US20120283773A1 - Barrier device for ostium of left atrial appendage - Google Patents
Barrier device for ostium of left atrial appendage Download PDFInfo
- Publication number
- US20120283773A1 US20120283773A1 US13/550,172 US201213550172A US2012283773A1 US 20120283773 A1 US20120283773 A1 US 20120283773A1 US 201213550172 A US201213550172 A US 201213550172A US 2012283773 A1 US2012283773 A1 US 2012283773A1
- Authority
- US
- United States
- Prior art keywords
- atrial appendage
- membrane
- ostium
- blood
- appendage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12099—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
- A61B17/12122—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder within the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/12136—Balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/12159—Solid plugs; being solid before insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/12168—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
- A61B17/12172—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/12181—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device formed by fluidized, gelatinous or cellular remodelable materials, e.g. embolic liquids, foams or extracellular matrices
- A61B17/12186—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device formed by fluidized, gelatinous or cellular remodelable materials, e.g. embolic liquids, foams or extracellular matrices liquid materials adapted to be injected
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00039—Electric or electromagnetic phenomena other than conductivity, e.g. capacity, inductivity, Hall effect
- A61B2017/00044—Sensing electrocardiography, i.e. ECG
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00641—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closing fistulae, e.g. anorectal fistulae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B2017/1205—Introduction devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2002/018—Filters implantable into blood vessels made from tubes or sheets of material, e.g. by etching or laser-cutting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0006—Rounded shapes, e.g. with rounded corners circular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0069—Three-dimensional shapes cylindrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0073—Quadric-shaped
- A61F2230/008—Quadric-shaped paraboloidal
Definitions
- the invention relates to a membrane or plug structure applied to the ostium of an atrial appendage for preventing blood flow and physical connection between an atrium of the heart and the associated atrial appendage or appendages to isolate an atrial appendage and prevent thrombus leaving therefrom.
- Heart diseases e.g. coronary artery disease, mitral valve disease
- An adverse effect of certain cardiac diseases, such as mitral valve disease is atrial (or auricular) fibrillation. Atrial fibrillation way result in pooling of blood in the left atrial appendage. Blood pooling may also be spontaneous.
- blood clots can form and accumulate therein, build upon themselves, and propagate out from the atrial appendage into the atrium. These blood clots can then enter the systemic or pulmonary circulations and cause serious problems if they migrate from the atrial appendage and become free in the blood stream and embolize distally into the arterial system.
- U.S. Pat. No. 5,865,791 relates to the reduction of regions of blood stasis and ultimately thrombus formation in such regions, particularly in the atrial appendages of patients with atrial fibrillation. More specifically, the invention relates to procedures and devices for affixing the atrial appendages in an orientation that prevents subsequent formation of thrombus. The invention removes the appendage from the atrium by pulling on it and putting a loop around it to form a sack of the atrial appendage and then cut off from the rest of the heart.
- U.S. Pat. No. 5,306,234 relates to a method for surgically closing the passage between the atrium and the atrial appendage or severing the atrial appendage.
- Other methods of treatment include surgically removing the atrial appendages to prevent blood stasis in the atrial appendages.
- the invention provides a membrane or plug structure for preventing blood from entering the atrial appendages to form blood clots and prevents blood clots formed in the atrial appendages from exiting therefrom which may cause heart attacks, strokes at other embolic events.
- the membrane covers the ostium of the atrial appendage ad effectively isolates it from the atrium. It may be larger than the ostium of the appendage, and extend over an area larger than the appendage ostium. It is percutaneously deed to the ostium of the atrial appendage by a catheter and then expanded to cover the ostium and has a means to attach the membrane over the ostium.
- the membrane itself is may be porous or nonporous.
- a porous membrane In the case of a porous membrane, it can become infiltrated with cells so that it becomes a “living” structure, and can develop an endothelial/endocardial lining to enable it in turn to become a non-thrombogenic surface.
- the membranes attachment devices have a means for self-centering the membrane over the appendage ostium.
- the membrane may be glued on, or have a stents or prongs which pass through the ostium and extend into or through the atrial appendage.
- an anchor in the wall of the atrial appendage may be tethered to the membrane for holding the membrane in place.
- Springs may also extend between the anchor and the membrane to hold the membrane against the ostium.
- the membrane may also be connected to a tether, elastic tether or spring and a placed through the atrial appendage wall for holding the membrane against the ostium and may pull on the atrial appendage such that its volume is reduced or eliminated, trapping and isolating blood clots therein.
- Thrombin, activated fibrinogen, or other biologic filler may be placed in the appendage after it has been sealed, with the express purpose of clotting the blood in the appendage, yet preventing clot from escaping the appendage.
- Part of the device may involve a suction apparatus to remove clots that are already in place.
- the membrane placement may require closure of an atrial septal defect created by the placement of this appendage occluder device.
- the membrane may be held in place by a coiled spring filling the volume of the atrial appendage.
- the membrane may also fill the atrial appendage itself preventing blood from entering or blood clots from leaving.
- the membrane itself may be porous or nonporous.
- a porous membrane In the case of a porous membrane, it can become infiltrated with cells so that it becomes a “living” structure, and can develop an endothelial/endocardial lining to enable it in turn to become a non-thrombogenic surface. It thus can develop an endothelium and with time becomes highly biocompatible. It may be heparin coated to prevent thrombus from forming on the membrane surface, immediately after placement and until it infiltrates with cells and/or develops an endothelial covering.
- the device when implanted in the atrial appendage, may also have the ability to perform electrical monitoring of the heart. This would consist of two or more electrical contacts placed apart on the device, and connected to signal conditioning circuitry for determination of cardiac features such as rhythm of the atria or ventricles. Another sensor on the device could measure pressure of the atria, atrial appendage, or ventricular end diastolic pressures (left or right) through the open mitral or tricuspid valves. A suitable telemetry system would be used to telemeter this important electrical and hemodynamic information non-invasively outside the patient. Also, memory could be present on the device in order to record the information for later recovery via noninvasive telemetry.
- This device can also be used to close fistulae or connections, elsewhere in the body, such as in the colon or bronchopulmonary systems.
- Another application of the device would be to seal and strengthen false aneuryms of the left ventricle by holding the membrane against the false aneurysm.
- the same principles apply, whereby the membrane is held against the fistulae or false aneurysm, held in place by the spring or prong mechanisms.
- the device can also be used to chemically ablate the myocardial tissue of the atrial appendage in order to help limit or eliminate the electrical propagation of atrial fibrillation.
- the membrane prefferably placed in a false aneurysm to strengthen this defect and to avoid surgery.
- FIG. 1 is a partial cross sectional view of a heart showing a catheter entering the left atrial appendage using a retrograde procedure from the aorta.
- FIG. 2 is a partial cross sectional view of a heart showing a catheter entering the left atrial appendage using a transeptal procedure from the femoral vein or superior vena cava.
- FIG. 3 is a partial cross sectional view of a heart showing a catheter entering the right atrial appendage from the jugular vein or optionally from the femoral vein.
- FIG. 4 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage.
- FIG. 5 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage with a porous membrane having flexible wire prongs with atraumatic bulbs to hold the membrane in place and electronics built into the membrane.
- FIG. 6 is similar to FIG. 5 with the atraumatic bulbs removed so that the flexible wire prongs may puncture the atrium wall and secure the membrane to the atrial appendage and a centering rim added to the membrane.
- FIG. 7 is a partial cross sectional view of a portion of a heart as in FIG. 5 with a stent portion between the membrane and the prongs.
- FIG. 8 is the same as FIG. 7 with the atraumatic bulbs removed so that the flexible wire prongs may puncture the atrium wall and secure the membrane to the atrial appendage.
- FIG. 9 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage with a porous membrane having a large expandable stent to hold the membrane in place.
- FIG. 10 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage having an anchor and a tether to hold the membrane in place.
- FIG. 11 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage having an anchor and a spring to hold the membrane in place, a centering rim on the membrane and a centering cable.
- FIG. 12 is the same as FIG. 11 with the spring filling the atrium to help hold the membrane in pace.
- FIG. 13 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage with the membrane adhesively being held in place.
- FIG. 14 is a partial cross sectional view of a delivery catheter having a disk, a spring and membrane therein.
- FIG. 15 is a schematic view of a disk, spring and membrane after being expanded out of the delivery catheter of FIG. 11 .
- FIG. 16 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage having a disk, a membrane and a spring therebetween.
- FIG. 17 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage shown in a collapsed position.
- FIG. 18 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage having a disk, a spring, a membrane and vacuum in the catheter.
- FIG. 19 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage having a membrane material fill the atrial appendage.
- FIG. 20 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage showing an umbrella folded for entering the atrial appendage.
- FIG. 21 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage showing the umbrella opened in the atrial appendage to secure the umbrella into the wall of the atrial appendage.
- FIG. 22 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage showing the umbrella and membrane sealing the ostium of the atrial appendage.
- FIG. 23 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage showing a stent having a membrane for blocking the ostium of the atrial appendage.
- FIG. 24 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage showing the atrial appendage reduced to a minimum volume by a disk and spring squeezing the appendage against a membrane.
- Atrial fibrillation results in pooling of blood in the left atrial appendage and the majority of use of the invention is anticipated to be for the left atrial appendage the invention may also be used on the right atrial appendage and in general for any aperture in the body which needs to be blocked to prevent blood from flowing therethrough or therefrom.
- a thrombus 30 may occur from pooling of blood in the left atrial appendage 13 due to poor circulation of blood therein when the patient experiences atrial fibrillation.
- a membrane 40 is placed across the ostium 20 of the atrial appendage 13 .
- the membrane 40 can be made of Teflon®, felt, Dacron®, silicone urethane, Gortex®, metal fibers or biocompatible polymers.
- the membrane 40 may be a porous membrane.
- Porous membranes may consist of a biocompatible polymer which is porous, having pore sizes ranging from 20-100 microns. The pores may also be larger or smaller in rare cases.
- the membrane may also be a porous metal or a metal mesh of fine fibers which permit ingrowth of cells and covering with endothelial cells.
- the membrane may be coated with anticoagulant, or elute the anticoagulant.
- the porous membrane colonizes with cells from the heart and so walls off the ostium 20 so that blood can not flow into the left atrial appendage 13 to form thrombus 30 and more importantly no thrombus 30 formed can leave the left atrial appendage 13 to cause heart attacks, strokes or ischemia.
- the membrane 40 placed over the ostium 20 should be antithrombotic.
- heparin or other anticoagulants or antiplatelet agent may be used on the membrane 40 .
- porous membranes 40 which have an ingrowth of cells covering the membrane with endothelial cells the endothelial cells present a smooth cellular wall covering the membrane which prevents thrombosis from occurring at the membrane.
- thrombus 30 blood clot
- blood clot blood clot
- FIGS. 1 and 2 show a cross section of a human heart showing a thrombus 30 in the left atrial appendage 13 .
- the figures also show the atrial appendage ostium 20 which is to have a membrane 40 placed over it to prevent the thrombus 30 from escaping out of the atrial appendage 13 into the left atrium 11 and thus into the blood stream, which could cause a stroke, a heart attack or ischemia.
- the membrane 40 also prevents blood from entering the left atrial appendage 13 where it could pool due to poor circulation and become a thrombus.
- FIG. 3 shows a cross section of a human heart showing a thrombus 30 in the right atrial appendage 23 .
- the right atrial appendage 23 can be treated in the same manner as the left atrial appendage 13 .
- FIG. 4 shows a cross section of the left atrium 11 , the ostium 20 and the left atrial appendage 13 having a thrombus 30 therein.
- FIG. 5 shows a first embodiment of the invention wherein the porous membrane 40 has a plurality of flexible prongs 50 which may be made from a shape memory alloy, such as Nitinol®, for retaining a predisposed shape.
- the prongs 50 may be atraumatic so that they do not perforate the left atrial appendage 13 .
- the prongs 50 may have atraumatic bulbs 55 on their tips so that the tips of the prongs 50 will not perforate the left atrial appendage 13 .
- Nitinol® has the property of being able to be placed in a catheter in a compact configuration and then expanded when released from the catheter to a predetermined memory shape.
- the shape selected may be for the prongs 50 to curve around the lip of the ostium 20 and then hug the sides of the left atrial appendage 13 . In this manner the membrane 40 will securely block the ostium 20 preventing blood from entering and particularly for preventing thrombosis 30 from leaving the left atrial appendage 13 .
- the membrane 40 is self centering over the ostium 20 of the left atrial appendage 13 , by placing the prongs 50 in a circle around the membrane 40 such that the prongs 50 fit against the wall of the left atrial appendage 13 of or within the lumen of the ostium 20 to center the membrane 40 over the ostium 20 .
- the membrane 40 may also be centered by a centering rim 65 (see FIG. 6 ) attached to the back (appendage) side of the membrane 40 that protrudes into the ostium 20 for centering.
- the centering rim 65 has a diameter of less than the diameter of the membrane 40 .
- the centering means may also consist of a series of centering cables 66 (see FIG. 11 ) which attach to a spring 90 or tether 85 from the centering rim 65 or the membrane 40 , to assure that centering occurs with placement.
- Optionally electronics such as sensors 300 and chips 310 , built into the membrane may be used to provide data about hemodynamics pressure, flow rates, temperature, heart rates, and electrical signals in the heart.
- the sensors 300 may measure pressures in the atria or atrial appendage.
- the sensors may also measure ventricular end diastolic pressures through the open mitral or cuspid valves.
- Other information about the heart may be gathered such as noise from accelerometers to detect leakage, valve efficiency, activity levels of the patient and other noise related date.
- the sensors 300 may also be blood oxygen sensors.
- the chip 310 may use telemetry to transmit the information gathered by the sensors 300 and processed or stored by the chip 310 to receiving devices to aid in the treatment of the patient.
- the protective bulbs 55 are removed from the flexible prongs 50 of FIG. 5 such that flexible prongs 50 puncture the walls of the left atrial appendage 13 and secure the membrane 40 in place.
- the flexible prongs 50 may penetrate into the atrial appendage wall or extend through the atrial appendage wall.
- the prongs may have based ends 51 to prevent the prongs from withdrawing from the atrial appendage wall.
- the membrane 40 has centering rim 65 attached for centering the membrane in the ostium 20 and marker 320 in the membrane 40 for observing the position of the membrane while it is being inserted.
- the marker may be used for x-ray or ultrasound observation.
- Nitinol® was cited above as a type of shape memory alloy prong material which can be used, any type, memory alloy may be used. Such alloys tend to have a temperature induced phase change which will cause the material to have a preferred configuration when heated above a certain transition temperature.
- Other metals which may be used as prongs include corrosion resistant spring metals such as Elgiloy® or spring tempered steel.
- FIG. 7 Another embodiment of the invention is shown in FIG. 7 . It is similar to the embodiment shown in FIG. 5 .
- the embodiment in FIG. 7 has a stent 60 attached to the membrane 40 for expanding in the ostium 20 helping to secure the membrane 40 thereto.
- the prongs 50 operate in the same manner as in FIG. 5 hugging the inner walls of the left atrial membrane 13 to secure the membrane 40 to cover the ostium 20 .
- the stent 60 may also be made from Nitinol®, Elgiloy® or another expandable spring loaded or balloon expandable material.
- the membrane 40 may be self centering over the ostium 20 of the left 13 atrial appendage, by placing the stent 50 into the ostium wherein the stent plugs the ostium with the membrane 40 centered in the stent. Further the prongs 50 fit against the wall of the left atrial appendage 13 of or within the lumen of the ostium 20 to center the membrane 40 over the ostium 20 .
- the protective bulbs 55 are removed from the flexible prongs 50 of FIG. 7 such that flexible prongs 50 puncture the walls of the left atrial appendage 13 and secure the membrane 40 in place.
- the flexible prongs 50 may penetrate into the atrial appendage wall or extend through the atrial appendage wall.
- the prongs may have barbed ends 51 to prevent the prongs from withdrawing from the atrial appendage wall.
- a larger expandable stent 70 is used to both engage the sides of the ostium 20 and hug the inside walls of the left atrial membrane 13 .
- the stent may be made of Nitinol®, Elgiloy® or other material which may be delivered in a catheter and expanded to the proper size and shape to securely hold the membrane 40 over the ostium 20 to prevent blood from entering the left atrial appendage 13 and for preventing thrombosis 30 from exiting.
- FIG. 10 shows another embodiment of the invention wherein the membrane 40 is secured over the ostium 20 by means of an anchor 80 which is driven into or through the wall of the left atrial appendage 13 and secured therein by the surface area of the anchor so that it will not pull out of or through the wall of the left atrial appendage 13 or cause embolism from the left atrial appendage 13 .
- a tether 85 is attached to the anchor 80 and to the membrane 40 to secure the membrane 40 snuggly against the ostium 20 .
- a substance 270 such as thrombin, activated fibrinogen, or other biologic filler may be placed in the left atrial appendage 13 by injection through a catheter after the membrane 40 is in place such that blood is clotted in the atrial appendage so that it can not escape.
- the device delivery catheter itself may have a port for this injection.
- the port may also be used to inject contrast such as echocardiographic contrast that can be immediately visualized, and examined to determine whether there is a good seal between the ostium of the appendage and the device.
- the substance 270 injected into the atrial appendage may also be a sealant or filler to seal the membrane against leakage from the atrial appendage.
- the sealant material, filler material or blood clotting material may be used with any of the embodiments of the invention.
- the catheter may inject a chemical ablation agent such as ethanol to ablate the myocardial cells in the sealed off atrial appendage 13 and thus limit atrial fibrillation by limiting or eliminating electrical propagation in the atrial appendage.
- a chemical ablation agent such as ethanol
- FIG. 11 shows another embodiment of the invention wherein membrane 40 has a spiral spring 90 in addition to the anchor 80 .
- the spiral spring 90 can be used in conjunction with or separately from the tether 85 to pull the membrane 40 against the ostium 20 .
- a spiral spring 90 has been shown in FIG. 9 the shape used may be oval, cylindrical, oblong, or other shape to connect the anchor 80 to the membrane 40 .
- the spiral spring 90 may fill the volume of the left atrial appendage 13 securing the membrane 40 to the ostium 20 .
- the spiral spring 90 filling the left atrial appendage 13 may also have an anchor 80 and tether 85 to help secure the membrane 40 to the ostium 20 .
- centering rim 65 may be used as shown in FIG. 11 to center the membrane 40 over ostium 20 of left atrial appendage 13 .
- Centering cables 66 connected to spring 90 and either membrane 40 or centering rim 65 may also be used to center the membrane 40 over the ostium 20 .
- FIG. 13 shows yet another means of securing the membrane 40 over the ostium 20 .
- membrane 40 is directly attached to the ostium 20 by an adhesive 100 .
- FIG. 14 shows a delivery catheter 125 containing a collapsed porous membrane 40 and a collapsed disk 130 connected to the porous membrane 40 by a spring 90 on catheter 21 .
- the disk 130 may be made of a flexible woven metal or a flexible woven metal with a thin porous polymer sandwiched inside. Disk 130 may also be a polymer weave.
- the disk 130 is flexible and compresses or folds so it fits into the delivery catheter 125 and expands to its desired shape after release from the delivery catheter 125 .
- membrane 40 compresses or folds to fit into the delivery catheter 125 and expands to its desired shape after release.
- FIG. 15 shows the porous membrane 40 , disk 130 and spring 90 from FIG. 14 in an expanded configuration outside of the delivery catheter 125 .
- FIG. 15 shows the spring 90 connecting the porous membrane 40 and the disk 130 for urging them together.
- an elastic tether or a tether with teeth and a pawl on the porous membrane 40 to form a ratchet can also be used to pull the porous membrane 40 and the disk 130 together.
- FIG. 16 shows the device of FIG. 15 applied to the left atrial appendage 13 having thrombus 30 .
- the spring 90 pulls the disk 130 toward the porous membrane 40 collapsing the left atrial appendage 13 and trapping the thrombus 30 therein as shown in FIG. 17 .
- FIG. 18 shows an alternate embodiment of the device in FIGS. 16 and 17 wherein the catheter 21 is equipped with a vacuum 140 for sucking out blood and thrombosis 30 found in the left atrial appendage 13 .
- the vacuum 140 will help collapse the left atrial appendage 13 such that spring 90 need not be as large as in FIG. 16 .
- FIG. 19 shows an alternative embodiment of the device where the membrane 150 is inserted into the left atrial appendage 13 and fills it securing the membrane 150 therein.
- the membrane 150 may be delivered in a catheter as a compressed material and expanded in the atrial appendage 13 or be delivered in a liquid form which will fill the atrial appendage and be transformed into a membrane by curing with another chemical delivered by the catheter or with the aid of a UV light supplied through a fiber optic cable in the catheter 21 .
- By filling the left atrial appendage 13 with a membrane material 150 no blood can enter to pool and become a thrombus 30 and no thrombus 30 can exit to cause heart attacks, strokes and ischemia.
- FIGS. 20-22 show another embodiment of the invention using an umbrella principle for securing the membrane 40 against the ostium 20 .
- FIG. 17 shows closed umbrella struts 160 entering the ostium 20 of left atrial appendage 13 .
- the membrane 40 is some distance back from the umbrella struts 160 at the bottom of the range of teeth 195 on pole 170 .
- FIG. 21 shows the umbrella struts inside of the left atrial appendage 13 with the struts 160 open.
- Umbrella opening structure 175 on pole 170 pushes the struts out to the umbrella open position.
- the umbrella opening structure 175 can be pushed to the open position or have a spring loaded mechanism to push the struts 160 to the open position.
- FIG. 22 shows the membrane 40 drawn up against the ostium 20 by ratcheting the membrane along pole 170 .
- the pawl mechanism 200 engages teeth 195 on pole 170 and is moved forward to snuggly block the ostium 20 with the membrane 40 .
- FIG. 23 shows a stent 260 applied to the ostium 20 of left atrial appendage 13 .
- the stent 260 expands after leaving a delivery catheter such that the wall of the stent secures the stent by pressure to the ostium 20 .
- Membrane 240 folds or is compressed into the delivery catheter and expands as the stent 260 expands and lodges in the ostium 20 of the left atrial appendage 13 .
- FIG. 24 shows the left atrial appendage 13 compressed such that the volume of the atrial appendage is reduced to almost nothing. With the volume reduced the atrial appendage will not have a large volume of blood which can produce a thrombus.
- disk 130 and spring 90 pull the left atrial appendage 13 toward membrane 40 .
- FIG. 24 shows the use of a disk 130 and spring 90 to act on the left appendage any method to reduce the volume of the atrial appendage as much as possible may be used.
- a substance 270 may be injected into the appendage to further limit its volume, or to clot the blood already present therein.
- the membrane 40 is much larger than the ostium 20 .
- the over size membrane 40 may be used in all embodiments to ensure that the ostium 20 is completely blocked.
- the devices described above may be percutaneously delivered to the left and tight atrial appendages 13 , 23 respectively.
- the devices may have materials in them which enhance vision or imaging by ultrasound, x-ray or other means making it easier for the device to be implanted and accurately centered over the ostium 20 of the atrial appendage 13 .
- This may consist of small beads placed strategically on the membrane, the connecting elements, or on the anchors.
- catheter 21 is seen entering the heart by way of the aorta 12 to the left ventricle 16 passing through the mitral valve 17 and then entering the left atrial appendage 13 to apply the porous membrane 40 in one of the embodiments as disclosed above.
- FIG. 1 catheter 21 is seen entering the heart by way of the aorta 12 to the left ventricle 16 passing through the mitral valve 17 and then entering the left atrial appendage 13 to apply the porous membrane 40 in one of the embodiments as disclosed above.
- FIG. 1 catheter 21 is seen entering the heart by way of the aorta 12 to the
- FIG. 3 shows the catheter 21 being applied to the right atrial appendage 23 .
- Catheter 21 may enter the heart through the jugular vein 28 or the femoral vein to the inferior vena cava 18 .
- the invention may be practiced with numerous means of attaching the membrane 40 to cover the ostium 20 of the atrial appendages 13 and 23 . Any combination of the attachment means with adhesives, prongs, stents, anchors, disks, tethers or springs may be used.
- the membrane may also be inside of the atrial appendages 13 and 23 , or may penetrate the atrial appendage and provide a means to securely lock the membrane device into place.
- Other means of providing a membrane for blocking blood flow into and blood clots out of the atrial appendages not listed may also be used. A substance may be injected into the appendage to limit its volume, or to clot the blood already present.
- the blood of the appendage may be facilitated to clot in order to form a large, immobile mass.
- the appendage may be filled with any substance that will occupy volume. Examples are fibrin, prosthetic polymers (PLLA). Silicone, or a balloon that is delivered and remains in place for long periods of time.
- the invention may be used to close fistulae or connections elsewhere in the body such as the colon or bronchopulmonary systems.
- the invention may also be used to seal false aneurysms. When the membrane is placed in a false aneurysm it will strengthen the defect and may help to avoid surgery.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Reproductive Health (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Surgical Instruments (AREA)
- Table Devices Or Equipment (AREA)
- Prostheses (AREA)
- Window Of Vehicle (AREA)
- Paper (AREA)
- Meat, Egg Or Seafood Products (AREA)
Abstract
A membrane applied to the ostium of an atrial appendage for blocking blood from entering the atrial appendage which can form blood clots therein is disclosed. The membrane also prevents blood clots in the atrial appendage from escaping therefrom and entering the blood stream which can result in a blocked blood vessel, leading to strokes and heart attacks. The membranes are percutaneously installed in patients experiencing atrial fibrillations and other heart conditions where thrombosis may form in the atrial appendages.
Description
- This application is a continuation of U.S. application Ser. No. 10/948,217 filed Sep. 24, 2004, which is a division of U.S. application Ser. No. 10/308,032 filed Dec. 3, 2002, now U.S. Pat. No. 6,949,113, which is a division of U.S. application Ser. No. 09/428,008 filed Oct. 27, 1999, now U.S. Pat. No. 6,551,303.
- 1. Field of the Invention
- The invention relates to a membrane or plug structure applied to the ostium of an atrial appendage for preventing blood flow and physical connection between an atrium of the heart and the associated atrial appendage or appendages to isolate an atrial appendage and prevent thrombus leaving therefrom.
- 2. Description of the Related Art
- There are a number of heart diseases (e.g. coronary artery disease, mitral valve disease) that have various adverse effects on the heart. An adverse effect of certain cardiac diseases, such as mitral valve disease, is atrial (or auricular) fibrillation. Atrial fibrillation way result in pooling of blood in the left atrial appendage. Blood pooling may also be spontaneous. When blood pools in the atrial appendage, blood clots can form and accumulate therein, build upon themselves, and propagate out from the atrial appendage into the atrium. These blood clots can then enter the systemic or pulmonary circulations and cause serious problems if they migrate from the atrial appendage and become free in the blood stream and embolize distally into the arterial system. Similar problems also occur when a blood clot extending from an atrial appendage into an atrium breaks off and enters the blood supply. Since blood from the left atrium and ventricle supply the heart and brain, blood clots from the atrial appendages can obstruct blood flow therein causing heart attacks, stokes or other organ ischemia. It is therefore necessary to find a means of preventing blood clots from forming in the atrial appendages and to prevent these blood clots, once formed, from leaving the atrial appendages to the heart lungs, brain or other circulations of the patient which can cause heart attacks or strokes or other organ ischemia.
- U.S. Pat. No. 5,865,791 relates to the reduction of regions of blood stasis and ultimately thrombus formation in such regions, particularly in the atrial appendages of patients with atrial fibrillation. More specifically, the invention relates to procedures and devices for affixing the atrial appendages in an orientation that prevents subsequent formation of thrombus. The invention removes the appendage from the atrium by pulling on it and putting a loop around it to form a sack of the atrial appendage and then cut off from the rest of the heart.
- U.S. Pat. No. 5,306,234 relates to a method for surgically closing the passage between the atrium and the atrial appendage or severing the atrial appendage.
- Other methods of treatment include surgically removing the atrial appendages to prevent blood stasis in the atrial appendages.
- The invention provides a membrane or plug structure for preventing blood from entering the atrial appendages to form blood clots and prevents blood clots formed in the atrial appendages from exiting therefrom which may cause heart attacks, strokes at other embolic events. The membrane covers the ostium of the atrial appendage ad effectively isolates it from the atrium. It may be larger than the ostium of the appendage, and extend over an area larger than the appendage ostium. It is percutaneously deed to the ostium of the atrial appendage by a catheter and then expanded to cover the ostium and has a means to attach the membrane over the ostium. The membrane itself is may be porous or nonporous. In the case of a porous membrane, it can become infiltrated with cells so that it becomes a “living” structure, and can develop an endothelial/endocardial lining to enable it in turn to become a non-thrombogenic surface. There are many means for fixing the membrane to cover the ostium of the atrial membrane. The membranes attachment devices have a means for self-centering the membrane over the appendage ostium. The membrane may be glued on, or have a stents or prongs which pass through the ostium and extend into or through the atrial appendage. Alternatively an anchor in the wall of the atrial appendage may be tethered to the membrane for holding the membrane in place. Springs may also extend between the anchor and the membrane to hold the membrane against the ostium. The membrane may also be connected to a tether, elastic tether or spring and a placed through the atrial appendage wall for holding the membrane against the ostium and may pull on the atrial appendage such that its volume is reduced or eliminated, trapping and isolating blood clots therein. Thrombin, activated fibrinogen, or other biologic filler may be placed in the appendage after it has been sealed, with the express purpose of clotting the blood in the appendage, yet preventing clot from escaping the appendage.
- Part of the device may involve a suction apparatus to remove clots that are already in place. The membrane placement may require closure of an atrial septal defect created by the placement of this appendage occluder device.
- Alternatively the membrane may be held in place by a coiled spring filling the volume of the atrial appendage. The membrane may also fill the atrial appendage itself preventing blood from entering or blood clots from leaving.
- The membrane itself may be porous or nonporous. In the case of a porous membrane, it can become infiltrated with cells so that it becomes a “living” structure, and can develop an endothelial/endocardial lining to enable it in turn to become a non-thrombogenic surface. It thus can develop an endothelium and with time becomes highly biocompatible. It may be heparin coated to prevent thrombus from forming on the membrane surface, immediately after placement and until it infiltrates with cells and/or develops an endothelial covering.
- The device, when implanted in the atrial appendage, may also have the ability to perform electrical monitoring of the heart. This would consist of two or more electrical contacts placed apart on the device, and connected to signal conditioning circuitry for determination of cardiac features such as rhythm of the atria or ventricles. Another sensor on the device could measure pressure of the atria, atrial appendage, or ventricular end diastolic pressures (left or right) through the open mitral or tricuspid valves. A suitable telemetry system would be used to telemeter this important electrical and hemodynamic information non-invasively outside the patient. Also, memory could be present on the device in order to record the information for later recovery via noninvasive telemetry.
- This device can also be used to close fistulae or connections, elsewhere in the body, such as in the colon or bronchopulmonary systems. Another application of the device would be to seal and strengthen false aneuryms of the left ventricle by holding the membrane against the false aneurysm. The same principles apply, whereby the membrane is held against the fistulae or false aneurysm, held in place by the spring or prong mechanisms.
- The device can also be used to chemically ablate the myocardial tissue of the atrial appendage in order to help limit or eliminate the electrical propagation of atrial fibrillation.
- It is an object of the invention to reduce the volume of an atrial appendage to reduce the size of the region for potential blood stasis formation, and consequently the effective volume of the affected atrium.
- It is an object of the invention to measure hemodynamics pressure (or flow), or electrical signals in the heart and telemeter them outside the body for diagnosis or monitoring.
- It is an object of the invention to be able to close fistulae or connections elsewhere in the body, such as in the colon or bronchopulmonary systems.
- It is another object of the invention for the membrane to be placed in a false aneurysm to strengthen this defect and to avoid surgery.
- It is an object of the invention to reduce the region of static blood in the atrial appendages and hence the thrombogenicity of the atrium.
- It is an object of the invention to prevent blood clots from forming in the atrial appendages.
- It is an object of the invention to replace the ostium of the atrial appendage with a non-thrombogenic, biocompatible surge that prevents blood clots from forming.
- It is an object of the invention to provide a porous membrane surface which becomes lined with endothelial or endocardial cells.
- It is an object of the invention to isolate the atrial appendage from the atrium proper and prevent communication through which thrombus could migrate
- It is an object of the invention to minimally invasively prevent blood clots from forming in the atrial appendages and escaping therefrom.
- It is an object of the invention to provide a filter between the atrium and atrial appendage to prevent blood clots from flowing therebetween.
- It is an object of the invention to fill the atrial appendage with a material to prevent blood clots from leaving the atrial appendage.
- It is an object of the invention to remove thrombi from the atrium via suction or other means.
- It is an object of the invention to provide a means for securing a membrane over the ostium of the atrial appendage that is colonized with cells and provide a highly biocompatible surface including but not limited to endothelialization.
- It is an object of the invention to prevent thrombus by use of heparin or other anti-thrombogenic substance on or eluted from the membrane.
- It is an object of the invention to seal the membrane with a substance injected into the atrial appendage.
- It is an object of the invention to clot the blood inside of the atrial appendage after the membrane is in place with a substance injected into the atrial appendage.
- It is an object of the invention to inject a substance into the sealed appendage to ablate the myocardial cells of the appendage, in order to limit the propagation of atrial fibrillation.
- It is an object of the invention to ensure the membrane is centered over the ostium of the atrial appendage.
- It is an object of the invention to accurately place the membrane over the ostium of the atrial appendage.
- Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.
-
FIG. 1 is a partial cross sectional view of a heart showing a catheter entering the left atrial appendage using a retrograde procedure from the aorta. -
FIG. 2 is a partial cross sectional view of a heart showing a catheter entering the left atrial appendage using a transeptal procedure from the femoral vein or superior vena cava. -
FIG. 3 is a partial cross sectional view of a heart showing a catheter entering the right atrial appendage from the jugular vein or optionally from the femoral vein. -
FIG. 4 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage. -
FIG. 5 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage with a porous membrane having flexible wire prongs with atraumatic bulbs to hold the membrane in place and electronics built into the membrane. -
FIG. 6 is similar toFIG. 5 with the atraumatic bulbs removed so that the flexible wire prongs may puncture the atrium wall and secure the membrane to the atrial appendage and a centering rim added to the membrane. -
FIG. 7 is a partial cross sectional view of a portion of a heart as inFIG. 5 with a stent portion between the membrane and the prongs. -
FIG. 8 is the same asFIG. 7 with the atraumatic bulbs removed so that the flexible wire prongs may puncture the atrium wall and secure the membrane to the atrial appendage. -
FIG. 9 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage with a porous membrane having a large expandable stent to hold the membrane in place. -
FIG. 10 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage having an anchor and a tether to hold the membrane in place. -
FIG. 11 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage having an anchor and a spring to hold the membrane in place, a centering rim on the membrane and a centering cable. -
FIG. 12 is the same asFIG. 11 with the spring filling the atrium to help hold the membrane in pace. -
FIG. 13 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage with the membrane adhesively being held in place. -
FIG. 14 is a partial cross sectional view of a delivery catheter having a disk, a spring and membrane therein. -
FIG. 15 is a schematic view of a disk, spring and membrane after being expanded out of the delivery catheter ofFIG. 11 . -
FIG. 16 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage having a disk, a membrane and a spring therebetween. -
FIG. 17 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage shown in a collapsed position. -
FIG. 18 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage having a disk, a spring, a membrane and vacuum in the catheter. -
FIG. 19 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage having a membrane material fill the atrial appendage. -
FIG. 20 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage showing an umbrella folded for entering the atrial appendage. -
FIG. 21 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage showing the umbrella opened in the atrial appendage to secure the umbrella into the wall of the atrial appendage. -
FIG. 22 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage showing the umbrella and membrane sealing the ostium of the atrial appendage. -
FIG. 23 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage showing a stent having a membrane for blocking the ostium of the atrial appendage. -
FIG. 24 is a partial cross sectional view of a portion of a heart showing an atrium and its associated atrial appendage showing the atrial appendage reduced to a minimum volume by a disk and spring squeezing the appendage against a membrane. - Although atrial fibrillation results in pooling of blood in the left atrial appendage and the majority of use of the invention is anticipated to be for the left atrial appendage the invention may also be used on the right atrial appendage and in general for any aperture in the body which needs to be blocked to prevent blood from flowing therethrough or therefrom.
- As shown in
FIG. 4 athrombus 30 may occur from pooling of blood in the leftatrial appendage 13 due to poor circulation of blood therein when the patient experiences atrial fibrillation. To preventthrombus 30 from forming in the leftatrial appendage 13 or to prevent thrombosis formed therein from leaving and entering the blood stream which may cause a heart attack, a stroke or ischemia, amembrane 40 is placed across theostium 20 of theatrial appendage 13. Themembrane 40 can be made of Teflon®, felt, Dacron®, silicone urethane, Gortex®, metal fibers or biocompatible polymers. - The
membrane 40 may be a porous membrane. Porous membranes may consist of a biocompatible polymer which is porous, having pore sizes ranging from 20-100 microns. The pores may also be larger or smaller in rare cases. The membrane may also be a porous metal or a metal mesh of fine fibers which permit ingrowth of cells and covering with endothelial cells. The membrane may be coated with anticoagulant, or elute the anticoagulant. - The porous membrane colonizes with cells from the heart and so walls off the
ostium 20 so that blood can not flow into the leftatrial appendage 13 to formthrombus 30 and more importantly nothrombus 30 formed can leave the leftatrial appendage 13 to cause heart attacks, strokes or ischemia. - The
membrane 40 placed over theostium 20 should be antithrombotic. In order to make the membrane antithrombotic heparin or other anticoagulants or antiplatelet agent may be used on themembrane 40. - When
porous membranes 40 are used which have an ingrowth of cells covering the membrane with endothelial cells the endothelial cells present a smooth cellular wall covering the membrane which prevents thrombosis from occurring at the membrane. - When blood pools in the left
atrial appendage 13, thrombus 30 (blood clot) can accumulate therein, build upon themselves, and propagate out from the leftatrial appendage 13 into theleft atrium 11 entering the blood stream, leaving the heart and can block blood flow to the heart, brain, other organs, or peripheral vessels if it becomes lodged in the arteries thereof. -
FIGS. 1 and 2 show a cross section of a human heart showing athrombus 30 in the leftatrial appendage 13. The figures also show theatrial appendage ostium 20 which is to have amembrane 40 placed over it to prevent thethrombus 30 from escaping out of theatrial appendage 13 into theleft atrium 11 and thus into the blood stream, which could cause a stroke, a heart attack or ischemia. Themembrane 40 also prevents blood from entering the leftatrial appendage 13 where it could pool due to poor circulation and become a thrombus. -
FIG. 3 shows a cross section of a human heart showing athrombus 30 in the rightatrial appendage 23. The rightatrial appendage 23 can be treated in the same manner as the leftatrial appendage 13. -
FIG. 4 shows a cross section of theleft atrium 11, theostium 20 and the leftatrial appendage 13 having athrombus 30 therein. -
FIG. 5 shows a first embodiment of the invention wherein theporous membrane 40 has a plurality offlexible prongs 50 which may be made from a shape memory alloy, such as Nitinol®, for retaining a predisposed shape. Theprongs 50 may be atraumatic so that they do not perforate the leftatrial appendage 13. Theprongs 50 may haveatraumatic bulbs 55 on their tips so that the tips of theprongs 50 will not perforate the leftatrial appendage 13. Nitinol® has the property of being able to be placed in a catheter in a compact configuration and then expanded when released from the catheter to a predetermined memory shape. The shape selected may be for theprongs 50 to curve around the lip of theostium 20 and then hug the sides of the leftatrial appendage 13. In this manner themembrane 40 will securely block theostium 20 preventing blood from entering and particularly for preventingthrombosis 30 from leaving the leftatrial appendage 13. - The
membrane 40 is self centering over theostium 20 of the leftatrial appendage 13, by placing theprongs 50 in a circle around themembrane 40 such that theprongs 50 fit against the wall of the leftatrial appendage 13 of or within the lumen of theostium 20 to center themembrane 40 over theostium 20. Themembrane 40 may also be centered by a centering rim 65 (seeFIG. 6 ) attached to the back (appendage) side of themembrane 40 that protrudes into theostium 20 for centering. The centeringrim 65 has a diameter of less than the diameter of themembrane 40. The centering means may also consist of a series of centering cables 66 (seeFIG. 11 ) which attach to aspring 90 ortether 85 from the centeringrim 65 or themembrane 40, to assure that centering occurs with placement. - Optionally electronics, such as
sensors 300 andchips 310, built into the membrane may be used to provide data about hemodynamics pressure, flow rates, temperature, heart rates, and electrical signals in the heart. When the membrane is placed in the leftatrial appendage 13 thesensors 300 may measure pressures in the atria or atrial appendage. The sensors may also measure ventricular end diastolic pressures through the open mitral or cuspid valves. Other information about the heart may be gathered such as noise from accelerometers to detect leakage, valve efficiency, activity levels of the patient and other noise related date. Thesensors 300 may also be blood oxygen sensors. Thechip 310 may use telemetry to transmit the information gathered by thesensors 300 and processed or stored by thechip 310 to receiving devices to aid in the treatment of the patient. - In
FIG. 6 theprotective bulbs 55 are removed from theflexible prongs 50 ofFIG. 5 such thatflexible prongs 50 puncture the walls of the leftatrial appendage 13 and secure themembrane 40 in place. Theflexible prongs 50 may penetrate into the atrial appendage wall or extend through the atrial appendage wall. The prongs may have based ends 51 to prevent the prongs from withdrawing from the atrial appendage wall. - The
membrane 40 has centeringrim 65 attached for centering the membrane in theostium 20 andmarker 320 in themembrane 40 for observing the position of the membrane while it is being inserted. The marker may be used for x-ray or ultrasound observation. - Although Nitinol® was cited above as a type of shape memory alloy prong material which can be used, any type, memory alloy may be used. Such alloys tend to have a temperature induced phase change which will cause the material to have a preferred configuration when heated above a certain transition temperature. Other metals which may be used as prongs include corrosion resistant spring metals such as Elgiloy® or spring tempered steel.
- Another embodiment of the invention is shown in
FIG. 7 . It is similar to the embodiment shown inFIG. 5 . The embodiment inFIG. 7 has astent 60 attached to themembrane 40 for expanding in theostium 20 helping to secure themembrane 40 thereto. Theprongs 50 operate in the same manner as inFIG. 5 hugging the inner walls of the leftatrial membrane 13 to secure themembrane 40 to cover theostium 20. Thestent 60 may also be made from Nitinol®, Elgiloy® or another expandable spring loaded or balloon expandable material. - The
membrane 40 may be self centering over theostium 20 of the left 13 atrial appendage, by placing thestent 50 into the ostium wherein the stent plugs the ostium with themembrane 40 centered in the stent. Further theprongs 50 fit against the wall of the leftatrial appendage 13 of or within the lumen of theostium 20 to center themembrane 40 over theostium 20. - In
FIG. 8 theprotective bulbs 55 are removed from theflexible prongs 50 ofFIG. 7 such thatflexible prongs 50 puncture the walls of the leftatrial appendage 13 and secure themembrane 40 in place. Theflexible prongs 50 may penetrate into the atrial appendage wall or extend through the atrial appendage wall. The prongs may havebarbed ends 51 to prevent the prongs from withdrawing from the atrial appendage wall. - In the embodiment shown in
FIG. 9 a largerexpandable stent 70 is used to both engage the sides of theostium 20 and hug the inside walls of the leftatrial membrane 13. Again the stent may be made of Nitinol®, Elgiloy® or other material which may be delivered in a catheter and expanded to the proper size and shape to securely hold themembrane 40 over theostium 20 to prevent blood from entering the leftatrial appendage 13 and for preventingthrombosis 30 from exiting. -
FIG. 10 shows another embodiment of the invention wherein themembrane 40 is secured over theostium 20 by means of ananchor 80 which is driven into or through the wall of the leftatrial appendage 13 and secured therein by the surface area of the anchor so that it will not pull out of or through the wall of the leftatrial appendage 13 or cause embolism from the leftatrial appendage 13. Atether 85 is attached to theanchor 80 and to themembrane 40 to secure themembrane 40 snuggly against theostium 20. Asubstance 270 such as thrombin, activated fibrinogen, or other biologic filler may be placed in the leftatrial appendage 13 by injection through a catheter after themembrane 40 is in place such that blood is clotted in the atrial appendage so that it can not escape. The device delivery catheter itself may have a port for this injection. The port may also be used to inject contrast such as echocardiographic contrast that can be immediately visualized, and examined to determine whether there is a good seal between the ostium of the appendage and the device. Thesubstance 270 injected into the atrial appendage may also be a sealant or filler to seal the membrane against leakage from the atrial appendage. The sealant material, filler material or blood clotting material may be used with any of the embodiments of the invention. - In another embodiment the catheter may inject a chemical ablation agent such as ethanol to ablate the myocardial cells in the sealed off
atrial appendage 13 and thus limit atrial fibrillation by limiting or eliminating electrical propagation in the atrial appendage. -
FIG. 11 shows another embodiment of the invention whereinmembrane 40 has aspiral spring 90 in addition to theanchor 80. Thespiral spring 90 can be used in conjunction with or separately from thetether 85 to pull themembrane 40 against theostium 20. Although aspiral spring 90 has been shown inFIG. 9 the shape used may be oval, cylindrical, oblong, or other shape to connect theanchor 80 to themembrane 40. In another embodiment shown inFIG. 12 thespiral spring 90 may fill the volume of the leftatrial appendage 13 securing themembrane 40 to theostium 20. Thespiral spring 90 filling the leftatrial appendage 13 may also have ananchor 80 andtether 85 to help secure themembrane 40 to theostium 20. Alternatively centeringrim 65 may be used as shown inFIG. 11 to center themembrane 40 overostium 20 of leftatrial appendage 13. Centeringcables 66 connected tospring 90 and eithermembrane 40 or centeringrim 65 may also be used to center themembrane 40 over theostium 20. -
FIG. 13 shows yet another means of securing themembrane 40 over theostium 20. In thisembodiment membrane 40 is directly attached to theostium 20 by an adhesive 100. -
FIG. 14 shows adelivery catheter 125 containing a collapsedporous membrane 40 and acollapsed disk 130 connected to theporous membrane 40 by aspring 90 oncatheter 21. Thedisk 130 may be made of a flexible woven metal or a flexible woven metal with a thin porous polymer sandwiched inside.Disk 130 may also be a polymer weave. Thedisk 130 is flexible and compresses or folds so it fits into thedelivery catheter 125 and expands to its desired shape after release from thedelivery catheter 125. Similarlymembrane 40 compresses or folds to fit into thedelivery catheter 125 and expands to its desired shape after release.FIG. 15 shows theporous membrane 40,disk 130 andspring 90 fromFIG. 14 in an expanded configuration outside of thedelivery catheter 125. -
FIG. 15 shows thespring 90 connecting theporous membrane 40 and thedisk 130 for urging them together. In other embodiments an elastic tether or a tether with teeth and a pawl on theporous membrane 40 to form a ratchet can also be used to pull theporous membrane 40 and thedisk 130 together. -
FIG. 16 shows the device ofFIG. 15 applied to the leftatrial appendage 13 havingthrombus 30. After the device is applied thespring 90, pulls thedisk 130 toward theporous membrane 40 collapsing the leftatrial appendage 13 and trapping thethrombus 30 therein as shown inFIG. 17 . -
FIG. 18 shows an alternate embodiment of the device inFIGS. 16 and 17 wherein thecatheter 21 is equipped with avacuum 140 for sucking out blood andthrombosis 30 found in the leftatrial appendage 13. Thevacuum 140 will help collapse the leftatrial appendage 13 such thatspring 90 need not be as large as inFIG. 16 . -
FIG. 19 shows an alternative embodiment of the device where themembrane 150 is inserted into the leftatrial appendage 13 and fills it securing themembrane 150 therein. Themembrane 150 may be delivered in a catheter as a compressed material and expanded in theatrial appendage 13 or be delivered in a liquid form which will fill the atrial appendage and be transformed into a membrane by curing with another chemical delivered by the catheter or with the aid of a UV light supplied through a fiber optic cable in thecatheter 21. By filling the leftatrial appendage 13 with amembrane material 150 no blood can enter to pool and become athrombus 30 and nothrombus 30 can exit to cause heart attacks, strokes and ischemia. -
FIGS. 20-22 show another embodiment of the invention using an umbrella principle for securing themembrane 40 against theostium 20.FIG. 17 shows closed umbrella struts 160 entering theostium 20 of leftatrial appendage 13. Themembrane 40 is some distance back from the umbrella struts 160 at the bottom of the range ofteeth 195 onpole 170.FIG. 21 shows the umbrella struts inside of the leftatrial appendage 13 with thestruts 160 open.Umbrella opening structure 175 onpole 170 pushes the struts out to the umbrella open position. Theumbrella opening structure 175 can be pushed to the open position or have a spring loaded mechanism to push thestruts 160 to the open position. The ends of the umbrella struts 160 engage the left atrial appendage wall around theostium 20 and prevent the umbrella from being withdrawn from the leftatrial appendage 13. The ends of the umbrella struts 160 that engage the atrial appendage wall may be blunted or have bulbs on the tips or have padding so as not to puncture the leftatrial appendage 13.FIG. 22 shows themembrane 40 drawn up against theostium 20 by ratcheting the membrane alongpole 170. Thepawl mechanism 200 engagesteeth 195 onpole 170 and is moved forward to snuggly block theostium 20 with themembrane 40. -
FIG. 23 shows astent 260 applied to theostium 20 of leftatrial appendage 13. Thestent 260 expands after leaving a delivery catheter such that the wall of the stent secures the stent by pressure to theostium 20.Membrane 240 folds or is compressed into the delivery catheter and expands as thestent 260 expands and lodges in theostium 20 of the leftatrial appendage 13. -
FIG. 24 shows the leftatrial appendage 13 compressed such that the volume of the atrial appendage is reduced to almost nothing. With the volume reduced the atrial appendage will not have a large volume of blood which can produce a thrombus. In the embodiment showndisk 130 andspring 90 pull the leftatrial appendage 13 towardmembrane 40. AlthoughFIG. 24 shows the use of adisk 130 andspring 90 to act on the left appendage any method to reduce the volume of the atrial appendage as much as possible may be used. In addition to physically reducing the volume asubstance 270 may be injected into the appendage to further limit its volume, or to clot the blood already present therein. - As shown in
FIG. 24 themembrane 40 is much larger than theostium 20. The oversize membrane 40 may be used in all embodiments to ensure that theostium 20 is completely blocked. - The devices described above may be percutaneously delivered to the left and tight
atrial appendages ostium 20 of theatrial appendage 13. This may consist of small beads placed strategically on the membrane, the connecting elements, or on the anchors. Referring toFIG. 1 catheter 21 is seen entering the heart by way of theaorta 12 to theleft ventricle 16 passing through the mitral valve 17 and then entering the leftatrial appendage 13 to apply theporous membrane 40 in one of the embodiments as disclosed above. InFIG. 2 thecatheter 21 enters the heart from the femoral vein, passes through theinferior vena cava 18 to the right atrium and then passes through thefossa ovalis 19 or through theseptum 29 into theleft atrium 11 and then approaches the leftatrial appendage 13 to apply theporous membrane 40 thereto.FIG. 3 shows thecatheter 21 being applied to the rightatrial appendage 23.Catheter 21 may enter the heart through thejugular vein 28 or the femoral vein to theinferior vena cava 18. - It should be understood that the invention may be practiced with numerous means of attaching the
membrane 40 to cover theostium 20 of theatrial appendages atrial appendages - In all of the above embodiments the blood of the appendage may be facilitated to clot in order to form a large, immobile mass. Alternatively, the appendage may be filled with any substance that will occupy volume. Examples are fibrin, prosthetic polymers (PLLA). Silicone, or a balloon that is delivered and remains in place for long periods of time.
- All of the above embodiments shown and discussed for the left
atrial appendage 13 are also useable on the rightatrial appendage 23. Further the invention may be used to close fistulae or connections elsewhere in the body such as the colon or bronchopulmonary systems. The invention may also be used to seal false aneurysms. When the membrane is placed in a false aneurysm it will strengthen the defect and may help to avoid surgery. - Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described
Claims (21)
1. (canceled)
2. A method of preventing atrial appendage thrombi from entering the blood stream comprising:
securing a membrane over an ostium of an atrial appendage by extending an atrial appendage anchor into or through a wall of the atrial appendage and providing a tether between the atrial appendage anchor and the membrane,
wherein the tether is adapted to hold the membrane snuggly against the ostium of the atrial appendage,
further wherein the atrial appendage anchor is adapted to expand upon release thereby resisting being pulled out of or through the wall of the atrial appendage.
3. The method of claim 2 , wherein the membrane is adapted to be porous to blood and adapted to prevent thrombosis formed within the atrial appendage from leaving the atrial appendage.
4. The method of claim 3 , wherein the membrane is adapted to be infiltrated with endothelial/endocardial cells thereby providing a nonthrombogenic surface.
5. The method of claim 2 , wherein the membrane is adapted to be nonporous to blood and adapted to prevent thrombosis formed within the atrial appendage from entering the blood stream.
6. The method of claim 2 , wherein the membrane is adapted to be adhesively affixed over the ostium of the atrial appendage.
7. The method of claim 2 , wherein the atrial appendage anchor is a disk.
8. The method of claim 2 , wherein the tether is elastic.
9. The method of claim 2 , wherein tether is a spring.
10. The method of claim 2 , wherein the spring is a spiral spring.
11. A device for preventing atrial appendage thrombi from entering the blood stream comprising:
a membrane sized and adapted to cover an ostium of an atrial appendage;
an atrial appendage anchor adapted to expand following extension into or through a wall of the atrial appendage thereby causing the atrial appendage anchor to resist being pulled out of or through the wall of the atrial appendage; and
a tether connecting the atrial appendage anchor and the membrane, said tether being adapted to hold the membrane snuggly against the ostium of the atrial appendage.
12. The device of claim 11 , wherein the membrane is adapted to be porous to blood and adapted to prevent thrombosis formed within the atrial appendage from leaving the atrial appendage.
13. The device of claim 12 , wherein the membrane is adapted to be infiltrated with endothelial/endocardial cells thereby providing a nonthrombogenic surface.
14. The device of claim 11 , wherein the membrane is adapted to be nonporous to blood and adapted to prevent thrombosis formed within the atrial appendage from entering the blood stream.
15. The device of claim 11 , wherein the membrane is adapted to be adhesively affixed over the ostium of the atrial appendage.
16. The device of claim 11 , wherein the atrial appendage anchor is a disk.
17. The device of claim 11 , wherein the tether is elastic.
18. The device of claim 11 , wherein tether is a spring.
19. The device of claim 11 , wherein the spring is a spiral spring.
20. The device of claim 11 , wherein the tether at least partially fills the atrial appendage.
21. The device of claim 11 , further wherein the membrane is heparin coated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/550,172 US20120283773A1 (en) | 1999-10-27 | 2012-07-16 | Barrier device for ostium of left atrial appendage |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/428,008 US6551303B1 (en) | 1999-10-27 | 1999-10-27 | Barrier device for ostium of left atrial appendage |
US10/308,032 US6949113B2 (en) | 1999-10-27 | 2002-12-03 | Barrier device for ostium of left atrial appendage |
US10/948,217 US8221445B2 (en) | 1999-10-27 | 2004-09-24 | Barrier device for ostium of left atrial appendage |
US13/550,172 US20120283773A1 (en) | 1999-10-27 | 2012-07-16 | Barrier device for ostium of left atrial appendage |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/948,217 Continuation US8221445B2 (en) | 1999-10-27 | 2004-09-24 | Barrier device for ostium of left atrial appendage |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120283773A1 true US20120283773A1 (en) | 2012-11-08 |
Family
ID=23697195
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/428,008 Expired - Lifetime US6551303B1 (en) | 1999-10-27 | 1999-10-27 | Barrier device for ostium of left atrial appendage |
US10/308,032 Expired - Lifetime US6949113B2 (en) | 1999-10-27 | 2002-12-03 | Barrier device for ostium of left atrial appendage |
US10/397,311 Expired - Lifetime US6730108B2 (en) | 1999-10-27 | 2003-03-27 | Barrier device for ostium of left atrial appendage |
US10/948,217 Expired - Fee Related US8221445B2 (en) | 1999-10-27 | 2004-09-24 | Barrier device for ostium of left atrial appendage |
US13/550,172 Abandoned US20120283773A1 (en) | 1999-10-27 | 2012-07-16 | Barrier device for ostium of left atrial appendage |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/428,008 Expired - Lifetime US6551303B1 (en) | 1999-10-27 | 1999-10-27 | Barrier device for ostium of left atrial appendage |
US10/308,032 Expired - Lifetime US6949113B2 (en) | 1999-10-27 | 2002-12-03 | Barrier device for ostium of left atrial appendage |
US10/397,311 Expired - Lifetime US6730108B2 (en) | 1999-10-27 | 2003-03-27 | Barrier device for ostium of left atrial appendage |
US10/948,217 Expired - Fee Related US8221445B2 (en) | 1999-10-27 | 2004-09-24 | Barrier device for ostium of left atrial appendage |
Country Status (11)
Country | Link |
---|---|
US (5) | US6551303B1 (en) |
EP (2) | EP1579823A2 (en) |
JP (1) | JP2003512129A (en) |
CN (1) | CN1399531A (en) |
AT (1) | ATE288231T1 (en) |
AU (1) | AU779124B2 (en) |
CA (1) | CA2388603A1 (en) |
DE (1) | DE60017928T2 (en) |
ES (1) | ES2232516T3 (en) |
IL (1) | IL149300A0 (en) |
WO (1) | WO2001030268A1 (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014164572A1 (en) * | 2013-03-13 | 2014-10-09 | Kaplan Aaron V | Devices and methods for excluding the left atrial appendage |
US9375218B2 (en) | 2006-05-03 | 2016-06-28 | Datascope Corp. | Systems and methods of tissue closure |
US10117765B2 (en) | 2011-06-14 | 2018-11-06 | W.L. Gore Associates, Inc | Apposition fiber for use in endoluminal deployment of expandable implants |
US10405866B2 (en) | 2014-04-25 | 2019-09-10 | Flow MedTech, Inc | Left atrial appendage occlusion device |
US10485545B2 (en) | 2013-11-19 | 2019-11-26 | Datascope Corp. | Fastener applicator with interlock |
US10531878B2 (en) | 2012-07-26 | 2020-01-14 | University Of Louisville Research Foundation | Atrial appendage closure device and related methods |
US10617425B2 (en) | 2014-03-10 | 2020-04-14 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US10722240B1 (en) | 2019-02-08 | 2020-07-28 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US10856881B2 (en) | 2014-09-19 | 2020-12-08 | Flow Medtech, Inc. | Left atrial appendage occlusion device delivery system |
US10918392B2 (en) | 2018-01-26 | 2021-02-16 | Syntheon 2.0, LLC | Left atrial appendage clipping device and methods for clipping the LAA |
US10925615B2 (en) | 2019-05-03 | 2021-02-23 | Syntheon 2.0, LLC | Recapturable left atrial appendage clipping device and methods for recapturing a left atrial appendage clip |
US10993803B2 (en) | 2011-04-01 | 2021-05-04 | W. L. Gore & Associates, Inc. | Elastomeric leaflet for prosthetic heart valves |
US11026695B2 (en) | 2016-10-27 | 2021-06-08 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11109868B2 (en) * | 2015-08-06 | 2021-09-07 | Thomas J. Forbes | Left atrial appendage occluder device anchoring system, anchor, and method of attachment |
US11123174B2 (en) | 2012-03-13 | 2021-09-21 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US11129622B2 (en) | 2015-05-14 | 2021-09-28 | W. L. Gore & Associates, Inc. | Devices and methods for occlusion of an atrial appendage |
US11173023B2 (en) | 2017-10-16 | 2021-11-16 | W. L. Gore & Associates, Inc. | Medical devices and anchors therefor |
US11324615B2 (en) | 2011-11-14 | 2022-05-10 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US11382781B2 (en) | 2011-11-14 | 2022-07-12 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US11399842B2 (en) | 2013-03-13 | 2022-08-02 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11426172B2 (en) | 2016-10-27 | 2022-08-30 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11457925B2 (en) | 2011-09-16 | 2022-10-04 | W. L. Gore & Associates, Inc. | Occlusive devices |
US11540838B2 (en) | 2019-08-30 | 2023-01-03 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with sealing disk |
US11633194B2 (en) | 2020-11-12 | 2023-04-25 | Shifamed Holdings, Llc | Adjustable implantable devices and associated methods |
US11653928B2 (en) | 2018-03-28 | 2023-05-23 | Datascope Corp. | Device for atrial appendage exclusion |
US11801369B2 (en) | 2020-08-25 | 2023-10-31 | Shifamed Holdings, Llc | Adjustable interatrial shunts and associated systems and methods |
US11903589B2 (en) | 2020-03-24 | 2024-02-20 | Boston Scientific Scimed, Inc. | Medical system for treating a left atrial appendage |
US11911258B2 (en) | 2013-06-26 | 2024-02-27 | W. L. Gore & Associates, Inc. | Space filling devices |
US11944314B2 (en) | 2019-07-17 | 2024-04-02 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with continuous covering |
US12090290B2 (en) | 2021-03-09 | 2024-09-17 | Shifamed Holdings, Llc | Shape memory actuators for adjustable shunting systems, and associated systems and methods |
Families Citing this family (518)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998007375A1 (en) | 1996-08-22 | 1998-02-26 | The Trustees Of Columbia University | Endovascular flexible stapling device |
US8845711B2 (en) * | 2007-10-19 | 2014-09-30 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US7208010B2 (en) | 2000-10-16 | 2007-04-24 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
US6241762B1 (en) | 1998-03-30 | 2001-06-05 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges |
US7314477B1 (en) | 1998-09-25 | 2008-01-01 | C.R. Bard Inc. | Removable embolus blood clot filter and filter delivery unit |
US7713282B2 (en) * | 1998-11-06 | 2010-05-11 | Atritech, Inc. | Detachable atrial appendage occlusion balloon |
US7128073B1 (en) | 1998-11-06 | 2006-10-31 | Ev3 Endovascular, Inc. | Method and device for left atrial appendage occlusion |
US7044134B2 (en) * | 1999-11-08 | 2006-05-16 | Ev3 Sunnyvale, Inc | Method of implanting a device in the left atrial appendage |
US6752813B2 (en) | 1999-04-09 | 2004-06-22 | Evalve, Inc. | Methods and devices for capturing and fixing leaflets in valve repair |
US6488689B1 (en) | 1999-05-20 | 2002-12-03 | Aaron V. Kaplan | Methods and apparatus for transpericardial left atrial appendage closure |
US9694121B2 (en) | 1999-08-09 | 2017-07-04 | Cardiokinetix, Inc. | Systems and methods for improving cardiac function |
US8529430B2 (en) | 2002-08-01 | 2013-09-10 | Cardiokinetix, Inc. | Therapeutic methods and devices following myocardial infarction |
US8246671B2 (en) | 1999-08-09 | 2012-08-21 | Cardiokinetix, Inc. | Retrievable cardiac devices |
US7674222B2 (en) * | 1999-08-09 | 2010-03-09 | Cardiokinetix, Inc. | Cardiac device and methods of use thereof |
US20060229491A1 (en) * | 2002-08-01 | 2006-10-12 | Cardiokinetix, Inc. | Method for treating myocardial rupture |
US10307147B2 (en) | 1999-08-09 | 2019-06-04 | Edwards Lifesciences Corporation | System for improving cardiac function by sealing a partitioning membrane within a ventricle |
US8257428B2 (en) * | 1999-08-09 | 2012-09-04 | Cardiokinetix, Inc. | System for improving cardiac function |
US7303526B2 (en) * | 1999-08-09 | 2007-12-04 | Cardiokinetix, Inc. | Device for improving cardiac function |
US20030109770A1 (en) * | 1999-08-09 | 2003-06-12 | Sharkey Hugh R. | Device with a porous membrane for improving cardiac function |
US8377114B2 (en) | 1999-08-09 | 2013-02-19 | Cardiokinetix, Inc. | Sealing and filling ventricular partitioning devices to improve cardiac function |
US7582051B2 (en) * | 2005-06-10 | 2009-09-01 | Cardiokinetix, Inc. | Peripheral seal for a ventricular partitioning device |
AU5812299A (en) * | 1999-09-07 | 2001-04-10 | Microvena Corporation | Retrievable septal defect closure device |
US6231561B1 (en) * | 1999-09-20 | 2001-05-15 | Appriva Medical, Inc. | Method and apparatus for closing a body lumen |
US6551303B1 (en) * | 1999-10-27 | 2003-04-22 | Atritech, Inc. | Barrier device for ostium of left atrial appendage |
US6689150B1 (en) * | 1999-10-27 | 2004-02-10 | Atritech, Inc. | Filter apparatus for ostium of left atrial appendage |
US6994092B2 (en) * | 1999-11-08 | 2006-02-07 | Ev3 Sunnyvale, Inc. | Device for containing embolic material in the LAA having a plurality of tissue retention structures |
US7056294B2 (en) * | 2000-04-13 | 2006-06-06 | Ev3 Sunnyvale, Inc | Method and apparatus for accessing the left atrial appendage |
US6551344B2 (en) * | 2000-04-26 | 2003-04-22 | Ev3 Inc. | Septal defect occluder |
US6645221B1 (en) * | 2000-05-30 | 2003-11-11 | Zuli, Holdings Ltd. | Active arterial embolization filter |
US6440152B1 (en) * | 2000-07-28 | 2002-08-27 | Microvena Corporation | Defect occluder release assembly and method |
US9332992B2 (en) | 2004-08-05 | 2016-05-10 | Cardiokinetix, Inc. | Method for making a laminar ventricular partitioning device |
US9078660B2 (en) * | 2000-08-09 | 2015-07-14 | Cardiokinetix, Inc. | Devices and methods for delivering an endocardial device |
US9332993B2 (en) | 2004-08-05 | 2016-05-10 | Cardiokinetix, Inc. | Devices and methods for delivering an endocardial device |
US7762943B2 (en) * | 2004-03-03 | 2010-07-27 | Cardiokinetix, Inc. | Inflatable ventricular partitioning device |
US7399271B2 (en) * | 2004-01-09 | 2008-07-15 | Cardiokinetix, Inc. | Ventricular partitioning device |
US10064696B2 (en) | 2000-08-09 | 2018-09-04 | Edwards Lifesciences Corporation | Devices and methods for delivering an endocardial device |
US20060030881A1 (en) | 2004-08-05 | 2006-02-09 | Cardiokinetix, Inc. | Ventricular partitioning device |
US8398537B2 (en) * | 2005-06-10 | 2013-03-19 | Cardiokinetix, Inc. | Peripheral seal for a ventricular partitioning device |
US7862500B2 (en) * | 2002-08-01 | 2011-01-04 | Cardiokinetix, Inc. | Multiple partitioning devices for heart treatment |
JP2004506469A (en) * | 2000-08-18 | 2004-03-04 | アトリテック, インコーポレイテッド | Expandable implantable device for filtering blood flow from the atrial appendage |
EP1318766A2 (en) * | 2000-09-21 | 2003-06-18 | Atritech, Inc. | Apparatus for implanting devices in atrial appendages |
US6666861B1 (en) * | 2000-10-05 | 2003-12-23 | James R. Grabek | Atrial appendage remodeling device and method |
ES2243556T3 (en) | 2000-10-16 | 2005-12-01 | Conor Medsystems, Inc. | EXPANDABLE MEDICAL DEVICE TO PROVIDE A BENEFICIAL AGENT. |
US8690910B2 (en) | 2000-12-07 | 2014-04-08 | Integrated Vascular Systems, Inc. | Closure device and methods for making and using them |
US6695867B2 (en) | 2002-02-21 | 2004-02-24 | Integrated Vascular Systems, Inc. | Plunger apparatus and methods for delivering a closure device |
US6953464B2 (en) * | 2001-02-21 | 2005-10-11 | Novare Surgical Systems, Inc. | Anastomosis occlusion device |
US6702763B2 (en) * | 2001-02-28 | 2004-03-09 | Chase Medical, L.P. | Sizing apparatus and method for use during ventricular restoration |
US20020133227A1 (en) * | 2001-02-28 | 2002-09-19 | Gregory Murphy | Ventricular restoration patch apparatus and method of use |
US8992567B1 (en) | 2001-04-24 | 2015-03-31 | Cardiovascular Technologies Inc. | Compressible, deformable, or deflectable tissue closure devices and method of manufacture |
US8961541B2 (en) | 2007-12-03 | 2015-02-24 | Cardio Vascular Technologies Inc. | Vascular closure devices, systems, and methods of use |
US20080114394A1 (en) | 2001-04-24 | 2008-05-15 | Houser Russell A | Arteriotomy Closure Devices and Techniques |
US7338514B2 (en) * | 2001-06-01 | 2008-03-04 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
EP1392394A4 (en) * | 2001-06-04 | 2005-05-18 | Albert Einstein Healthcare Network | Cardiac stimulating apparatus having a blood clot filter and atrial pacer |
US7011671B2 (en) * | 2001-07-18 | 2006-03-14 | Atritech, Inc. | Cardiac implant device tether system and method |
US8252040B2 (en) | 2001-07-20 | 2012-08-28 | Microvention, Inc. | Aneurysm treatment device and method of use |
US7572288B2 (en) * | 2001-07-20 | 2009-08-11 | Microvention, Inc. | Aneurysm treatment device and method of use |
FR2828263B1 (en) | 2001-08-03 | 2007-05-11 | Philipp Bonhoeffer | DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE |
US20040249443A1 (en) * | 2001-08-20 | 2004-12-09 | Shanley John F. | Expandable medical device for treating cardiac arrhythmias |
US7842083B2 (en) | 2001-08-20 | 2010-11-30 | Innovational Holdings, Llc. | Expandable medical device with improved spatial distribution |
US20060052821A1 (en) | 2001-09-06 | 2006-03-09 | Ovalis, Inc. | Systems and methods for treating septal defects |
US6702835B2 (en) | 2001-09-07 | 2004-03-09 | Core Medical, Inc. | Needle apparatus for closing septal defects and methods for using such apparatus |
US20080015633A1 (en) * | 2001-09-06 | 2008-01-17 | Ryan Abbott | Systems and Methods for Treating Septal Defects |
US6776784B2 (en) | 2001-09-06 | 2004-08-17 | Core Medical, Inc. | Clip apparatus for closing septal defects and methods of use |
US20030050648A1 (en) | 2001-09-11 | 2003-03-13 | Spiration, Inc. | Removable lung reduction devices, systems, and methods |
US6863683B2 (en) | 2001-09-19 | 2005-03-08 | Abbott Laboratoris Vascular Entities Limited | Cold-molding process for loading a stent onto a stent delivery system |
US6592594B2 (en) | 2001-10-25 | 2003-07-15 | Spiration, Inc. | Bronchial obstruction device deployment system and method |
US20060292206A1 (en) | 2001-11-26 | 2006-12-28 | Kim Steven W | Devices and methods for treatment of vascular aneurysms |
US7318833B2 (en) * | 2001-12-19 | 2008-01-15 | Nmt Medical, Inc. | PFO closure device with flexible thrombogenic joint and improved dislodgement resistance |
EP1467661A4 (en) | 2001-12-19 | 2008-11-05 | Nmt Medical Inc | Septal occluder and associated methods |
AU2003210510A1 (en) * | 2002-01-14 | 2003-07-30 | Nmt Medical, Inc. | Patent foramen ovale (pfo) closure method and device |
US9204956B2 (en) | 2002-02-20 | 2015-12-08 | C. R. Bard, Inc. | IVC filter with translating hooks |
US20030216769A1 (en) | 2002-05-17 | 2003-11-20 | Dillard David H. | Removable anchored lung volume reduction devices and methods |
US20030181922A1 (en) | 2002-03-20 | 2003-09-25 | Spiration, Inc. | Removable anchored lung volume reduction devices and methods |
JP2005521447A (en) * | 2002-03-25 | 2005-07-21 | エヌエムティー メディカル インコーポレイテッド | Closure clip of patent foramen ovale (PFO) |
US20030195553A1 (en) * | 2002-04-12 | 2003-10-16 | Scimed Life Systems, Inc. | System and method for retaining vaso-occlusive devices within an aneurysm |
US20030199887A1 (en) * | 2002-04-23 | 2003-10-23 | David Ferrera | Filamentous embolization device and method of use |
US7976564B2 (en) | 2002-05-06 | 2011-07-12 | St. Jude Medical, Cardiology Division, Inc. | PFO closure devices and related methods of use |
WO2003094740A1 (en) * | 2002-05-08 | 2003-11-20 | Radi Medical Systems Ab | Dissolvable medical sealing device |
WO2003103476A2 (en) | 2002-06-05 | 2003-12-18 | Nmt Medical, Inc. | Patent foramen ovale (pfo) closure device with radial and circumferential support |
US7025778B2 (en) * | 2002-06-07 | 2006-04-11 | Endovascular Technologies, Inc. | Endovascular graft with pressure, temperature, flow and voltage sensors |
US20040098043A1 (en) * | 2002-07-09 | 2004-05-20 | Trout Hugh H. | Delivery apparatus for use during a surgical procedure and method of using the same |
DE60327208D1 (en) * | 2002-07-31 | 2009-05-28 | Abbott Lab Vascular Entpr Ltd | DEVICE FOR CLOSING SURGICAL PUNCTIONS |
US20040034386A1 (en) * | 2002-08-19 | 2004-02-19 | Michael Fulton | Aneurysm stent |
US8075585B2 (en) * | 2002-08-29 | 2011-12-13 | Stryker Corporation | Device and method for treatment of a vascular defect |
US20040122362A1 (en) * | 2002-09-10 | 2004-06-24 | Houser Russell A. | Pseudo aneurysm repair system |
AU2003284976A1 (en) | 2002-10-25 | 2004-05-13 | Nmt Medical, Inc. | Expandable sheath tubing |
US20040088038A1 (en) * | 2002-10-30 | 2004-05-06 | Houdin Dehnad | Porous metal for drug-loaded stents |
EP1562653A1 (en) * | 2002-11-06 | 2005-08-17 | NMT Medical, Inc. | Medical devices utilizing modified shape memory alloy |
WO2004043266A2 (en) * | 2002-11-07 | 2004-05-27 | Nmt Medical, Inc. | Patent foramen ovale (pfo) closure with magnetic force |
US7481821B2 (en) | 2002-11-12 | 2009-01-27 | Thomas J. Fogarty | Embolization device and a method of using the same |
CA2503666A1 (en) * | 2002-12-09 | 2004-06-24 | Nmt Medical, Inc. | Septal closure devices |
US7195628B2 (en) * | 2002-12-11 | 2007-03-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Atrial fibrillation therapy with pulmonary vein support |
US8435550B2 (en) | 2002-12-16 | 2013-05-07 | Abbot Cardiovascular Systems Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US20040260382A1 (en) | 2003-02-12 | 2004-12-23 | Fogarty Thomas J. | Intravascular implants and methods of using the same |
US7658747B2 (en) | 2003-03-12 | 2010-02-09 | Nmt Medical, Inc. | Medical device for manipulation of a medical implant |
WO2004082532A1 (en) * | 2003-03-17 | 2004-09-30 | Ev3 Sunnyvale, Inc. | Thin film composite lamination |
US8021362B2 (en) | 2003-03-27 | 2011-09-20 | Terumo Kabushiki Kaisha | Methods and apparatus for closing a layered tissue defect |
US7972330B2 (en) | 2003-03-27 | 2011-07-05 | Terumo Kabushiki Kaisha | Methods and apparatus for closing a layered tissue defect |
US6939348B2 (en) | 2003-03-27 | 2005-09-06 | Cierra, Inc. | Energy based devices and methods for treatment of patent foramen ovale |
US7165552B2 (en) * | 2003-03-27 | 2007-01-23 | Cierra, Inc. | Methods and apparatus for treatment of patent foramen ovale |
US7293562B2 (en) * | 2003-03-27 | 2007-11-13 | Cierra, Inc. | Energy based devices and methods for treatment of anatomic tissue defects |
US20040267191A1 (en) * | 2003-03-27 | 2004-12-30 | Cierra, Inc. | Methods and apparatus for treatment of patent foramen ovale |
US7186251B2 (en) * | 2003-03-27 | 2007-03-06 | Cierra, Inc. | Energy based devices and methods for treatment of patent foramen ovale |
US7100616B2 (en) | 2003-04-08 | 2006-09-05 | Spiration, Inc. | Bronchoscopic lung volume reduction method |
US20040267306A1 (en) | 2003-04-11 | 2004-12-30 | Velocimed, L.L.C. | Closure devices, related delivery methods, and related methods of use |
US8372112B2 (en) | 2003-04-11 | 2013-02-12 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods, and related methods of use |
US7597704B2 (en) * | 2003-04-28 | 2009-10-06 | Atritech, Inc. | Left atrial appendage occlusion device with active expansion |
EP1472996B1 (en) * | 2003-04-30 | 2009-09-30 | Medtronic Vascular, Inc. | Percutaneously delivered temporary valve |
US10646229B2 (en) | 2003-05-19 | 2020-05-12 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
US7122043B2 (en) * | 2003-05-19 | 2006-10-17 | Stout Medical Group, L.P. | Tissue distention device and related methods for therapeutic intervention |
US7311701B2 (en) * | 2003-06-10 | 2007-12-25 | Cierra, Inc. | Methods and apparatus for non-invasively treating atrial fibrillation using high intensity focused ultrasound |
US20060173492A1 (en) * | 2003-07-03 | 2006-08-03 | Radi Medical Systems Ab | Wound closure and sealing device |
US9861346B2 (en) * | 2003-07-14 | 2018-01-09 | W. L. Gore & Associates, Inc. | Patent foramen ovale (PFO) closure device with linearly elongating petals |
EP1651116B1 (en) | 2003-07-14 | 2013-06-26 | W.L. Gore & Associates, Inc. | Tubular patent foramen ovale (pfo) closure device with catch system |
US8480706B2 (en) | 2003-07-14 | 2013-07-09 | W.L. Gore & Associates, Inc. | Tubular patent foramen ovale (PFO) closure device with catch system |
US20050015110A1 (en) | 2003-07-18 | 2005-01-20 | Fogarty Thomas J. | Embolization device and a method of using the same |
US7533671B2 (en) | 2003-08-08 | 2009-05-19 | Spiration, Inc. | Bronchoscopic repair of air leaks in a lung |
US7735493B2 (en) * | 2003-08-15 | 2010-06-15 | Atritech, Inc. | System and method for delivering a left atrial appendage containment device |
DE602004017750D1 (en) | 2003-08-19 | 2008-12-24 | Nmt Medical Inc | Expandable lock hose |
ES2295932T3 (en) | 2003-09-12 | 2008-04-16 | Nmt Medical, Inc. | DEVICE TO AVOID THE FORMATION OF THROMBES IN THE LEFT ATRIAL APPENDIX. |
US7192435B2 (en) * | 2003-09-18 | 2007-03-20 | Cardia, Inc. | Self centering closure device for septal occlusion |
JP5074765B2 (en) * | 2003-10-09 | 2012-11-14 | センターハート・インコーポレイテッド | Apparatus and method for tissue ligation |
US20050192627A1 (en) * | 2003-10-10 | 2005-09-01 | Whisenant Brian K. | Patent foramen ovale closure devices, delivery apparatus and related methods and systems |
JP2007527272A (en) * | 2003-10-10 | 2007-09-27 | コヒーレックス メディカル インコーポレイテッド | Patent foramen ovale (PFO) closure device, delivery device, and related methods and systems |
US7056286B2 (en) | 2003-11-12 | 2006-06-06 | Adrian Ravenscroft | Medical device anchor and delivery system |
WO2005055834A1 (en) * | 2003-11-20 | 2005-06-23 | Nmt Medical, Inc. | Device, with electrospun fabric, for a percutaneous transluminal procedure, and methods thereof |
ES2661071T3 (en) | 2003-12-04 | 2018-03-27 | Boston Scientific Scimed, Inc. | Supply system for a left atrial appendage containment device |
US20050273119A1 (en) | 2003-12-09 | 2005-12-08 | Nmt Medical, Inc. | Double spiral patent foramen ovale closure clamp |
US7572228B2 (en) * | 2004-01-13 | 2009-08-11 | Remon Medical Technologies Ltd | Devices for fixing a sensor in a lumen |
US20110208233A1 (en) * | 2004-01-22 | 2011-08-25 | Mcguckin Jr James F | Device for preventing clot migration from left atrial appendage |
EP1713401A2 (en) | 2004-01-30 | 2006-10-25 | NMT Medical, Inc. | Devices, systems, and methods for closure of cardiac openings |
US20050192626A1 (en) * | 2004-01-30 | 2005-09-01 | Nmt Medical, Inc. | Devices, systems, and methods for closure of cardiac openings |
US20050187568A1 (en) * | 2004-02-20 | 2005-08-25 | Klenk Alan R. | Devices and methods for closing a patent foramen ovale with a coil-shaped closure device |
WO2005092203A1 (en) | 2004-03-03 | 2005-10-06 | Nmt Medical, Inc. | Delivery/recovery system for septal occluder |
US20050234540A1 (en) * | 2004-03-12 | 2005-10-20 | Nmt Medical, Inc. | Dilatation systems and methods for left atrial appendage |
US8313505B2 (en) | 2004-03-19 | 2012-11-20 | Aga Medical Corporation | Device for occluding vascular defects |
US8747453B2 (en) * | 2008-02-18 | 2014-06-10 | Aga Medical Corporation | Stent/stent graft for reinforcement of vascular abnormalities and associated method |
US8777974B2 (en) | 2004-03-19 | 2014-07-15 | Aga Medical Corporation | Multi-layer braided structures for occluding vascular defects |
US8398670B2 (en) | 2004-03-19 | 2013-03-19 | Aga Medical Corporation | Multi-layer braided structures for occluding vascular defects and for occluding fluid flow through portions of the vasculature of the body |
US9039724B2 (en) * | 2004-03-19 | 2015-05-26 | Aga Medical Corporation | Device for occluding vascular defects |
US20050234543A1 (en) * | 2004-03-30 | 2005-10-20 | Nmt Medical, Inc. | Plug for use in left atrial appendage |
US20050234509A1 (en) * | 2004-03-30 | 2005-10-20 | Mmt Medical, Inc. | Center joints for PFO occluders |
US7806846B2 (en) * | 2004-03-30 | 2010-10-05 | Nmt Medical, Inc. | Restoration of flow in LAA via tubular conduit |
AU2005232562B2 (en) | 2004-04-08 | 2009-05-07 | St. Jude Medical, Cardiology Division, Inc. | Flange occlusion devices and methods |
US20050267524A1 (en) * | 2004-04-09 | 2005-12-01 | Nmt Medical, Inc. | Split ends closure device |
US8361110B2 (en) | 2004-04-26 | 2013-01-29 | W.L. Gore & Associates, Inc. | Heart-shaped PFO closure device |
US8801746B1 (en) | 2004-05-04 | 2014-08-12 | Covidien Lp | System and method for delivering a left atrial appendage containment device |
US7842053B2 (en) | 2004-05-06 | 2010-11-30 | Nmt Medical, Inc. | Double coil occluder |
US8308760B2 (en) | 2004-05-06 | 2012-11-13 | W.L. Gore & Associates, Inc. | Delivery systems and methods for PFO closure device with two anchors |
WO2005110240A1 (en) * | 2004-05-07 | 2005-11-24 | Nmt Medical, Inc. | Catching mechanisms for tubular septal occluder |
US7704268B2 (en) * | 2004-05-07 | 2010-04-27 | Nmt Medical, Inc. | Closure device with hinges |
US20050256532A1 (en) * | 2004-05-12 | 2005-11-17 | Asha Nayak | Cardiovascular defect patch device and method |
US8267985B2 (en) | 2005-05-25 | 2012-09-18 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US20060004388A1 (en) * | 2004-06-18 | 2006-01-05 | Ablatrics, Inc. | System for tissue cavity closure |
US8409219B2 (en) | 2004-06-18 | 2013-04-02 | Medtronic, Inc. | Method and system for placement of electrical lead inside heart |
US7367975B2 (en) | 2004-06-21 | 2008-05-06 | Cierra, Inc. | Energy based devices and methods for treatment of anatomic tissue defects |
CN100413471C (en) * | 2004-06-25 | 2008-08-27 | 深圳市先健科技股份有限公司 | Latching of left auricular appendix and conveyor thereof |
US7704267B2 (en) | 2004-08-04 | 2010-04-27 | C. R. Bard, Inc. | Non-entangling vena cava filter |
EP1827250B1 (en) * | 2004-08-31 | 2018-05-16 | Cook Medical Technologies LLC | Device for treating an aneurysm |
EP1827247B8 (en) | 2004-09-24 | 2020-05-06 | W.L. Gore & Associates, Inc. | Occluder device double securement system for delivery/recovery of such occluder device |
CA2581087C (en) * | 2004-09-24 | 2013-11-19 | Ingeneus Inc. | Genomic assay |
US8795315B2 (en) | 2004-10-06 | 2014-08-05 | Cook Medical Technologies Llc | Emboli capturing device having a coil and method for capturing emboli |
US7794473B2 (en) | 2004-11-12 | 2010-09-14 | C.R. Bard, Inc. | Filter delivery system |
US20060122522A1 (en) * | 2004-12-03 | 2006-06-08 | Abhi Chavan | Devices and methods for positioning and anchoring implantable sensor devices |
US7674238B2 (en) * | 2004-12-23 | 2010-03-09 | Boston Scientific Scimed, Inc. | Methods and apparatus for emboli removal |
US7722529B2 (en) * | 2004-12-28 | 2010-05-25 | Palo Alto Investors | Expandable vessel harness for treating vessel aneurysms |
US10390714B2 (en) | 2005-01-12 | 2019-08-27 | Remon Medical Technologies, Ltd. | Devices for fixing a sensor in a lumen |
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
US8267954B2 (en) * | 2005-02-04 | 2012-09-18 | C. R. Bard, Inc. | Vascular filter with sensing capability |
US20060206199A1 (en) * | 2005-03-12 | 2006-09-14 | Churchwell Stacey D | Aneurysm treatment devices |
US20060206198A1 (en) * | 2005-03-12 | 2006-09-14 | Churchwell Stacey D | Aneurysm treatment devices and methods |
US8945169B2 (en) | 2005-03-15 | 2015-02-03 | Cook Medical Technologies Llc | Embolic protection device |
US8221446B2 (en) | 2005-03-15 | 2012-07-17 | Cook Medical Technologies | Embolic protection device |
US20060241687A1 (en) * | 2005-03-16 | 2006-10-26 | Glaser Erik N | Septal occluder with pivot arms and articulating joints |
US20060217760A1 (en) * | 2005-03-17 | 2006-09-28 | Widomski David R | Multi-strand septal occluder |
WO2006102213A1 (en) | 2005-03-18 | 2006-09-28 | Nmt Medical, Inc. | Catch member for pfo occluder |
US8372113B2 (en) * | 2005-03-24 | 2013-02-12 | W.L. Gore & Associates, Inc. | Curved arm intracardiac occluder |
US7918865B2 (en) * | 2005-04-07 | 2011-04-05 | Sentreheart, Inc. | Apparatus and method for the ligation of tissue |
US20060271089A1 (en) * | 2005-04-11 | 2006-11-30 | Cierra, Inc. | Methods and apparatus to achieve a closure of a layered tissue defect |
EP1871241B1 (en) * | 2005-04-22 | 2012-12-19 | Rex Medical, L.P. | Closure device for left atrial appendage |
US12115057B2 (en) | 2005-05-12 | 2024-10-15 | C.R. Bard, Inc. | Tubular filter |
CA2946470C (en) | 2005-05-12 | 2019-02-19 | C.R. Bard Inc. | Removable embolus blood clot filter |
CA2604081C (en) | 2005-05-25 | 2013-11-26 | Chestnut Medical Technologies, Inc. | System and method for delivering and deploying a self-expanding device within a vessel |
US8273101B2 (en) | 2005-05-25 | 2012-09-25 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US8932208B2 (en) | 2005-05-26 | 2015-01-13 | Maquet Cardiovascular Llc | Apparatus and methods for performing minimally-invasive surgical procedures |
US7850708B2 (en) | 2005-06-20 | 2010-12-14 | Cook Incorporated | Embolic protection device having a reticulated body with staggered struts |
US8109962B2 (en) | 2005-06-20 | 2012-02-07 | Cook Medical Technologies Llc | Retrievable device having a reticulation portion with staggered struts |
US8579936B2 (en) | 2005-07-05 | 2013-11-12 | ProMed, Inc. | Centering of delivery devices with respect to a septal defect |
US7766934B2 (en) | 2005-07-12 | 2010-08-03 | Cook Incorporated | Embolic protection device with an integral basket and bag |
US7771452B2 (en) | 2005-07-12 | 2010-08-10 | Cook Incorporated | Embolic protection device with a filter bag that disengages from a basket |
WO2007016348A2 (en) * | 2005-07-29 | 2007-02-08 | Cvdevices, Llc | Devices and methods for magnetic tissue support |
US8187298B2 (en) | 2005-08-04 | 2012-05-29 | Cook Medical Technologies Llc | Embolic protection device having inflatable frame |
CA2616818C (en) | 2005-08-09 | 2014-08-05 | C.R. Bard, Inc. | Embolus blood clot filter and delivery system |
US7846179B2 (en) | 2005-09-01 | 2010-12-07 | Ovalis, Inc. | Suture-based systems and methods for treating septal defects |
WO2007030433A2 (en) * | 2005-09-06 | 2007-03-15 | Nmt Medical, Inc. | Removable intracardiac rf device |
US9259267B2 (en) | 2005-09-06 | 2016-02-16 | W.L. Gore & Associates, Inc. | Devices and methods for treating cardiac tissue |
US7972359B2 (en) * | 2005-09-16 | 2011-07-05 | Atritech, Inc. | Intracardiac cage and method of delivering same |
US8377092B2 (en) | 2005-09-16 | 2013-02-19 | Cook Medical Technologies Llc | Embolic protection device |
US20070088388A1 (en) * | 2005-09-19 | 2007-04-19 | Opolski Steven W | Delivery device for implant with dual attachment sites |
US8632562B2 (en) | 2005-10-03 | 2014-01-21 | Cook Medical Technologies Llc | Embolic protection device |
US8182508B2 (en) | 2005-10-04 | 2012-05-22 | Cook Medical Technologies Llc | Embolic protection device |
US7811251B2 (en) * | 2005-10-13 | 2010-10-12 | Tyco Healthcare Group Lp | Trocar anchor |
US8252017B2 (en) | 2005-10-18 | 2012-08-28 | Cook Medical Technologies Llc | Invertible filter for embolic protection |
CN103230290A (en) * | 2005-10-19 | 2013-08-07 | 帕尔萨脉管公司 | Method and system for clamping and mending inner cavity and tissue defects in vessel |
CA2625826C (en) | 2005-10-19 | 2014-08-05 | Pulsar Vascular, Inc. | Methods and systems for endovascularly clipping and repairing lumen and tissue defects |
JP2009512521A (en) * | 2005-10-24 | 2009-03-26 | エヌエムティー メディカル, インコーポレイティッド | Radiopaque bioabsorbable occluder |
US8216269B2 (en) | 2005-11-02 | 2012-07-10 | Cook Medical Technologies Llc | Embolic protection device having reduced profile |
US20100063531A1 (en) * | 2005-11-09 | 2010-03-11 | Merlin Md Pte Ltd. | Medical Device with Non-Circumferential Surface Portion |
EP3167847B1 (en) | 2005-11-10 | 2020-10-14 | Edwards Lifesciences CardiAQ LLC | Heart valve prosthesis |
DE102005053957A1 (en) * | 2005-11-11 | 2007-05-16 | Occlutech Gmbh | Occlusion instrument for occluding cardiac auricle in patient`s heart, has flange area, which forms form-fit connection with inner walls of auricle, so that implanted and expanded instrument is retained in auricle |
US8152831B2 (en) | 2005-11-17 | 2012-04-10 | Cook Medical Technologies Llc | Foam embolic protection device |
US20070112372A1 (en) * | 2005-11-17 | 2007-05-17 | Stephen Sosnowski | Biodegradable vascular filter |
CA2630217C (en) | 2005-11-18 | 2016-10-11 | C.R. Bard, Inc. | Vena cava filter with filament |
US20070135826A1 (en) * | 2005-12-01 | 2007-06-14 | Steve Zaver | Method and apparatus for delivering an implant without bias to a left atrial appendage |
US9034006B2 (en) * | 2005-12-01 | 2015-05-19 | Atritech, Inc. | Method and apparatus for retrieving an embolized implant |
US8052715B2 (en) * | 2005-12-01 | 2011-11-08 | Atritech, Inc. | Method and apparatus for recapturing an implant from the left atrial appendage |
US20070148243A1 (en) * | 2005-12-22 | 2007-06-28 | Bates Brian L | Containment of a treatment agent in a body vessel |
US20070167981A1 (en) * | 2005-12-22 | 2007-07-19 | Nmt Medical, Inc. | Catch members for occluder devices |
US8060214B2 (en) * | 2006-01-05 | 2011-11-15 | Cardiac Pacemakers, Inc. | Implantable medical device with inductive coil configurable for mechanical fixation |
US7691151B2 (en) * | 2006-03-31 | 2010-04-06 | Spiration, Inc. | Articulable Anchor |
US8551135B2 (en) * | 2006-03-31 | 2013-10-08 | W.L. Gore & Associates, Inc. | Screw catch mechanism for PFO occluder and method of use |
WO2007115125A2 (en) * | 2006-03-31 | 2007-10-11 | Nmt Medical, Inc. | Deformable flap catch mechanism for occluder device |
US8870913B2 (en) | 2006-03-31 | 2014-10-28 | W.L. Gore & Associates, Inc. | Catch system with locking cap for patent foramen ovale (PFO) occluder |
US20070244494A1 (en) * | 2006-04-18 | 2007-10-18 | Downing Stephen W | Methods and devices for treating atrial septal defects |
WO2007133366A2 (en) | 2006-05-02 | 2007-11-22 | C. R. Bard, Inc. | Vena cava filter formed from a sheet |
WO2007134266A2 (en) | 2006-05-12 | 2007-11-22 | Electroformed Stents, Inc. | Exclusion device and system for delivery |
US9326842B2 (en) | 2006-06-05 | 2016-05-03 | C. R . Bard, Inc. | Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access |
US8333000B2 (en) | 2006-06-19 | 2012-12-18 | Advanced Cardiovascular Systems, Inc. | Methods for improving stent retention on a balloon catheter |
EP2037817B1 (en) * | 2006-06-21 | 2016-01-27 | Cook Biotech Incorporated | Fistula graft |
CA2594239A1 (en) * | 2006-08-02 | 2008-02-02 | Tyco Healthcare Group Lp | Stabilization assist device for trocar |
AU2007285800A1 (en) * | 2006-08-17 | 2008-02-21 | Nfocus Neuromedical, Inc. | Isolation devices for the treatment of aneurysms |
WO2008027293A2 (en) * | 2006-08-25 | 2008-03-06 | Emphasys Medical, Inc. | Bronchial isolation devices for placement in short lumens |
JP5156749B2 (en) * | 2006-09-15 | 2013-03-06 | カーディアック ペースメイカーズ, インコーポレイテッド | Implantable sensor anchor |
US8676349B2 (en) | 2006-09-15 | 2014-03-18 | Cardiac Pacemakers, Inc. | Mechanism for releasably engaging an implantable medical device for implantation |
US20080071307A1 (en) | 2006-09-19 | 2008-03-20 | Cook Incorporated | Apparatus and methods for in situ embolic protection |
US20080177301A1 (en) * | 2006-10-02 | 2008-07-24 | The Cleveland Clinic Foundation | Apparatus and method for anchoring a prosthetic structure to a body tissue |
US8029556B2 (en) * | 2006-10-04 | 2011-10-04 | Edwards Lifesciences Corporation | Method and apparatus for reshaping a ventricle |
US20100152828A1 (en) * | 2006-11-02 | 2010-06-17 | Pakbaz R Sean | Devices and methods for accessing and treating an aneurysm |
US20080108904A1 (en) * | 2006-11-08 | 2008-05-08 | Cardiac Pacemakers, Inc. | Implant for securing a sensor in a vessel |
WO2008063455A1 (en) * | 2006-11-13 | 2008-05-29 | Hines Richard A | Over-the wire exclusion device and system for delivery |
US20080161825A1 (en) * | 2006-11-20 | 2008-07-03 | Stout Medical Group, L.P. | Anatomical measurement tool |
US8187315B1 (en) | 2006-12-08 | 2012-05-29 | Cardica, Inc. | Partial stent for treatment of a vascular aneurysm |
US11166703B2 (en) | 2007-01-23 | 2021-11-09 | Cvdevices, Llc | Devices, systems, and methods for atrial appendage occlusion using light cure |
US8647367B2 (en) | 2007-01-23 | 2014-02-11 | Cvdevices, Llc | Devices, systems, and methods for percutaneous trans-septal left atrial appendage occlusion |
US8480708B2 (en) * | 2007-01-23 | 2013-07-09 | Cvdevices, Llc | Devices, systems, and methods for percutaneous trans-septal left atrial appendage occlusion |
US8784469B2 (en) | 2011-06-30 | 2014-07-22 | Ghassan S. Kassab | Devices, systems, and methods for inverting and closing the left atrial appendage |
WO2008091569A2 (en) * | 2007-01-23 | 2008-07-31 | Dtherapeutics, Llc | Devices, systems, and methods for promoting endothelialization |
WO2008094706A2 (en) | 2007-02-01 | 2008-08-07 | Cook Incorporated | Closure device and method of closing a bodily opening |
US8617205B2 (en) | 2007-02-01 | 2013-12-31 | Cook Medical Technologies Llc | Closure device |
US9901434B2 (en) | 2007-02-27 | 2018-02-27 | Cook Medical Technologies Llc | Embolic protection device including a Z-stent waist band |
US20080228200A1 (en) * | 2007-03-16 | 2008-09-18 | Clinton Baird | Closure and reconstruction implants and the apparatus for delivery thereof |
ES2538992T3 (en) * | 2007-03-30 | 2015-06-25 | Sentreheart, Inc. | Devices to close the left atrial appendage |
US9005242B2 (en) * | 2007-04-05 | 2015-04-14 | W.L. Gore & Associates, Inc. | Septal closure device with centering mechanism |
US7896915B2 (en) | 2007-04-13 | 2011-03-01 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US9138562B2 (en) | 2007-04-18 | 2015-09-22 | W.L. Gore & Associates, Inc. | Flexible catheter system |
US8204599B2 (en) * | 2007-05-02 | 2012-06-19 | Cardiac Pacemakers, Inc. | System for anchoring an implantable sensor in a vessel |
US20080283066A1 (en) * | 2007-05-17 | 2008-11-20 | Cardiac Pacemakers, Inc. | Delivery device for implantable sensors |
WO2008153653A1 (en) * | 2007-05-31 | 2008-12-18 | Rex Medical, L.P. | Fallopian tube occlusion device |
WO2008150346A1 (en) * | 2007-05-31 | 2008-12-11 | Rex Medical, L.P. | Closure device for left atrial appendage |
US20110022149A1 (en) * | 2007-06-04 | 2011-01-27 | Cox Brian J | Methods and devices for treatment of vascular defects |
EP2162185B1 (en) | 2007-06-14 | 2015-07-01 | Cardiac Pacemakers, Inc. | Multi-element acoustic recharging system |
JP5734650B2 (en) | 2007-06-25 | 2015-06-17 | マイクロベンション インコーポレイテッド | Self-expanding prosthesis |
US20090024143A1 (en) * | 2007-07-18 | 2009-01-22 | Crews Samuel T | Endoscopic implant system and method |
US8419748B2 (en) | 2007-09-14 | 2013-04-16 | Cook Medical Technologies Llc | Helical thrombus removal device |
US9138307B2 (en) | 2007-09-14 | 2015-09-22 | Cook Medical Technologies Llc | Expandable device for treatment of a stricture in a body vessel |
US8252018B2 (en) | 2007-09-14 | 2012-08-28 | Cook Medical Technologies Llc | Helical embolic protection device |
JP2010540160A (en) | 2007-10-05 | 2010-12-24 | マッケ カーディオバスキュラー,エルエルシー | Apparatus and method for minimally invasive surgical procedures |
BRPI0819404B8 (en) * | 2007-12-11 | 2021-06-22 | Univ Cornell | expandable spherical structure, sealing system for openings in the side wall of a blood vessel or other body lumen, endoluminal device and device for positioning in a blood vessel adjacent to an aneurysm |
US20090171386A1 (en) * | 2007-12-28 | 2009-07-02 | Aga Medical Corporation | Percutaneous catheter directed intravascular occlusion devices |
ES2903231T3 (en) | 2008-02-26 | 2022-03-31 | Jenavalve Tech Inc | Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart |
US9044318B2 (en) | 2008-02-26 | 2015-06-02 | Jenavalve Technology Gmbh | Stent for the positioning and anchoring of a valvular prosthesis |
US20130165967A1 (en) | 2008-03-07 | 2013-06-27 | W.L. Gore & Associates, Inc. | Heart occlusion devices |
US20100082056A1 (en) * | 2008-04-04 | 2010-04-01 | Akshay Mavani | Implantable fistula closure device |
US20100256661A1 (en) * | 2009-04-06 | 2010-10-07 | Zeev Brandeis | Apparatus and method for enabling perforating vein ablation |
WO2009132045A2 (en) * | 2008-04-21 | 2009-10-29 | Nfocus Neuromedical, Inc. | Braid-ball embolic devices and delivery systems |
CN106974691A (en) | 2008-05-02 | 2017-07-25 | 斯昆特医疗公司 | Thread device for treating vascular defects |
WO2009140437A1 (en) | 2008-05-13 | 2009-11-19 | Nfocus Neuromedical, Inc. | Braid implant delivery systems |
WO2010006061A2 (en) * | 2008-07-11 | 2010-01-14 | Mayo Foundation For Medical Education And Research | Left atrial appendage occlusion devices |
WO2010008936A1 (en) * | 2008-07-15 | 2010-01-21 | Cardiac Pacemakers, Inc. | Implant assist apparatus for acoustically enabled implantable medical device |
AU2009274126A1 (en) | 2008-07-22 | 2010-01-28 | Covidien Lp | Vascular remodeling device |
CN102202582B (en) | 2008-09-04 | 2014-07-30 | 库拉希尔公司 | Inflatable device for intestinal fistula treatment |
US8262692B2 (en) * | 2008-09-05 | 2012-09-11 | Merlin Md Pte Ltd | Endovascular device |
AU2009289488B2 (en) | 2008-09-05 | 2015-09-10 | Pulsar Vascular, Inc. | Systems and methods for supporting or occluding a physiological opening or cavity |
AU2009295960A1 (en) | 2008-09-29 | 2010-04-01 | Cardiaq Valve Technologies, Inc. | Heart valve |
US8337541B2 (en) | 2008-10-01 | 2012-12-25 | Cardiaq Valve Technologies, Inc. | Delivery system for vascular implant |
US10695126B2 (en) | 2008-10-06 | 2020-06-30 | Santa Anna Tech Llc | Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue |
US8343088B2 (en) * | 2008-10-21 | 2013-01-01 | Douglas Bates | Apparatus and method for treating occluded infection collections of the digestive tract |
EP2668934B1 (en) | 2008-12-12 | 2017-05-10 | Abbott Laboratories Vascular Enterprises Limited | Process for loading a stent onto a stent delivery system |
US8388644B2 (en) | 2008-12-29 | 2013-03-05 | Cook Medical Technologies Llc | Embolic protection device and method of use |
WO2010081041A1 (en) | 2009-01-08 | 2010-07-15 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
CN102361602B (en) * | 2009-01-22 | 2017-04-26 | 康奈尔大学 | Method and apparatus for restricting flow through the wall of lumen |
WO2010093489A2 (en) | 2009-02-13 | 2010-08-19 | Cardiac Pacemakers, Inc. | Deployable sensor platform on the lead system of an implantable device |
US20100274227A1 (en) * | 2009-02-13 | 2010-10-28 | Alexander Khairkhahan | Delivery catheter handle cover |
AU2010232589B2 (en) * | 2009-04-01 | 2014-11-27 | Atricure, Inc. | Tissue ligation devices and controls therefor |
WO2010118312A2 (en) | 2009-04-09 | 2010-10-14 | Cardiovascular Systems, Inc. | Tissue closure devices, device and systems for delivery, kits and methods therefor |
US8414644B2 (en) | 2009-04-15 | 2013-04-09 | Cardiaq Valve Technologies, Inc. | Vascular implant and delivery system |
US9351716B2 (en) | 2009-06-17 | 2016-05-31 | Coherex Medical, Inc. | Medical device and delivery system for modification of left atrial appendage and methods thereof |
US10064628B2 (en) | 2009-06-17 | 2018-09-04 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US8715318B2 (en) * | 2009-06-17 | 2014-05-06 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US9649115B2 (en) | 2009-06-17 | 2017-05-16 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US10631969B2 (en) | 2009-06-17 | 2020-04-28 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US8956389B2 (en) | 2009-06-22 | 2015-02-17 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US20120029556A1 (en) | 2009-06-22 | 2012-02-02 | Masters Steven J | Sealing device and delivery system |
US9381006B2 (en) * | 2009-06-22 | 2016-07-05 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
CN104825247B (en) | 2009-07-29 | 2017-05-03 | C·R·巴德公司 | Tubular filter |
US9277924B2 (en) | 2009-09-04 | 2016-03-08 | Pulsar Vascular, Inc. | Systems and methods for enclosing an anatomical opening |
US20110082495A1 (en) | 2009-10-02 | 2011-04-07 | Ruiz Carlos E | Apparatus And Methods For Excluding The Left Atrial Appendage |
WO2011056578A2 (en) | 2009-10-26 | 2011-05-12 | Cardiokinetix, Inc. | Ventricular volume reduction |
US20110106234A1 (en) * | 2009-10-30 | 2011-05-05 | Axel Grandt | Interluminal medical treatment devices and methods |
EP2496189A4 (en) | 2009-11-04 | 2016-05-11 | Nitinol Devices And Components Inc | Alternating circumferential bridge stent design and methods for use thereof |
US9649211B2 (en) | 2009-11-04 | 2017-05-16 | Confluent Medical Technologies, Inc. | Alternating circumferential bridge stent design and methods for use thereof |
WO2011057002A2 (en) * | 2009-11-05 | 2011-05-12 | Sequent Medical Inc. | Multiple layer filamentary devices or treatment of vascular defects |
CN102791205B (en) | 2009-11-09 | 2016-02-03 | 恩福克斯神经医学股份有限公司 | Embolization device |
US8500775B2 (en) * | 2009-12-02 | 2013-08-06 | Surefire Medical, Inc. | Protection device and method against embolization agent reflux |
US8696698B2 (en) * | 2009-12-02 | 2014-04-15 | Surefire Medical, Inc. | Microvalve protection device and method of use for protection against embolization agent reflux |
US9539081B2 (en) | 2009-12-02 | 2017-01-10 | Surefire Medical, Inc. | Method of operating a microvalve protection device |
US9211123B2 (en) | 2009-12-31 | 2015-12-15 | Cook Medical Technologies Llc | Intraluminal occlusion devices and methods of blocking the entry of fluid into bodily passages |
WO2011094638A1 (en) | 2010-01-28 | 2011-08-04 | Micro Therapeutics, Inc. | Vascular remodeling device |
EP2528541B1 (en) * | 2010-01-28 | 2016-05-18 | Covidien LP | Vascular remodeling device |
US8500776B2 (en) * | 2010-02-08 | 2013-08-06 | Covidien Lp | Vacuum patch for rapid wound closure |
US20110224495A1 (en) * | 2010-03-12 | 2011-09-15 | Tyco Healthcare Group Lp | Surgical access port |
JP6085553B2 (en) | 2010-04-13 | 2017-02-22 | センターハート・インコーポレイテッドSentreHEART, Inc. | Devices and methods for accessing and delivering devices to the heart |
US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
JP2013526388A (en) | 2010-05-25 | 2013-06-24 | イエナバルブ テクノロジー インク | Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent |
US9044267B2 (en) * | 2010-06-11 | 2015-06-02 | Entourage Medical Technologies, Inc. | System and method for transapical access and closure |
US8998947B2 (en) | 2010-09-10 | 2015-04-07 | Medina Medical, Inc. | Devices and methods for the treatment of vascular defects |
CA2812012C (en) | 2010-09-10 | 2018-01-02 | Medina Medical, Inc. | Devices and methods for the treatment of vascular defects |
EP2627265B8 (en) | 2010-10-15 | 2019-02-20 | Cook Medical Technologies LLC | Occlusion device for blocking fluid flow through bodily passages |
US9770319B2 (en) | 2010-12-01 | 2017-09-26 | Surefire Medical, Inc. | Closed tip dynamic microvalve protection device |
US9351859B2 (en) | 2010-12-06 | 2016-05-31 | Covidien Lp | Vascular remodeling device |
US20120283585A1 (en) * | 2011-02-10 | 2012-11-08 | Werneth Randell L | Atrial Appendage Occlusion and Arrhythmia Treatment |
EP2672900B1 (en) | 2011-02-11 | 2017-11-01 | Covidien LP | Two-stage deployment aneurysm embolization devices |
US9089332B2 (en) | 2011-03-25 | 2015-07-28 | Covidien Lp | Vascular remodeling device |
EP2693981A4 (en) | 2011-04-01 | 2015-07-01 | Univ Cornell | Method and apparatus for restricting flow through an opening in the side wall of a body lumen, and/or for reinforcing a weakness in the side wall of a body lumen, while still maintaining substantially normal flow through the body lumen |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
JP2014522263A (en) | 2011-05-11 | 2014-09-04 | マイクロベンション インコーポレイテッド | Device for occluding a lumen |
WO2012167156A1 (en) | 2011-06-03 | 2012-12-06 | Pulsar Vascular, Inc. | Aneurysm devices with additional anchoring mechanisms and associated systems and methods |
WO2012167150A1 (en) | 2011-06-03 | 2012-12-06 | Pulsar Vascular, Inc. | Systems and methods for enclosing an anatomical opening, including shock absorbing aneurysm devices |
US9498206B2 (en) | 2011-06-08 | 2016-11-22 | Sentreheart, Inc. | Tissue ligation devices and tensioning devices therefor |
US9211116B2 (en) | 2011-06-16 | 2015-12-15 | Curaseal Inc. | Fistula treatment devices and related methods |
JP6127042B2 (en) | 2011-06-17 | 2017-05-10 | キュラシール インコーポレイテッド | Device and method for fistula treatment |
US8764793B2 (en) * | 2011-06-17 | 2014-07-01 | Northwestern University | Left atrial appendage occluder |
WO2013009872A1 (en) * | 2011-07-11 | 2013-01-17 | The Regents Of The University Of Michigan | Multimodality left atrial appendage occlusion device |
IL218737A0 (en) | 2012-03-19 | 2012-07-31 | Tel Hashomer Medical Res Infrastructure & Services Ltd | Body part repositioning apparatus and method |
US10307167B2 (en) * | 2012-12-14 | 2019-06-04 | Corquest Medical, Inc. | Assembly and method for left atrial appendage occlusion |
US10314594B2 (en) | 2012-12-14 | 2019-06-11 | Corquest Medical, Inc. | Assembly and method for left atrial appendage occlusion |
US10813630B2 (en) | 2011-08-09 | 2020-10-27 | Corquest Medical, Inc. | Closure system for atrial wall |
US9770232B2 (en) | 2011-08-12 | 2017-09-26 | W. L. Gore & Associates, Inc. | Heart occlusion devices |
US8945177B2 (en) | 2011-09-13 | 2015-02-03 | Abbott Cardiovascular Systems Inc. | Gripper pusher mechanism for tissue apposition systems |
US9011468B2 (en) | 2011-09-13 | 2015-04-21 | Abbott Cardiovascular Systems Inc. | Independent gripper |
US9089668B2 (en) | 2011-09-28 | 2015-07-28 | Surefire Medical, Inc. | Flow directional infusion device |
WO2013049448A1 (en) | 2011-09-29 | 2013-04-04 | Covidien Lp | Vascular remodeling device |
EP2763602B1 (en) | 2011-10-05 | 2020-07-01 | Pulsar Vascular, Inc. | Devices and systems for enclosing an anatomical opening |
EP2763601B1 (en) | 2011-10-07 | 2020-03-25 | Cornell University | Apparatus for restricting flow through an opening in a body lumen while maintaining normal flow |
EP3682813B1 (en) | 2011-11-01 | 2023-12-27 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage |
WO2013071115A1 (en) | 2011-11-09 | 2013-05-16 | Boston Scientific Scimed, Inc. | Occlusion device |
JP2013154089A (en) | 2012-01-31 | 2013-08-15 | Terumo Corp | Aneurysm treatment device and aneurysm treatment method |
EP2811939B8 (en) | 2012-02-10 | 2017-11-15 | CVDevices, LLC | Products made of biological tissues for stents and methods of manufacturing |
US9089341B2 (en) | 2012-02-28 | 2015-07-28 | Surefire Medical, Inc. | Renal nerve neuromodulation device |
US20130237908A1 (en) * | 2012-03-09 | 2013-09-12 | Boston Scientific Scimed, Inc. | Sponge-like left atrial occlusion device and related methods of use |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
CN108635082B (en) | 2012-05-31 | 2021-07-09 | 标枪医疗有限公司 | Systems, methods, and devices for embolic protection |
US9155647B2 (en) | 2012-07-18 | 2015-10-13 | Covidien Lp | Methods and apparatus for luminal stenting |
US9186267B2 (en) | 2012-10-31 | 2015-11-17 | Covidien Lp | Wing bifurcation reconstruction device |
US9314248B2 (en) | 2012-11-06 | 2016-04-19 | Covidien Lp | Multi-pivot thrombectomy device |
US9414752B2 (en) | 2012-11-09 | 2016-08-16 | Elwha Llc | Embolism deflector |
EP2919668A2 (en) | 2012-11-13 | 2015-09-23 | Covidien LP | Occlusive devices |
US20140142689A1 (en) | 2012-11-21 | 2014-05-22 | Didier De Canniere | Device and method of treating heart valve malfunction |
US9011481B2 (en) | 2012-12-30 | 2015-04-21 | Cook Medical Technologies Llc | Vascular occlusion device having a jelly fish |
CN103040492B (en) * | 2013-01-09 | 2015-04-08 | 何泽锋 | Automatic control contracting anvil conveying device passed through mouth |
US9295571B2 (en) | 2013-01-17 | 2016-03-29 | Covidien Lp | Methods and apparatus for luminal stenting |
US10828019B2 (en) | 2013-01-18 | 2020-11-10 | W.L. Gore & Associates, Inc. | Sealing device and delivery system |
ES2895968T3 (en) | 2013-01-18 | 2022-02-23 | Javelin Medical Ltd | Monofilament implants and systems for supplying the same |
AU2014214700B2 (en) | 2013-02-11 | 2018-01-18 | Cook Medical Technologies Llc | Expandable support frame and medical device |
US10583002B2 (en) | 2013-03-11 | 2020-03-10 | Neovasc Tiara Inc. | Prosthetic valve with anti-pivoting mechanism |
JP6336560B2 (en) | 2013-03-12 | 2018-06-06 | センターハート・インコーポレイテッドSentreHEART, Inc. | Tissue ligation apparatus and method therefor |
WO2014160083A1 (en) | 2013-03-13 | 2014-10-02 | Applied Cardiovascular Solutions, Llc. | Methods, compositions, and devices for the occlusion of cavities and passageways |
US9730791B2 (en) | 2013-03-14 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US9681951B2 (en) | 2013-03-14 | 2017-06-20 | Edwards Lifesciences Cardiaq Llc | Prosthesis with outer skirt and anchors |
US9463105B2 (en) | 2013-03-14 | 2016-10-11 | Covidien Lp | Methods and apparatus for luminal stenting |
CN108433769B (en) | 2013-03-15 | 2021-06-08 | 柯惠有限合伙公司 | Occlusion device |
US9089414B2 (en) * | 2013-03-22 | 2015-07-28 | Edwards Lifesciences Corporation | Device and method for increasing flow through the left atrial appendage |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
US9592399B2 (en) | 2013-06-20 | 2017-03-14 | Cardiac Pacemakers, Inc. | Deployable multi-electrode leadless electrostimulator |
US10123805B2 (en) * | 2013-06-26 | 2018-11-13 | W. L. Gore & Associates, Inc. | Space filling devices |
US9078658B2 (en) | 2013-08-16 | 2015-07-14 | Sequent Medical, Inc. | Filamentary devices for treatment of vascular defects |
US9955976B2 (en) | 2013-08-16 | 2018-05-01 | Sequent Medical, Inc. | Filamentary devices for treatment of vascular defects |
CN105491978A (en) | 2013-08-30 | 2016-04-13 | 耶拿阀门科技股份有限公司 | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
CN103536366B (en) * | 2013-10-22 | 2015-08-19 | 同济大学 | A kind of automatic anchor jaw support device for flexible Minimally Invasive Surgery mechanical hand |
US10258408B2 (en) | 2013-10-31 | 2019-04-16 | Sentreheart, Inc. | Devices and methods for left atrial appendage closure |
US9566443B2 (en) | 2013-11-26 | 2017-02-14 | Corquest Medical, Inc. | System for treating heart valve malfunction including mitral regurgitation |
US9592110B1 (en) | 2013-12-06 | 2017-03-14 | Javelin Medical, Ltd. | Systems and methods for implant delivery |
US9889031B1 (en) | 2014-03-25 | 2018-02-13 | Surefire Medical, Inc. | Method of gastric artery embolization |
US9968740B2 (en) | 2014-03-25 | 2018-05-15 | Surefire Medical, Inc. | Closed tip dynamic microvalve protection device |
US11154302B2 (en) | 2014-03-31 | 2021-10-26 | DePuy Synthes Products, Inc. | Aneurysm occlusion device |
US11076860B2 (en) | 2014-03-31 | 2021-08-03 | DePuy Synthes Products, Inc. | Aneurysm occlusion device |
US9629635B2 (en) | 2014-04-14 | 2017-04-25 | Sequent Medical, Inc. | Devices for therapeutic vascular procedures |
MX2016014236A (en) | 2014-04-30 | 2017-05-30 | Cerus Endovascular Ltd | Occlusion device. |
US9808230B2 (en) | 2014-06-06 | 2017-11-07 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
CN106413589A (en) * | 2014-06-11 | 2017-02-15 | 奥特鲁泰克控股有限公司 | Left atrial appendage occluder |
CN104107072A (en) * | 2014-07-29 | 2014-10-22 | 孙伟 | Double umbrella type left auricle sealing device |
CN105476683A (en) * | 2014-09-16 | 2016-04-13 | 徐州亚太科技有限公司 | Combined left aurcle occluding device |
US10751183B2 (en) | 2014-09-28 | 2020-08-25 | Edwards Lifesciences Corporation | Apparatuses for treating cardiac dysfunction |
US10842626B2 (en) | 2014-12-09 | 2020-11-24 | Didier De Canniere | Intracardiac device to correct mitral regurgitation |
US10188392B2 (en) | 2014-12-19 | 2019-01-29 | Abbott Cardiovascular Systems, Inc. | Grasping for tissue repair |
GB201511595D0 (en) * | 2014-12-23 | 2015-08-19 | Whiteley Mark | Medical device for treating a vein |
CN105796148B (en) * | 2014-12-31 | 2018-06-05 | 先健科技(深圳)有限公司 | Occluder for left auricle |
US9375333B1 (en) | 2015-03-06 | 2016-06-28 | Covidien Lp | Implantable device detachment systems and associated devices and methods |
CN107530070B (en) | 2015-03-24 | 2021-09-28 | 森特里心脏股份有限公司 | Device and method for left atrial appendage closure |
PL3273870T3 (en) | 2015-03-24 | 2024-04-29 | Atricure, Inc. | Tissue ligation devices |
US20160287839A1 (en) | 2015-03-31 | 2016-10-06 | Surefire Medical, Inc. | Apparatus and Method for Infusing an Immunotherapy Agent to a Solid Tumor for Treatment |
US10524912B2 (en) | 2015-04-02 | 2020-01-07 | Abbott Cardiovascular Systems, Inc. | Tissue fixation devices and methods |
WO2016177562A1 (en) | 2015-05-01 | 2016-11-10 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US9757574B2 (en) | 2015-05-11 | 2017-09-12 | Rainbow Medical Ltd. | Dual chamber transvenous pacemaker |
WO2016185440A1 (en) | 2015-05-21 | 2016-11-24 | Ecole Polytechnique Federale De Lausanne (Epfl) | Device and method for injection, photoactivation and solidifaction of liquid embolic material in the vascular system or other organic cavities |
US20180161039A1 (en) * | 2015-06-19 | 2018-06-14 | Koninklijke Philips N.V. | Implantable medical device and system to heat tissue |
EP3340890B1 (en) * | 2015-08-25 | 2022-07-06 | University Of Louisville Research Foundation, Inc. | Atrial appendage closure device |
US10478194B2 (en) | 2015-09-23 | 2019-11-19 | Covidien Lp | Occlusive devices |
CN108882941B (en) | 2015-11-13 | 2021-08-24 | 心脏起搏器公司 | Bioabsorbable left atrial appendage closure with endothelialization-promoting surface |
JP6892188B2 (en) | 2015-12-07 | 2021-06-23 | シーラス エンドバスキュラー リミテッド | Blocking device |
CN105520765A (en) * | 2016-01-29 | 2016-04-27 | 上海形状记忆合金材料有限公司 | Recessed left aurcle plugging device |
EP4331509A3 (en) | 2016-02-26 | 2024-05-15 | AtriCure, Inc. | Devices for left atrial appendage closure |
US10327809B2 (en) | 2016-02-29 | 2019-06-25 | Covidien Lp | Clip collar advanced fixation |
ES2839673T3 (en) | 2016-03-11 | 2021-07-05 | Cerus Endovascular Ltd | Occlusion device |
JP7081749B2 (en) | 2016-05-13 | 2022-06-07 | イエナバルブ テクノロジー インク | Heart valve prosthesis delivery system |
US11331140B2 (en) | 2016-05-19 | 2022-05-17 | Aqua Heart, Inc. | Heated vapor ablation systems and methods for treating cardiac conditions |
EP3868306A1 (en) | 2016-06-20 | 2021-08-25 | Evalve, Inc. | Transapical removal device |
US10478195B2 (en) | 2016-08-04 | 2019-11-19 | Covidien Lp | Devices, systems, and methods for the treatment of vascular defects |
CN106075619B (en) * | 2016-08-26 | 2018-10-26 | 复旦大学附属中山医院 | A kind of coronary vein blood flow flow diverter |
CN106214289A (en) * | 2016-09-05 | 2016-12-14 | 广东脉搏医疗科技有限公司 | A kind of heart volume reduction implant |
US11400263B1 (en) | 2016-09-19 | 2022-08-02 | Trisalus Life Sciences, Inc. | System and method for selective pressure-controlled therapeutic delivery |
US10780250B1 (en) | 2016-09-19 | 2020-09-22 | Surefire Medical, Inc. | System and method for selective pressure-controlled therapeutic delivery |
CN106344100B (en) * | 2016-10-11 | 2019-04-19 | 北京工业大学 | Occluder for left auricle |
CN109890302B (en) | 2016-10-21 | 2022-10-21 | 贾夫林医疗有限公司 | Systems, methods, and devices for embolic protection |
WO2018089311A1 (en) | 2016-11-08 | 2018-05-17 | Cardiac Pacemakers, Inc | Implantable medical device for atrial deployment |
CA3048644A1 (en) * | 2017-01-05 | 2018-07-12 | Harmony Development Group, Inc. | Expandable device for capturing regurgitant jet, volume, and force to effect ventricular function and remodeling |
CN110392557A (en) | 2017-01-27 | 2019-10-29 | 耶拿阀门科技股份有限公司 | Heart valve simulation |
KR20190115474A (en) | 2017-02-23 | 2019-10-11 | 디퍼이 신테스 프로덕츠, 인코포레이티드 | Aneurysm device and delivery system |
US10588636B2 (en) | 2017-03-20 | 2020-03-17 | Surefire Medical, Inc. | Dynamic reconfigurable microvalve protection device |
WO2018178979A1 (en) | 2017-03-27 | 2018-10-04 | Append Medical Ltd. | Left atrial appendage closure |
US10898330B2 (en) | 2017-03-28 | 2021-01-26 | Edwards Lifesciences Corporation | Positioning, deploying, and retrieving implantable devices |
CN110831520B (en) | 2017-04-27 | 2022-11-15 | 波士顿科学国际有限公司 | Occlusive medical devices with fabric retention barbs |
US11357512B2 (en) * | 2017-05-12 | 2022-06-14 | Robert Fishel | Mechanism and device for left atrial appendage occlusion with electrical isolation |
US10542996B2 (en) | 2017-06-27 | 2020-01-28 | Covidien Lp | Vessel closure device |
US10940002B2 (en) | 2017-06-28 | 2021-03-09 | Harmony Development Group, Inc. | Force transducting inflatable implant system including a dual force annular transduction implant |
ES2971315T3 (en) | 2017-08-21 | 2024-06-04 | Cerus Endovascular Ltd | Occlusion device |
US10675036B2 (en) | 2017-08-22 | 2020-06-09 | Covidien Lp | Devices, systems, and methods for the treatment of vascular defects |
EP3459469A1 (en) | 2017-09-23 | 2019-03-27 | Universität Zürich | Medical occluder device |
CN107595347B (en) * | 2017-09-25 | 2019-11-26 | 潘湘斌 | A kind of the left atrial appendage occlusion device assembly and its interventional method of repeatable folding and unfolding |
US11813463B2 (en) | 2017-12-01 | 2023-11-14 | Cardiac Pacemakers, Inc. | Leadless cardiac pacemaker with reversionary behavior |
EP3717063B1 (en) | 2017-12-01 | 2023-12-27 | Cardiac Pacemakers, Inc. | Systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker |
US11260216B2 (en) | 2017-12-01 | 2022-03-01 | Cardiac Pacemakers, Inc. | Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker |
EP3727164B1 (en) | 2017-12-18 | 2024-03-13 | Boston Scientific Scimed, Inc. | Occlusive device with expandable member |
EP3740139A1 (en) | 2018-01-19 | 2020-11-25 | Boston Scientific Scimed Inc. | Occlusive medical device with delivery system |
US10905430B2 (en) | 2018-01-24 | 2021-02-02 | DePuy Synthes Products, Inc. | Aneurysm device and delivery system |
CN111867490B (en) | 2018-02-14 | 2024-01-30 | 波士顿科学医学有限公司 | Occlusion medical device |
WO2019173385A1 (en) | 2018-03-05 | 2019-09-12 | Harmony Development Group, Inc. | A force transducting implant system for the mitigation of atrioventricular pressure gradient loss and the restoration of healthy ventricular geometry |
WO2019213274A1 (en) | 2018-05-02 | 2019-11-07 | Boston Scientific Scimed, Inc. | Occlusive sealing sensor system |
JP7241095B2 (en) | 2018-05-15 | 2023-03-16 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Occlusive medical device with charged polymer coating |
US11596412B2 (en) | 2018-05-25 | 2023-03-07 | DePuy Synthes Products, Inc. | Aneurysm device and delivery system |
US11058430B2 (en) | 2018-05-25 | 2021-07-13 | DePuy Synthes Products, Inc. | Aneurysm device and delivery system |
US10939915B2 (en) | 2018-05-31 | 2021-03-09 | DePuy Synthes Products, Inc. | Aneurysm device and delivery system |
US11672541B2 (en) | 2018-06-08 | 2023-06-13 | Boston Scientific Scimed, Inc. | Medical device with occlusive member |
EP3801301A1 (en) | 2018-06-08 | 2021-04-14 | Boston Scientific Scimed Inc. | Occlusive device with actuatable fixation members |
EP3817671A1 (en) | 2018-07-06 | 2021-05-12 | Boston Scientific Scimed Inc. | Occlusive medical device |
US11850398B2 (en) | 2018-08-01 | 2023-12-26 | Trisalus Life Sciences, Inc. | Systems and methods for pressure-facilitated therapeutic agent delivery |
US11051825B2 (en) | 2018-08-08 | 2021-07-06 | DePuy Synthes Products, Inc. | Delivery system for embolic braid |
CN112714632B (en) | 2018-08-21 | 2024-08-30 | 波士顿科学医学有限公司 | Barbed protruding member for cardiovascular device |
US11123077B2 (en) | 2018-09-25 | 2021-09-21 | DePuy Synthes Products, Inc. | Intrasaccular device positioning and deployment system |
US11338117B2 (en) | 2018-10-08 | 2022-05-24 | Trisalus Life Sciences, Inc. | Implantable dual pathway therapeutic agent delivery port |
US11076861B2 (en) | 2018-10-12 | 2021-08-03 | DePuy Synthes Products, Inc. | Folded aneurysm treatment device and delivery method |
US11406392B2 (en) | 2018-12-12 | 2022-08-09 | DePuy Synthes Products, Inc. | Aneurysm occluding device for use with coagulating agents |
CN111388043A (en) | 2018-12-17 | 2020-07-10 | 柯惠有限合伙公司 | Occlusion device |
CN109620490B (en) * | 2018-12-17 | 2020-08-14 | 中国医学科学院北京协和医院 | Claw-shaped bile duct and pancreas stent taking-out instrument |
US11272939B2 (en) | 2018-12-18 | 2022-03-15 | DePuy Synthes Products, Inc. | Intrasaccular flow diverter for treating cerebral aneurysms |
US11963864B2 (en) * | 2019-01-11 | 2024-04-23 | Varun Shetty | Method and system for reducing pulmonary flow |
US11134953B2 (en) * | 2019-02-06 | 2021-10-05 | DePuy Synthes Products, Inc. | Adhesive cover occluding device for aneurysm treatment |
EP3927423B1 (en) * | 2019-02-20 | 2023-12-13 | Ablation Innovations, LLC | Apparatus, systems, and methods to improve atrial fibrillation outcomes involving the left atrial appendage |
CN113556985B (en) | 2019-03-15 | 2024-10-18 | 美科微先股份有限公司 | Silk device for treating vascular defects |
EP3908354A4 (en) | 2019-03-15 | 2023-04-26 | Sequent Medical, Inc. | Filamentary devices for treatment of vascular defects |
EP3908208A4 (en) | 2019-03-15 | 2022-10-19 | Sequent Medical, Inc. | Filamentary devices having a flexible joint for treatment of vascular defects |
US11337706B2 (en) | 2019-03-27 | 2022-05-24 | DePuy Synthes Products, Inc. | Aneurysm treatment device |
US11602350B2 (en) | 2019-12-05 | 2023-03-14 | DePuy Synthes Products, Inc. | Intrasaccular inverting braid with highly flexible fill material |
US11413046B2 (en) | 2019-05-21 | 2022-08-16 | DePuy Synthes Products, Inc. | Layered braided aneurysm treatment device |
US10653425B1 (en) | 2019-05-21 | 2020-05-19 | DePuy Synthes Products, Inc. | Layered braided aneurysm treatment device |
US11497504B2 (en) | 2019-05-21 | 2022-11-15 | DePuy Synthes Products, Inc. | Aneurysm treatment with pushable implanted braid |
US11607226B2 (en) | 2019-05-21 | 2023-03-21 | DePuy Synthes Products, Inc. | Layered braided aneurysm treatment device with corrugations |
US11672542B2 (en) | 2019-05-21 | 2023-06-13 | DePuy Synthes Products, Inc. | Aneurysm treatment with pushable ball segment |
US11278292B2 (en) | 2019-05-21 | 2022-03-22 | DePuy Synthes Products, Inc. | Inverting braided aneurysm treatment system and method |
US11534303B2 (en) | 2020-04-09 | 2022-12-27 | Evalve, Inc. | Devices and systems for accessing and repairing a heart valve |
US11369355B2 (en) | 2019-06-17 | 2022-06-28 | Coherex Medical, Inc. | Medical device and system for occluding a tissue opening and method thereof |
US11660189B2 (en) | 2019-07-15 | 2023-05-30 | Evalve, Inc. | Wide clip with nondeformable wings |
US11850151B2 (en) | 2019-07-15 | 2023-12-26 | Evalve, Inc. | Proximal element actuator fixation and release mechanisms |
JP7543391B2 (en) | 2019-07-15 | 2024-09-02 | エバルブ,インコーポレイティド | Method of Actuating Individual Proximal Elements |
CN112336409B (en) * | 2019-08-07 | 2022-04-08 | 合硕生技股份有限公司 | Bone drilling cover fixing device |
WO2021059273A2 (en) | 2019-09-26 | 2021-04-01 | Universitat Zurich | Left atrial appendage occlusion devices |
EP4033970A1 (en) | 2019-09-26 | 2022-08-03 | Evalve, Inc. | Systems for intra-procedural cardiac pressure monitoring |
EP4041136A1 (en) | 2019-10-11 | 2022-08-17 | Evalve, Inc. | Repair clip for variable tissue thickness |
US11305387B2 (en) | 2019-11-04 | 2022-04-19 | Covidien Lp | Systems and methods for treating aneurysms |
WO2021092107A1 (en) | 2019-11-06 | 2021-05-14 | Evalve, Inc. | Stabilizer for a medical delivery system |
US11622859B2 (en) | 2019-11-08 | 2023-04-11 | Evalve, Inc. | Medical device delivery system with locking system |
WO2021097124A1 (en) | 2019-11-14 | 2021-05-20 | Evalve, Inc. | Catheter assembly with coaptation aid and methods for valve repair |
WO2021097089A1 (en) | 2019-11-14 | 2021-05-20 | Evalve, Inc. | Kit with coaptation aid and fixation system and methods for valve repair |
CN114727821A (en) * | 2019-11-15 | 2022-07-08 | W.L.戈尔及同仁股份有限公司 | Left atrial appendage device and method |
CN111110400B (en) * | 2019-12-09 | 2022-02-22 | 先健科技(深圳)有限公司 | Heart valve tether and have its heart valve subassembly |
US11457926B2 (en) | 2019-12-18 | 2022-10-04 | DePuy Synthes Products, Inc. | Implant having an intrasaccular section and intravascular section |
US12109115B2 (en) | 2019-12-18 | 2024-10-08 | Evalve, Inc. | Wide clip with deformable width |
US11406404B2 (en) | 2020-02-20 | 2022-08-09 | Cerus Endovascular Limited | Clot removal distal protection methods |
US12070220B2 (en) | 2020-03-11 | 2024-08-27 | Microvention, Inc. | Devices having multiple permeable shells for treatment of vascular defects |
US12023034B2 (en) | 2020-03-11 | 2024-07-02 | Microvention, Inc. | Devices for treatment of vascular defects |
US11931041B2 (en) | 2020-05-12 | 2024-03-19 | Covidien Lp | Devices, systems, and methods for the treatment of vascular defects |
CN114052816A (en) * | 2020-08-06 | 2022-02-18 | 刘雄昌 | Gastrointestinal tract plugging device |
CN112022425A (en) * | 2020-09-11 | 2020-12-04 | 复旦大学附属中山医院 | Thrombus filter device |
US11812969B2 (en) | 2020-12-03 | 2023-11-14 | Coherex Medical, Inc. | Medical device and system for occluding a tissue opening and method thereof |
EP4262583A1 (en) | 2020-12-18 | 2023-10-25 | Boston Scientific Scimed Inc. | Occlusive medical device having sensing capabilities |
AU2022306394A1 (en) * | 2021-07-09 | 2024-01-18 | Boston Scientific Scimed, Inc. | Direct oral anticoagulant-eluting medical device |
CN113855133B (en) * | 2021-09-29 | 2024-04-09 | 复旦大学附属中山医院 | Vascular anastomosis balloon blood flow isolator |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192301A (en) * | 1989-01-17 | 1993-03-09 | Nippon Zeon Co., Ltd. | Closing plug of a defect for medical use and a closing plug device utilizing it |
US5895399A (en) * | 1996-07-17 | 1999-04-20 | Embol-X Inc. | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
US5972022A (en) * | 1994-09-26 | 1999-10-26 | Ethicon, Inc. | Tissue attachment device having elastomeric section |
US6152144A (en) * | 1998-11-06 | 2000-11-28 | Appriva Medical, Inc. | Method and device for left atrial appendage occlusion |
US6206907B1 (en) * | 1999-05-07 | 2001-03-27 | Cardia, Inc. | Occlusion device with stranded wire support arms |
US6652556B1 (en) * | 1999-10-27 | 2003-11-25 | Atritech, Inc. | Filter apparatus for ostium of left atrial appendage |
US6949113B2 (en) * | 1999-10-27 | 2005-09-27 | Atritech, Inc. | Barrier device for ostium of left atrial appendage |
Family Cites Families (122)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US178283A (en) | 1876-06-06 | Improvement in vaginal syringes | ||
US1967318A (en) | 1931-10-02 | 1934-07-24 | Monahan William | Apparatus for the treatment of the urethra |
US3844302A (en) | 1970-09-14 | 1974-10-29 | Telesco Brophey Ltd | Collapsible umbrella |
US3874388A (en) | 1973-02-12 | 1975-04-01 | Ochsner Med Found Alton | Shunt defect closure system |
US4007743A (en) | 1975-10-20 | 1977-02-15 | American Hospital Supply Corporation | Opening mechanism for umbrella-like intravascular shunt defect closure device |
US4603693A (en) | 1977-05-26 | 1986-08-05 | United States Surgical Corporation | Instrument for circular surgical stapling of hollow body organs and disposable cartridge therefor |
US4341218A (en) | 1978-05-30 | 1982-07-27 | University Of California | Detachable balloon catheter |
US4585000A (en) | 1983-09-28 | 1986-04-29 | Cordis Corporation | Expandable device for treating intravascular stenosis |
US4665906A (en) | 1983-10-14 | 1987-05-19 | Raychem Corporation | Medical devices incorporating sim alloy elements |
US4710192A (en) | 1985-12-30 | 1987-12-01 | Liotta Domingo S | Diaphragm and method for occlusion of the descending thoracic aorta |
US5037810A (en) * | 1987-03-17 | 1991-08-06 | Saliba Jr Michael J | Medical application for heparin and related molecules |
US5041090A (en) | 1988-01-12 | 1991-08-20 | Scheglov Viktor I | Occluding device |
US6120437A (en) | 1988-07-22 | 2000-09-19 | Inbae Yoon | Methods for creating spaces at obstructed sites endoscopically and methods therefor |
US4921484A (en) | 1988-07-25 | 1990-05-01 | Cordis Corporation | Mesh balloon catheter device |
US4917089A (en) | 1988-08-29 | 1990-04-17 | Sideris Eleftherios B | Buttoned device for the transvenous occlusion of intracardiac defects |
DE8904371U1 (en) | 1989-04-07 | 1989-06-08 | Herzberg, Wolfgang, Dr. med., 2000 Wedel | Outlet and instrument channel for arthroscopy |
NL8901350A (en) | 1989-05-29 | 1990-12-17 | Wouter Matthijs Muijs Van De M | CLOSURE ASSEMBLY. |
US5421832A (en) | 1989-12-13 | 1995-06-06 | Lefebvre; Jean-Marie | Filter-catheter and method of manufacturing same |
US5041093A (en) | 1990-01-31 | 1991-08-20 | Boston Scientific Corp. | Catheter with foraminous anchor |
US5171259A (en) | 1990-04-02 | 1992-12-15 | Kanji Inoue | Device for nonoperatively occluding a defect |
US5078736A (en) | 1990-05-04 | 1992-01-07 | Interventional Thermodynamics, Inc. | Method and apparatus for maintaining patency in the body passages |
US5064435A (en) | 1990-06-28 | 1991-11-12 | Schneider (Usa) Inc. | Self-expanding prosthesis having stable axial length |
US5042707A (en) | 1990-10-16 | 1991-08-27 | Taheri Syde A | Intravascular stapler, and method of operating same |
US5108420A (en) | 1991-02-01 | 1992-04-28 | Temple University | Aperture occlusion device |
SE467948B (en) | 1991-06-14 | 1992-10-12 | Ams Medinvent Sa | DEVICE FOR TRANSLUMINAL REMOVAL OR IMPLANTATION OF A STENT AND APPARATUS INCLUDING A SOUND DEVICE |
US5735290A (en) | 1993-02-22 | 1998-04-07 | Heartport, Inc. | Methods and systems for performing thoracoscopic coronary bypass and other procedures |
CA2078530A1 (en) | 1991-09-23 | 1993-03-24 | Jay Erlebacher | Percutaneous arterial puncture seal device and insertion tool therefore |
US5256146A (en) | 1991-10-11 | 1993-10-26 | W. D. Ensminger | Vascular catheterization system with catheter anchoring feature |
CA2082090C (en) | 1991-11-05 | 2004-04-27 | Jack Fagan | Improved occluder for repair of cardiac and vascular defects |
DE69229539T2 (en) | 1991-11-05 | 2000-02-17 | Children's Medical Center Corp., Boston | Occlusion device for repairing heart and vascular defects |
US5282827A (en) | 1991-11-08 | 1994-02-01 | Kensey Nash Corporation | Hemostatic puncture closure system and method of use |
US5176692A (en) | 1991-12-09 | 1993-01-05 | Wilk Peter J | Method and surgical instrument for repairing hernia |
US5258042A (en) | 1991-12-16 | 1993-11-02 | Henry Ford Health System | Intravascular hydrogel implant |
US5626605A (en) | 1991-12-30 | 1997-05-06 | Scimed Life Systems, Inc. | Thrombosis filter |
EP0623003B1 (en) * | 1992-01-21 | 1999-03-31 | Regents Of The University Of Minnesota | Septal defect closure device |
FR2689388B1 (en) | 1992-04-07 | 1999-07-16 | Celsa Lg | PERFECTIONALLY RESORBABLE BLOOD FILTER. |
US5637097A (en) | 1992-04-15 | 1997-06-10 | Yoon; Inbae | Penetrating instrument having an expandable anchoring portion |
US5707362A (en) | 1992-04-15 | 1998-01-13 | Yoon; Inbae | Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member |
US5766246A (en) | 1992-05-20 | 1998-06-16 | C. R. Bard, Inc. | Implantable prosthesis and method and apparatus for loading and delivering an implantable prothesis |
US5469867A (en) | 1992-09-02 | 1995-11-28 | Landec Corporation | Cast-in place thermoplastic channel occluder |
US5527338A (en) | 1992-09-02 | 1996-06-18 | Board Of Regents, The University Of Texas System | Intravascular device |
FR2696092B1 (en) | 1992-09-28 | 1994-12-30 | Lefebvre Jean Marie | Kit for medical use composed of a filter and its device for placement in the vessel. |
US5382259A (en) | 1992-10-26 | 1995-01-17 | Target Therapeutics, Inc. | Vasoocclusion coil with attached tubular woven or braided fibrous covering |
US5643317A (en) | 1992-11-25 | 1997-07-01 | William Cook Europe S.A. | Closure prosthesis for transcatheter placement |
US5443454A (en) | 1992-12-09 | 1995-08-22 | Terumo Kabushiki Kaisha | Catheter for embolectomy |
US5417699A (en) | 1992-12-10 | 1995-05-23 | Perclose Incorporated | Device and method for the percutaneous suturing of a vascular puncture site |
US5284488A (en) | 1992-12-23 | 1994-02-08 | Sideris Eleftherios B | Adjustable devices for the occlusion of cardiac defects |
US6161543A (en) * | 1993-02-22 | 2000-12-19 | Epicor, Inc. | Methods of epicardial ablation for creating a lesion around the pulmonary veins |
US5797960A (en) | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US5306234A (en) | 1993-03-23 | 1994-04-26 | Johnson W Dudley | Method for closing an atrial appendage |
US5353784A (en) | 1993-04-02 | 1994-10-11 | The Research Foundation Of Suny | Endoscopic device and method of use |
US5527322A (en) | 1993-11-08 | 1996-06-18 | Perclose, Inc. | Device and method for suturing of internal puncture sites |
US5490856A (en) | 1993-12-14 | 1996-02-13 | Untied States Surgical Corporation | Purse string stapler |
US5591196A (en) | 1994-02-10 | 1997-01-07 | Endovascular Systems, Inc. | Method for deployment of radially expandable stents |
US5634942A (en) | 1994-04-21 | 1997-06-03 | B. Braun Celsa | Assembly comprising a blood filter for temporary or definitive use and a device for implanting it |
US5522836A (en) | 1994-06-27 | 1996-06-04 | Target Therapeutics, Inc. | Electrolytically severable coil assembly with movable detachment point |
US5846261A (en) | 1994-07-08 | 1998-12-08 | Aga Medical Corp. | Percutaneous catheter directed occlusion devices |
US5725552A (en) * | 1994-07-08 | 1998-03-10 | Aga Medical Corporation | Percutaneous catheter directed intravascular occlusion devices |
US5433727A (en) | 1994-08-16 | 1995-07-18 | Sideris; Eleftherios B. | Centering buttoned device for the occlusion of large defects for occluding |
US5690671A (en) | 1994-12-13 | 1997-11-25 | Micro Interventional Systems, Inc. | Embolic elements and methods and apparatus for their delivery |
US5879366A (en) | 1996-12-20 | 1999-03-09 | W.L. Gore & Associates, Inc. | Self-expanding defect closure device and method of making and using |
US5643292A (en) | 1995-01-10 | 1997-07-01 | Applied Medical Resources Corporation | Percutaneous suturing device |
US5702421A (en) | 1995-01-11 | 1997-12-30 | Schneidt; Bernhard | Closure device for closing a vascular opening, such as patent ductus arteriosus |
US5614204A (en) | 1995-01-23 | 1997-03-25 | The Regents Of The University Of California | Angiographic vascular occlusion agents and a method for hemostatic occlusion |
US5634936A (en) | 1995-02-06 | 1997-06-03 | Scimed Life Systems, Inc. | Device for closing a septal defect |
US5849005A (en) | 1995-06-07 | 1998-12-15 | Heartport, Inc. | Method and apparatus for minimizing the risk of air embolism when performing a procedure in a patient's thoracic cavity |
US5645558A (en) | 1995-04-20 | 1997-07-08 | Medical University Of South Carolina | Anatomically shaped vasoocclusive device and method of making the same |
US5681347A (en) | 1995-05-23 | 1997-10-28 | Boston Scientific Corporation | Vena cava filter delivery system |
US6132438A (en) | 1995-06-07 | 2000-10-17 | Ep Technologies, Inc. | Devices for installing stasis reducing means in body tissue |
US5709224A (en) | 1995-06-07 | 1998-01-20 | Radiotherapeutics Corporation | Method and device for permanent vessel occlusion |
US5725568A (en) | 1995-06-27 | 1998-03-10 | Scimed Life Systems, Inc. | Method and device for recanalizing and grafting arteries |
US5749883A (en) | 1995-08-30 | 1998-05-12 | Halpern; David Marcos | Medical instrument |
WO1997016119A1 (en) | 1995-10-30 | 1997-05-09 | Children's Medical Center Corporation | Self-centering umbrella-type septal closure device |
US5769816A (en) | 1995-11-07 | 1998-06-23 | Embol-X, Inc. | Cannula with associated filter |
US5989281A (en) | 1995-11-07 | 1999-11-23 | Embol-X, Inc. | Cannula with associated filter and methods of use during cardiac surgery |
US5749894A (en) | 1996-01-18 | 1998-05-12 | Target Therapeutics, Inc. | Aneurysm closure method |
NL1002423C2 (en) | 1996-02-22 | 1997-08-25 | Cordis Europ | Temporary filter catheter. |
US5885258A (en) | 1996-02-23 | 1999-03-23 | Memory Medical Systems, Inc. | Medical instrument with slotted memory metal tube |
US5733294A (en) | 1996-02-28 | 1998-03-31 | B. Braun Medical, Inc. | Self expanding cardiovascular occlusion device, method of using and method of making the same |
US6139527A (en) | 1996-03-05 | 2000-10-31 | Vnus Medical Technologies, Inc. | Method and apparatus for treating hemorrhoids |
US5853422A (en) | 1996-03-22 | 1998-12-29 | Scimed Life Systems, Inc. | Apparatus and method for closing a septal defect |
US5906207A (en) | 1996-04-04 | 1999-05-25 | Merck & Co., Inc. | Method for simulating heart failure |
AR001590A1 (en) | 1996-04-10 | 1997-11-26 | Jorge Alberto Baccaro | Abnormal vascular communications occluder device and applicator cartridge of said device |
EP0900051A1 (en) | 1996-05-08 | 1999-03-10 | Salviac Limited | An occluder device |
US6048331A (en) | 1996-05-14 | 2000-04-11 | Embol-X, Inc. | Cardioplegia occluder |
US5830228A (en) | 1996-05-29 | 1998-11-03 | Urosurge, Inc. | Methods and systems for deployment of a detachable balloon at a target site in vivo |
US5669933A (en) | 1996-07-17 | 1997-09-23 | Nitinol Medical Technologies, Inc. | Removable embolus blood clot filter |
US5823198A (en) | 1996-07-31 | 1998-10-20 | Micro Therapeutics, Inc. | Method and apparatus for intravasculer embolization |
US5941249A (en) | 1996-09-05 | 1999-08-24 | Maynard; Ronald S. | Distributed activator for a two-dimensional shape memory alloy |
US5876367A (en) | 1996-12-05 | 1999-03-02 | Embol-X, Inc. | Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries |
US5776097A (en) | 1996-12-19 | 1998-07-07 | University Of California At Los Angeles | Method and device for treating intracranial vascular aneurysms |
US5951589A (en) | 1997-02-11 | 1999-09-14 | Biointerventional Corporation | Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method |
US5782860A (en) | 1997-02-11 | 1998-07-21 | Biointerventional Corporation | Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method |
US5851232A (en) | 1997-03-15 | 1998-12-22 | Lois; William A. | Venous stent |
US5800454A (en) * | 1997-03-17 | 1998-09-01 | Sarcos, Inc. | Catheter deliverable coiled wire thromboginic apparatus and method |
US5836913A (en) | 1997-05-02 | 1998-11-17 | Innerdyne, Inc. | Device and method for accessing a body cavity |
US5868708A (en) | 1997-05-07 | 1999-02-09 | Applied Medical Resources Corporation | Balloon catheter apparatus and method |
US5855597A (en) | 1997-05-07 | 1999-01-05 | Iowa-India Investments Co. Limited | Stent valve and stent graft for percutaneous surgery |
US5911734A (en) | 1997-05-08 | 1999-06-15 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US5846260A (en) | 1997-05-08 | 1998-12-08 | Embol-X, Inc. | Cannula with a modular filter for filtering embolic material |
US5957940A (en) | 1997-06-30 | 1999-09-28 | Eva Corporation | Fasteners for use in the surgical repair of aneurysms |
US5928260A (en) | 1997-07-10 | 1999-07-27 | Scimed Life Systems, Inc. | Removable occlusion system for aneurysm neck |
US5928192A (en) | 1997-07-24 | 1999-07-27 | Embol-X, Inc. | Arterial aspiration |
JP4060528B2 (en) * | 1997-08-04 | 2008-03-12 | ボストン サイエンティフィック コーポレーション | Occlusion system for aneurysm treatment |
US6063070A (en) | 1997-08-05 | 2000-05-16 | Target Therapeutics, Inc. | Detachable aneurysm neck bridge (II) |
AU8772198A (en) * | 1997-08-05 | 1999-03-08 | Target Therapeutics, Inc. | Detachable aneurysm neck bridge |
DE29714242U1 (en) * | 1997-08-08 | 1998-12-10 | Applied Biometrics, Inc., Burnsville, Minnesota | Closure device for closing a physical anomaly such as vascular opening or opening in a septum |
US5976174A (en) | 1997-12-15 | 1999-11-02 | Ruiz; Carlos E. | Medical hole closure device and methods of use |
US6036720A (en) * | 1997-12-15 | 2000-03-14 | Target Therapeutics, Inc. | Sheet metal aneurysm neck bridge |
US6007557A (en) | 1998-04-29 | 1999-12-28 | Embol-X, Inc. | Adjustable blood filtration system |
US5935148A (en) | 1998-06-24 | 1999-08-10 | Target Therapeutics, Inc. | Detachable, varying flexibility, aneurysm neck bridge |
US5954694A (en) | 1998-08-07 | 1999-09-21 | Embol-X, Inc. | Nested tubing sections and methods for making same |
US6033420A (en) | 1998-09-02 | 2000-03-07 | Embol-X, Inc. | Trocar introducer system and methods of use |
US6007523A (en) | 1998-09-28 | 1999-12-28 | Embol-X, Inc. | Suction support and method of use |
US6051014A (en) | 1998-10-13 | 2000-04-18 | Embol-X, Inc. | Percutaneous filtration catheter for valve repair surgery and methods of use |
US6068621A (en) | 1998-11-20 | 2000-05-30 | Embol X, Inc. | Articulating cannula |
US6056720A (en) | 1998-11-24 | 2000-05-02 | Embol-X, Inc. | Occlusion cannula and methods of use |
US6080183A (en) | 1998-11-24 | 2000-06-27 | Embol-X, Inc. | Sutureless vessel plug and methods of use |
US6083239A (en) | 1998-11-24 | 2000-07-04 | Embol-X, Inc. | Compliant framework and methods of use |
US6024755A (en) | 1998-12-11 | 2000-02-15 | Embol-X, Inc. | Suture-free clamp and sealing port and methods of use |
GB9828039D0 (en) * | 1998-12-18 | 1999-02-17 | Sgs Thomson Microelectronics | Comparator circuits |
US6652555B1 (en) * | 1999-10-27 | 2003-11-25 | Atritech, Inc. | Barrier device for covering the ostium of left atrial appendage |
-
1999
- 1999-10-27 US US09/428,008 patent/US6551303B1/en not_active Expired - Lifetime
-
2000
- 2000-10-23 CN CN00816176A patent/CN1399531A/en active Pending
- 2000-10-23 EP EP04023797A patent/EP1579823A2/en not_active Withdrawn
- 2000-10-23 ES ES00986816T patent/ES2232516T3/en not_active Expired - Lifetime
- 2000-10-23 EP EP00986816A patent/EP1225843B1/en not_active Expired - Lifetime
- 2000-10-23 CA CA002388603A patent/CA2388603A1/en not_active Abandoned
- 2000-10-23 DE DE60017928T patent/DE60017928T2/en not_active Expired - Lifetime
- 2000-10-23 IL IL14930000A patent/IL149300A0/en unknown
- 2000-10-23 AT AT00986816T patent/ATE288231T1/en active
- 2000-10-23 JP JP2001532691A patent/JP2003512129A/en not_active Withdrawn
- 2000-10-23 AU AU22990/01A patent/AU779124B2/en not_active Ceased
- 2000-10-23 WO PCT/US2000/041415 patent/WO2001030268A1/en active IP Right Grant
-
2002
- 2002-12-03 US US10/308,032 patent/US6949113B2/en not_active Expired - Lifetime
-
2003
- 2003-03-27 US US10/397,311 patent/US6730108B2/en not_active Expired - Lifetime
-
2004
- 2004-09-24 US US10/948,217 patent/US8221445B2/en not_active Expired - Fee Related
-
2012
- 2012-07-16 US US13/550,172 patent/US20120283773A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192301A (en) * | 1989-01-17 | 1993-03-09 | Nippon Zeon Co., Ltd. | Closing plug of a defect for medical use and a closing plug device utilizing it |
US5972022A (en) * | 1994-09-26 | 1999-10-26 | Ethicon, Inc. | Tissue attachment device having elastomeric section |
US5895399A (en) * | 1996-07-17 | 1999-04-20 | Embol-X Inc. | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
US6152144A (en) * | 1998-11-06 | 2000-11-28 | Appriva Medical, Inc. | Method and device for left atrial appendage occlusion |
US6206907B1 (en) * | 1999-05-07 | 2001-03-27 | Cardia, Inc. | Occlusion device with stranded wire support arms |
US6652556B1 (en) * | 1999-10-27 | 2003-11-25 | Atritech, Inc. | Filter apparatus for ostium of left atrial appendage |
US6949113B2 (en) * | 1999-10-27 | 2005-09-27 | Atritech, Inc. | Barrier device for ostium of left atrial appendage |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9375218B2 (en) | 2006-05-03 | 2016-06-28 | Datascope Corp. | Systems and methods of tissue closure |
US11369374B2 (en) | 2006-05-03 | 2022-06-28 | Datascope Corp. | Systems and methods of tissue closure |
US10595861B2 (en) | 2006-05-03 | 2020-03-24 | Datascope Corp. | Systems and methods of tissue closure |
US11992211B2 (en) | 2006-05-03 | 2024-05-28 | Datascope Corp. | Systems and methods of tissue closure |
US10993803B2 (en) | 2011-04-01 | 2021-05-04 | W. L. Gore & Associates, Inc. | Elastomeric leaflet for prosthetic heart valves |
US10117765B2 (en) | 2011-06-14 | 2018-11-06 | W.L. Gore Associates, Inc | Apposition fiber for use in endoluminal deployment of expandable implants |
US11457925B2 (en) | 2011-09-16 | 2022-10-04 | W. L. Gore & Associates, Inc. | Occlusive devices |
US11324615B2 (en) | 2011-11-14 | 2022-05-10 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US11382781B2 (en) | 2011-11-14 | 2022-07-12 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US11123174B2 (en) | 2012-03-13 | 2021-09-21 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US12076227B2 (en) | 2012-03-13 | 2024-09-03 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US10531878B2 (en) | 2012-07-26 | 2020-01-14 | University Of Louisville Research Foundation | Atrial appendage closure device and related methods |
US12082820B2 (en) | 2013-03-13 | 2024-09-10 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11399842B2 (en) | 2013-03-13 | 2022-08-02 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
WO2014164572A1 (en) * | 2013-03-13 | 2014-10-09 | Kaplan Aaron V | Devices and methods for excluding the left atrial appendage |
US11717303B2 (en) | 2013-03-13 | 2023-08-08 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11911258B2 (en) | 2013-06-26 | 2024-02-27 | W. L. Gore & Associates, Inc. | Space filling devices |
US10485545B2 (en) | 2013-11-19 | 2019-11-26 | Datascope Corp. | Fastener applicator with interlock |
US11564689B2 (en) | 2013-11-19 | 2023-01-31 | Datascope Corp. | Fastener applicator with interlock |
US10617425B2 (en) | 2014-03-10 | 2020-04-14 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US10405866B2 (en) | 2014-04-25 | 2019-09-10 | Flow MedTech, Inc | Left atrial appendage occlusion device |
US10856881B2 (en) | 2014-09-19 | 2020-12-08 | Flow Medtech, Inc. | Left atrial appendage occlusion device delivery system |
US11129622B2 (en) | 2015-05-14 | 2021-09-28 | W. L. Gore & Associates, Inc. | Devices and methods for occlusion of an atrial appendage |
US11826052B2 (en) | 2015-05-14 | 2023-11-28 | W. L. Gore & Associates, Inc. | Devices and methods for occlusion of an atrial appendage |
US11109868B2 (en) * | 2015-08-06 | 2021-09-07 | Thomas J. Forbes | Left atrial appendage occluder device anchoring system, anchor, and method of attachment |
US11026695B2 (en) | 2016-10-27 | 2021-06-08 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11426172B2 (en) | 2016-10-27 | 2022-08-30 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11786256B2 (en) | 2016-10-27 | 2023-10-17 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11173023B2 (en) | 2017-10-16 | 2021-11-16 | W. L. Gore & Associates, Inc. | Medical devices and anchors therefor |
US10918392B2 (en) | 2018-01-26 | 2021-02-16 | Syntheon 2.0, LLC | Left atrial appendage clipping device and methods for clipping the LAA |
US11712249B2 (en) | 2018-01-26 | 2023-08-01 | Syntheon 2.0, LLC | Left atrial appendage clipping device and methods for clipping the LAA |
US11191547B2 (en) | 2018-01-26 | 2021-12-07 | Syntheon 2.0, LLC | Left atrial appendage clipping device and methods for clipping the LAA |
US11653928B2 (en) | 2018-03-28 | 2023-05-23 | Datascope Corp. | Device for atrial appendage exclusion |
US10722240B1 (en) | 2019-02-08 | 2020-07-28 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11116510B2 (en) | 2019-02-08 | 2021-09-14 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US10925615B2 (en) | 2019-05-03 | 2021-02-23 | Syntheon 2.0, LLC | Recapturable left atrial appendage clipping device and methods for recapturing a left atrial appendage clip |
US11944314B2 (en) | 2019-07-17 | 2024-04-02 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with continuous covering |
US11540838B2 (en) | 2019-08-30 | 2023-01-03 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with sealing disk |
US11903589B2 (en) | 2020-03-24 | 2024-02-20 | Boston Scientific Scimed, Inc. | Medical system for treating a left atrial appendage |
US11801369B2 (en) | 2020-08-25 | 2023-10-31 | Shifamed Holdings, Llc | Adjustable interatrial shunts and associated systems and methods |
US11857197B2 (en) | 2020-11-12 | 2024-01-02 | Shifamed Holdings, Llc | Adjustable implantable devices and associated methods |
US11633194B2 (en) | 2020-11-12 | 2023-04-25 | Shifamed Holdings, Llc | Adjustable implantable devices and associated methods |
US12090290B2 (en) | 2021-03-09 | 2024-09-17 | Shifamed Holdings, Llc | Shape memory actuators for adjustable shunting systems, and associated systems and methods |
Also Published As
Publication number | Publication date |
---|---|
DE60017928T2 (en) | 2005-06-23 |
ATE288231T1 (en) | 2005-02-15 |
ES2232516T3 (en) | 2005-06-01 |
US20050049573A1 (en) | 2005-03-03 |
US6551303B1 (en) | 2003-04-22 |
IL149300A0 (en) | 2002-11-10 |
CA2388603A1 (en) | 2001-05-03 |
EP1225843B1 (en) | 2005-02-02 |
EP1579823A2 (en) | 2005-09-28 |
JP2003512129A (en) | 2003-04-02 |
CN1399531A (en) | 2003-02-26 |
US6730108B2 (en) | 2004-05-04 |
DE60017928D1 (en) | 2005-03-10 |
WO2001030268A1 (en) | 2001-05-03 |
US20030120337A1 (en) | 2003-06-26 |
AU779124B2 (en) | 2005-01-06 |
US20030191526A1 (en) | 2003-10-09 |
EP1225843A1 (en) | 2002-07-31 |
AU2299001A (en) | 2001-05-08 |
US8221445B2 (en) | 2012-07-17 |
US6949113B2 (en) | 2005-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8221445B2 (en) | Barrier device for ostium of left atrial appendage | |
US10893926B2 (en) | Filter apparatus for ostium of left atrial appendage | |
US6652555B1 (en) | Barrier device for covering the ostium of left atrial appendage | |
WO2001006972A1 (en) | Endoscopic arterial pumps for treatment of cardiac insufficiency and venous pumps for right-sided cardiac support | |
AU2004226914B2 (en) | Barrier Device for Ostium of Left Atrial Appendage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |