorganic or organic compound containing phosphorus.
  • inorganic compounds are for instance a phosphoric acid (ortho, pyro and polyphosphoric acid), a phosphoric acid salt and a phosphorus oxychloride.
  • organic compounds containing phosphorus are for instance phosphoric acid esters (of ortho, pyro and polyphosphoric acid), phosphonic acids, their esters or their salts, phosphinic acids, their esters or their salts and phosphine oxides.
  • the compounds containing phosphorus may be represented by the general formula
  • X 1 , X 2 , X 3 can independently be selected from a halogen, H, OH, OR 41 , R 41 , OR 42 (OH) n and R 42 (OH) n wherein the halogen is preferably selected from bromine and chlorine and is preferably chlorine wherein R 41 is an alkyl, an aryl, an alkylaryl, an arylalkyl, a cycloalkyl radical containing from 1 to 20 carbon atoms, often from 3 to 12 carbon atoms wherein R 42 is an alkylene, arylene, alkylarylene, arylalkylene, cycloalkylene radical containing from 1 to 20 carbon atoms, often from 3 to 12 carbon atoms wherein n is an integer equal to 1 or 2 wherein at least two of X 1 , X 2 , X 3 can be joined to form a ring, preferably with the phosphorus atom.
  • the halogen is preferably selected from bromine and chlorine and is preferably
  • Examples of phosphorus containing compounds are tris(1,3-dichloro-2-propyl) phosphate, tris(1-chloro-2-propyl) phosphate, tris(2,3-dichloropropyl) phosphate, isobutylbis(hydroxypropyl)phosphine oxide, 10-(2′,5′-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DHQEP), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), the reaction products of DOPO and 4,4′-dihydroxybenzophenone (DOPO2OH and 2DOPO-PhOH,II as represented in Liu Y. L., Journal of Polymer Science: Part A: Polymer Chemistry, 2002, Vol. 40, 359-368 and Journal of Applied Polymer Science, 2002, Vol. 83, 1697-1701).
  • reaction between the product containing epichlorohydrin and the phosphorus containing compound is carried out by any process known in the art such as those described in Journal of Applied Polymer Science, 2002, Vol. 83, 1697-1701).
  • the reaction is generally carried out in the liquid phase, possibly in the presence of a solvent.
  • the solvent may be selected from water, an organic solvent e.g. an alcohol, or mixtures thereof. An alcohol is preferred. Monoalcohols, like methanol, ethanol, n-propanol, isopropanol and butanol are preferred organic solvents, with ethanol being particularly preferred.
  • the content of epichlorohydrin in the reaction mixture is usually higher than or equal to 0.1 mol/l, often higher than or equal to 1.0 mol/l, frequently higher than or equal to 2 mol/l and particularly higher than or equal to 5 mol/l. That epichlorohydrin content is usually lower than 20 mol/l.
  • the content of the phosphorus containing compound in the reaction mixture is usually higher than or equal to 0.1 mol/l, often higher than or equal to 0.2 mol/l and frequently higher than or equal to 0.5 mol/l. That content is usually lower than 2 mol/l.
  • the molar epichlorohydrin/phosphorus containing compound ratio is usually higher than or equal to 1, preferably higher than or equal to 2, more preferably higher than or equal to 5 and most preferably higher than or equal to 10. That ratio is usually lower than or equal to 50, more preferably lower than or equal to 30 and most preferably lower than or equal to 20.
  • the temperature at which the reaction is carried out is generally higher than or equal to 0° C., often higher than or equal to 5° C., frequently higher than or equal to 10° C., particularly higher than or equal to 20° C. and more specifically higher than or equal to 50° C. That temperature is usually lower than or equal to 100° C., preferably lower than or equal to 80° C., more preferably lower than or equal to 60° C., and most preferably lower than or equal to 30° C.
  • the pressure at which the reaction is carried out is generally higher than or equal to 0.1 bar absolute, preferably higher than or equal to 0.2 bar, more preferably higher than or equal to 0.5 bar and most preferably higher than or equal to 1 bar. That pressure is usually lower than or equal to 20 bar, preferably lower than or equal to 10 bar, more preferably lower than or equal to 5 bar, and most preferably lower than or equal to 2 bar.
  • the duration of the reaction depends on the temperature at which the reaction is carried out. That duration is generally higher than or equal to 10 min absolute, preferably higher than or equal to 1 h, more preferably higher than or equal to 10 min and most preferably higher than or equal to 24 h. That duration is usually lower than or equal to 72 h, preferably lower than or equal to 60 h, more preferably lower than or equal to 48 h, and most preferably lower than or equal to 30 h.
  • a basic compound e.g., potassium hydroxide can be present in the reaction medium. This is generally the case when the phosphorus containing compound includes OH groups in the molecule.
  • the molar basic compound/phosphorus containing compound ratio is usually higher than or equal to 0.1, preferably higher than or equal to 0.15, and most preferably higher than or equal to 0.2. That ratio is usually lower than or equal to 5, more preferably lower than or equal to 3 and lost preferably lower than or equal to 1.
  • An onium salt preferably a quaternary ammonium or phosphonium salt, more preferably a quaternary ammonium chloride, like for instance benzyltrimethylammonium chloride, can be present in the reaction medium.
  • the phosphorus containing compound is a phosphine oxide.
  • the onium/phosphorus containing compound ratio is usually higher than or equal to 0.01, preferably higher than or equal to 0.05, and most preferably higher than or equal to 0.1. That ratio is usually lower than or equal to 1, more preferably lower than or equal to 0.5 and most preferably lower than or equal to 0.2.
  • the product of the reaction can be recovered by any means, e.g., filtration and submitted to washing operations before being submitted to evaporation under reduced pressure.
  • Flame retardants are usually used to inhibit the evolution of combustible gases in various materials such as polymers, in particular in polyurethane foams.
  • the product containing epichlorohydrin according to the invention can be used for the manufacture of detergent ingredients.
  • detergent ingredient one intends to denote a compound, the chemical formula of which contains at least one 3-sulfonate-2-hydroxy-propyloxy group.
  • the compound can be an oligomer or a polymer.
  • An oligomer is a polymer with a number of repeat units in each polymer molecule of less than 20.
  • detergent ingredient one intends to denote a polymer, at least one repeat unit of which comprises at least one 2-hydroxypropylammonium group, preferably a 2-hydroxypropylimidazolidium group.
  • the product containing epichlorohydrin according to the invention can preferably be used for the manufacture of cationic monomers, polymers or oligomers, anionic surfactants, for instance sulfonates based surfactants, preferably alkyl glyceryl ether sulfonate surfactants, monomeric or oligomeric or cationic cyclic amine based polymers.
  • anionic surfactants for instance sulfonates based surfactants, preferably alkyl glyceryl ether sulfonate surfactants, monomeric or oligomeric or cationic cyclic amine based polymers.
  • the detergent auxiliary is a sulfonate based surfactant
  • the product containing epichlorohydrin is usually subjected to a reaction with an aliphatic alcohol containing from 10 to 40 carbon atoms, preferably from 10 to 22 carbon atoms more preferably from 14 to 18 carbon atoms and most preferably from 16 to 18 carbon atoms.
  • the alkyl chain may be branched or linear or ethoxylated, wherein when present, the branches comprise an alkyl moiety containing from 1 to 4 carbon atoms, such as methyl or ethyl.
  • the detergent ingredient is a cationic amine based polymer
  • the product containing epichlorohydrin is usually subjected to a reaction with an amine selected from the group consisting of linear alkylamines, branched alkylamines, cycloalkylamines, alkoxyamines, amino alcohols, cyclic amines containing at least one nitrogen atom in a ring structure, alkylenediamines, polyetherdiamines, polyalkylenepolyaminesamine.
  • Cyclic amines containing at least one nitrogen atom in a ring structure are for example monoaminoalkylpiperazines, bis(aminoalkyl)piperazines, monoaminoalkylimidazoles, aminoalkylmorpholines, aminoalkylpiperidines and aminoalkylpyrrolidines.
  • the monoaminoalkylpiperazines are for example 1-(2-aminoethyl)piperazine and 1-(3-aminopropyl)piperazine.
  • Preferred monoaminoalkylimidazoles have 2 to 8 carbon atoms in the alkyl group.
  • suitable compounds are 1-(2-aminoethyl)imidazole and 1-(3-aminopropyl)imidazole.
  • Suitable bis(aminoalkyl)piperazines are for example 1,4-bis(2-aminoethyl)piperazine and 1,4-bis(3-aminopropyl)-piperazine.
  • Preferred aminoalkylmorpholines are aminoethylmorpholine and 4-(3-aminopropyl)-morpholine.
  • Other preferred compounds of this group are aminoethylpiperidine, aminopropylpiperidine and aminopropylpyrrolidine.
  • Cyclic amines with at least two reactive nitrogen atoms in the ring are for example imidazole, C-alkyl substituted imidazoles having 1 to 25 carbon atoms in the alkyl group such as 2-methylimidazole, 2-ethylimidazole, 2-propylimidazole, 2-isopropylimidazole and 2-isobutylimidazole, imidazoline, C-alkyl substituted imidazolines having 1 to 25 carbon atoms in the alkyl group and arylimidazolines such as 2-phenylimidazoline and 2-tolylimidazoline, piperazine, N-alkylpiperazines having 1 to 25 carbon atoms in the alkyl group such as 1-ethylpiperazine, 1-(2-hydroxy-1-ethyl)piperazine, 1-(2-hydroxy-1-propyl)piperazine, 1-(2-hydroxy-1-butyl)piperazine, 1-(2-hydroxy-1-pentyl)piperazine
  • N,N′-dialkylpiperazines having 1 to 25 carbon atoms in the alkyl group for example 1,4-dimethylpiperazine, 1,4-diethylpiperazine, 1,4-dipropylpiperazine, 1,4-dibenzylpiperazine, 1,4-bis(2-hydroxy-1-ethyl)piperazine, 1,4-bis(2-hydroxy-1-propyl)piperazine, 1,4-bis(2-hydroxy-1-butyl)piperazine, 1,4-bis(2-hydroxy-1-pentyl)piperazine, and 1,4-bis(2-hydroxy-2-phenyl-1-ethyl)piperazine.
  • Other cyclic amines with at least two reactive nitrogen atoms are melamine and benzimidazoles such as 2-hydroxybenzimidazole and 2-aminobenzimidazole.
  • reaction between the product containing epichlorohydrin and the alcohol is carried out by any process known in the art such as those described in U.S. Pat. No. 5,567,359 and US 2006/0079433, the contents of which are incorporated herein by reference.
  • the reaction is usually carried out at a temperature between 65 and 90° C.
  • Typical molar ratios of alcohol:epichlorohydrin range from 1:1.24 to 1:4.02.
  • a catalyst is usually used when carrying out the reaction, for instance stannic chloride.
  • the mass ratio of initial alcohol:stannic chloride is generally of 100:0.67.
  • the duration of the reaction is usually between 0.25 and 1 h.
  • the epichlorohydrin/alcohol ratio and the duration can be adapted to the required degree of oligomerisation
  • the product of the reaction is a monomeric or oligomeric alkyl chloroglyceryl ether.
  • the alkyl chloroglyceryl ether is further converted into an alkyl glycidyl ether by reaction with a basic compound, preferably sodium hydroxide. That reaction is usually carried out with a 35% aqueous solution of sodium hydroxide at a temperature higher than 90° C. and for a molar ratio alcohol:NaOH of 1:1.5.
  • the alkyl glycidyl ether is further converted into an alkyl glyceryl surfactant by reaction usually with a mixture of sodium bisulfite and sodium sulfite, generally obtained by combining sodium meta-bisulfite with sodium hydroxide.
  • reaction between the product containing epichlorohydrin and the amine is carried out by any process known in the art such as those described in U.S. Pat. No. 6,740,633 and US 2006/0052272, the contents of which are incorporated herein by reference.
  • the reaction is usually carried out at a temperature between 25 and 90° C., in two steps the first one at a temperature between 40 and 60° C. and the second one between 90 and 100° C.
  • Typical molar ratios of amine:epichlorohydrin range from 1:1 to 1:1.4.
  • the duration of the reaction is usually between 0.25 and 1 h.
  • the condensation product between the amine and epichlorohydrin is usually further quaternarized using alkyl halides, epoxides, chloroacetic acid, 2-chloroethanesulfonic acid, chloropropionic acid, epoxysuccinic acid, propane sulfone, 3-chloro-2-hydroxypropanesulfonic acid, dimethyl sulfate and/or diethyl sulfate, or oxidized by oxidation of the tertiary nitrogen atoms of the condensation products to N-oxides.
  • alkyl halides epoxides, chloroacetic acid, 2-chloroethanesulfonic acid, chloropropionic acid, epoxysuccinic acid, propane sulfone, 3-chloro-2-hydroxypropanesulfonic acid, dimethyl sulfate and/or diethyl sulfate, or oxidized by oxidation of the tertiary nitrogen atoms of the condensation
  • detergent ingredients are surfactants or surface deposition enhancing materials. They are usually used as components of cleaning compositions for instance dishwashing, laundry compositions, shampoos and synbars.
  • the product containing epichlorohydrin according to the invention can be used for the manufacture of epichlorohydrin elastomers.
  • epichlorohydrin elastomer By epichlorohydrin elastomer, one intends to denote a polymer, containing at least one type of repeat units, at least one type of repeat units containing at least one 2-chloromethylethoxy group.
  • the polymer can a homopolymer or a copolymer.
  • Examples of epichlorohydrin elastomers are homopolymers of epichlorohydrin, copolymers of epichlorohydrin with an alkylene or phenylene oxide, and terpolymers of epichlorohydrin with an alkylene or phenylene oxide, and a glycidyl ether.
  • the alkylene oxide can be selected from styrene oxide, propylene oxide, ethylene oxide, butene-1 oxide, dodecene-1-oxide, and is preferably ethylene oxide.
  • the glycidyl ether can be selected from alkyl and haloalkyl glycidyl ethers, for instance, 2-chloroethyl glycidyl ether and allyl glycidyl ether.
  • the product containing epichlorohydrin is usually subjected to a reaction with an alkylene or phenylene oxide or with an alkylene or phenylene oxide and a glycidyl ether or the epichlorohydrin is homopolymerized.
  • reaction is carried out by any process known in the art such as those described in U.S. Pat. No. 3,135,705, U.S. Pat. No. 3,158,580, U.S. Pat. No. 3,158,581, U.S. Pat. No. 3,026,270 and U.S. Pat. No. 3,341,491, the contents of which are incorporated herein by reference.
  • the reaction is usually carried out in solution in aliphatic or aromatic hydrocarbons, chlorinated hydrocarbons, or ether.
  • the weight ratio between epichlorhydrin and the alkylene oxide is usually between 20:80 and 90:10.
  • the reaction is preferably carried out in the presence of a catalyst formed by reacting R 51 3 Al and water (thought to be R 51 2 Al—O—AlR 51 2 ), where R 51 can be selected from alkyl, cycloalkyl, aryl or alkaryl radical.
  • the catalyst activity can be improved by the addition of acetylacetone.
  • the reaction can be carried out in a continuous process using a back-mixed reactor.
  • the temperature at which the reaction can be carried out is usually comprised between ⁇ 80° C. and 250° C., preferably between ⁇ 80 and 150° C., more preferably between ⁇ 30 and 100° C. A temperature between 25 and 50° C. is particularly convenient
  • the homopolymer of epichlorohydrin and the copolymers can be further cross-linked, e.g, by further reacting with a polyamine, or an amine in the presence of at least one agent from the group of sulfur, dithiocarbamates, thiuram sulfides and thiazoles, or with a metal compound selected from the group consisting of salts of aromatic carboxylic acids, aliphatic carboxylic acids, carbonic acid, phosphorous acid, silicic acid, and oxides of the metals of Groups IIA, IIB and IVA of the periodic Table and at least one heterocyclic compound selected from the group consisting of 2-mercaptoimidazolines and 2-mercaptopyrimidine.
  • epichlorohydrin elastomers are generally used in specialty applications, like for instance automotive components (fuel pump diaphragms, emission control hoses, motor mounts, gaskets, seals and portable fuel tanks), in the aircraft industry, for specialty roofing membranes, coated fabrics, solvent storage containers, paper mill and printing roll and in a variety of oil specialties.
  • the epichlorohydrin has been dried over calcium hydride under vacuum for 24 h at 25° C. and further distilled.
  • the polymerization reactions have been carried out in pyrex vessels fitted with polytetrafluorethylene valves.
  • the vessels have been evacuated under flame heating to remove residual moisture. After cooling to room temperature, the vessels have been cooled to ⁇ 30° C. (ethanol/liquid nitrogen cooling bath) and toluene and epichlorohydrin, have been added under vacuum. After those additions, argon has been introduced in the vessel and tetraoctylammonium bromide and triisobutyl aluminium have been added to the vessel. This addition constituted the time zero of the reaction. After a given time under magnetic stirring at ⁇ 30° C., the reaction has been stopped by adding 1-2 ml of ethanol to the vessel. Half of the volume of the reaction medium has then been submitted to evaporation after which the polymer has been recovered from the vessel.
  • the conversion has been obtained by comparing the weight of recovered polymer with the weight of added epichlorohydrin.
  • the theoretical molar weight (Mn th.) has been calculated on the basis of the quantity of tetraoctylammonium bromide.
  • the measured polymer molar weight (Mn exp) and the molar weight dispersion have been obtained by Gel Permeation Chromatography.
  • the tacticity of the polymer has been obtained by 13 C and 1 H NMR.
  • the apparatus employed was a thermostatised flask equipped with a mechanical stirrer, with a jacket containing a thermocouple and with a Dean-Stark separator surmounted by a water-cooled condenser.
  • a pump was used to inject a caustic soda aqueous solution at a constant rate in the flask.
  • the reaction flask was initially charged with a mixture of bisphenol A (68.4 g, 0.3 mol) and the epichlorohydrin sample ECH4 coming from a propylene-chlorine plant (277.5 g, 3.0 mol).
  • the analysis of the epichlorydrin is given in Table 1.
  • the trichloropropane content is of 0.049 g/kg.
  • the mixture was heated at reflux under stirring to a temperature of 11° C.
  • a 40% aqueous solution of caustic soda (60.8 g, 0.6 mol) was introduced at a rate of 12 ml/h during 3.5 hour.
  • the temperature of the mixture in the flask was maintained in the range 100° C.-115° C. in order to assure a constant reflux.
  • the epichlorohydrin rich organic phase decanted during the reaction as a lower phase in the separator was recycled regularly in the reaction flask and the aqueous rich phase collected as an upper phase in the separator was regularly drawn off.
  • the heating was maintained for min after the total introduction of the caustic soda solution to achieve the collect of the water phase in the decantor. 29.7 g of aqueous phase was collected with a composition given in Table 6.
  • the salt was separated from the crude product (45.5 g) after addition of 567.2 g of toluene under agitation and by filtration. The cake of filtration was washed with 124.4 g of toluene. The toluene solutions were mixed and evaporated at 185° C. under a pressure of 1 mbar.
  • the reaction flask was initially charged with a mixture of bisphenol A (68.4 g, 0.3 mol) and epichlorohydrin sample ECH 5 (277.5 g, 3.0 mol).
  • the analysis of the epichlorydrin is given in Table 1.
  • the trichloropropane content is of 0.007 g/kg.
  • the mixture was heated at reflux under stirring to a temperature of 119° C.
  • a 40% aqueous solution of caustic soda (60.8 g, 0.6 mol) was introduced at a rate of 12 ml/h during 3.5 hour.
  • the temperature of the mixture in the flask was maintained in the range 102° C.-119° C. in order to assure a constant reflux.
  • the epichlorohydrin rich organic phase decanted during the reaction as a lower phase in the separator was recycled regularly in the reaction flask and the aqueous rich phase collected as an upper phase in the separator was regularly drawn off.
  • the heating was maintained for 15 min after the total introduction of the caustic soda solution to achieve the collect of the water phase in the decantor. 54.5 g of aqueous phase was collected with a composition given in Table 6.
  • the epichlorohydrin in excess was removed from the reaction mixture by distillation under a vacuum of 30 mbar and by a progressive heating of the mixture to 118° C. 148.2 g (1.5 mol) of epichlorohydrin was recovered in this step.
  • the composition of the distillate is given in Table 6.
  • the salt was separated from the crude product (47.8 g) after addition of 228.4 g of toluene under agitation and by filtration. The cake of filtration was washed with 97.3 g of toluene. The toluene solutions were mixed and evaporated at 180° C. under a pressure of 1 mbar.
  • Example 17 Epichlorohydrin Water Toluene Epichlorohydrin Water Toluene evaporated evaporated evaporated evaporated evaporated Component (g/kg) (mg/l) (g/kg) (g/kg) (mg/l) (g/kg) acetaldehyde n.d. 2.9 n.d. n.d. 1.3 n.d. acrolein n.d. 0.58 n.d. 0.002 0.42 n.d. 2-propanol n.d. ⁇ 0.05 n.d. n.d. 0.3 n.d. 3-chloro-1-propene 0.001 n.d. n.d. n.d.
  • n.d. n.d. n.d. n.d. n.d. n.d. C 6 H 10 Cl 2 iso 2 0.007 n.d. n.d. n.d. n.d. n.d. methyl glycidyl ether n.m. n.m. n.m. n.m. n.m. n.m. n.m. Unknowns (sum) 0.299 10.00 1.31 0.213 1.3 1.373 n.d.: not detected, n.m.: not measured
  • a glass thermostated jacketed reactor having a working volume of 305 ml was supplied continuously with 47.2 wt % sodium hydroxide and with an aqueous mixture of dichloropropanol, a mixture prepared from glycerol and concentrated hydrochloric acid in the presence of an organic acid according to the International Application WO 2005/054167 filed by Solvay SA.
  • the mixture contained 575 g of water/kg, 404.6 g of 1,3-dichloro-2-propanol/kg, 20.1 g of 2,3-dichloro-1-propanol/kg, 0.14 g of acrolein/kg, 0.13 g of epichlorohydrin/kg, 0.04 g of 1,2,3-trichloropropane/kg, 0.04 g of chloroacetone/kg and 0.03 g of an ether of crude formula C 6 H 10 O 2 Cl 2 /kg.
  • the sodium hydroxide was introduced at a flow rate of 262 g/h and the aqueous dichloropropanol mixture was introduced at a flow rate of 1180 g/h.
  • the reaction medium was constantly maintained at 25° C. with vigorous stirring.
  • the liquid mixture exiting the reactor by continuous overflow was collected and then separated in batch mode in a glass funnel so as to obtain a first separated fraction and a second separated fraction.
  • 3753 g of first separated fraction (MEL1) were subjected to a batch distillation under a vacuum of 193 mbar.
  • the batch distillation was carried out using a round-bottomed flask equipped with a magnetic stirrer bar, a thermocouple to measure the temperature of the liquid and a plate distillation column surmounted by a device enabling part of the distillate to be refluxed at the top of the column.
  • the glass plate column comprised 5 plates having a diameter of 30 mm, pierced by an internal aperture 10 mm diameter central hole for the flow of liquid and three rows of small holes having a diameter of around 0.8 mm, spaced at regular intervals of less than 1 mm between each hole, placed in an arc over three quarters of the circumference. The spacing between the plates was 30 mm.
  • the column was adiabatic (glass jacket under vacuum). A thermocouple placed in the top of the distillation column enabled the temperature of the gas phase distilled to be measured. The distillate was collected in a funnel with a stopcock. A first distillation fraction was collected between 49° C. and 67° C.
  • the mixture constituting the final boiler (MEL3) weighed 1226 g and only contained a very low fraction of epichlorohydrin implemented.
  • the organic phase D2 org and the boiler MEL3 could be recycled to the distillation operations in order to recover, for enhanced value, epichlorohydrin and a mixture of 1,3-dichloro-2-propanol and 2,3-dichloro-1-propanol respectively.
  • the compositions (g/kg) used and obtained in the distillation operations are described in Table 7.

Abstract

Product containing epichlorohydrin and at least one alkyl glycidyl ether in an amount of less than 0.1 g/kg of product. Use of the product containing epichlorohydrin in the manufacture of epoxy resins, of glycidyl ethers, of glycidyl esters, of glycidyl amides, of glycidyl imides, of products that will be used in food and drink applications, of cationization agents, and of flame retardants, of products which will be used as detergent ingredient and of epichlorohydrin oligomers.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present patent application is a Division of U.S. application Ser. No. 12/663,744, filed Dec. 9, 2009, now allowed; which is a U.S. national stage application under 35 U.S.C. §371 of International Application No. PCT/EP2008/057246 filed Jun. 11, 2008, which claims the benefit of the U.S. Provisional patent application No. 61/007,661 filed on Dec. 14, 2007, of the French Patent applications No. FR 07/55696 filed on Jun. 12, 2007, FR 07/57751 filed on Sep. 21, 2007, and of the U.S. Provisional Patent Application No. 61/013,672 filed on Dec. 14, 2007, the content of all of these applications being incorporated herein by reference for all purposes.
  • The present patent application claims the benefit of the U.S. Provisional patent application 61/007,661 filed on 14 Dec. 2007, of the French Patent applications FR 07/55696 filed on 12 Jun. 2007, FR 07/57751 filed on 21 Sep. 2007, and of the U.S. Provisional Patent Application 61/013,672 filed on 14 Dec. 2007, the content of all of which is incorporated here by reference.
  • The present invention relates to an epichlorohydrin-based product, to a process for its preparation and to the use of the product in various applications.
  • Epichlorohydrin is a reaction intermediate in the manufacture of various products like for instance epoxy resins, synthetic elastomers, glycidyl ethers, polyamide resins, etc. (Ullmann's Encyclopedia of Industrial Chemistry, Fifth Edition, Vol. A9, p. 539).
  • Epichlorohydrin can be obtained by several routes, like for instance, epoxidation of allyl chloride with hydrogen peroxide or dehydrochlorination of dichloropropanol.
  • The dichloropropanol route presents the advantage that dichloropropanol can be obtained by hydrochlorination of glycerol. This glycerol can be obtained from fossil raw materials or from renewable raw materials, e.g., from fats or oils of animal or plant origin by transesterification processes.
  • In some cases the epichlorohydrin thus obtained is contaminated with impurities which render them unsuitable for certain applications.
  • The goal of the invention is to solve those problems by providing a new product containing epichlorohydrin suitable in all known applications.
  • The invention therefore relates in a first embodiment to a product containing epichlorohydrin and at least one alkyl glycidyl ether in an amount of less than 0.1 g/kg of product.
  • One of the essential characteristics of the present invention resides in the identification of unwanted impurities. Glycidyl alkyl ethers have indeed been identified as unwanted impurities. They are very difficult to separate from epichlorohydrin because of similar boiling points. The presence of glycidyl alkyl ethers in epichlorohydrin may prove troublesome in some of these applications for various reasons. Glycidyl ethers are suspected to have reproductive toxicity, immunotoxicity and toxicity to the skin. Glycidyl methyl ether is also suspected to be mutagenic. Those ethers can interfere in the synthesis processes as the molecules could be inserted for example in a polymeric chain through the opening of the epoxide ring. They can remain in the final products and possibly degrade with a concomitant deterioration of the properties of the final products. They can exhibit or degrade in compounds exhibiting some toxicity leading to safety issues especially when the final products are intended to be in contact with food and drink. Moreover, they can accumulate in and contaminate industrial waters such as wastewaters for instance or water containing pulp that is recycled in the pulp and paper industry. In the latter case, their higher concentration can increase contamination of the paper made using the recycled water.
  • The content of alkyl glycidyl ether, in the product of the invention is preferably lower than or equal to 0.08 g/kg, more preferably lower than or equal to 0.06 g/kg, still more preferably lower than or equal to 0.04 g/kg, yet preferably lower than or equal to 0.020 g/kg, most preferably lower than or equal to 0.01 g/kg and particularly most preferably lower than or equal to 0.005 g/kg. This content is usually higher than or equal to 0.0005 g/kg.
  • The product according to the invention has an epichlorohydrin content which is generally higher than or equal to 900 g/kg of product, preferably higher than or equal to 950 g/kg, more preferably higher than or equal to 990 g/kg, yet more preferably higher than or equal to 999 g/kg and most preferably higher than 999.5 g/kg.
  • The alkyl group of the alkyl glycidyl ether can be a linear or branched or alicyclic aliphatic alkyl group and is preferably a linear or branched aliphatic group.
  • The alkyl group of the alkyl glycidyl ether contains a number of carbon atoms which is generally higher than or equal to 1, often higher than or equal to 2 and frequently higher than or equal to 3. That number of carbon atoms is generally lower than or equal to 10, often lower than or equal to 8 and frequently lower than or equal to 6.
  • The alkyl group is preferably selected from the methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl groups and more preferably from the methyl, ethyl, propyl and butyl groups and particularly preferably from the methyl and ethyl groups. Very particularly preferably, the alkyl group is a methyl group. The propyl group can be chosen from the n-propyl and isopropyl groups and is preferably an isopropyl group. The butyl group can be chosen from the 1-butyl, 2-butyl, isobutyl and tert-butyl groups, preferably from the isobutyl and tert-butyl groups.
  • The product according to the invention may contain in addition to alkyl glycidyl ether and epichlorohydrin, at least one halogenated hydrocarbon. The halogenated hydrocarbon may be an aliphatic or an aromatic halogenated hydrocarbon, optionally containing oxygen. It is often an aliphatic halogenated hydrocarbon and frequently an aromatic hydrocarbon.
  • The content of the halogenated hydrocarbon in the product is usually of less than 1 g/kg of product, preferably less than or equal to 0.8 g/kg of product, preferably less than or equal to 0.6 g/kg, more preferably less than or equal to 0.5 g/kg, yet more preferably less than or equal to 0.4 g/kg, still more preferably less than or equal to 0.2 g/kg, most preferably less than or equal to 0.1 g/kg, yet most preferably less than or equal to 0.05 g/kg, still most preferably less than or equal to 0.01 g/kg, and most particularly preferably less than or equal to 0.001 g/kg. This content is generally greater than or equal to 0.001 mg/kg.
  • That halogenated hydrocarbon can be chosen from chloropropene, trichloropropene, trichloropropane, chloropropanol, chloropropenol, dichloropropene, dichloropropane, dichloropropanol, monochloropropanediol, chloroethers, monochlorobenzene, and any mixture of at least two of them.
  • The halogenated hydrocarbon can be chosen from aliphatic halogenated hydrocarbons such as
      • chloropropene, often 2-chloro-1-propene, frequently 1-chloro-1-propene cis, usually 1-chloro-1-propene trans and specifically 3-chloro-1-propene, and any mixture of at least two of them
      • chloropropane, often 2-chloropropane, frequently 1-chloropropane, and any mixture of at least two of them
      • chloromethane, often dichloromethane, frequently trichloromethane, usually tetrachloromethane and any mixture of at least two of them
      • dichloroethane, often 1,2-dichloroethane,
      • chloroethanol, often 2-chloroethanol,
      • trichloropropene, often 1,3,3-trichloro-1-propene-cis, frequently 1,3,3-trichloro-1-propene-trans, usually 1,2,3-trichloropropene-cis (?), specifically 1,2,3-trichloropropene-trans and any mixture of at least two of them
      • trichloropropane, often-1,2,3-trichloropropane, frequently 1,1,1-trichloropropane, usually 1,1,3-trichloropropane, commonly 1,1,2-trichloropropane and any mixtures of at least two of them.
      • chloropropanol, often 3-chloro-1-propanol,
      • chloropropenol, often 2-chloro-2-propen-1-ol, frequently 3-chloro-2-propene-1-ol cis and specifically 3-chloro-2-propene-1-ol trans, and any mixture of at least two of them
      • dichloropropene, often cis-1,3-dichloropropene, frequently trans-1,3-dichloropropene, usually 3,3-dichloro-1-propene, frequently 2,3-dichloro-1-propene, usually 1,3-dichloro-1-propene-cis, specifically 1,3-dichloro-1-propene-trans, and any mixture of at least two of them,
      • dichloropropane, preferably 1,3-dichloropropane, 1,2-dichloropropane, 2,2-dichloropropane, and any mixture of at least two of them
      • dichloropropanol, often-1,3-dichloropropan-2-ol, 2,3-dichloropropan-1-ol, and mixtures thereof,
      • monochloropropanediol, often 3-chloro-1,2-propanediol, frequently 2-chloro-1,3-propanediol, and mixtures thereof, and
      • chloroethers, preferably chosen from chloroethers of crude formula: C6H10Cl2O2, C6H12Cl2O, C6H9Cl3O2, C6H11Cl3O2, and mixtures of at least two of them,
      • compounds of crude formula C4H7ClO2, C6H9Cl3, C6H9Cl3O2, C9H17Cl3O4, C9H15Cl5O, C3H3Cl3, and mixtures of at least two of them
      • dichloroepoxypropane,
        and any mixture of at least two of them.
  • Aromatic halogenated hydrocarbons comprise at least one ring of aromatic nature and a halogen atom. The halogen atom is preferably directly attached to the aromatic ring. The halogen may be chosen from fluorine, chlorine, bromine, iodine and mixtures thereof. Chlorine is preferred. The aromatic ring may be mononuclear or polynuclear, and is preferably mononuclear. The aromatic halogenated hydrocarbons may be chosen from mono-, di-, tri-, tetra-, penta- and hexachloro-benzenes and/or naphthalenes. Monochlorobenzene is particularly preferred.
  • Without wishing to be tied to one theoretical explanation, it is believed that monochlorobenzene may come from the process for manufacturing epichlorohydrin, in particular when this is obtained by dehydrochlorination of dichloropropanol. More specifically, it is believed that monochlorobenzene may be present in the dichloropropanol, in particular when this is obtained by a process for chlorinating glycerol using a chlorinating agent containing hydrogen chloride. More specifically still, it is believed that chlorobenzene may be present in the hydrogen chloride, in particular when this comes from another manufacturing process, such as the manufacture of isocyanates, diisocyanates or polyisocyanates, such as for example 4,4-methylenediphenyl diisocyanate (MDI) or toluene diisocyanate (TDI) or hexamethylene-1,6-diisocyanate (HDI).
  • The product according to the invention can contain chloropropene, in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg. The chloropropene may be selected from 2-chloro-1-propene, 1-chloro-1-propene cis, 1-chloro-1-propene trans, 3-chloro-1-propene, and any mixture of at least two of them.
  • The product according to the invention can contain trichloropropane, in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg, in an amount of commonly less than or equal to 0.008 g/kg of product, more commonly of less than or equal to 0.006 g/kg, yet more often of less than or equal to 0.004 g/kg, still more often of less than or equal to 0.002 g/kg, most frequently of less than or equal to 0.001 g/kg, yet most frequently of less than or equal to 0.0005 g/kg. That content is usually of at least 0.001 mg/kg.
  • The product according to the invention can contain trichloropropene, in an amount a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg. This content is at least 0.001 g/kg. The trichloropropene may be selected from 1,3,3-trichloro-1-propene-cis, 1,3,3-trichloro-1-propene-trans, 1,2,3-trichloropropene-cis, specifically 1,2,3-trichloropropene-trans and any mixtures of at least two of them.
  • The product according to the invention can contain chloropropenol, in a content a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg. The chloropropenol may be selected from 2-chloro-2-propen-1-ol, 3-chloro-2-propene-1-ol cis, 3-chloro-2-propene-1-ol trans and any mixtures of at least two of them.
  • The product according to the invention may contain dichloropropene, in a content a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg. The dichloropropene may be selected from 3,3-dichloro-1-propene,2,3-dichloro-1-propene, 1,3-dichloro-1-propene-cis, 1,3-dichloro-1-propene-trans, and any mixtures of at least two of them.
  • The product according to the invention can contain dichloropropane, in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.2 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg . . . . The dichloropropane may be selected from 1,3-dichloropropane, 1,2-dichloropropane, 2,2-dichloropropane, and any mixture of at least two of them.
  • The product according to the invention can contain dichloropropanol, in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg. The dichloropropanol may be selected from 1,3-dichloropropan-2-ol, 2,3-dichloropropan-1-ol and any mixtures thereof.
  • The product according to the invention can contain monochloropropanediol, in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg. The monochloropropanediol may be selected from 3-chloro-1,2-propanediol, 2-chloro-1,3-propanediol and any mixtures thereof.
  • The product according to the invention usually can contain chloroethers in in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg. The chloroethers may be selected from chloroethers of crude formula C6H10Cl2O2, C6H12Cl2O, C6H9Cl3O2, C6H11Cl3O2, and any mixtures thereof.
  • The product according to the invention usually contains chlorobenzene, often monochlorobenzene, in an amount in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg.
  • The product according to the invention may also contain in addition to epichlorohydrin, alkyl glycidyl ethers and halogenated hydrocarbons, compounds such as for example:
      • aldehydes, like acetaldehyde, acrolein, isobutanal, isopentanal, and any mixture of at least two of them,
      • ketones, like acetone, chloroacetone, cyclopentanone, 2-butanone, cyclohexanone, 2-methyl-2-cyclopentene-1-one, 3,5-dimethyl-2-cyclohexene-1-one ketone of crude formula C5H10O, C6H12O, and any mixture of at least two of them,
      • aliphatic alcohols, like isopropanol, allyl alcohol, glycerol, and any mixture of at least two of them,
      • aromatic alcohols like phenol,
      • hydroxyketones like hydroxyacetone,
      • epoxides different from epichlorohydrin, like propylene oxide, 1,2-epoxyhexane, glycidol, and any mixture of at least two of them
      • hydrocarbons like methylcyclopentane, ethylbenzene, and any mixture of at least two of them
      • compounds of crude formula C6H10O, C7H10O, C7H14O2, C6H8O2, C9H10O2, and any mixture of at least two of them.
  • The product according to the invention can contain at least one aldehyde, in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg. The aldehyde may be selected from acetaldehyde, acrolein, isobutanal, isopentanal and any mixtures of at least two of them.
  • The product according to the invention usually can contain acrolein in an amount usually of less than 0.07 g/kg of product, preferably at most 0.01 g/kg and more preferably at most 0.005 g/kg. This content is at least 0.001 g/kg.
  • The product according to the invention can contain ketones, in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg. The ketones may be selected from acetone, chloroacetone, 2-butanone, cyclopentanone, cyclohexanone, 2-methyl-2-cyclopentene-1-one, 3,5-dimethyl-2-cyclohexene-1-one, ketones of crude formula C5H10O, C6H12O, and any mixtures of at least two of them.
  • The product according to the invention can contain cyclopentanone in an amount usually higher than or equal to 0.001 mg/kg, often higher than or equal to 0.01 mg/kg, frequently higher than or equal to 0.1 mg/kg and in particular higher than or equal to 0.001 g/kg. That content is usually lower than or equal to 0.5 g/kg, often lower than or equal to 0.3 g/kg, frequently lower than or equal to 0.1 g/kg, more often lower than or equal to 0.05 g/kg, more frequently lower than or equal to 0.01 g/kg and particularly lower than or equal to 0.005 g/kg. That content is usually higher than or equal to 0.001 mg/kg, often higher than or equal to 0.01 mg/kg, frequently higher than or equal to 0.1 mg/kg, more often higher than or equal to 0.5 mg/kg and in particular higher than or equal to 1 mg/kg
  • The product according to the invention can contain chloroacetone in an amount usually of less than 0.05 g/kg of product, preferably at most 0.03 g/kg and more preferably at most 0.01 g/kg. This content is at least 0.001 g/kg
  • The product according to the invention can contain aliphatic alcohols, in a content usually in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.1 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg. The aliphatic alcohols may be selected from isopropanol, allyl alcohol, glycerol, and any mixtures of at least two of them.
  • The product according to the invention can contain hydroxyketones, in a content in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.2 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg. The hydroxyketone is often hydroxyacetone.
  • The product according to the invention can contain epoxides different from epichlorohydrin, in a content in a content usually less than or equal to 0.8 g/kg of product, often less than or equal to 0.6 g/kg, frequently less than or equal to 0.5 g/kg, more often less than or equal to 0.4 g/kg, more frequently less than or equal to 0.2 g/kg, yet more often less than or equal to 0.2 g/kg, yet more frequently less than or equal to 0.05 g/kg, still more often less than or equal to 0.01 g/kg, and in particular less than or equal to 0.001 g/kg. That content is usually of at least 0.001 mg/kg. The epoxide may be selected from propylene oxide, 1,2-epoxyhexane, glycidol, and any mixtures of at least two of them.
  • The product according to the invention can contain glycidol in an amount in a content usually of at most 0.5 g/kg of product, generally of at most 0.2 g/kg, frequently of at most 0.10 g/kg of product, commonly of at most 0.05 g/kg of product, often of at most 0.01 g/kg and frequently of at most 0.005 g/kg.
  • The product according to the invention usually contains glycerol, hydroxyacetone and glycidol, of which the sum of the contents is less than 0.1 g/kg of product, preferably at most 0.01 g/kg and more preferably at most 0.005 g/kg. This content is at least 0.001 g/kg.
  • The product according to the invention can be obtained by dehydrochlorination of a composition containing dichloropropanol and at least one chloro alkoxy propanol in an amount usually of less than or equal to 0.1 g/kg of composition.
  • The alkoxy group of the chloro alkoxy propanol contains a number of carbon atoms which is generally higher than or equal to 1, often higher than or equal to 2 and frequently higher than or equal to 3. That number of carbon atoms is generally lower than or equal to 10, often lower than or equal to 8 and frequently lower than or equal to 6.
  • The alkoxy group of the chloro alkoxy propanol can be a linear or branched or alicyclic aliphatic alkoxy group and is preferably a linear or branched aliphatic group. The alkoxy group is preferably selected from the methoxy, ethoxy, propoxy, butoxy, pentoxyl, hexoxy, heptoxy and octoxy groups and more preferably from the methoxy, ethoxy, propoxyl and butoxy groups and particularly preferably from the methoxy and ethoxy groups. Very particularly preferably, the alkoxy group is a methoxy group. The propoxy group can be chosen from the n-propoxy and isopropoxy groups and is preferably an isopropoxy group. The butoxy group can be chosen from the 1-butoxy, 2-butoxy, isobutoxy and tert-butoxy groups, preferably from the isobutoxy and tert-butoxy groups.
  • Preferably the alkyl group of the alkyl glycidyl ether is a methyl group and the alkoxy group of the chloro alkoxy propanol is a methoxy group.
  • The product according to the invention can be obtained from a composition containing dichloropropanol wherein the content of chloro alkoxy propanol, preferably chloro methoxy propanol is preferably lower than or equal to 0.08 g/kg, more preferably lower than or equal to 0.06 g/kg, still more preferably lower than or equal to 0.04 g/kg, yet preferably lower than or equal to 0.05 g/kg, most preferably lower than or equal to 0.01 g/kg and particularly most preferably lower than or equal to 0.005 g/kg. This content is usually higher than or equal to 0.0005 g/kg.
  • The chloro methoxy propanol can be selected from 2-chloro-3-methoxy-propane-1-ol, 1-chloro-3-methoxy-propane-2-ol and mixtures thereof.
  • Without being bound by any theory, it is believed that, when the dichloropropanol is contaminated by various isomers of chloroalkoxypropanol, the dehydrochlorination of dichloropropanol into epichlorohydrin is accompanied by the dehydrochlorination of chloro alkoxy propanol into alkyl glycidyl ethers.
  • Those alkyl glycidyl ethers exhibit usually boiling points very close to that of epichlorohydrin and are, for this reason, very difficult to separate from it. The chloro alkoxy propanols can be produced during the manufacture of dichloropropanol, especially when the dichloropropanol is obtained by hydrochlorination of a compound containing glycerol and at least one alkyl ether of glycerol. The glycerol alkyl ethers can originate in the process for manufacturing glycerol especially when glycerol is obtained from trans esterification of oils and/or fats of animal and/or plant origin.
  • The composition containing dichloropropanol according to the invention can be obtained by hydrochlorination of a compound containing glycerol and at least one glycerol alkyl ether in an amount that is usually lower than or equal to 0.6 g/kg, preferably lower than or equal to 0.1 g/kg, more preferably lower than or equal to 0.02 g/kg, yet preferably lower than or equal to 0.015 g/kg and most preferably lower than or equal to 0.01 g/kg. This content is usually higher than or equal to 0.0005 g/kg of compound. The alkyl group in the glycerol alkyl ether is as defined above and is preferably a methyl group.
  • The invention relates, in a second embodiment, to a process for obtaining a product containing epichlorohydrin and at least one alkyl glycidyl ether in an amount of less than 0.1 g/kg of product. The product can be obtained by dehydrochlorination of a composition containing dichloropropanol and at least one chloro alkoxy propanol in an amount usually of less than or equal to 0.1 g/kg of composition. The composition containing dichloropropanol and at least one chloro alkoxy propanol can be obtained by hydrochlorination of a compound containing glycerol and at least one glycerol alkyl ether in an amount of less than or equal to 0.6 g/kg of compound.
  • The process for producing the product according to the invention comprises the following steps:
    • (a) a compound containing glycerol and at least one glycerol alkyl ether in an amount of less than or equal to 0.6 g/kg of compound is reacted with hydrogen chloride in the presence of a carboxylic acid, in order to obtain a composition containing dichloropropanol and at least one chloro alkoxy propanol in an amount of less than or equal to 0.1 g/kg of composition
    • (b) the composition containing dichloropropanol obtained in step (a) is further reacted with a basic agent in order to obtain a product containing epichlorohydrin and at least one alkyl glycidyl ether in an amount of less than 0.1 g/kg of product.
  • The process comprises optionally the following steps:
    • (c) a vegetable fat or oil is reacted with an alcohol to obtain the compound containing glycerol, under such conditions that ethers of glycerol are formed and are not separated from glycerol,
    • (d) the compound containing glycerol obtained in step (c) is further subjected to at least one treatment, optionally under reduced pressure, of evaporative concentration, of evaporative crystallization, of distillation, of fractional distillation, of stripping or of liquid-liquid extraction, in order to obtain a compound containing glycerol and at least one glycerol alkyl ether in an amount that is preferably lower than or equal to 0.6 g/kg.
  • The conditions of step (a) of the process are such as described in the patent application PCT/EP2007/055742 filed in the name of SOLVAY SA, the content of which is incorporated herein by reference, more specifically the passages from page 18, lines 17 to 25, and page 19, line 4 to 19.
  • The conditions of step (a) of the process are such as described in the patent application PCT/EP2007/055742 filed in the name of SOLVAY SA, the content of which is incorporated herein by reference, more specifically the passages from page 11, line 12, to page 17, line 24, and page 17, lines 31 to 35. The catalyst can be based on dodecanoic acid.
  • The conditions of steps (c) and (d) of the process are such as described in the patent application PCT/EP2007/055742 filed in the name of SOLVAY SA, the content of which is incorporated herein by reference, more specifically the passages from page 6, line 18, to page 11, line 11.
  • The invention also relates, in a third embodiment, to the use of the product of the invention described above containing epichlorohydrin and at least one alkyl glycidyl ether in an amount of less than or equal to 0.1 g/kg of product, in the manufacture of epoxy derivatives such epoxy resins, of products which will be used in food and drink applications, of cationization agents, of flame retardants, of products which will be used as detergent ingredients, and of epichlorohydrin elastomers.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1: examples of chemical formula of epoxy resins
  • FIG. 2: examples of chemical formula of compounds having at least one aromatic hydroxyl group
  • FIG. 3: examples of chemical formula of compounds having at least one aromatic hydroxyl or aromatic amine group per molecule
  • FIG. 4: examples of chemical formula of polycyclopentadiene polyphenols or aromatic polyamines
  • FIG. 5: example of chemical formula of a coagulant molecule
  • FIG. 6: example of chemical formula of wet-strength resin polymers
  • FIG. 7: example of chemical formula of compounds used as phosphorus containing flame retardants.
  • 1. EPOXY DERIVATIVES 1.1. General
  • Epoxy derivatives are for example, epoxy resins, glycidyl ethers, glycidyl esters and glycidyl amides and imides. Examples of glycidyl esters are glycidyl acrylate and glycidyl methacrylate.
  • By epoxy resin, one intends to denote a polymer, the chemical formula of which contains at least one oxirane group, preferably one 2,3-epoxypropyloxy group.
  • By polymer, one intends to denote molecules with many units joined to each other through chemical covalent bonds, often in a repeating manner, those units being referred as repeat units. The number of repeat units is higher than zero. A polymer contains at least one type of repeat units. When the polymer contains only one type of repeat units, it is called a homopolymer. When the polymer contains more than one type of repeat units, it is called a copolymer. The copolymers can be of the random type, of the alternating type or of the block type, such as described in “Polymer Science Dictionary, M.S.M., Elsevier Applied Science, London and New York 1989, page 86”.
  • Examples of chemical formulas of epoxy resins are presented in FIG. 1, where n is not zero.
  • By glycidyl ether, one intends to denote an ether, the chemical formula of which contains at least one glycidyl (2,3-epoxypropyl) group and which is not a polymer. Examples of glycidyl ethers are N-butyl glycidyl ether, C12-C14 aliphatic glycidyl ethers, o-Cresol glycidyl ether, neopentylglycol diglycidyl ether and butanediol diglycidyl ether.
  • By glycidyl ester, one intends to denote an ester, the chemical formula of which contains at least one glycidyl (2,3-epoxypropyl) group and which is not a polymer. Examples of glycidyl ester are diglycidyl ester of hexahydrophthalic acid, glycidyl ester of neodecanoic acid, glycidyl acrylate and glycidyl methacrylate.
  • By glycidyl amides and imides, one intends to denote an amide or an imide, the chemical formula of which contains at least one glycidyl (2,3-epoxypropyl) group and which is not a polymer. Examples of glycidyl amide and imide 1,3,5-tris(2,3-epoxypropyl)-1,3,5-perhydrotriazine-2,4,6-trione and 5,5-dimethyl-1,3-bis(2,3-epoxypropyl)-2,4-imidazolidinedione.
  • 1.2. Co-Reactants
  • When, the product containing epichlorohydrin according to the invention is used in the manufacture of epoxy derivatives, the product containing epichlorohydrin is usually subjected to a reaction with at least one compound containing at least one active hydrogen atom, preferably at least two active hydrogen atoms, followed by dehydrochlorination as described in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, 1987, Vol. A9, pp. 547-553).
  • The compound containing one active hydrogen atom can be selected from mono alcohol, preferably from 1-butanol, a C12 to C14 primary alcohol or a cresol, and mixtures thereof, mono carboxylic acids, like for instance neodecanoic acid, acrylic acid, methacrylic acid, or mixtures thereof.
  • The compound containing at least two active hydrogen atoms can be selected from polyols, polyamines, amino alcohols, polyimides and amides, polycarboxylic acids, and mixtures thereof.
  • The polyols can be aromatic or aliphatic. Aromatic polyols are preferred.
  • Preferred aliphatic polyols are aliphatic diols, more preferably selected from butanediol, neopentyl glycol, hydrogenated Bisphenol A (4,4′-dihydroxy-2,2-dicyclohexylpropane), and aliphatic triols, preferably glycerol, poly(oxypropylene)glycol, and mixtures thereof.
  • Aromatic polyols can be selected from polyhydroxy benzenes, polyphenolic compounds, and mixtures thereof.
  • Poly hydroxybenzenes are preferably selected from dihydroxy benzenes, trihydroxy benzene, and mixtures thereof. Dihydroxy benzenes are more preferably selected from 1,2-, 1,3-, 1,4-dihydroxy benzenes and mixture thereof.
  • Trihydroxy benzene is preferably 1,3,5-trihydroxy benzene.
  • Polyphenolic compounds are generally compounds the molecule of which contains at least one aromatic hydroxyl group.
  • Suitable compounds having at least one aromatic hydroxyl group which can be employed herein are such as described in U.S. Pat. No. 4,499,255, the content of which is incorporated herein by reference and include, for example, phenols, bisphenols, novolac resins, polyvinyl phenols, the corresponding amine compounds and the like, such as those represented by the formulas I to V of FIG. 2 wherein, each A is independently a divalent hydrocarbon group having from 1 to about 12, preferably from 1 to about 6 carbon atoms, —O—, —S—, —S—S—,
  • —(S═O)2—, —(S═O)— or —(C═O)—, A′ is a trivalent hydrocarbon group having from 1 to about 12, preferably from 1 to about 6, carbon atoms; each R is independently hydrogen, a hydrocarbyl group having from 1 to about 10, preferably from 1 to about 4, carbon atoms, a halogen atom, preferably chlorine or bromine or a hydroxyl group or an amino group; each Z is independently —OH or NH2; p has a value of from about 1 to about 100, preferably from about 2 to about 50; m has a value from about 1.00 to about 6 and n has a value of zero or 1.
  • Also suitable as compounds having at least one aromatic hydroxyl or aromatic amine group per molecule are those represented by the formulas VI to VIII of FIG. 3, wherein each R is a divalent hydrocarbyl group having from 1 to about 18, preferably from about 2 to about 12 and most preferably from about 2 to about 6 carbon atoms, a group represented by the formulas IX, X, XI or XII of FIG. 2, or R can combine with R1 so as to form a stable heterocyclic ring with the nitrogen atoms; each A is independently a divalent hydrocarbyl group having from 1 to about 10, preferably from 1 to about four carbon atoms, —O—, —S—, —S—S—, —(S═O)2—, —(S═O)— or —(C═O)—, each R1 is independently hydrogen, a 2,3,-epoxypropyl group, a 2-alkyl-2,3-epoxypropyl group, a monovalent hydrocarbyl group or a hydroxyl substituted monovalent hydrocarbyl group, said hydrocarbyl groups having from 1 to about 9 carbon atoms, said alkyl having from 1 to about 4, preferably 1 to about 3 carbon atoms; each R2 is independently hydrogen or an alkyl group having from 1 to about 4, preferably 1 to about 3 carbon atoms; each R3 is independently hydrogen or an alkyl group having from 1 to about 4 carbon atoms; each R4 is independently hydrogen, a hydrocarbyl or halogen substituted hydrocarbyl group having from 1 to about 9, preferably from 1 to about 2 carbon atoms; each R8 is independently selected from the group represented by formula XIV or the same groups as R1 except that R8 cannot be a hydrogen; each R9 is independently a divalent hydrocarbyl group having from 2 to about 4, preferably 2 carbon atoms; each Z is independently —OH or —NH2; each X is independently hydrogen, chlorine, bromine or a hydrocarbyl or a hydrocarbyloxy group having from 1 to about 9, preferably 1 to about 6 carbon atoms; each m independently has a value of zero or 1; n has an average value of from about 0.01 to about 6, preferably 0.1 to about 4; p has an average value of from 1 to about 10, preferably from 1 to about 3; q has an average value of at least 1, preferably from 1 to about 150, most preferably from 1 to about 100 and usually from 1 to about 10 and each y and z independently has a value of 1 or 2.
  • Also suitable are polycyclopentadiene polyphenols or aromatic polyamines represented by the formula XIII of FIG. 4, wherein Z is —OH or —NH2 and n has a value from 1 to about 5; n′ has a value of from about 1 to about 10, preferably from 3 to about 6; each R is independently hydrogen, a hydrocarbyl group having from 1 to about 10, preferably from 1 to about 4 carbon atoms, a halogen atom, preferably chlorine or bromine or a hydroxyl group or an amino group.
  • Suitable such polycyclopentadiene polyphenols and methods for their preparation can be found in U.S. Pat. No. 4,390,680 issued to Donald L. Nelson on Jun. 28, 1983 which is incorporated herein by reference. The polycyclo-pentadiene aromatic polyamines can be prepared in a similar manner by substituting an aromatic amine for the phenolic compound.
  • Also suitable are compounds containing both at least one aromatic hydroxyl group and at least one aromatic amine group such as, for example, hydroxy aniline, aminoxylenol and the like.
  • The polyphenolic compound is preferably selected from Bisphenol A (4,4′-dihydroxy-2,2-diphenylpropane, 4,4′-isopropylidenediphenol), tetrabromo Bisphenol A (4,4′-isopropylidenebis(2,6-dibromophenol)), Bisphenol AF (4,4′-[2,2,2-trifluoro-1-(trifluoromethyl)ethylidene]bisphenol)=hexafluorobisphenol A (4,4′-dihydroxy-2,2-diphenyl-1,1,1,3,3,3-hexafluoropropane), 1,1,2,2-tetra(p-hydroxyphenyl)ethane, hexafluorobisphenol A, tetramethylbisphenol (4,4′-dihydroxy-3,3′,5,5′-tetramethyl bisphenol), 1,5-dihydroxynaphthalene, 1,1′,7,7′-tetrahydroxy-dinaphthyl methane, 4,4′-dihydroxy-α-methylstilbene, a condensation product of Bisphenol A with formaldehyde (Bisphenol A novolac), a condensation product of phenol with formaldehyde, preferably Bisphenol F (mixture of o,o′, o,p′ and p,p′ isomers of dihydroxy diphenylmethane), a condensation product of cresol with formaldehyde (mixtures of o,o′, o,p′ and p,p′ isomers of methyl hydroxy diphenylmethane), an alkylation product of phenol and dicyclopentadiene (2,5-bis[(hydroxy phenyl]octahydro-4,7-methano-5H-indene), a condensation product of phenol and glyoxal (tetrakis(4-hydroxy-phenyl)ethane), a condensation product of phenol and a hydroxybenzaldehyde (e.g., tris(4-hydroxyphenyl)methane), 1,1,3-tris-(p-hydroxyphenyl)-propane, and mixtures thereof.
  • The polyamines can be aliphatic or aromatic. Aromatic diamines are preferred, like for instance 4,4′-diamino diphenyl methane.
  • The amino alcohol can be aliphatic or aromatic. Aromatic amino alcohol are preferred like for instance, p-aminophenol.
  • The imides and amides can be aliphatic or aromatic. Heterocyclic imides and amides are preferred, like for instance 1,3,5-triazinetriol and imidazolidine-2,4-dione.
  • Polycarboxylic acids can be aliphatic or aromatic. An example of dimeric fatty acid is linoleic dimer acid. The polycarboxylic acid is preferably an aromatic dicarboxylic acid like for instance hexahydrophthalic acid.
  • 1.3. Processes for Making Epoxy Derivatives
  • The process for making epoxy resins, glycidyl ethers and glycidyl esters generally involve a reaction of the product containing epichlorohydrin and the compound containing at least one active hydrogen atom, followed by dehydrochlorination with a basic agent
  • The process for making epoxy resin usually involves two steps: the preparation of an uncured epoxy resin followed by a curing step.
  • 1.3.1. Uncured ER
  • The reaction between the product containing epichlorohydrin and the compound containing at least one, preferably two active hydrogen atoms can be carried out by any process known in the art like for instance the Caustic Coupling Process and the phase-transfer catalyst process, for making Liquid Epoxy Resins (LER), the Taffy and the Advancement or Fusion process for making Solid Epoxy Resins (SER).
  • Caustic Coupling Process
  • In the caustic process, caustic is used as a catalyst for the nucleophilic ring-opening (coupling reaction) of the epoxide group on the primary carbon atom of epichlorohydrin by the phenolic hydroxyl group and as a dehydrochlorinating agent for conversion of the chlorohydrin to the epoxide group. Caustic (NaOH) can however be substituted by any basic compound.
  • The epichlorohydrin and the compound with active hydrogen atom, preferably an aromatic hydroxyl or aromatic amine compound, are employed in a molar ratio of from about 2:1 to about 10:1, preferably from about 2:1 to about 6:1, respectively.
  • The basic compound may be an organic or inorganic basic compound. Organic basic compounds are for example amines, phosphines and ammonium, phosphonium or arsonium hydroxides. Inorganic basic compounds are preferred. The expression “inorganic compounds” is understood to mean compounds which do not contain a carbon-hydrogen bond. The inorganic basic compound may be chosen from alkali and alkaline-earth metal oxides, hydroxides, carbonates, hydrogencarbonates, phosphates, hydrogenphosphates and borates, and mixtures thereof. Alkali and alkaline-earth metal oxides and hydroxides are preferred. Preferred alkali metal hydroxides which can be employed herein include, for example, sodium hydroxide, potassium hydroxide, lithium hydroxide or mixtures thereof. Sodium hydroxide is especially preferred.
  • In the process according to the invention, the basic compound may be in the form of a liquid, an essentially anhydrous solid, a hydrated solid, an aqueous and/or organic solution or an aqueous and/or organic suspension. The basic compound is preferably in the form of an essentially anhydrous solid, a hydrated solid, an aqueous solution or an aqueous suspension. It is preferred to use a solution or a suspension, preferably a solution of the basic compound, preferably sodium hydroxide, in water.
  • The content of the basic agent in the solution or suspension is generally higher than or equal to 5% by weight, preferably higher than or equal to 10% by weight, preferably higher than or equal to 20% by weight, and most preferably higher than or equal to 30% by weight. That content is usually lower than or equal to 70% by weight, preferably lower than or equal to 60% by weight, preferably lower than or equal to 50% by weight, and most preferably lower than or equal to 40% by weight.
  • The alkali metal hydroxide is preferably employed as an aqueous solution, usually at a concentration of from about 20 to about 50, preferably from about 40 to about 50 percent by weight.
  • The amount of basic compound, preferably alkali metal hydroxide, which is employed in the process of the present invention is from about 0.80 mole to about 1.2 mole of basic agent, preferably from about 0.90 mole to 1.0 mole per each, preferably aromatic, hydroxyl group and, preferably aromatic, amine hydrogen.
  • The basic agent, epichlorohydrin and the compound containing active hydrogen atom can be mixed in any order. It is preferred to add the basic compound to a mixture of the two other reactants. The basic agent, preferably, alkali metal hydroxide can be added either continuously or incrementally, but never is all of the alkali metal hydroxide added in one increment.
  • The reaction can be carried out in a solvent. Suitable solvents which can be employed include any solvent which does not react with any component in the reaction mixture. Preferably such solvent is partially or wholly miscible with water, forms a codistillate with the epichlorohydrin and water and the distillate has a boiling point below that of the lowest boiling component of the reaction mixture at the pressure employed. Suitable such solvents include primary and secondary alcohols such as, for example, 1-methoxy-2-hydroxy propane, 1-butoxy-2-hydroxy ethane, cyclohexanol. The secondary alcohols are preferred.
  • When a solvent is used, the amount of solvent which is employed will depend on the particular solvent and the compound containing active hydrogen atom being employed. The solvent generally ranges from about 5 to about 50 weight percent, preferably from about 10 to about 40 weight percent based on the total weight of reactants.
  • The pressure can be equal to 1 bar absolute, lower than 1 bar absolute or higher than 1 bar absolute. When a solvent is used, suitable pressures which can be employed are those which will provide the codistillate with a boiling point of from about 45° C. to about 80° C., preferably from about 55° C. to about 70° C.
  • The temperature of the reaction is usually greater than or equal to 25° C., preferably greater than or equal to 50° C., more preferably greater than or equal to 90° C., and most preferably greater than or equal to 95° C. The temperature of the reaction is usually lower than or equal to 200° C., preferably lower than or equal to 150° C., more preferably lower than or equal to 125° C., and most preferably lower than or equal to 120° C.
  • The reaction is usually conducted for a length of time such that the quantity of groups containing active hydrogen atom remaining in the reaction mixture is not greater than about 0.5, preferably not greater than about 0.2 percent by weight. That time is usually greater than or equal to 0.5 h, frequently greater than or equal to 1.0 h, often greater than or equal to 2.0 h, and most particularly greater than or equal to 3.0 h. The time of reaction is usually lower than or equal to 20 h, often lower than or equal to 10 h, frequently lower than or equal to 5 h, and most particularly lower than or equal to 4 h.
  • Upon completion of the reaction, the resultant epoxy resin is finished in any of the methods normally employed. The excess epichlorohydrin is usually removed by distillation and the salt removed by filtration, centrifugation and/or water washing.
  • The epichlorohydrin distillation is generally carried out in two steps. The first step is carried out generally at atmospheric pressure (1 bar absolute), at a temperature usually greater than or equal to 100° C., preferably greater than or equal to 120° C., more preferably greater than or equal to 130° C., and most preferably greater than or equal to 145° C. and usually lower than or equal to 200° C., preferably lower than or equal to 180° C., more preferably lower than or equal to 175° C., and most preferably lower than or equal to 155° C. The second step is carried out usually at a subatmospheric pressure, usually lower than or equal to 0.1 bar absolute, preferably lower than or equal to 0.01 bar, more preferably lower than or equal to 0.005 bar, and most preferably lower than or equal to 0.002 bar, at a temperature usually greater than or equal to 150° C., preferably greater than or equal to 170° C., more preferably greater than or equal to 190° C., and most preferably greater than or equal to 195° C. and usually lower than or equal to 300° C., preferably lower than or equal to 250° C., more preferably lower than or equal to 220° C., and most preferably lower than or equal to 215° C.
  • The salt which is formed can be separated from the crude product through addition of a solvent, e.g. toluene, followed by filtration and distillation to remove the solvent.
  • Phase-Transfer Catalytic Process
  • Alternatively, in the Phase-Transfer Catalyst Process, the coupling reaction and dehydrochlorination can be performed separately by using phase-transfer coupling catalysts, such as quaternary ammonium salts, which are not strong enough bases to promote dehydrochlorination. Once the coupling reaction is completed, caustic is added to carry out the dehydrochlorination step. Via this method, higher yields of for example the monomeric diglycidyl ether of Bisphenol A (DGEBA) (>90%) are readily available.
  • Batch methods and preferably continuous or semi continuous processes can be used.
  • Taffy Process
  • The Taffy method is used to prepare higher molecular weight solid resins. It is directly from epichlorohydrin, the compound containing active hydrogen atoms, and a stoichiometric amount of NaOH. This process is very similar to the caustic coupling process used to prepare liquid epoxy resins. Lower epichlorohydrin to compound containing active hydrogen atoms ratios are used to promote formation of high molecular weight resins. Upon completion of the polymerization, the mixture consists of an alkaline brine solution and a water-resin emulsion. The product is recovered by separating the phases, washing the resin with water, and removing the water under vacuum.
  • The epichlorohydrin and the compound with active hydrogen atom, preferably an aromatic hydroxyl or aromatic amine compound, are employed in a molar ratio of from about 1:1 to about 2:1, preferably from about 1.3:1 to about 1.8:1, respectively.
  • The alkali metal hydroxide is preferably employed as an aqueous solution, usually at a concentration of from about 1 to about 20, preferably from about 5 to about 15 percent by weight.
  • The amount of basic compound, preferably alkali metal hydroxide, which is employed in the process of the present invention is from about 0.05 mole to about 2 mole of basic agent, preferably from about 0.1 mole to 0.5 mole per each, preferably aromatic, hydroxyl group and, preferably aromatic, amine hydrogen.
  • The temperature of the reaction is usually greater than or equal to 25° C., preferably greater than or equal to 50° C., more preferably greater than or equal to 90° C., and most preferably greater than or equal to 95° C. The temperature of the reaction is usually lower than or equal to 200° C., preferably lower than or equal to 150° C., more preferably lower than or equal to 125° C., and most preferably lower than or equal to 120° C.
  • The time of reaction is usually greater than or equal to 0.1 h, frequently greater than or equal to 0.5 h, often greater than or equal to 1.0 h, and most particularly greater than or equal to 1.5 h. The time of reaction is usually lower than or equal to 20 h, often lower than or equal to 10 h, frequently lower than or equal to 5 h, and most particularly lower than or equal to 4 h.
  • The basic agent, epichlorohydrin and the compound containing active hydrogen atom can be mixed in any order. It is preferred to add epichlorohydrin to a mixture of the two other reactants.
  • The reaction is usually carried out under vigorous agitation.
  • At the end of the reaction, the mixture separates into two layers. The heavier aqueous layer is drawn off and the molten, taffy-like product is washed with hot water until the wash water is neutral. The taffy-like product is dried at a temperature generally higher than or equal to 100° C., preferably higher than or equal to 120° C.
  • Alternatively, epichlorohydrin and water can be removed by distillation at temperatures up to 180° C. under vacuum. The crude resin/salt mixture can then be dissolved in a secondary solvent to facilitate water washing and salt removal. The secondary solvent can then be removed via vacuum distillation to obtain the product.
  • The advancement or fusion process is an alternative method for making solid epoxy resin and is based on the chain-extension reaction of liquid epoxy resin (for example, crude DGEBA) with bisphenol A.
  • 1.3.2. Curing Agents
  • The curing of Epoxy Resins can be carried out using classical curing agents. The cure can be done with coreactive curing agents, or it can be catalytic or photoinitiated cationic.
  • The coreactive curing agents can be selected from amine functional curing agents, carboxylic functional polyester and anhydride curing agents, phenolic-terminated curing agents, melamine-, urea-, and phenol-formaldehyde resins, mercaptans (polysulfides and polymercaptans) curing agents, cyclic amidines curing agents, isocyanate curing agents and cyanate ester curing agents
  • The amine functional curing agents can be primary and secondary amines, polyamides, amidoamines and dicyandiamide.
  • The amines can be aliphatic, cycloaliphatic, aromatic amines or arylyl amines.
  • The aliphatic amines can be selected from liquid aliphatic polyamines, such as polyethylene polyamines, hexamethylene diamine, polyether amines (polyglycol-based polyamines), ketimines (reaction products of ketones and primary aliphatic amines), mannich base adducts (reaction products of amine, phenol and formaldehyde), polyetheramines (reaction product of polyols derived from ethylene or propylene oxide with amines) and mixtures thereof.
  • The cycloaliphatic amines can be selected from isophorone diamine, bis(4-amino-cyclohexyl)methane, 1,2-diamino-cyclohexane, trihexylmethylene diamines, metaxylylenediamine, and mixtures thereof.
  • The aromatic amines can be selected from meta-phenylenediamine, methylene dianiline, alkyl (tetraethyl-)-substituted methylene dianiline, 4,4′-diaminodiphenylmethane, 4,4′-diamino diphenyl sulfone, diethylenetoluenediamine
  • The arylyl amines can be selected from meta xylylenediamine, 1,3-bis(aminomethyl cyclohexane).
  • The amine can be more specifically selected from diethylenetriamine, triethylenetetramine, Poly(oxypropylene diamine), poly(oxypropylene triamine), poly(glycol amine), N-aminoethylpiperazine, isophorone diamine, 1,2-diaminocyclohexane, bis(4-aminocyclohexyl)methane, 4,4-diamino-diphenylmethane, 4,4-diaminodiphenyl sulfone, m-phenylenediamine, diethyltoluenediamine, meta-xylene diamine, 1,3-bis(aminomethyl cyclohexane, and mixtures thereof.
  • The polyamides can be obtained by reaction of dimerized and trimerized vegetable oil fatty acids (9,12 and 9,11-linoleic acids) with polyamines (diethylene triamine) or from polyamines and phenolic-conatining carboxylic acids (phenalkamines).
  • The amidoamines can be obtained by reaction of mono functional acid like tall-oil fatty acid with a polyamine such diethylenediamine.
  • The carboxylic functional polyester can be obtained by reaction of terphthalic acid, trimellitic anhydride and neopentyl alcohol The acid anhydrides can be phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl hexahydrophthalic anhydride, hexahydrophthalic anhydride, nadic methyl anhydride or methyl himic anhydride, benzophenonetetracarboxylic dianhydride, tetrachlorophthalic anhydride, and mixtures thereof.
  • The phenolic-terminated curing agents are products that can be obtained by reaction of phenol, creseol or bisphenol a with formaldehydes.
  • The mercaptans (polysulfides and polymercaptans) curing agents generally contain terminal thiols.
  • The cyclic amidines curing agents can be for instance 2-phenyl imidazolidine.
  • The cyanate ester curing agents can be for instance bisphenol a dicyante ester.
  • The catalytic cure can be carried out with Lewis bases or Lewis acids.
  • The Lewis bases are for instance tertiary amine, like 2-diethylamino-methylphenol, 2,4,6-tris(dimethylaminomethyl)phenol and imidazoles such as 2-methylimidazole and 2-phenylimidazole, cyclic amidines like 2-phenylimidazoline, substituted ureas like 3-phenyl-1,1-dimethylurea and quaternary ammonium salt like tetralkyl- and alkyl-triphenyl phosphonium salts.
  • The Lewis acid can be selected from boron trilhalides, preferably boron trifluoride.
  • The Photoinitiated Cationic Cure can be carried out with photoinitiators like aryldiazonium salts, diaryldiazonium salts, diaryldiionium salts and onium salts of Group VIa elements, such as triarylsulfonium salt, dialkylphenacyl sulfonium salts.
  • 1.4 Uses of Epoxy Resins
  • The epoxy resins can be used in coating applications and in structural applications. The coating applications can be in the fields of marine and industrial maintenance (corrosion-resistant coatings for ships, shipping containers, offshore oil rigs and platforms, transportation infrastructures such as bridges, rail car coatings, coatings for industrial storage tanks, and primers for light industrial and agricultural equipment), metal container (aluminum and steel food and beverage cans) and coil coatings (metal can ends, can bodies, building products, appliance panels, transportation, and metal furniture applications), automotive coatings (primer surface coatings) and inks and resists. Coating can be done using various technologies like low solids solventborne coating, high solid solventborne coating, solvent-free coating, waterborne coating, powder coating and radiation-curable coating.
  • The structural applications can be in the field of structural composites (fiber reinforcing materials based on glass, boron, graphite and aromatic polyaramides), of civil engineering, flooring (floor paints, self-leveling floors, trowelable floors, and pebble-finished floors) and construction, of electrical laminates, of electrical laminates (printed wiring boards and printed circuit boards), of other electrical and electronic applications, like casting, potting, encapsulation (switchgear components, transformers, insulators, high voltage cable accessories, and similar devices) and transfer molding (encapsulation of electronic components such as semiconductor chips, passive devices, and integrated circuits), of adhesives (cohesion between similar and dissimilar materials such as metals, glass, ceramics, wood, cloth, and many types of plastics) and of tooling (prototypes, master models, molds and other parts for aerospace, automotive, foundry, boat building, and various industrial molded items).
  • 1.5 Uses of Glycidyl Ethers and Esters
  • These products are used for applications such as coatings, adhesives and reactive diluents.
  • 1.6 Uses of Glycidyl Amides and Imides
  • These products are used for applications such as outdoor powder coatings with polyesters, or in applications in which a non-yellowing epoxy resin is desirable.
  • 2. PRODUCTS FOR FOOD-DRINK APPLICATIONS COAGULANTS 2.1. General
  • The product containing epichlorohydrin according to the invention can be used for the manufacture of products that will be used in applications where they will come in contact with food and drink, more specifically for the manufacture of synthetic organic coagulants.
  • Coagulation refers to the reduction or elimination of electrostatic repulsion forces between particles via addition of certain coagulants, and in technical terms, the first phase of floc formation after chemical mixing and destabilization, but before dosing of flocculants.
  • Coagulants are generally polymers with a high cationic charge density to neutralize negative charges of colloids and initiate the formation of flocs. They generally exhibit a relatively low molecular weight in order to permit a good diffusion of the charges around the particles and a low viscosity to allow a good distribution of the polymer in the effluents.
  • By coagulant, one intends to denote a polymer, comprising at least one repeat unit containing at least one 2-hydroxypropyldialkylammonium group.
  • An example of a coagulant molecule is presented in FIG. 5.
  • 2.2. Co-Reactants
  • In the application according to the invention, the product containing epichlorohydrin is usually subjected to a reaction with ammonia, an amine, a polyaminoamide or a polyimine.
  • The amine can be a mono-, a di- or a polyamine. The amine can be aliphatic, alicyclic or aromatic, saturated or unsaturated, linear or substituted.
  • The amine has preferably at least one, more preferably at least two primary amino hydrogens.
  • The amine can be represented by the general formula:

  • H—(NH—R21)r—NR22—(R23—NH)s—R24  (XIV)
  • wherein R22 and R24 can be equal, except when equal to H, or different and can independently be selected from H, alkyl or alkenyl radical, linear, branched or carbocyclic, having from 1 to 30 carbon atoms, R21 and R23 can be equal or different, preferably equal, divalent aliphatic radical aromatic radicals having from 2 to 12 carbon atoms, each of r and s is an integer of from 0 to 6, r plus s equals 0 to 6.
  • Amines include lower alkyl and lower alkenyl primary monoamines, such as methylamine, ethylamine, isopropylamine, tertbutylamine, mixed amylamines, n-octylamine, branched-chain nonylamine, secondary amines such as dimethylamine, ethylmethylamine, diethylamine, propylmethylamine, propylethylamine, dipropylamine, dibutylamine, propylbutylamine, ethylbutylamine, methylbutylamine, pentylethylamine, pentylethylamine, and pentylpropylamine, tertiary amines, as well as alkylenediamines, triamines and polyamines, with or without an alkenyl or alkyl substituent bonded to nitrogen, such as ethylenediamine, propylenediamine, butylenediamine, pentylenediamine, hexylenediamine, octylenediamine, dodecylenediamine, cyclohexylenediamine, diethylenetriamine, dipropylenetriamine, dipentylenetriamine, triethylene tetramine, tributylenetetramine, trihexylenetetramine, tetraethylenepentamine, tetrapropylenepentamine, pentahexylenehexamine, pentapropylenehexamine, N-ethyl-1,2-ethylenediamine, N-(2-propenyl)-1,3-propanediamine, N-hexyl-1,4-butanediamine, N-2ethylhexyl-1,3-propanediamine, N-(5-octenyl)-1,6-hexanediamine, N-butyltriethylenetriamine, N-hexyltripropylenetetramine, N-nonyltetrabutylenepentamine and N-(oleyl)-heaxethyleneheptamine, N-alkyl-1,3-diaminopropane, butane and hexane, where the radical alkyl can be hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, and tetracosyl.
  • The monoamine is preferably a secondary amine, more preferably dimethylamine.
  • The diamine is more preferably selected from 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, a N-substituted diaminopropane, more preferably, 1-amino-3-dimethylaminopropane, 1-amino-3-diethylaminopropane, 1-amino-3-cyclohexylaminopropane, N,N,N′,N′-tetramethyl-1,3-propanediamine, 1,3-diaminobutane, 1,5-diaminopentane, 1,8-diaminooctane, 1,10-diaminodecane, 1,12-diaminododecane, 2-(diethylamino)ethylamine, 1-diethylamino-4-aminopentane, 3-aminomethyl-3,5,5-trimethylcyclohexylamine and N,N,N′,N′,-tetramethyl-1,6-hexanediamine.
  • Polyaminoamides are generally obtained from polyamide, preferably polyacrylamide, formaldehyde and an amine, preferably a secondary amine. Poly[N-(dialkylaminoalkyl)acrylamide] is particularly preferred.
  • Polyimines are usually obtained by ring opening polymerization of alkylene imine, preferably ethylene imine.
  • 2.3. Processes
  • The reaction between the product containing epichlorohydrin and the compound containing at least one, preferably two primary amino hydrogens can be carried out by any process known in the art.
  • The reaction is generally carried out in the liquid phase, possibly in the presence of a solvent. The solvent may be selected from water, an organic solvent, preferably miscible with water, or mixtures thereof. Water is preferred. Monoalcohols, like methanol, ethanol, n-propanol, isopropanol and butanol are preferred organic solvents
  • When a solvent is used, the ammonia or amine content in the solvent-ammonia or amine mixture is usually higher than or equal to 5% by weight (% wt), preferably higher than or equal to 10 wt %, more preferably higher than or equal to 20 wt % and most preferably higher than or equal to 45 wt %. That content is usually lower than or equal to 90 wt %, preferably lower than or equal to 75 wt %, more preferably lower than or equal to 60 wt %, and most preferably lower than or equal to 55 wt %.
  • The molar ratio between epichlorohydrin and ammonia or amine is generally higher than or equal to 0.1, preferably higher than or equal to 0.5, more preferably higher than or equal to 0.75 and most preferably higher than or equal to 1. That ratio is usually lower than or equal to 10, preferably lower than or equal to 5, more preferably lower than or equal to 3, and most preferably lower than or equal to 2.
  • The temperature at which the reaction is carried out is generally higher than or equal to 10° C., preferably higher than or equal to 25° C., more preferably higher than or equal to 50° C. and most preferably higher than or equal to 60° C. That temperature is usually lower than or equal to 120° C., preferably lower than or equal to 110° C., more preferably lower than or equal to 100° C., and most preferably lower than or equal to 90° C.
  • The pressure at which the reaction is carried out is generally higher than or equal to 0.1 bar absolute, preferably higher than or equal to 0.2 bar, more preferably higher than or equal to 0.5 bar and most preferably higher than or equal to 1 bar. That pressure is usually lower than or equal to 20 bar, preferably lower than or equal to 10 bar, more preferably lower than or equal to 5 bar, and most preferably lower than or equal to 2 bar.
  • The duration of the reaction is generally higher than or equal to 10 min absolute, preferably higher than or equal to 20 min, more preferably higher than or equal to 30 min and most preferably higher than or equal to 60 min. That duration is usually lower than or equal to 10 h, preferably lower than or equal to 5 h, more preferably lower than or equal to 3 h, and most preferably lower than or equal to 2 h.
  • The manufacturing procedure usually involves the dissolution of the amines or ammonia in the solvent, followed by a slow addition of the epichlorohydrin, itself possibly dissolved in a solvent, possibly cooling in order to keep the temperature of the reaction between 10 and 50° C., often between 25 and 40° C., then after the epichlorohydrin addition is complete, raising the temperature to between 60 and 90° C.
  • The reaction product can be recovered as an aqueous solution, or a solid after further treatments, e.g. distillation of the solvents under vacuum, treatment of the solution with an acid or a base.
  • These reactions lead to the formation of the monomer. For example a reaction between epichlorohydrin and dimethylamine produces the epichlorohydrin dimethylamine monomer. This is then homopolymerized to the corresponding quaternary ammonium compound which is a low molecular weight cationic polymer used as a coagulant. Such polymerization usually takes place under alkaline conditions.
  • The monomer can also be copolymerized with acrylamide to produce higher molecular weight polymers also used for water treatment.
  • 2.4. Products Characteristics
  • The obtained polymers usually exhibit a molecular weight that is higher than or equal to 5 000, often higher than or equal to 10 000, and frequently higher than or equal to 50 000. That molecular weight is usually lower than or equal to 500 000, often lower than or equal to 400 000, and frequently lower than or equal to 300 000. They can be obtained as aqueous solution containing from 40 to 50% by weight of polymers and exhibiting viscosities from 40 to 11 000 centipoise.
  • 2.5. Uses These polymers can be used for treatment of raw water for conversion to drinking water, for recycling paper of water in Pulp & Paper Industry, for paint detackification, for breaking oil emulsions, for oil and grease removal, and for sludge dewatering. They can also be used for sugar refining.
  • 3. PRODUCTS FOR FOOD-DRINK APPLICATIONS—WET-STRENGTH RESINS 3.1. General
  • The product containing epichlorohydrin according to the invention can be used for the manufacture of products that will be used in applications where they will come in contact with food and drink, more specifically for the manufacture of wet-strength resins.
  • By wet-strength resin one intends to denote a polyaminoamide polymer, the chemical formula of which contains at least one group selected from 2,3-epoxypropylamine, 2,3-epoxypropylammonium, 3-chloro-2-hydroxypropylamine, 3-chloro-2-hydroxypropylammonium, 3-hydroxyazetidinium, and any combination of at least two of them.
  • Examples of chemical formulas of such a polymer are presented in FIG. 6.
  • 3.2. Co-Reactants
  • In the application according to the invention, the product containing epichlorohydrin is usually subjected to a reaction with a polyamine or a polyamide.
  • The polyamine and the reactions conditions are as described above for the manufacture of coagulants.
  • The polyamide is usually obtained by reacting an amine, preferably a polyalkylene polyamine (in this case the polyamide is generally referred as a polyaminamide) and a dicarboxylic acid, preferably a saturated aliphatic dicarboxylic acid, as described in U.S. Pat. No. 865,727, the content of which is incorporated herein by reference. The polyamide may be represented by the general formula

  • —NH—(R21)r—NR22—(R23—NH)s—COR24CO—  (XV)
  • where R21, R22, R23, r and s are as described above, and R24 is the divalent hydrocarbon radical of the dibasic carboxylic acid, preferably selected from phenylene, naphthalene, methylene, ethylene, propylene, butylenes, pentylene, hexylene, octylene and nonylene.
  • Preferably, the polyamide may be represented by the general formula

  • —NH(CtH2tHN)x—COR24CO—  (XVI)
  • wherein t and x are each 2 or more and wherein
    the —NH(CtH2tHN)x— group is derived from the polyamines described above, preferably containing from 2 to 8 alkylene groups, more preferably from diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenetriamine and N-bis(aminopropyl)methylamine the —COR24CO— group is derived from dibasic carboxylic acid containing from 2 to 12 carbon atoms, preferably selected from phenylene, naphthalene, methylene, ethylene, propylene, butylenes, pentylene, hexylene, octylene and nonylene. The acid is more preferably selected from malonic, succinic, glutaric, adipic, diglycolic, sebacic or azelaic acid, and mixtures thereof.
  • 3.3. Processes
  • The reaction between the polyamide and epichlorohydrin is usually carried out at a temperature generally higher than or equal to 45° C. That temperature is usually lower than or equal to 100° C., preferably lower than or equal to 70° C.
  • The temperature at which the reaction is conducted is preferably selected in two stages. In the first stage, the reaction mixture is maintained at 30° C.-50° C., preferably 39°-41° C. Reaction time for the first stage is preferably about 90-190 minutes to form an intermediate polyaminochlorohydrin. Then the reaction temperature is gradually increased to 55°-75° C. such that the intermediate polyaminochlorohydrin is controllably cross-linked to a determined level. The second stage is continued until the viscosity of the reaction mixture reaches the desired level (preferably level M to N on a Gardner-Holdt viscosity scale).
  • Broadly speaking, the reaction can be carried out neat or in an aqueous solution of up to 57 wt % in water. Preferably, the polyaminoamide is reacted with epichlorohydrin in an aqueous solution of 52-57 wt % in water that is, a solution of 43-48 wt % total solids (the weight percentage of the solution that is solubilized solid material), more preferably about 45 wt % total solids. Reaction time varies depending on the temperature, with lower temperatures taking longer times. The typical composition of these resins is 12.5% (10-40% solids). However, due to the cost of transporting water, companies have tried to produce resin solutions of higher concentration. It appears that at least one of the main issues making such concentrated solutions difficult to prepare is their high content of dichloropropanol so the level of this impurity is exceeded in the final application.
  • Reaction is preferably carried out until all, or substantially all of the available amine groups on the polyaminoamide are reacted with epichlorohydrin. Generally, reaction times vary between about 1 and 19 hours, preferably between 3 and 6 hours. Because the reaction is exothermic, the epichlorohydrin is added slowly over time to the polyaminoamide to allow for more effective heat transfer from the reaction medium. Heat transfer from the reaction medium can be accomplished according to known procedures, such as immersing the reaction vessel in a refrigerated environment, e.g., an ice bath, or passing refrigerated coils inside the reaction vessel.
  • The reaction is usually carried out in aqueous solution to moderate the reaction. The pH adjustment is usually not necessary but since the pH decreases during the reaction, it may be desirable in some cases, to add alkali to combine with at least some of the acid formed.
  • In the reaction, it is preferred to use sufficient epichlorohydrin to convert the entire secondary amine group to tertiary amine groups. The molar ratio between epichlorhydrin and the secondary amine groups is usually higher than or equal to 0.1, preferably higher than or equal to 0.5, and more preferably higher than or equal to 1. That molar ratio is usually lower than or equal to 10, preferably lower than or equal to 5, and more preferably lower than or equal to 2.
  • The reaction between the polyamide and epichlorohydrin can also be carried in the presence of a quaternizing agent, the conditions of reaction and the reactants, except for the inclusion of the quaternizing agent, being essentially the same as described above. In a preferred procedure, the epichlorhydrin is first added to an aqueous solution of the polyamide at a temperature from 45 to 55° C. The reaction mixture is then heated to a temperature from about 60 to 100° C., and preferably from about 50 to 80° C., depending on the rate of the polymerization desired. After a suitable time at that temperature, i.e., 0 to 100 min, a time after which the epoxy group of the epichlorohydrin have reacted with the secondary amine groups of the polyamide, the quaternizing agent is added and the reaction mixture heated, preferably at a temperature from 60° C. to 80° C. The pH of the reaction mixture is then reduced to 4, preferably between 2 and 3 with any suitable acid such as sulphuric, hydrochloric formic and the like. The amount of quaternizing agent should be sufficient to convert from 25% to 75%, preferably 50% of the tertiary amine group to quaternary group.
  • The quaternizing agent may be any compound capable of quaternizing a tertiary nitrogen atom in an aqueous medium. In general these compounds are characterized by having as a principal part of their structure an alkyl group or substituted alkyl group which is readily available for alkylation under the conditions herein described. These include the lower alkyl esters of mineral acids such the halides, sulfates and phosphates, and substituted alkyl halides. Illustrative of these compounds which may be used are dimethyl, diethyl and dipropylsulfate, methyl chloride, methyl iodide, methyl bromide, ethyl bromide, propyl bromide, the mono-, di- or tri-methyl, ethyl and propyl phosphates, 1,3-dcihloropropanol-2 and 1-chloroglycerol. Certain aromatic compounds may also be used like benzyl chloride and methyl p-toluene sulfonate.
  • The above products resulting from the reaction between epichlorohydrin and the polyamide can be further cross polymerized by treatment with a sodium carbonate or sodium hydroxide solution at a pH between 10.5 and 12.
  • 3.4. Uses
  • These resins are used in papers that will get wet such as paper towels, tea bags, coffee filters, milk cartons, meat wrapping, wallpaper. They can also be used in the production of high fructose corn syrup and to prevent wool from shrinking.
  • 4. CATIONIZATION AGENTS 4.1. General
  • The product containing epichlorohydrin according to the invention can be used for the manufacture of cationization agents.
  • By cationization agent, one intends to denote a quaternary ammonium salt, the chemical formula of which contains at least one group selected from 2,3-epoxypropyl, 3-chloro-2-hydroxypropyl, and their combination, and which is not a polymer.
  • Cationization agents are often quaternary ammonium salt containing a glycidyl or a 3-chloro-2-hydroxypropyl group attached to the nitrogen atom. The cationization agent can be isolated as solids or as solution in water or in organic solvents.
  • Examples of cationization agents are 3-chloro-2-hydroxypropyl trimethylammonium chloride and glycidyl trimethyl ammonium chloride.
  • 4.2. Co-Reactants
  • In the application according to the invention, the product containing epichlorohydrin is usually subjected to a reaction with an amine, an amine salt, or a mixture thereof.
  • The amine is preferably a tertiary amine and the amine salt is preferably a tertiary amine salt.
  • The tertiary amine salt is for instance a salt obtained by treating an amine with an acid, preferably an inorganic acid, like for instance hydrochloric or sulphuric acid.
  • The tertiary amine may be represented by the formula

  • R31—N(R32)—R33  (XVII)
  • wherein R3, R32 and R33 can be selected from the group consisting of alkyl, cycloalkyl, alkene, aryl, aralkyl, alkylaryl, two of them being possibly joined to form a ring and containing from 1 to 25 carbon atoms. The group attached to the nitrogen can be linear or substituted, saturated or unsaturated.
  • If all three of R31, R32 and R33 are the same, they preferably each should not contain more than 4 carbon atoms. If all three of R31, R32 and R33 are not the same and if R33 contains up to 18 carbon atoms, the R31 and R32 should preferably be of the group consisting of methyl and ethyl. If R31 and R32 are joined to form a ring, then R33 should preferably be from the group consisting of methyl and ethyl.
  • Examples of suitable tertiary amines are triethylamine, N-methyl and N-ethylmorpholine, N-ethyl and N-methylpiperidine and methyl diallylamine, trimethylamine, dimethylbenzylamine, dimethyldodecylamine, dimethylstearylamines, dimethylaniline, tri-npropylamine.
  • It is particularly preferred that the tertiary amine possess two methyl groups attached to the nitrogen, like for instance, trimethylamine, dimethylbenzylamine, dimethyldodecylamine, dimethylstearylamine, and dimethylaniline.
  • The amine salt is preferably a salt obtained by reaction between the above described amines with hydrochloric or sulfuric acid, preferably with hydrochloric acid.
  • 4.3. Processes
  • The reaction between the product containing epichlorohydrin and the amine or the amine salt can be carried out by any process known in the art such as those described in U.S. Pat. No. 2,876,217 the content of which is incorporated herein by reference.
  • The reaction is generally carried out in the liquid phase, possibly in the presence of a solvent. The solvent may be selected from water, an organic solvent e.g. an alcohol, a ketone, an ester or an aliphatic hydrocarbon, preferably miscible with water, or mixtures thereof. Water is preferred. Monoalcohols, like methanol, ethanol, n-propanol, isopropanol and butanol are preferred organic solvents, with methanol being particularly preferred.
  • The content of epichlorohydrin in the solvent is usually higher than or equal to 0.1 mol/l, often higher than or equal to 0.5 mol/l, frequently higher than or equal to 1.0 mol/l, particularly higher than or equal to 2 mol/l, specifically higher than or equal to 5 mol/l and sometimes higher than or equal to 10 mol/l. That epichlorohydrin content is usually lower than 20 mol/l.
  • The content of amine or amine salt in the solvent is usually higher than or equal to 0.1 mol/l, often higher than or equal to 0.5 mol/l, frequently higher than or equal to 1.0 mol/l, particularly higher than or equal to 2 mol/l, specifically higher than or equal to 5 mol/l and sometimes higher than or equal to 10 mol/l. That amine or amine salt content is usually lower than 20 mol/l.
  • The molar epichlorohydrine/amine or amine salt ratio is usually higher than or equal to 0.1, preferably higher than or equal to 0.5, more preferably higher than or equal to 1 and most preferably higher than or equal to 1.2. That ratio is usually lower than or equal to 10, more preferably lower than or equal to 5 and lost preferably lower than or equal to 2.
  • The temperature at which the reaction is carried out is generally higher than or equal to 0° C., preferably higher than or equal to 10° C., more preferably higher than or equal to 25° C. and most preferably higher than or equal to 40° C. That temperature is usually lower than or equal to 100° C., preferably lower than or equal to 80° C., more preferably lower than or equal to 60° C., and most preferably lower than or equal to 50° C.
  • The pressure at which the reaction is carried out is generally higher than or equal to 0.1 bar absolute, preferably higher than or equal to 0.2 bar, more preferably higher than or equal to 0.5 bar and most preferably higher than or equal to 1 bar. That pressure is usually lower than or equal to 20 bar, preferably lower than or equal to 10 bar, more preferably lower than or equal to 5 bar, and most preferably lower than or equal to 2 bar.
  • The duration of the reaction is generally higher than or equal to 10 min absolute, preferably higher than or equal to 20 min, more preferably higher than or equal to 30 min and most preferably higher than or equal to 60 min. That duration is usually lower than or equal to 72 h, preferably lower than or equal to 60 h, more preferably lower than or equal to 48 h, and most preferably lower than or equal to 10 h.
  • When an amine salt or a mixture of an amine and of an amine salt is used, the pH of the reaction is usually at least 5, and preferably at least 6. That pH is usually at most 9, preferably at most 8.
  • In a first embodiment, the manufacturing procedure usually involves the mixing of the amine, epichlorohydrin and water, followed by heating at the desired temperature for the desired duration. The aqueous solution is further concentrated by vacuum distillation. The temperature of distillation is as described for the reaction. The distillation pressure is usually lower than or equal to 100 mbar absolute, preferably lower than or equal to 75 mbar and most preferably lower than or equal to 50 mbar. That pressure is usually higher than or equal to 1 mbar absolute.
  • In a second embodiment, an aqueous solution of the amine is first added to hydrochloric acid until a pH between 8 and 9 is obtained. Epichlorohydrin is further added to the resulting solution and the mixture stirred at the desired temperature for the desired duration. The solution is further distilled under vacuum to the solid 3-chloro-2-trialkylammonium chloride. The solid can be used as such or further cyclized into the glycidyl derivative by reaction with sodium hydroxide in aqueous solution.
  • In a third embodiment, an amine hydrochloride is dispersed in water. Sufficient sodium hydroxide is added to raise de pH from around 3 to around 8. Epichlorohydrin is further added to the resulting solution and the mixture stirred at the desired temperature for the desired duration. The chlorohydrin group is further cyclized into the glycidyl derivative by reaction with sodium hydroxide in aqueous solution.
  • In the various embodiments, the aqueous solution obtained at the end of the reaction can be further concentrated by vacuum evaporation or distillation at a temperature of less than 50° C. in order to obtain a slurry containing at least 90% by weight of solid, preferably at least 95% by weight. A water miscible alcohol having 3 to 4 carbon atoms, such as isopropanol, n-propanol, and tert-butanol, preferably isopropanol, is added to the slurry, such as to obtain an alcohol content from 10 to 70% wt, preferably from 25 to 50% wt, based on the total weight of the resulting alcohol-water slurry. The precipitated solids are then recovered by filtration or by other means suitable for removing solids from liquid. The solid may optionally be washed with additional volumes of alcohol or another non-solvent and/or dried to remove any trace of water and alcohol.
  • The reaction product can be recovered as an aqueous solution, or a solid after further treatments, e.g. distillation of the solvents under vacuum, treatment of the solution with an acid or a base.
  • 4.4. Uses
  • Cationization agents are mainly used in the cationization of starch to be utilized by the paper industry for processing of high quality paper grades or for cationization of textile for dye fixing.
  • 5. FLAME RETARDANTS 5.1. General
  • The product containing epichlorohydrin according to the invention can be used for the manufacture of flame retardants additives.
  • The product containing epichlorohydrin according to the invention can preferably be used for the manufacture of phosphorus containing flame retardants additives.
  • By phosphorus containing flame retardants, one intends to denote a compound, the chemical formula of which contains at least one phosphorus atom and at least one group selected from 2,3-epoxypropyloxy, 3-chloro-2-hydroxypropyl, and the combination of at least two of them.
  • Examples of chemical formulas for such compounds are presented in FIG. 7.
  • 5.2. Co-Reactants
  • In the application according to the invention, the product containing epichlorohydrin is usually subjected to a reaction with an inorganic or organic compound containing phosphorus. Such inorganic compounds are for instance a phosphoric acid (ortho, pyro and polyphosphoric acid), a phosphoric acid salt and a phosphorus oxychloride. Examples of organic compounds containing phosphorus are for instance phosphoric acid esters (of ortho, pyro and polyphosphoric acid), phosphonic acids, their esters or their salts, phosphinic acids, their esters or their salts and phosphine oxides.
  • The compounds containing phosphorus may be represented by the general formula

  • O═P(X1)(X2)(X3)  (XVIII)

  • or

  • P(X1)(X2)(X3)  (XIX)
  • wherein X1, X2, X3 can independently be selected from a halogen, H, OH, OR41, R41, OR42(OH)n and R42 (OH)n
    wherein the halogen is preferably selected from bromine and chlorine and is preferably chlorine
    wherein R41 is an alkyl, an aryl, an alkylaryl, an arylalkyl, a cycloalkyl radical containing from 1 to 20 carbon atoms, often from 3 to 12 carbon atoms wherein R42 is an alkylene, arylene, alkylarylene, arylalkylene, cycloalkylene radical containing from 1 to 20 carbon atoms, often from 3 to 12 carbon atoms wherein n is an integer equal to 1 or 2
    wherein at least two of X1, X2, X3 can be joined to form a ring, preferably with the phosphorus atom.
  • Examples of phosphorus containing compounds are tris(1,3-dichloro-2-propyl) phosphate, tris(1-chloro-2-propyl) phosphate, tris(2,3-dichloropropyl) phosphate, isobutylbis(hydroxypropyl)phosphine oxide, 10-(2′,5′-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DHQEP), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), the reaction products of DOPO and 4,4′-dihydroxybenzophenone (DOPO2OH and 2DOPO-PhOH,II as represented in Liu Y. L., Journal of Polymer Science: Part A: Polymer Chemistry, 2002, Vol. 40, 359-368 and Journal of Applied Polymer Science, 2002, Vol. 83, 1697-1701).
  • 5.3. Processes
  • The reaction between the product containing epichlorohydrin and the phosphorus containing compound is carried out by any process known in the art such as those described in Journal of Applied Polymer Science, 2002, Vol. 83, 1697-1701).
  • The reaction is generally carried out in the liquid phase, possibly in the presence of a solvent. The solvent may be selected from water, an organic solvent e.g. an alcohol, or mixtures thereof. An alcohol is preferred. Monoalcohols, like methanol, ethanol, n-propanol, isopropanol and butanol are preferred organic solvents, with ethanol being particularly preferred.
  • The content of epichlorohydrin in the reaction mixture is usually higher than or equal to 0.1 mol/l, often higher than or equal to 1.0 mol/l, frequently higher than or equal to 2 mol/l and particularly higher than or equal to 5 mol/l. That epichlorohydrin content is usually lower than 20 mol/l.
  • The content of the phosphorus containing compound in the reaction mixture is usually higher than or equal to 0.1 mol/l, often higher than or equal to 0.2 mol/l and frequently higher than or equal to 0.5 mol/l. That content is usually lower than 2 mol/l.
  • The molar epichlorohydrin/phosphorus containing compound ratio is usually higher than or equal to 1, preferably higher than or equal to 2, more preferably higher than or equal to 5 and most preferably higher than or equal to 10. That ratio is usually lower than or equal to 50, more preferably lower than or equal to 30 and most preferably lower than or equal to 20.
  • The temperature at which the reaction is carried out is generally higher than or equal to 0° C., often higher than or equal to 5° C., frequently higher than or equal to 10° C., particularly higher than or equal to 20° C. and more specifically higher than or equal to 50° C. That temperature is usually lower than or equal to 100° C., preferably lower than or equal to 80° C., more preferably lower than or equal to 60° C., and most preferably lower than or equal to 30° C.
  • The pressure at which the reaction is carried out is generally higher than or equal to 0.1 bar absolute, preferably higher than or equal to 0.2 bar, more preferably higher than or equal to 0.5 bar and most preferably higher than or equal to 1 bar. That pressure is usually lower than or equal to 20 bar, preferably lower than or equal to 10 bar, more preferably lower than or equal to 5 bar, and most preferably lower than or equal to 2 bar.
  • The duration of the reaction depends on the temperature at which the reaction is carried out. That duration is generally higher than or equal to 10 min absolute, preferably higher than or equal to 1 h, more preferably higher than or equal to 10 min and most preferably higher than or equal to 24 h. That duration is usually lower than or equal to 72 h, preferably lower than or equal to 60 h, more preferably lower than or equal to 48 h, and most preferably lower than or equal to 30 h.
  • A basic compound, e.g., potassium hydroxide can be present in the reaction medium. This is generally the case when the phosphorus containing compound includes OH groups in the molecule. The molar basic compound/phosphorus containing compound ratio is usually higher than or equal to 0.1, preferably higher than or equal to 0.15, and most preferably higher than or equal to 0.2. That ratio is usually lower than or equal to 5, more preferably lower than or equal to 3 and lost preferably lower than or equal to 1.
  • An onium salt, preferably a quaternary ammonium or phosphonium salt, more preferably a quaternary ammonium chloride, like for instance benzyltrimethylammonium chloride, can be present in the reaction medium. This is generally the case when the phosphorus containing compound is a phosphine oxide. The onium/phosphorus containing compound ratio is usually higher than or equal to 0.01, preferably higher than or equal to 0.05, and most preferably higher than or equal to 0.1. That ratio is usually lower than or equal to 1, more preferably lower than or equal to 0.5 and most preferably lower than or equal to 0.2.
  • The product of the reaction can be recovered by any means, e.g., filtration and submitted to washing operations before being submitted to evaporation under reduced pressure.
  • 5.4. Uses
  • Flame retardants are usually used to inhibit the evolution of combustible gases in various materials such as polymers, in particular in polyurethane foams.
  • 6. DETERGENT INGREDIENTS 6.1. General
  • The product containing epichlorohydrin according to the invention can be used for the manufacture of detergent ingredients. By detergent ingredient, one intends to denote a compound, the chemical formula of which contains at least one 3-sulfonate-2-hydroxy-propyloxy group. The compound can be an oligomer or a polymer. An oligomer is a polymer with a number of repeat units in each polymer molecule of less than 20.
  • By detergent ingredient, one intends to denote a polymer, at least one repeat unit of which comprises at least one 2-hydroxypropylammonium group, preferably a 2-hydroxypropylimidazolidium group.
  • The product containing epichlorohydrin according to the invention can preferably be used for the manufacture of cationic monomers, polymers or oligomers, anionic surfactants, for instance sulfonates based surfactants, preferably alkyl glyceryl ether sulfonate surfactants, monomeric or oligomeric or cationic cyclic amine based polymers.
  • 6.2. Co-Reactants
  • In the application according to the invention, when the detergent auxiliary is a sulfonate based surfactant, the product containing epichlorohydrin is usually subjected to a reaction with an aliphatic alcohol containing from 10 to 40 carbon atoms, preferably from 10 to 22 carbon atoms more preferably from 14 to 18 carbon atoms and most preferably from 16 to 18 carbon atoms. The alkyl chain may be branched or linear or ethoxylated, wherein when present, the branches comprise an alkyl moiety containing from 1 to 4 carbon atoms, such as methyl or ethyl.
  • In the application according to the invention, when the detergent ingredient is a cationic amine based polymer, the product containing epichlorohydrin is usually subjected to a reaction with an amine selected from the group consisting of linear alkylamines, branched alkylamines, cycloalkylamines, alkoxyamines, amino alcohols, cyclic amines containing at least one nitrogen atom in a ring structure, alkylenediamines, polyetherdiamines, polyalkylenepolyaminesamine.
  • Specific examples of the said amines are given above.
  • Cyclic amines containing at least one nitrogen atom in a ring structure are for example monoaminoalkylpiperazines, bis(aminoalkyl)piperazines, monoaminoalkylimidazoles, aminoalkylmorpholines, aminoalkylpiperidines and aminoalkylpyrrolidines. The monoaminoalkylpiperazines are for example 1-(2-aminoethyl)piperazine and 1-(3-aminopropyl)piperazine. Preferred monoaminoalkylimidazoles have 2 to 8 carbon atoms in the alkyl group. Examples of suitable compounds are 1-(2-aminoethyl)imidazole and 1-(3-aminopropyl)imidazole. Suitable bis(aminoalkyl)piperazines are for example 1,4-bis(2-aminoethyl)piperazine and 1,4-bis(3-aminopropyl)-piperazine. Preferred aminoalkylmorpholines are aminoethylmorpholine and 4-(3-aminopropyl)-morpholine. Other preferred compounds of this group are aminoethylpiperidine, aminopropylpiperidine and aminopropylpyrrolidine.
  • Cyclic amines with at least two reactive nitrogen atoms in the ring are for example imidazole, C-alkyl substituted imidazoles having 1 to 25 carbon atoms in the alkyl group such as 2-methylimidazole, 2-ethylimidazole, 2-propylimidazole, 2-isopropylimidazole and 2-isobutylimidazole, imidazoline, C-alkyl substituted imidazolines having 1 to 25 carbon atoms in the alkyl group and arylimidazolines such as 2-phenylimidazoline and 2-tolylimidazoline, piperazine, N-alkylpiperazines having 1 to 25 carbon atoms in the alkyl group such as 1-ethylpiperazine, 1-(2-hydroxy-1-ethyl)piperazine, 1-(2-hydroxy-1-propyl)piperazine, 1-(2-hydroxy-1-butyl)piperazine, 1-(2-hydroxy-1-pentyl)piperazine, 1-(2,3-dihydroxy-1-propyl)piperazine, 1-(2-hydroxy-3-phenoxyethyl)piperazine, 1-(2-hydroxy-2-phenyl-1-ethyl)piperazine,
  • N,N′-dialkylpiperazines having 1 to 25 carbon atoms in the alkyl group for example 1,4-dimethylpiperazine, 1,4-diethylpiperazine, 1,4-dipropylpiperazine, 1,4-dibenzylpiperazine, 1,4-bis(2-hydroxy-1-ethyl)piperazine, 1,4-bis(2-hydroxy-1-propyl)piperazine, 1,4-bis(2-hydroxy-1-butyl)piperazine, 1,4-bis(2-hydroxy-1-pentyl)piperazine, and 1,4-bis(2-hydroxy-2-phenyl-1-ethyl)piperazine. Other cyclic amines with at least two reactive nitrogen atoms are melamine and benzimidazoles such as 2-hydroxybenzimidazole and 2-aminobenzimidazole.
  • 6.3. Processes
  • The reaction between the product containing epichlorohydrin and the alcohol is carried out by any process known in the art such as those described in U.S. Pat. No. 5,567,359 and US 2006/0079433, the contents of which are incorporated herein by reference.
  • The reaction is usually carried out at a temperature between 65 and 90° C.
  • Typical molar ratios of alcohol:epichlorohydrin range from 1:1.24 to 1:4.02.
  • A catalyst is usually used when carrying out the reaction, for instance stannic chloride. The mass ratio of initial alcohol:stannic chloride is generally of 100:0.67.
  • The duration of the reaction is usually between 0.25 and 1 h.
  • The epichlorohydrin/alcohol ratio and the duration can be adapted to the required degree of oligomerisation
  • Epichlorhydrin is usually slowly added to the alcohol-catalyst mixture.
  • The product of the reaction is a monomeric or oligomeric alkyl chloroglyceryl ether.
  • The alkyl chloroglyceryl ether is further converted into an alkyl glycidyl ether by reaction with a basic compound, preferably sodium hydroxide. That reaction is usually carried out with a 35% aqueous solution of sodium hydroxide at a temperature higher than 90° C. and for a molar ratio alcohol:NaOH of 1:1.5.
  • The alkyl glycidyl ether is further converted into an alkyl glyceryl surfactant by reaction usually with a mixture of sodium bisulfite and sodium sulfite, generally obtained by combining sodium meta-bisulfite with sodium hydroxide.
  • The reaction between the product containing epichlorohydrin and the amine is carried out by any process known in the art such as those described in U.S. Pat. No. 6,740,633 and US 2006/0052272, the contents of which are incorporated herein by reference.
  • The reaction is usually carried out at a temperature between 25 and 90° C., in two steps the first one at a temperature between 40 and 60° C. and the second one between 90 and 100° C.
  • Typical molar ratios of amine:epichlorohydrin range from 1:1 to 1:1.4.
  • The duration of the reaction is usually between 0.25 and 1 h.
  • The condensation product between the amine and epichlorohydrin is usually further quaternarized using alkyl halides, epoxides, chloroacetic acid, 2-chloroethanesulfonic acid, chloropropionic acid, epoxysuccinic acid, propane sulfone, 3-chloro-2-hydroxypropanesulfonic acid, dimethyl sulfate and/or diethyl sulfate, or oxidized by oxidation of the tertiary nitrogen atoms of the condensation products to N-oxides.
  • 6.4. Uses
  • Examples of detergent ingredients are surfactants or surface deposition enhancing materials. They are usually used as components of cleaning compositions for instance dishwashing, laundry compositions, shampoos and synbars.
  • 7. EPICHLOROHYDRIN ELASTOMERS 7.1. General
  • The product containing epichlorohydrin according to the invention can be used for the manufacture of epichlorohydrin elastomers.
  • By epichlorohydrin elastomer, one intends to denote a polymer, containing at least one type of repeat units, at least one type of repeat units containing at least one 2-chloromethylethoxy group. The polymer can a homopolymer or a copolymer.
  • Examples of epichlorohydrin elastomers are homopolymers of epichlorohydrin, copolymers of epichlorohydrin with an alkylene or phenylene oxide, and terpolymers of epichlorohydrin with an alkylene or phenylene oxide, and a glycidyl ether.
  • The alkylene oxide can be selected from styrene oxide, propylene oxide, ethylene oxide, butene-1 oxide, dodecene-1-oxide, and is preferably ethylene oxide.
  • The glycidyl ether can be selected from alkyl and haloalkyl glycidyl ethers, for instance, 2-chloroethyl glycidyl ether and allyl glycidyl ether.
  • 7.2. Co-Reactants
  • In the application according to the invention, the product containing epichlorohydrin is usually subjected to a reaction with an alkylene or phenylene oxide or with an alkylene or phenylene oxide and a glycidyl ether or the epichlorohydrin is homopolymerized.
  • 7.3. Processes
  • The reaction is carried out by any process known in the art such as those described in U.S. Pat. No. 3,135,705, U.S. Pat. No. 3,158,580, U.S. Pat. No. 3,158,581, U.S. Pat. No. 3,026,270 and U.S. Pat. No. 3,341,491, the contents of which are incorporated herein by reference.
  • The reaction is usually carried out in solution in aliphatic or aromatic hydrocarbons, chlorinated hydrocarbons, or ether.
  • The weight ratio between epichlorhydrin and the alkylene oxide is usually between 20:80 and 90:10.
  • The reaction is preferably carried out in the presence of a catalyst formed by reacting R51 3Al and water (thought to be R51 2Al—O—AlR51 2), where R51 can be selected from alkyl, cycloalkyl, aryl or alkaryl radical. The catalyst activity can be improved by the addition of acetylacetone. Some combinations of organozinc and organomagnesium compounds, as well as other additives and chelating agents in combination with alkylaluminum compounds, are also effective catalysts.
  • The reaction can be carried out in a continuous process using a back-mixed reactor.
  • The temperature at which the reaction can be carried out is usually comprised between −80° C. and 250° C., preferably between −80 and 150° C., more preferably between −30 and 100° C. A temperature between 25 and 50° C. is particularly convenient
  • The homopolymer of epichlorohydrin and the copolymers can be further cross-linked, e.g, by further reacting with a polyamine, or an amine in the presence of at least one agent from the group of sulfur, dithiocarbamates, thiuram sulfides and thiazoles, or with a metal compound selected from the group consisting of salts of aromatic carboxylic acids, aliphatic carboxylic acids, carbonic acid, phosphorous acid, silicic acid, and oxides of the metals of Groups IIA, IIB and IVA of the periodic Table and at least one heterocyclic compound selected from the group consisting of 2-mercaptoimidazolines and 2-mercaptopyrimidine.
  • 7.4. Uses
  • The epichlorohydrin elastomers are generally used in specialty applications, like for instance automotive components (fuel pump diaphragms, emission control hoses, motor mounts, gaskets, seals and portable fuel tanks), in the aircraft industry, for specialty roofing membranes, coated fabrics, solvent storage containers, paper mill and printing roll and in a variety of oil specialties.
  • EXAMPLES
  • Five epichlorohydrin (ECH) samples have been used. Their compositions obtained by gas chromatography analysis are presented in Table 1.
  • TABLE 1
    Component
    (g/kg) ECH 1 ECH 2 ECH3 ECH4 ECH5
    acetaldehyde 0.004 n.d n.d n.d. n.d.
    acrolein <0.001 0.003 0.003 n.d. n.d.
    2-propanol <0.001 n.d. n.d. n.d. n.d.
    3-chloro-1-propene n.d. n.d. n.d. n.d. n.d.
    allyl alcohol 0.001 <0.001 <0.001 n.d. 0.003
    hydroxyacetone 0.094 0.018 0.018 0.006 0.006
    chloroacetone + (3,3- 0.033 0.038 0.040 n.d. 0.024
    dichloro-1-propene)
    1,2-dichloropropane 0.042 n.d. n.d. 0.001 n.d.
    2,3-dichloro-1-propene 0.005 n.d. n.d. 0.004 n.d.
    1-chloro-2,3- >998.464 >999.474 >999.045 >999.503 >999.865
    epoxypropane (*)
    1,3-dichloro-1-propene 0.219 0.008 0.008 0.032 0.004
    cis maj. + (C6H14O
    min.)
    2-chloro-2-propene-1-ol 0.348 0.016 0.016 0.14 0.012
    1,3-dichloro-1-propene 0.035 0.010 0.010 0.008 0.009
    trans
    C5H10O/C4H7ClO n.d. n.d. n.d. 0.014 0.001
    C6H12O n.d. n.d. n.d. 0.011 <0.001
    1,3-dichloropropane 0.002 0.34 0.34 0.005 0.030
    Cyclopentanone 0.001 0.004 0.004 n.d. 0.004
    dibromochloromethane 0.004 n.d. n.d. 0.084 n.d.
    C6H10O iso 1 0.003 n.d. n.d. 0.009 <0.001
    C6H10O iso 2 0.012 n.d. n.d. 0.009 0.001
    1,2-epoxyhexane + 0.030 0.002 0.002 n.d. 0.001
    (1,2,2-trichloropropane)
    C6H10O iso 3 0.004 n.d. n.d. 0.031 0.001
    dichloroepoxypropane 0.003 n.d. n.d. 0.006 n.d.
    1,3,3-trichloro-1-propene 0.012 n.d. n.d. 0.004 n.d.
    cis + 1,1,3-
    trichloropropene
    1,1,2-trichloropropane 0.211 0.001 0.001 0.025 0.007
    chlorobenzene 0.011 <0.001 <0.001 0.001 0.007
    1,3,3-trichloro-1-propene 0.015 n.d. n.d. 0.012 0.001
    trans
    1,2,3-trichloropropene 0.016 <0.001 <0.001 0.003 0.001
    trans
    1,3-dichloro-2-propanol 0.111 0.023 0.024 0.017 0.008
    1,2,3-trichloropropane 0.014 n.d. n.d. 0.024 n.d.
    1,2,3-trichloropropene cis 0.002 n.d. n.d. n.d. n.d.
    3-chloro-1,2-propanediol + 0.13 <0.001 0.001 n.d. 0.001
    2,3-dichloro-1-propanol
    C6H13Br n.d. n.d. n.d. 0.005 n.d.
    C6H10Cl2 iso 1 n.d. n.d. n.d. 0.005 n.d.
    C6H10Cl2 iso 2 n.d. n.d. n.d. 0.004 n.d.
    methyl glycidyl ether 0.007 0.054 0.48 n.m. n.m.
    Unknowns (sum) 0.170 0.007 0.008 0.087 0.024
    n.d.: not detected,
    n.m.: not measured
    (*): 1-chloro-2,3-epoxypropane amount calculated on the basis of the total content of other organic components
  • Examples 1 to 10 Homopolymerization of ECH
  • The tests have been carried out according to the following procedure with epichlorohydrin sample ECH1 (examples 1 to 3), ECH 2 (examples 4 to 6) and ECH 3 (examples 7 to 10). The quantities of chemicals are indicated in Table 2.
  • The polymerization of epichlorohydrin (ECH) has been carried out in the presence of the system tetraoctylammonium bromide(Noct4Br)/triisobutyl aluminium (TiBA).
  • The epichlorohydrin has been dried over calcium hydride under vacuum for 24 h at 25° C. and further distilled.
  • The polymerization reactions have been carried out in pyrex vessels fitted with polytetrafluorethylene valves. The vessels have been evacuated under flame heating to remove residual moisture. After cooling to room temperature, the vessels have been cooled to −30° C. (ethanol/liquid nitrogen cooling bath) and toluene and epichlorohydrin, have been added under vacuum. After those additions, argon has been introduced in the vessel and tetraoctylammonium bromide and triisobutyl aluminium have been added to the vessel. This addition constituted the time zero of the reaction. After a given time under magnetic stirring at −30° C., the reaction has been stopped by adding 1-2 ml of ethanol to the vessel. Half of the volume of the reaction medium has then been submitted to evaporation after which the polymer has been recovered from the vessel.
  • The conversion has been obtained by comparing the weight of recovered polymer with the weight of added epichlorohydrin.
  • The theoretical molar weight (Mn th.) has been calculated on the basis of the quantity of tetraoctylammonium bromide.
  • The measured polymer molar weight (Mn exp) and the molar weight dispersion have been obtained by Gel Permeation Chromatography.
  • The tacticity of the polymer has been obtained by 13C and 1H NMR.
  • The results of the tests are summarized in Table 3.
  • TABLE 2
    Example no ECH (ml) Toluene (ml) Noct4Br (ml) TiBA (ml)
    1 4 10.2 2.15 0.71
    2 4 10.2 2.15 0.71
    3 3.4 9.9 0.91 0.30
    4 4 10.2 2.15 0.71
    5 4 10.2 2.15 0.71
    6 4 11.6 1.08 0.35
    7 4 10.2 2.15 0.71
    8 4 10.2 2.15 0.71
    9 3.6 11.4 0.97 0.43
    10 4 11.6 1.08 0.35
  • TABLE 3
    Con-
    Exam- Reaction version Mn th. Mn exp. Dis- Tac-
    ple time (h) (mol %) (g/mol) (g/mol) persion ticity
    1 1 100 10000 10700 1.17 atactic
    2 1 100 10000 10100 1.23 n.m.
    3 2 100 20000 20200 1.17 n.m.
    4 1 100 10000 16400 1.22 n.m.
    5 1 100 10000 11200 1.20 atactic
    6 1 100 20000 77700 (20%) 1.40 n.m.
    22200 (80%) 1.20
    7 1 80 8000 6800 1.17 n.m.
    8 2 95 9500 12100 1.17 atactic
    9 2 90 18000 24700 1.18 n.m.
    10 6 94 18800 17650 1.17 n.m.
    n.m.: not measured
  • Examples 13 to 15 Homopolymerization of ECH
  • The tests have been carried out according to the following procedure with epichlorohydrin sample ECH1 (example 13), ECH 2 (example 14) and ECH 3 (example 15). The quantities of chemicals are indicated in Table 4.
  • The polymerization of epichlorohydrin (ECH) has been carried out in the presence of the system water/triethyl aluminium (TEA).
  • The procedure of example 1 has been followed except that TEA in solution in toluene and water have been added under argon to the vessel first evacuated and dried, left under magnetic stirring under vacuum for 30 min, before ECH in toluene has been added (time zero of the reaction). The polymerization has been carried out at a temperature of 25° C. for 12 h. The results have been summarized in Table 5
  • TABLE 4
    Example no ECH (ml) Toluene (ml) H2O (μl) TEA (ml)
    13 4 10 23 0.67
    14 4 10 23 0.67
    15 4 10 23 0.67
  • TABLE 5
    Reaction Conversion Mn exp.
    Example time (h) (mol %) (g/mol) Dispersion Tacticity
    13 12 47 216000 2.02 n.m.
    7000 1.04
    14 12 50 285200 3.51 atactic
    5850 1.08
    15 12 55 357600 3.45 atactic
    8100 1.31
    n.m.: not measured
  • Example 16 Preparation of a Product Consisting Predominantly in Diglycidyl Diether of Bisphenol A according to U.S. Pat. No. 2,811,227
  • The apparatus employed was a thermostatised flask equipped with a mechanical stirrer, with a jacket containing a thermocouple and with a Dean-Stark separator surmounted by a water-cooled condenser. A pump was used to inject a caustic soda aqueous solution at a constant rate in the flask.
  • The reaction flask was initially charged with a mixture of bisphenol A (68.4 g, 0.3 mol) and the epichlorohydrin sample ECH4 coming from a propylene-chlorine plant (277.5 g, 3.0 mol). The analysis of the epichlorydrin is given in Table 1. The trichloropropane content is of 0.049 g/kg. The mixture was heated at reflux under stirring to a temperature of 11° C. A 40% aqueous solution of caustic soda (60.8 g, 0.6 mol) was introduced at a rate of 12 ml/h during 3.5 hour. The temperature of the mixture in the flask was maintained in the range 100° C.-115° C. in order to assure a constant reflux. The epichlorohydrin rich organic phase decanted during the reaction as a lower phase in the separator was recycled regularly in the reaction flask and the aqueous rich phase collected as an upper phase in the separator was regularly drawn off. The heating was maintained for min after the total introduction of the caustic soda solution to achieve the collect of the water phase in the decantor. 29.7 g of aqueous phase was collected with a composition given in Table 6.
  • The epichlorohydrin in excess was removed from the reaction mixture by distillation under a vacuum of 30 mbar and by a progressive heating of the mixture to 109° C. 156.1 g (1.7 mol) of epichlorohydrin was recovered in this step. The composition of the distillate is given in Table 6.
  • The salt was separated from the crude product (45.5 g) after addition of 567.2 g of toluene under agitation and by filtration. The cake of filtration was washed with 124.4 g of toluene. The toluene solutions were mixed and evaporated at 185° C. under a pressure of 1 mbar.
  • 659.4 g of toluene was recovered as the condensate of the evaporated fraction with a composition given in Table 6. The residual product of the evaporation (100.5 g) contained the diglycidyl ether of bis-phenol A as a major product and no trace of unconverted bis-phenol A (<5 mg/kg). The residue contained 4.98 mol epoxy per kg and 1.52% of hydrolysable chlorine.
  • Example 17
  • The trial was realized in the apparatus described in example 16.
  • The reaction flask was initially charged with a mixture of bisphenol A (68.4 g, 0.3 mol) and epichlorohydrin sample ECH 5 (277.5 g, 3.0 mol). The analysis of the epichlorydrin is given in Table 1. The trichloropropane content is of 0.007 g/kg. The mixture was heated at reflux under stirring to a temperature of 119° C. A 40% aqueous solution of caustic soda (60.8 g, 0.6 mol) was introduced at a rate of 12 ml/h during 3.5 hour. The temperature of the mixture in the flask was maintained in the range 102° C.-119° C. in order to assure a constant reflux. The epichlorohydrin rich organic phase decanted during the reaction as a lower phase in the separator was recycled regularly in the reaction flask and the aqueous rich phase collected as an upper phase in the separator was regularly drawn off. The heating was maintained for 15 min after the total introduction of the caustic soda solution to achieve the collect of the water phase in the decantor. 54.5 g of aqueous phase was collected with a composition given in Table 6.
  • The epichlorohydrin in excess was removed from the reaction mixture by distillation under a vacuum of 30 mbar and by a progressive heating of the mixture to 118° C. 148.2 g (1.5 mol) of epichlorohydrin was recovered in this step. The composition of the distillate is given in Table 6.
  • The salt was separated from the crude product (47.8 g) after addition of 228.4 g of toluene under agitation and by filtration. The cake of filtration was washed with 97.3 g of toluene. The toluene solutions were mixed and evaporated at 180° C. under a pressure of 1 mbar.
  • 305.0 g of toluene was recovered as the condensate of the evaporation with a composition given in Table 6. The residual product of the evaporation (99.8 g) contained the diglycidyl ether of bis-phenol A as a major product and no trace of unconverted bis-phenol A (<5 mg/kg). The residue contained 4.93 mol epoxy per kg and 0.49% of hydrolysable chlorine.
  • The High Performance Liquid Chromatography analyses of the residual products obtained in examples 16 and 17 are similar.
  • TABLE 6
    Example 16 Example 17
    Epichlorohydrin Water Toluene Epichlorohydrin Water Toluene
    evaporated evaporated evaporated evaporated evaporated evaporated
    Component (g/kg) (mg/l) (g/kg) (g/kg) (mg/l) (g/kg)
    acetaldehyde n.d. 2.9  n.d. n.d. 1.3 n.d.
    acrolein n.d. 0.58 n.d. 0.002  0.42 n.d.
    2-propanol n.d. <0.05  n.d. n.d. 0.3 n.d.
    3-chloro-1-propene 0.001 n.d. n.d. n.d. n.d. n.d.
    allyl alcohol n.d. n.d. n.d. 0.001 0.2 n.d.
    hydroxyacetone 0.016 n.d. n.d. 0.002 n.d. n.d.
    chloroacetone + (3,3- 0.003 0.65 n.d. 0.002  0.53 n.d.
    dichloro-1-propene)
    1,2-dichloropropane n.d. n.d. n.d. n.d.
    2,3-dichloro-1-propene 0.005 0.07 n.d. n.d. n.d. n.d.
    1-chloro-2,3-epoxypropane principal (45 g/kg) 1.6  principal (46 g/kg) 3.3 
    product product
    1,3-dichloro-1-propene cis 0.026 0.36 n.d. 0.003 n.d. n.d.
    maj. + (C6H14O min.)
    2-chloro-2-propene-1-ol 0.19  0.12 n.d. 0.016 <0.05 n.d.
    1,3-dichloro-1-propene trans 0.007 <0.05  n.d. 0.008 n.d. n.d.
    C5H10O/C4H7ClO 0.019 0.05 n.d. 0.001 n.d. n.d.
    C6H12O 0.022 0.28 n.d. 0.021 n.d. n.d.
    1,3-dichloropropane 0.001 n.d. n.d. 0.03  <0.05 n.d.
    Cyclopentanone n.d. n.d. n.d. 0.006 n.d. n.d.
    dibromochloromethane 0.080 n.d. n.d. n.d. n.d. n.d.
    C6H10O iso 1 0.033 0.11 n.d. 0.038 n.d. n.d.
    C6H10O iso 2 0.040 0.31 n.d. 0.001 n.d. n.d.
    1,2-epoxyhexane + (1,2,2- n.d. n.d. n.d. 0.001 n.d. n.d.
    trichloropropane)
    C6H10O iso 3 0.036 0.21 n.d. 0.002 n.d. n.d.
    dichloroepoxypropane 0.006 n.d. n.d. n.d. n.d. n.d.
    1,3,3-trichloro-1-propene cis + 0.006 n.d. n.d. n.d. n.d. n.d.
    1,1,3-trichloropropene
    1,1,2-trichloropropane 0.005 n.d. n.d. n.d. n.d.
    chlorobenzene 0.001 n.d. n.d. 0.008 n.d. n.d.
    1,3,3-trichloro-1-propene 0.009 n.d. n.d. n.d. n.d. n.d.
    trans
    1,2,3-trichloropropene trans 0.003 n.d. n.d. 0.001 n.d. n.d.
    1,3-dichloro-2-propanol 3.4  143    0.38  2.5  111    0.074
    1,2,3-trichloropropane 0.022 n.d. 0.002 n.d. n.d. n.d.
    1,2,3-trichloropropene cis n.d. n.d. n.d. n.d. n.d. n.d.
    3-chloro-1,2-propanediol + 0.13  5.9  0.064 0.071 4.1 0.033
    2,3-dichloro-1-propanol
    C6H13Br n.d. <0.05  0.005 n.d. <0.05
    C6H10Cl2 iso 1 0.009 n.d. n.d. n.d. n.d. n.d.
    C6H10Cl2 iso 2 0.007 n.d. n.d. n.d. n.d. n.d.
    methyl glycidyl ether n.m. n.m. n.m. n.m. n.m. n.m.
    Unknowns (sum) 0.299 10.00  1.31  0.213 1.3 1.373
    n.d.: not detected, n.m.: not measured
  • Example 18
  • A glass thermostated jacketed reactor having a working volume of 305 ml was supplied continuously with 47.2 wt % sodium hydroxide and with an aqueous mixture of dichloropropanol, a mixture prepared from glycerol and concentrated hydrochloric acid in the presence of an organic acid according to the International Application WO 2005/054167 filed by Solvay SA. The mixture contained 575 g of water/kg, 404.6 g of 1,3-dichloro-2-propanol/kg, 20.1 g of 2,3-dichloro-1-propanol/kg, 0.14 g of acrolein/kg, 0.13 g of epichlorohydrin/kg, 0.04 g of 1,2,3-trichloropropane/kg, 0.04 g of chloroacetone/kg and 0.03 g of an ether of crude formula C6H10O2Cl2/kg. The sodium hydroxide was introduced at a flow rate of 262 g/h and the aqueous dichloropropanol mixture was introduced at a flow rate of 1180 g/h. The reaction medium was constantly maintained at 25° C. with vigorous stirring. The liquid mixture exiting the reactor by continuous overflow was collected and then separated in batch mode in a glass funnel so as to obtain a first separated fraction and a second separated fraction. 3753 g of first separated fraction (MEL1) were subjected to a batch distillation under a vacuum of 193 mbar. The batch distillation was carried out using a round-bottomed flask equipped with a magnetic stirrer bar, a thermocouple to measure the temperature of the liquid and a plate distillation column surmounted by a device enabling part of the distillate to be refluxed at the top of the column. The glass plate column comprised 5 plates having a diameter of 30 mm, pierced by an internal aperture 10 mm diameter central hole for the flow of liquid and three rows of small holes having a diameter of around 0.8 mm, spaced at regular intervals of less than 1 mm between each hole, placed in an arc over three quarters of the circumference. The spacing between the plates was 30 mm. The column was adiabatic (glass jacket under vacuum). A thermocouple placed in the top of the distillation column enabled the temperature of the gas phase distilled to be measured. The distillate was collected in a funnel with a stopcock. A first distillation fraction was collected between 49° C. and 67° C. and gave, after separation, 425 g of an organic phase (D1 org) and 159 g of an aqueous phase (D1 aq). The organic phase (D1 org) was combined with the contents of the boiler to give the mixture (MEL2) which was then distilled at a temperature of 187° C. A second distillation fraction was collected between 66° C. and 67° C. and resulted, after separation, in 244 g of an organic phase (D2 org) and 11.5 g of an aqueous phase (D2 aq). A main distillate of 2082 g of epichlorohydrin at 999.5 g/kg was then collected (D3) at a temperature of 67° C. The mixture constituting the final boiler (MEL3) weighed 1226 g and only contained a very low fraction of epichlorohydrin implemented. The organic phase D2 org and the boiler MEL3 could be recycled to the distillation operations in order to recover, for enhanced value, epichlorohydrin and a mixture of 1,3-dichloro-2-propanol and 2,3-dichloro-1-propanol respectively. The compositions (g/kg) used and obtained in the distillation operations are described in Table 7.
  • TABLE 7
    MEL1 D1 org D1 aq MEL2 D2 org D2 aq D3 MEL3
    Acrolein 0.2 0.61  0.13 0.076 0.99 0.12  0.050 0.006
    Acetone 0.006 0.024 0.02 <0.005 0.027 0.01 <0.01 <0.005
    Isopropanol 0.032 0.124 n.d. 0.014 0.15 n.d.  <0.005 n.d.
    2-Chloropropane 0.047 0.021 n.d. <0.005 0.012 n.d. n.d. n.d.
    Allyl alcohol 0.003 n.d. n.d. 0.003 n.d. n.d. n.d.
    2,3-Epoxybutane <0.005 0.008 n.d. n.d. 0.010 n.d. n.d. n.d.
    C4H8O <0.005 0.010 n.d. n.d. 0.012 n.d. n.d. n.d.
    2-Butanone <0.005 0.003 n.d. n.d. 0.005 n.d. n.d. n.d.
    Hydroxyacetone n.d. n.d. n.d. 0.001 n.d. n.d. n.d.
    Chloroethanol n.d. 0.005 n.d. n.d. 0.001 n.d. n.d. n.d.
    Chloroacetone 0.039 0.025 n.d. 0.039 0.034 0.03  0.05 0.019
    Epichlorohydrin 653 982     46    666 989 36    999.5  29
    Glycidol 0.06 0.000 n.d. 0.07 n.d. n.d. n.d. 0.24
    2-chloro-2-propen-1-ol <0.005 0.005 0.16 <0.005 0.008 0.04 <0.01 0.005
    cis-1,3-Dichloropropene n.d. 0.003 0.03 <0.005 0.003 0.02 <0.01 <0.005
    trans-1,3-Dichloropropene n.d. 0.005 n.d. <0.005 0.009 n.d. <0.01 <0.005
    1,1,1-Trichloropropane <0.005 n.d. n.d. <0.005 n.d. n.d. n.d. 0.002
    Cyclopentanone 0.021 n.d. n.d. 0.023 n.d. n.d. <0.01 0.021
    3-Chloro-1-propanol 0.013 0.000 n.d. 0.020 n.d. n.d. n.d. 0.016
    cis-1,3,3-Trichloropropene n.d. n.d. n.d. n.d. n.d. n.d. n.d. <0.005
    C4H7ClO2 n.d. 0.000 n.d. n.d. n.d. n.d. n.d. <0.005
    Ethylbenzene <0.005 0.000 n.d. n.d. n.d. n.d. n.d. <0.005
    1,3-Dichloropropan-2-ol 251 0.364 0.27 271 0.013 0.82  0.010 789
    2-Methyl-2-cyclopenten-1-one n.d. n.d. n.d. <0.005 n.d. n.d. n.d. <0.005
    1,2,3-Trichloropropane 0.16 n.d. n.d. 0.018 n.d. n.d. n.d. 0.015
    2,3-Dichloro-1-propanol + 3- 56 1.94  36.42  61 0.046 21    n.d. 174
    chloro-1,2-propanediol
    Phenol 0.011 n.d. n.d. 0.012 n.d. n.d. n.d. 0.035
    C6H8O2 <0.005 n.d. n.d. <0.005 n.d. n.d. <0.01 0.008
    C6H12OCl2 0.056 n.d. n.d. 0.060 n.d. n.d. n.d. 0.051
    3,5-Dimethyl-2-cyclohexen-1- 0.011 n.d. n.d. 0.012 n.d. n.d. n.d. 0.035
    one
    C6H9Cl3O2 0.031 n.d. n.d. 0.034 n.d. n.d. n.d. 0.102
    1-Phenoxy-2-propanone 0.88 n.d. n.d. 0.078 n.d. n.d. n.d. 1.754
    C6H10Cl2O2 0.076 0.002 n.d. 0.101 n.d. n.d. n.d. 0.325
    C9H9Cl3 <0.005 n.d. n.d. <0.005 n.d. n.d. n.d. 0.012
    C6H11O2Cl3 0.74 n.d. n.d. 0.81 n.d. n.d. n.d. 2.95
    C9H15O2Cl2 + C9H17O4Cl3 <0.005 n.d. n.d. <0.005 n.d. n.d. n.d. 0.56
    Sum of unknowns 0.27 0.07  0.16 0.31 0.08 n.d. n.d. 1.07
    Methyl glycidyl ether 0.02 n.d. n.d. 0.03 0.03 n.d.  0.04
    H2O 37 14.0   n.d. 2.32 9.9 n.d.  0.32 0.33
    n.d. = not detected

Claims (21)

1. A method for the manufacture of a product selected from the group consisting of epoxy derivatives, coagulants, wet-strength resins, cationization agents, flame retardants, detergent ingredients, and epichlorohydrin elastomers, comprising subjecting a product comprising epichlorohydrin and at least one alkyl glycidyl ether in a positive amount of less than 0.1 g/kg of product to a reaction in order to obtain said product.
2. The method according to claim 1, wherein the content of epichlorohydrin in said product is higher than or equal to 900 g/kg of product.
3. The method according to claim 1, wherein the alkyl glycidyl ether is methyl glycidyl ether.
4. The method according to claim 1, wherein said product is obtained by dehydrochlorination of a composition comprising dichloropropanol and at least one chloroalkoxypropanol in an amount of less than or equal to 0.1 g/kg of composition.
5. The product according to claim 4, wherein the chloro alkoxy propanol is selected from the group consisting of 2-chloro-3-alkoxy-propane-1-ol, 1-chloro-3-alkoxy-propane-2-ol, and mixtures thereof.
6. The method according to claim 4, wherein the composition comprising dichloropropanol is obtained by hydrochlorination of a compound containing glycerol and at least one glycerol alkyl ether in an amount of less than or equal to 0.6 g/kg of compound.
7. The method according to claim 1, wherein the product comprising epichlorohydrin is subjected to a reaction with a compound comprising at least one active hydrogen atom, selected from the group consisting of monoalcohols, monocarboxylic acids, polyols, polyamines, amino alcohols, polyimides and amides, polycarboxylic acids, and mixtures thereof, in order to obtain an epoxy derivative selected from the group consisting of epoxy resin, a glycidyl ether, a glycidyl ester, a glycidyl amide, and a glycidyl imide.
8. The method according to claim 1, wherein the product comprising epichlorohydrin is reacted with ammonia, an amine, a polyaminoamide, or a polyimine in order to obtain a coagulant; or wherein the product comprising epichlorohydrin is reacted with a polyamine, a polyamide or a polyaminoamide in order to obtain a wet-strength resin.
9. The method according to claim 1, wherein the product comprising epichlorohydrin is reacted with an amine, an amine salt, or a mixture thereof in order to obtain a cationization agent.
10. The method according to claim 1, wherein the product comprising epichlorohydrin is reacted with a compound selected from the group consisting of phosphoric acid, a phosphoric acid salt, a phosphorus oxychloride, a phosphoric acid ester, a phosphonic acid, a phosphonic acid ester, a phosphonic acid salt, a phosphinic acid, a phosphinic acid ester, a phosphinic acid salt, a phosphine oxide, a phosphine, or a mixture thereof, in order to obtain a flame retardant.
11. The method according to claim 1, wherein the product comprising epichlorohydrin is reacted with a monoalcohol containing from 12 to 16 carbon atoms, or with an ethoxylated alcohol, or with an amine selected from the group consisting of linear alkylamines, branched alkylamines, cycloalkylamines, alkoxyamines, amino alcohols, cyclic amines comprising at least one nitrogen atom in a ring structure, alkylenediamines, polyetherdiamines, and polyalkylenepolyaminesamine, in order to produce a detergent ingredient.
12. The method according to claim 1, wherein the product comprising epichlorohydrin is reacted with an alkylene or phenylene oxide or with an alkylene or phenylene oxide and a glycidyl ether or homopolymerized in order to obtain an epichlorohydrin elastomer.
13. The method according to claim 1, wherein the product is an epoxy derivative.
14. The method according to claim 1, wherein the product comprising epichlorohydrin is subjected to a reaction with a compound comprising at least one active hydrogen atom, selected from the group consisting of monoalcohols, monocarboxylic acids, polyols, polyamines, amino alcohols, polyimides and amides, polycarboxylic acids, and mixtures thereof, in order to obtain an epoxy resin.
15. The method according to claim 3, wherein the methyl glycidyl ether is present in an amount of less 0.08 g/kg of the product comprising epichlorohydrin.
16. The method according to claim 3, wherein the methyl glycidyl ether is present in an amount of less 0.06 g/kg of the product comprising epichlorohydrin.
17. The method according to claim 3, wherein the methyl glycidyl ether is present in an amount of less 0.04 g/kg of the product comprising epichlorohydrin.
18. The method according to claim 3, wherein the methyl glycidyl ether is present in an amount of less 0.01 g/kg of the product comprising epichlorohydrin.
19. The method according to claim 14, wherein the polyol is an aromatic polyol.
20. The method according to claim 19, wherein the aromatic polyol is a polyphenolic compound is selected from Bisphenol A (4,4′-dihydroxy-2,2-diphenylpropane,4,4′-isopropylidenediphenol), tetrabromo Bisphenol A (4,4′-isopropylidenebis(2,6-dibromophenol)), Bisphenol AF (4,4′-[2,2,2-trifluoro-1-(trifluoromethyl)ethylidene]bisphenol)=hexafluorobisphenol A (4,4′-dihydroxy-2,2-diphenyl-1,1,1,3,3,3-hexafluoropropane),1,1,2,2-tetra(p-hydroxyphenyl)ethane, hexafluorobisphenol A, tetramethylbisphenol (4,4′-dihydroxy-3,3′,5,5′-tetramethyl bisphenol), 1,5-dihydroxynaphthalene, 1,1′,7,7′-tetrahydroxy-dinaphthyl methane, 4,4′-dihydroxy-α-methylstilbene, a condensation product of Bisphenol A with formaldehyde (Bisphenol A novolac), a condensation product of phenol with formaldehyde, preferably Bisphenol F (mixture of o,o′, o,p′ and p,p′ isomers of dihydroxy diphenylmethane), a condensation product of cresol with formaldehyde (mixtures of o,o′, o,p′ and p,p′ isomers of methyl hydroxy diphenylmethane), an alkylation product of phenol and dicyclopentadiene (2,5-bis[(hydroxy phenyl]octahydro-4,7-methano-5H-indene), a condensation product of phenol and glyoxal (tetrakis(4-hydroxy-phenyl)ethane), a condensation product of phenol and a hydroxybenzaldehyde (e.g., tris(4-hydroxyphenyl)methane), 1,1,3-tris-(p-hydroxyphenyl)-propane, and mixtures thereof.
21. The method according to claim 20, wherein the polyphenolic compound is Bisphenol A (4,4′-dihydroxy-2,2-diphenylpropane, 4,4′-isopropylidenediphenol).
US13/709,218 2007-06-12 2012-12-10 Product containing epichlorohydrin, its preparation and its use in various applications Abandoned US20130102755A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/709,218 US20130102755A1 (en) 2007-06-12 2012-12-10 Product containing epichlorohydrin, its preparation and its use in various applications

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
FR0755696A FR2917411B1 (en) 2007-06-12 2007-06-12 EPICHLORHYDRIN, PROCESS FOR PRODUCTION AND USE
FR0755696 2007-06-12
FR0757751 2007-09-21
FR0757751 2007-09-21
US1367207P 2007-12-14 2007-12-14
US766107P 2007-12-14 2007-12-14
PCT/EP2008/057246 WO2008152044A1 (en) 2007-06-12 2008-06-11 Product containing epichlorohydrin, its preparation and its use in various applications
US66374409A 2009-12-09 2009-12-09
US13/709,218 US20130102755A1 (en) 2007-06-12 2012-12-10 Product containing epichlorohydrin, its preparation and its use in various applications

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2008/057246 Division WO2008152044A1 (en) 2007-06-12 2008-06-11 Product containing epichlorohydrin, its preparation and its use in various applications
US66374409A Division 2007-06-12 2009-12-09

Publications (1)

Publication Number Publication Date
US20130102755A1 true US20130102755A1 (en) 2013-04-25

Family

ID=40129268

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/663,749 Active 2029-06-16 US8399692B2 (en) 2007-06-12 2008-06-11 Epichlorohydrin, manufacturing process and use
US12/663,744 Active 2029-05-18 US8378130B2 (en) 2007-06-12 2008-06-11 Product containing epichlorohydrin, its preparation and its use in various applications
US13/709,218 Abandoned US20130102755A1 (en) 2007-06-12 2012-12-10 Product containing epichlorohydrin, its preparation and its use in various applications
US13/755,236 Abandoned US20130190474A1 (en) 2007-06-12 2013-01-31 Epichlorohydrin, manufacturing process and use

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/663,749 Active 2029-06-16 US8399692B2 (en) 2007-06-12 2008-06-11 Epichlorohydrin, manufacturing process and use
US12/663,744 Active 2029-05-18 US8378130B2 (en) 2007-06-12 2008-06-11 Product containing epichlorohydrin, its preparation and its use in various applications

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/755,236 Abandoned US20130190474A1 (en) 2007-06-12 2013-01-31 Epichlorohydrin, manufacturing process and use

Country Status (13)

Country Link
US (4) US8399692B2 (en)
EP (2) EP2170856A1 (en)
JP (3) JP5878293B2 (en)
KR (2) KR101495939B1 (en)
CN (3) CN105153068A (en)
AR (2) AR069265A1 (en)
BR (2) BRPI0812712A2 (en)
CA (2) CA2689565A1 (en)
EA (2) EA019356B1 (en)
MX (2) MX2009013657A (en)
MY (4) MY149806A (en)
TW (2) TWI500609B (en)
WO (2) WO2008152045A1 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2053035B1 (en) 2003-11-20 2011-03-16 SOLVAY (Société Anonyme) Process for producing dichloropropanol
KR20080037615A (en) 2005-05-20 2008-04-30 솔베이(소시에떼아노님) Method for making a chlorohydrin
CN102219644B (en) * 2005-11-08 2013-11-06 索尔维公司 Process for the manufacture of dichloropropanol by chlorination of glycerol
US20080063871A1 (en) * 2006-09-11 2008-03-13 Jung Ki S Adhesive film composition for semiconductor assembly, associated dicing die bonding film and semiconductor package
US20100032617A1 (en) * 2007-02-20 2010-02-11 Solvay (Societe Anonyme) Process for manufacturing epichlorohydrin
FR2925045B1 (en) 2007-12-17 2012-02-24 Solvay GLYCEROL-BASED PRODUCT, PROCESS FOR OBTAINING THE SAME AND USE THEREOF IN THE MANUFACTURE OF DICHLOROPROPANOL
TWI478875B (en) * 2008-01-31 2015-04-01 Solvay Process for degrading organic substances in an aqueous composition
DE102008007622A1 (en) * 2008-02-04 2009-08-06 Biopetrol Industries Ag Process for the preparation of epichlorohydrin from glycerol
EP2103604A1 (en) 2008-03-17 2009-09-23 Evonik Degussa GmbH Method for manufacturing epichlorohydrin
JP5619721B2 (en) 2008-04-03 2014-11-05 ソルヴェイ(ソシエテ アノニム) Composition comprising glycerol, process for obtaining it and its use in the manufacture of dichloropropanol
EP2149570A1 (en) * 2008-08-01 2010-02-03 Hexion Specialty Chemicals Research Belgium S.A. Process for the manufacture of epichlorohydrin using hydrogen peroxide and a manganese komplex
EP2149569A1 (en) 2008-08-01 2010-02-03 Hexion Specialty Chemicals Research Belgium S.A. Process for the manufacture of a 1,2-Epoxide
FR2935968B1 (en) * 2008-09-12 2010-09-10 Solvay PROCESS FOR THE PURIFICATION OF HYDROGEN CHLORIDE
FR2939434B1 (en) * 2008-12-08 2012-05-18 Solvay PROCESS FOR TREATING GLYCEROL
EP2496625A1 (en) 2009-11-04 2012-09-12 Solvay Sa Process for manufacturing an epoxy resin
FR2952060B1 (en) 2009-11-04 2011-11-18 Solvay PROCESS FOR THE PRODUCTION OF A PRODUCT DERIVED FROM EPICHLORHYDRIN
CN102190636B (en) * 2010-03-03 2013-01-09 中国石油化工股份有限公司 Method for preparing epoxy chloropropane by cyclizing chloropropene
KR101705209B1 (en) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 Method of preparing composition of chlorohydrins and method of preparing epichlorohydrin using composition of chlorohydrins prepared by the same
KR101705208B1 (en) 2010-06-30 2017-02-09 롯데정밀화학 주식회사 Method of preparing composition of chlorohydrins and method of preparing epichlorohydrin using composition of chlorohydrins prepared by the same
FR2963338B1 (en) 2010-08-02 2014-10-24 Solvay ELECTROLYSIS METHOD
FR2964096A1 (en) 2010-08-27 2012-03-02 Solvay PROCESS FOR PURIFYING BRINE
US8987506B2 (en) * 2010-09-27 2015-03-24 Dow Global Technologies Llc Process for reducing inorganics from and concentrating anionic surfactant solutions
WO2012041816A1 (en) 2010-09-30 2012-04-05 Solvay Sa Derivative of epichlorohydrin of natural origin
FR2966825B1 (en) * 2010-10-29 2014-05-16 Solvay PROCESS FOR THE PRODUCTION OF EPICHLORHYDRIN
RU2466154C1 (en) * 2011-05-11 2012-11-10 Государственное образовательное учреждение высшего профессионального образования Кабардино-Балкарский государственный университет им. Х.М. Бербекова 1,1-dichloro-2,2-di-(4,4'-dioxy)phenylethylene-based polyhydroxyether
CN104080737A (en) 2011-12-19 2014-10-01 索尔维公司 Process for reducing the total organic carbon of aqueous compositions
WO2013111999A1 (en) * 2012-01-25 2013-08-01 주식회사 케이오씨솔루션 Method for producing polythiol compound for optical materials and composition comprising same for optical materials
EP2669247A1 (en) 2012-06-01 2013-12-04 Solvay Sa Process for manufacturing dichloropropanol
EP2669305A1 (en) 2012-06-01 2013-12-04 Solvay Sa Process for manufacturing an epoxy resin
CN103319469B (en) * 2013-06-06 2016-01-20 黄山华惠科技有限公司 A kind of triglycidyl isocyanurate production method
CN103819304B (en) * 2013-10-18 2016-03-23 中国石油化工股份有限公司 The high mixture that boils of a kind of epoxy decolours and extracts the processing method of wherein trichloropropane
WO2015074684A1 (en) * 2013-11-20 2015-05-28 Solvay Sa Process for manufacturing an epoxy resin
WO2015091871A1 (en) * 2013-12-20 2015-06-25 Solvay Sa Process for manufacturing an epoxide
AU2015371230B2 (en) * 2014-12-23 2020-04-09 Dow Global Technologies Llc Treated porous material
KR101783219B1 (en) * 2015-09-10 2017-10-10 한국화학연구원 Method for recovering byproduct in epoxy manufacturing process using distillation and pervaporation
CN107573473A (en) * 2017-07-28 2018-01-12 江南大学 A kind of preparation method of Intumescent polymer fire retardant
WO2019055502A2 (en) 2017-09-12 2019-03-21 Cotton, Inc. Improving the balance of durable press properties of cotton fabrics using non-formaldehyde technology
CN109180432A (en) * 2018-11-02 2019-01-11 浙江工业大学 A kind of preparation of chlorallylene alcohol and separation method
CN109852596B (en) * 2019-04-04 2020-02-21 江苏省生产力促进中心 Method for preparing nuclease P1 by utilizing immobilized penicillium citrinum fermentation
US10773192B1 (en) * 2019-04-09 2020-09-15 Bitfury Ip B.V. Method and apparatus for recovering dielectric fluids used for immersion cooling
CN110129148A (en) * 2019-06-18 2019-08-16 黄婷 A kind of efficient cleaner for automobile interiors
TWI772980B (en) * 2020-11-25 2022-08-01 義芳化學工業股份有限公司 Method for manufacturing dichlorohydrin and epichlorohydrin
CN112957770B (en) * 2021-03-11 2023-02-21 江苏扬农化工集团有限公司 Continuous extraction device and continuous extraction method for epichlorohydrin
CN113791149B (en) * 2021-09-07 2023-03-21 石家庄四药有限公司 Detection method of 1-chloro-3-methoxypropane related substance

Family Cites Families (290)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US280893A (en) 1883-07-10 Treating waters containing glycerine obtained by the decomposition of fatty matters
DE1075103B (en) 1960-02-11 VEB Leuna-Werke "Walter Ulbricht", Leuna (Kr. Merseburg) Process for the continuous production of epichlorohydrin from glycerine
DE58396C (en) Dr. P. FRITSCH in Rostock i. M., Augustenstr. 40 Process for the preparation of glycerides of aromatic acids
DE238341C (en)
DE180668C (en)
DE197309C (en)
US3061615A (en) 1962-10-30 Process for the production of alpha-epichlorhydrin
DE197308C (en)
US865727A (en) 1907-08-09 1907-09-10 Augustin L J Queneau Method of making and utilizing gas.
GB406345A (en) 1931-08-24 1934-02-26 Du Pont Improvements in or relating to the production of formic acid
US2063891A (en) 1932-07-15 1936-12-15 Dreyfus Henry Manufacture of chlorhydrins and their ethers
GB404938A (en) 1932-07-15 1934-01-15 Henry Dreyfus Manufacture of chlorhydrins and ethers thereof
US2060715A (en) 1933-01-13 1936-11-10 Du Pont Synthetic resins
GB467481A (en) 1935-09-12 1937-06-14 Eastman Kodak Co Processes of removing water from aqueous aliphatic acids
US2144612A (en) 1936-09-10 1939-01-24 Dow Chemical Co Preparation of glycerol dichlorohydrin
US2198600A (en) * 1936-09-10 1940-04-30 Dow Chemical Co Glycerol dichlorohydrin
BE422877A (en) 1937-07-28 1937-08-31
US2319876A (en) * 1937-12-04 1943-05-25 Celanese Corp Preparation of aromatic sulphonamide-phenol-dihalide reaction products
GB541357A (en) 1939-02-24 1941-11-24 Du Pont Improvements in or relating to the production of glycerol
US2248635A (en) * 1939-06-20 1941-07-08 Shell Dev Treatment of halogenated polyhydric alcohols
BE456650A (en) * 1943-06-16
DE869193C (en) 1944-08-22 1953-03-05 Chloberag Chlor Betr Rheinfeld Process for purifying hydrogen chloride
GB679536A (en) 1947-06-11 1952-09-17 Devoe & Raynolds Co Improvements in epoxide preparation
US2505735A (en) * 1948-05-22 1950-04-25 Harshaw Chem Corp Purufication of crude glycerine
DE848799C (en) 1948-12-23 1956-08-02 Elektrochemische Werke Rheinfe Device for the absorption of gases by liquids, in particular for the production of hydrochloric acid
GB702143A (en) 1949-10-25 1954-01-13 Hoechst Ag Cold-hardening compositions containing phenol-formaldehyde condensation products, and a process for making such compositions
NL179590B (en) 1952-07-05 1900-01-01 Asahi Chemical Ind PROCESS FOR PROCESSING A FLUORINATED POLYMER AND MEMBRANE OBTAINED BY THIS PROCESS IN THE MELT.
DE1041488B (en) 1954-03-19 1958-10-23 Huels Chemische Werke Ag Process for the production of oxido alcohols
US2811227A (en) 1955-01-20 1957-10-29 Houdaille Industries Inc Flutter damper
US2860146A (en) 1955-04-14 1958-11-11 Shell Dev Manufacture of epihalohydrins
US2829124A (en) * 1955-12-23 1958-04-01 Borden Co Epoxide resin
GB799567A (en) 1956-04-30 1958-08-13 Solvay Process for the production of alpha-epichlorhydrin
US2945004A (en) 1956-05-29 1960-07-12 Devoe & Raynolds Co Epoxide resins reacted with polyhydric phenols
US2876217A (en) 1956-12-31 1959-03-03 Corn Products Co Starch ethers containing nitrogen and process for making the same
US2960447A (en) 1957-07-15 1960-11-15 Shell Oil Co Purification of synthetic glycerol
US3135705A (en) * 1959-05-11 1964-06-02 Hercules Powder Co Ltd Polymeric epoxides
US3026270A (en) 1958-05-29 1962-03-20 Hercules Powder Co Ltd Cross-linking of polymeric epoxides
SU123153A3 (en) 1958-11-18 1958-11-30 Словак Гельмут Method for continuous production of epichlorohydrin
US3052612A (en) 1959-02-16 1962-09-04 Olin Mathieson Recovery of chlorine from electrol ysis of brine
US3158580A (en) 1960-03-11 1964-11-24 Hercules Powder Co Ltd Poly (epihalohydrin) s
GB984446A (en) 1960-07-05 1965-02-24 Pfaudler Permutit Inc Improvements relating to semicrystalline glass and to the coating of metal therewith
US3158581A (en) 1960-07-27 1964-11-24 Hercules Powder Co Ltd Polymeric epoxides
FR1306231A (en) 1960-10-17 1962-10-13 Shell Int Research Process for the preparation of glycidic polyethers
NL270270A (en) 1960-10-17
FR1279331A (en) 1960-11-07 1961-12-22 Electrochimie Soc Process and manufacture of epoxy resins and products obtained
US3247227A (en) 1962-04-24 1966-04-19 Ott Chemical Company Epoxidation of organic halohydrins
US3328331A (en) 1963-01-22 1967-06-27 Hoechst Ag Epoxy resin masses and process for preparing them
US3341491A (en) 1963-09-10 1967-09-12 Hercules Inc Vulcanized epihalohydrin polymers
NL129282C (en) * 1963-10-21
FR1417388A (en) 1963-10-21 1965-11-12 Hooker Chemical Corp Purification of hydrochloric acid
BE655882A (en) 1963-11-19 1965-05-17
DE1226554B (en) 1964-06-06 1966-10-13 Henkel & Cie Gmbh Process for the production of glycid from glycerol monochlorohydrin
US3385908A (en) 1965-04-09 1968-05-28 Shell Oil Co Flame retardant phenolic polyglycidyl ether resin compositions
FR1476073A (en) 1965-04-09 1967-04-07 Shell Int Research Epoxy resin retarding the propagation of flames
US3445197A (en) * 1966-05-27 1969-05-20 Continental Oil Co Removing benzene from aqueous muriatic acid using a liquid paraffin
US3457282A (en) 1966-06-01 1969-07-22 Olin Mathieson Glycidol recovery process
DE1643497C3 (en) 1967-09-02 1979-06-21 Hoechst Ag, 6000 Frankfurt Process for the production of glycidyl ethers of monohydric and polyhydric phenols
US3968178A (en) * 1967-11-08 1976-07-06 Stauffer Chemical Company Chlorination of hydrocarbons
DE1809607C3 (en) 1968-11-19 1974-01-10 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Process for the absorptive separation of mixtures of cyanogen chloride and hydrogen chloride obtained in the gas phase reaction of chlorine and hydrogen cyanide
BE744659A (en) 1969-01-27 1970-07-01 Haveg Industries Inc COATED METAL ARTICLE AND METHOD FOR MANUFACTURING IT
US3867166A (en) 1969-01-27 1975-02-18 Tycon Spa Coated metal article and method of making the same
CH544801A (en) 1970-03-16 1973-11-30 Reichhold Albert Chemie Ag Process for the preparation of glycidyl ethers
US3711388A (en) 1970-12-11 1973-01-16 Dow Chemical Co Oxidation step in electrolysis of aqueous hci
CH545778A (en) 1971-03-26 1974-02-15
US3839169A (en) 1971-08-11 1974-10-01 Dow Chemical Co Photooxidizing organic contaminants in aqueous brine solutions
DE2143994A1 (en) 1971-09-02 1973-03-15 Bayer Ag METHOD FOR PURIFICATION OF HYDROGEN CHLORINE
BE792326A (en) 1971-12-07 1973-03-30 Degussa PROCESS FOR THE PREPARATION OF HALOGENOHYDRINS
DE2163096B2 (en) * 1971-12-18 1974-02-14 Gutehoffnungshuette Sterkrade Ag, 4200 Oberhausen Process for reheating a compressed gas stream above the dew point
LU67005A1 (en) 1973-02-12 1974-10-01
US4173710A (en) 1972-05-15 1979-11-06 Solvay & Cie Halogenated polyether polyols and polyurethane foams produced therefrom
JPS5121635B2 (en) 1972-07-31 1976-07-03
DE2241393A1 (en) 1972-08-23 1974-02-28 Bayer Ag Polyglycidyl ethers of polyhydric phenols - esp of bisphenol A and epichloro-hydrin prepd in presence of ethanol or methanol
CH575405A5 (en) 1973-02-15 1976-05-14 Inventa Ag
US3865886A (en) 1973-06-20 1975-02-11 Lummus Co Production of allyl chloride
US4127694A (en) * 1974-02-08 1978-11-28 The Procter & Gamble Company Fabric treatment compositions
US3887771A (en) 1974-03-04 1975-06-03 Spanel Abram Nathaniel Telephone adapter
CH593272A5 (en) 1974-05-24 1977-11-30 Inventa Ag
LU70739A1 (en) * 1974-08-14 1976-08-19
US4011251A (en) * 1975-03-13 1977-03-08 Boris Konstantinovich Tjurin Method of preparing esters of glycerol and polyglycerols and C5-C9 monocarboxylic fatty acids
US4024301A (en) * 1975-05-02 1977-05-17 The B. F. Goodrich Company Internally coated reaction vessel for use in olefinic polymerization
DE2522286C3 (en) 1975-05-20 1978-05-18 Hoechst Ag, 6000 Frankfurt Process for the purification of crude hydrogen chloride
US3954581A (en) * 1975-07-22 1976-05-04 Ppg Industries, Inc. Method of electrolysis of brine
FR2321455A1 (en) 1975-08-22 1977-03-18 Ugine Kuhlmann NEW OXIDIZING WATER TREATMENT PROCESS
US4255470A (en) 1977-07-15 1981-03-10 The B. F. Goodrich Company Process for preventing polymer buildup in a polymerization reactor
US4127594A (en) 1978-02-21 1978-11-28 Shell Oil Company Selective hydrogenation of olefinic impurities in epichlorohydrin
JPS6051395B2 (en) 1978-09-21 1985-11-13 東亞合成株式会社 How to regenerate cation exchange membranes
FR2455580A1 (en) 1979-05-04 1980-11-28 Propylox Sa PROCESS FOR THE PURIFICATION OF ORGANIC SOLUTIONS OF CARBOXYLIC PERACIDS
JPS55157607A (en) 1979-05-25 1980-12-08 Ryonichi Kk Suspension polymerization of vinyl chloride
US4415460A (en) 1979-07-30 1983-11-15 The Lummus Company Oxidation of organics in aqueous salt solutions
US4240885A (en) 1979-07-30 1980-12-23 The Lummus Company Oxidation of organics in aqueous salt solutions
DE3003819A1 (en) 1980-02-02 1981-08-13 Basf Ag, 6700 Ludwigshafen Electrode, esp. cathode for electrolysis of brine - has active coating of iron with specified nickel and/or cobalt content to reduce hydrogen overvoltage
US4309394A (en) * 1980-04-09 1982-01-05 Monsanto Company Method of preparing ultraphosphoric acid
US4609751A (en) 1981-12-14 1986-09-02 General Electric Company Method of hydrolyzing chlorosilanes
US4390680A (en) * 1982-03-29 1983-06-28 The Dow Chemical Company Phenolic hydroxyl-containing compositions and epoxy resins prepared therefrom
US4405465A (en) 1982-06-30 1983-09-20 Olin Corporation Process for the removal of chlorate and hypochlorite from spent alkali metal chloride brines
US4499255B1 (en) 1982-09-13 2000-01-11 Dow Chemical Co Preparation of epoxy resins
SU1125226A1 (en) 1982-10-15 1984-11-23 Башкирский государственный научно-исследовательский и проектный институт нефтяной промышленности Method for treating clayey drilling and plugging muds
DE3243617A1 (en) 1982-11-25 1984-05-30 Hermetic-Pumpen Gmbh, 7803 Gundelfingen Pump for conveying highly corrosive media
US4595469A (en) 1983-05-31 1986-06-17 Chevron Research Company Electrolytic process for production of gaseous hydrogen chloride and aqueous alkali metal hydroxide
DD216471A1 (en) 1983-06-30 1984-12-12 Leuna Werke Veb PROCESS FOR PROCESSING EPOXY-HOLLOWED REACTION MIXTURES
SU1159716A1 (en) 1983-07-13 1985-06-07 Чувашский государственный университет им.И.Н.Ульянова Binder for making heat-hardened moulds and cores
DE3339051A1 (en) * 1983-10-28 1985-05-09 Henkel KGaA, 4000 Düsseldorf METHOD FOR IMPROVED DISTILLATIVE WORKING UP OF GLYCERIN
JPS60258172A (en) * 1984-06-04 1985-12-20 Showa Denko Kk Preparation of epichlorohydrin
JPS60258171A (en) 1984-06-04 1985-12-20 Showa Denko Kk Preparation of epichlorohydrin
PL136598B2 (en) 1984-07-11 1986-03-31 Method of removing impurities in the form of organic chlorine compounds from hydrogen chloride
US4599178A (en) * 1984-07-16 1986-07-08 Shell Oil Company Recovery of glycerine from saline waters
US4560812A (en) 1984-12-10 1985-12-24 Shell Oil Company Recovery of glycerine from saline waters
GB2173496B (en) * 1985-04-04 1989-01-05 Inst Ciezkiej Syntezy Orga Method for producing epichlorohydrin
JPS62242638A (en) 1986-04-14 1987-10-23 Nisso Yuka Kogyo Kk Production of chlorinated ether compound
JPH0788366B2 (en) * 1986-07-10 1995-09-27 昭和電工株式会社 Method for producing epichlorohydrin
DE3635383A1 (en) * 1986-10-17 1988-04-21 Ruetgerswerke Ag METHOD FOR PRODUCING GLYCIDYL COMPOUNDS
JPS63195288A (en) 1987-02-10 1988-08-12 Tosoh Corp Production of metal hydroxide
DE3811826A1 (en) 1987-06-25 1989-10-19 Solvay Werke Gmbh METHOD FOR PRODUCING POLYGLYCERINES
DE3721003C1 (en) 1987-06-25 1988-12-01 Solvay Werke Gmbh Process for the preparation of polyglycerols
DE3809882A1 (en) 1988-03-24 1989-10-05 Solvay Werke Gmbh METHOD FOR PRODUCING POLYGLYCERINES
DE3811524A1 (en) * 1988-04-06 1989-10-19 Solvay Werke Gmbh METHOD AND DEVICE FOR PRODUCING REINST EPICHLORHYDRINE
DE3816783A1 (en) * 1988-05-17 1989-11-30 Wacker Chemie Gmbh METHOD FOR PURIFYING RAW, GASEOUS CHLORINE
US4882098A (en) 1988-06-20 1989-11-21 General Signal Corporation Mass transfer mixing system especially for gas dispersion in liquids or liquid suspensions
KR900006513Y1 (en) 1988-07-06 1990-07-26 주식회사 불티나종합상사 Locking device in lighter
CA1329782C (en) 1988-08-09 1994-05-24 Thomas Buenemann Process for purifying crude glycerol
DE3842692A1 (en) 1988-12-19 1990-06-21 Solvay Werke Gmbh METHOD FOR PRODUCING POLYGLYCERINES
SU1685969A1 (en) 1989-07-26 1991-10-23 Всесоюзный научно-исследовательский и проектный институт галургии Method for suppressing dust from water soluble salts
KR910007854A (en) 1989-10-04 1991-05-30 리챠드 지. 워터만 Method of producing monoepoxide
JPH0662593B2 (en) * 1989-10-28 1994-08-17 ダイソー株式会社 Method for producing epichlorohydrin
WO1991009924A1 (en) 1989-12-29 1991-07-11 The Procter & Gamble Company Ultra mild surfactant with good lather
JPH0625196B2 (en) 1990-01-29 1994-04-06 ダイソー株式会社 Method for producing epichlorohydrin
KR0168057B1 (en) 1990-04-12 1999-03-20 베르너 발데크 Process ror the preparation of epoxy resins
US5278260A (en) * 1990-04-12 1994-01-11 Ciba-Geigy Corporation Process for the preparation of epoxy resins with concurrent addition of glycidol and epihalohydrin
PL162910B1 (en) 1990-05-24 1994-01-31 Politechnika Szczecinska Method of recovering hadrogen chloride and organic chlorine derivatives
DE4039750A1 (en) 1990-12-13 1992-06-17 Basf Ag METHOD FOR REMOVING PHOSGEN FROM EXHAUST GAS
FR2677643B1 (en) * 1991-06-12 1993-10-15 Onidol PROCESS FOR OBTAINING POLYGLYCEROLS AND ESTERS OF POLYGLYCEROLS.
IT1248564B (en) 1991-06-27 1995-01-19 Permelec Spa Nora ELECTROCHEMICAL DECOMPOSITION OF NEUTRAL SALTS WITHOUT HALOGEN OR ACID CO-PRODUCTION AND ELECTROLYSIS CELL SUITABLE FOR ITS REALIZATION.
US5139622A (en) 1991-10-03 1992-08-18 Texaco Chemical Company Purification of propylene oxide by extractive distillation
BE1005719A3 (en) 1992-03-17 1993-12-28 Solvay Method for producing epichlorohydrin.
DE4210997C1 (en) 1992-04-02 1993-01-14 Krupp Vdm Gmbh, 5980 Werdohl, De
CA2133424A1 (en) * 1992-04-03 1993-10-14 Harry Louis Platt Sensor and system for physiological monitoring
US5393724A (en) 1992-04-30 1995-02-28 Tosoh Corporation Process for removing oxidizable substance or reducible substance, composite containing metal oxide or hydroxide, and process for production thereof
DE4225870A1 (en) 1992-08-05 1994-02-10 Basf Ag Process for the preparation of glycerol carbonate
DE59307919D1 (en) * 1992-09-06 1998-02-12 Solvay Deutschland Process for the treatment of organic substances, in particular wastewater from the production of epichlorohydrin containing chloroorganic compounds
US5286354A (en) 1992-11-30 1994-02-15 Sachem, Inc. Method for preparing organic and inorganic hydroxides and alkoxides by electrolysis
DE4244482A1 (en) 1992-12-30 1994-07-07 Solvay Deutschland Wastewater treatment process
JP2894134B2 (en) * 1993-01-14 1999-05-24 ダイソー株式会社 Production method of optically active epichlorohydrin
DE4302306A1 (en) 1993-01-28 1994-08-04 Erdoelchemie Gmbh Reducing content of adsorbable organic halogen in waste water
DE4309741A1 (en) * 1993-03-25 1994-09-29 Henkel Kgaa Process for the preparation of diglycerin
DK0618170T3 (en) 1993-03-31 1996-10-07 Basf Corp Process for the production of purissimum grade hydrochloric acid from the preparation of organic isocyanates
DE4314108A1 (en) 1993-04-29 1994-11-03 Solvay Deutschland Process for the treatment of waste water containing organic and inorganic compounds, preferably from the production of epichlorohydrin
JP3268890B2 (en) 1993-05-17 2002-03-25 東和化成工業株式会社 Method for producing 1,3-cyclohexanedicarboxylic acid
DE4335311A1 (en) 1993-10-16 1995-04-20 Chema Balcke Duerr Verfahrenst Gas-introduction agitation system
DE4401635A1 (en) 1994-01-21 1995-07-27 Bayer Ag Substituted 1,2,3,4-tetrahydro-5-nitro-pyrimidines
FR2723585B1 (en) 1994-08-12 1996-09-27 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF AROMATIC POLYISOCYANATE COMPOUNDS IN THE GASEOUS PHASE.
US5779915A (en) 1994-09-08 1998-07-14 Solvay Umweltchemie Gmbh Method of removing chlorine and halogen-oxygen compounds from water by catalytic reduction
US5724030A (en) * 1994-10-13 1998-03-03 Bio Medic Data Systems, Inc. System monitoring reprogrammable implantable transponder
US5486627A (en) 1994-12-02 1996-01-23 The Dow Chemical Company Method for producing epoxides
US5578740A (en) * 1994-12-23 1996-11-26 The Dow Chemical Company Process for preparation of epoxy compounds essentially free of organic halides
US5731476A (en) 1995-01-13 1998-03-24 Arco Chemical Technology, L.P. Poly ether preparation
US6177599B1 (en) 1995-11-17 2001-01-23 Oxy Vinyls, L.P. Method for reducing formation of polychlorinated aromatic compounds during oxychlorination of C1-C3 hydrocarbons
US6130602A (en) * 1996-05-13 2000-10-10 Micron Technology, Inc. Radio frequency data communications device
US5744655A (en) 1996-06-19 1998-04-28 The Dow Chemical Company Process to make 2,3-dihalopropanols
FR2752242B1 (en) 1996-08-08 1998-10-16 Inst Francais Du Petrole PROCESS FOR THE MANUFACTURE OF ESTERS FROM VEGETABLE OR ANIMAL OILS AND ALCOHOLS
JP3228156B2 (en) 1996-11-14 2001-11-12 東亞合成株式会社 Method for producing 1,1-bis (chloromethyl) -1-hydroxymethylpropane and 1-mono (chloromethyl) -1,1-bis (hydroxymethyl) propane
US5749907A (en) * 1997-02-18 1998-05-12 Pacesetter, Inc. System and method for identifying and displaying medical data which violate programmable alarm conditions
WO1998037024A2 (en) 1997-02-20 1998-08-27 Solvay Deutschland Gmbh Method for removing chlorate ions from solutions
US7267665B2 (en) * 1999-06-03 2007-09-11 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
US6731976B2 (en) * 1997-09-03 2004-05-04 Medtronic, Inc. Device and method to measure and communicate body parameters
BE1011456A3 (en) 1997-09-18 1999-09-07 Solvay METHOD OF MANUFACTURING an oxirane.
US6024839A (en) 1997-11-06 2000-02-15 Shell Oil Company Hydroquinone to inhibit fouling of epichlorohydrin equipment
EP0916624B1 (en) 1997-11-11 2001-07-25 Kawasaki Steel Corporation Porcelain-enameled steel sheets and frits for enameling
BE1011576A3 (en) * 1997-11-27 1999-11-09 Solvay Epichlorohydrin based product and method for manufacturing this product.
CN1332877C (en) 1997-12-22 2007-08-22 陶氏环球技术公司 Prodn. of one or more useful products from lesser value halogenated materials
BE1011880A4 (en) 1998-04-21 2000-02-01 Solvay Method of treatment of brine.
US6024829A (en) * 1998-05-21 2000-02-15 Lucent Technologies Inc. Method of reducing agglomerate particles in a polishing slurry
US6248067B1 (en) * 1999-02-05 2001-06-19 Minimed Inc. Analyte sensor and holter-type monitor system and method of using the same
US6558320B1 (en) * 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
EP1119285A1 (en) * 1998-10-08 2001-08-01 Minimed Inc. Telemetered characteristic monitor system
US6103092A (en) 1998-10-23 2000-08-15 General Electric Company Method for reducing metal ion concentration in brine solution
US6142458A (en) 1998-10-29 2000-11-07 General Signal Corporation Mixing system for dispersion of gas into liquid media
EP1140751B1 (en) 1998-12-18 2004-03-24 Dow Global Technologies Inc. Process for making 2,3-dihalopropanols
US6200265B1 (en) * 1999-04-16 2001-03-13 Medtronic, Inc. Peripheral memory patch and access method for use with an implantable medical device
EP1134195A3 (en) 1999-05-17 2002-08-28 Mitsubishi Heavy Industries, Ltd. Flue gas desulphurisation
US6111153A (en) 1999-06-01 2000-08-29 Dow Corning Corporation Process for manufacturing methyl chloride
DE60016314T2 (en) * 1999-06-08 2005-12-01 Showa Denko K.K. Process for the preparation of epichlorohydrin and intermediate thereof
JP2001037469A (en) 1999-07-27 2001-02-13 Nissan Chem Ind Ltd Biodegradation of epichlorohydrin
CN1119320C (en) 1999-11-10 2003-08-27 中国石化集团齐鲁石油化工公司 Process for separation of organic by-products of 3-chloro-2-hydroxypropyl trimethyl ammonium chloride
US6359594B1 (en) * 1999-12-01 2002-03-19 Logitech Europe S.A. Loop antenna parasitics reduction technique
AU1935601A (en) 1999-12-10 2001-06-18 Inca International S.P.A. Impeller draft tube agitation system for gas-liquid mixing in a stirred tank reactor
US6418346B1 (en) * 1999-12-14 2002-07-09 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US7060031B2 (en) * 1999-12-17 2006-06-13 Medtronic, Inc. Method and apparatus for remotely programming implantable medical devices
US6497655B1 (en) * 1999-12-17 2002-12-24 Medtronic, Inc. Virtual remote monitor, alert, diagnostics and programming for implantable medical device systems
US6564105B2 (en) * 2000-01-21 2003-05-13 Medtronic Minimed, Inc. Method and apparatus for communicating between an ambulatory medical device and a control device via telemetry using randomized data
JP3712903B2 (en) 2000-01-28 2005-11-02 花王株式会社 Method for producing glycerin
US7890295B2 (en) * 2000-02-23 2011-02-15 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
JP4389327B2 (en) 2000-03-16 2009-12-24 東亞合成株式会社 How to recover hydrochloric acid
JP2001276572A (en) 2000-04-04 2001-10-09 Nkk Corp Method and apparatus for decomposing harmful polyhalogenated compound
US6561975B1 (en) * 2000-04-19 2003-05-13 Medtronic, Inc. Method and apparatus for communicating with medical device systems
US6613127B1 (en) 2000-05-05 2003-09-02 Dow Global Technologies Inc. Quench apparatus and method for the reformation of organic materials
AU2001261220A1 (en) 2000-05-05 2001-11-20 Dow Global Technologies Inc. Refractory pressure vessel
JP5407100B2 (en) 2000-05-08 2014-02-05 東ソー株式会社 Purification method for inorganic salt containing organic substance and purified salt for salt electrolysis
US6740633B2 (en) * 2000-05-09 2004-05-25 Basf Aktiengesellschaft Polyelectrolyte complexes and a method for production thereof
JP3825959B2 (en) 2000-06-16 2006-09-27 キヤノン株式会社 Pollutant decomposition method and apparatus
US6400974B1 (en) * 2000-06-29 2002-06-04 Sensors For Medicine And Science, Inc. Implanted sensor processing system and method for processing implanted sensor output
AU2001292985A1 (en) 2000-09-28 2002-04-08 Honeywell International, Inc. Fluorination process
US6574510B2 (en) * 2000-11-30 2003-06-03 Cardiac Pacemakers, Inc. Telemetry apparatus and method for an implantable medical device
KR100561896B1 (en) 2001-01-22 2006-03-16 닛뽕소다 가부시키가이샤 Process for producing diphenyl sulfone compound
US6521794B2 (en) 2001-02-02 2003-02-18 Nippon Shokubai Co., Ltd. Method for production of aromatic compounds
EP1231189B2 (en) 2001-02-08 2018-03-07 Pfaudler GmbH Highly corrosion-resistant enamel composition free from heavy metals, method for its production, use and coated bodies
JP4219608B2 (en) 2001-04-05 2009-02-04 日本曹達株式会社 Method for producing diphenylsulfone compound
DE10124386A1 (en) 2001-05-18 2002-11-28 Basf Ag Distillation column for mixtures, with toxic component, has packing with variable inner geometry to form lower bubbling layer with dispersed gas phase and an upper film layer with a continuous gas phase
US6549796B2 (en) * 2001-05-25 2003-04-15 Lifescan, Inc. Monitoring analyte concentration using minimally invasive devices
JP2003081891A (en) 2001-06-28 2003-03-19 Sumitomo Chem Co Ltd Method for producing 1,2-dichloroethane
CN1266030C (en) 2001-06-28 2006-07-26 住友化学工业株式会社 Method for chlorine purification and process for producing 1,2-dichloroethane
SG106098A1 (en) 2001-09-28 2004-09-30 Dainippon Ink & Chemicals Process for preparing epoxy resin
WO2003031343A1 (en) 2001-10-09 2003-04-17 The C & M Group, Llc Mediated electrochemical oxidation of food waste materials
US6806396B2 (en) 2001-12-18 2004-10-19 E. I. Du Pont De Nemours And Company Disposal of fluoroform (HFC-23)
JP3981556B2 (en) 2001-12-20 2007-09-26 株式会社トクヤマ Method for producing methyl chloride
JP2003206473A (en) 2002-01-15 2003-07-22 Mitsubishi Heavy Ind Ltd Sealing material and cracker for organic halogen compound utilizing the sealing material
DE10203914C1 (en) 2002-01-31 2003-10-02 Degussa Recovery of hydrogen chloride, used directly as raw material e.g. in chlorosilane production, involves cooling waste gas from organosilane ester production from chlorosilane and alcohol and/or glycol without condensing hydrogen chloride
US6985773B2 (en) * 2002-02-07 2006-01-10 Cardiac Pacemakers, Inc. Methods and apparatuses for implantable medical device telemetry power management
DE10207442A1 (en) * 2002-02-22 2003-09-11 Bayer Ag Treatment of waste water containing table salt for use in chlor-alkali electrolysis
US7043305B2 (en) * 2002-03-06 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for establishing context among events and optimizing implanted medical device performance
US7468032B2 (en) * 2002-12-18 2008-12-23 Cardiac Pacemakers, Inc. Advanced patient management for identifying, displaying and assisting with correlating health-related data
US6719957B2 (en) 2002-04-17 2004-04-13 Bayer Corporation Process for purification of anhydrous hydrogen chloride gas
US6802976B2 (en) 2002-05-13 2004-10-12 E. I. Du Pont De Nemours And Company Organic sulfur reduction in wastewater
US6745726B2 (en) * 2002-07-29 2004-06-08 Visteon Global Technologies, Inc. Engine thermal management for internal combustion engine
DE10235476A1 (en) * 2002-08-02 2004-02-12 Basf Ag Integrated process for the production of isocyanates
US7037481B2 (en) * 2002-09-09 2006-05-02 United Brine Services Company, Llc Production of ultra pure salt
DE10254709A1 (en) 2002-11-23 2004-06-09 Reinhold Denz Electrolysis assembly has series of enclosed tanks each with electrode electrically linked in cascade arrangement to adjacent electrode
US7009511B2 (en) * 2002-12-17 2006-03-07 Cardiac Pacemakers, Inc. Repeater device for communications with an implantable medical device
DE10260084A1 (en) * 2002-12-19 2004-07-01 Basf Ag Separation of a mixture of hydrogen chloride and phosgene
JP2004216246A (en) 2003-01-14 2004-08-05 Toshiba Corp High-frequency plasma treatment apparatus and high-frequency plasma treatment method
JP2005007841A (en) 2003-06-18 2005-01-13 Nittetu Chemical Engineering Ltd Method for fluororesin lining having good corrosion resistance
CZ20032346A3 (en) 2003-09-01 2005-04-13 Spolek Pro Chemickou A Hutní Výrobu,A.S. Process for preparing dichloropropanols from glycerin
JP2005097177A (en) 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd Method for purifying propylene oxide
EP1761880B1 (en) * 2003-10-29 2013-02-27 Innovision Research & Technology PLC Rfid apparatus
KR100877445B1 (en) 2003-11-20 2009-01-09 솔베이(소시에떼아노님) Process for producing epoxy resins
EP2053035B1 (en) 2003-11-20 2011-03-16 SOLVAY (Société Anonyme) Process for producing dichloropropanol
FR2868419B1 (en) 2004-04-05 2008-08-08 Solvay Sa Sa Belge PROCESS FOR PRODUCING DICHLOROPROPANOL
FR2862644B1 (en) 2003-11-20 2007-01-12 Solvay USE OF RENEWABLE RESOURCES
US7384397B2 (en) * 2003-12-30 2008-06-10 Medtronic Minimed, Inc. System and method for sensor recalibration
US20080145753A1 (en) * 2003-12-31 2008-06-19 Spillman David M Non-magnetic lithium ion secondary electrochemical cell
US7324850B2 (en) * 2004-04-29 2008-01-29 Cardiac Pacemakers, Inc. Method and apparatus for communication between a handheld programmer and an implantable medical device
FR2869612B1 (en) 2004-05-03 2008-02-01 Inst Francais Du Petrole PROCESS FOR THE TRANSESTERIFICATION OF VEGETABLE OR ANIMAL OILS USING HETEROGENEOUS CATALYSTS BASED ON ZINC, TITANIUM AND ALUMINUM
FR2869613B1 (en) 2004-05-03 2008-08-29 Inst Francais Du Petrole PROCESS FOR THE TRANSESTERIFICATION OF VEGETABLE OR ANIMAL OILS USING HETEROGENEOUS CATALYSTS BASED ON BISMUTH, TITANIUM AND ALUMINUM
EP1593732A1 (en) 2004-05-03 2005-11-09 Institut Français du Pétrole Process for the transesterification of plant or animal oil using a catalyst based on zinc or bismuth, titanium and aluminium
FR2872504B1 (en) 2004-06-30 2006-09-22 Arkema Sa PURIFICATION OF THE HYDROCHLORIC ACID BY-PRODUCT OF THE SYNTHESIS OF METHANE SULFONIC ACID
JP2008507526A (en) 2004-07-21 2008-03-13 ダウ グローバル テクノロジーズ インコーポレイティド Conversion of polyhydroxylated aliphatic hydrocarbons or their esters to chlorohydrins.
US7344500B2 (en) * 2004-07-27 2008-03-18 Medtronic Minimed, Inc. Sensing system with auxiliary display
EP1632558A1 (en) * 2004-09-06 2006-03-08 The Procter &amp; Gamble A composition comprising a surface deposition enhancing cationic polymer
DE102004044592A1 (en) 2004-09-13 2006-03-30 Basf Ag Process for the separation of hydrogen chloride and phosgene
WO2006041740A1 (en) * 2004-10-08 2006-04-20 The Procter & Gamble Company Oligomeric alkyl glyceryl sulfonate and/or sulfate surfactant mixture and a detergent composition comprising the same
FR2881732B1 (en) 2005-02-08 2007-11-02 Solvay PROCESS FOR THE PURIFICATION OF HYDROGEN CHLORIDE
TW200630385A (en) * 2005-02-09 2006-09-01 Vinnolit Gmbh & Co Kg Process for the polymerisation of vinyl-containing monomers
EP1762556A1 (en) * 2005-05-20 2007-03-14 SOLVAY (Société Anonyme) Process for producing dichloropropanol from glycerol
FR2885903B1 (en) * 2005-05-20 2015-06-26 Solvay PROCESS FOR THE PRODUCTION OF EPICHLORHYDRIN
KR20080037615A (en) 2005-05-20 2008-04-30 솔베이(소시에떼아노님) Method for making a chlorohydrin
EP1885677A2 (en) 2005-05-20 2008-02-13 Solvay (Societe Anonyme) Method for making a chlorhydrine by reaction between a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent
US20070016449A1 (en) * 2005-06-29 2007-01-18 Gary Cohen Flexible glucose analysis using varying time report deltas and configurable glucose target ranges
JP4904730B2 (en) 2005-07-04 2012-03-28 住友化学株式会社 Separation and recovery of aromatic compounds and hydrogen chloride
CN1900071A (en) * 2005-07-21 2007-01-24 中国科学院大连化学物理研究所 Process for preparing epoxy chloropropane
EP1758039A1 (en) * 2005-08-27 2007-02-28 Roche Diagnostics GmbH Communication adaptor for portable medical or therapeutical devices
CN102219644B (en) 2005-11-08 2013-11-06 索尔维公司 Process for the manufacture of dichloropropanol by chlorination of glycerol
US7126032B1 (en) 2006-03-23 2006-10-24 Sunoco, Inc. (R&M) Purification of glycerin
FR2913683A1 (en) 2007-03-15 2008-09-19 Solvay Crude glycerol-based product useful for producing dichloropropanol which is useful for producing epichlorohydrin and epoxy resins comprises glycerol alkyl ethers in specified amounts
EP2043984A1 (en) 2006-06-14 2009-04-08 Solvay S.A. Crude glycerol-based product, process for its purification and its use in the manufacture of dichloropropanol
DE102006041465A1 (en) 2006-09-02 2008-03-06 Bayer Materialscience Ag Process for the preparation of diaryl carbonate
US20080071328A1 (en) * 2006-09-06 2008-03-20 Medtronic, Inc. Initiating medical system communications
US20080119705A1 (en) * 2006-11-17 2008-05-22 Medtronic Minimed, Inc. Systems and Methods for Diabetes Management Using Consumer Electronic Devices
US20100032617A1 (en) 2007-02-20 2010-02-11 Solvay (Societe Anonyme) Process for manufacturing epichlorohydrin
FR2912743B1 (en) 2007-02-20 2009-04-24 Solvay PROCESS FOR THE PRODUCTION OF EPICHLORHYDRIN
FR2913421B1 (en) 2007-03-07 2009-05-15 Solvay PROCESS FOR PRODUCING DICHLOROPROPANOL
FR2913684B1 (en) 2007-03-14 2012-09-14 Solvay PROCESS FOR PRODUCING DICHLOROPROPANOL
CN101041421A (en) 2007-03-22 2007-09-26 广东富远稀土新材料股份有限公司 Method for industrial hydrochloric acid purification by liquid extraction
TW200911740A (en) 2007-06-01 2009-03-16 Solvay Process for manufacturing a chlorohydrin
FR2917411B1 (en) 2007-06-12 2012-08-03 Solvay EPICHLORHYDRIN, PROCESS FOR PRODUCTION AND USE
FR2918058A1 (en) 2007-06-28 2009-01-02 Solvay GLYCEROL-BASED PRODUCT, PROCESS FOR ITS PURIFICATION AND USE IN THE MANUFACTURE OF DICHLOROPROPANOL
FR2919609A1 (en) 2007-07-30 2009-02-06 Solvay PROCESS FOR PRODUCING GLYCIDOL
US20100206744A1 (en) 2007-08-23 2010-08-19 Celio Lume Pereira Brine purification
JP2011502032A (en) 2007-10-02 2011-01-20 ソルヴェイ(ソシエテ アノニム) Use of silicon-containing compositions to improve the corrosion resistance of containers
US20090085768A1 (en) * 2007-10-02 2009-04-02 Medtronic Minimed, Inc. Glucose sensor transceiver
US7783442B2 (en) * 2007-10-31 2010-08-24 Medtronic Minimed, Inc. System and methods for calibrating physiological characteristic sensors
DE102007058701A1 (en) 2007-12-06 2009-06-10 Bayer Materialscience Ag Process for the preparation of diaryl carbonate
FR2925045B1 (en) 2007-12-17 2012-02-24 Solvay GLYCEROL-BASED PRODUCT, PROCESS FOR OBTAINING THE SAME AND USE THEREOF IN THE MANUFACTURE OF DICHLOROPROPANOL
TWI478875B (en) 2008-01-31 2015-04-01 Solvay Process for degrading organic substances in an aqueous composition
EP2085364A1 (en) 2008-01-31 2009-08-05 SOLVAY (Société Anonyme) Process for degrading organic substances in an aqueous composition
JP2009263338A (en) 2008-03-12 2009-11-12 Daiso Co Ltd Novel manufacturing method of epichlorohydrin
FR2929611B3 (en) 2008-04-03 2010-09-03 Solvay COMPOSITION COMPRISING GLYCEROL, PROCESS FOR OBTAINING THE SAME AND USE THEREOF IN THE MANUFACTURE OF DICHLOROPROPANOL
JP5619721B2 (en) 2008-04-03 2014-11-05 ソルヴェイ(ソシエテ アノニム) Composition comprising glycerol, process for obtaining it and its use in the manufacture of dichloropropanol
TWI368616B (en) 2008-08-01 2012-07-21 Dow Global Technologies Llc Process for producing epoxides
FR2935699A1 (en) 2008-09-10 2010-03-12 Solvay PROCESS FOR PRODUCING A CHEMICAL
FR2935968B1 (en) 2008-09-12 2010-09-10 Solvay PROCESS FOR THE PURIFICATION OF HYDROGEN CHLORIDE
FR2939434B1 (en) 2008-12-08 2012-05-18 Solvay PROCESS FOR TREATING GLYCEROL

Also Published As

Publication number Publication date
TW200911772A (en) 2009-03-16
MX2009013533A (en) 2010-01-27
WO2008152045A1 (en) 2008-12-18
JP5877641B2 (en) 2016-03-08
US8399692B2 (en) 2013-03-19
KR20100036309A (en) 2010-04-07
EA201070003A1 (en) 2010-06-30
EA201070002A1 (en) 2010-06-30
JP2010529164A (en) 2010-08-26
MY181785A (en) 2021-01-07
US20100168379A1 (en) 2010-07-01
JP2010529165A (en) 2010-08-26
MX2009013657A (en) 2010-01-27
JP5878293B2 (en) 2016-03-08
CN101679334B (en) 2013-01-02
AR069265A1 (en) 2010-01-13
MY189660A (en) 2022-02-23
TWI500609B (en) 2015-09-21
MY149829A (en) 2013-10-14
US20130190474A1 (en) 2013-07-25
US20100179300A1 (en) 2010-07-15
BRPI0812876A2 (en) 2017-05-23
KR101495939B1 (en) 2015-02-25
EP2170856A1 (en) 2010-04-07
CA2689204A1 (en) 2008-12-18
TW200911773A (en) 2009-03-16
JP2014133754A (en) 2014-07-24
EA019356B1 (en) 2014-03-31
MY149806A (en) 2013-10-14
US8378130B2 (en) 2013-02-19
CN101743235A (en) 2010-06-16
CN105153068A (en) 2015-12-16
CN101679334A (en) 2010-03-24
WO2008152044A1 (en) 2008-12-18
KR101504374B1 (en) 2015-03-19
EP2158191A1 (en) 2010-03-03
BRPI0812712A2 (en) 2019-09-24
CA2689565A1 (en) 2008-12-11
KR20100031614A (en) 2010-03-23
AR069266A1 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
US8378130B2 (en) Product containing epichlorohydrin, its preparation and its use in various applications
WO2011054769A2 (en) Process for manufacturing a product derived from epichlorohydrin
NZ225727A (en) Preparation of epoxy resins with low undesirable halogen content utilising a mixture of solvents, at least one of which is non-polar and aprotic
CN111777741B (en) Tetraglycidyl amine epoxy resin and preparation method thereof
JPH06247989A (en) Cyclic phosphazene compound, resin composition and its cured material
US20150141548A1 (en) Low viscosity epoxy resins and low voc curable formulations therefrom
US3925407A (en) Triglycidyl compounds and their use
US5840824A (en) Epoxy resin, epoxy resin composition and hardened product thereof
EP1538147B1 (en) Method of producing glycidyl 2-hydroxyisobutyrate
EP0108720A1 (en) Cycloaliphatic diallyl ethers
CN102958971B (en) Epoxy polycyclopentadiene compounds
JPH04209623A (en) Epoxy resin composition and its cured product

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE