US20120324927A1 - Air conditioning system for vehicles - Google Patents

Air conditioning system for vehicles Download PDF

Info

Publication number
US20120324927A1
US20120324927A1 US13/581,196 US201113581196A US2012324927A1 US 20120324927 A1 US20120324927 A1 US 20120324927A1 US 201113581196 A US201113581196 A US 201113581196A US 2012324927 A1 US2012324927 A1 US 2012324927A1
Authority
US
United States
Prior art keywords
control signal
displacement control
predetermined value
compressor
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/581,196
Other languages
English (en)
Inventor
Kenichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to SANDEN CORPORATION reassignment SANDEN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUZUKI, KENICHI
Publication of US20120324927A1 publication Critical patent/US20120324927A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3211Control means therefor for increasing the efficiency of a vehicle refrigeration cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3275Cooling devices output of a control signal related to a compressing unit to control the volume of a compressor

Definitions

  • the present invention relates to a technology for controlling a displacement of a variable displacement compressor in an air conditioning system provided with a vapor compression type refrigeration cycle for vehicles, wherein a displacement control signal which is input from the outside to the variable displacement compressor is calculated as based on a target temperature of an air conditioning in an evaporator and is output.
  • Patent document 1 discloses a control device which is applicable to an automatic air conditioning system for vehicles.
  • This control device has a target response calculation means for a controlled output, which calculates the target response of the controlled output to be designated so as to reach a target value in a transient state.
  • the control device has a feedforward control input estimation means for the target response of the controlled output and also has a controlled output feedback means to calculate a deviation between the target response of the controlled output and a present controlled output, wherein the controlled object is controlled by a control input obtained as a sum of the feedforward control input and the feedback control input.
  • Patent document 2 discloses an air conditioning device which can vary a discharge displacement of a compressor by an external control.
  • This air conditioning device can control an evaporator exit air temperature made to reach a target value.
  • a compressor efficiency might decrease by a compressor operation with a small displacement if a displacement control signal to be input from the outside is less or equal to a certain value.
  • an expansion valve might fluctuate as causing an unstable displacement control.
  • an object of the present invention is to provide an air conditioning system for vehicles, which is capable of being controlled with an excellent operational efficiency even under such an operation condition that the efficiency might decrease, as following a conventional control idea.
  • an air conditioning system for vehicles is an air conditioning system for vehicles, comprising a compressor for compressing a refrigerant, a condenser for condensing a compressed refrigerant, an expansion mechanism for expanding a condensed refrigerant, an evaporator for evaporating an expanded refrigerant so as to contact an air to be cooled and dehumidified, a blower for blowing an air to the condenser, and a displacement control signal calculation means for determining a displacement control signal according to a calculation formula for the displacement control signal to be input from an outside to the compressor in order to control a displacement in the compressor, characterized in that at least a target value of an air temperature at an evaporator exit is input to the displacement control signal calculation means, the displacement control signal is determined from a difference between an air temperature at the evaporator exit and the target value of the air temperature at the evaporator exit if a calculated value of the displacement control signal which is calculated according
  • the air conditioning system for vehicles of the present invention makes it possible that the operation condition is made stable even when the compressor is operated in a small displacement, because the displacement control signal input to the compressor from the outside is determined by using a difference between the air temperature at the evaporator exit and the target value of the air temperature at the evaporator exit if the calculated value which is calculated by a predetermined calculation formula is less or equal to predetermined value A, and is determined by the calculation formula if the displacement control signal is more than predetermined value A.
  • the displacement control signal is determined to be either a predetermined value m which corresponds to a minimum displacement in the compressor or a predetermined value B, if the calculated value of the displacement control signal is less or equal to the predetermined value A.
  • the predetermined value m is a displacement control signal to be selected to minimize the displacement in the compressor, and is usually set greater than the predetermined value A and B.
  • the displacement control signal is determined to be either value of the predetermined value m corresponding to the minimum displacement of the compressor or the predetermined value B, so that the displacement control method is simplified and the operating condition is further stabilized.
  • the predetermined value B is determined according to a thermal load of the air conditioning system.
  • a physical parameter showing the thermal load of the air conditioning system may be outdoor temperature, indoor temperature, indoor humidity, airflow rate to the compressor, and insolation. If the predetermined value B is determined according to the thermal load in the air conditioning system, the displacement control method can be simplified and the displacement in the compressor can be controlled to the optimum value.
  • the predetermined value B is determined to be always more or equal to the predetermined value A. If the predetermined value B is more or equal to A at any time, the displacement control signal is prevented from an abrupt decrease even when the displacement control signal, which has been more than the predetermined value, decreases to a value less than the predetermined value A.
  • the blower is stopped if the calculated value of the displacement control value is less or equal to the predetermined value A while the displacement control signal is equal to the predetermined value m, and that the blower is operated if the displacement control signal is equal to the predetermined value B. If such a simple binary control method for the compressor displacement during operating the compressor with a small displacement is applied to ON-OFF operation of the blower of the condenser, the control method of a whole air conditioning system is simplified and the air conditioning system can be operated more stably.
  • an airflow rate of the blower is controlled according to a vehicle speed.
  • the blower may not be required to operate if ambient air is blown to the condenser while the vehicle is moving at a high speed, so as to save energy consumption.
  • the blower is stopped if the calculated value of the displacement control value is less or equal to the predetermined value A while vehicle speed is more or equal to a predetermined value C, and that the blower is operated if the vehicle speed is less than the predetermined value C.
  • an airflow rate of the blower is controlled according to a torque of the compressor.
  • a torque of the compressor is controlled according to the airflow rate.
  • the displacement control signal calculation means it is preferable that at least one physical parameter in a group consisting of an insolation, an outdoor temperature, an indoor temperature, an indoor humidity, an airflow rate to the compressor, a vehicle speed, and rotation speed of a vehicle engine is input to the displacement control signal calculation means. If at least one physical parameter among these physical quantities is input to the displacement control signal calculation means, the displacement control signal as an important control variable in the air conditioning system for vehicles of the present invention can be determined as suitable to environments in which the air conditioning system is mounted.
  • An air conditioning system for vehicles makes it possible that the air conditioning system for vehicles provided with a variable displacement compressor capable of being controlled from the outside is improved in an efficiency and a vehicle fuel cost even under an operation condition where the compressor operational efficiency might decrease. Further, a vapor compression type refrigeration cycle provided with a variable displacement compressor capable of being controlled from the outside can be operated further stably, and a drive torque of the compressor can be suppressed from fluctuating.
  • FIG. 1 is a flow diagram of a whole air conditioner for vehicles according to the present invention.
  • FIG. 2 is an example of a control flow diagram of the air conditioner for vehicles in FIG. 1 .
  • FIG. 3 is another example of a control flow diagram of the air conditioner for vehicles in FIG. 1 .
  • FIG. 4 is yet another example of a control flow diagram of the air conditioner for vehicles in FIG. 1 .
  • FIG. 5 is a characteristic diagram showing a relation between a volumetric efficiency of Compressor 4 in FIG. 1 and a displacement control signal.
  • FIG. 6 is a characteristic diagram showing a relation between a torque of Compressor 4 in FIG. 1 and a displacement control signal.
  • FIG. 1 is a flow diagram of a whole air conditioner for vehicles according to an embodiment of the present invention, in which a whole mechanical component part of a refrigeration cycle as an air conditioning system for vehicles is shown.
  • Air conditioner 31 comprises a refrigeration cycle and a draft cycle, the refrigeration cycle being provided with Compressor 4 , Condenser 6 , Liquid receiver tank 8 , Expansion device 9 and Evaporator 10 , etc., and the draft cycle being provided with Outdoor air inlet 13 , Indoor air inlet 14 , Indoor/outdoor air-switching damper 15 , Blower 16 , heater 18 and Air mix damper 19 , etc.
  • the rotative power is transmitted from Engine 1 as a drive source to Compressor 4 through Pulleys 2 and 3 , while the transmission and cutoff of the rotative power are controlled by Clutch controller 25 .
  • a signal corresponding to Evaporator 4 exit air temperature (air conditioning temperature) is input from Evaporator exit air-temperature sensor 11 to Air conditioner controller 20 .
  • Air conditioner controller 20 reads an output signal of Evaporator exit air-temperature sensor 11 , and then outputs Compressor displacement control signal 26 to Compressor 4 .
  • Air conditioner controller 20 calculates Compressor displacement control signal 26 by a displacement control signal calculation device incorporated therein, so as to control the displacement of Compressor 4 from the outside of the compressor. Further, an environmental information signal is input to Air conditioner controller 20 from Outdoor temperature sensor 21 , Insolation sensor 22 , Indoor temperature sensor 23 and Indoor humidity sensor 24 , etc.
  • Refrigerant used for the refrigeration cycle in Air conditioner 31 for vehicles may be carbon dioxide or fluorocarbon refrigerant.
  • Expansion device 9 may be electronic expansion valve, thermal expansion valve or differential-pressure expansion valve.
  • Air conditioner 31 for vehicles in FIG. 1 is provided with a clutch, and alternatively, may be provided without a clutch in the present invention.
  • Compressor 4 in FIG. 1 is a compressor driven by Engine 1 , and alternatively, may be a compressor driven by an electric motor in the present invention.
  • FIG. 2 is an example of a control flow diagram of Air conditioner 31 for vehicles in FIG. 1 .
  • Target value of air temperature at evaporator exit (Tet), Indoor temperature (Tin), Indoor humidity (Hin), Outdoor temperature (Tamb), Insolation (Rsun), Engine rotation speed (Ne) and Vehicle speed (VS) are detected and read in.
  • the calculation means of displacement control signal for air temperature at evaporator exit consists of the following means: (Target response control means for air temperature at evaporator exit; Feedforward control input estimation means for air temperature at evaporator exit; and Feedback control input calculation means for air temperature at evaporator exit)
  • Target response for air temperature at evaporator exit is calculated by the following formula as referring to Target air temperature at evaporator exit (Tet).
  • Tef ( TL 1 ⁇ Tet+Tc 1 ⁇ Tef (Previous value))/( Tc 1 +TL 1)
  • Tc 1 Designated response for air temperature at evaporator exit
  • Feedforward control input for air temperature at evaporator exit is estimated by the following formula, as referring to Target feedforward for air temperature at evaporator exit (Tetc), Outdoor temperature (Tamb), Vehicle speed (VS), Blower voltage (BLV) and Engine rotation speed (Ne).
  • Icffte f ( Tetc,Tamb,Ne,VS,BLV )
  • Target feedforward for air temperature at evaporator exit is calculated by the following formula, as referring to Target air temperature at evaporator exit (Tet).
  • Tetc ( TL 2 ⁇ Tet+Tcte ⁇ Tetc (Previous value))/( Tcte+TL 2)
  • Tcte Designated feedforward for air temperature at evaporator exit
  • Feedback control input for air temperature at evaporator exit is obtained by the proportion calculation and the integration calculation as follows, as referring to Target response for air temperature at evaporator exit (Tef) and Air temperature at evaporator exit (Teva).
  • Icfb — te Pte (Result of proportion calculation)+ Ite (Result of integration calculation)
  • Displacement control signal for air temperature at evaporator exit (Ict_te) is calculated as using the above described calculation results by the following formula.
  • Displacement control signal for air temperature at evaporator exit Ict_te
  • variable displacement compressor controlled from the outside is intermittently controlled to operate under the following condition by the external intermittent control of variable displacement.
  • Tet Target air temperature at evaporator exit
  • Condenser cooling blower 7 is controlled to operate under the following condition.
  • the step returns to the beginning (1-1.) of the flow.
  • FIG. 3 is another example of a control flow diagram of Air conditioner 31 for vehicles in FIG. 1 .
  • Target air temperature at evaporator exit (Tet), Indoor temperature (Tin), Indoor humidity (Hin), Outdoor temperature (Tamb), Insolation (Rsun), Engine rotation speed (Ne) and Vehicle speed (VS) are detected and read in.
  • Displacement control signal for air temperature at evaporator exit Ict_te
  • External intermittent control signal (B) of variable displacement is calculated by the following formula in the calculation means for external intermittent control signal of variable displacement.
  • BLV Physical parameter correlating with the airflow rate (voltage to be applied to the blower, for example).
  • variable displacement compressor controlled from the outside is intermittently controlled to operate under the following condition by the external intermittent control of variable displacement.
  • Tet Target air temperature at evaporator exit
  • Condenser cooling blower 7 is controlled to operate under the following condition.
  • the step returns to the beginning (2-1.) of the flow.
  • FIG. 4 is yet another example of a control flow diagram of Air conditioner 31 for vehicles in FIG. 1 .
  • Target value of evaporator exit air temperature (Tet), Indoor temperature (Tin), Indoor humidity (Hin), Outdoor temperature (Tamb), Insolation (Rsun), Engine rotation speed (Ne) and Vehicle speed (VS) are detected and read in.
  • Displacement control signal for air temperature at evaporator exit Ict_te
  • External intermittent control signal (B) of variable displacement is calculated by the following formula in the calculation means for external intermittent control signal of variable displacement.
  • BLV Physical parameter correlating with the airflow rate (Voltage to be applied to the blower, for example).
  • variable displacement compressor controlled from the outside is intermittently controlled to operate under the following condition by the external intermittent control of variable displacement.
  • Tet Target air temperature at evaporator exit
  • the drive torque of the compressor is estimated by a compressor torque estimation means.
  • the following torque estimation formula is just an example, and therefore any of signal parameters in the right-hand side may be omitted.
  • Trq f ( Pd,Ict,Ne,VS,Tamb )
  • FIG. 5 shows a relation between a volumetric efficiency and a displacement control signal (Ict as an electric current) of the compressor, where Conditions a-c are experimental data in different engine rotation speeds (Ne: a-c), respectively. Because it is generally preferable that a compressor is operated under a condition where a volumetric efficiency is at high level, a compressor having characteristics shown in FIG. 5 could be operated with a high efficiency if the displacement control signal has an electric current of 0.3 [A], for example.
  • FIG. 6 shows a relation between a torque and a displacement control signal (Ict as an electric current) of the compressor, where experimental data in conditions of different vehicle speed (VS: 0 km/h[IDLE] ⁇ 100 km/h) are shown, respectively.
  • FIG. 6 corresponds to a graph of a torque estimation formula shown in 3-6., as a function of Ict with a parameter of VS, while Ne and Tamb are constant.
  • Condenser cooling blower 7 is controlled to operate according to a target operational parameter which has been calculated from Estimated compressor torque (Trq) and Vehicle speed (VS).
  • the target operational parameter is a target motor voltage for driving to rotate Condenser cooling blower 7 , as a physical parameter correlating with a rotation speed of Condenser cooling blower 7 .
  • the step returns to the beginning (3-1.) of the flow.
  • variable displacement compressor capable of being controlled from the outside has been employed as a compressor in examples 1-3, and alternatively, an electric compressor is applicable to a similar control method.
  • the electric compressor may be controlled in a rotation speed by the above-described displacement control signal.
  • An air conditioning system for vehicles according to the present invention is applicable to an air conditioning system for vehicles, which employs a vapor compression type refrigeration cycle and is provided with a compressor of which displacement is controlled from the outside.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)
US13/581,196 2010-02-24 2011-02-22 Air conditioning system for vehicles Abandoned US20120324927A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010038515A JP5475501B2 (ja) 2010-02-24 2010-02-24 車両用空調装置
JP2010-038515 2010-02-24
PCT/JP2011/000986 WO2011105051A1 (ja) 2010-02-24 2011-02-22 車両用空調装置

Publications (1)

Publication Number Publication Date
US20120324927A1 true US20120324927A1 (en) 2012-12-27

Family

ID=44506483

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/581,196 Abandoned US20120324927A1 (en) 2010-02-24 2011-02-22 Air conditioning system for vehicles

Country Status (5)

Country Link
US (1) US20120324927A1 (ja)
EP (1) EP2540541A4 (ja)
JP (1) JP5475501B2 (ja)
CN (1) CN102781694A (ja)
WO (1) WO2011105051A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD785772S1 (en) 2015-05-13 2017-05-02 Dometic Sweden Ab Air shroud assembly
USD785771S1 (en) 2015-05-13 2017-05-02 Dometic Sweden Ab Air shroud
USD811566S1 (en) 2016-02-12 2018-02-27 Dometic Sweden Ab Recreational vehicle air-conditioning unit
USD817466S1 (en) 2016-01-19 2018-05-08 Dometic Sweden Ab Air shroud assembly
US9975405B2 (en) 2013-03-14 2018-05-22 Dometic Corporation Modular air grill assembly
USD824499S1 (en) 2016-04-28 2018-07-31 Dometic Sweden Ab Air-conditioning unit
USD850609S1 (en) 2015-10-15 2019-06-04 Dometic Sweden Ab Modular air grill
US10589593B2 (en) 2016-01-19 2020-03-17 Dometic Sweden Ab Parking cooler
US10675941B2 (en) 2016-02-22 2020-06-09 Dometic Sweden Ab Air-conditioner control
USD905217S1 (en) 2018-09-05 2020-12-15 Dometic Sweden Ab Air conditioning apparatus
USD907183S1 (en) 2016-11-23 2021-01-05 Dometic Sweden Ab Air conditioning apparatus
USD915569S1 (en) 2017-02-17 2021-04-06 Dometic Sweden Ab Shroud assembly
US11034208B2 (en) 2016-02-22 2021-06-15 Dometic Sweden Ab Vehicle air conditioner
US11052798B2 (en) * 2013-10-23 2021-07-06 Bayerische Motoren Werke Aktiengesellschaft Air supply device for a motor vehicle seat and method for operating the air supply device
US11654748B2 (en) * 2021-05-05 2023-05-23 Honda Motor Co., Ltd. Heating, ventilation, and air conditioning indicator for temperature and fan adjustments and methods thereof
US20230213235A1 (en) * 2022-01-05 2023-07-06 Haier Us Appliance Solutions, Inc. Air conditioner with thermostat setpoint estimation
US11772452B2 (en) 2017-11-16 2023-10-03 Dometic Sweden Ab Air conditioning apparatus for recreational vehicles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013005737B4 (de) * 2012-11-30 2021-09-16 Sanden Holdings Corporation Fahrzeugklimatisierungseinrichtung
JP6711336B2 (ja) 2017-09-07 2020-06-17 株式会社デンソー 可変容量型圧縮機
CN113701371B (zh) * 2021-08-03 2023-08-01 中国核电工程有限公司 一种直接蒸发式制冷机组及其控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930320A (en) * 1988-05-16 1990-06-05 Honda Giken Kogyo Kabushiki Kaisha Cooling fan controlling apparatus for vehicle with air conditioner
EP1489370A1 (en) * 2003-06-20 2004-12-22 Sanden Corporation Refrigeration cycle control unit
US6889762B2 (en) * 2002-04-29 2005-05-10 Bergstrom, Inc. Vehicle air conditioning and heating system providing engine on and engine off operation
US20050262853A1 (en) * 2004-05-25 2005-12-01 Salim Munther M Automotive hvac system and method of operating same utilizing evaporator freezing
US20050279110A1 (en) * 2004-06-22 2005-12-22 Xin Zeng Automotive HVAC system and method of operating same utilizing enthalpy-based control
US20060086113A1 (en) * 2004-10-21 2006-04-27 Honda Motor Co., Ltd. Speed and system pressure control for cooling fan
US20060130499A1 (en) * 2004-12-22 2006-06-22 Kwangtaek Hong Dynamic control of a variable displacement compressor
US20060204368A1 (en) * 2005-03-11 2006-09-14 Tomonori Imai Air conditioning systems for vehicles
US20070084596A1 (en) * 2005-10-13 2007-04-19 Denso Corporation Vehicle air conditioner with variable displacement compressor
US20070101736A1 (en) * 2005-11-07 2007-05-10 Denso Corporation Refrigerant cycle device and control system for vehicle
US20080060369A1 (en) * 2006-09-07 2008-03-13 Sanden Corporation Air-conditioning system for vehicle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363441A (ja) * 1989-07-31 1991-03-19 Nippondenso Co Ltd 空調装置の温度制御方法
JP3387949B2 (ja) * 1992-01-07 2003-03-17 サンデン株式会社 空調システム
JP2677966B2 (ja) * 1994-02-14 1997-11-17 カルソニック株式会社 車両用ヒートポンプ式空気調和装置
DE19743828A1 (de) * 1997-10-03 1999-04-08 Behr Gmbh & Co Verfahren zum Betrieb einer Klimaanlage mit Kompressor und Kondensatorgebläse
JP3626643B2 (ja) 1999-07-07 2005-03-09 株式会社豊田自動織機 空調装置および容量可変型圧縮機の制御方法
JP2001191789A (ja) * 2000-01-14 2001-07-17 Toyota Autom Loom Works Ltd 容量可変型圧縮機および空調装置
JP2003191741A (ja) 2001-12-27 2003-07-09 Sanden Corp 制御装置
US6637229B1 (en) * 2002-10-21 2003-10-28 Delphi Technologies, Inc. Cooling fan control method for minimizing the power consumption of a vehicle air conditioning system
JP4355511B2 (ja) * 2003-04-10 2009-11-04 カルソニックカンセイ株式会社 車両用空調装置
JP4436151B2 (ja) * 2004-02-16 2010-03-24 サンデン株式会社 車両用空調装置
KR101151995B1 (ko) * 2004-10-21 2012-06-01 한라공조주식회사 자동차용 공조장치의 제어방법
JP4667217B2 (ja) * 2005-11-29 2011-04-06 サンデン株式会社 車両用空調装置
JP5118441B2 (ja) * 2007-11-01 2013-01-16 サンデン株式会社 車両用空調装置
JP2009227193A (ja) * 2008-03-25 2009-10-08 Denso Corp 車両用空調装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930320A (en) * 1988-05-16 1990-06-05 Honda Giken Kogyo Kabushiki Kaisha Cooling fan controlling apparatus for vehicle with air conditioner
US6889762B2 (en) * 2002-04-29 2005-05-10 Bergstrom, Inc. Vehicle air conditioning and heating system providing engine on and engine off operation
EP1489370A1 (en) * 2003-06-20 2004-12-22 Sanden Corporation Refrigeration cycle control unit
US20050262853A1 (en) * 2004-05-25 2005-12-01 Salim Munther M Automotive hvac system and method of operating same utilizing evaporator freezing
US20050279110A1 (en) * 2004-06-22 2005-12-22 Xin Zeng Automotive HVAC system and method of operating same utilizing enthalpy-based control
US20060086113A1 (en) * 2004-10-21 2006-04-27 Honda Motor Co., Ltd. Speed and system pressure control for cooling fan
US20060130499A1 (en) * 2004-12-22 2006-06-22 Kwangtaek Hong Dynamic control of a variable displacement compressor
US20060204368A1 (en) * 2005-03-11 2006-09-14 Tomonori Imai Air conditioning systems for vehicles
US20070084596A1 (en) * 2005-10-13 2007-04-19 Denso Corporation Vehicle air conditioner with variable displacement compressor
US20070101736A1 (en) * 2005-11-07 2007-05-10 Denso Corporation Refrigerant cycle device and control system for vehicle
US20080060369A1 (en) * 2006-09-07 2008-03-13 Sanden Corporation Air-conditioning system for vehicle

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9975405B2 (en) 2013-03-14 2018-05-22 Dometic Corporation Modular air grill assembly
US11052798B2 (en) * 2013-10-23 2021-07-06 Bayerische Motoren Werke Aktiengesellschaft Air supply device for a motor vehicle seat and method for operating the air supply device
USD785772S1 (en) 2015-05-13 2017-05-02 Dometic Sweden Ab Air shroud assembly
USD785771S1 (en) 2015-05-13 2017-05-02 Dometic Sweden Ab Air shroud
USD884870S1 (en) 2015-10-15 2020-05-19 Dometic Sweden Ab Modular air grill
USD850609S1 (en) 2015-10-15 2019-06-04 Dometic Sweden Ab Modular air grill
USD862668S1 (en) 2016-01-19 2019-10-08 Dometic Sweden Ab Air shroud assembly
US11613157B2 (en) 2016-01-19 2023-03-28 Dometic Sweden Ab Parking cooler
USD865926S1 (en) 2016-01-19 2019-11-05 Dometic Sweden Ab Air shroud assembly
US10589593B2 (en) 2016-01-19 2020-03-17 Dometic Sweden Ab Parking cooler
USD817466S1 (en) 2016-01-19 2018-05-08 Dometic Sweden Ab Air shroud assembly
USD811566S1 (en) 2016-02-12 2018-02-27 Dometic Sweden Ab Recreational vehicle air-conditioning unit
US11034208B2 (en) 2016-02-22 2021-06-15 Dometic Sweden Ab Vehicle air conditioner
US10675941B2 (en) 2016-02-22 2020-06-09 Dometic Sweden Ab Air-conditioner control
US11560036B2 (en) 2016-02-22 2023-01-24 Dometic Sweden Ab Frame fitting arrangement for vehicle air conditioner
US11472256B2 (en) 2016-02-22 2022-10-18 Dometic Sweden Ab Air-conditioner control
USD841138S1 (en) 2016-04-28 2019-02-19 Dometic Sweden Ab Air-conditioning unit
USD824499S1 (en) 2016-04-28 2018-07-31 Dometic Sweden Ab Air-conditioning unit
USD907183S1 (en) 2016-11-23 2021-01-05 Dometic Sweden Ab Air conditioning apparatus
USD915569S1 (en) 2017-02-17 2021-04-06 Dometic Sweden Ab Shroud assembly
US11772452B2 (en) 2017-11-16 2023-10-03 Dometic Sweden Ab Air conditioning apparatus for recreational vehicles
USD944374S1 (en) 2018-09-05 2022-02-22 Dometic Sweden Ab Air conditioning apparatus
USD905217S1 (en) 2018-09-05 2020-12-15 Dometic Sweden Ab Air conditioning apparatus
US11654748B2 (en) * 2021-05-05 2023-05-23 Honda Motor Co., Ltd. Heating, ventilation, and air conditioning indicator for temperature and fan adjustments and methods thereof
US20230213235A1 (en) * 2022-01-05 2023-07-06 Haier Us Appliance Solutions, Inc. Air conditioner with thermostat setpoint estimation
US11940169B2 (en) * 2022-01-05 2024-03-26 Haier Us Appliance Solutions, Inc. Air conditioner with thermostat setpoint estimation

Also Published As

Publication number Publication date
JP5475501B2 (ja) 2014-04-16
EP2540541A4 (en) 2013-08-28
JP2011173491A (ja) 2011-09-08
WO2011105051A1 (ja) 2011-09-01
CN102781694A (zh) 2012-11-14
EP2540541A1 (en) 2013-01-02

Similar Documents

Publication Publication Date Title
US20120324927A1 (en) Air conditioning system for vehicles
US6523361B2 (en) Air conditioning systems
US5537831A (en) Air conditioning apparatus for electric automobiles
US9417638B2 (en) Intelligent thermostatic control method and device for an air conditioner blowing cold and hot air
US7275378B2 (en) Speed and system pressure control for cooling fan
US20060204368A1 (en) Air conditioning systems for vehicles
US6119473A (en) Refrigeration-cycle apparatus for vehicle use
JP2004332710A (ja) 空調装置
US20070261420A1 (en) Method and Device for Controlling a Coolant Circuit of an Air Conditioning System for a Vehicle
US6892549B2 (en) Vehicle air conditioner
US20070084596A1 (en) Vehicle air conditioner with variable displacement compressor
JP5966796B2 (ja) 車両用空調装置
JP2005193749A (ja) 制御装置
US6466853B1 (en) Vehicle transmission and air conditioning control system
US20040001760A1 (en) Air conditioning systems for vehicles comprising such air conditioning systems, and methods for driving hybrid compressors of such air conditioning systems
US6823687B2 (en) Vehicle air conditioner with variable displacement compressor
EP1400689B1 (en) Air conditioning systems for vehicle with hybrid compressor
CN111750506A (zh) 冷凝风机的控制系统与控制方法
CN1482015A (zh) 轿车空调蒸发器除霜装置
JP2008126816A (ja) 車両用空調装置
US20080223058A1 (en) Air Conditioner
JP2004176938A (ja) 冷凍サイクルの制御方法
US20070137232A1 (en) Air conditioner
EP0908340B1 (en) Air conditioning system for vehicles
JP2003211953A (ja) 車両用空調装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANDEN CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUZUKI, KENICHI;REEL/FRAME:028862/0515

Effective date: 20120726

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION