US20050273119A1 - Double spiral patent foramen ovale closure clamp - Google Patents
Double spiral patent foramen ovale closure clamp Download PDFInfo
- Publication number
- US20050273119A1 US20050273119A1 US11/008,539 US853904A US2005273119A1 US 20050273119 A1 US20050273119 A1 US 20050273119A1 US 853904 A US853904 A US 853904A US 2005273119 A1 US2005273119 A1 US 2005273119A1
- Authority
- US
- United States
- Prior art keywords
- connecting member
- wire
- wires
- pfo
- pfo closure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000008883 Patent Foramen Ovale Diseases 0.000 title claims description 86
- 230000007027 foramen ovale closure Effects 0.000 title description 2
- 230000001746 atrial effect Effects 0.000 claims abstract description 37
- PPTYJKAXVCCBDU-UHFFFAOYSA-N Rohypnol Chemical compound N=1CC(=O)N(C)C2=CC=C([N+]([O-])=O)C=C2C=1C1=CC=CC=C1F PPTYJKAXVCCBDU-UHFFFAOYSA-N 0.000 claims abstract description 9
- 208000027418 Wounds and injury Diseases 0.000 claims description 15
- 229910001000 nickel titanium Inorganic materials 0.000 claims description 11
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 claims description 11
- 238000002513 implantation Methods 0.000 claims description 9
- 239000012528 membrane Substances 0.000 claims description 4
- 208000014674 injury Diseases 0.000 claims description 3
- 230000008733 trauma Effects 0.000 claims description 3
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 3
- 238000000576 coating method Methods 0.000 claims 3
- 230000008467 tissue growth Effects 0.000 claims 3
- 210000003484 anatomy Anatomy 0.000 abstract description 4
- 210000005246 left atrium Anatomy 0.000 description 11
- 210000003157 atrial septum Anatomy 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 210000005245 right atrium Anatomy 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 230000035876 healing Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 208000002121 Paradoxical Embolism Diseases 0.000 description 3
- 208000013914 atrial heart septal defect Diseases 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 210000004491 foramen ovale Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 208000006011 Stroke Diseases 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 208000032109 Transient ischaemic attack Diseases 0.000 description 2
- 230000010100 anticoagulation Effects 0.000 description 2
- 206010003664 atrial septal defect Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 210000003754 fetus Anatomy 0.000 description 2
- 210000002837 heart atrium Anatomy 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 201000010875 transient cerebral ischemia Diseases 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 208000005189 Embolism Diseases 0.000 description 1
- 206010018852 Haematoma Diseases 0.000 description 1
- 208000032382 Ischaemic stroke Diseases 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229920000291 Poly(9,9-dioctylfluorene) Polymers 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000007213 cerebrovascular event Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 210000003811 finger Anatomy 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000013160 medical therapy Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229940127216 oral anticoagulant drug Drugs 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000004088 pulmonary circulation Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000012781 shape memory material Substances 0.000 description 1
- 230000001839 systemic circulation Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00526—Methods of manufacturing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00575—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00575—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
- A61B2017/00579—Barbed implements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00575—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
- A61B2017/00592—Elastic or resilient implements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00575—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
- A61B2017/00606—Implements H-shaped in cross-section, i.e. with occluders on both sides of the opening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00831—Material properties
- A61B2017/00867—Material properties shape memory effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0412—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from suture anchor body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0427—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06166—Sutures
- A61B2017/06176—Sutures with protrusions, e.g. barbs
Definitions
- the present invention relates to devices and methods which are used to close septal openings.
- this invention is directed to devices and methods which are used to close a patent foramen ovale (PFO) in the septum between the left atrium and right atrium.
- PFO patent foramen ovale
- a PFO illustrated in FIGS. 1 and 2 , is a persistent, one-way, usually flap-like opening in the wall between the right atrium and left atrium of the heart. Because left atrial (LA) pressure is normally higher than right atrial (RA) pressure, the flap usually stays closed. Under certain conditions, however, right atrial pressure can exceed left atrial pressure which creates the possibility that blood could pass from the right atrium to the left atrium and allow blood clots to enter the systemic circulation. It is desirable that this circumstance be reduced.
- LA left atrial
- RA right atrial pressure
- the foramen ovale serves a desired purpose when a fetus is gestating in utero. Since blood is oxygenated through the umbilical chord, and not through the developing lungs, the circulatory system of a heart in a fetus allows the blood to flow through the foramen ovale as a physiologic conduit for right-to-left shunting. After birth, with the establishment of pulmonary circulation, the increased left atrial blood flow and pressure results in functional closure of the foramen ovale. This functional closure is subsequently followed by anatomical closure of the two over-lapping layers of tissue the septum secundum 14 and septum primum 15 . However, a PFO has been shown to persist in a number of adults.
- patients with an increased future risk are considered for prophylactic medical therapy to reduce the risk of a recurrent embolic event.
- These patients are commonly treated with oral anticoagulants, which have the potential for adverse side effects, such as hemorrhaging, hematoma, and interactions with a variety of other drugs.
- oral anticoagulants which have the potential for adverse side effects, such as hemorrhaging, hematoma, and interactions with a variety of other drugs.
- the use of these drugs can alter a person's recovery and necessitate adjustments in a person's daily living pattern.
- surgical may be necessary or desirable to close the PFO.
- the surgery would typically include suturing a PFO closed by attaching the septum secundum to the septum primum. This sutured attachment can be accomplished with either an interrupted or a continuous stitch and is a common way a surgeon shuts a PFO under direct visualization.
- Umbrella devices and a variety of other similar mechanical closure designs developed initially for percutaneous closure of atrial septal defects (ASDs), have been used in some instances to close PFOs. These devices have the potential to allow patients to avoid the potential side effects often associated with anticoagulation therapies and the risks of invasive surgery.
- umbrella devices and the like which are designed for ASDs are not optimally suited for use as a PFO closure device.
- septal closure devices present drawbacks, including that the implantation procedure is technically complex. Additionally, there are not insignificant complication rates due to thrombus, fractures of the components, conduction system disturbances, perforations of heart tissue, and residual leaks. Many devices have high septal profile and may include large masses of foreign material which may lead to unfavorable body adaptation of a device. Since ASD devices are designed to occlude a hole, many lack anatomic conformability to the PFO flap-like anatomy. That is, when inserting an ASD into the heart to close a PFO, the narrow opening and the thin flap may form impediments to proper deployment. Even if an occlusive seal is formed, the device may be deployed in the heart on an angle which could leave some components not securely seated against the septum. Finally, some septal closure devices are complex to manufacture, which may result in lack of consistency in product performance.
- Nitinol an alloy of nickel and titanium
- Nitinol is known to be used in medical devices because of its biocompatablity and, especially, its unique properties.
- Nitinol is a member of a class of materials which exhibit shape memory characteristics. Specifically, nitinol has the ability to “remember” a shape and, after being deformed, will return to that shape once a certain temperature is reached. Hence, nitinol has been used to create medical devices that have a desired configuration in the body, e.g., a vena cava filter. The device is deformed into a delivery configuration (generally a reduced profile for delivery through a catheter).
- a delivery configuration generally a reduced profile for delivery through a catheter.
- the nitinol changes configuration into the desired shape upon achieving a certain temperature.
- This is generally considered thermal responsive shape memory.
- Nitinol, and other materials, also exhibit superelastic shape memory. In this case, the nitinol can be restrained in a delivery configuration and then will return to the desired configuration as the device leaves the delivery catheter.
- some devices can be a combination of thermally induced shape memory and superelastic shape memory.
- the present invention is designed to address these and other deficiencies of the prior art septal closure devices.
- the present invention provides a device which is adapted to press together the septum primum and the septum secundum between the atrial chambers to close any tunnel in the septum.
- the device in its preferred form has two clamping members, one on each side of the septum and a central connector which connects the two clamping members and passes through the tunnel.
- the device is configured to conform to the anatomy such that the tunnel is not substantially deformed by the device.
- the central connector in its preferred form has two wires that are spaced apart so that the wires are proximate the lateral sides of the tunnel. The spacing allows the device to be centered at an appropriate location.
- the clamping members are spirals which are formed from nitinol.
- the spirals may be constructed of wire, or alternatively, may be constructed of nitinol sheets which have been cut or shaped to form the spirals.
- the spirals may circle around more or less than 360 degrees and may have the a helical form.
- the connector may be attached to the inner end of the wire that forms the spiral, in another, the connector may be attached to the outer end of the wire that forms the spiral.
- the connector may be connected to the inner location on one side of the device and the outer location on the other side of the device.
- the clamping member may be a spiral or some other structure or configuration which secures the septum together.
- a plurality of wires may be used which could be spread out along the septum to provide the desired clamping force.
- Other shapes and orientations could be used which would spread the clamping force over a sufficient surface area to accomplish the desired effect.
- the connecting member may be two or more wires which are configured to spread apart in the PFO tunnel.
- the spacing of the wires is sized to center the device in the desired clamping location in the septum.
- the wires are joined at ends and bow apart from each other to fit within the PFO tunnel.
- the wires may form an S-shaped curve to improve the centering location. Other shapes and configurations are possible.
- the connecting member may be formed of thin wires that are wound into a helix (e.g., in the shape of a coil spring).
- the connecting member may have one or more helically wound wires that form the connecting member.
- the resultant connector may be shaped in the same manner as the other embodiments.
- the connecting member may have an abrasive surface so that a healing response may be stimulated by the abrasive surface.
- the abrasive surface may be directionally oriented. That is, if one were to feel the surface of the wire in one direction, the wire would feel smooth and in the other direction, the wire would feel abrasive or rough.
- the connecting member may include a film which extends between the connecting wires.
- the film may be comprised of and/or impregnated with biological and/or bioresorbable material.
- a joint may be formed at a location along the length of the connecting member. The joint reduces the trauma of the closure device within the PFO.
- the device may also have a hook or some other piercing element to maintain the PFO closure device in the desired location.
- each of the configurations could be used in combination.
- the device in its preferred form, is adapted to be delivered through a catheter into the atria.
- the device is constrained into a delivery profile and introduced into a catheter for delivery to the heart.
- the catheter Once the catheter is located at the desired delivery site, the device is deployed into the site and changes shape into the desired configuration.
- the shape change could be a result of a thermally induced shape change or a change due to the superelastic character of the material.
- the catheter is withdrawn.
- FIG. 1 is a front elevational view from the left atrium of the atrial septum with patent foramen ovale (PFO);
- FIG. 2 is a cross-sectional view of the atrial septum of FIG. 1 ;
- FIG. 3 is a bottom plan view of the double spiral patent foramen ovale closure clamp of the present invention showing the connecting central loop;
- FIG. 4 is a view in side elevation of the double spiral PFO closure clamp of FIG. 3 ;
- FIG. 5A-5G show the steps for inserting the double spiral PFO closure clamp of FIGS. 3 and 4 ;
- FIG. 6 is a front elevational view from the left atrium of the double spiral PFO closure clamp in place with the central loop in the PFO channel;
- FIG. 7 is a cross-sectional view of the atrial septum and double spiral PFO closure clamp of FIG. 5 ;
- FIG. 8 is a perspective view of a jig for forming the double spiral PFO closure clamp of the present invention.
- FIG. 9 is a top plan view of the jig of FIG. 7 with spiral sections of the double spiral PFO closure clamp of the present invention wound thereon.
- FIG. 10 is a view in side elevation of a second embodiment of the double spiral PFO closure clamp of the present invention.
- FIG. 11 is a front elevational view from the right atrium of the double spiral PFO closure clamp of FIG. 10 ;
- FIG. 12 is a front elevational view from the left atrium of the double spiral PFO closure clamp of FIG. 10 ;
- FIG. 13 is a view in front elevation of a second embodiment of a central connector for a PFO closure clamp of FIG. 10 ;
- FIGS. 14A and 14B are a plan view and a view in side elevation, respectively of a jig for forming the double spiral PFO closure clamp of FIG. 10 with the central connector of FIG. 13 ;
- FIGS. 15A and 15B are a plan are a plan view and a side elevation view, respectively, of the jig of FIGS. 14A and 14B with the left atrial spiral section of the double spiral PFO closure clamp of FIG. 10 and with one half of the central connector of FIG. 13 formed thereon;
- FIGS. 16A and 16B are a plan view and a view in side elevation, respectively, of the jig of FIGS. 14A and 14B with the right atrial spiral section of the double spiral PFO closure clamp of FIG. 10 and with one half of the central connector of FIG. 13 formed thereon;
- FIGS. 17A and 17B are a plan view and a side elevation view, respectively, of an expanded double spiral PFO closure clamp of FIG. 10 with one half of the central connector for FIG. 13 ;
- FIGS. 18A and 18B are alternative embodiments of a center joint of the present invention using helically wound wire
- FIGS. 19A-19F are alternative embodiments of a center joint of the present invention using special surface preparations
- FIG. 20 is an alternative embodiment of a center joint of the present invention using a membrane
- FIGS. 21A and 21B are alternative embodiments of a center joint of the present invention using a flexible joint.
- FIGS. 22A and 22B are alternative embodiments of a center joint of the present invention in which piercing wires are used to secure the device at the desired location.
- the atrial septum 10 divides the left atrium and right atrium of the heart.
- the patent foramen ovale (PFO) channel 12 extends between the left and right atria and is closed by a flap 14 and 15 . Due to the overlap of the septum primum over the septum secundum, the PFO channel or tunnel extends substantially parallel to the surface of the atrial septum.
- the anatomical structure presents a problem when attempts are made to use conventional septal occluders with opposed, spaced, parallel sections (possibly spiral) are joined by a straight wire or bridge which is substantially perpendicular to the planes of engagement between the sections and the atrial septum. The straight wire or bridge deforms the channel 12 and often prevents proper closure even when the septum primum and the septum secundum are biased toward one another by the spiral sections of the occluder.
- the double spiral PFO closure clamp of the present invention indicated generally at 16 includes a left atrial spiral section 18 and an opposed right atrial spiral section 20 which are joined by an inclined central loop 22 .
- the loops of each spiral extend progressively outward from the base loop in different planes, and the innermost loops 26 of the two spiral sections 18 and 20 are connected by the inclined central loop 22 .
- the outermost free ends 28 of the base loops 24 are provided with protective balls 30 .
- the spirals that are disposed on each side of the septum and press against the septum with sufficient force to stabilize the device in the desired location As illustrated, inner loops are connected and the outer loops are configured to compress against the septum. In an alternative configuration, not illustrated, the outer loops may be connected and the inner loops may be configured to press against the septum.
- the center joint is configured to connect the loops and, according to several embodiments, the center joint is configured to center the device in the desired delivery location because the center joint is configured to spread out within the PFO tunnel and, as a result, become centered within the PFO tunnel.
- the ball 30 of the right atrial spiral section 20 may be grasped and drawn into a protective sheath.
- the coils of the spiral section straighten as they are drawn into the sheath until the inclined central loop 22 is reached.
- the central loop enters the sheath the sides of the central loop are compressed together, and as the central loop is enclosed by the sheath and moves inwardly, it draws the loops of the left atrial spiral section 18 , beginning with the innermost loop 26 , as a straight section into the sheath.
- FIG. 5A shows the double spiral PFO closure clamp in straightened form enclosed by sheath 32 .
- the tip of the sheath may be curved to assist the recovery of the curved loops of the double spiral PFO closure clamp.
- the sheath is inserted through the PFO channel 12 from the right atrium into the left atrium, and the left atrium, and in FIG. 5B , a wire 34 connected within the sheath to the free end 28 of spiral section 20 forces the spiral section 18 out of the sheath so that it is deployed in the left atrium.
- FIG. 5C the sheath and wire 34 are withdrawn toward the right atrium to draw the spiral section 18 against the atrial septum 10 .
- FIG. 5D after the inclined central loop 22 has been positioned within the sheath 32 in the PFO channel 12 , the sheath is withdrawn to deploy and seat the inclined central loop in the PFO channel. Then, as shown in FIG. 5E , the wire 34 ejects the spiral section 20 into the right atrium against the atrial septum. In FIG. 5F , the wire 34 is released from the free end of the spiral section 20 , and in FIG. 5G , the sheath 32 and wire 34 are withdrawn.
- spiral sections 18 and 20 are formed to be urged toward one another. Also, since the loops of each opposed spiral section 18 and 20 are in different planes and since the inclined central loop 22 joins the innermost loops 26 of each spiral section, the spiral section 18 will draw the spiral section 20 against the atrial septum once it is deployed from sheath 32 .
- FIGS. 6 and 7 show the double spiral PFO closure clamp 16 in place with the inclined central loop 22 seated in the PFO channel.
- the spiral sections 18 and 20 are not aligned but are offset so that the inclined central loop follows the PFO channel and does not deform the channel 12 . However, enough of the two spiral sections overlap so that the septum primum and the septum secundum are engaged thereby and biased to a closed position.
- FIGS. 8 and 9 disclose a jig 36 used to manufacture the double spiral PFO closure clamp 16 .
- the jig includes two stepped cone shaped sections 38 and 40 which are each used to form one of the spiral sections 18 or 20 and one half of the inclined central loop 22 .
- Each stepped cone shaped section includes a plurality of arcuate sections 42 , 44 , 46 , and 48 of progressively decreasing size which terminate at a small, circular projection 50 .
- the front faces 52 , 54 , 56 , and 58 of each of the arcuate sections is flat and supports an inclined mandrel 60 having an arcuate side 62 .
- the arcuate side 62 faces left on the cone shaped section 38 and right on the cone shaped section 40 .
- the front faces 52 and 58 support projecting pins 64 and 66 respectively positioned above and below the arcuate side of the mandrel 60 .
- an elongate length of wire is formed upon each of the cone shaped sections 38 and 40 as shown in FIG. 9 .
- Each of these lengths of wire 68 and 70 are preferably formed of shape memory material such as nitinol and are annealed after being wound in place on the stepped, cone shaped sections 38 and 40 .
- the wire is wound clockwise on the cone shaped section 38 and counter-clockwise on the cone shaped section 40 .
- Each length of wire begins at starting pin 72 and extends around the projecting pin 64 and the arcuate side 62 to the projecting pin 66 .
- the wire extends behind the projecting pin 66 and around the circular projection 50 .
- the wire drops and extends around the arcuate section 48 to the flat face 56 where the wire drops again to extend around the arcuate section 44 , and at the flat face 52 , the wire drops to extend around the arcuate section 42 to a terminal post 74 .
- the two spiral sections 18 and 20 of FIG. 4 are formed.
- a second embodiment of the double spiral PFO closure clamp of the present invention is indicated generally at 76 .
- the double spiral PFO closure clamp 76 includes a right atrial spiral section 78 to contact the right side of the septum and an opposed left atrial spiral section 80 to contact the left side of the septum. These two spiral sections are joined by an inclined central loop 82 which rests in the PFO channel 12 .
- the atrial spiral sections 78 and 80 of the PFO closure clamp 76 are directly opposed in substantial alignment when they are deployed against the atrial septum. This is facilitated by connecting the large, outermost loop of each atrial spiral section to the inclined central loop 82 .
- the outermost loop 84 of the right atrial spiral section 78 is connected to the bottom of the central loop 82 at 86 , and curves upwardly over the septum and then inwardly to form the smaller inner loops of the right atrial spiral section. These inner loops terminate at an innermost free end 88 provided with a protective ball 30 .
- the outermost loop 90 is connected to the top of the central loop 82 at 92 as shown by FIG. 12 .
- the outermost loop 90 then curves downwardly over the septum and then inwardly to form the inner loops of the left atrial spiral section.
- These inner loops terminate at an innermost free end 94 provided with a protective ball 30 .
- the outermost loops 84 and 90 are configured to position the left atrial spiral section and right atrial spiral section in aligned, opposed relationship.
- the central loop can be replaced with the double “S” shaped connector 96 of FIG. 13 .
- This connector has rounded side surfaces 98 and 100 which engage the sides of the PFO channel, but the connections 86 and 92 with the outer loops 84 and 90 of the spiral sections 78 and 80 are oriented in opposite directions by the configuration of the connector. Thus forces on the connector from the spirals which would tend to cause shifting of a round central loop are offset to oppose shifting of the connector.
- FIGS. 14A and 14B , 15 A and 15 B, 16 A and 15 B, and 17 A and 17 B show the manner in which the double spiral PFO closure clamp 76 with the double “S” shaped connector 96 is formed.
- a split jig 102 is used to form both the right atrial spiral section 78 and the left atrial spiral section 80 .
- the jig includes two spaced stepped sections 104 and 106 having opposed arcuate steps which progressively decrease in size. Between the stepped sections are formed to form the double “S” shaped connector 96 .
- These forms include a pin 108 which projects adjacent to a round form 110 .
- This round form 110 contacts a second round form 112 which is adjacent to a second projection pin 114 .
- the left atrial spiral section 80 and one half of the double “S” shaped connector 96 are formed by winding wire in a clockwise direction on the stepped sections 104 and 106 . Beginning at the wire end retaining screw 124 , the wire is passed around the pin 108 and across the round forms 110 and 112 and then around the form 112 and back to the round form 120 . The wire is then brought around the round form 120 and then around the arcuate form 116 to the pin 114 to form one half of the double “S” shaped connector 96 .
- the wire is wound in a clockwise direction from the bottom to the top of the stepped sections 104 and 106 and is then secured to the wire end retaining screw 126 .
- the wire is thermal shape memory wire, it is annealed in place before the left atrial spiral section is removed from the jig 102 .
- the right atrial spiral section 78 is formed in the reverse manner and is wound counter clockwise on the stepped sections 104 and 106 .
- the wire is passed around the pin 114 , the round forms 112 and 110 , the round form 120 and an arcuate form 118 to the pin 108 to form the remaining half of the double “S” shaped connector 96 .
- the wire is then wound in a counter clockwise direction from the bottom to the top of the stepped sections 104 and 106 and is then passed to the wire end retaining screw 126 .
- FIGS. 17A and 17B show the manner in which the two atrial spiral sections 78 and 80 are joined to form the double spiral PFO closure clamp 76 .
- the two atrial spiral sections are oriented back to back to form the double “S” shaped connector 96 , and are secured together at 128 and 130 .
- the double spiral PFO closure clamp 76 can be straightened with a tubular delivery device for delivery and may be delivered across the PFO by catheter using a pusher wire.
- the left atrial spiral section 80 is delivered first into the left atrium and flattened against the septum.
- the central double “S” shaped connector 96 is then unsheathed in the PFO channel, and finally the right atrial spiral section 78 is released against the septum in the right atrium.
- FIGS. 18A and 18B illustrate another embodiment of the center joint of the present invention.
- the center joint is constructed of wire which has been wound to form a spiral 200 that connects ends 210 and 220 .
- the spiral wound wire is flexible enough to accommodate a variety of anatomical configurations for the PFO tunnel. In this manner the spiral wound wire will conform to the PFO tunnel and will bend as necessary to allow the ends 210 and 220 to conform to the wall of the septum (not shown in this embodiment).
- the spirals are illustrate in an exaggerated and open manner.
- the wire will be tightly close together and have a small overall diameter.
- the wire may have a thin wire strand 225 disposed in the helical wire to ensure that the spiral does not expand beyond the length of the wire strand.
- the wire 225 allows the center joint to be flexible and conform to the PFO tunnel without expanding beyond the longitudinal distance of the wire strand.
- the ends 210 and 220 are illustrated as the wire elements of the CardioSeal device more specifically described in U.S. Pat. No. 5,629,766 which is incorporated by reference into this specification.
- FIG. 18B illustrates another embodiment of the center joint with a pair of helically wound wires 230 , 240 that form the center joint.
- Ends 245 , 247 of the device that contact the walls of the septum are illustrated as spirals.
- the center joint wires may also have wire strands 250 , 252 disposed with the helically wound wire similar to the wire described in connection with FIG. 18A .
- the strands 250 , 252 may have a bent configuration, such as illustrated so that the center joint is disposed at the desired (e.g., centered) location.
- FIGS. 19A-19F illustrate various configuration of the center joint which may be used with a PFO closure device.
- the center joint is illustrated without the ends. That is, only the portion that would be disposed within and next to the PFO tunnel is illustrated. The ends (not illustrated) would be connected at the locations identified by reference numberal 26 .
- different treatments are provided to the wires which assist in the positioning device and healing of the septum once the device is delivered.
- FIG. 19A illustrates two wires 260 , 262 which are configured in an oval shape and are provided with a surface treatment which roughens the surface of the wires.
- FIG. 19B illustrates a magnified view of the wire 262 and shows bumps or roughness 264 on the wire.
- the wire may be electro-coated with a material that has a rougher surface.
- a mechanical knurling process may be used to roughen the surface.
- the extrusion process of the wire manufacture may be modified to create a rough surface instead of a smooth.
- the rough surface may be randomly rough, as illustrated, or the rough surface may have a pattern, as would be typically achieved by a knurling or extrusion process.
- a rough surface in the center joint may provide certain advantages, for example, the rough surface may assure the center joint stays in place.
- the roughened wires may stimulate a healing response by “irritating” the PFO tunnel in a manner that stimulates the body to heal and close the PFO tunnel.
- FIGS. 19C and 19D illustrate an alternative treatment of the wire.
- FIG. 19C shows the wires 270 and 272 which are adapted to be delivered into the PFO tunnel and the wires include a roughness that is different in one direction than the other. That is, if one were to run the wire between a thumb and an index finger in one direction, it would be relatively smooth and in the other direction, it would feel more rough.
- FIG. 19D illustrates the directional “quills” 275 which provide a smooth surface (downward as illustrated) and a rough surface (in the upward direction as illustrated).
- the direction of the quills may be configured to allow for convenient placement of the device within the PFO and for improved resistance to movement.
- the quills may be placed on the device in a variety of methods including a post extrusion process or directional knurling.
- the quills are provided having opposed direction.
- the wires 280 and 282 have quills 284 which are directed toward the center of the center joint.
- the quills 285 are also directed toward the center of the center joint. This configuration may allow for improved stability within the PFO once delivered.
- the healing response may be improved using roughened or quilled surfaces for the center joint.
- FIG. 20 illustrates yet another configuration for the center joint that includes a fabric or mesh.
- the center joint is formed by wires 290 and 292 , a mesh or fabric 294 is secured to the wires using a variety of known techniques.
- the mesh itself could be a biological material that stimulates a biological response.
- the mesh may be impregnated with a chemical or biological agent that may stimulate a biological healing response.
- the mesh could be the vehicle to deliver an agent to the PFO tunnel.
- FIGS. 21A and 21B also illustrate alternative embodiments of the center joints which provide improved movement within the PFO tunnel for the center joint.
- a “trailer hitch” design is used to improve the ability of the wires to conform within the PFO tunnel.
- Wires 300 , 310 form a single wire center joint and are connected by a “trailer hitch” connection 320 .
- the connection is configured to allow improved movement of the wires so that the ends (not illustrated) can conform to the septal walls without unnecessary stress.
- FIG. 21B a modification of the embodiment illustrated in FIG. 21A is shown in FIG. 21B .
- connection 338 and 340 are used to allow the movement of the wires in the center joint.
- the use of connection 338 and 340 may provide for sufficient flexibility to allow for thicker, more stable wires to be used as the center joint.
- the use of thicker, stiffer wires may allow for greater resistance from movement for the center joint.
- wires that form the oval connection provide a length of wire that could pierce into the septal tissue to secure the center joint in the desire location and, as a result, stabilize the PFO closure device.
- wires 340 and 342 are joined to wires 344 and 346 , respectively.
- the joints 348 and 350 may be welds or other joints that allow for the reduced profile that is desirable for delivery through a catheter.
- the ends 352 , 354 , 356 and 358 are designed to pierce the septum and allow for the improved stability described above.
- the wires may be provided that are in a configuration illustrated in FIG. 22B .
- joints 360 and 362 provide for the connection between the wires 364 - 370 .
- the wires, as illustrated, have a shape that provides the greatest longitudinal width at the joint. This has the benefit of being able to keep the center joint centered within the PFO.
- the closure device is secured by the piercing elements.
- the wires can be constructed of a metal or a polymer, and have a circular cross-section or some other form such as a rectangle or polygon.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Description
- This application claims priority to
provisional patent application 60/528,022 filed Dec. 9, 2003. - The present invention relates to devices and methods which are used to close septal openings. In particular, this invention is directed to devices and methods which are used to close a patent foramen ovale (PFO) in the septum between the left atrium and right atrium.
- A PFO, illustrated in
FIGS. 1 and 2 , is a persistent, one-way, usually flap-like opening in the wall between the right atrium and left atrium of the heart. Because left atrial (LA) pressure is normally higher than right atrial (RA) pressure, the flap usually stays closed. Under certain conditions, however, right atrial pressure can exceed left atrial pressure which creates the possibility that blood could pass from the right atrium to the left atrium and allow blood clots to enter the systemic circulation. It is desirable that this circumstance be reduced. - The foramen ovale serves a desired purpose when a fetus is gestating in utero. Since blood is oxygenated through the umbilical chord, and not through the developing lungs, the circulatory system of a heart in a fetus allows the blood to flow through the foramen ovale as a physiologic conduit for right-to-left shunting. After birth, with the establishment of pulmonary circulation, the increased left atrial blood flow and pressure results in functional closure of the foramen ovale. This functional closure is subsequently followed by anatomical closure of the two over-lapping layers of tissue the septum secundum 14 and
septum primum 15. However, a PFO has been shown to persist in a number of adults. - The presence of a PFO is generally considered to have no therapeutic consequence in otherwise healthy adults. However, patients suffering a stroke or transient ischemic attack (TIA) in the presence of a PFO and without another cause of ischemic stroke paradoxical embolism via a PFO is considered in the diagnosis. While there is currently no proof for a cause-effect relationship, many studies have confirmed a strong association between the presence of a PFO and the risk for paradoxical embolism or stroke. In addition, there is good evidence that patients with PFO and paradoxical embolism are at increased risk for future, recurrent cerebrovascular events.
- Accordingly, patients with an increased future risk are considered for prophylactic medical therapy to reduce the risk of a recurrent embolic event. These patients are commonly treated with oral anticoagulants, which have the potential for adverse side effects, such as hemorrhaging, hematoma, and interactions with a variety of other drugs. The use of these drugs can alter a person's recovery and necessitate adjustments in a person's daily living pattern.
- In certain cases, such as when anticoagulation is contraindicated, surgery may be necessary or desirable to close the PFO. The surgery would typically include suturing a PFO closed by attaching the septum secundum to the septum primum. This sutured attachment can be accomplished with either an interrupted or a continuous stitch and is a common way a surgeon shuts a PFO under direct visualization.
- Umbrella devices and a variety of other similar mechanical closure designs, developed initially for percutaneous closure of atrial septal defects (ASDs), have been used in some instances to close PFOs. These devices have the potential to allow patients to avoid the potential side effects often associated with anticoagulation therapies and the risks of invasive surgery. However, umbrella devices and the like which are designed for ASDs are not optimally suited for use as a PFO closure device.
- Currently available designs of septal closure devices present drawbacks, including that the implantation procedure is technically complex. Additionally, there are not insignificant complication rates due to thrombus, fractures of the components, conduction system disturbances, perforations of heart tissue, and residual leaks. Many devices have high septal profile and may include large masses of foreign material which may lead to unfavorable body adaptation of a device. Since ASD devices are designed to occlude a hole, many lack anatomic conformability to the PFO flap-like anatomy. That is, when inserting an ASD into the heart to close a PFO, the narrow opening and the thin flap may form impediments to proper deployment. Even if an occlusive seal is formed, the device may be deployed in the heart on an angle which could leave some components not securely seated against the septum. Finally, some septal closure devices are complex to manufacture, which may result in lack of consistency in product performance.
- Nitinol (an alloy of nickel and titanium) is known to be used in medical devices because of its biocompatablity and, especially, its unique properties. Nitinol is a member of a class of materials which exhibit shape memory characteristics. Specifically, nitinol has the ability to “remember” a shape and, after being deformed, will return to that shape once a certain temperature is reached. Hence, nitinol has been used to create medical devices that have a desired configuration in the body, e.g., a vena cava filter. The device is deformed into a delivery configuration (generally a reduced profile for delivery through a catheter). Once the device is delivered to the desired site, the nitinol changes configuration into the desired shape upon achieving a certain temperature. This is generally considered thermal responsive shape memory. Nitinol, and other materials, also exhibit superelastic shape memory. In this case, the nitinol can be restrained in a delivery configuration and then will return to the desired configuration as the device leaves the delivery catheter. Of course, some devices can be a combination of thermally induced shape memory and superelastic shape memory.
- The present invention is designed to address these and other deficiencies of the prior art septal closure devices.
- The present invention provides a device which is adapted to press together the septum primum and the septum secundum between the atrial chambers to close any tunnel in the septum. The device in its preferred form has two clamping members, one on each side of the septum and a central connector which connects the two clamping members and passes through the tunnel. The device is configured to conform to the anatomy such that the tunnel is not substantially deformed by the device. The central connector, in its preferred form has two wires that are spaced apart so that the wires are proximate the lateral sides of the tunnel. The spacing allows the device to be centered at an appropriate location.
- In a preferred form of the device, the clamping members are spirals which are formed from nitinol. The spirals may be constructed of wire, or alternatively, may be constructed of nitinol sheets which have been cut or shaped to form the spirals. The spirals may circle around more or less than 360 degrees and may have the a helical form. In one preferred embodiment the connector may be attached to the inner end of the wire that forms the spiral, in another, the connector may be attached to the outer end of the wire that forms the spiral. Of course, depending on the desired configuration, the connector may be connected to the inner location on one side of the device and the outer location on the other side of the device.
- The clamping member may be a spiral or some other structure or configuration which secures the septum together. For example, a plurality of wires may be used which could be spread out along the septum to provide the desired clamping force. Other shapes and orientations could be used which would spread the clamping force over a sufficient surface area to accomplish the desired effect.
- The connecting member may be two or more wires which are configured to spread apart in the PFO tunnel. The spacing of the wires is sized to center the device in the desired clamping location in the septum. In one preferred embodiment, the wires are joined at ends and bow apart from each other to fit within the PFO tunnel. Alternatively, the wires may form an S-shaped curve to improve the centering location. Other shapes and configurations are possible.
- In an alternate form the connecting member may be formed of thin wires that are wound into a helix (e.g., in the shape of a coil spring). The connecting member may have one or more helically wound wires that form the connecting member. The resultant connector may be shaped in the same manner as the other embodiments. In other embodiments, the connecting member may have an abrasive surface so that a healing response may be stimulated by the abrasive surface. Additionally, the abrasive surface may be directionally oriented. That is, if one were to feel the surface of the wire in one direction, the wire would feel smooth and in the other direction, the wire would feel abrasive or rough.
- In still other embodiments, the connecting member may include a film which extends between the connecting wires. The film may be comprised of and/or impregnated with biological and/or bioresorbable material. In another embodiment a joint may be formed at a location along the length of the connecting member. The joint reduces the trauma of the closure device within the PFO. The device may also have a hook or some other piercing element to maintain the PFO closure device in the desired location. Of course, each of the configurations could be used in combination.
- The device, in its preferred form, is adapted to be delivered through a catheter into the atria. The device is constrained into a delivery profile and introduced into a catheter for delivery to the heart. Once the catheter is located at the desired delivery site, the device is deployed into the site and changes shape into the desired configuration. The shape change could be a result of a thermally induced shape change or a change due to the superelastic character of the material. Once in the delivery location, the catheter is withdrawn.
-
FIG. 1 is a front elevational view from the left atrium of the atrial septum with patent foramen ovale (PFO); -
FIG. 2 is a cross-sectional view of the atrial septum ofFIG. 1 ; -
FIG. 3 is a bottom plan view of the double spiral patent foramen ovale closure clamp of the present invention showing the connecting central loop; -
FIG. 4 is a view in side elevation of the double spiral PFO closure clamp ofFIG. 3 ; -
FIG. 5A-5G show the steps for inserting the double spiral PFO closure clamp ofFIGS. 3 and 4 ; -
FIG. 6 is a front elevational view from the left atrium of the double spiral PFO closure clamp in place with the central loop in the PFO channel; -
FIG. 7 is a cross-sectional view of the atrial septum and double spiral PFO closure clamp ofFIG. 5 ; -
FIG. 8 is a perspective view of a jig for forming the double spiral PFO closure clamp of the present invention; and -
FIG. 9 is a top plan view of the jig ofFIG. 7 with spiral sections of the double spiral PFO closure clamp of the present invention wound thereon. -
FIG. 10 is a view in side elevation of a second embodiment of the double spiral PFO closure clamp of the present invention; -
FIG. 11 is a front elevational view from the right atrium of the double spiral PFO closure clamp ofFIG. 10 ; -
FIG. 12 is a front elevational view from the left atrium of the double spiral PFO closure clamp ofFIG. 10 ; -
FIG. 13 is a view in front elevation of a second embodiment of a central connector for a PFO closure clamp ofFIG. 10 ; -
FIGS. 14A and 14B are a plan view and a view in side elevation, respectively of a jig for forming the double spiral PFO closure clamp ofFIG. 10 with the central connector ofFIG. 13 ; -
FIGS. 15A and 15B are a plan are a plan view and a side elevation view, respectively, of the jig ofFIGS. 14A and 14B with the left atrial spiral section of the double spiral PFO closure clamp ofFIG. 10 and with one half of the central connector ofFIG. 13 formed thereon; -
FIGS. 16A and 16B are a plan view and a view in side elevation, respectively, of the jig ofFIGS. 14A and 14B with the right atrial spiral section of the double spiral PFO closure clamp ofFIG. 10 and with one half of the central connector ofFIG. 13 formed thereon; -
FIGS. 17A and 17B are a plan view and a side elevation view, respectively, of an expanded double spiral PFO closure clamp ofFIG. 10 with one half of the central connector forFIG. 13 ; -
FIGS. 18A and 18B are alternative embodiments of a center joint of the present invention using helically wound wire; -
FIGS. 19A-19F are alternative embodiments of a center joint of the present invention using special surface preparations; -
FIG. 20 is an alternative embodiment of a center joint of the present invention using a membrane; -
FIGS. 21A and 21B are alternative embodiments of a center joint of the present invention using a flexible joint; and -
FIGS. 22A and 22B are alternative embodiments of a center joint of the present invention in which piercing wires are used to secure the device at the desired location. - With reference to
FIGS. 1 and 2 , theatrial septum 10 divides the left atrium and right atrium of the heart. The patent foramen ovale (PFO)channel 12 extends between the left and right atria and is closed by aflap channel 12 and often prevents proper closure even when the septum primum and the septum secundum are biased toward one another by the spiral sections of the occluder. - Referring to
FIGS. 3-7 , the double spiral PFO closure clamp of the present invention indicated generally at 16 includes a leftatrial spiral section 18 and an opposed rightatrial spiral section 20 which are joined by an inclinedcentral loop 22. The loops of each spiral extend progressively outward from the base loop in different planes, and theinnermost loops 26 of the twospiral sections central loop 22. The outermost free ends 28 of thebase loops 24 are provided withprotective balls 30. - With continued reference to
FIGS. 3-7 , in a preferred embodiment, the spirals that are disposed on each side of the septum and press against the septum with sufficient force to stabilize the device in the desired location. As illustrated, inner loops are connected and the outer loops are configured to compress against the septum. In an alternative configuration, not illustrated, the outer loops may be connected and the inner loops may be configured to press against the septum. In each embodiment, the center joint is configured to connect the loops and, according to several embodiments, the center joint is configured to center the device in the desired delivery location because the center joint is configured to spread out within the PFO tunnel and, as a result, become centered within the PFO tunnel. - The
ball 30 of the rightatrial spiral section 20 may be grasped and drawn into a protective sheath. As thefree end 28 of the right atrial spiral section is drawn inwardly into the protective sheath, the coils of the spiral section straighten as they are drawn into the sheath until the inclinedcentral loop 22 is reached. Then as the central loop enters the sheath, the sides of the central loop are compressed together, and as the central loop is enclosed by the sheath and moves inwardly, it draws the loops of the leftatrial spiral section 18, beginning with theinnermost loop 26, as a straight section into the sheath. -
FIG. 5A shows the double spiral PFO closure clamp in straightened form enclosed bysheath 32. The tip of the sheath may be curved to assist the recovery of the curved loops of the double spiral PFO closure clamp. Here, the sheath is inserted through thePFO channel 12 from the right atrium into the left atrium, and the left atrium, and inFIG. 5B , awire 34 connected within the sheath to thefree end 28 ofspiral section 20 forces thespiral section 18 out of the sheath so that it is deployed in the left atrium. Subsequently, as shown inFIG. 5C , the sheath andwire 34 are withdrawn toward the right atrium to draw thespiral section 18 against theatrial septum 10. - In
FIG. 5D , after the inclinedcentral loop 22 has been positioned within thesheath 32 in thePFO channel 12, the sheath is withdrawn to deploy and seat the inclined central loop in the PFO channel. Then, as shown inFIG. 5E , thewire 34 ejects thespiral section 20 into the right atrium against the atrial septum. InFIG. 5F , thewire 34 is released from the free end of thespiral section 20, and inFIG. 5G , thesheath 32 andwire 34 are withdrawn. - The
spiral sections opposed spiral section central loop 22 joins theinnermost loops 26 of each spiral section, thespiral section 18 will draw thespiral section 20 against the atrial septum once it is deployed fromsheath 32. -
FIGS. 6 and 7 show the double spiralPFO closure clamp 16 in place with the inclinedcentral loop 22 seated in the PFO channel. Thespiral sections channel 12. However, enough of the two spiral sections overlap so that the septum primum and the septum secundum are engaged thereby and biased to a closed position. - Since the inclined
central loop 22 which joins thespiral sections -
FIGS. 8 and 9 disclose ajig 36 used to manufacture the double spiralPFO closure clamp 16. The jig includes two stepped cone shapedsections spiral sections central loop 22. Each stepped cone shaped section includes a plurality ofarcuate sections circular projection 50. The front faces 52, 54, 56, and 58 of each of the arcuate sections is flat and supports aninclined mandrel 60 having anarcuate side 62. Thearcuate side 62 faces left on the cone shapedsection 38 and right on the cone shapedsection 40. The front faces 52 and 58support projecting pins mandrel 60. - To form the double spiral
PFO closure clamp 16, an elongate length of wire is formed upon each of the cone shapedsections FIG. 9 . Each of these lengths ofwire sections section 38 and counter-clockwise on the cone shapedsection 40. Each length of wire begins at startingpin 72 and extends around the projectingpin 64 and thearcuate side 62 to the projectingpin 66. The wire extends behind the projectingpin 66 and around thecircular projection 50. At theflat face 58, the wire drops and extends around thearcuate section 48 to theflat face 56 where the wire drops again to extend around thearcuate section 44, and at theflat face 52, the wire drops to extend around thearcuate section 42 to aterminal post 74. Thus the twospiral sections FIG. 4 are formed. Once the two wire sections are processed on thejig 36, they are removed from the core shapedsections mandrels 60 may be welded together to form the inclinedcentral loop 22. Now the free ends of each wire section which were held by the terminal pins 74 are provided with theprotective balls 30. - With reference to
FIGS. 10-12 , a second embodiment of the double spiral PFO closure clamp of the present invention is indicated generally at 76. The double spiralPFO closure clamp 76 includes a rightatrial spiral section 78 to contact the right side of the septum and an opposed leftatrial spiral section 80 to contact the left side of the septum. These two spiral sections are joined by an inclinedcentral loop 82 which rests in thePFO channel 12. Unlike the offsetatrial spiral sections PFO closure clamp 16, theatrial spiral sections PFO closure clamp 76 are directly opposed in substantial alignment when they are deployed against the atrial septum. This is facilitated by connecting the large, outermost loop of each atrial spiral section to the inclinedcentral loop 82. - As shown by
FIG. 11 , theoutermost loop 84 of the rightatrial spiral section 78 is connected to the bottom of thecentral loop 82 at 86, and curves upwardly over the septum and then inwardly to form the smaller inner loops of the right atrial spiral section. These inner loops terminate at an innermostfree end 88 provided with aprotective ball 30. - To form the left
atrial spiral section 80 in opposed alignment with the right atrial spiral section, theoutermost loop 90 is connected to the top of thecentral loop 82 at 92 as shown byFIG. 12 . Theoutermost loop 90 then curves downwardly over the septum and then inwardly to form the inner loops of the left atrial spiral section. These inner loops terminate at an innermostfree end 94 provided with aprotective ball 30. - The
outermost loops - Instead of connecting the two
spiral sections connector 96 ofFIG. 13 . This connector has rounded side surfaces 98 and 100 which engage the sides of the PFO channel, but theconnections outer loops spiral sections -
FIGS. 14A and 14B , 15A and 15B, 16A and 15B, and 17A and 17B show the manner in which the double spiral PFO closure clamp 76 with the double “S” shapedconnector 96 is formed. Asplit jig 102 is used to form both the rightatrial spiral section 78 and the leftatrial spiral section 80. The jig includes two spaced steppedsections connector 96. These forms include apin 108 which projects adjacent to around form 110. Thisround form 110 contacts a secondround form 112 which is adjacent to asecond projection pin 114. Spaced from but adjacent to theround forms arcuate forms arcuate forms round form 120. Wireend retaining screws sections - With reference to
FIGS. 15A and 15B , the leftatrial spiral section 80 and one half of the double “S” shapedconnector 96 are formed by winding wire in a clockwise direction on the steppedsections end retaining screw 124, the wire is passed around thepin 108 and across theround forms form 112 and back to theround form 120. The wire is then brought around theround form 120 and then around thearcuate form 116 to thepin 114 to form one half of the double “S” shapedconnector 96. From thepin 114, the wire is wound in a clockwise direction from the bottom to the top of the steppedsections end retaining screw 126. When the wire is thermal shape memory wire, it is annealed in place before the left atrial spiral section is removed from thejig 102. - As shown in
FIGS. 16A and 16B , the rightatrial spiral section 78 is formed in the reverse manner and is wound counter clockwise on the steppedsections end retaining screw 124, the wire is passed around thepin 114, theround forms round form 120 and anarcuate form 118 to thepin 108 to form the remaining half of the double “S” shapedconnector 96. The wire is then wound in a counter clockwise direction from the bottom to the top of the steppedsections end retaining screw 126. -
FIGS. 17A and 17B show the manner in which the twoatrial spiral sections PFO closure clamp 76. The two atrial spiral sections are oriented back to back to form the double “S” shapedconnector 96, and are secured together at 128 and 130. - The double spiral
PFO closure clamp 76 can be straightened with a tubular delivery device for delivery and may be delivered across the PFO by catheter using a pusher wire. The leftatrial spiral section 80 is delivered first into the left atrium and flattened against the septum. The central double “S” shapedconnector 96 is then unsheathed in the PFO channel, and finally the rightatrial spiral section 78 is released against the septum in the right atrium. -
FIGS. 18A and 18B illustrate another embodiment of the center joint of the present invention. In this embodiment, the center joint is constructed of wire which has been wound to form aspiral 200 that connects ends 210 and 220. The spiral wound wire is flexible enough to accommodate a variety of anatomical configurations for the PFO tunnel. In this manner the spiral wound wire will conform to the PFO tunnel and will bend as necessary to allow theends thin wire strand 225 disposed in the helical wire to ensure that the spiral does not expand beyond the length of the wire strand. Thewire 225 allows the center joint to be flexible and conform to the PFO tunnel without expanding beyond the longitudinal distance of the wire strand. The ends 210 and 220 are illustrated as the wire elements of the CardioSeal device more specifically described in U.S. Pat. No. 5,629,766 which is incorporated by reference into this specification. -
FIG. 18B illustrates another embodiment of the center joint with a pair ofhelically wound wires Ends wire strands FIG. 18A . In this embodiment, thestrands -
FIGS. 19A-19F illustrate various configuration of the center joint which may be used with a PFO closure device. In these illustrations, the center joint is illustrated without the ends. That is, only the portion that would be disposed within and next to the PFO tunnel is illustrated. The ends (not illustrated) would be connected at the locations identified byreference numberal 26. In these embodiments, different treatments are provided to the wires which assist in the positioning device and healing of the septum once the device is delivered.FIG. 19A illustrates twowires FIG. 19B illustrates a magnified view of thewire 262 and shows bumps orroughness 264 on the wire. A variety of surface treatments may cause the roughness, for example, the wire may be electro-coated with a material that has a rougher surface. Alternatively, a mechanical knurling process may be used to roughen the surface. Finally, for example, the extrusion process of the wire manufacture may be modified to create a rough surface instead of a smooth. The rough surface may be randomly rough, as illustrated, or the rough surface may have a pattern, as would be typically achieved by a knurling or extrusion process. A rough surface in the center joint may provide certain advantages, for example, the rough surface may assure the center joint stays in place. Additionally, the roughened wires may stimulate a healing response by “irritating” the PFO tunnel in a manner that stimulates the body to heal and close the PFO tunnel. - Other configurations for the wires of the center joint are possible.
FIGS. 19C and 19D illustrate an alternative treatment of the wire.FIG. 19C shows thewires FIG. 19D illustrates the directional “quills” 275 which provide a smooth surface (downward as illustrated) and a rough surface (in the upward direction as illustrated). The direction of the quills may be configured to allow for convenient placement of the device within the PFO and for improved resistance to movement. The quills may be placed on the device in a variety of methods including a post extrusion process or directional knurling. - In another configuration, illustrated in
FIGS. 19E and 19F , the quills are provided having opposed direction. In this embodiment, thewires quills 284 which are directed toward the center of the center joint. Similarly, thequills 285, on the other side of the center joint, are also directed toward the center of the center joint. This configuration may allow for improved stability within the PFO once delivered. In each of the embodiments, the healing response may be improved using roughened or quilled surfaces for the center joint. -
FIG. 20 illustrates yet another configuration for the center joint that includes a fabric or mesh. The center joint is formed bywires fabric 294 is secured to the wires using a variety of known techniques. The mesh itself could be a biological material that stimulates a biological response. Alternatively, the mesh may be impregnated with a chemical or biological agent that may stimulate a biological healing response. Finally, the mesh could be the vehicle to deliver an agent to the PFO tunnel. -
FIGS. 21A and 21B also illustrate alternative embodiments of the center joints which provide improved movement within the PFO tunnel for the center joint. Specifically, as illustrated inFIG. 21A , a “trailer hitch” design is used to improve the ability of the wires to conform within the PFO tunnel.Wires connection 320. The connection is configured to allow improved movement of the wires so that the ends (not illustrated) can conform to the septal walls without unnecessary stress. In a modification of the embodiment illustrated inFIG. 21A is shown inFIG. 21B . In the embodiment illustrated, thewires end 26, which as in the other embodiments, will secure the end wire configuration that secures against septum. Similarly, the 334 and 336 are joined at the other side of the center joint. A pair of “trailer hitch”connections connection - In the embodiment of the invention illustrated in
FIG. 22A the wires that form the oval connection provide a length of wire that could pierce into the septal tissue to secure the center joint in the desire location and, as a result, stabilize the PFO closure device. In the embodiment illustrated,wires wires joints - In a slightly modified configuration, the wires may be provided that are in a configuration illustrated in
FIG. 22B . In this embodiment, joints 360 and 362 provide for the connection between the wires 364-370. The wires, as illustrated, have a shape that provides the greatest longitudinal width at the joint. This has the benefit of being able to keep the center joint centered within the PFO. In each of the embodiments described in connection withFIGS. 22A and 22B , the closure device is secured by the piercing elements. The wires can be constructed of a metal or a polymer, and have a circular cross-section or some other form such as a rectangle or polygon.
Claims (35)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/008,539 US20050273119A1 (en) | 2003-12-09 | 2004-12-09 | Double spiral patent foramen ovale closure clamp |
US14/030,964 US8753362B2 (en) | 2003-12-09 | 2013-09-18 | Double spiral patent foramen ovale closure clamp |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US52802203P | 2003-12-09 | 2003-12-09 | |
US11/008,539 US20050273119A1 (en) | 2003-12-09 | 2004-12-09 | Double spiral patent foramen ovale closure clamp |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/030,964 Division US8753362B2 (en) | 2003-12-09 | 2013-09-18 | Double spiral patent foramen ovale closure clamp |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050273119A1 true US20050273119A1 (en) | 2005-12-08 |
Family
ID=35450020
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/008,539 Abandoned US20050273119A1 (en) | 2003-12-09 | 2004-12-09 | Double spiral patent foramen ovale closure clamp |
US14/030,964 Expired - Fee Related US8753362B2 (en) | 2003-12-09 | 2013-09-18 | Double spiral patent foramen ovale closure clamp |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/030,964 Expired - Fee Related US8753362B2 (en) | 2003-12-09 | 2013-09-18 | Double spiral patent foramen ovale closure clamp |
Country Status (1)
Country | Link |
---|---|
US (2) | US20050273119A1 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060200197A1 (en) * | 2005-03-02 | 2006-09-07 | St. Jude Medical, Inc. | Remote body tissue engaging methods and apparatus |
US20060217761A1 (en) * | 2005-03-24 | 2006-09-28 | Opolski Steven W | Curved arm intracardiac occluder |
US20080039743A1 (en) * | 2006-08-09 | 2008-02-14 | Coherex Medical, Inc. | Methods for determining characteristics of an internal tissue opening |
US20080065149A1 (en) * | 2006-09-11 | 2008-03-13 | Thielen Joseph M | PFO clip |
WO2008094706A2 (en) * | 2007-02-01 | 2008-08-07 | Cook Incorporated | Closure device and method of closing a bodily opening |
US7648532B2 (en) | 2003-05-19 | 2010-01-19 | Septrx, Inc. | Tissue distention device and related methods for therapeutic intervention |
US20100030246A1 (en) * | 2007-02-01 | 2010-02-04 | Dusan Pavcnik | Closure Device and Method For Occluding a Bodily Passageway |
US7678132B2 (en) | 2001-09-06 | 2010-03-16 | Ovalis, Inc. | Systems and methods for treating septal defects |
US7740640B2 (en) | 2001-09-06 | 2010-06-22 | Ovalis, Inc. | Clip apparatus for closing septal defects and methods of use |
US20100211046A1 (en) * | 2009-02-18 | 2010-08-19 | Aga Medical Corporation | Medical device with stiffener wire for occluding vascular defects |
US20100305591A1 (en) * | 2009-05-28 | 2010-12-02 | Wilson-Cook Medical Inc. | Tacking device and methods of deployment |
US7846179B2 (en) | 2005-09-01 | 2010-12-07 | Ovalis, Inc. | Suture-based systems and methods for treating septal defects |
US8070826B2 (en) | 2001-09-07 | 2011-12-06 | Ovalis, Inc. | Needle apparatus for closing septal defects and methods for using such apparatus |
WO2012006153A1 (en) * | 2010-06-29 | 2012-01-12 | Yale University | Tissue retractor assembly |
US8529597B2 (en) | 2006-08-09 | 2013-09-10 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US8579936B2 (en) | 2005-07-05 | 2013-11-12 | ProMed, Inc. | Centering of delivery devices with respect to a septal defect |
US8617205B2 (en) | 2007-02-01 | 2013-12-31 | Cook Medical Technologies Llc | Closure device |
US20140142610A1 (en) * | 2012-11-16 | 2014-05-22 | W.L. Gore & Associates, Inc. | Space Filling Devices |
US20140257375A1 (en) * | 2013-03-11 | 2014-09-11 | St. Jude Medical Puerto Rico Llc | Active securement detachable sealing tip for extra-vascular closure device and methods |
US8852088B2 (en) | 2011-06-28 | 2014-10-07 | Novatract Surgical, Inc. | Tissue retractor assembly |
US8979941B2 (en) | 2006-08-09 | 2015-03-17 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US9023074B2 (en) | 2010-10-15 | 2015-05-05 | Cook Medical Technologies Llc | Multi-stage occlusion devices |
EP2967802A4 (en) * | 2013-03-12 | 2016-11-23 | Pfm Medical Inc | Vascular occlusion device configured for infants |
US20180049859A1 (en) * | 2016-08-16 | 2018-02-22 | Spartan Micro, Inc. | Intravascular flow diversion devices |
US10959715B2 (en) | 2012-10-31 | 2021-03-30 | W. L. Gore & Associates, Inc. | Devices and methods related to deposited support structures |
US10993807B2 (en) | 2017-11-16 | 2021-05-04 | Medtronic Vascular, Inc. | Systems and methods for percutaneously supporting and manipulating a septal wall |
US11045178B2 (en) | 2018-01-04 | 2021-06-29 | Boston Scientific Scimed, Inc. | Closure device |
US20210298728A1 (en) * | 2020-03-24 | 2021-09-30 | Laminar, Inc. | Devices, systems, and methods for occluding cavities within the body |
US20230414211A1 (en) * | 2018-12-12 | 2023-12-28 | Lap Iq Inc. | Implantable tissue scaffold |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9861346B2 (en) | 2003-07-14 | 2018-01-09 | W. L. Gore & Associates, Inc. | Patent foramen ovale (PFO) closure device with linearly elongating petals |
WO2008124603A1 (en) | 2007-04-05 | 2008-10-16 | Nmt Medical, Inc. | Septal closure device with centering mechanism |
US9119607B2 (en) | 2008-03-07 | 2015-09-01 | Gore Enterprise Holdings, Inc. | Heart occlusion devices |
US9138213B2 (en) * | 2008-03-07 | 2015-09-22 | W.L. Gore & Associates, Inc. | Heart occlusion devices |
US20130165967A1 (en) | 2008-03-07 | 2013-06-27 | W.L. Gore & Associates, Inc. | Heart occlusion devices |
US8956389B2 (en) | 2009-06-22 | 2015-02-17 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US20120029556A1 (en) | 2009-06-22 | 2012-02-02 | Masters Steven J | Sealing device and delivery system |
US9770232B2 (en) | 2011-08-12 | 2017-09-26 | W. L. Gore & Associates, Inc. | Heart occlusion devices |
US10828019B2 (en) | 2013-01-18 | 2020-11-10 | W.L. Gore & Associates, Inc. | Sealing device and delivery system |
US9808230B2 (en) | 2014-06-06 | 2017-11-07 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US20160338706A1 (en) * | 2015-05-20 | 2016-11-24 | Edwards Lifesciences Corporation | Atrial septal closure device for re-access |
US10548614B2 (en) | 2016-11-29 | 2020-02-04 | Evalve, Inc. | Tricuspid valve repair system |
US10420565B2 (en) | 2016-11-29 | 2019-09-24 | Abbott Cardiovascular Systems Inc. | Cinch and post for tricuspid valve repair |
US10952852B2 (en) | 2017-02-24 | 2021-03-23 | Abbott Cardiovascular Systems Inc. | Double basket assembly for valve repair |
US9848906B1 (en) | 2017-06-20 | 2017-12-26 | Joe Michael Eskridge | Stent retriever having an expandable fragment guard |
US12059156B2 (en) * | 2018-12-26 | 2024-08-13 | Endostream Medical Ltd. | Devices for treating vascular malformations |
CA3136001A1 (en) * | 2019-04-01 | 2020-10-08 | The Provost, Fellows, Foundation Scholars, And The Other Members Of Board, Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth, Near Dublin | Wound closure |
US11534303B2 (en) | 2020-04-09 | 2022-12-27 | Evalve, Inc. | Devices and systems for accessing and repairing a heart valve |
JP7483017B2 (en) * | 2020-01-24 | 2024-05-14 | パッチクランプ メドテック, インコーポレイテッド | Tissue repair and sealing device having a removable implant and fastener assembly and method for using same - Patents.com |
Citations (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3874388A (en) * | 1973-02-12 | 1975-04-01 | Ochsner Med Found Alton | Shunt defect closure system |
US3875648A (en) * | 1973-04-04 | 1975-04-08 | Dennison Mfg Co | Fastener attachment apparatus and method |
US4006747A (en) * | 1975-04-23 | 1977-02-08 | Ethicon, Inc. | Surgical method |
US4007743A (en) * | 1975-10-20 | 1977-02-15 | American Hospital Supply Corporation | Opening mechanism for umbrella-like intravascular shunt defect closure device |
US4149327A (en) * | 1976-07-21 | 1979-04-17 | Jura Elektroapparate-Fabriken L. Henzirohs A.G. | Steam iron |
US4425908A (en) * | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
US4738666A (en) * | 1985-06-11 | 1988-04-19 | Genus Catheter Technologies, Inc. | Variable diameter catheter |
US4902508A (en) * | 1988-07-11 | 1990-02-20 | Purdue Research Foundation | Tissue graft composition |
US4915107A (en) * | 1988-03-09 | 1990-04-10 | Harley International Medical Ltd. | Automatic instrument for purse-string sutures for surgical use |
US4917089A (en) * | 1988-08-29 | 1990-04-17 | Sideris Eleftherios B | Buttoned device for the transvenous occlusion of intracardiac defects |
US5078736A (en) * | 1990-05-04 | 1992-01-07 | Interventional Thermodynamics, Inc. | Method and apparatus for maintaining patency in the body passages |
US5106913A (en) * | 1986-07-16 | 1992-04-21 | Sumitomo Chemical Company, Limited | Rubber composition |
US5108420A (en) * | 1991-02-01 | 1992-04-28 | Temple University | Aperture occlusion device |
US5176659A (en) * | 1991-02-28 | 1993-01-05 | Mario Mancini | Expandable intravenous catheter and method of using |
US5192301A (en) * | 1989-01-17 | 1993-03-09 | Nippon Zeon Co., Ltd. | Closing plug of a defect for medical use and a closing plug device utilizing it |
US5275826A (en) * | 1992-11-13 | 1994-01-04 | Purdue Research Foundation | Fluidized intestinal submucosa and its use as an injectable tissue graft |
US5282827A (en) * | 1991-11-08 | 1994-02-01 | Kensey Nash Corporation | Hemostatic puncture closure system and method of use |
US5284488A (en) * | 1992-12-23 | 1994-02-08 | Sideris Eleftherios B | Adjustable devices for the occlusion of cardiac defects |
US5304184A (en) * | 1992-10-19 | 1994-04-19 | Indiana University Foundation | Apparatus and method for positive closure of an internal tissue membrane opening |
US5480424A (en) * | 1993-11-01 | 1996-01-02 | Cox; James L. | Heart valve replacement using flexible tubes |
US5480353A (en) * | 1995-02-02 | 1996-01-02 | Garza, Jr.; Ponciano | Shaker crank for a harvester |
US5486193A (en) * | 1992-01-22 | 1996-01-23 | C. R. Bard, Inc. | System for the percutaneous transluminal front-end loading delivery of a prosthetic occluder |
US5507811A (en) * | 1993-11-26 | 1996-04-16 | Nissho Corporation | Prosthetic device for atrial septal defect repair |
US5601571A (en) * | 1994-05-17 | 1997-02-11 | Moss; Gerald | Surgical fastener implantation device |
US5603703A (en) * | 1995-04-28 | 1997-02-18 | Medtronic, Inc. | Selectively aspirating stylet |
US5618311A (en) * | 1994-09-28 | 1997-04-08 | Gryskiewicz; Joseph M. | Surgical subcuticular fastener system |
US5709707A (en) * | 1995-10-30 | 1998-01-20 | Children's Medical Center Corporation | Self-centering umbrella-type septal closure device |
US5713864A (en) * | 1995-04-11 | 1998-02-03 | Sims Level 1, Inc. | Integral conductive polymer resistance heated tubing |
US5717259A (en) * | 1996-01-11 | 1998-02-10 | Schexnayder; J. Rodney | Electromagnetic machine |
US5720754A (en) * | 1989-08-16 | 1998-02-24 | Medtronic, Inc. | Device or apparatus for manipulating matter |
US5725552A (en) * | 1994-07-08 | 1998-03-10 | Aga Medical Corporation | Percutaneous catheter directed intravascular occlusion devices |
US5733337A (en) * | 1995-04-07 | 1998-03-31 | Organogenesis, Inc. | Tissue repair fabric |
US5733294A (en) * | 1996-02-28 | 1998-03-31 | B. Braun Medical, Inc. | Self expanding cardiovascular occlusion device, method of using and method of making the same |
US5855614A (en) * | 1993-02-22 | 1999-01-05 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
US5861003A (en) * | 1996-10-23 | 1999-01-19 | The Cleveland Clinic Foundation | Apparatus and method for occluding a defect or aperture within body surface |
US5865791A (en) * | 1995-06-07 | 1999-02-02 | E.P. Technologies Inc. | Atrial appendage stasis reduction procedure and devices |
US5879366A (en) * | 1996-12-20 | 1999-03-09 | W.L. Gore & Associates, Inc. | Self-expanding defect closure device and method of making and using |
US6010517A (en) * | 1996-04-10 | 2000-01-04 | Baccaro; Jorge Alberto | Device for occluding abnormal vessel communications |
US6019753A (en) * | 1997-12-02 | 2000-02-01 | Smiths Industries Public Limited Company | Catheter assemblies and inner cannulae |
US6024756A (en) * | 1996-03-22 | 2000-02-15 | Scimed Life Systems, Inc. | Method of reversibly closing a septal defect |
US6027519A (en) * | 1997-12-15 | 2000-02-22 | Stanford; Ulf Harry | Catheter with expandable multiband segment |
US6027509A (en) * | 1996-10-03 | 2000-02-22 | Scimed Life Systems, Inc. | Stent retrieval device |
US6030007A (en) * | 1997-07-07 | 2000-02-29 | Hughes Electronics Corporation | Continually adjustable nonreturn knot |
US6168588B1 (en) * | 1995-12-12 | 2001-01-02 | Medi-Dyne Inc. | Overlapping welds for catheter constructions |
US6171329B1 (en) * | 1994-12-19 | 2001-01-09 | Gore Enterprise Holdings, Inc. | Self-expanding defect closure device and method of making and using |
US6174330B1 (en) * | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
US6174322B1 (en) * | 1997-08-08 | 2001-01-16 | Cardia, Inc. | Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum |
US6183443B1 (en) * | 1992-10-15 | 2001-02-06 | Scimed Life Systems, Inc. | Expandable introducer sheath |
US6187039B1 (en) * | 1996-12-10 | 2001-02-13 | Purdue Research Foundation | Tubular submucosal graft constructs |
US6190353B1 (en) * | 1995-10-13 | 2001-02-20 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US6190357B1 (en) * | 1998-04-21 | 2001-02-20 | Cardiothoracic Systems, Inc. | Expandable cannula for performing cardiopulmonary bypass and method for using same |
US6197016B1 (en) * | 1991-12-13 | 2001-03-06 | Endovascular Technologies, Inc. | Dual valve, flexible expandable sheath and method |
US6199262B1 (en) * | 1997-08-20 | 2001-03-13 | Medtronic, Inc. | Method of making a guiding catheter |
US6206907B1 (en) * | 1999-05-07 | 2001-03-27 | Cardia, Inc. | Occlusion device with stranded wire support arms |
US6206895B1 (en) * | 1999-07-13 | 2001-03-27 | Scion Cardio-Vascular, Inc. | Suture with toggle and delivery system |
US6334872B1 (en) * | 1994-02-18 | 2002-01-01 | Organogenesis Inc. | Method for treating diseased or damaged organs |
US20020010481A1 (en) * | 1999-12-23 | 2002-01-24 | Swaminathan Jayaraman | Occlusive coil manufacture and delivery |
US6342064B1 (en) * | 1998-12-22 | 2002-01-29 | Nipro Corporation | Closure device for transcatheter operation and catheter assembly therefor |
US6344049B1 (en) * | 1999-08-17 | 2002-02-05 | Scion Cardio-Vascular, Inc. | Filter for embolic material mounted on expandable frame and associated deployment system |
US6344048B1 (en) * | 1997-07-10 | 2002-02-05 | Scimed Life Systems, Inc. | Removable occlusion system for aneurysm neck |
US6346074B1 (en) * | 1993-02-22 | 2002-02-12 | Heartport, Inc. | Devices for less invasive intracardiac interventions |
US20020019648A1 (en) * | 2000-04-19 | 2002-02-14 | Dan Akerfeldt | Intra-arterial occluder |
US6348041B1 (en) * | 1999-03-29 | 2002-02-19 | Cook Incorporated | Guidewire |
US20020022859A1 (en) * | 1999-03-12 | 2002-02-21 | Michael Hogendijk | Catheter having radially expandable main body |
US20020022860A1 (en) * | 2000-08-18 | 2002-02-21 | Borillo Thomas E. | Expandable implant devices for filtering blood flow from atrial appendages |
US20020026208A1 (en) * | 2000-01-05 | 2002-02-28 | Medical Technology Group, Inc. | Apparatus and methods for delivering a closure device |
US6352552B1 (en) * | 2000-05-02 | 2002-03-05 | Scion Cardio-Vascular, Inc. | Stent |
US20020029048A1 (en) * | 2000-09-01 | 2002-03-07 | Arnold Miller | Endovascular fastener and grafting apparatus and method |
US6356782B1 (en) * | 1998-12-24 | 2002-03-12 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US6355052B1 (en) * | 1996-02-09 | 2002-03-12 | Pfm Produkte Fur Die Medizin Aktiengesellschaft | Device for closure of body defect openings |
US20020032462A1 (en) * | 1998-06-10 | 2002-03-14 | Russell A. Houser | Thermal securing anastomosis systems |
US20020032459A1 (en) * | 1990-06-20 | 2002-03-14 | Danforth Biomedical, Inc. | Radially-expandable tubular elements for use in the construction of medical devices |
US6358238B1 (en) * | 1999-09-02 | 2002-03-19 | Scimed Life Systems, Inc. | Expandable micro-catheter |
US20020035374A1 (en) * | 2000-09-21 | 2002-03-21 | Borillo Thomas E. | Apparatus for implanting devices in atrial appendages |
US20020034259A1 (en) * | 2000-09-21 | 2002-03-21 | Katsuyuki Tada | Transmitter for automatically changing transmission data type within specified band |
US20030004533A1 (en) * | 2001-05-04 | 2003-01-02 | Concentric Medical | Bioactive polymer vaso-occlusive device |
US6508828B1 (en) * | 2000-11-03 | 2003-01-21 | Radi Medical Systems Ab | Sealing device and wound closure device |
US20030023266A1 (en) * | 2001-07-19 | 2003-01-30 | Borillo Thomas E. | Individually customized atrial appendage implant device |
US6514515B1 (en) * | 1999-03-04 | 2003-02-04 | Tepha, Inc. | Bioabsorbable, biocompatible polymers for tissue engineering |
US20030028213A1 (en) * | 2001-08-01 | 2003-02-06 | Microvena Corporation | Tissue opening occluder |
US20030045893A1 (en) * | 2001-09-06 | 2003-03-06 | Integrated Vascular Systems, Inc. | Clip apparatus for closing septal defects and methods of use |
US20030050665A1 (en) * | 2001-09-07 | 2003-03-13 | Integrated Vascular Systems, Inc. | Needle apparatus for closing septal defects and methods for using such apparatus |
US20030055455A1 (en) * | 2001-09-20 | 2003-03-20 | Scimed Life Systems, Inc. | Method and apparatus for treating septal defects |
US20030059640A1 (en) * | 1999-11-19 | 2003-03-27 | Denes Marton | High strength vacuum deposited nitinol alloy films and method of making same |
US20030057156A1 (en) * | 2001-03-08 | 2003-03-27 | Dean Peterson | Atrial filter implants |
US6689589B2 (en) * | 1997-09-19 | 2004-02-10 | Metabolix, Inc. | Biological systems for manufacture of polyhydroxyalkanoate polymers containing 4-hydroxyacids |
US20040044361A1 (en) * | 1998-11-06 | 2004-03-04 | Frazier Andrew G.C. | Detachable atrial appendage occlusion balloon |
US6712804B2 (en) * | 1999-09-20 | 2004-03-30 | Ev3 Sunnyvale, Inc. | Method of closing an opening in a wall of the heart |
US6712836B1 (en) * | 1999-05-13 | 2004-03-30 | St. Jude Medical Atg, Inc. | Apparatus and methods for closing septal defects and occluding blood flow |
US6838493B2 (en) * | 1999-03-25 | 2005-01-04 | Metabolix, Inc. | Medical devices and applications of polyhydroxyalkanoate polymers |
US20050025809A1 (en) * | 2003-07-08 | 2005-02-03 | Tepha, Inc. | Poly-4-hydroxybutyrate matrices for sustained drug delivery |
US20050043759A1 (en) * | 2003-07-14 | 2005-02-24 | Nmt Medical, Inc. | Tubular patent foramen ovale (PFO) closure device with catch system |
US6867248B1 (en) * | 1997-05-12 | 2005-03-15 | Metabolix, Inc. | Polyhydroxyalkanoate compositions having controlled degradation rates |
US6867249B2 (en) * | 2000-08-18 | 2005-03-15 | Kin Man Amazon Lee | Lightweight and porous construction materials containing rubber |
US20060052821A1 (en) * | 2001-09-06 | 2006-03-09 | Ovalis, Inc. | Systems and methods for treating septal defects |
US20070010851A1 (en) * | 2003-07-14 | 2007-01-11 | Chanduszko Andrzej J | Tubular patent foramen ovale (PFO) closure device with catch system |
US7186251B2 (en) * | 2003-03-27 | 2007-03-06 | Cierra, Inc. | Energy based devices and methods for treatment of patent foramen ovale |
US7192435B2 (en) * | 2003-09-18 | 2007-03-20 | Cardia, Inc. | Self centering closure device for septal occlusion |
Family Cites Families (191)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3824631A (en) | 1973-05-11 | 1974-07-23 | Sampson Corp | Bone joint fusion prosthesis |
US3924631A (en) | 1973-12-06 | 1975-12-09 | Altair Inc | Magnetic clamp |
JPS6171065A (en) | 1984-09-13 | 1986-04-11 | テルモ株式会社 | Catheter introducer |
US4696300A (en) | 1985-04-11 | 1987-09-29 | Dennison Manufacturing Company | Fastener for joining materials |
US4710181A (en) | 1985-06-11 | 1987-12-01 | Genus Catheter Technologies, Inc. | Variable diameter catheter |
US4626245A (en) | 1985-08-30 | 1986-12-02 | Cordis Corporation | Hemostatis valve comprising an elastomeric partition having opposed intersecting slits |
US4710192A (en) | 1985-12-30 | 1987-12-01 | Liotta Domingo S | Diaphragm and method for occlusion of the descending thoracic aorta |
US4693249A (en) | 1986-01-10 | 1987-09-15 | Schenck Robert R | Anastomosis device and method |
US5478353A (en) | 1987-05-14 | 1995-12-26 | Yoon; Inbae | Suture tie device system and method for suturing anatomical tissue proximate an opening |
US5250430A (en) | 1987-06-29 | 1993-10-05 | Massachusetts Institute Of Technology | Polyhydroxyalkanoate polymerase |
US5245023A (en) | 1987-06-29 | 1993-09-14 | Massachusetts Institute Of Technology | Method for producing novel polyester biopolymers |
US4836204A (en) | 1987-07-06 | 1989-06-06 | Landymore Roderick W | Method for effecting closure of a perforation in the septum of the heart |
US4921479A (en) | 1987-10-02 | 1990-05-01 | Joseph Grayzel | Catheter sheath with longitudinal seam |
US4840623A (en) | 1988-02-01 | 1989-06-20 | Fbk International Corporation | Medical catheter with splined internal wall |
US4956178A (en) | 1988-07-11 | 1990-09-11 | Purdue Research Foundation | Tissue graft composition |
US5245080A (en) | 1989-02-20 | 1993-09-14 | Jouveinal Sa | (+)-1-[(3,4,5-trimethoxy)-benzyloxymethyl]-1-phenyl-N,N-dimethyl-N-propylamine, process for preparing it and its therapeutical use |
US5620461A (en) | 1989-05-29 | 1997-04-15 | Muijs Van De Moer; Wouter M. | Sealing device |
US5049131A (en) | 1989-05-31 | 1991-09-17 | Ashridge Ag | Balloon catheter |
US5149327A (en) | 1989-09-05 | 1992-09-22 | Terumo Kabushiki Kaisha | Medical valve, catheter with valve, and catheter assembly |
US5163131A (en) | 1989-09-08 | 1992-11-10 | Auspex Systems, Inc. | Parallel i/o network file server architecture |
US5226879A (en) | 1990-03-01 | 1993-07-13 | William D. Ensminger | Implantable access device |
US5453099A (en) | 1990-03-26 | 1995-09-26 | Becton, Dickinson And Company | Catheter tubing of controlled in vivo softening |
WO1991015155A1 (en) | 1990-04-02 | 1991-10-17 | Kanji Inoue | Device for closing shunt opening by nonoperative method |
US5021059A (en) | 1990-05-07 | 1991-06-04 | Kensey Nash Corporation | Plug device with pulley for sealing punctures in tissue and methods of use |
US5037433A (en) | 1990-05-17 | 1991-08-06 | Wilk Peter J | Endoscopic suturing device and related method and suture |
FR2663217B1 (en) | 1990-06-15 | 1992-10-16 | Antheor | FILTERING DEVICE FOR THE PREVENTION OF EMBOLIES. |
US5041129A (en) | 1990-07-02 | 1991-08-20 | Acufex Microsurgical, Inc. | Slotted suture anchor and method of anchoring a suture |
US5063640A (en) | 1990-10-26 | 1991-11-12 | Link Charles T | Endless filament paper clip |
JPH04170966A (en) | 1990-11-01 | 1992-06-18 | Nippon Sherwood Kk | Valvular body for catheter introducer blood stop valve |
US5257637A (en) | 1991-03-22 | 1993-11-02 | El Gazayerli Mohamed M | Method for suture knot placement and tying |
US5304131A (en) | 1991-07-15 | 1994-04-19 | Paskar Larry D | Catheter |
CA2078530A1 (en) | 1991-09-23 | 1993-03-24 | Jay Erlebacher | Percutaneous arterial puncture seal device and insertion tool therefore |
CA2082090C (en) | 1991-11-05 | 2004-04-27 | Jack Fagan | Improved occluder for repair of cardiac and vascular defects |
DE69229539T2 (en) | 1991-11-05 | 2000-02-17 | Children's Medical Center Corp., Boston | Occlusion device for repairing heart and vascular defects |
US5222974A (en) | 1991-11-08 | 1993-06-29 | Kensey Nash Corporation | Hemostatic puncture closure system and method of use |
ES2296320T3 (en) | 1992-01-21 | 2008-04-16 | Regents Of The University Of Minnesota | DEVICE FOR THE OCLUSION OF A DEFECT IN AN ANATOMICAL TABIQUE. |
US5316262A (en) | 1992-01-31 | 1994-05-31 | Suprex Corporation | Fluid restrictor apparatus and method for making the same |
US5167363A (en) | 1992-02-10 | 1992-12-01 | Adkinson Steven S | Collapsible storage pen |
US5411481A (en) | 1992-04-08 | 1995-05-02 | American Cyanamid Co. | Surgical purse string suturing instrument and method |
US5236440A (en) | 1992-04-14 | 1993-08-17 | American Cyanamid Company | Surgical fastener |
US5354308A (en) | 1992-05-01 | 1994-10-11 | Beth Israel Hospital Association | Metal wire stent |
US5540712A (en) | 1992-05-01 | 1996-07-30 | Nitinol Medical Technologies, Inc. | Stent and method and apparatus for forming and delivering the same |
DE4215449C1 (en) | 1992-05-11 | 1993-09-02 | Ethicon Gmbh & Co Kg, 2000 Norderstedt, De | |
US5312341A (en) | 1992-08-14 | 1994-05-17 | Wayne State University | Retaining apparatus and procedure for transseptal catheterization |
US5382259A (en) * | 1992-10-26 | 1995-01-17 | Target Therapeutics, Inc. | Vasoocclusion coil with attached tubular woven or braided fibrous covering |
US5417699A (en) | 1992-12-10 | 1995-05-23 | Perclose Incorporated | Device and method for the percutaneous suturing of a vascular puncture site |
US5320611A (en) | 1993-02-04 | 1994-06-14 | Peter M. Bonutti | Expandable cannula having longitudinal wire and method of use |
US5312435A (en) | 1993-05-17 | 1994-05-17 | Kensey Nash Corporation | Fail predictable, reinforced anchor for hemostatic puncture closure |
US5350363A (en) | 1993-06-14 | 1994-09-27 | Cordis Corporation | Enhanced sheath valve |
DE4324218A1 (en) | 1993-07-19 | 1995-01-26 | Bavaria Med Tech | Cuff catheter |
US5538510A (en) | 1994-01-31 | 1996-07-23 | Cordis Corporation | Catheter having coextruded tubing |
WO1995027448A1 (en) | 1994-04-06 | 1995-10-19 | William Cook Europe A/S | A medical article for implantation into the vascular system of a patient |
US5853420A (en) | 1994-04-21 | 1998-12-29 | B. Braun Celsa | Assembly comprising a blood filter for temporary or definitive use and device for implanting it, corresponding filter and method of implanting such a filter |
US6475232B1 (en) | 1996-12-10 | 2002-11-05 | Purdue Research Foundation | Stent with reduced thrombogenicity |
CA2484826C (en) | 1994-04-29 | 2007-12-18 | Scimed Life Systems, Inc. | Stent with collagen |
US5453095A (en) | 1994-06-07 | 1995-09-26 | Cordis Corporation | One piece self-aligning, self-lubricating catheter valve |
US5433727A (en) | 1994-08-16 | 1995-07-18 | Sideris; Eleftherios B. | Centering buttoned device for the occlusion of large defects for occluding |
DE9413645U1 (en) | 1994-08-24 | 1994-10-27 | Schneidt, Bernhard, Ing.(grad.), 63571 Gelnhausen | Device for closing a duct, in particular the ductus arteriosus |
US5577299A (en) | 1994-08-26 | 1996-11-26 | Thompson; Carl W. | Quick-release mechanical knot apparatus |
US5522788A (en) | 1994-10-26 | 1996-06-04 | Kuzmak; Lubomyr I. | Finger-like laparoscopic blunt dissector device |
US5702421A (en) | 1995-01-11 | 1997-12-30 | Schneidt; Bernhard | Closure device for closing a vascular opening, such as patent ductus arteriosus |
US5634936A (en) | 1995-02-06 | 1997-06-03 | Scimed Life Systems, Inc. | Device for closing a septal defect |
US5649959A (en) | 1995-02-10 | 1997-07-22 | Sherwood Medical Company | Assembly for sealing a puncture in a vessel |
US5711969A (en) | 1995-04-07 | 1998-01-27 | Purdue Research Foundation | Large area submucosal tissue graft constructs |
US6322548B1 (en) | 1995-05-10 | 2001-11-27 | Eclipse Surgical Technologies | Delivery catheter system for heart chamber |
CA2197614C (en) | 1996-02-20 | 2002-07-02 | Charles S. Taylor | Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery |
US5755791A (en) | 1996-04-05 | 1998-05-26 | Purdue Research Foundation | Perforated submucosal tissue graft constructs |
US6488706B1 (en) | 1996-05-08 | 2002-12-03 | Carag Ag | Device for plugging an opening such as in a wall of a hollow or tubular organ |
US6949116B2 (en) | 1996-05-08 | 2005-09-27 | Carag Ag | Device for plugging an opening such as in a wall of a hollow or tubular organ including biodegradable elements |
EP0900051A1 (en) | 1996-05-08 | 1999-03-10 | Salviac Limited | An occluder device |
US6143037A (en) | 1996-06-12 | 2000-11-07 | The Regents Of The University Of Michigan | Compositions and methods for coating medical devices |
US5893856A (en) | 1996-06-12 | 1999-04-13 | Mitek Surgical Products, Inc. | Apparatus and method for binding a first layer of material to a second layer of material |
US5690674A (en) | 1996-07-02 | 1997-11-25 | Cordis Corporation | Wound closure with plug |
GB9614950D0 (en) * | 1996-07-16 | 1996-09-04 | Anson Medical Ltd | A ductus stent and delivery catheter |
US5800516A (en) | 1996-08-08 | 1998-09-01 | Cordis Corporation | Deployable and retrievable shape memory stent/tube and method |
WO1998007375A1 (en) | 1996-08-22 | 1998-02-26 | The Trustees Of Columbia University | Endovascular flexible stapling device |
US5776183A (en) | 1996-08-23 | 1998-07-07 | Kanesaka; Nozomu | Expandable stent |
US5741297A (en) | 1996-08-28 | 1998-04-21 | Simon; Morris | Daisy occluder and method for septal defect repair |
US5810884A (en) | 1996-09-09 | 1998-09-22 | Beth Israel Deaconess Medical Center | Apparatus and method for closing a vascular perforation after percutaneous puncture of a blood vessel in a living subject |
US5944691A (en) | 1996-11-04 | 1999-08-31 | Cordis Corporation | Catheter having an expandable shaft |
JP4676580B2 (en) | 1996-11-05 | 2011-04-27 | パーデュー・リサーチ・ファウンデーション | Myocardial graft composition |
US6315791B1 (en) | 1996-12-03 | 2001-11-13 | Atrium Medical Corporation | Self-expanding prothesis |
DK1014895T3 (en) | 1996-12-10 | 2006-07-10 | Purdue Research Foundation | Artificial vents |
CA2224366C (en) * | 1996-12-11 | 2006-10-31 | Ethicon, Inc. | Meniscal repair device |
US5776162A (en) | 1997-01-03 | 1998-07-07 | Nitinol Medical Technologies, Inc. | Vessel implantable shape memory appliance with superelastic hinged joint |
JP3134288B2 (en) | 1997-01-30 | 2001-02-13 | 株式会社ニッショー | Endocardial suture surgery tool |
JP3134287B2 (en) | 1997-01-30 | 2001-02-13 | 株式会社ニッショー | Catheter assembly for endocardial suture surgery |
US5993844A (en) | 1997-05-08 | 1999-11-30 | Organogenesis, Inc. | Chemical treatment, without detergents or enzymes, of tissue to form an acellular, collagenous matrix |
US6610764B1 (en) | 1997-05-12 | 2003-08-26 | Metabolix, Inc. | Polyhydroxyalkanoate compositions having controlled degradation rates |
ES2285770T3 (en) | 1997-05-12 | 2007-11-16 | Metabolix, Inc. | POLYHYDROXIALCANOATE FOR LIVE APPLICATIONS. |
US6071292A (en) | 1997-06-28 | 2000-06-06 | Transvascular, Inc. | Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures |
JP3373841B2 (en) | 1997-07-22 | 2003-02-04 | メタボリックス,インコーポレイテッド | Polyhydroxyalkanoate molding composition |
US6828357B1 (en) | 1997-07-31 | 2004-12-07 | Metabolix, Inc. | Polyhydroxyalkanoate compositions having controlled degradation rates |
US6077880A (en) | 1997-08-08 | 2000-06-20 | Cordis Corporation | Highly radiopaque polyolefins and method for making the same |
US5902319A (en) | 1997-09-25 | 1999-05-11 | Daley; Robert J. | Bioabsorbable staples |
US6042606A (en) | 1997-09-29 | 2000-03-28 | Cook Incorporated | Radially expandable non-axially contracting surgical stent |
US6106913A (en) | 1997-10-10 | 2000-08-22 | Quantum Group, Inc | Fibrous structures containing nanofibrils and other textile fibers |
US5989268A (en) | 1997-10-28 | 1999-11-23 | Boston Scientific Corporation | Endoscopic hemostatic clipping device |
US5976174A (en) | 1997-12-15 | 1999-11-02 | Ruiz; Carlos E. | Medical hole closure device and methods of use |
US5944738A (en) | 1998-02-06 | 1999-08-31 | Aga Medical Corporation | Percutaneous catheter directed constricting occlusion device |
JP3799810B2 (en) | 1998-03-30 | 2006-07-19 | ニプロ株式会社 | Transcatheter surgery closure plug and catheter assembly |
US5993475A (en) | 1998-04-22 | 1999-11-30 | Bristol-Myers Squibb Co. | Tissue repair device |
US6113609A (en) | 1998-05-26 | 2000-09-05 | Scimed Life Systems, Inc. | Implantable tissue fastener and system for treating gastroesophageal reflux disease |
US6265333B1 (en) | 1998-06-02 | 2001-07-24 | Board Of Regents, University Of Nebraska-Lincoln | Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces |
US7452371B2 (en) | 1999-06-02 | 2008-11-18 | Cook Incorporated | Implantable vascular device |
US6328822B1 (en) | 1998-06-26 | 2001-12-11 | Kiyohito Ishida | Functionally graded alloy, use thereof and method for producing same |
US6165183A (en) | 1998-07-15 | 2000-12-26 | St. Jude Medical, Inc. | Mitral and tricuspid valve repair |
US5919200A (en) | 1998-10-09 | 1999-07-06 | Hearten Medical, Inc. | Balloon catheter for abrading a patent foramen ovale and method of using the balloon catheter |
US6183496B1 (en) | 1998-11-02 | 2001-02-06 | Datascope Investment Corp. | Collapsible hemostatic plug |
US6152144A (en) | 1998-11-06 | 2000-11-28 | Appriva Medical, Inc. | Method and device for left atrial appendage occlusion |
US7044134B2 (en) | 1999-11-08 | 2006-05-16 | Ev3 Sunnyvale, Inc | Method of implanting a device in the left atrial appendage |
US6312443B1 (en) | 1998-12-23 | 2001-11-06 | Nuvasive, Inc. | Expandable cannula |
US6371904B1 (en) | 1998-12-24 | 2002-04-16 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US6217590B1 (en) | 1999-01-22 | 2001-04-17 | Scion International, Inc. | Surgical instrument for applying multiple staples and cutting blood vessels and organic structures and method therefor |
US6228097B1 (en) | 1999-01-22 | 2001-05-08 | Scion International, Inc. | Surgical instrument for clipping and cutting blood vessels and organic structures |
US6277139B1 (en) | 1999-04-01 | 2001-08-21 | Scion Cardio-Vascular, Inc. | Vascular protection and embolic material retriever |
JP2000300571A (en) | 1999-04-19 | 2000-10-31 | Nissho Corp | Closure plug for transcatheter operation |
US6379368B1 (en) | 1999-05-13 | 2002-04-30 | Cardia, Inc. | Occlusion device with non-thrombogenic properties |
US6656206B2 (en) | 1999-05-13 | 2003-12-02 | Cardia, Inc. | Occlusion device with non-thrombogenic properties |
US6488689B1 (en) | 1999-05-20 | 2002-12-03 | Aaron V. Kaplan | Methods and apparatus for transpericardial left atrial appendage closure |
US6426145B1 (en) | 1999-05-20 | 2002-07-30 | Scimed Life Systems, Inc. | Radiopaque compositions for visualization of medical devices |
US6165204A (en) | 1999-06-11 | 2000-12-26 | Scion International, Inc. | Shaped suture clip, appliance and method therefor |
US6494888B1 (en) | 1999-06-22 | 2002-12-17 | Ndo Surgical, Inc. | Tissue reconfiguration |
US6306424B1 (en) | 1999-06-30 | 2001-10-23 | Ethicon, Inc. | Foam composite for the repair or regeneration of tissue |
US6245080B1 (en) | 1999-07-13 | 2001-06-12 | Scion Cardio-Vascular, Inc. | Suture with toggle and delivery system |
US6398796B2 (en) | 1999-07-13 | 2002-06-04 | Scion Cardio-Vascular, Inc. | Suture with toggle and delivery system |
US7892246B2 (en) | 1999-07-28 | 2011-02-22 | Bioconnect Systems, Inc. | Devices and methods for interconnecting conduits and closing openings in tissue |
US6328689B1 (en) | 2000-03-23 | 2001-12-11 | Spiration, Inc., | Lung constriction apparatus and method |
US6551303B1 (en) | 1999-10-27 | 2003-04-22 | Atritech, Inc. | Barrier device for ostium of left atrial appendage |
US6387104B1 (en) | 1999-11-12 | 2002-05-14 | Scimed Life Systems, Inc. | Method and apparatus for endoscopic repair of the lower esophageal sphincter |
US6371971B1 (en) | 1999-11-15 | 2002-04-16 | Scimed Life Systems, Inc. | Guidewire filter and methods of use |
US20010041914A1 (en) | 1999-11-22 | 2001-11-15 | Frazier Andrew G.C. | Tissue patch deployment catheter |
DE10000137A1 (en) | 2000-01-04 | 2001-07-12 | Pfm Prod Fuer Die Med Ag | Implantate for closing defect apertures in human or animal bodies, bearing structure of which can be reversed from secondary to primary form by elastic force |
US20010034567A1 (en) | 2000-01-20 | 2001-10-25 | Allen Marc L. | Remote management of retail petroleum equipment |
FR2804567B1 (en) | 2000-01-31 | 2002-04-12 | St Microelectronics Sa | VIDEO PREAMPLIFIER |
WO2001067967A1 (en) | 2000-03-10 | 2001-09-20 | Radius Medical Technologies, Inc. | Surgical snare apparatus |
US6227139B1 (en) | 2000-03-16 | 2001-05-08 | The United States Of America As Represented By The Secretary Of The Navy | Control tab assisted lift reducing system for underwater hydrofoil surface |
US7056294B2 (en) | 2000-04-13 | 2006-06-06 | Ev3 Sunnyvale, Inc | Method and apparatus for accessing the left atrial appendage |
US6551344B2 (en) | 2000-04-26 | 2003-04-22 | Ev3 Inc. | Septal defect occluder |
US6214029B1 (en) | 2000-04-26 | 2001-04-10 | Microvena Corporation | Septal defect occluder |
US6599448B1 (en) | 2000-05-10 | 2003-07-29 | Hydromer, Inc. | Radio-opaque polymeric compositions |
US6334864B1 (en) | 2000-05-17 | 2002-01-01 | Aga Medical Corp. | Alignment member for delivering a non-symmetric device with a predefined orientation |
US6494846B1 (en) | 2000-06-20 | 2002-12-17 | Wayne Margolis Family Partnership, Ltd. | Dual-mode catheter |
DE60120415T2 (en) | 2000-07-21 | 2007-01-04 | Metabolix, Inc., Cambridge | PREPARATION OF POLYHYDROXYALKANOATES FROM POLYOLES |
US6440152B1 (en) | 2000-07-28 | 2002-08-27 | Microvena Corporation | Defect occluder release assembly and method |
US6364853B1 (en) | 2000-09-11 | 2002-04-02 | Scion International, Inc. | Irrigation and suction valve and method therefor |
US20020072792A1 (en) | 2000-09-22 | 2002-06-13 | Robert Burgermeister | Stent with optimal strength and radiopacity characteristics |
WO2002024114A2 (en) | 2000-09-25 | 2002-03-28 | Cohesion Technologies, Inc. | Resorbable anastomosis stents and plugs |
US6666861B1 (en) | 2000-10-05 | 2003-12-23 | James R. Grabek | Atrial appendage remodeling device and method |
CA2424306A1 (en) | 2000-10-18 | 2002-04-25 | Nmt Medical, Inc. | Medical implant delivery system |
US6375625B1 (en) | 2000-10-18 | 2002-04-23 | Scion Valley, Inc. | In-line specimen trap and method therefor |
US6629901B2 (en) | 2000-11-09 | 2003-10-07 | Ben Huang | Composite grip for golf clubs |
US6746404B2 (en) | 2000-12-18 | 2004-06-08 | Biosense, Inc. | Method for anchoring a medical device between tissue |
US6585719B2 (en) | 2001-01-04 | 2003-07-01 | Scimed Life Systems, Inc. | Low profile metal/polymer tubes |
US6858019B2 (en) | 2001-01-09 | 2005-02-22 | Rex Medical, L.P. | Dialysis catheter and methods of insertion |
US20020128680A1 (en) | 2001-01-25 | 2002-09-12 | Pavlovic Jennifer L. | Distal protection device with electrospun polymer fiber matrix |
US6550480B2 (en) | 2001-01-31 | 2003-04-22 | Numed/Tech Llc | Lumen occluders made from thermodynamic materials |
US6450987B1 (en) | 2001-02-01 | 2002-09-17 | Innercool Therapies, Inc. | Collapsible guidewire lumen |
US20020107531A1 (en) | 2001-02-06 | 2002-08-08 | Schreck Stefan G. | Method and system for tissue repair using dual catheters |
US6623518B2 (en) | 2001-02-26 | 2003-09-23 | Ev3 Peripheral, Inc. | Implant delivery system with interlock |
US6726696B1 (en) | 2001-04-24 | 2004-04-27 | Advanced Catheter Engineering, Inc. | Patches and collars for medical applications and methods of use |
US6921410B2 (en) | 2001-05-29 | 2005-07-26 | Scimed Life Systems, Inc. | Injection molded vaso-occlusive elements |
US6537300B2 (en) | 2001-05-30 | 2003-03-25 | Scimed Life Systems, Inc. | Implantable obstruction device for septal defects |
US7338514B2 (en) | 2001-06-01 | 2008-03-04 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
US6941169B2 (en) | 2001-06-04 | 2005-09-06 | Albert Einstein Healthcare Network | Cardiac stimulating apparatus having a blood clot filter and atrial pacer |
US6623506B2 (en) | 2001-06-18 | 2003-09-23 | Rex Medical, L.P | Vein filter |
US6585755B2 (en) | 2001-06-29 | 2003-07-01 | Advanced Cardiovascular | Polymeric stent suitable for imaging by MRI and fluoroscopy |
US20070129755A1 (en) * | 2005-12-05 | 2007-06-07 | Ovalis, Inc. | Clip-based systems and methods for treating septal defects |
US7318833B2 (en) | 2001-12-19 | 2008-01-15 | Nmt Medical, Inc. | PFO closure device with flexible thrombogenic joint and improved dislodgement resistance |
WO2003053493A2 (en) | 2001-12-19 | 2003-07-03 | Nmt Medical, Inc. | Septal occluder and associated methods |
US20030139819A1 (en) | 2002-01-18 | 2003-07-24 | Beer Nicholas De | Method and apparatus for closing septal defects |
WO2003082076A2 (en) | 2002-03-25 | 2003-10-09 | Nmt Medical, Inc. | Patent foramen ovale (pfo) closure clips |
JP2005528181A (en) | 2002-06-05 | 2005-09-22 | エヌエムティー メディカル インコーポレイテッド | Patent foramen ovale (PFO) occlusion device with radial and circumferential supports |
US6783491B2 (en) | 2002-06-13 | 2004-08-31 | Vahid Saadat | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
AU2003284976A1 (en) | 2002-10-25 | 2004-05-13 | Nmt Medical, Inc. | Expandable sheath tubing |
WO2004043508A1 (en) | 2002-11-06 | 2004-05-27 | Nmt Medical, Inc. | Medical devices utilizing modified shape memory alloy |
AU2003294682A1 (en) | 2002-12-09 | 2004-06-30 | Nmt Medical, Inc. | Septal closure devices |
US20040249367A1 (en) | 2003-01-15 | 2004-12-09 | Usgi Medical Corp. | Endoluminal tool deployment system |
JP4197965B2 (en) | 2003-01-31 | 2008-12-17 | オリンパス株式会社 | High frequency snare and medical equipment |
US20040234567A1 (en) | 2003-05-22 | 2004-11-25 | Dawson Richard A. | Collapsible shield for smoking animal lure |
EP1660167B1 (en) | 2003-08-19 | 2008-11-12 | NMT Medical, Inc. | Expandable sheath tubing |
WO2005055834A1 (en) | 2003-11-20 | 2005-06-23 | Nmt Medical, Inc. | Device, with electrospun fabric, for a percutaneous transluminal procedure, and methods thereof |
US8764790B2 (en) | 2004-02-04 | 2014-07-01 | Carag Ag | Implant for occluding a body passage |
JP2007526087A (en) | 2004-03-03 | 2007-09-13 | エヌエムティー メディカル, インコーポレイティッド | Delivery / recovery system for septal occluder |
US7842053B2 (en) * | 2004-05-06 | 2010-11-30 | Nmt Medical, Inc. | Double coil occluder |
US7704268B2 (en) | 2004-05-07 | 2010-04-27 | Nmt Medical, Inc. | Closure device with hinges |
US8257389B2 (en) | 2004-05-07 | 2012-09-04 | W.L. Gore & Associates, Inc. | Catching mechanisms for tubular septal occluder |
US8764848B2 (en) | 2004-09-24 | 2014-07-01 | W.L. Gore & Associates, Inc. | Occluder device double securement system for delivery/recovery of such occluder device |
WO2006102213A1 (en) | 2005-03-18 | 2006-09-28 | Nmt Medical, Inc. | Catch member for pfo occluder |
US20060271089A1 (en) | 2005-04-11 | 2006-11-30 | Cierra, Inc. | Methods and apparatus to achieve a closure of a layered tissue defect |
WO2007073566A1 (en) | 2005-12-22 | 2007-06-28 | Nmt Medical, Inc. | Catch members for occluder devices |
-
2004
- 2004-12-09 US US11/008,539 patent/US20050273119A1/en not_active Abandoned
-
2013
- 2013-09-18 US US14/030,964 patent/US8753362B2/en not_active Expired - Fee Related
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3874388A (en) * | 1973-02-12 | 1975-04-01 | Ochsner Med Found Alton | Shunt defect closure system |
US3875648A (en) * | 1973-04-04 | 1975-04-08 | Dennison Mfg Co | Fastener attachment apparatus and method |
US4006747A (en) * | 1975-04-23 | 1977-02-08 | Ethicon, Inc. | Surgical method |
US4007743A (en) * | 1975-10-20 | 1977-02-15 | American Hospital Supply Corporation | Opening mechanism for umbrella-like intravascular shunt defect closure device |
US4149327A (en) * | 1976-07-21 | 1979-04-17 | Jura Elektroapparate-Fabriken L. Henzirohs A.G. | Steam iron |
US4425908A (en) * | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
US4738666A (en) * | 1985-06-11 | 1988-04-19 | Genus Catheter Technologies, Inc. | Variable diameter catheter |
US5106913A (en) * | 1986-07-16 | 1992-04-21 | Sumitomo Chemical Company, Limited | Rubber composition |
US4915107A (en) * | 1988-03-09 | 1990-04-10 | Harley International Medical Ltd. | Automatic instrument for purse-string sutures for surgical use |
US4902508A (en) * | 1988-07-11 | 1990-02-20 | Purdue Research Foundation | Tissue graft composition |
US4917089A (en) * | 1988-08-29 | 1990-04-17 | Sideris Eleftherios B | Buttoned device for the transvenous occlusion of intracardiac defects |
US5192301A (en) * | 1989-01-17 | 1993-03-09 | Nippon Zeon Co., Ltd. | Closing plug of a defect for medical use and a closing plug device utilizing it |
US5720754A (en) * | 1989-08-16 | 1998-02-24 | Medtronic, Inc. | Device or apparatus for manipulating matter |
US5078736A (en) * | 1990-05-04 | 1992-01-07 | Interventional Thermodynamics, Inc. | Method and apparatus for maintaining patency in the body passages |
US20020032459A1 (en) * | 1990-06-20 | 2002-03-14 | Danforth Biomedical, Inc. | Radially-expandable tubular elements for use in the construction of medical devices |
US5108420A (en) * | 1991-02-01 | 1992-04-28 | Temple University | Aperture occlusion device |
US5176659A (en) * | 1991-02-28 | 1993-01-05 | Mario Mancini | Expandable intravenous catheter and method of using |
US5282827A (en) * | 1991-11-08 | 1994-02-01 | Kensey Nash Corporation | Hemostatic puncture closure system and method of use |
US6197016B1 (en) * | 1991-12-13 | 2001-03-06 | Endovascular Technologies, Inc. | Dual valve, flexible expandable sheath and method |
US5486193A (en) * | 1992-01-22 | 1996-01-23 | C. R. Bard, Inc. | System for the percutaneous transluminal front-end loading delivery of a prosthetic occluder |
US6183443B1 (en) * | 1992-10-15 | 2001-02-06 | Scimed Life Systems, Inc. | Expandable introducer sheath |
US5304184A (en) * | 1992-10-19 | 1994-04-19 | Indiana University Foundation | Apparatus and method for positive closure of an internal tissue membrane opening |
US5275826A (en) * | 1992-11-13 | 1994-01-04 | Purdue Research Foundation | Fluidized intestinal submucosa and its use as an injectable tissue graft |
US5284488A (en) * | 1992-12-23 | 1994-02-08 | Sideris Eleftherios B | Adjustable devices for the occlusion of cardiac defects |
US6346074B1 (en) * | 1993-02-22 | 2002-02-12 | Heartport, Inc. | Devices for less invasive intracardiac interventions |
US5855614A (en) * | 1993-02-22 | 1999-01-05 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
US5480424A (en) * | 1993-11-01 | 1996-01-02 | Cox; James L. | Heart valve replacement using flexible tubes |
US5507811A (en) * | 1993-11-26 | 1996-04-16 | Nissho Corporation | Prosthetic device for atrial septal defect repair |
US6334872B1 (en) * | 1994-02-18 | 2002-01-01 | Organogenesis Inc. | Method for treating diseased or damaged organs |
US5601571A (en) * | 1994-05-17 | 1997-02-11 | Moss; Gerald | Surgical fastener implantation device |
US5725552A (en) * | 1994-07-08 | 1998-03-10 | Aga Medical Corporation | Percutaneous catheter directed intravascular occlusion devices |
US5618311A (en) * | 1994-09-28 | 1997-04-08 | Gryskiewicz; Joseph M. | Surgical subcuticular fastener system |
US6171329B1 (en) * | 1994-12-19 | 2001-01-09 | Gore Enterprise Holdings, Inc. | Self-expanding defect closure device and method of making and using |
US5480353A (en) * | 1995-02-02 | 1996-01-02 | Garza, Jr.; Ponciano | Shaker crank for a harvester |
US5733337A (en) * | 1995-04-07 | 1998-03-31 | Organogenesis, Inc. | Tissue repair fabric |
US5713864A (en) * | 1995-04-11 | 1998-02-03 | Sims Level 1, Inc. | Integral conductive polymer resistance heated tubing |
US5603703A (en) * | 1995-04-28 | 1997-02-18 | Medtronic, Inc. | Selectively aspirating stylet |
US5865791A (en) * | 1995-06-07 | 1999-02-02 | E.P. Technologies Inc. | Atrial appendage stasis reduction procedure and devices |
US6190353B1 (en) * | 1995-10-13 | 2001-02-20 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US5709707A (en) * | 1995-10-30 | 1998-01-20 | Children's Medical Center Corporation | Self-centering umbrella-type septal closure device |
US6168588B1 (en) * | 1995-12-12 | 2001-01-02 | Medi-Dyne Inc. | Overlapping welds for catheter constructions |
US5717259A (en) * | 1996-01-11 | 1998-02-10 | Schexnayder; J. Rodney | Electromagnetic machine |
US6355052B1 (en) * | 1996-02-09 | 2002-03-12 | Pfm Produkte Fur Die Medizin Aktiengesellschaft | Device for closure of body defect openings |
US5733294A (en) * | 1996-02-28 | 1998-03-31 | B. Braun Medical, Inc. | Self expanding cardiovascular occlusion device, method of using and method of making the same |
US6024756A (en) * | 1996-03-22 | 2000-02-15 | Scimed Life Systems, Inc. | Method of reversibly closing a septal defect |
US6010517A (en) * | 1996-04-10 | 2000-01-04 | Baccaro; Jorge Alberto | Device for occluding abnormal vessel communications |
US6027509A (en) * | 1996-10-03 | 2000-02-22 | Scimed Life Systems, Inc. | Stent retrieval device |
US5861003A (en) * | 1996-10-23 | 1999-01-19 | The Cleveland Clinic Foundation | Apparatus and method for occluding a defect or aperture within body surface |
US6187039B1 (en) * | 1996-12-10 | 2001-02-13 | Purdue Research Foundation | Tubular submucosal graft constructs |
US5879366A (en) * | 1996-12-20 | 1999-03-09 | W.L. Gore & Associates, Inc. | Self-expanding defect closure device and method of making and using |
US6867248B1 (en) * | 1997-05-12 | 2005-03-15 | Metabolix, Inc. | Polyhydroxyalkanoate compositions having controlled degradation rates |
US6030007A (en) * | 1997-07-07 | 2000-02-29 | Hughes Electronics Corporation | Continually adjustable nonreturn knot |
US6344048B1 (en) * | 1997-07-10 | 2002-02-05 | Scimed Life Systems, Inc. | Removable occlusion system for aneurysm neck |
US6174330B1 (en) * | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
US6174322B1 (en) * | 1997-08-08 | 2001-01-16 | Cardia, Inc. | Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum |
US6199262B1 (en) * | 1997-08-20 | 2001-03-13 | Medtronic, Inc. | Method of making a guiding catheter |
US6689589B2 (en) * | 1997-09-19 | 2004-02-10 | Metabolix, Inc. | Biological systems for manufacture of polyhydroxyalkanoate polymers containing 4-hydroxyacids |
US6019753A (en) * | 1997-12-02 | 2000-02-01 | Smiths Industries Public Limited Company | Catheter assemblies and inner cannulae |
US6027519A (en) * | 1997-12-15 | 2000-02-22 | Stanford; Ulf Harry | Catheter with expandable multiband segment |
US6190357B1 (en) * | 1998-04-21 | 2001-02-20 | Cardiothoracic Systems, Inc. | Expandable cannula for performing cardiopulmonary bypass and method for using same |
US20020032462A1 (en) * | 1998-06-10 | 2002-03-14 | Russell A. Houser | Thermal securing anastomosis systems |
US20040044361A1 (en) * | 1998-11-06 | 2004-03-04 | Frazier Andrew G.C. | Detachable atrial appendage occlusion balloon |
US6342064B1 (en) * | 1998-12-22 | 2002-01-29 | Nipro Corporation | Closure device for transcatheter operation and catheter assembly therefor |
US6356782B1 (en) * | 1998-12-24 | 2002-03-12 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US6514515B1 (en) * | 1999-03-04 | 2003-02-04 | Tepha, Inc. | Bioabsorbable, biocompatible polymers for tissue engineering |
US20020022859A1 (en) * | 1999-03-12 | 2002-02-21 | Michael Hogendijk | Catheter having radially expandable main body |
US6838493B2 (en) * | 1999-03-25 | 2005-01-04 | Metabolix, Inc. | Medical devices and applications of polyhydroxyalkanoate polymers |
US6867247B2 (en) * | 1999-03-25 | 2005-03-15 | Metabolix, Inc. | Medical devices and applications of polyhydroxyalkanoate polymers |
US6348041B1 (en) * | 1999-03-29 | 2002-02-19 | Cook Incorporated | Guidewire |
US6206907B1 (en) * | 1999-05-07 | 2001-03-27 | Cardia, Inc. | Occlusion device with stranded wire support arms |
US6712836B1 (en) * | 1999-05-13 | 2004-03-30 | St. Jude Medical Atg, Inc. | Apparatus and methods for closing septal defects and occluding blood flow |
US6206895B1 (en) * | 1999-07-13 | 2001-03-27 | Scion Cardio-Vascular, Inc. | Suture with toggle and delivery system |
US6344049B1 (en) * | 1999-08-17 | 2002-02-05 | Scion Cardio-Vascular, Inc. | Filter for embolic material mounted on expandable frame and associated deployment system |
US6358238B1 (en) * | 1999-09-02 | 2002-03-19 | Scimed Life Systems, Inc. | Expandable micro-catheter |
US6712804B2 (en) * | 1999-09-20 | 2004-03-30 | Ev3 Sunnyvale, Inc. | Method of closing an opening in a wall of the heart |
US20030059640A1 (en) * | 1999-11-19 | 2003-03-27 | Denes Marton | High strength vacuum deposited nitinol alloy films and method of making same |
US20020010481A1 (en) * | 1999-12-23 | 2002-01-24 | Swaminathan Jayaraman | Occlusive coil manufacture and delivery |
US20020026208A1 (en) * | 2000-01-05 | 2002-02-28 | Medical Technology Group, Inc. | Apparatus and methods for delivering a closure device |
US20020019648A1 (en) * | 2000-04-19 | 2002-02-14 | Dan Akerfeldt | Intra-arterial occluder |
US6352552B1 (en) * | 2000-05-02 | 2002-03-05 | Scion Cardio-Vascular, Inc. | Stent |
US6867249B2 (en) * | 2000-08-18 | 2005-03-15 | Kin Man Amazon Lee | Lightweight and porous construction materials containing rubber |
US20020022860A1 (en) * | 2000-08-18 | 2002-02-21 | Borillo Thomas E. | Expandable implant devices for filtering blood flow from atrial appendages |
US20020029048A1 (en) * | 2000-09-01 | 2002-03-07 | Arnold Miller | Endovascular fastener and grafting apparatus and method |
US20020034259A1 (en) * | 2000-09-21 | 2002-03-21 | Katsuyuki Tada | Transmitter for automatically changing transmission data type within specified band |
US20020035374A1 (en) * | 2000-09-21 | 2002-03-21 | Borillo Thomas E. | Apparatus for implanting devices in atrial appendages |
US6508828B1 (en) * | 2000-11-03 | 2003-01-21 | Radi Medical Systems Ab | Sealing device and wound closure device |
US20030057156A1 (en) * | 2001-03-08 | 2003-03-27 | Dean Peterson | Atrial filter implants |
US20030004533A1 (en) * | 2001-05-04 | 2003-01-02 | Concentric Medical | Bioactive polymer vaso-occlusive device |
US20030023266A1 (en) * | 2001-07-19 | 2003-01-30 | Borillo Thomas E. | Individually customized atrial appendage implant device |
US20030028213A1 (en) * | 2001-08-01 | 2003-02-06 | Microvena Corporation | Tissue opening occluder |
US20030045893A1 (en) * | 2001-09-06 | 2003-03-06 | Integrated Vascular Systems, Inc. | Clip apparatus for closing septal defects and methods of use |
US20060052821A1 (en) * | 2001-09-06 | 2006-03-09 | Ovalis, Inc. | Systems and methods for treating septal defects |
US20030050665A1 (en) * | 2001-09-07 | 2003-03-13 | Integrated Vascular Systems, Inc. | Needle apparatus for closing septal defects and methods for using such apparatus |
US20030055455A1 (en) * | 2001-09-20 | 2003-03-20 | Scimed Life Systems, Inc. | Method and apparatus for treating septal defects |
US7186251B2 (en) * | 2003-03-27 | 2007-03-06 | Cierra, Inc. | Energy based devices and methods for treatment of patent foramen ovale |
US20050025809A1 (en) * | 2003-07-08 | 2005-02-03 | Tepha, Inc. | Poly-4-hydroxybutyrate matrices for sustained drug delivery |
US20050043759A1 (en) * | 2003-07-14 | 2005-02-24 | Nmt Medical, Inc. | Tubular patent foramen ovale (PFO) closure device with catch system |
US20070010851A1 (en) * | 2003-07-14 | 2007-01-11 | Chanduszko Andrzej J | Tubular patent foramen ovale (PFO) closure device with catch system |
US7192435B2 (en) * | 2003-09-18 | 2007-03-20 | Cardia, Inc. | Self centering closure device for septal occlusion |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110218567A1 (en) * | 2001-09-06 | 2011-09-08 | Ryan Abbott | Systems and Methods for Treating Septal Defects |
US8758401B2 (en) | 2001-09-06 | 2014-06-24 | ProMed, Inc. | Systems and methods for treating septal defects |
US7740640B2 (en) | 2001-09-06 | 2010-06-22 | Ovalis, Inc. | Clip apparatus for closing septal defects and methods of use |
US7686828B2 (en) | 2001-09-06 | 2010-03-30 | Ovalis, Inc. | Systems and methods for treating septal defects |
US7678132B2 (en) | 2001-09-06 | 2010-03-16 | Ovalis, Inc. | Systems and methods for treating septal defects |
US8747483B2 (en) | 2001-09-07 | 2014-06-10 | ProMed, Inc. | Needle apparatus for closing septal defects and methods for using such apparatus |
US8070826B2 (en) | 2001-09-07 | 2011-12-06 | Ovalis, Inc. | Needle apparatus for closing septal defects and methods for using such apparatus |
US7648532B2 (en) | 2003-05-19 | 2010-01-19 | Septrx, Inc. | Tissue distention device and related methods for therapeutic intervention |
US8758395B2 (en) | 2003-05-19 | 2014-06-24 | Septrx, Inc. | Embolic filtering method and apparatus |
US20060200197A1 (en) * | 2005-03-02 | 2006-09-07 | St. Jude Medical, Inc. | Remote body tissue engaging methods and apparatus |
US8920434B2 (en) * | 2005-03-02 | 2014-12-30 | St. Jude Medical, Cardiology Division, Inc. | Remote body tissue engaging methods and apparatus |
US8372113B2 (en) * | 2005-03-24 | 2013-02-12 | W.L. Gore & Associates, Inc. | Curved arm intracardiac occluder |
US20060217761A1 (en) * | 2005-03-24 | 2006-09-28 | Opolski Steven W | Curved arm intracardiac occluder |
US8579936B2 (en) | 2005-07-05 | 2013-11-12 | ProMed, Inc. | Centering of delivery devices with respect to a septal defect |
US7846179B2 (en) | 2005-09-01 | 2010-12-07 | Ovalis, Inc. | Suture-based systems and methods for treating septal defects |
US9585644B2 (en) | 2006-08-09 | 2017-03-07 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US8979941B2 (en) | 2006-08-09 | 2015-03-17 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US9138208B2 (en) | 2006-08-09 | 2015-09-22 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US9220487B2 (en) | 2006-08-09 | 2015-12-29 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US20080119891A1 (en) * | 2006-08-09 | 2008-05-22 | Coherex Medical, Inc. | Methods, systems and devices for reducing the size of an internal tissue opening |
US8167894B2 (en) | 2006-08-09 | 2012-05-01 | Coherex Medical, Inc. | Methods, systems and devices for reducing the size of an internal tissue opening |
US8840655B2 (en) | 2006-08-09 | 2014-09-23 | Coherex Medical, Inc. | Systems and devices for reducing the size of an internal tissue opening |
US8529597B2 (en) | 2006-08-09 | 2013-09-10 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US20080039804A1 (en) * | 2006-08-09 | 2008-02-14 | Coherex Medical, Inc. | Systems and devices for reducing the size of an internal tissue opening |
US20080039743A1 (en) * | 2006-08-09 | 2008-02-14 | Coherex Medical, Inc. | Methods for determining characteristics of an internal tissue opening |
WO2008033309A1 (en) * | 2006-09-11 | 2008-03-20 | Boston Scientific Limited | Pfo clip |
US8894682B2 (en) | 2006-09-11 | 2014-11-25 | Boston Scientific Scimed, Inc. | PFO clip |
US20080065149A1 (en) * | 2006-09-11 | 2008-03-13 | Thielen Joseph M | PFO clip |
US9332977B2 (en) | 2007-02-01 | 2016-05-10 | Cook Medical Technologies Llc | Closure device |
WO2008094706A2 (en) * | 2007-02-01 | 2008-08-07 | Cook Incorporated | Closure device and method of closing a bodily opening |
US8617205B2 (en) | 2007-02-01 | 2013-12-31 | Cook Medical Technologies Llc | Closure device |
US9554783B2 (en) | 2007-02-01 | 2017-01-31 | Cook Medical Technologies Llc | Closure device and method of closing a bodily opening |
US8480707B2 (en) | 2007-02-01 | 2013-07-09 | Cook Medical Technologies Llc | Closure device and method for occluding a bodily passageway |
WO2008094706A3 (en) * | 2007-02-01 | 2009-02-19 | Cook Inc | Closure device and method of closing a bodily opening |
US20100030246A1 (en) * | 2007-02-01 | 2010-02-04 | Dusan Pavcnik | Closure Device and Method For Occluding a Bodily Passageway |
US10702275B2 (en) | 2009-02-18 | 2020-07-07 | St. Jude Medical Cardiology Division, Inc. | Medical device with stiffener wire for occluding vascular defects |
US20100211046A1 (en) * | 2009-02-18 | 2010-08-19 | Aga Medical Corporation | Medical device with stiffener wire for occluding vascular defects |
US20100305591A1 (en) * | 2009-05-28 | 2010-12-02 | Wilson-Cook Medical Inc. | Tacking device and methods of deployment |
US9345476B2 (en) * | 2009-05-28 | 2016-05-24 | Cook Medical Technologies Llc | Tacking device and methods of deployment |
WO2012006153A1 (en) * | 2010-06-29 | 2012-01-12 | Yale University | Tissue retractor assembly |
CN103037778A (en) * | 2010-06-29 | 2013-04-10 | 耶鲁大学 | tissue retractor assembly |
US9023074B2 (en) | 2010-10-15 | 2015-05-05 | Cook Medical Technologies Llc | Multi-stage occlusion devices |
US9107648B2 (en) | 2011-06-28 | 2015-08-18 | Novatract Surgical, Inc. | Tissue retractor assembly |
US9241698B2 (en) | 2011-06-28 | 2016-01-26 | Novatract Surgical, Inc. | Tissue retractor assembly |
US8852088B2 (en) | 2011-06-28 | 2014-10-07 | Novatract Surgical, Inc. | Tissue retractor assembly |
US10959715B2 (en) | 2012-10-31 | 2021-03-30 | W. L. Gore & Associates, Inc. | Devices and methods related to deposited support structures |
US20140142610A1 (en) * | 2012-11-16 | 2014-05-22 | W.L. Gore & Associates, Inc. | Space Filling Devices |
US11744594B2 (en) * | 2012-11-16 | 2023-09-05 | W.L. Gore & Associates, Inc. | Space filling devices |
US20140257375A1 (en) * | 2013-03-11 | 2014-09-11 | St. Jude Medical Puerto Rico Llc | Active securement detachable sealing tip for extra-vascular closure device and methods |
US9107646B2 (en) * | 2013-03-11 | 2015-08-18 | St. Jude Medical Puerto Rico Llc | Active securement detachable sealing tip for extra-vascular closure device and methods |
EP2967802A4 (en) * | 2013-03-12 | 2016-11-23 | Pfm Medical Inc | Vascular occlusion device configured for infants |
US20180049859A1 (en) * | 2016-08-16 | 2018-02-22 | Spartan Micro, Inc. | Intravascular flow diversion devices |
US10993807B2 (en) | 2017-11-16 | 2021-05-04 | Medtronic Vascular, Inc. | Systems and methods for percutaneously supporting and manipulating a septal wall |
US11045178B2 (en) | 2018-01-04 | 2021-06-29 | Boston Scientific Scimed, Inc. | Closure device |
US20230414211A1 (en) * | 2018-12-12 | 2023-12-28 | Lap Iq Inc. | Implantable tissue scaffold |
US20210298728A1 (en) * | 2020-03-24 | 2021-09-30 | Laminar, Inc. | Devices, systems, and methods for occluding cavities within the body |
Also Published As
Publication number | Publication date |
---|---|
US20140025095A1 (en) | 2014-01-23 |
US8753362B2 (en) | 2014-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8753362B2 (en) | Double spiral patent foramen ovale closure clamp | |
US11375988B2 (en) | Patent foramen ovale (PFO) closure device with linearly elongating petals | |
US9326759B2 (en) | Tubular patent foramen ovale (PFO) closure device with catch system | |
US9149263B2 (en) | Tubular patent foramen ovale (PFO) closure device with catch system | |
US7431729B2 (en) | Patent foramen ovale (PFO) closure device with radial and circumferential support | |
US9241695B2 (en) | Patent foramen ovale (PFO) closure clips | |
US9084603B2 (en) | Catch members for occluder devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NMT MEDICAL, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEVELLIAN, CAROL A.;SIMON, MORRIS;WIDOMSKI, DAVID;REEL/FRAME:019874/0112;SIGNING DATES FROM 20040406 TO 20040504 |
|
AS | Assignment |
Owner name: W.L. GORE & ASSOCIATES, INC., ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NMT MEDICAL, INC. (BY AND THROUGH JOSEPH F. FINN, JR., AS ASSIGNEE FOR THE BENEFIT OF CREDITORS OF NMT MEDICAL, INC.);REEL/FRAME:026503/0273 Effective date: 20110616 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |