US20130000795A1 - Amorphous Core Annealing Method - Google Patents

Amorphous Core Annealing Method Download PDF

Info

Publication number
US20130000795A1
US20130000795A1 US13/576,254 US201113576254A US2013000795A1 US 20130000795 A1 US20130000795 A1 US 20130000795A1 US 201113576254 A US201113576254 A US 201113576254A US 2013000795 A1 US2013000795 A1 US 2013000795A1
Authority
US
United States
Prior art keywords
amorphous
heat source
annealing
heat
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/576,254
Other languages
English (en)
Inventor
Kenji Nakanoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Assigned to HITACHI INDUSTRIAL EQUIPMENT SYSTEMS CO., LTD. reassignment HITACHI INDUSTRIAL EQUIPMENT SYSTEMS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAKANOUE, KENJI
Publication of US20130000795A1 publication Critical patent/US20130000795A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to an annealing method for an iron core such as a transformer and a reactor and, more particularly, to an annealing method for an amorphous core using an amorphous material.
  • an annealing furnace in which amorphous cores are annealed, that is a means for annealing iron cores by uniformizing the in-furnace temperature of the annealing furnace, and especially, for effectively annealing iron cores made of an amorphous material for which the heat treatment time is restricted (Patent Literature 1).
  • a heat source and a fan are provided in the upper portion of a furnace body, the furnace body forms a two-layer structure of the furnace interior formed by a partition wall on the inside of furnace body and a space formed between the partition wall and an outer wall on the outside of furnace body, the fan is installed in the center in the upper portion of the furnace body, the fan takes in hot air from the furnace interior of two-layer structure and sends the hot air to the outside of the two-layer structure, and the hot air enters the furnace interior from the lower portion of the furnace body to heat the iron core, thereby the hot air is circulated. Since the in-furnace temperature is uniformized, this annealing furnace can heat-treat large amounts of articles at one time in a batch mode, and can anneal amorphous cores used at present under severe heat treatment conditions.
  • an amorphous transformer in which by excitation annealing an amorphous multiple leg-winding core so that the magnetic fluxes in the symmetrical direction flow to the surroundings with the central leg being the center, an inside iron core and an outside iron core constituting the amorphous multiple leg-winding core are needed to be excitation annealed individually, and the whole can be excited as a unit, thereby improving the excitation annealing work efficiency, and a manufacturing method therefor (refer to Patent Literature 2). Since the whole can be excitation annealed merely by mounting an exciting coil on the central leg only, the excitation annealing work becomes extremely easy. Also, if the magnetic fluxes are made a symmetrical flow with the central leg being the center, both of core loss and excitation capacity become satisfactory, and resultantly the core properties become especially excellent.
  • This heat treatment method for a ring-shaped core is a heat treatment method for a ring-shaped core consisting of an amorphous alloy, and a heat treatment method for a ring-shaped core in which a heat transfer member consisting of a metallic material is brought into contact with the ring-shaped core to heat the ring-shaped core.
  • the thermal conductivity of the heat transfer member at the heat treatment time be 15 (W/m ⁇ K) or higher
  • the heat transfer member include a columnar member having a cross section the size of which is about the same as that of the cross section of the inner peripheral portion of the ring-shaped core, and the columnar member be inserted in the inner peripheral portion of the ring-shaped core.
  • the amorphous material used mainly as an iron core material for a transformer has a thickness smaller than that of a magnetic steel sheet similarly used as an iron core material for a transformer.
  • the core loss properties are excellent, so that it can be said that the amorphous material is a material excellent in manufacturing high-efficiency apparatuses.
  • the amorphous material has a property of being difficult to work because of its high hardness, high brittleness, and extremely small stack thickness.
  • Annealing is usually performed to relax internal stress.
  • annealing is performed to align the internal magnetic field in one direction by applying a magnetic field so as to turn the magnetic field in the direction of iron core during annealing.
  • the temperature of magnetic steel sheet may be raised to a temperature of about 800° C. as the annealing temperature, whereas the amorphous metal must be annealed properly in terms of temperature because it crystallizes at a temperature of 380 to 400° C. and the properties as a transformer deteriorate.
  • the magnetic properties change significantly depending on the annealing conditions (annealing temperature, annealing time), so that it is difficult to produce an iron core having fixed properties.
  • this material does not crystallize if being annealed at a low temperature, but has a problem that the annealing requires too much time. Therefore, the amorphous material has been annealed in a short period of time at a temperature somewhat lower than the crystallization temperature. For the amorphous material, if the temperature exceeds a fixed value, the crystallization of material proceeds, and the properties of amorphous material are lost.
  • the amorphous core is placed in the annealing furnace, and the in-furnace temperature is regulated, whereby the annealing condition is regulated.
  • the conduction mode of heat to the iron core at the open-air temperature is a mode such that heat is transferred from the surface of iron core to the interior thereof, and therefore the central portion of iron core is heated after delay, and annealing is not performed uniformly on the surface and in the central portion of iron core. Since the amorphous material is used lappedly in layers, by the layer of air intruding in between the amorphous layers, the thermal conductivity in the direction crossing the layer is decreased.
  • an iron core having special magnetic properties as an iron core can be manufactured by making good use of the feature of amorphous material such that the magnetic properties are changed by the annealing conditions, for example, by differentiating the magnetic properties of a portion in which the peripheral length in the iron core is short from the magnetic properties of a portion in which the peripheral length therein is long.
  • An object of the present invention is to provide an amorphous core annealing method in which the temperature distribution within an amorphous core at the annealing time is regulated, the core loss caused by, for example, the unevenness of annealing within the iron core is prevented from becoming heavy, the magnetroresistance distribution within the iron core is changed depending on the annealing conditions, the core properties themselves are regulated, and the annealing time is shortened.
  • an annealing method for regulating the annealing temperature distribution within an amorphous core at the annealing time an annealing method in which a heat source is held between iron cores, an annealing method in which heating is performed from a lamination surface, an annealing method in which a substance having high thermal conductivity is held between laminations, an annealing method in which the iron core is extended in the direction perpendicular to the lamination surface so as to form a plurality of steps, and an annealing method in which the iron core is divided into a plurality of pieces in the lamination direction are shown.
  • an iron core is configured by a block-shaped laminated body formed by laminating a plurality of thin sheets of amorphous material, a heat source is held between the adjacent amorphous materials, and annealing can be performed by the heat supplied from the heat source. Also, the heat source is brought into contact with the lamination end surface of the block-shaped laminated body formed by laminating a plurality of thin sheets of amorphous material, and annealing can be performed by the heat supplied from the heat source.
  • an iron core of a special specification for example, an iron core having a low core loss, or an iron core having a high magnetroresistance, can be manufactured by purposely using different annealing conditions within the iron core.
  • the annealing time can be shortened by increasing the absolute quantity of heat transferred to the iron core per unit time. Thereby, an excellent annealing process in which the annealing temperature can be varied can be obtained.
  • FIG. 1 is a perspective view showing one embodiment of a mode in which a heat source is held between iron cores in an amorphous core annealing method in accordance with the present invention.
  • FIG. 2 is a detailed perspective view showing one example of a heat source utilizing induction heating used in the annealing method shown in FIG. 1 .
  • FIG. 3 is a perspective view showing another embodiment of a mode in which a heat source is held between iron cores in an amorphous core annealing method in accordance with the present invention.
  • FIG. 4 is a perspective view showing an embodiment of a mode in which heat is applied from a lamination end surface in an amorphous core annealing method in accordance with the present invention.
  • FIG. 5 is a detailed view of a heat source, which is a heat source example used in FIG. 4 .
  • FIG. 6 is a perspective view showing a state in which an iron core is extended in the direction perpendicular to a lamination end surface so as to form a plurality of steps in an amorphous core annealing method in accordance with the present invention.
  • FIG. 7 is a perspective view showing a state in which an iron core is divided into a plurality of pieces in the lamination direction in an amorphous core annealing method in accordance with the present invention.
  • FIGS. 1 and 2 are views for explaining first and second embodiments of an amorphous core annealing method in accordance with the present invention.
  • FIG. 1 is a perspective view showing the first embodiment in which an amorphous core 1 a is annealed, and shows a state in which a heater 2 a is held between the amorphous cores 1 a formed by laminating a large number of amorphous sheet materials (thin film materials).
  • the heater 2 a may be a heater such as an iron-made thin sheet, for example, such as to directly heat the heater 2 a itself in FIG. 1 .
  • the heater 2 a is preferably a substance capable of withstanding a temperature not lower than the annealing temperature of 400° C., and is arranged between an amorphous material of n-th (n is an integer of 2 or more) layer from the innermost periphery side of the iron core 1 a and an amorphous material of (n+1)th layer.
  • the heater 2 a is heated by a heat source on the outside, and carries annealing heat to between both the amorphous layers.
  • FIG. 2 shows a heater 2 b using the principle of induction heating (IH heating) as the second embodiment of the amorphous core annealing method.
  • the heater 2 b is an alternative example of the heater 2 a , and is used to heat the iron core itself by using induction heating.
  • an induction coil of one turn or several turns is produced in plural numbers by an electric wire 3 a in a substance capable of withstanding a temperature not lower than the annealing temperature of 400° C.
  • the quantity of heat given to the iron core 1 a can be regulated by the voltage applied to each induction coil and the number of turns of coil.
  • FIG. 3 is an explanatory view showing a third embodiment of the amorphous core annealing method in accordance with the present invention.
  • FIG. 3 shows a state in which a tubular heat transfer material 2 c is held in the amorphous cores 1 a each consisting of an amorphous material.
  • the heat transfer material 2 c is a heat transfer material consisting of a copper sheet or the like for transferring heat to the central portion of the amorphous core of the iron core 1 a , and is preferably a substance that, for example, can withstand a temperature not lower than the annealing temperature of 400° C. and has a thermal conductivity of 25 W/m ⁇ K or higher.
  • the heat transfer material 2 c is arranged between an amorphous material of n-th (n is an integer of 2 or more) layer from the innermost periphery side of the iron core 1 a and an amorphous material of (n+1)th layer.
  • the heat transfer material 2 c is in sufficient contact with both the amorphous layers because being formed into a tubular shape, and therefore can increase and ensure the heat conduction surface area.
  • the heat transfer material 2 c held between the amorphous materials of the iron core 1 a plays a role in transmitting the outside temperature to between the amorphous materials when annealing is performed, and regulates the temperature distribution within the iron core 1 a .
  • the quantity of heat given to the iron core 1 a by the heat transfer material 2 c can be regulated by the stack thickness, sheet width, and thermal conductivity of the heat transfer material 2 c .
  • the number of sheets of the heat transfer material 2 c can be increased according to the size of the iron core 1 a like the number of sheets of the heater 2 a or heater 2 b.
  • FIG. 4 is a view showing a state in which the lamination end surface of the amorphous core 1 a is heated by a heater 2 d
  • FIG. 5 is a view showing the surface state of the heater 2 d shown by enlarging a part of the heating surface thereof.
  • the amorphous core has a space factor lower than that of a magnetic steel sheet, and has many air layers between the laminations, so that it is presumed that the heat transfer between the laminations is little.
  • the heater 2 d by applying heat from the lamination end surface of amorphous thin material by the heater 2 d , heat can be transferred efficiently to individual amorphous thin materials of iron core. As a result, the shortening of annealing time can be anticipated.
  • the lamination end surface of iron core has some deviation between steps. Therefore, the surface that overheats the lamination surface of iron core is not flat, but is preferably in a rough fibre state as indicated by 2 e to prevent the contact surface from decreasing.
  • a material such as metal fibre, carbon fibre, or carbon nanotube, or a jelly-shaped material can be used for the heating surface of the heater 2 d .
  • the heater 2 d can ensure a contact area with the lamination end surface of the amorphous core 1 a in a substantial meaning because of being provided with the above-described fibre-shaped heating surface.
  • FIG. 6 shows a state in which the iron core is extended so as to form several steps so that the temperature rise condition within the iron core does not change when annealing is performed
  • FIG. 7 shows a state in which the iron core is divided into a plurality of pieces with respect to the lamination surface of iron core.
  • the iron core is extended in the direction perpendicular to the lamination surface so as to form several steps (2 or more steps). After annealing, the iron core state is restored to the original state. At this time, as indicated by 4 a , 4 b and 4 c in FIG. 6 , a substance capable of withstanding a temperature not lower than the annealing temperature of 400° C. is wound in advance on the outermost periphery and the innermost periphery of each step, whereby a breakage of material caused by seizure and the like between the amorphous materials occurring at the work time can be prevented.
  • a method for solving the temperature difference between the outside of iron core and the central portion thereof there is available a method for performing annealing by dividing the iron core into a plurality of pieces (22 or more steps) with respect to the lamination surface as shown in FIG. 7 .
  • a substance capable of withstanding a temperature not lower than the annealing temperature of 400° C. is wound on the outermost periphery and the innermost periphery of each divided iron core, and the iron core is fixed.
  • each of the divided iron cores is annealed under a different condition, whereby the magnetroresistance can be changed, and the properties themselves of iron core can also be regulated.
  • the amorphous material is annealed in a magnetic field, this material is preferably made a nonmagnetic material that does not exert an influence on the magnetic field.
  • the amorphous material is preferably annealed at the atmospheric temperature.
  • the annealing temperature is not necessarily limited to the atmospheric temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Heat Treatment Of Articles (AREA)
US13/576,254 2010-02-04 2011-01-18 Amorphous Core Annealing Method Abandoned US20130000795A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010023224A JP2011165701A (ja) 2010-02-04 2010-02-04 アモルファス鉄心の焼鈍方法
JP2010-023224 2010-09-28
PCT/JP2011/050692 WO2011096267A1 (ja) 2010-02-04 2011-01-18 アモルファス鉄心の焼鈍方法

Publications (1)

Publication Number Publication Date
US20130000795A1 true US20130000795A1 (en) 2013-01-03

Family

ID=44355273

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/576,254 Abandoned US20130000795A1 (en) 2010-02-04 2011-01-18 Amorphous Core Annealing Method

Country Status (6)

Country Link
US (1) US20130000795A1 (enExample)
EP (1) EP2533259A4 (enExample)
JP (1) JP2011165701A (enExample)
CN (1) CN102741957B (enExample)
TW (1) TWI443198B (enExample)
WO (1) WO2011096267A1 (enExample)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224388B2 (en) * 2014-08-25 2019-03-05 Mitsubishi Electric Corporation Wiring core structure, semiconductor evaluation device and semiconductor device
CN113667801A (zh) * 2020-07-28 2021-11-19 山东大学 一种非晶合金的热处理方法
US11562856B2 (en) 2019-02-06 2023-01-24 Toyota Jidosha Kabushiki Kaisha Method for manufacturing alloy ribbon
US12278528B2 (en) 2018-05-14 2025-04-15 Mitsui High-Tec, Inc. Method for manufacturing laminated body
US12283411B2 (en) 2019-01-10 2025-04-22 Toyota Jidosha Kabushiki Kaisha Method for crystallization heat treating a stack of amorphous alloy ribbons

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029669A (ja) 2011-07-28 2013-02-07 Kyocera Document Solutions Inc 画像形成装置
CN104252967B (zh) * 2014-06-25 2017-02-15 上海置信电气非晶有限公司 一种非晶合金立体卷铁心的热处理的控制方法
CN104616881B (zh) * 2014-12-30 2016-09-28 安泰南瑞非晶科技有限责任公司 配电变压器用铁基非晶合金铁心及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159812A (ja) * 1984-08-31 1986-03-27 Toshiba Corp 鉄心の製造方法
JPS62154710A (ja) * 1985-12-27 1987-07-09 Toshiba Corp 巻鉄心の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233811A (ja) * 1984-04-27 1985-11-20 Toshiba Corp 巻鉄心の熱処理方法
JPS6158222A (ja) * 1984-08-30 1986-03-25 Toshiba Corp 静止誘導電器の製造方法
JPH01161815A (ja) * 1987-12-18 1989-06-26 Toshiba Corp 巻鉄心の製造方法
JPH0684655A (ja) * 1992-09-01 1994-03-25 Toshiba Corp 高周波用巻鉄心及び該巻鉄心を用いた高周波用誘導電気機器
JP2776337B2 (ja) 1995-10-24 1998-07-16 株式会社日立製作所 非晶質巻鉄心
JPH1022145A (ja) 1996-07-05 1998-01-23 Hitachi Ltd アモルファス変圧器及びその製造方法
JP2004014601A (ja) * 2002-06-04 2004-01-15 Hitachi Metals Ltd 環状コアの熱処理方法
TW200825184A (en) * 2006-12-13 2008-06-16 Tatung Co Ltd The annealing method for amorphous iron cores and system thereof
CN101611158B (zh) 2007-04-20 2011-08-17 株式会社日立产机系统 铁心退火炉

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159812A (ja) * 1984-08-31 1986-03-27 Toshiba Corp 鉄心の製造方法
JPS62154710A (ja) * 1985-12-27 1987-07-09 Toshiba Corp 巻鉄心の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224388B2 (en) * 2014-08-25 2019-03-05 Mitsubishi Electric Corporation Wiring core structure, semiconductor evaluation device and semiconductor device
US12278528B2 (en) 2018-05-14 2025-04-15 Mitsui High-Tec, Inc. Method for manufacturing laminated body
US12283411B2 (en) 2019-01-10 2025-04-22 Toyota Jidosha Kabushiki Kaisha Method for crystallization heat treating a stack of amorphous alloy ribbons
US11562856B2 (en) 2019-02-06 2023-01-24 Toyota Jidosha Kabushiki Kaisha Method for manufacturing alloy ribbon
CN113667801A (zh) * 2020-07-28 2021-11-19 山东大学 一种非晶合金的热处理方法

Also Published As

Publication number Publication date
CN102741957A (zh) 2012-10-17
EP2533259A4 (en) 2016-07-13
TW201144450A (en) 2011-12-16
JP2011165701A (ja) 2011-08-25
TWI443198B (zh) 2014-07-01
EP2533259A1 (en) 2012-12-12
WO2011096267A1 (ja) 2011-08-11
CN102741957B (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
US20130000795A1 (en) Amorphous Core Annealing Method
EP2805339B1 (en) Three-phase magnetic cores for magnetic induction devices and methods for manufacturing them
JP4676567B1 (ja) 半導体基板熱処理装置
CN102360768A (zh) 一种非晶铁芯和制造方法及其高性能、低噪声、低成本的变压器
CN101919306A (zh) 导电工件在具有通量补偿器的螺线管线圈中的受控电感应加热
CN105009688A (zh) 感应加热线圈以及使用了该感应加热线圈的感应加热装置
CN120935881A (zh) 加热设备以及对应装置和方法
JP2022096731A (ja) 巻鉄心用誘導加熱式熱処理装置およびその熱処理方法
JP2016157915A (ja) 巻線の渦電流損失が低減される変圧器
CN112769304B (zh) 一种步进电机转子铁芯高力矩分隔工艺
WO2017107129A1 (zh) 穿绕硅钢带磁芯的电力变压器及其制作方法
CA2967110C (en) Cooling ducts for transformers' winding
US11244782B2 (en) Amorphous alloy magnetic core
JP2009295443A (ja) 誘導コイル及び電磁誘導加熱装置
CN203850132U (zh) 一种非晶合金变压器线圈
JP4895606B2 (ja) 変圧器
JP3668036B2 (ja) 円筒状金属コイル加熱装置
JP4101967B2 (ja) コイル状棒線材の加熱装置
US20130187738A1 (en) Electrical apparatus having a thermally conductive bobbin
JP2002194429A (ja) リング状あるいは円筒状に巻いた金属の加熱装置
JPS6159812A (ja) 鉄心の製造方法
JP2002129243A (ja) 円筒状金属コイルの加熱方法
JP2014236057A (ja) 超電導コイル体および超電導機器
JPS6154612A (ja) 鉄心の製造方法
JP2011171641A (ja) 誘導機器の超電導コイル

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI INDUSTRIAL EQUIPMENT SYSTEMS CO., LTD., JA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAKANOUE, KENJI;REEL/FRAME:028867/0254

Effective date: 20120731

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION