US20020032462A1 - Thermal securing anastomosis systems - Google Patents

Thermal securing anastomosis systems Download PDF

Info

Publication number
US20020032462A1
US20020032462A1 US09329504 US32950499A US2002032462A1 US 20020032462 A1 US20020032462 A1 US 20020032462A1 US 09329504 US09329504 US 09329504 US 32950499 A US32950499 A US 32950499A US 2002032462 A1 US2002032462 A1 US 2002032462A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
bypass
vessel
graft
fitting
end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09329504
Other versions
US6361559B1 (en )
Inventor
Russell A. Houser
James G. Whayne
Sidney D. Fleischman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADVANCED BYPASS TECHNOLOGIES Inc
Houser Russell A
Original Assignee
ADVANCED BYPASS TECHNOLOGIES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/064Blood vessels with special features to facilitate anastomotic coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/32053Punch like cutting instruments, e.g. using a cylindrical or oval knife
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B2017/1107Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis for blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B2017/1135End-to-side connections, e.g. T- or Y-connections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/30Surgical pincettes without pivotal connections
    • A61B2017/306Surgical pincettes without pivotal connections holding by means of suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes

Abstract

A sutureless anastomosis systems for securing a bypass graft to a host vessel or other tubular structure including a bypass graft and fitting. A compression mechanism may be used with the system for attachment of the bypass graft to the fitting. An electrode is connected to the fitting and an energy source. The energy source transmits energy to the electrode and causes the adjacent tissue to rise in temperature and bond to a vessel or fitting.

Description

  • [0001]
    This application is related to the following applications: co-pending Provisional application Serial No. 60/111,948 filed Dec. 11, 1998; co-pending Provisional application Serial No. 60/088,705 filed Jun. 10, 1998; co-pending U.S. application Ser. No. 08/966,003 filed Nov. 7, 1997; co-pending Provisional application Serial No. 60/030,733 filed Nov. 8, 1996; and co-pending U.S. application Ser. No. 08/932,566 filed Sep. 19, 1997.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The invention relates to devices for deploying and securing the ends of bypass grafts and for providing a fluid flow passage between at least two vessel regions or other tubular structure regions. More particularly, the invention relates to bypass grafts that are thermally secured at target vessel locations thereby producing a fluid flow passage from the first vessel location through the bypass graft to the second vessel location. The bypass grafts and deployment systems of the invention do not require stopping or re-routing blood flow to perform an anastomoses between a bypass graft and a host vessel. Accordingly, this invention describes sutureless anastomosis systems that do not require cardiopulmonary bypass support when treating coronary artery disease.
  • [0003]
    Stenosed blood vessels may cause ischemia and lead to tissue infarction. Conventional techniques to treat partially or completely occluded vessels include balloon angioplasty, stent deployment, atherectomy, and bypass grafting. Coronary artery bypass grafting (CABG) procedures to treat coronary artery disease have traditionally been performed through a thoracotomy with the patient placed on cardiopulmonary bypass support and using cardioplegia to induce cardiac arrest. Cardiac protection is required when performing bypass grafting procedures having prolonged ischemia times. Current bypass grafting procedures involve interrupting blood flow to suture or staple the bypass graft to the host vessel wall and create the anastomoses. When suturing or clipping the bypass graft to the host vessel wall, a generally large incision is made through the vessel and the bypass graft is sewn to the host vessel wall such that the endothelial layers of the bypass graft and vessel face each other. Bypass graft intima to host vessel intima apposition reduces the incidence of thrombosis associated with biological reactions that result from blood contacting the epithelial layer of a harvested bypass graft. This is especially relevant when using harvested vessels that have a small inner diameter (e.g. ≦2 mm).
  • [0004]
    Less invasive attempts for positioning bypass grafts at target vessel locations have used small ports to access the anatomy. These approaches use endoscopic visualization and modified surgical instruments (e.g. clamps, scissors, scalpels, etc.) to position and suture the ends of the bypass graft at the host vessel locations. Attempts to eliminate the need for cardiopulmonary bypass support while performing CABG procedures have benefited from devices that stabilize the motion of the heart, retractors that temporarily occlude blood flow through the host vessel, and shunts that re-route the blood flow around the anastomosis site. Stabilizers and retractors still require significant time and complexity to expose the host vessel and suture the bypass graft to the host vessel wall. Shunts not only add to the complexity and length of the procedure, but they require a secondary procedure to close the insertion sites proximal and distal to the anastomosis site.
  • [0005]
    Attempts to automate formation of sutureless anastomoses have culminated in mechanical stapling devices. Mechanical stapling devices have been proposed for creating end-end anastomoses between the open ends of transected vessels. Berggren, et al propose an automatic stapling device for use in microsurgery (U.S. Pat. Nos. 4,607,637; 4,624,257; 4,917,090; and 4,917,091). This stapling device has mating sections containing pins that are locked together after the vessel ends are fed through lumens in the sections and everted over the pins. This stapling device maintains intima to intima apposition for the severed vessel ends but has a large profile and requires impaling the everted vessel wall with the pins. Sakura describes a mechanical end-end stapling device designed to reattach severed vessels (U.S. Pat. No. 4,214,587). This device has a wire wound into a zig-zag pattern to permit radial motion and contains pins bonded to the wire that are used to penetrate tissue. One vessel end is everted over and secured to the pins of the end-end stapling device, and the other vessel end is advanced over the end-end stapling device and attached with the pins. Sauer, et al proposes another mechanical end-end device that inserts mating pieces into each open end of a severed vessel (U.S. Pat. No. 5,503,635). Once positioned, the mating pieces snap together thereby bonding the vessel ends. These end-end devices are amenable to reattaching severed vessels but are not suitable to producing end-end anastomoses between a bypass graft and an intact vessel, especially when exposure to the vessel is limited.
  • [0006]
    Mechanical stapling devices have also been proposed for end-side anastomoses. These devices are designed to insert bypass grafts, attached to the mechanical devices, into the host vessel through a large incision and secure the bypass graft to the host vessel. Kaster describes vascular stapling apparatus for producing end-side anastomoses (U.S. Pat. Nos. 4,366,819; 4,368,736; and 5,234,447). Kaster's end-side apparatus is inserted through a large incision in the host vessel wall. The apparatus has an inner flange that is placed against the interior of the vessel wall, and a locking ring that is affixed to the fitting and contains spikes that penetrate into the vessel thereby securing the apparatus to the vessel wall. The bypass graft is itself secured to the apparatus in the everted or non-everted position through the use of spikes incorporated in the apparatus design.
  • [0007]
    U.S. Surgical has developed automatic clip appliers that replace suture stitches with clips (U.S. Pat. Nos. 5,868,761; 5,868,759; and 5,779,718). These clipping devices have been demonstrated to reduce the time required when producing the anastomosis but still involve making a large incision through the host vessel wall. As a result, blood flow through the host vessel must be interrupted while creating the anastomoses.
  • [0008]
    Gifford, et al provides end-side stapling devices (U.S. Pat. No. 5,695,504) that secure harvested vessels to host vessel walls maintaining intima to intima apposition. This stapling device is also inserted through a large incision in the host vessel wall and uses staples incorporated in the device to penetrate into tissue and secure the bypass graft to the host vessel.
  • [0009]
    Walsh, et al propose a similar end-side stapling device (U.S. Pat. Nos. 4,657,019; 4,787,386; 4,917,087). This end-side device has a ring with tissue piercing pins. The bypass graft is everted over the ring; then, the pins penetrate the bypass graft thereby securing the bypass graft to the ring. The ring is inserted through a large incision created in the host vessel wall and the tissue piercing pins are used to puncture the host vessel wall. A clip is then used to prevent dislodgment of the ring relative to the host vessel.
  • [0010]
    The end-side stapling devices previously described require insertion through a large incision, which dictates that blood flow through the host vessel must be interrupted during the process. Even though these and other clipping and stapling end-side anastomotic devices have been designed to decrease the time required to create the anastomosis, interruption of blood flow through the host vessel increases the morbidity and mortality of bypass grafting procedures, especially during beating heart CABG procedures. A recent experimental study of the U.S. Surgical One-Shot anastomotic clip applier observed abrupt ventricular fibrillation during four of fourteen internal thoracic artery to left anterior descending artery anastomoses in part due to coronary occlusion times exceeding 90 seconds (Heijmen, et al. A novel one-shot anastomotic stapler prototype for coronary bypass grafting on the beating heart: feasibility in the pig. J Thorac Cardiovasc Surg. 117:117-25; 1999).
  • [0011]
    All documents cited herein, including the foregoing, are incorporated herein by reference in their entireties for all purposes.
  • SUMMARY OR THE INVENTION
  • [0012]
    The present inventions provide sutureless anastomosis systems that enable a physician to quickly and accurately secure a bypass graft to a host vessel or other tubular body structure. In addition, the invention enables the physician to ensure bypass graft stability, and prevent leaking at the vessel attachment points. The delivery systems of the invention do not require stopping or re-routing blood flow while producing the anastomosis as compared to some current techniques that require interrupting blood flow to suture, clip, or staple a bypass graft to the vessel wall.
  • [0013]
    A need for bypass grafts and delivery systems that are capable of quickly producing an anastomosis between a bypass graft and a host vessel wall without having to stop or re-route blood flow. These anastomoses must withstand the pressure exerted by the pumping heart and ensure that blood does not leak from the anastomoses into the thoracic cavity, abdominal cavity, or other region exterior to the vessel wall.
  • [0014]
    Current techniques for producing anastomoses during coronary artery bypass grafting procedures involve placing the patient on cardiopulmonary bypass support, arresting the heart, and interrupting blood flow to suture or staple a bypass graft to the coronary artery and aorta. Cardiopulmonary bypass support is associated with substantial morbidity and mortality. The embodiments of the invention are used to position and secure bypass grafts at host vessel locations without stopping or rerouting blood flow. Accordingly, the embodiments of the invention do not require cardiopulmonary bypass support and arresting the heart while producing anastomoses to the coronary arteries. In addition, the invention generally mitigates risks associated with suturing or clipping the bypass graft to the host vessel, namely bleeding at the attachment site and collapse of the vessel around the incision point.
  • [0015]
    The invention addresses vascular bypass graft treatment regimens requiring end-to-end anastomoses and end-to-side anastomoses to attach bypass grafts to host vessels. The scope of the invention includes systems to position and thermally secure bypass grafts used to treat vascular diseases such as atherosclerosis, arteriosclerosis, fistulas, aneurysms, occlusions, and thromboses. In addition, the systems may be used to bypass stented vessel regions that have restenosed or thrombosed. The bypass grafts and delivery systems of the invention are also used to attach the ends of ligated vessels, replace vessels harvested for bypass grafting procedures (e.g. radial artery), and re-establish blood flow to branching vessels which would otherwise be occluded during surgical grafting procedures (e.g. the renal arteries during abdominal aortic aneurysm treatment). In addition, the invention addresses other applications including arterial to venous shunts for hemodialysis patients, bypassing lesions and scar tissue located in the fallopian tubes causing infertility, attaching the ureter to the kidneys during transplants, and bypassing gastrointestinal defects (e.g. occlusions, ulcers).
  • [0016]
    One aspect of the invention provides fittings constructed from a metal (e.g. titanium), alloy (e.g. stainless steel or nickel titanium), thermoplastic, thermoset, composite of the aforementioned materials, or other suitable material, and designed to exert radial force at the vessel attachment points to maintain bypass graft patency. The fittings are advanced through the delivery system and are attached to the vessel wall at target locations. The delivery system is a combination of tear-away sheath, dilator, guidewire, and needle designed to be inserted into the vessel at the desired locations. The tubing, hub and valve of the tear-away sheath are configured to split so the entire sheath may be separated and removed from around the bypass graft after attaching the bypass graft to the host vessel. A plunger is used to insert the bypass graft and fitting combination through the sheath and into the vessel. The dilator and needle may incorporate advanced features, such as steering, sensing, and imaging, used to facilitate placing and locating the bypass graft and fitting combination.
  • [0017]
    In accordance with the invention, the fittings incorporate mechanisms to thermally secure a bypass graft to a host vessel. One fitting configuration produces an anastomosis between a harvested bypass graft and a host vessel such that only the endothelial layer of the bypass graft is exposed to the interior of the host vessel. The invention also describes fittings designed to permit retrograde flow past the anastomosis site so as to maintain flow through the lesion and to branching vessels located proximal to the anastomosis site. A further aspect of the invention provides fittings having branches to accommodate multiple bypass grafts using a single proximal anastomosis.
  • [0018]
    Fittings and accompanying components constructed from a conductive material may be used as electrodes to deliver radiofrequency energy to tissue contacting the electrode. Radiofrequency energy is applied to each fitting component (unipolar to an indifferent electrode, or bipolar between fitting components) to thermally secure the bypass graft to the vessel wall. Radiofrequency energy produces ohmic heating of adjacent tissue causing it to coagulate to the electrodes and locally shrinking the vessel wall around the fitting to produce an interference fit between the vessel wall and the bypass graft fitting. This not only thermally secures the bypass graft to the vessel wall but also prevents leaking around the bypass graft to host vessel interface.
  • [0019]
    Still other objects and advantages of the present invention and methods of construction of the same will become readily apparent to those skilled in the art from the following detailed description, wherein only the preferred embodiments are shown and described, simply by way of illustration of the best mode contemplated of carrying out the invention. As will be realized, the invention is capable of other and different embodiments and methods of construction, and its several details are capable of modification in various obvious respects, all without departing from the invention. Accordingly, the drawing and description are to be regarded as illustrative in nature, and not as restrictive.
  • BRIEF DESCRIPTION OF DRAWINGS
  • [0020]
    [0020]FIG. 1 shows a heart containing multiple bypass grafts positioned and secured to host vessels;
  • [0021]
    [0021]FIGS. 2a-b are side-sectional views of a bypass graft support structure incorporating fittings;
  • [0022]
    [0022]FIG. 2c shows a support structure, with an attached bypass graft, thermally secured to a host vessel at two locations;
  • [0023]
    [0023]FIGS. 3a-c show an end-to-end fitting that thermally secures a bypass graft to a host vessel;
  • [0024]
    [0024]FIGS. 4a-i show retaining rings used to bond the bypass graft to the fitting and/or the fitting to the vessel wall;
  • [0025]
    [0025]FIGS. 5a-e show retaining ring embodiments that act as electrodes for thermally securing the fitting to the host vessel wall;
  • [0026]
    [0026]FIGS. 6a-d show expandable retaining ring embodiments capable of serving as electrodes for thermally securing the fitting to the host vessel wall;
  • [0027]
    [0027]FIGS. 6e-f show an expandable retaining ring including petals to make an end-to-end fitting able to produce an end-to-side anastomosis;
  • [0028]
    [0028]FIGS. 7a-b show a bypass graft everted around and attached to end-to-end fittings, and secured to the host vessel;
  • [0029]
    [0029]FIGS. 8a-d show a bypass graft secured to the host vessel;
  • [0030]
    [0030]FIGS. 9a-c show a delivery system;
  • [0031]
    [0031]FIG. 10 shows a delivery system;
  • [0032]
    [0032]FIG. 11 shows a two-way plunger used to deliver the bypass graft and fitting combination through the sheath and into the host vessel;
  • [0033]
    [0033]FIGS. 12a-c show an alternative plunger embodiment;
  • [0034]
    [0034]FIG. 13 shows a bypass graft and fitting combination being inserted through a sheath;
  • [0035]
    [0035]FIG. 14 shows a schematic of the system used to thermally secure a bypass graft to a host vessel wall;
  • [0036]
    [0036]FIGS. 15a-e show an end-to-side fitting that may be delivered past a vessel wall without the need for a sheath;
  • [0037]
    [0037]FIGS. 16a-g show alternative end-to-side fitting embodiments that may be delivered past a host vessel wall without the need for a sheath;
  • [0038]
    [0038]FIGS. 17a-b show an end-to-side fitting incorporating a retaining ring with petals;
  • [0039]
    [0039]FIGS. 18a-g show an end-to-side fitting for host vessels having small and medium diameters;
  • [0040]
    [0040]FIGS. 19a-f show a foldable end-to-side fitting;
  • [0041]
    [0041]FIGS. 20a-b show an end-to-side fitting incorporating an electrode structure in the petals;
  • [0042]
    [0042]FIGS. 21a-d show an end-to-side fittings having an electrode incorporated in the fitting;
  • [0043]
    [0043]FIGS. 22a-b show an end-to-side fitting containing an electrode and able to fold into a low profile;
  • [0044]
    [0044]FIG. 23 shows a bypass graft and fitting combination attached to a host vessel and designed to preserve flow proximal to the anastomosis site;
  • [0045]
    [0045]FIGS. 24a-b are close-up views of the bypass graft and fitting combination shown in FIG. 23;
  • [0046]
    [0046]FIGS. 24c-h show alternative bypass graft and fittings designed to maintain retrograde blood flow;
  • [0047]
    [0047]FIG. 25 is a schematic of the system used to thermally secure the ends of the bypass graft to the vessel wall;
  • [0048]
    [0048]FIGS. 26a-b show an end-to-end bypass graft having an electrode incorporated in the bypass graft;
  • [0049]
    [0049]FIGS. 27a-b show an end-to-end bypass graft having an expandable and compressible electrode secured to the bypass graft;
  • [0050]
    [0050]FIGS. 28a-b show tear-away sheath embodiments;
  • [0051]
    FIGS. 29 shows a fitting system;
  • [0052]
    [0052]FIGS. 30a-d show other embodiments of a fitting system;
  • [0053]
    [0053]FIGS. 31a-d show other embodiments of a fitting system; and
  • [0054]
    [0054]FIGS. 32a-b show other embodiments of a fitting system.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • [0055]
    The fittings and delivery systems are intended to produce anastomoses between bypass grafts and host vessels to treat vascular abnormalities such as stenoses, thromboses, other occlusions, aneurysms, fistulas, or other indications requiring a bypass graft. The systems are useful in bypassing stented vessels that have restenosed. Some approaches to treating stenosed stents have not been successful and reliable at removing the lesion and opening the vessel lumen. The approach described by this invention, produces a blood flow conduit around the stented lesion and mitigates concerns associated with damaging the stent or forming emboli when removing deposits attached to the stent. The fittings are used for securing and supporting the ends of transected vessels cut during organ transplantations. The embodiments also provide mechanisms to secure branching vessels to a replacement graft during surgical procedures in which the branching vessels would otherwise be occluded from the blood flow (e.g. reattaching the renal arteries, mesenteric artery, celiac artery, and intercostal arteries during treatment of abdominal aortic aneurysms that are pararenal, suprarenal, or thoracoabdominal in classification).
  • [0056]
    Referring more particularly to the drawings, FIG. 1 illustrates bypass grafts secured to host vessels during coronary artery bypass grafting (CABG) procedures. Bypass graft 16 provides a blood flow passage from the aorta to the right coronary artery. An end-to-side fitting 18 is used to secure the proximal end of the bypass graft 16 to the aorta and fitting 18 or end-to-end fitting 20 is used to secure the distal end of the bypass graft to the right coronary artery. Bypass graft 16 provides a blood flow passage along a small vessel such as a coronary artery by securing the bypass graft to the host vessel with fittings 18, 20. Bypass graft 16 is secured to the aorta with a fitting 18, 20 that branches into distinct bypass grafts which are further secured to the left anterior descending artery and circumflex artery using fittings 18, 20. The bypass grafts and fittings in these examples demonstrate representative applications and should not limit the scope of use for the embodiments of the invention. It should be noted that the combination of fittings used to secure a bypass 16 graft to a host vessel, along a host vessel, or between host vessels depends on the application.
  • [0057]
    The bypass graft 16 may be a synthetic graft material biological bypass graft, harvested vessel, or other tubular body structure, depending on the indication. The harvested vessels may be an internal mammary artery, radial artery, saphenous vein or other body tubing. Harvested vessels may be dissected using newer minimally invasive, catheter-based techniques or standard surgical approaches. Fittings in accordance with the invention are designed to attach bypass grafts to host vessels (or other tubular structures). The fittings 18, 20 used to position and attach such bypass grafts 16 are extensions of the collet and grommet embodiments described in U.S. application Ser. No. 08/966,003 filed Nov. 7, 1997. An advantage of biological bypass grafts over available synthetic materials is the reduction in thrombosis, especially when using small diameter (e.g. ≦2 mm) bypass grafts. The fittings and delivery systems of the invention are generally equally effective at positioning and securing all types of bypass grafts, biological and synthetic.
  • [0058]
    Synthetic bypass grafts may be manufactured by extruding, injection molding, weaving, braiding, or dipping polymers such as PTFE, expanded PTFE, urethane, polyamide, nylon, silicone, polyethylene, collagen, polyester or composites of these representative materials. These materials may be fabricated into a sheet or tubing using one or a combination of the stated manufacturing processes. The sides of sheet materials may be bonded using radiofrequency energy, laser welding, ultrasonic welding, thermal bonding, sewing, adhesives, or a combination of these processes to form tubing. The synthetic bypass graft may also be coated, deposited, or impregnated with materials, such as paralyne, heparin, hydrophilic solutions, or other substrates designed to reduce thrombosis or mitigate other risks that potentially decrease the patency of synthetic bypass grafts. The primary advantage of synthetic bypass graft materials is the ability to bond the bypass graft to the fittings prior to starting the procedure or incorporate the fittings into the bypass graft design by injection molding or other manufacturing process. Currently, synthetic bypass grafts are indicated for blood vessels having medium and large diameters (e.g. >3 mm), such as peripheral vessels, tubular structures such as the fallopian tubes, or shunts for hemodialysis. However, medical device manufacturers such as Possis Medical, Inc. and Thoratec Laboratories, Inc. are clinically evaluating synthetic bypass grafts for coronary indications.
  • [0059]
    Support members may be incorporated into a graft as referenced in co-pending U.S. application Ser. No. 08/932,566 filed Sep. 19, 1997 and in co-pending U.S. application Ser. No. 08/966,003 filed Nov. 7, 1997. When using synthetic bypass grafts, the support members may be laminated between layers of graft material. The synthetic bypass graft 16 may be fabricated by extruding, injection molding, or dipping a primary layer of the graft over a removable mandrel; positioning, winding or braiding the support members on the primary layer; and extruding, injection molding, or dipping a secondary layer over the material/support member combination. The support members preferably have a shape memory. Memory elastic alloys, such as nickel titanium, exhibiting stress-induced martensite characteristics may be used to reinforce the bypass graft and/or vessel wall and prevent permanent deformation upon exposure to external forces.
  • [0060]
    Alternatively, synthetic bypass grafts 16 incorporating support members may be fabricated using cellulosic materials such as regenerated cellulose. Cellulosic materials may be extruded, wrapped, injection molded, or dipped in layers to laminate the support members between graft material layers. Cellulosics, and other such materials, which have a high water adsorption rate, are relatively stiff when dehydrated and flexible when hydrated. This characteristic provides a means to maintain a self-expanding material such as the support members in a collapsed state. The cellulosic material in its dry, stiff state counteracts the radial force of the self-expanding support members and prevents the graft from expanding until it becomes hydrated, thus more flexible. When the bypass graft 16 is inserted through the delivery system and into the vessel, the cellulosic material contacts fluid, causing it to become more flexible and the support members of the bypass graft 16 to expand towards its resting state and the graft into intimate contact with the vessel wall.
  • [0061]
    Biological bypass grafts 16 may be reinforced with a support structure 30 as shown in FIGS. 2a-c. This support structure 30 may consist of a wire material wound into a helix or braided into a mesh. Other reinforcing structures that limit expansion of the bypass graft 16 may also be used. The support structure 30 is bonded to fittings at each end by spot welding, crimping, soldering, ultrasonic welding, thermal bonding, adhesively bonding, or other bonding process, depending on the materials. The support structure 30 defines a lumen into which the bypass graft 16 is inserted. After advancing the bypass graft 16 through the support structure 30, the bypass graft 16 is secured to the fittings at each end of the support structure 30. The support structure 30 generally reduces the potential for kinking of the bypass graft 16, limits the radial expansion of the bypass graft 16, prevents aneurysm formation, and increases the burst strength of the bypass graft 16. By mitigating the failure mechanisms of bypass grafts 16 such as the saphenous veins, such reinforcing structures may improve the long-term durability and patency of the bypass graft 16.
  • [0062]
    The support structure 30 may alternatively be a synthetic graft material formed into a tube, with or without support members. The support structure 30 may be fabricated from a polymer that is macroporous to permit blood leaking through the bypass graft to flow outside the support structure. Biological bypass grafts typically have branches that are sutured or stapled closed while harvesting the vessel and may leak for a period of time immediately after implantation. Blood leaking through a biological bypass graft enclosed in a nonporous or microporous (e.g. pore size <8 μm) support structure may accumulate between the bypass graft and the support structure 32 and occlude the bypass graft depending on the pressure gradient between the inside of the bypass graft 16 and the space between the graft and the support structure 30. For applications where the biological bypass graft is completely impervious to leaking or where the external surface of the biological bypass graft can be bonded to the support structure (e.g. using adhesives), nonporous or microporous support structures may be used.
  • [0063]
    The support structure 30 is preferably affixed to the fittings before attaching the bypass graft 16 to the fittings. This ensures the support structure reinforces the entire length of the bypass graft 16. Using a support structure that is not affixed to the fittings may cause kinking of the bypass graft in the region between the anastomosis site and the end of the support structure, which defines a region where the bypass graft is not reinforced. The support structure 30 incorporates fittings at each end for attachment of a harvested vessel 16 and for securing the bypass graft to the host vessel 38. As shown in FIGS. 2a-b, a grasping tool 50 including a suture with a noose or a wire with a distal gripping end such as forceps, is fed through the support structure and is used to grab the harvested vessel 16. The harvested vessel 16 is pulled through the support structure 30 such that a length of the harvested vessel extends beyond both ends of the support structure fittings. FIG. 2c shows the ends of the harvested vessel 16 everted around the support structure fittings and secured at the notched regions 40 of the fittings using retaining rings 42. Electrodes 44 may be included in the support structure to thermally secure the support structure 30 and the bypass graft to the host vessel wall 39. The blood flowing through the bypass graft 16 contacts the endothelial layers of the harvested bypass graft and host vessel thereby minimizing the potential for thrombosis or biological reactions to foreign materials.
  • [0064]
    When microporous or nonporous support structures may be used, the support structures may serve dual purposes. They may function as synthetic bypass grafts designed to produce two end-end anastomoses at opposite ends of the bypass grafts. The support structure/bypass grafts may be configured with one or both ends incorporating fittings that enable end-side anastomoses. They also function as sutureless anastomosis devices to attach harvested vessels and reinforce the biological bypass grafts. This combined functionality minimizes the product portfolio required for bypass grafting indications because a single device may reinforce and facilitate attaching harvested vessels between anastomosis sites and act as a synthetic bypass graft capable of producing sutureless anastomoses.
  • [0065]
    The bypass graft fittings are constructed from a metal (e.g. titanium), alloy (e.g. stainless steel or nickel titanium), thermoplastic, thermoset plastic, silicone or combination of the aforementioned materials into a composite structure; other materials may also be used. The fittings may be coated with materials such as paralyne or other hydrophilic substrates that are biologically inert and reduce the surface friction. Alternatively, the fittings may be coated with heparin or thrombolytic substances designed to prevent thrombosis around the attachment point between the bypass graft and the host vessel. The fittings consist of one or more components designed to secure a bypass graft to the fitting and the fitting to the host vessel wall for a fluid tight bond between the bypass graft and the host vessel. The fittings may be used at end-to-end anastomoses for applications where retrograde blood flow is not essential (e.g. total occlusions) as shown in FIGS. 2c and 8 a; end-to-side anastomoses for medium and small diameter vessels (e.g. peripheral vessels and coronary vessels) where retrograde blood flow is essential as shown in FIG. 19c; and end-to-side anastomoses for large diameter vessels (e.g. the aorta) as shown in FIG. 18a. The end-side fittings may be configured to orient the bypass graft at an angle, A, relative to the host vessel ranging between approximately 30 and 90 degrees. This helps optimize fluid flow through the bypass graft.
  • [0066]
    [0066]FIGS. 3a-cshow an end-end fitting 20 designed to secure bypass grafts constructed from an internal mammary artery, radial artery, saphenous vein, or other harvested vessel such that only the endothelial layer of the bypass graft is exposed to blood flow. In FIGS. 3a-c, the bypass graft 16 is fed through the interior of the fitting and is wrapped around the distal end. A grasping tool may be used to pull the bypass graft through the fitting, especially when using long fittings. An everting tool may be used to wrap the bypass graft around the fitting prior to securing the bypass graft to the fitting. After the bypass graft is everted around the fitting, a retaining ring 62 is positioned over the everted bypass graft to compress it against the fitting. This secures the bypass graft to the fitting. The retaining ring 62 is connected to a signal wire 64 that is routed to a radiofrequency generator to deliver radiofrequency energy to the retaining ring 62 for thermal securing of the fitting to the host vessel 38.
  • [0067]
    [0067]FIGS. 4a-i show embodiments of the retaining ring 62 used to secure the bypass graft 16 to the fitting. The retaining rings may be fabricated from a metal, alloy, thermoplastic material, thermoset, composite of these materials, or other material. However, the retaining rings must permit at least 30% enlargement in diameter without becoming permanently deformed. Thus, after placement, the retaining ring will compress around the bypass graft and fitting interface to form a secure seal. In FIGS. 4a-f, the retaining ring is a preshaped member having a rectangular, circular, or elliptical cross-section and eyelets 63 that facilitate positioning the retaining ring over the fitting and may be used to suture the retaining ring closed for additional support. The retaining ring shown in FIGS. 4a-b has a preshaped member wound beyond a single turn. When the eyelets 63 are squeezed together, the diameter of the retaining ring enlarges making it easier to position over the bypass graft and fitting combination. In FIGS. 4c-d, the retaining ring 62 is a coiled wire extending to just less than a single turn. When the eyelets 63 are spread apart, the diameter of the retaining ring enlarges.
  • [0068]
    The retaining ring 62 shown in FIG. 4g is a preshaped member wound beyond a single turn and having radiused edges and ends. One representative fabrication process for the preshaped retaining ring involves forming the raw material into a desired geometry and exposing the material to sufficient heat to anneal the material into this predetermined shape. This process applies to metals (e.g. nickel titanium) and polymers. The preshaped retaining ring configuration is expanded by inserting the expansion tool into the middle of the retaining ring and opening the expansion tool thereby enlarging the diameter of the retaining ring. Once the retaining ring is positioned, the force causing the retaining ring to enlarge is removed causing the retaining ring to return towards its pre-formed shape thereby compressing the bypass graft over the fitting. This retaining ring may also be used to secure a fitting to a host vessel since this retaining ring may be expanded to expose an opening between opposite ends adapted for placement over the host vessel. Once positioned over the host vessel to fitting interface, the retaining ring is allowed to return towards its preformed shape thereby compressing the host vessel against the fitting.
  • [0069]
    The retaining rings may incorporate elastic memory characteristics. For example, a retaining ring shown in FIG. 4g, may be manufactured from a deformable material and crimped over the bypass graft to fitting interface or host vessel wall to fitting interface for securing purposes. FIG. 4h shows another retaining ring that does not incorporate elastic memory characteristics. This retaining ring is opened for positioning around the bypass graft to fitting interface or the host vessel to fitting interface and is closed thereby causing the teeth to engage and lock the retaining ring in the closed position. Further closing the retaining ring causes the diameter to decrease and increase compression. FIG. 4i shows another retaining ring 62 configuration having a preshaped member wound beyond a single turn. This embodiment also permits expansion of the retaining ring to facilitate positioning, but is configured to form a complete ring in its resting shape.
  • [0070]
    [0070]FIGS. 5a-e and FIGS. 6a-f show retaining rings 62 which are particularly useful when utilizing the thermal securing process in attaching a bypass graft and fitting to a host vessel. The retaining rings 62 may be embedded in the bypass graft when using synthetic materials or advanced over the bypass graft and fitting interface to produce an interference fit at the bond joint. The retaining rings 62 shown in FIGS. 6a-d may be enlarged while being deployed around the bypass graft and fitting combination and allowed to return to its preformed shape, once positioned, thereby securing the bypass graft to the fitting and providing a fluid tight seal. The retaining rings 62 have numerous edges 65 including straight notches as shown in FIG. 5b, slanted notches as shown in FIG. 5d, holes through the retaining ring, spaces defined by mesh material, or other geometry forming edges. The edges 65 produce high current densities when radiofrequency energy is transmitted through the retaining rings. The retaining ring electrodes have several spaces into which the vessel can shrink and coagulum can infiltrate thereby providing adherence between the host vessel and the retaining ring 62. The retaining rings 62, shown in FIGS. 6e-f, incorporate petals 67 so that an end-to-end fitting may be used for an end-to-side anastomosis.
  • [0071]
    The bypass graft may be bonded to the fittings prior to securing the fittings to the host vessel. This step may be performed outside the patient to allow the physician to ensure a strong and leak resistant bond. Another advantage of the fittings is that they only expose the endothelial layer of a biological bypass graft to blood flow which generally prevents thrombosis and other interactions between foreign materials and blood.
  • [0072]
    Conventional anastomosis techniques require a relatively large incision through the vessel wall and use of sutures, commercially available clips, or stapling devices to bond the end of the bypass graft to the exposed edges of the vessel wall. In certain cases, the structural integrity of the vessel wall may be weakened causing the vessel to collapse at the anastomosis site, especially when the bypass graft is not appropriately aligned to the host vessel incision. Therefore, the delivery system embodiments are designed to access the vessel through a small puncture in the vessel wall. The delivery systems are designed to prevent excess blood loss when accessing the host vessel and deploying the bypass graft and fitting combination thereby eliminating the need to stop or re-route blood flowing through the host vessel. This approach also generally improves the leak resistance around the fitting due to elastic compression of the vessel wall around the fitting and aligns the bypass graft to the host vessel wall at the anastomosis site.
  • [0073]
    The particular delivery system embodiment used depends on the application. For catheter-based bypass grafting applications, further referenced in U.S. application Ser. No. 08/966,003 filed Nov. 7, 1997, a catheter (e.g. guiding member) is intralumenally advanced to the proximal anastomosis site. A puncture device (e.g. needle) is used to perforate the vessel wall and enable advancing a guiding member exterior to the vessel. A dilating member expands the opening to atraumatically advance the guiding member through the vessel wall. A balloon may be attached to the guiding member and inflated to restrain the guiding member outside the host vessel and to prevent leaking at the puncture site. The balloon is deflated while the guiding member is advanced through the vessel wall. The catheter is then manipulated to the distal anastomosis site. The puncture device is used to perforate the vessel wall and access the interior of the vessel at the distal anastomosis site. A guidewire may be advanced through the puncture device or the puncture device may function as a guidewire to provide a passage to advance the guiding member into the interior of the host vessel at the distal anastomosis site. Once the guiding member is advanced through the puncture and into the interior of the host vessel, the bypass graft is advanced inside or outside the guiding member to the distal anastomosis site. A stylet may be used to advance the bypass graft along the guiding member or maintain the position of the bypass graft as the guiding member is retracted. The balloon attached to the guiding member may again be inflated to keep the guiding catheter within the vessel at the distal anastomosis site and prevent leaking. The bypass graft is secured to the host vessel at the distal anastomosis site. The guiding member may be retracted so the bypass graft is able to contact the host vessel wall at the proximal anastomosis site. If a balloon was inflated to maintain the position of the guiding member within the vessel, it must be deflated prior to retracting the guiding member through the vessel wall. The bypass graft is then secured to the host vessel wall at the proximal anastomosis site and the guiding member is removed leaving the bypass graft as a conduit for blood to flow from the proximal anastomosis to the distal anastomosis. The fittings used to secure the bypass graft to the host vessel wall at the proximal and distal anastomosis sites depend on the application and whether retrograde blood flow through the anastomosis site is desired. Some fittings used for end-to-end anastomoses may not permit retrograde blood flow.
  • [0074]
    [0074]FIGS. 7a-b show fittings 60 attached in-line along a vessel 38. The fittings 60 are designed to support the bypass graft at the vessel wall insertion site 90 and prevent the host vessel 38 from constricting the diameter of the bypass graft 16. The bypass graft 16 is advanced through the fitting 60 and is everted around the distal end of the fitting 60. A retaining ring 42 is used to secure the bypass graft 16 to the fitting 60 and is positioned within the notched region 40.
  • [0075]
    The bypass graft may be secured to the vessel by transmitting radiofrequency energy to electrodes 44 attached to the bypass graft 16. The electrodes 44 may be conductive fittings or retaining rings bonded to the bypass graft as previously described. The electrodes 44 may be fabricated from stainless steel, nickel titanium, platinum, platinum iridium, gold, titanium, tungsten, tantalum, or other material and may provide structural support to the bypass graft. Electrodes 44 may be incorporated into the fittings to thermally secure the fitting and the bypass graft to the vessel wall at each anastomosis. The retaining rings may serve to bond the bypass graft to the fitting and act as the electrodes for thermal securing. Alternatively, the electrodes may be added to the fitting as separate components aside from the retaining rings. When fittings are laminated within layers of synthetic bypass graft material eliminating the need for retaining rings, the electrodes will be bonded to the fittings or bypass graft during manufacturing. These end-to-end fittings are particularly useful when performing in-line anastomoses along a vessel and around a vascular abnormality. They are also useful to treat total occlusions when retrograde blood flow is not beneficial.
  • [0076]
    For surgical applications, physicians may access the anastomosis sites from the exterior surface of the host vessel. Unlike the catheter-based approach where the bypass graft is advanced past the distal end of the delivery catheter during deployment, the delivery system of the surgical approach must permit removal after both ends of the bypass graft have been secured and the delivery system resides around the attached bypass graft.
  • [0077]
    [0077]FIGS. 8a-d show that the bypass graft 16 does not need to be everted. For example, synthetic bypass grafts may be attached to the exterior of the fitting 65. The fitting 65 may be laminated between layers of the bypass graft 16.
  • [0078]
    [0078]FIGS. 9a-c show steps to position a bypass graft and fitting combination through a vessel wall 39. A needle 100 is inserted through a dilator 102 and a sheath 104. The needle, dilator, and sheath combination is positioned at the target vessel location. Especially for minimal access procedures involving endoscopic visualization and manipulation through small incisions, sensors may be incorporated in the needle, dilator, and/or sheath to position the delivery system at the target location. The sensors can include ultrasonic transducers, such as those fabricated from piezoelectric material, doppler crystals, infrared transducers, or fiberoptics. Alternatively a lumen may permit the injection of radiopaque contrast material within the vessel to verify the position using fluoroscopy.
  • [0079]
    [0079]FIG. 9a illustrates needle 100 being used to puncture the vessel wall 39 and advancing into the interior of the vessel 38. The needle 100 may be designed with a tapered or stepped distal end to restrict movement of the needle beyond the end of the dilator 102 and prevent perforating the opposite side of the vessel or unwanted anatomy. A guidewire (not shown) may be advanced through the needle to provide a path over which the dilator and sheath may be advanced. When using a guidewire, the needle may be retracted to prevent unwanted perforations or abrasions to the vessel or adjacent anatomy. The dilator 102 is then advanced over the needle 100 or guidewire into the host vessel. Subsequently, the needle 100 (if not already retracted to insert the guidewire) may be removed from the vessel or retracted inside the dilator 102. The dilator 102 is tapered to provide a smooth transition when advancing through the vessel wall 39. The vessel wall 39 forms a seal around the dilator 102 to preventing excess blood leakage from the vessel. A sheath 104 having a radius or tapered distal end forms a smooth transition around the dilator 102. Once the dilator 102 is positioned within the vessel 38, the sheath 104 may be advanced over the dilator 102 and into the vessel 38 as shown in FIG. 9b. At this point, the dilator 102 may be removed. Insertion of a sheath 104 into a vessel 38 over a dilator 102 and needle 100 is commonly used by physicians when performing the Seldinger technique during catheterization procedures or inserting I.V. catheters into veins for withdrawal of blood or introduction of medicines. The sheath 104 and dilator 102 may be constructed from polyethylene, or other polymer and be extruded or molded into a tube. The sheath 104 and dilator 102 may incorporate a braided layer laminated between two polymers to resist kinking and improve the column strength and torque response. A taper and radius may be formed in the distal end of the dilator and sheath by thermally forming the raw tubing into the desired shape.
  • [0080]
    The hub 106, 108 on the sheath 104 and dilator 102, respectively may be fabricated from polycarbonate, polyethylene, PEEK, urethane or other material and be injection molded, adhesively bonded, or thermally bonded to the tube. The hub 106 contains at least one and preferably two grooves, slits, or series of perforations along the hub to enable the operator to split the hub when removing the sheath from around the bypass graft. The hub 106 houses a hemostatic valve 110 constructed of silicone or other material having a large percent elongation characteristic. The hemostatic valve 110 prevents excess blood loss through the sheath when positioned into the vessel. The valve 110 also incorporates at least one groove, slit, or series of perforations to permit separation when tearing the sheath from around the bypass graft. A side port may be included to aspirate and flush the sheath. The hub may alternatively be a separate piece from the tear-away sheath and be independently removed from around the bypass graft. This hub may include a luer fitting to enable screwing onto a mating piece of the tear-away sheath, or other mechanism to permit removable attachment of the hub to the tear-away sheath. This hub may incorporate at least one groove, slit, or series of perforations to enable splitting the hub to form an opening to remove the hub from around the bypass graft. Alternatively, the hub may include a slot which may be closed to prevent fluid leaking and may be aligned to form an opening for removal from around the bypass graft.
  • [0081]
    The needle 100 and dilator 102 may incorporate a number of additional features to facilitate positioning at the host vessel. For example, a number of sensors may be placed within the tapered region of the dilator such that they face axially or laterally with respect to the axis of the dilator lumen. As a result, imaging modalities may be directed forward or around the periphery of the dilator. For both configurations, the sensors may be oriented around the dilator 102 at known angular increments. Sensors used to position the delivery system include ultrasonic transducers, such as those fabricated from piezoelectric material, infrared transducers, or fiberoptics. For example, four ultrasonic transducers may be placed around the dilator 102 separated by 90 degrees to provide a 3-dimensional interpretation of anatomic structures in front of the dilator to better detect the host vessel. Conventional phased array imaging modalities may be used to derive images extending distal to the dilator 102 or around the circumference of the dilator 102. Sensors may be placed at the distal end of the needle 100 to facilitate positioning the needle at vessel location. The sensors may be used with the dilator sensors to provide better imaging resolution and determine the location of the needle tip relative to the end of the dilator 102.
  • [0082]
    Another feature which may be used in the dilator 102 and needle 100 is the inclusion of unidirectional or bidirectional steering. A steering mechanism may be positioned within the sheath, dilator, and/or needle. Typically, the steering mechanism may include a pull-wire terminating at a flat spring or collar in the sheath, dilator, or needle. The steering system has a more flexible distal section compared to the proximal tube body. When tension is placed on the pullwire, the sheath, dilator, or needle is deflected into a curve which helps direct the delivery system to the target vessel location. The pullwire may be wound, crimped, spot welded or soldered to the flat spring or collar placed in the sheath or dilator. This provides a stable point within the sheath or dilators for the pullwire to exert tensile force thus steer the sheath or dilator. To incorporate steering in the needle, the pullwire may be spot welded or soldered to one side of the needle hypotubing. The proximal tube body of the sheath or dilator may be reinforced by incorporating a helically wound wire within the tube extrusion to provide column support from which to better deflect the distal section.
  • [0083]
    [0083]FIG. 10 shows sheath 118 with at least one groove 120, slit, or series of perforations formed along the tube and hub 122 to provide a tear-away mechanism along at least one side for use after securing the bypass graft to the vessel wall. Alternatively, the sheath 118 may include a section of tubing material pre-split into at least two sections such that the tubing tends to continue to split into two pieces as the sections are pulled apart. This feature is essential for removal of the sheath 118 from around a bypass graft 16 when the sheath 118 is unable to slide past the opposite end of the bypass graft 16. Support material incorporated into a tear-away sheath to improve column strength should split along the grooves formed in the sheath. The support material may be fabricated into two braided sections oriented on opposite sides of the sheath such that the grooves reside along the spaces between the braided sections. Alternatively, the supporting material may be strands of wire (e.g. stainless steel, nylon, etc.) laminated between layers of sheath material and oriented axially along the longitudinal axis of the sheath. The tear-away sheath 118 may further incorporate features to maintain blood flow through the host vessel while positioned inside the lumen of the host vessel as further referenced in FIGS. 28a-b.
  • [0084]
    The plunger 124 is designed to insert the bypass graft 16 and fitting 130 as an attached unit and includes a lumen to pass the bypass graft 16 through while inserting the fitting 130 into the host vessel. A plunger 124 is essential when inserting biological bypass grafts or synthetic bypass grafts that do not have adequate column strength to be pushed through the hemostatic valve of the sheath. In addition, the plunger 124 protects the bypass graft during insertion through the hemostatic valve of the sheath. After one side of the bypass graft is placed at a first vessel location, the plunger 124 must be removed. The plunger 124 may be retracted beyond the opposite end of the bypass graft, if possible, or the plunger 124 may be split along at least one groove 120, 126 incorporated along the side of the plunger. The plunger 124 is used to insert the opposite end of the bypass graft, attached to a fitting, through a second sheath inserted at a second vessel location. After attaching the second end of the bypass graft to the vessel, the plunger 124 is contained between the ends of the attached bypass graft and must be removed by tearing the plunger along at least one and preferably two grooves 120, 126. The tear-away groove 120, 126 must permit splitting the plunger wall and hub 128 along at least one side to remove the plunger 124 from around the bypass graft. To facilitate removal from around the bypass graft, the plunger 124 and tear-away sheath 118 discussed above preferably incorporate grooves, slits, or perforations 126 on two sides to enable separation into two components.
  • [0085]
    [0085]FIG. 11 shows a bypass graft assembly containing fittings 60 already attached at the bypass graft 16 ends and plunger 140 preloaded onto the bypass graft 16. This plunger 140 is designed with the hub 142 located at the middle region to facilitate insertion of both ends of the bypass graft and attached fittings without removal and repositioning of the plunger prior to insertion of the second end of the bypass graft. The plunger 140 has grooves, slits, or perforations 126 along at least one side of the plunger tube 144 and hub 142 to permit removal after positioning and attachment of the bypass graft at both ends.
  • [0086]
    [0086]FIGS. 12a-c illustrate another plunger embodiment. Plunger 150 includes an axial slot through its entire length. The slot enables pulling of the plunger 150 from the side of the bypass graft when removing the plunger and permits pressing of the plunger 150 over the side of the bypass graft when placing the plunger over the bypass graft. One end 152 has a short length stepped down to form a smaller outer diameter that fits inside the inner diameter of the fitting and provides a stable anchor to insert and manipulate during delivery of the bypass graft and fitting combination into the vessel. The other end 154 has the inner diameter reamed out and notched for a short length to fit over the outer diameter of the bypass graft and fitting combination during manipulations. The plunger 150 maintains its integrity upon removal from the bypass graft and may be used to deploy multiple bypass graft and fitting combinations through sheaths.
  • [0087]
    [0087]FIG. 13 is an enlarged view of sheath 172 inserted into host vessel 39 with dilator removed, and with bypass graft 16 everted about fitting 170 and retained by ring 174.
  • [0088]
    For situations where blood flow is occluded and an incision has been made through the vessel wall, a modified hockey stick introducer may be used to insert the bypass graft and fitting combination into the host vessel. The hockey stick introducer has a tapered distal end and a partially enclosed body. This introducer is advanced through the incision and is used to expand the vessel wall so the bypass graft and fitting combination may be advanced through the lumen of the introducer and into the host vessel without catching the top part of the fitting on the vessel wall. This is especially important when the bypass graft and fitting combination has an outer diameter larger than the inner diameter of the vessel where the host vessel must be expanded to insert the bypass graft and fitting combination. The introducer may incorporate an extension perpendicular to the longitudinal axis that provides a handle to manipulate the introducer.
  • [0089]
    [0089]FIG. 14 shows electrodes 181 including conductive material bonded to the bypass graft or fitting 180. The electrodes 181 are used to transmit energy to the vessel wall and may be deposited (e.g. ion beam assisted deposition, sputter coating, pad printing, silk screening, soldering, or painting conductive epoxy) on the fittings 180, bypass graft 16 or retaining ring 182. The electrodes 181 may be flexible and follow the contours of the fittings and/or bypass graft. The electrodes may be formed in a helix, mesh, or braid and bonded to the exterior surface of the fitting and/or bypass graft. Signal wires 183 and 184 are connected to the electrodes through spot welding, mechanical fit, or soldering, and are routed to the leads of a radiofrequency generator 186. A large surface area indifferent ground pad may be placed on the patient's back, thigh, or other location so radiofrequency energy may be delivered in a unipolar configuration. Alternatively, energy may be delivered between electrode pairs in bipolar configuration.
  • [0090]
    By delivering radiofrequency energy to the electrodes, tissue contacting the electrodes heats and coagulates the vessel wall to the electrode and provides a secure, leak resistant bond. A dramatic increase in impedance results from the formation of coagulum on the electrode. This measurement of the bond strength can be used to determine the quality of the bond generated between the electrode 44 and the vessel wall 39. Different impedance thresholds may specify different degrees of thermal bonding. Initial thermal bonding has been demonstrated during experimental studies when impedance increased above 300Ω using a signal frequency of 500 kHz, which represented a threshold approximately 50% above baseline. The baseline impedance differs depending on the frequency of the signal and the surface area of the electrode; these characteristics must be taken into account when determining the thresholds. Commercial electrosurgical generators operating at a frequency of approximately 500 kHz commonly measure impedances up to and exceeding lkQ when producing complete hemostasis using tissue coagulating probes.
  • [0091]
    [0091]FIGS. 15a-e show a system for producing an end-to-side anastomosis that compresses the vessel wall between two fitting components. In this embodiment, the fitting 196 incorporates a flared distal region 190 having a slot 192 that defines two edges. The slotted distal end of the fitting is inserted through a puncture 194 of the vessel wall 39 by positioning the edge of the slotted fitting at the puncture site 194, angling the distal flared region 190 so the edge may be further advanced through the vessel wall, and rotating the fitting 196. Upon further rotation of the fitting 196, the entire flared region of the fitting is advanced into the interior of the vessel 38, as shown in FIG. 15d. Then a compression ring 198 is positioned over the fitting 196 and past the tabs 200 to compress the vessel wall 39 between the flared distal end 190 and the compression ring 198.
  • [0092]
    [0092]FIGS. 16a-c show fitting 210 including edge 212 at a flared end, and a slotted region to ensure a fluid tight fit after deployment and securement of the fitting 210 to a vessel with a compression ring (not shown). As shown in FIG. 16c, the lower edge is advanced through the puncture site 214, and the fitting 210 is rotated to advance the distal, flared end of the fitting into the vessel. Once in the vessel, a compression ring is advanced over the fitting 210 and is locked in place with the tabs 200 thereby securing the vessel wall between the distal, flared end of the fitting and the compression ring. The fitting 210 includes multiple rows of tabs 200 to accommodate various sized vessel walls. This feature is important when treating vascular diseases associated with thickening of the vessel wall.
  • [0093]
    [0093]FIGS. 16d-e show fitting 220. In this configuration, a guidewire is inserted through the vessel wall and into the interior of the host vessel by puncturing the vessel wall with a needle and inserting the guidewire through the lumen of the needle. The needle is removed from around the guidewire after inserting the guidewire through the vessel wall. An insertion tubing 222 containing a central lumen 224 follows the periphery of the flared end 226 and is adapted to pass a guidewire. The guidewire is fed through the insertion tubing 222 to facilitate the screwing of the fitting past the vessel wall. The insertion tubing 222 extends approximately 40% to 80% around the flared end circumference. Alternatively, the insertion tubing 222 may be configured in sections extending around the circumference of the flared end such that a physician may determine how far around the flared end the guidewire must extend in order to rotate the flared end past the host vessel wall. A slot 228 through the distal flared end is adapted to accept the thickness of the vessel wall and enables the screwing of the fitting through the vessel wall. As the fitting 220 is advanced over the guidewire and rotated, the fitting 220 simultaneously expands the puncture through the vessel wall and inserts more of the distal flared end into the vessel interior. Once the flared end of the fitting 220 is inserted into the host vessel interior, the guidewire is removed and the fitting 220 is secured to the vessel wall using a compression ring and/or thermal securing. When using thermal securing, the distal flared end (at least the side facing the vessel wall) is made conductive and is attached to an energy source to heat the vessel and to thermally secure the fitting 220 to the vessel wall.
  • [0094]
    The fittings may be configured to incorporate electrodes to facilitate thermal securing of the fitting to the vessel wall. The electrodes may be fabricated from stainless steel, nickel titanium, platinum, platinum iridium, gold, titanium, tungsten, tantalum, or other conductive material and may also be fabricated to provide structural support to the bypass graft. Alternatively, the electrodes may be deposited (e.g. ion beam assisted deposition, sputter coating, solder, silk screen, pad printing, painting conductive epoxy, or other process) on the fittings and/or bypass graft such that the electrodes are thin and flexible and follow the contours of the fittings and/or bypass graft. The thermal securing properties may be the only attachment means required to provide a fluid tight bond between the fitting and the vessel wall. Alternatively, thermal securing may be augmented by attaching a compression ring as described above, applying adhesives to the bond, or suturing the fitting to the vessel wall. After securing the bypass graft to the fitting and advancing the fitting into the host vessel, the bypass graft and fitting combination may be attached to the host vessel wall.
  • [0095]
    [0095]FIGS. 17a-b show a fitting 240 for performing an end-to-side anastomosis. A bypass graft 16 is everted over the distal end of the fitting 240. A retaining housing 242, similar to that shown in FIGS. 6e-f, is used to secure the bypass graft to the fitting. This retaining housing 242 permits radial expansion during placement over the bypass graft 16 and fitting and has a preshaped memory to compress around the bypass graft and fitting 240 to secure the bypass graft. This retaining housing 242 has petals 244 at its distal end, which compress into a low profile during delivery through a sheath and expand radially once deployed into the vessel 38. The number of petals 244 depends on the size of the bypass graft and the size of the host vessel. In this embodiment, eight petals are used. After advancing the fitting through a sheath, the fitting is advanced beyond the end of the sheath and is no longer constrained by the sheath, and expands towards its resting configuration. Then the bypass graft and fitting combination is gently retracted to engage the interior vessel wall at the petals 244. For mechanical securing, a compression ring 246 is advanced over the fitting thereby compressing the vessel wall 39 between the petals 244 of the retaining housing and the compression ring 246. The retaining housing may incorporate a threaded mechanism 248 to screw on the compression ring and secure the compression ring relative to the retaining housing. The threads are oriented only along the sections of the retaining housing configured to engage the compression ring. The slotted regions enabling the retaining housing to radially expand and collapse do not include threads. The compression ring 246 is alternatively locked in place using a screw mechanism, a ratchet mechanism, adhesives, sutures, or other attachment means to secure the compression ring in place. The compression ring 246 incorporates two components: 1) a distal, flexible o-ring or disk 250 designed to produce a fluid tight seal and prevent damaging the vessel wall by excess compression; and 2) a proximal, more rigid locking ring 252 used to maintain the position of the o-ring or disk relative to the vessel wall. The locking ring 252 is designed to match the threads incorporated in the retaining housing. Mechanical securing may be replaced or augmented with thermal securing.
  • [0096]
    [0096]FIGS. 18a-g show a fitting 260 used to produce an end-to-side anastomosis, especially for medium to small diameter vessels (e.g. peripheral vessels and coronary vessels). As shown in FIG. 18a, four petals are collapsed into a low profile for insertion through a sheath 262 during deployment into the vessel. Once positioned, the sheath 262 is retracted enabling the petals to expand toward their resting shape. This fitting 260 includes two petals 264 designed to extend axially along the vessel and pre-formed to contact the host vessel wall. The fitting also includes two other petals 266 and 268 designed to extend radially around a portion of the vessel. The petals provide a structure to prevent the fitting from pulling out of the vessel, restrict rotation of the fitting relative to the graft, ensure the host vessel does not collapse or constrict at the anastomosis site, and provide a support to compress the vessel wall between fitting components. The petals 266 and 268 may be configured to return to a closed configuration in their resting state, as shown in FIG. 18f. Alternatively, the petals 266 and 268 may be configured to expand beyond the closed configuration in their resting state, as shown in FIG. 18e. This configuration helps the fitting petals exert radial force on the host vessel to better support the fitting within the host vessel and keep the host vessel open at the bond interface. These end-side fittings may alternatively include more than 4 petals. FIG. 18g shows an end-side fitting having two axially oriented petals, 270 and four radially oriented petals, 272. The petals, 270, 272 are configured to expand beyond the closed configuration in their resting state; alternatively, the petals may be configured to return to a closed configuration in their resting state. The fittings that produce end-to-side anastomoses may be configured to produce an angle (A) between the bypass graft 16 and the interior of the host vessel 38.
  • [0097]
    [0097]FIGS. 19a-f show an end-to-side fitting 290 that may be folded to insert through a sheath with a smaller diameter than the fitting. As shown in FIG. 19b, the foldable fitting 290 may be fabricated from a sheet of metal material that has been chemically etched, EDM, or laser drilled into the pattern shown. The opposite ends 295 and 297 of the fitting 290 match so they may be bonded together to form the expanded cross-section shown in FIG. 19c. Alternatively, the fitting may be fabricated from a tubular metal material using chemical etching, EDM, laser drilling, or other manufacturing process to form the desired pattern.
  • [0098]
    In FIG. 19a, the petals 292 are preshaped to expand radially outward once they have been deployed outside the introducing sheath. In this configuration the vessel wall can be compressed between the petals 292 and a compression ring. As shown in FIG. 19d, the fitting is designed to fold into a reduced diameter during deployment and expand toward its resting shape once positioned through the introducing sheath. The fitting includes links 294 that are fabricated by reducing the thickness or width of the fitting material and act as hinges for the fitting to fold into a low profile. The foldable fitting embodiment shown in FIGS. 19a-f is designed with 6 sides connected with links 293, 294 so two adjacent sides are able to fold inward thereby reducing the diameter for insertion through the delivery system. The foldable fitting may further be configured so two more adjacent sides at the opposite end of the initially folded sides are able to fold inward and further decrease the profile for insertion through the delivery system. The foldable fitting may alternatively have more than 6 sides and be configured so multiple adjacent sides fold inward to reduce the profile for introduction.
  • [0099]
    In FIGS. 19e-f, the foldable fitting incorporates a synthetic graft material 296 that is extruded, injection molded, or dipped onto the fitting 290. The manufacturing process causes the graft material to fill slots and holes 298 cut in the fitting 290. This produces a more reliable bond between the synthetic graft material and the expandable, foldable fitting. The covered fitting 290 will expand and fold as long as synthetic graft materials having a high percent elongation characteristic is chosen. The graft material may stretch along the folds incorporated in the fitting. A biological bypass graft (e.g. harvested vessel) may be sutured to the holes 298 incorporated in the fitting. The manufacturing processes and materials for fabricating this fitting 290 may also be used to fabricate end-to-end fittings by excluding the petals from the design. In addition, the foldable support structure may extend throughout the length of the bypass graft and be configured so that the sides rotate around the bypass graft at specific points to increase the axial flexibility but maintain the potential to fold into a reduced diameter.
  • [0100]
    [0100]FIGS. 20a-b show an end-to-side fitting 310 having petals, and containing exposed electrodes 312 on the outside surface of the petals facing the vessel wall once deployed. A signal wire 314 is spot welded, crimped, attached using conductive adhesives, or soldered to provide an electrical connection between the electrodes 312 of the petals and a radiofrequency generator (not shown). The fitting 310 is fabricated by extruding, injection molding, or otherwise applying a nonconductive, conformal coating (e.g. elastomer) over an electrode structure 316 configured to include petals. In a second operation, the outside surfaces of the petals are removed exposing the electrodes 312. The petals are preshaped so the outside surfaces defining the electrodes contact the vessel wall, once deployed. As shown in FIG. 20a, a conduction ring 318 is placed into contact with the electrode structure 316 on the proximal end of the fitting and is bonded in place. A signal wire 314, used to transmit radiofrequency energy from a generator, is bonded to the conduction ring 318. As a result, radiofrequency energy transmitted to the conduction ring 318 will be routed to all electrodes positioned on the petals simultaneously. Alternatively, individual signal wires 314 may be attached to each petal electrode 312 and routed to a generator to independently energize each electrode.
  • [0101]
    The signal wire 314 may be fabricated from platinum, stainless steel, or a composite of materials (e.g. platinum and silver combined by a drawn filled tubing process). The composite signal wire uses the silver as the inner core to better transmit RF energy to the electrode and platinum to ensure biocompatibility. The signal wires may be fabricated with a circular, elliptical, rectangular (flat), or other geometry depending on the design of the electrode and space available in the delivery system. After thermal securing the bypass graft to the host vessel, the signal wire may be mechanically severed near the electrical connection using a pair of dikes. Alternatively, the signal wire 314 may incorporate a notch designed to separate when exposed to a desired amount of tension or torque, less than that required to dislodge the thermally secured bypass graft. Alternatively, the wire can be separated by transmitting pulses of radiofrequency or direct current energy through the signal wire capable of ionizing the signal wire and causing breakdown of the material. A notch may be incorporated in the signal wire to localize the breakdown point along the signal wire.
  • [0102]
    [0102]FIGS. 21a-b show an end-to-side fitting 330 incorporating an electrode structure 332 for thermally securing the fitting 330 to the vessel wall 39. The fitting 30 has a flared distal end with at least one electrode 332 exposed along the outside surface of the fitting. A signed wire 333 to transmit radio frequency energy from a generator may be attached to electrode 332. The at least one electrode 332 extends around the fitting 330 and has axial extensions adapted to orient the fitting along the vessel wall. The extensions provide an additional support structure to prevent rotation of the fitting relative to the vessel and reinforce the bond by using a mechanical securing mechanism such as a compression ring or other suitable means. The fitting 330 is manufactured from a polymer dipped, deposited, coated, or injection molded over a conductive structure such that only the distal outside surface of the conductive structure is exposed. The electrical connection will be established prior to dipping or injection molding of the fitting. The distal end of the flared electrode structure has a detent 334 to better secure the elastomer material to the electrode structure 332. The flared end of the fitting 330 must be flexible enough to be gathered into a low profile for introduction through a sheath and must have enough stiffness to contact the vessel wall and produce a fluid tight seal once secured in place.
  • [0103]
    [0103]FIGS. 21c-d show another end-to-side fitting 330 incorporating an electrode 332. This embodiment includes an elastomer or other coating 336 around the distal, flared end of the electrode 332. The electrode 332 is configured with petals 338 that collapse during deployment of the fitting into the vessel. The elastomer coating 336 masks the blood flow, maintains the collapsibility of the fitting, and helps ensure a fluid tight bond between the fitting and the vessel wall. The electrode 332 is exposed on the outside surface of the distal, flared end of the fitting. The electrode 332 provides mechanical support to the fitting and enables thermal securing of the fitting 330 to the vessel wall 39.
  • [0104]
    [0104]FIGS. 22a-b show an end-to-side fitting 350 incorporating an electrode structure 332 that enables the fitting to collapse into a low profile for insertion through an introducing sheath having a smaller diameter than the fitting 350. The distal flared end of the electrode structure 351 compresses forward and the body of the fitting folds into a low profile for insertion through a sheath. Once deployed outside the sheath, the fitting 350 returns to its expanded, resting configuration. The flared, distal end contacts the interior surface of the vessel wall and provides a structure to compress the vessel wall using a compression ring. The electrode structure is fabricated from a conductive material (preferably but not limited to memory elastic materials) braided over a thermoplastic, thermoset plastic, silicone, or other material and is formed into a preshaped configuration having a flared end. The braided electrode structure may alternatively be composed of a memory elastic material such as nickel titanium for providing structural support intertwined with a good conductor such as platinum. Additionally, the braided material may be deposited with a conductive material to increase conduction. Since the electrode structure 351 is braided, the distal end of the electrode structure 351 is coated with an elastomer or other material 352 to prevent unraveling of the braided material. This electrode structure 351 may also used to thermally secure the fitting to the vessel wall once radiofrequency energy is transmitted to the electrode structure from a generator.
  • [0105]
    [0105]FIG. 23 shows an end-to-end fitting 370 that permits retrograde blood flow through the anastomosis site. The fitting 370 has holes 372 through the angled sections of the fittings to preserve fluid flow through the vessel distal and/or proximal, depending on the location of the fitting within the host vessel. The bypass graft and fitting combination 374, after deployed within and attached to the vessel maintains blood flow through the stenosis as well as establishes a passage around the lesion 376. The fitting 370 maintains blood flow to branching vessels proximal to the anastomosis site.
  • [0106]
    [0106]FIGS. 24a-b show fitting 370 attached to the vessel at two locations. The fitting 370 is placed within the vessel and contacts the interior surface of the vessel along a substantial length. FIG. 24b shows that the fitting 370 may incorporate barbs 382 to prevent axial dislodgment of the fitting from the host vessel 38. The barbs may also provide a support to secure a retaining ring or suture to mechanically secure the fitting to the host vessel. A second attachment is located at the insertion site through the vessel wall 39. A compression ring or retaining ring may be used to compress the vessel wall 39 around the fitting 370 and prevent fluid from leaking at the insertion site. Electrodes may additionally or alternatively be positioned around the fitting at the insertion site 384 and/or at the distal end 386 of the fitting to thermally secure the fitting to the vessel wall and provide a fluid tight bond. The electrodes may be fabricated from stainless steel, nickel titanium, platinum, platinum iridium, gold, titanium, tungsten, tantalum, or other material and may also be fabricated to provide structural support to the bypass graft. Alternatively, the electrodes may be deposited (e.g. ion beam assisted deposition, sputter coating, pad printing, silk screening, soldering, or painting conductive epoxy) on the fittings and/or bypass graft, such that the electrodes are flexible and follow the contours of the fittings and/or bypass graft. Fitting 370 is particularly useful for medium size diameter vessels (>3 mm) where synthetic bypass grafts are used to supplement the blood flow through the vessel or shunt the blood flow to other vessels or organs.
  • [0107]
    [0107]FIGS. 24c-h show additional end-end fitting embodiments that permit retrograde blood flow. The fitting 380 incorporate a modification to provide a short proximal extension that contacts the vessel wall along the insertion site at the host vessel. This provides a structure to attach a compression ring and produce a fluid tight bond at the insertion site. A locking mechanism is incorporated in the fitting design to enable securing a compression ring to the fitting. Alternatively, FIGS. 24e-f show the fitting 380 may incorporate two electrodes, 388, 390 around the distal end and proximal extension of the fitting. An electrode may also be located around the leg of the fitting located at the insertion site. The electrodes, 388, 390 may incorporate holes to improve thermal securing of the electrodes to the host vessel wall.
  • [0108]
    [0108]FIGS. 24g-h show another end-end fitting 385 that permits retrograde perfusion and incorporates electrodes, 392, 394 around the distal end and proximal extension of the fitting. This fitting also includes two separate lumens. Lumen 396 connects blood flow from the bypass graft 16 to the host vessel. Lumen 398 connects blood flow between regions of the host vessel proximal to the anastomosis site and distal to the anastomosis site.
  • [0109]
    The inventions described in this patent application describe embodiments that permit thermally securing bypass grafts to host vessels. The inventions require localized transmission of energy to precisely heat the interior surface of the host vessel and a support structure to maintain contact between the bypass graft and host vessel during and after the thermal securing process. The coagulation of tissue and shrinkage of blood vessels results from the application of heat and thermally secures the bypass grafts to the host vessel.
  • [0110]
    A thermal securing mechanisms as shown in FIGS. 14 and 25 is used to increase the strength of the mechanical bond, and ensure a fluid tight seal between the bypass graft and host vessel. Alternatively, thermal securing may be solely used to bond the bypass graft fitting to the vessel wall. This feature may be adapted to all fittings. Thermal securing is accomplished by coagulating tissue to the electrodes and is enhanced by an induced shrinking of the heated tissue region producing an interference fit between the vessel and the fitting. These physiologic responses to heating produce a secure bond between the electrode and the vessel wall and prevent leaking around the fitting.
  • [0111]
    Coagulating tissue to thermally bond a patch of porous material to the external surface of tissue has been described by Fusion Medical Technologies, Inc. (U.S. Pat. Nos. 5,156,613; 5,669,934; 5,690,675; 5,749,895; and 5,824,015). A sheet of collagen or similar porous material is placed over tissue and sufficient energy from a radiofrequency inert gas source is delivered over the patch to form coagulum at the tissue surface. The coagulum fills the pores of the external patch and cools to form a bond thereby producing hemostasis between the tissue and the external patch. The Fusion Medical product is suited for applications such as lung resections or reattaching transected vessels where direct exposure to the wound enables positioning the patch over the external surface of the tissue, and an energy source may be used to grossly apply heat over the exterior of the patch.
  • [0112]
    Published studies evaluating the response of vessels (arteries and veins) to heat have focused on the ability to permanently occlude vessels. Veins have been shown to shrink to a fraction of their baseline diameter, up to and including complete occlusion, at temperatures greater than 70° C. for 16 seconds; the contraction of arteries was significantly less than that of veins but arteries still contracted to approximately one half of their baseline diameter when exposed to 90° C. for 16 seconds (Gorisch et al. Heat-induced contraction of blood vessels. Lasers in Surgery and Medicine. 2:1-13, 1982; Cragg et al. Endovascular diathermic vessel occlusion. Radiology. 144:303-308, 1982). Gorisch et al also observed vessel relaxation within 8 minutes after exposure to heat with arteries relaxing more than veins; even so, the final diameters of the contracted arteries and veins were less than their baseline diameters. Embodiments of the invention mitigate the concern for vessel relaxation by incorporating a spring mechanism in the fitting and/or electrode design to accommodate subtle changes in vessel diameter.
  • [0113]
    Gorisch et al explained the observed vessel shrinkage response “as a radial compression of the vessel lumen due to a thermal shrinkage of circumferentially arranged collagen fiber bundles”. These collagen fibrils were observed to denature, thus shrink, in response to heat causing the collagen fibrils to lose the cross-striation patterns and swell into an amorphous mass. These published observations into the contraction of vessels due to heat provide evidence to the proposed invention of using radiofrequency energy to produce an interference fit between a contracted vessel and a fitting.
  • [0114]
    [0114]FIG. 25 shows a schematic for a bypass graft 16 incorporating two end-to-end fittings and containing electrodes 400 designed to thermally secure the bypass graft to the vessel wall. The electrodes 400 are secured to the fitting and are bonded to signal wires, 402 and 404, which are routed to a generator 406. Radiofrequency or d.c. current is transmitted to the electrodes unipolar to an indifferent ground patch electrode 408 placed on the patient, or bipolar between the electrodes.
  • [0115]
    Various features of the electrodes enhance the heating response and improve the bonding between the electrodes and the vessel wall. Contact between the electrode and the vessel is important to ensure an adequate bond when thermally securing the electrode to the vessel wall. The outer diameter of the electrode in its expanded configuration should exceed the inner diameter of the host vessel to ensure adequate contact between the vessel wall and the fitting.
  • [0116]
    [0116]FIGS. 26a-b show an end-to-end fitting 420 incorporating an electrode 422 into the design. The fitting 420 collapses into a low profile during insertion into the vessel and expand towards its resting state upon deployment into the vessel. Such an expandable, collapsible fitting helps ensure contact between the electrode 422 and the vessel wall despite any mismatching of the bypass graft size to that of the host vessel. The fitting may be extruded in a multi-layer configuration. The electrode may be braided into a mesh over an initial polymer layer 426. A second polymer 428 may be extruded, injection molded, or dipped over the braided first layer. To expose the electrode 422, a section of the outer layer is removed. Alternatively, the section of exposed electrode may be masked when extruding, injection molding, or dipping the outer layer. A signal wire 424 is bonded to the braided mesh, before or after fabricating the outer layer, to produce an electrical connection that is routed to a generator.
  • [0117]
    [0117]FIGS. 27a-b show a bypass graft incorporating an electrode 430 that is designed to collapse into a low profile during deployment and expand to contact the vessel wall once inserted into the vessel. The electrode 430 is attached to a signal wire 432, which is used to connect the electrode to a generator 434. This electrode 430 is fabricated from a mesh of memory elastic material formed over an initial polymer layer 436, and preshaped to have an expanded region as shown. The regions proximal and just distal to the expanded electrode have a tubular shape and are coated with a thermoplastic or thermoset insulative material 438. This process forms a fitting incorporating an expandable, collapsible electrode that does not change the inner diameter of the bypass graft during or after deployment.
  • [0118]
    Another important feature to thermally secure a fitting to a host vessel is the current density profile transmitted from an electrode to tissue. The configurations of the expandable retaining rings, previously discussed in FIGS. 5a-d and FIGS. 6a-d, make them more effective at thermally securing the retaining ring (electrode) and the bypass graft and fitting combination, to the vessel wall. These electrodes are designed with edges at the holes, notches, and slots cut in the ring. These holes, notches, and slots may be fabricated by laser drilling, EDM, milling, or other manufacturing process. Deposited electrodes, when used, may be applied in patterns that contain numerous edges. When radiofrequency energy is transmitted to these electrodes, the edges produce high current densities that locally heat the vessel wall. The small cross-sectional diameters of the conductive material forming the retaining rings ensures minimal depth of penetration, maintains focuses heating of the vessel wall, and helps to prevent damage to adjacent anatomy. In addition, the spaces defined by the electrode holes, notches, and slots provide a place for the vessel to shrink and coagulate. This increases the bond strength between the electrode and the vessel wall. The electrodes may additionally be covered with a porous material, such as collagen, fibrinogen, gelatin, and urethane, to further define a structure incorporating holes, notches, and slots for tissue to shrink and coagulate. The use of materials containing holes, notches and slots may also be used to encourage neointimal cell growth. Porous materials having a low melting point (e.g. 60° C.-120° C.) may be chosen to enhance thermal bonding between the bypass graft and host vessel wall. Heating such porous materials causes them to soften, reform and/or crosslink to coagulated tissue while heating the vessel wall with the electrodes.
  • [0119]
    As previously discussed, electrodes may also be incorporated in the end-to-side fittings. The electrode features described above which improve thermal securing may be incorporated in the petals or flared regions of the end-to-side fittings. These features are designed to increase contact between the electrode and the interior of the vessel wall, provide a structure to localize bonding between the vessel wall and the electrode, and insulate the electrodes from blood flow.
  • [0120]
    [0120]FIG. 28a shows cut-out areas 450 oriented along the tear-away sheath 452 and distributed radially around the sheath 452 that permit blood to flow through the cut-out areas in the sheath and past the distal lumen of the sheath. Alternative distributions and geometries for the cut-out areas may be chosen based on application and insertion requirements for the bypass graft. FIG. 28b shows a tear-away sheath incorporating an anchoring extension 454 at the distal end of the sheath. The extension 454 is designed to maintain access between the tear-away sheath and the host vessel when the sheath is positioned perpendicular to the host vessel. The length of the sheath should be limited to that required to access the interior of the host vessel while ensuring short bypass grafts may be inserted past the distal end of the sheath, especially when the bypass graft has been secured at the opposite end. To make the sheath suitable for less invasive access, a long side arm extension to the sheath may be incorporated to support the sheath during manipulations. The side arm should also permit splitting into two halves to remotely tear the sheath away from the bypass graft.
  • [0121]
    [0121]FIG. 29 shows a snap fitting 460 designed to facilitate bonding the bypass graft to the fitting. A distal piece 462 of the snap fitting incorporates extensions 464 designed to lock the distal piece 462 to mating teeth 466 of the proximal snap fitting piece 460. The proximal piece 460 is also tapered to accommodate a range of bypass graft diameters. The bypass graft is inserted through the proximal piece 460 and everted over the external surface of the proximal piece; alternatively, the bypass graft is positioned over the exterior surface of the proximal piece 460. Then, the distal piece 462 is advanced over the bypass graft and proximal piece interface, and is locked to the teeth thereby securing the bypass graft to the proximal piece 460. The distal piece 462 is configured for end-end anastomoses; however, it may be modified with features described below to accommodate end-side anastomoses. The bypass graft and snap fitting combination may be thermally secured to a host vessel by delivering radio frequency energy through the distal piece after placing the distal piece in contact with the vessel wall, as will be described below. Alternatively, an electrode secured to the proximal piece, or the proximal piece also functioning as the electrode may be used to thermally secure the host vessel to the bypass graft and snap fitting combination.
  • [0122]
    [0122]FIGS. 30a-d shows an alternative snap fitting 480. The distal and proximal pieces are integrated into one component. This adaptation facilitates manipulation of the bypass graft relative to the fitting since the operator only needs to hold the bypass graft and single fitting; otherwise, the operator needs to hold the proximal piece, distal piece, and bypass graft while securing the bypass graft to the fitting. The distal piece 482 contains locking hinges 484 designed to move axially along rails 486 incorporated in the proximal piece 488. The locking hinges 484 move along the rails 486 but are unable to be separated from the proximal piece 488. One way to accomplish this is by making the distal end of the locking hinges, positioned inside the rail openings, wider than the rail openings. The distal ends of the locking hinges also have extensions that mate and lock teeth incorporated in the rails of the snap fitting. In operation, the bypass graft is positioned through the open snap fitting and is secured by closing the snap fitting. With the snap fitting open, the bypass graft is inserted through the lumen of the proximal piece 488 and is advanced over the tapered end of the distal piece 482. Then, the snap fitting is closed by moving the proximal piece along the locking hinges of the distal piece thereby compressing the bypass graft between the proximal piece and distal piece. The ends of the locking hinges are secured to the mating teeth of the rails to secure the distal piece relative to the proximal piece. The distal piece 482 as shown is configured for end-end anastomoses; however, it may be modified with features described below to accommodate end-side anastomoses. As stated previously, the distal piece or proximal piece may function as electrodes to permit thermally securing the fitting to the vessel wall.
  • [0123]
    [0123]FIGS. 31a-d show an alternative snap fitting 500 that has a central piece 502 and a lockable outer piece 504. The outer piece is composed of a single cylindrical component or two distinct sections that are designed to pivot about a hinge 506; the hinge connects the central piece and the outer piece, using a tab 508, to facilitate manipulating the snap fitting and the bypass graft. With the snap fitting open, the bypass graft is fed over the central piece 502 from the side of the snap fitting not containing the tab 508 connecting the hinge 506 to the central piece. The tab 508 is located on one side of the central piece to facilitate advancing the bypass graft over the central piece without having to cut an incision through the distal end of the bypass graft. After the bypass graft has been positioned over the central piece, the outer piece is closed together compressing the bypass graft between the outer piece and the central piece. A locking mechanism is designed at the contacting ends of the outer piece and is configured to bond the outer piece in a closed, cylindrical position to reliably secure the bypass graft to the snap fitting. This may be achieved by incorporating mating teeth on opposite ends of the outer piece tailored to interlock when the ends overlap. The outer piece of this snap fitting embodiment may function as at least one electrode for thermally securing the fitting to the vessel wall.
  • [0124]
    [0124]FIG. 32a-b show snap fitting 520 including petals 522 or other suitable modification. The fitting 520 may be used to produce end-side anastomoses. The petals 522 of the snap fitting 520 may function as at least one electrode for thermally securing the fitting to the vessel wall.
  • [0125]
    Experimental studies of thermal securing were conducted by positioning metallic fittings, into canine femoral arteries and veins during 3 experimental procedures. Signal wires were bonded to the metallic fittings and connected to a generator capable of delivering radiofrequency energy having a frequency of 500 kHz and a maximum power of 50 Watts. The generator was programmed to terminate radiofrequency energy delivery when impedance exceeded 300Ω, signaling completion of the thermal bond. Radiofrequency energy was delivered between each fitting and an indifferent ground patch electrode placed on the animals' thigh. Radiofrequency power ranged between 5 and 20 Watts for a duration of 5 to 60 seconds. The thermal anastomoses were acutely evaluated for leak resistance, patency, and tensile strength.
  • [0126]
    All bypass grafts were patent after thermal securing to the host vessel as evidenced by injection of contrast solution, visualized using fluoroscopy, demonstrating continuous blood flow through the bypass grafts. The thermal securing mechanism resisted leaking at the fitting to host vessel interface as demonstrated by hemostasis when the bypass graft was clamped thereby increasing the blood pressure at the anastomoses. The tensile strength of the thermal anastomoses reached 2 lbs. As a result, thermal securing was effective at bonding bypass grafts to host vessels producing end-to-end anastomoses exhibiting a fluid tight bypass graft to host vessel interface capable of withstanding pressures exerted in the vessel.
  • [0127]
    The above described embodiments of the invention are merely descriptive of its principles and are not to be considered limiting. Further modifications of the invention herein disclosed will occur to those skilled in the respective arts and all such modifications are deemed to be within the scope of the invention as defined by the following claims.

Claims (7)

  1. 1. A bypass graft system comprising:
    a fitting defining an inner surface, an outer surface, at least two ends, and a compression mechanism adapted to attach a bypass graft to the fitting; and
    at least one electrode functionally connected to the fitting and an energy source;
    wherein the energy source is adapted to transmit energy to the electrode and cause functionally adjacent regions of tissue to rise in temperature.
  2. 2. A bypass graft system comprising:
    a fitting defining an inner surface, an outer surface, at least two ends, and a compression mechanism adapted to attach the bypass graft to the fitting;
    a sheath adapted for insertion through a puncture in a vessel wall and including a lumen for passing the bypass graft and fitting into the vessel interiors, the sheath adapted to split in two or more pieces for removal from around the bypass graft; and
    at least one electrode connected to the fitting and to an energy source;
    wherein the energy source is adapted to transmit electrical current to the electrode and cause thermal excitation of an adjacent region of tissue.
  3. 3. A system for securing a graft comprising;
    a tubular structure having at least two ends, an inner surface, and an outer surface;
    a first fitting attached to one end of the tubular structure and having a cross-section that substantially matches the cross-section of the tubular structure;
    a second fitting attached to the other end of the tubular structure and having a cross-section that substantially matches the cross-section of the tubular structure;
    a delivery mechanism adapted to access the lumen of the vessel and adapted to hold the lumen in an expanded orientation, the delivery mechanism adapted to functionally cooperate with the fittings and tubular structure in order for the fittings and tubular structure to be inserted through an opening established in the vessel;
    at least one first electrode associated with the first fitting adapted to thermally secure the first fitting to a vessel at the one location; and
    at least one second electrode associated with the second fitting adapted to thermally secure the second fitting to the vessel at a second location.
  4. 4. The system of claim 3 wherein the fitting further includes more than two ends and a first electrode is bonded to one end; and
    the bypass graft attached to the fitting at one end;
    wherein the first electrode and second electrode are adapted to thermally secure the fitting to the vessel at one or more ends.
  5. 5. A bypass graft system comprising;
    a fitting attached to the bypass graft, the fitting including a flared distal end and
    at least one electrode associated with the flared distal end.
  6. 6. A bypass graft reinforcing structure comprising;
    a tubular structure with an inner surface, outer surface, and two ends;
    a first fitting attached to the tubular structure at one end;
    a first compression mechanism adapted to secure a bypass graft to the first fitting;
    a first electrode associated with the first fitting, the first electrode adapted to thermally secure the bypass graft and the tubular structure at one end;
    a second fitting attached to the tubular structure at one end;
    a second compression mechanism adapted to secure the bypass graft to the second fitting; and
    a second electrode associated with the second fitting, the second fitting adapted to thermally secure the bypass graft and the tubular structure at the second end.
  7. 7. A bypass graft system comprising:
    at least one fitting defining an outer surface, an inner surface and at least two ends;
    at least one compression mechanism adapted to attach a graft to the at least one fitting;
    at least one electrode associated with the at least one fitting, the at least one electrode adapted to transmit thermal energy to at least a region of tissue;
    at least one current carrying member attached to the at least one electrode and adapted to be separated from the at least one electrode; and
    a generator connected to the at least one current carrying mechanism, the generator adapted to transmit an electrical current to the at least one electrode and cause a region of tissue adjacent the at least one electrode to rise in temperature and become secured to one or more members or body regions.
US09329504 1998-06-10 1999-06-10 Thermal securing anastomosis systems Expired - Fee Related US6361559B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US8870598 true 1998-06-10 1998-06-10
US11194898 true 1998-12-11 1998-12-11
US09329504 US6361559B1 (en) 1998-06-10 1999-06-10 Thermal securing anastomosis systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09329504 US6361559B1 (en) 1998-06-10 1999-06-10 Thermal securing anastomosis systems

Publications (2)

Publication Number Publication Date
US20020032462A1 true true US20020032462A1 (en) 2002-03-14
US6361559B1 US6361559B1 (en) 2002-03-26

Family

ID=26778969

Family Applications (8)

Application Number Title Priority Date Filing Date
US09329658 Expired - Fee Related US6599302B2 (en) 1998-06-10 1999-06-10 Aortic aneurysm treatment systems
US09329503 Expired - Fee Related US6740101B2 (en) 1998-06-10 1999-06-10 Sutureless anastomosis systems
US09329504 Expired - Fee Related US6361559B1 (en) 1998-06-10 1999-06-10 Thermal securing anastomosis systems
US09721158 Expired - Fee Related US6887249B1 (en) 1998-06-10 2000-11-21 Positioning systems for sutureless anastomosis systems
US09721405 Expired - Fee Related US6843795B1 (en) 1998-06-10 2000-11-21 Anastomotic connector for sutureless anastomosis systems
US09730366 Expired - Fee Related US6648901B2 (en) 1998-06-10 2000-12-05 Anastomosis systems
US09997619 Expired - Fee Related US6648900B2 (en) 1998-06-10 2001-11-28 Anastomosis systems
US10095756 Abandoned US20020099394A1 (en) 1998-06-10 2002-03-08 Sutureless anastomosis systems

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09329658 Expired - Fee Related US6599302B2 (en) 1998-06-10 1999-06-10 Aortic aneurysm treatment systems
US09329503 Expired - Fee Related US6740101B2 (en) 1998-06-10 1999-06-10 Sutureless anastomosis systems

Family Applications After (5)

Application Number Title Priority Date Filing Date
US09721158 Expired - Fee Related US6887249B1 (en) 1998-06-10 2000-11-21 Positioning systems for sutureless anastomosis systems
US09721405 Expired - Fee Related US6843795B1 (en) 1998-06-10 2000-11-21 Anastomotic connector for sutureless anastomosis systems
US09730366 Expired - Fee Related US6648901B2 (en) 1998-06-10 2000-12-05 Anastomosis systems
US09997619 Expired - Fee Related US6648900B2 (en) 1998-06-10 2001-11-28 Anastomosis systems
US10095756 Abandoned US20020099394A1 (en) 1998-06-10 2002-03-08 Sutureless anastomosis systems

Country Status (4)

Country Link
US (8) US6599302B2 (en)
EP (1) EP1005294A1 (en)
JP (1) JP2002518082A (en)
WO (3) WO2000015144A1 (en)

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020099392A1 (en) * 2001-01-24 2002-07-25 Mowry David H. Autoanastomosis device and connection technique
US20030144694A1 (en) * 2002-01-14 2003-07-31 Nmt Medical, Inc. Patent foramen ovale (PFO) closure method and device
US20040002721A1 (en) * 1999-09-01 2004-01-01 Podmore Jonathan L. Method and apparatus for performing end-to-end and end-to-side anastomosis with eversion of tissue edges
US20040098121A1 (en) * 2002-11-07 2004-05-20 Nmt Medical, Inc. Patent foramen ovale (PFO) closure with magnetic force
US20040098042A1 (en) * 2002-06-03 2004-05-20 Devellian Carol A. Device with biological tissue scaffold for percutaneous closure of an intracardiac defect and methods thereof
US20040127917A1 (en) * 2001-09-07 2004-07-01 Ginn Richard S. Needle apparatus for closing septal defects and methods for using such apparatus
US20040133236A1 (en) * 2001-12-19 2004-07-08 Nmt Medical, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
US20040176799A1 (en) * 2002-12-09 2004-09-09 Nmt Medical, Inc. Septal closure devices
US20040181237A1 (en) * 2003-03-12 2004-09-16 Sean Forde Medical device for manipulation of a medical implant
US20040230276A1 (en) * 2003-05-15 2004-11-18 Marshall Mark T. Medical system including a novel bipolar pacing pair
US20040249398A1 (en) * 2001-09-06 2004-12-09 Ginn Richard S. Clip apparatus for closing septal defects and methods of use
US20050027308A1 (en) * 2001-02-27 2005-02-03 Davis John W. Methods for performing anastomosis
US20050043759A1 (en) * 2003-07-14 2005-02-24 Nmt Medical, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US20050059984A1 (en) * 2003-09-11 2005-03-17 Andrzej Chanduszko Devices, systems, and methods for suturing tissue
US20050080430A1 (en) * 2003-08-19 2005-04-14 Nmt Medical, Inc. Expandable sheath tubing
US20050085843A1 (en) * 2003-10-21 2005-04-21 Nmt Medical, Inc. Quick release knot attachment system
US20050101984A1 (en) * 2003-11-06 2005-05-12 Nmt Medical, Inc. Transseptal puncture apparatus
US20050113868A1 (en) * 2003-11-20 2005-05-26 Devellian Carol A. Device, with electrospun fabric, for a percutaneous transluminal procedure, and methods thereof
US20050143758A1 (en) * 2003-12-24 2005-06-30 Ryan Abbott Anastomosis device, tools and methods of using
US20050149071A1 (en) * 2003-12-24 2005-07-07 Ryan Abbott Anastomosis device, tools and method of using
US20050192626A1 (en) * 2004-01-30 2005-09-01 Nmt Medical, Inc. Devices, systems, and methods for closure of cardiac openings
US20050192654A1 (en) * 2004-01-30 2005-09-01 Nmt Medical, Inc. Welding systems useful for closure of cardiac openings
US20050234509A1 (en) * 2004-03-30 2005-10-20 Mmt Medical, Inc. Center joints for PFO occluders
US20050251154A1 (en) * 2004-05-06 2005-11-10 Nmt Medical, Inc. Double coil occluder
US20050267523A1 (en) * 2004-03-03 2005-12-01 Nmt Medical Inc. Delivery/recovery system for septal occluder
US20050267524A1 (en) * 2004-04-09 2005-12-01 Nmt Medical, Inc. Split ends closure device
US20050267525A1 (en) * 2004-04-26 2005-12-01 Nmt Medical, Inc. Heart-shaped PFO closure device
US20050273124A1 (en) * 2004-05-06 2005-12-08 Nmt Medical, Inc. Delivery systems and methods for PFO closure device with two anchors
US20050273135A1 (en) * 2004-05-07 2005-12-08 Nmt Medical, Inc. Catching mechanisms for tubular septal occluder
US20050273119A1 (en) * 2003-12-09 2005-12-08 Nmt Medical, Inc. Double spiral patent foramen ovale closure clamp
US20050288786A1 (en) * 2004-05-07 2005-12-29 Nmt Medical, Inc. Closure device with hinges
US20060052821A1 (en) * 2001-09-06 2006-03-09 Ovalis, Inc. Systems and methods for treating septal defects
US20060122647A1 (en) * 2004-09-24 2006-06-08 Callaghan David J Occluder device double securement system for delivery/recovery of such occluder device
US20060142788A1 (en) * 2004-12-23 2006-06-29 C. R. Bard, Inc. Blood vessel transecting and anastomosis
US20060212071A1 (en) * 2003-12-11 2006-09-21 Ginn Richard S Systems and Methods for Closing Internal Tissue Defects
US7122041B2 (en) 2002-04-15 2006-10-17 Wilson-Cook Medical Inc. Clip device
US20070010851A1 (en) * 2003-07-14 2007-01-11 Chanduszko Andrzej J Tubular patent foramen ovale (PFO) closure device with catch system
US7182771B1 (en) 2001-12-20 2007-02-27 Russell A. Houser Vascular couplers, techniques, methods, and accessories
US20070055333A1 (en) * 2005-09-06 2007-03-08 Sean Forde Removable intracardiac RF device
US20070073099A1 (en) * 2000-02-11 2007-03-29 Obtech Medical Ag Mechanical anal incontinence
US20070088388A1 (en) * 2005-09-19 2007-04-19 Opolski Steven W Delivery device for implant with dual attachment sites
US20070167981A1 (en) * 2005-12-22 2007-07-19 Nmt Medical, Inc. Catch members for occluder devices
US20070244517A1 (en) * 2006-03-31 2007-10-18 Nmt Medical, Inc. Deformable flap catch mechanism for occluder device
US20070276415A1 (en) * 2006-03-31 2007-11-29 Nmt Medical, Inc. Screw catch mechanism for PFO occluder and method of use
US20070282355A1 (en) * 2006-06-01 2007-12-06 Wilson-Cook Medical Inc. Release mechanisms for a clip device
US20070293875A1 (en) * 2006-03-10 2007-12-20 Wilson-Cook Medical, Inc. Clip device and protective cap, and methods of using the protective cap and clip device with an endoscope for grasping tissue endoscopically
US20080015416A1 (en) * 2006-07-14 2008-01-17 Wilson-Cook Medical, Inc Papilla spreader
US20080015633A1 (en) * 2001-09-06 2008-01-17 Ryan Abbott Systems and Methods for Treating Septal Defects
US20080058859A1 (en) * 2002-11-06 2008-03-06 Chanduszko Andrzej J Medical Devices Utilizing Modified Shape Memory Alloy
US20080082083A1 (en) * 2006-09-28 2008-04-03 Forde Sean T Perforated expandable implant recovery sheath
US20080249562A1 (en) * 2007-04-05 2008-10-09 Nmt Medical, Inc. Septal closure device with centering mechanism
WO2008131453A1 (en) 2007-04-24 2008-10-30 Emory University Conduit device and system for implanting a conduit device in a tissue wall
US20080269784A1 (en) * 2003-12-24 2008-10-30 Ryan Abbott Anastomosis device, tools and methods of using
US20080275296A1 (en) * 2000-02-10 2008-11-06 Obtech Medical Ag Mechanical impotence treatment apparatus
US20080287981A1 (en) * 2004-08-03 2008-11-20 Interventional Spine, Inc. Dilation introducer and methods for orthopedic surgery
US20090018388A1 (en) * 2000-02-14 2009-01-15 Peter Forsell Penile prosthesis
US20090054912A1 (en) * 2001-09-06 2009-02-26 Heanue Taylor A Systems and Methods for Treating Septal Defects
US20090099441A1 (en) * 2005-09-08 2009-04-16 Drexel University Braided electrodes
US20090149857A1 (en) * 2004-08-03 2009-06-11 Triage Medical Telescopic Percutaneous Tissue Dilation Systems and Related Methods
WO2009046998A3 (en) * 2007-10-11 2009-07-23 Milux Holding Sa Implantable tissue connector
US20090240100A1 (en) * 2007-10-11 2009-09-24 Milux Holding S.A. Schneider, Luxembourg Method for controlling flow of intestinal contents in a patient's intestines
US20100016873A1 (en) * 2006-12-05 2010-01-21 Gayzik Caroline M Combination therapy hemostatic clip
US7766820B2 (en) 2002-10-25 2010-08-03 Nmt Medical, Inc. Expandable sheath tubing
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
US7867250B2 (en) 2001-12-19 2011-01-11 Nmt Medical, Inc. Septal occluder and associated methods
US20110066254A1 (en) * 2007-10-11 2011-03-17 Peter Forsell Method for controlling flow in a bodily organ
US20110087337A1 (en) * 2007-10-11 2011-04-14 Peter Forsell Apparatus for controlling flow in a bodily organ
US20110152862A1 (en) * 2008-08-19 2011-06-23 Achim Brodbeck Device for producing anastomoses and coagulation electrode
US8162963B2 (en) 2004-06-17 2012-04-24 Maquet Cardiovascular Llc Angled anastomosis device, tools and method of using
US8277480B2 (en) 2005-03-18 2012-10-02 W.L. Gore & Associates, Inc. Catch member for PFO occluder
US8292910B2 (en) 2003-11-06 2012-10-23 Pressure Products Medical Supplies, Inc. Transseptal puncture apparatus
US20130190787A1 (en) * 2007-08-02 2013-07-25 Bioconnect Systems, Inc. Implantable flow connector
US8579936B2 (en) 2005-07-05 2013-11-12 ProMed, Inc. Centering of delivery devices with respect to a septal defect
US8600510B2 (en) 2008-10-10 2013-12-03 Milux Holding Sa Apparatus, system and operation method for the treatment of female sexual dysfunction
US20140088681A1 (en) * 2010-01-27 2014-03-27 Sriram Iyer Device and method for preventing stenosis at an anastomosis site
US8764774B2 (en) 2010-11-09 2014-07-01 Cook Medical Technologies Llc Clip system having tether segments for closure
US8784448B2 (en) 2002-06-05 2014-07-22 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with radial and circumferential support
US8795153B2 (en) 2007-10-11 2014-08-05 Peter Forsell Method for treating female sexual dysfunction
US8874215B2 (en) 2008-10-10 2014-10-28 Peter Forsell System, an apparatus, and a method for treating a sexual dysfunctional female patient
US8870913B2 (en) 2006-03-31 2014-10-28 W.L. Gore & Associates, Inc. Catch system with locking cap for patent foramen ovale (PFO) occluder
US9138228B2 (en) 2004-08-11 2015-09-22 Emory University Vascular conduit device and system for implanting
US9138562B2 (en) 2007-04-18 2015-09-22 W.L. Gore & Associates, Inc. Flexible catheter system
US9241695B2 (en) 2002-03-25 2016-01-26 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure clips
US9259267B2 (en) 2005-09-06 2016-02-16 W.L. Gore & Associates, Inc. Devices and methods for treating cardiac tissue
US9320875B2 (en) 2011-02-01 2016-04-26 Emory University Systems for implanting and using a conduit within a tissue wall
US9345485B2 (en) 2007-08-02 2016-05-24 Bioconnect Systems, Inc. Implantable flow connector
US9474517B2 (en) 2008-03-07 2016-10-25 W. L. Gore & Associates, Inc. Heart occlusion devices
US9480409B2 (en) 2005-09-08 2016-11-01 Drexel University Sensing probe comprising multiple, spatially separate, sensing sites
US9504467B2 (en) 2009-12-23 2016-11-29 Boston Scientific Scimed, Inc. Less traumatic method of delivery of mesh-based devices into human body
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US9532773B2 (en) 2011-01-28 2017-01-03 Apica Cardiovascular Limited Systems for sealing a tissue wall puncture
US9770232B2 (en) 2011-08-12 2017-09-26 W. L. Gore & Associates, Inc. Heart occlusion devices
US9808230B2 (en) 2014-06-06 2017-11-07 W. L. Gore & Associates, Inc. Sealing device and delivery system
US9839530B2 (en) 2007-06-26 2017-12-12 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US9861346B2 (en) 2003-07-14 2018-01-09 W. L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with linearly elongating petals
US9883951B2 (en) 2012-08-30 2018-02-06 Interventional Spine, Inc. Artificial disc
US9895236B2 (en) 2010-06-24 2018-02-20 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant
US9931223B2 (en) 2008-04-05 2018-04-03 DePuy Synthes Products, Inc. Expandable intervertebral implant

Families Citing this family (310)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241747B1 (en) 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
US6562052B2 (en) * 1995-08-24 2003-05-13 Sutura, Inc. Suturing device and method
WO1998019625A3 (en) * 1996-11-08 1998-07-02 Russell A Houser Percutaneous bypass graft and securing system
US5931855A (en) 1997-05-21 1999-08-03 Frank Hoffman Surgical methods using one-way suture
US20040167567A1 (en) * 2001-03-23 2004-08-26 Cano Gerald G. Method and apparatus for capturing objects beyond an operative site in medical procedures
US20060222756A1 (en) * 2000-09-29 2006-10-05 Cordis Corporation Medical devices, drug coatings and methods of maintaining the drug coatings thereon
US7261735B2 (en) * 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
US20020111590A1 (en) * 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US8303609B2 (en) 2000-09-29 2012-11-06 Cordis Corporation Coated medical devices
US7285235B2 (en) 1999-05-19 2007-10-23 Medtronic, Inc. Manufacturing conduits for use in placing a target vessel in fluid communication with a source of blood
US20040049221A1 (en) * 1998-05-29 2004-03-11 By-Pass, Inc. Method and apparatus for forming apertures in blood vessels
US6641593B1 (en) 1998-06-03 2003-11-04 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6945980B2 (en) * 1998-06-03 2005-09-20 Medtronic, Inc. Multiple loop tissue connector apparatus and methods
US6599302B2 (en) 1998-06-10 2003-07-29 Converge Medical, Inc. Aortic aneurysm treatment systems
EP1150610A1 (en) 1999-01-15 2001-11-07 Ventrica Inc. Methods and devices for forming vascular anastomoses
US6613059B2 (en) 1999-03-01 2003-09-02 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US8118822B2 (en) 1999-03-01 2012-02-21 Medtronic, Inc. Bridge clip tissue connector apparatus and methods
US8034100B2 (en) 1999-03-11 2011-10-11 Endologix, Inc. Graft deployment system
US6261316B1 (en) 1999-03-11 2001-07-17 Endologix, Inc. Single puncture bifurcation graft deployment system
JP2004500209A (en) * 2000-03-20 2004-01-08 バイ−パス・インク. Transfer of graft and connector
US6695859B1 (en) 1999-04-05 2004-02-24 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
US6673088B1 (en) * 1999-05-18 2004-01-06 Cardica, Inc. Tissue punch
US7892246B2 (en) * 1999-07-28 2011-02-22 Bioconnect Systems, Inc. Devices and methods for interconnecting conduits and closing openings in tissue
US6702828B2 (en) 1999-09-01 2004-03-09 Converge Medical, Inc. Anastomosis system
US8529583B1 (en) 1999-09-03 2013-09-10 Medtronic, Inc. Surgical clip removal apparatus
US6635214B2 (en) 1999-09-10 2003-10-21 Ventrica, Inc. Manufacturing conduits for use in placing a target vessel in fluid communication with a source of blood
US20050267498A1 (en) * 2002-04-30 2005-12-01 Cardica, Inc. Tissue everting device and method
US6689062B1 (en) 1999-11-23 2004-02-10 Microaccess Medical Systems, Inc. Method and apparatus for transesophageal cardiovascular procedures
US6814752B1 (en) * 2000-03-03 2004-11-09 Endovascular Technologies, Inc. Modular grafting system and method
US8092511B2 (en) * 2000-03-03 2012-01-10 Endovascular Technologies, Inc. Modular stent-graft for endovascular repair of aortic arch aneurysms and dissections
US9173658B2 (en) * 2000-03-06 2015-11-03 Covidien Lp Apparatus and method for performing a bypass procedure in a digestive system
US20080039873A1 (en) * 2004-03-09 2008-02-14 Marctec, Llc. Method and device for securing body tissue
US6368343B1 (en) 2000-03-13 2002-04-09 Peter M. Bonutti Method of using ultrasonic vibration to secure body tissue
US20050271701A1 (en) * 2000-03-15 2005-12-08 Orbus Medical Technologies, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US9522217B2 (en) 2000-03-15 2016-12-20 Orbusneich Medical, Inc. Medical device with coating for capturing genetically-altered cells and methods for using same
US20160287708A9 (en) * 2000-03-15 2016-10-06 Orbusneich Medical, Inc. Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device
US8088060B2 (en) 2000-03-15 2012-01-03 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US6551332B1 (en) * 2000-03-31 2003-04-22 Coalescent Surgical, Inc. Multiple bias surgical fastener
WO2001097717A1 (en) * 2000-06-20 2001-12-27 Chf Solutions, Inc. Implantable flow diversion device
WO2002017796A1 (en) * 2000-09-01 2002-03-07 Advanced Vascular Technologies, Llc Vascular bypass grafting instrument and method
US7108701B2 (en) * 2001-09-28 2006-09-19 Ethicon, Inc. Drug releasing anastomosis devices and methods for treating anastomotic sites
US20030065345A1 (en) * 2001-09-28 2003-04-03 Kevin Weadock Anastomosis devices and methods for treating anastomotic sites
US6926730B1 (en) 2000-10-10 2005-08-09 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US6582463B1 (en) * 2000-10-11 2003-06-24 Heartstent Corporation Autoanastomosis
US6746459B2 (en) * 2000-10-19 2004-06-08 Terumo Kabushiki Kaisha End-to-side blood vessel anastomosis method and instruments therefor
US6770086B1 (en) * 2000-11-02 2004-08-03 Scimed Life Systems, Inc. Stent covering formed of porous polytetraflouroethylene
US6893451B2 (en) * 2000-11-09 2005-05-17 Advanced Cardiovascular Systems, Inc. Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire
EP1210912A3 (en) 2000-11-27 2003-12-17 Terumo Kabushiki Kaisha Instrument for extroverting blood vessel
US20020099326A1 (en) * 2001-01-24 2002-07-25 Wilson Jon S. Multi-lumen catheter with attachable hub
US7056331B2 (en) 2001-06-29 2006-06-06 Quill Medical, Inc. Suture method
US20060064119A9 (en) * 2001-07-05 2006-03-23 Converge Medical, Inc. Vascular anastomosis systems
US6972023B2 (en) * 2001-07-05 2005-12-06 Converge Medical, Inc. Distal anastomosis system
US6626920B2 (en) * 2001-07-05 2003-09-30 Converge Medical, Inc. Distal anastomosis system
US20030036698A1 (en) * 2001-08-16 2003-02-20 Robert Kohler Interventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts
US6848152B2 (en) 2001-08-31 2005-02-01 Quill Medical, Inc. Method of forming barbs on a suture and apparatus for performing same
US20030050664A1 (en) * 2001-09-07 2003-03-13 Solem Jan O. Apparatus and method for sealing a body vessel puncture
WO2004028377A1 (en) * 2002-09-25 2004-04-08 By-Pass, Inc. Anastomotic leg arrangement
US7892247B2 (en) * 2001-10-03 2011-02-22 Bioconnect Systems, Inc. Devices and methods for interconnecting vessels
US20030144686A1 (en) * 2002-01-30 2003-07-31 Embol-X, Inc. Distal filtration devices and methods of use during aortic procedures
WO2003063691A9 (en) * 2002-01-31 2004-03-18 Battelle Memorial Institute Anastomosis device and method
US6905504B1 (en) 2002-02-26 2005-06-14 Cardica, Inc. Tool for performing end-to-end anastomosis
WO2003088847A1 (en) * 2002-04-17 2003-10-30 Tyco Healthcare Group Lp Method and apparatus for anastomosis including an expandable anchor
US20030229365A1 (en) * 2002-06-10 2003-12-11 Whayne James G. Angled vascular anastomosis system
US8235990B2 (en) * 2002-06-14 2012-08-07 Ncontact Surgical, Inc. Vacuum coagulation probes
US9439714B2 (en) * 2003-04-29 2016-09-13 Atricure, Inc. Vacuum coagulation probes
US7063698B2 (en) * 2002-06-14 2006-06-20 Ncontact Surgical, Inc. Vacuum coagulation probes
US7572257B2 (en) 2002-06-14 2009-08-11 Ncontact Surgical, Inc. Vacuum coagulation and dissection probes
US6893442B2 (en) * 2002-06-14 2005-05-17 Ablatrics, Inc. Vacuum coagulation probe for atrial fibrillation treatment
WO2004008936A3 (en) * 2002-07-22 2004-07-15 Michael Arad Anastomosis ring applier
US7155273B2 (en) * 2002-07-29 2006-12-26 Taylor Geoffrey L Blanching response pressure sore detector apparatus and method
DE60336923D1 (en) * 2002-07-31 2011-06-09 Tyco Healthcare Cover for a tool element and actuator for the cover
US6969395B2 (en) 2002-08-07 2005-11-29 Boston Scientific Scimed, Inc. Electroactive polymer actuated medical devices
US6666873B1 (en) 2002-08-08 2003-12-23 Jack L. Cassell Surgical coupler for joining tubular and hollow organs
US6773450B2 (en) 2002-08-09 2004-08-10 Quill Medical, Inc. Suture anchor and method
US7351247B2 (en) 2002-09-04 2008-04-01 Bioconnect Systems, Inc. Devices and methods for interconnecting body conduits
US8066724B2 (en) 2002-09-12 2011-11-29 Medtronic, Inc. Anastomosis apparatus and methods
US8100940B2 (en) 2002-09-30 2012-01-24 Quill Medical, Inc. Barb configurations for barbed sutures
US20040088003A1 (en) 2002-09-30 2004-05-06 Leung Jeffrey C. Barbed suture in combination with surgical needle
US8795332B2 (en) 2002-09-30 2014-08-05 Ethicon, Inc. Barbed sutures
US8105345B2 (en) 2002-10-04 2012-01-31 Medtronic, Inc. Anastomosis apparatus and methods
EP3141215A1 (en) * 2003-01-14 2017-03-15 The Cleveland Clinic Foundation Branched vessel endoluminal device
US9125733B2 (en) 2003-01-14 2015-09-08 The Cleveland Clinic Foundation Branched vessel endoluminal device
FR2852507B1 (en) * 2003-03-17 2006-02-17 vascular prosthesis
KR100466839B1 (en) * 2003-03-28 2005-01-17 주식회사 사이언씨티 Aortic valve Repairing Apparatus Sets and Treatment Method Using The Same
WO2004087236A3 (en) * 2003-03-28 2006-05-04 Univ Texas Stents and methods for creating an anastomosis
US20080114355A1 (en) * 2006-11-09 2008-05-15 Ncontact Surgical, Inc. Vacuum coagulation probes
US7624487B2 (en) 2003-05-13 2009-12-01 Quill Medical, Inc. Apparatus and method for forming barbs on a suture
EP1653865A2 (en) * 2003-05-23 2006-05-10 Angiotech International Ag Anastomotic connector devices
CA2529754C (en) * 2003-06-19 2016-05-10 Vascular Therapies Llc Medical devices and methods for regulating the tissue response to vascular closure devices
WO2004112651A3 (en) * 2003-06-20 2005-02-03 Medtronic Vascular Inc Chordae tendinae girdle
DE602004028621D1 (en) * 2003-07-14 2010-09-23 Univ Limerick vascular implant
US20050033406A1 (en) * 2003-07-15 2005-02-10 Barnhart William H. Branch vessel stent and graft
US7182769B2 (en) 2003-07-25 2007-02-27 Medtronic, Inc. Sealing clip, delivery systems, and methods
US8721710B2 (en) * 2003-08-11 2014-05-13 Hdh Medical Ltd. Anastomosis system and method
US20050043749A1 (en) * 2003-08-22 2005-02-24 Coalescent Surgical, Inc. Eversion apparatus and methods
US8394114B2 (en) 2003-09-26 2013-03-12 Medtronic, Inc. Surgical connection apparatus and methods
CA2540815C (en) * 2003-10-10 2011-10-04 The Cleveland Clinic Foundation Endoluminal prosthesis with interconnectable modules
US7425219B2 (en) * 2003-10-10 2008-09-16 Arshad Quadri System and method for endoluminal grafting of bifurcated and branched vessels
US20050080482A1 (en) * 2003-10-14 2005-04-14 Craig Bonsignore Graft coupling apparatus and methods of using same
US7189255B2 (en) * 2003-10-28 2007-03-13 Cordis Corporation Prosthesis support ring assembly
US20050149093A1 (en) * 2003-10-30 2005-07-07 Pokorney James L. Valve bypass graft device, tools, and method
US8287586B2 (en) * 2003-11-08 2012-10-16 Cook Medical Technologies Llc Flareable branch vessel prosthesis and method
CA2536042A1 (en) * 2003-11-10 2005-06-02 Angiotech International Ag Medical implants and anti-scarring agents
US7879047B2 (en) 2003-12-10 2011-02-01 Medtronic, Inc. Surgical connection apparatus and methods
US8202279B2 (en) * 2004-03-09 2012-06-19 Cole John P Follicular extraction punch and method
US8753354B2 (en) * 2004-03-09 2014-06-17 John P. Cole Enhanced follicular extraction punch and method
US7172604B2 (en) 2004-03-09 2007-02-06 Cole John P Follicular extraction punch and method
WO2005094525A3 (en) 2004-03-23 2009-04-02 Correx Inc Apparatus and method for connecting a conduit to a hollow organ
US7799041B2 (en) * 2004-03-23 2010-09-21 Correx, Inc. Apparatus and method for forming a hole in a hollow organ
US8277465B2 (en) * 2004-12-15 2012-10-02 Correx, Inc. Apparatus and method for connecting a conduit to a hollow vessel
EP1737351A4 (en) 2004-03-24 2012-03-07 Edward G Shifrin Method and apparatus for laparoscopic aortic repair by intravascular devices
CA2561925A1 (en) * 2004-03-30 2005-10-20 Cook Urological Incorporated Multiple lumen access sheath
US8048140B2 (en) 2004-03-31 2011-11-01 Cook Medical Technologies Llc Fenestrated intraluminal stent system
WO2005099629A1 (en) 2004-03-31 2005-10-27 Cook Incorporated Stent deployment device
US7465316B2 (en) * 2004-04-12 2008-12-16 Boston Scientific Scimed, Inc. Tri-petaled aortic root vascular graft
US7637893B2 (en) 2004-04-30 2009-12-29 C. R. Bard, Inc. Valved sheath introducer for venous cannulation
US7513903B1 (en) * 2004-05-08 2009-04-07 Iris Ginron Zhao Organ culture in situ
US7331613B2 (en) * 2004-05-13 2008-02-19 Medtronic, Inc. Medical tubing connector assembly incorporating strain relief sleeve
EP3287082A1 (en) 2004-05-14 2018-02-28 Ethicon, LLC Suture methods and devices
US20050278013A1 (en) * 2004-05-26 2005-12-15 Matthew Rust Method for endovascular bypass stent graft delivery
US7361190B2 (en) * 2004-06-29 2008-04-22 Micardia Corporation Adjustable cardiac valve implant with coupling mechanism
US20080183285A1 (en) * 2004-06-29 2008-07-31 Micardia Corporation Adjustable cardiac valve implant with selective dimensional adjustment
US20060015178A1 (en) * 2004-07-15 2006-01-19 Shahram Moaddeb Implants and methods for reshaping heart valves
US20070282363A1 (en) * 2004-08-18 2007-12-06 Pepi Dakov Annular Cutter For Body Organs
CA2586387A1 (en) * 2004-11-05 2006-05-11 Ethicon Endo-Surgery, Inc. A device and method for the therapy of obesity
US8926564B2 (en) 2004-11-29 2015-01-06 C. R. Bard, Inc. Catheter introducer including a valve and valve actuator
US8932260B2 (en) 2004-11-29 2015-01-13 C. R. Bard, Inc. Reduced-friction catheter introducer and method of manufacturing and using the same
US8403890B2 (en) 2004-11-29 2013-03-26 C. R. Bard, Inc. Reduced friction catheter introducer and method of manufacturing and using the same
US9597483B2 (en) 2004-11-29 2017-03-21 C. R. Bard, Inc. Reduced-friction catheter introducer and method of manufacturing and using the same
US8048144B2 (en) * 2004-11-30 2011-11-01 Scimed Life Systems, Inc. Prosthesis fixation device and method
US7722529B2 (en) * 2004-12-28 2010-05-25 Palo Alto Investors Expandable vessel harness for treating vessel aneurysms
US7588596B2 (en) * 2004-12-29 2009-09-15 Scimed Life Systems, Inc. Endoluminal prosthesis adapted to resist migration and method of deploying the same
US20060155366A1 (en) * 2005-01-10 2006-07-13 Laduca Robert Apparatus and method for deploying an implantable device within the body
US8287583B2 (en) * 2005-01-10 2012-10-16 Taheri Laduca Llc Apparatus and method for deploying an implantable device within the body
US8128680B2 (en) 2005-01-10 2012-03-06 Taheri Laduca Llc Apparatus and method for deploying an implantable device within the body
US7306623B2 (en) * 2005-01-13 2007-12-11 Medtronic Vascular, Inc. Branch vessel graft design and deployment method
US20070156209A1 (en) * 2005-01-14 2007-07-05 Co-Repair, Inc. System for the treatment of heart tissue
US7455670B2 (en) * 2005-01-14 2008-11-25 Co-Repair, Inc. System and method for the treatment of heart tissue
WO2006080010A3 (en) * 2005-01-25 2008-01-24 Nicast Ltd Device and method for coronary artery bypass procedure
WO2006113501A1 (en) 2005-04-13 2006-10-26 The Cleveland Clinic Foundation Endoluminal prosthesis
US8696662B2 (en) * 2005-05-12 2014-04-15 Aesculap Ag Electrocautery method and apparatus
US9339323B2 (en) 2005-05-12 2016-05-17 Aesculap Ag Electrocautery method and apparatus
US8728072B2 (en) 2005-05-12 2014-05-20 Aesculap Ag Electrocautery method and apparatus
US20070265613A1 (en) * 2006-05-10 2007-11-15 Edelstein Peter Seth Method and apparatus for sealing tissue
US7862565B2 (en) 2005-05-12 2011-01-04 Aragon Surgical, Inc. Method for tissue cauterization
US8574229B2 (en) * 2006-05-02 2013-11-05 Aesculap Ag Surgical tool
EP1901798B1 (en) * 2005-05-20 2013-05-22 Medtronic, Inc. Squeeze-actuated catheter connector and method
US7678101B2 (en) * 2005-05-20 2010-03-16 Medtronic, Inc. Locking catheter connector and connection system
US9955969B2 (en) 2005-05-26 2018-05-01 Texas Heart Institute Surgical system and method for attaching a prosthetic vessel to a hollow structure
US20070055368A1 (en) * 2005-09-07 2007-03-08 Richard Rhee Slotted annuloplasty ring
US20070061003A1 (en) * 2005-09-15 2007-03-15 Cappella, Inc. Segmented ostial protection device
US20070088428A1 (en) * 2005-09-15 2007-04-19 Cappella, Inc. Intraluminal device with asymmetric cap portion
US9808280B2 (en) * 2005-10-12 2017-11-07 Atricure, Inc. Diaphragm entry for posterior surgical access
EP1945292A4 (en) * 2005-10-12 2009-11-11 Ncontact Surgical Inc Diaphragm entry for posterior surgical access
US8343028B2 (en) * 2005-10-19 2013-01-01 Thoratec Corporation Ventricular pump coupling
EP1940282B1 (en) 2005-10-26 2009-06-10 REBUFFAT, Carlo Anoscope for ano-rectal diagnostic and surgery
US20070156223A1 (en) * 2005-12-30 2007-07-05 Dennis Vaughan Stent delivery system with improved delivery force distribution
US20070191930A1 (en) * 2006-02-15 2007-08-16 Paul Lucas Endovascular graft adapter
US7803156B2 (en) * 2006-03-08 2010-09-28 Aragon Surgical, Inc. Method and apparatus for surgical electrocautery
WO2007117612A1 (en) * 2006-04-06 2007-10-18 Correx, Inc. Apparatus and method for suturelessly connecting a conduit to a hollow organ
CN101484090B (en) * 2006-04-19 2011-04-27 克利夫兰医学基金会 Twin bifurcated stent graft
CA2649824C (en) * 2006-04-21 2014-11-18 Carponovum Ab A mounting tool and a method for a device for anastomosis
US8828074B2 (en) * 2006-04-21 2014-09-09 Medtronic Vascular, Inc. Stent graft having short tube graft for branch vessel
CA2649763C (en) * 2006-04-21 2014-10-14 Carponovum Ab A device and a method for anastomosis
US8021677B2 (en) 2006-05-12 2011-09-20 Gore Enterprise Holdings, Inc. Immobilized biologically active entities having a high degree of biological activity
US20080279909A1 (en) * 2006-05-12 2008-11-13 Cleek Robert L Immobilized Biologically Active Entities Having A High Degree of Biological Activity Following Sterilization
US9114194B2 (en) * 2006-05-12 2015-08-25 W. L. Gore & Associates, Inc. Immobilized biologically active entities having high biological activity following mechanical manipulation
US8496953B2 (en) * 2006-05-12 2013-07-30 W. L. Gore & Associates, Inc. Immobilized biologically active entities having a high degree of biological activity following sterilization
US8986713B2 (en) 2006-05-12 2015-03-24 W. L. Gore & Associates, Inc. Medical device capable of being compacted and expanded having anti-thrombin III binding activity
US20100318109A1 (en) * 2006-06-06 2010-12-16 Luiz Gonzaga Granja Filho Prosthesis for anastomosis
WO2008005510A3 (en) * 2006-07-06 2008-03-13 Synecor Llc Systems and methods for restoring function of diseased bowel
US7722665B2 (en) 2006-07-07 2010-05-25 Graft Technologies, Inc. System and method for providing a graft in a vascular environment
US8323299B2 (en) * 2006-08-10 2012-12-04 Hdh Medical Ltd. Device for preparing tissue for anastomosis
ES2528902T3 (en) * 2006-08-30 2015-02-13 Circulite, Inc. Devices and systems to establish the complementary blood flow in the circulatory system
US8403196B2 (en) 2006-09-08 2013-03-26 Covidien Lp Dissection tip and introducer for surgical instrument
US8136711B2 (en) 2006-09-08 2012-03-20 Tyco Healthcare Group Lp Dissection tip and introducer for surgical instrument
US7926286B2 (en) * 2006-09-26 2011-04-19 Pratt & Whitney Canada Corp. Heat shield for a fuel manifold
US8721597B2 (en) * 2006-11-09 2014-05-13 Ncontact Surgical, Inc. Diaphragm entry for posterior surgical access
JP5256206B2 (en) * 2006-11-09 2013-08-07 エヌコンタクト サージカル, インコーポレイテッド Diaphragm entry for rear surgical access
US8211011B2 (en) * 2006-11-09 2012-07-03 Ncontact Surgical, Inc. Diaphragm entry for posterior surgical access
US8388679B2 (en) 2007-01-19 2013-03-05 Maquet Cardiovascular Llc Single continuous piece prosthetic tubular aortic conduit and method for manufacturing the same
EP1955664A1 (en) * 2007-02-06 2008-08-13 Universiteit Utrecht Holding B.V. Device for bypass surgery
JP2010517703A (en) 2007-02-09 2010-05-27 タヘリ ラドュカ エルエルシー Method of processing vascular grafts and it
EP2121055B1 (en) 2007-02-13 2014-04-02 Abbott Cardiovascular Systems Inc. Mri compatible, radiopaque alloys for use in medical devices
CN101715329B (en) 2007-03-05 2012-11-14 恩多斯潘有限公司 Multi-component expandable supportive bifurcated endoluminal grafts and methods for using same
CA2680160C (en) 2007-03-07 2014-07-08 Covidien Ag Stapler for mucosectomy
EP2129409A4 (en) * 2007-03-14 2014-07-23 Univ Leland Stanford Junior Devices and methods for application of reduced pressure therapy
US8915943B2 (en) 2007-04-13 2014-12-23 Ethicon, Inc. Self-retaining systems for surgical procedures
US8715336B2 (en) * 2007-04-19 2014-05-06 Medtronic Vascular, Inc. Methods and apparatus for treatment of aneurysms adjacent to branch arteries
US7832611B2 (en) 2007-05-16 2010-11-16 The Invention Science Fund I, Llc Steerable surgical stapler
US8485411B2 (en) 2007-05-16 2013-07-16 The Invention Science Fund I, Llc Gentle touch surgical stapler
US7922064B2 (en) * 2007-05-16 2011-04-12 The Invention Science Fund, I, LLC Surgical fastening device with cutter
US7798385B2 (en) 2007-05-16 2010-09-21 The Invention Science Fund I, Llc Surgical stapling instrument with chemical sealant
US7810691B2 (en) 2007-05-16 2010-10-12 The Invention Science Fund I, Llc Gentle touch surgical stapler
US7823761B2 (en) 2007-05-16 2010-11-02 The Invention Science Fund I, Llc Maneuverable surgical stapler
US8361092B1 (en) * 2007-06-18 2013-01-29 Wilson T. Asfora Vascular anastomosis device and method
US9597080B2 (en) * 2007-09-24 2017-03-21 Covidien Lp Insertion shroud for surgical instrument
CA2700849C (en) * 2007-09-25 2016-07-26 Correx, Inc. Applicator, assembly, and method for connecting an inlet conduit to a hollow organ
WO2009042841A3 (en) 2007-09-27 2009-05-22 Angiotech Pharm Inc Self-retaining sutures including tissue retainers having improved strength
US20090093869A1 (en) * 2007-10-04 2009-04-09 Brendan Cunniffe Medical device with curved struts
WO2009049232A1 (en) 2007-10-11 2009-04-16 Spiracur, Inc. Closed incision negative pressure wound therapy device and methods of use
EP2211971A4 (en) 2007-10-19 2014-09-10 Bard Inc C R Introducer including shaped distal region
EP2210248B1 (en) * 2007-11-13 2016-04-20 Cook Medical Technologies LLC Intraluminal bypass prosthesis
US8262681B1 (en) * 2007-11-23 2012-09-11 Rabin Gerrah Device and method for performing endoluminal proximal anastomosis
US8858608B2 (en) * 2007-12-10 2014-10-14 Cook Medical Technologies Llc Lubrication apparatus for a delivery and deployment device
CN101902974B (en) 2007-12-19 2013-10-30 伊西康有限责任公司 Self-retaining sutures with heat-contact mediated retainers
US8916077B1 (en) 2007-12-19 2014-12-23 Ethicon, Inc. Self-retaining sutures with retainers formed from molten material
US8118834B1 (en) 2007-12-20 2012-02-21 Angiotech Pharmaceuticals, Inc. Composite self-retaining sutures and method
WO2009082654A1 (en) * 2007-12-21 2009-07-02 Cleveland Clinic Foundation Prosthesis for implantation in aorta
US8348935B2 (en) * 2008-01-23 2013-01-08 Avedro, Inc. System and method for reshaping an eye feature
JP5643113B2 (en) * 2008-01-28 2014-12-17 ミルックス・ホールディング・エスエイ Thrombectomy device thrombectomy system, and thrombectomy METHOD
US8615856B1 (en) 2008-01-30 2013-12-31 Ethicon, Inc. Apparatus and method for forming self-retaining sutures
US8875607B2 (en) 2008-01-30 2014-11-04 Ethicon, Inc. Apparatus and method for forming self-retaining sutures
US20090198272A1 (en) * 2008-02-06 2009-08-06 Lawrence Kerver Method and apparatus for articulating the wrist of a laparoscopic grasping instrument
US8870867B2 (en) * 2008-02-06 2014-10-28 Aesculap Ag Articulable electrosurgical instrument with a stabilizable articulation actuator
JP5498962B2 (en) * 2008-02-14 2014-05-21 スパイラキュア インコーポレイテッド Apparatus and method for the treatment of damaged tissue
EP2249712A4 (en) 2008-02-21 2016-07-13 Ethicon Llc Method and apparatus for elevating retainers on self-retaining sutures
US8216273B1 (en) 2008-02-25 2012-07-10 Ethicon, Inc. Self-retainers with supporting structures on a suture
US8641732B1 (en) 2008-02-26 2014-02-04 Ethicon, Inc. Self-retaining suture with variable dimension filament and method
US8177836B2 (en) 2008-03-10 2012-05-15 Medtronic, Inc. Apparatus and methods for minimally invasive valve repair
US8236040B2 (en) 2008-04-11 2012-08-07 Endologix, Inc. Bifurcated graft deployment systems and methods
US8876865B2 (en) 2008-04-15 2014-11-04 Ethicon, Inc. Self-retaining sutures with bi-directional retainers or uni-directional retainers
US8858528B2 (en) * 2008-04-23 2014-10-14 Ncontact Surgical, Inc. Articulating cannula access device
US20090275961A1 (en) * 2008-05-01 2009-11-05 Harris Jason L Gastric volume reduction using anterior to posterior wall junctions
WO2009135129A1 (en) * 2008-05-02 2009-11-05 Drexel University Tissue joining device and instrument for enabling use of a tissue joining device
US8267951B2 (en) * 2008-06-12 2012-09-18 Ncontact Surgical, Inc. Dissecting cannula and methods of use thereof
CN102089019A (en) * 2008-06-13 2011-06-08 通用医疗公司 Hemodialysis arterio-venous graft with a ring-like diameter-adjustable device
EP2520320B1 (en) 2008-07-01 2016-11-02 Endologix, Inc. Catheter system
US20100036401A1 (en) * 2008-07-09 2010-02-11 The Cleveland Clinic Foundation Vascular graft and method of use
US8771170B2 (en) * 2008-08-01 2014-07-08 Microaccess, Inc. Methods and apparatus for transesophageal microaccess surgery
WO2010026429A3 (en) * 2008-09-05 2010-06-24 Papworth Hospital Nhs Foundation Trust Sutureless connector
US8181838B2 (en) 2008-09-10 2012-05-22 Tyco Healthcare Group Lp Surgical stapling device
EP2352440A4 (en) 2008-11-03 2016-04-13 Ethicon Llc Length of self-retaining suture and method and device for using the same
US8348837B2 (en) * 2008-12-09 2013-01-08 Covidien Lp Anoscope
US8361043B2 (en) 2009-01-07 2013-01-29 Spiracur Inc. Reduced pressure therapy of the sacral region
WO2010102146A1 (en) 2009-03-04 2010-09-10 Spiracur Inc. Devices and methods to apply alternating level of reduced pressure to tissue
US8518060B2 (en) 2009-04-09 2013-08-27 Medtronic, Inc. Medical clip with radial tines, system and method of using same
US8444614B2 (en) 2009-04-10 2013-05-21 Spiracur, Inc. Methods and devices for applying closed incision negative pressure wound therapy
JP5650199B2 (en) 2009-04-10 2015-01-07 スピレイカー・インコーポレイテッドSpiracur, Inc. Method and apparatus for attaching a negative pressure wound therapy system for closed incision
US8668704B2 (en) 2009-04-24 2014-03-11 Medtronic, Inc. Medical clip with tines, system and method of using same
US8945202B2 (en) 2009-04-28 2015-02-03 Endologix, Inc. Fenestrated prosthesis
WO2010150208A3 (en) 2009-06-23 2011-04-28 Endospan Ltd. Vascular prostheses for treating aneurysms
US8591451B2 (en) 2009-07-07 2013-11-26 Marwan Tabbara Surgical methods, devices, and kits
US20140155804A1 (en) * 2009-07-07 2014-06-05 Marwan Tabbara Surgical devices and kits
WO2011007354A1 (en) * 2009-07-14 2011-01-20 Endospan Ltd. Sideport engagement and sealing mechanism for endoluminal stent-grafts
US8568308B2 (en) 2009-08-14 2013-10-29 Alan M. Reznik Customizable, self holding, space retracting arthroscopic/endoscopic cannula system
WO2011020099A1 (en) 2009-08-14 2011-02-17 Correx, Inc. Method and apparatus for effecting a minimally invasive distal anastomosis for an aortic valve bypass
WO2011031364A1 (en) * 2009-09-14 2011-03-17 Circulite, Inc Endovascular anastomotic connector device, delivery system, and methods of delivery and use
US8591932B2 (en) * 2009-09-17 2013-11-26 W. L. Gore & Associates, Inc. Heparin entities and methods of use
US9204789B2 (en) 2009-10-08 2015-12-08 Covidien Lp Asymmetrical anoscope
US8333727B2 (en) * 2009-10-08 2012-12-18 Circulite, Inc. Two piece endovascular anastomotic connector
US8308715B2 (en) * 2009-11-13 2012-11-13 Circulite, Inc. Cannula stabilizer
US8899466B2 (en) 2009-11-19 2014-12-02 Ethicon Endo-Surgery, Inc. Devices and methods for introducing a surgical circular stapling instrument into a patient
US20110114697A1 (en) * 2009-11-19 2011-05-19 Ethicon Endo-Surgery, Inc. Circular stapler introducer with multi-lumen sheath
US8622275B2 (en) 2009-11-19 2014-01-07 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid distal end portion
US8353438B2 (en) * 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid cap assembly configured for easy removal
US8353439B2 (en) * 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with radially-openable distal end portion
WO2011070576A1 (en) 2009-12-08 2011-06-16 Endospan Ltd. Endovascular stent-graft system with fenestrated and crossing stent-grafts
WO2011090628A3 (en) 2009-12-29 2011-12-01 Angiotech Pharmaceuticals, Inc. Bidirectional self-retaining sutures with laser-marked and/or non-laser marked indicia and methods
US20110190697A1 (en) * 2010-02-03 2011-08-04 Circulite, Inc. Vascular introducers having an expandable section
KR101786410B1 (en) * 2010-02-04 2017-10-17 아에스쿨랍 아게 Laparoscopic radiofrequency surgical device
EP2543342A4 (en) * 2010-03-04 2017-07-05 Terumo Corp Artificial blood vessel
US8827992B2 (en) * 2010-03-26 2014-09-09 Aesculap Ag Impedance mediated control of power delivery for electrosurgery
US8419727B2 (en) 2010-03-26 2013-04-16 Aesculap Ag Impedance mediated power delivery for electrosurgery
US8709025B2 (en) * 2010-04-26 2014-04-29 Zhongchen LIU Sleeve type fixing method and device for anastomosis for tubular organs such as intestines, stomach, esophagus etc
US8702776B2 (en) 2010-04-26 2014-04-22 Paul Heltai Method for deploying a sleeve and tubing device for restricting and constricting aneurysms and a sleeve and tubing device and system
CN103068323B (en) 2010-06-11 2015-07-22 伊西康有限责任公司 Suture delivery tools for endoscopic and robot-assisted surgery and methods
WO2012007053A1 (en) * 2010-07-16 2012-01-19 Ethicon Endo-Surgery, Inc. A length adjustable catheter for directing biliopancreatic secretions
US8672207B2 (en) 2010-07-30 2014-03-18 Ethicon Endo-Surgery, Inc. Transwall visualization arrangements and methods for surgical circular staplers
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8753322B2 (en) 2010-08-10 2014-06-17 Spiracur Inc. Controlled negative pressure apparatus and alarm mechanism
US8795246B2 (en) 2010-08-10 2014-08-05 Spiracur Inc. Alarm system
WO2012024257A3 (en) * 2010-08-17 2012-05-18 Genesee Biomedical, Inc. Braided aortic root graft and method of valve-sparing
US9173698B2 (en) 2010-09-17 2015-11-03 Aesculap Ag Electrosurgical tissue sealing augmented with a seal-enhancing composition
WO2012064902A3 (en) 2010-11-09 2012-08-02 Angiotech Pharmaceuticals, Inc. Emergency self-retaining sutures and packaging
ES2632190T3 (en) * 2010-12-15 2017-09-11 Meteso Ag Medical device anastomosis
EP2651489B1 (en) 2010-12-17 2016-08-10 C.R. Bard Inc. Catheter introducer including a valve and valve actuator
US8696741B2 (en) 2010-12-23 2014-04-15 Maquet Cardiovascular Llc Woven prosthesis and method for manufacturing the same
WO2012104842A8 (en) 2011-02-03 2013-02-21 Endospan Ltd. Implantable medical devices constructed of shape memory material
WO2012118901A1 (en) 2011-03-01 2012-09-07 Endologix, Inc. Catheter system and methods of using same
US9486341B2 (en) 2011-03-02 2016-11-08 Endospan Ltd. Reduced-strain extra-vascular ring for treating aortic aneurysm
EP2683420A1 (en) 2011-03-11 2014-01-15 Gore Enterprise Holdings, Inc. Improvements to immobilised biological entities
US20120277544A1 (en) * 2011-04-28 2012-11-01 Medtronic, Inc. Biodegradable insertion guide for the insertion of a medical device
US9597443B2 (en) * 2011-06-15 2017-03-21 Phraxis, Inc. Anastomotic connector
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US9339327B2 (en) 2011-06-28 2016-05-17 Aesculap Ag Electrosurgical tissue dissecting device
WO2013004270A1 (en) * 2011-07-01 2013-01-10 Ethicon Endo-Surgery, Inc. A connector for connecting a catheter to a hollow organ
US9254209B2 (en) 2011-07-07 2016-02-09 Endospan Ltd. Stent fixation with reduced plastic deformation
US20130030418A1 (en) * 2011-07-27 2013-01-31 Edwards Lifesciences Corporation Conical crimper
US9839510B2 (en) 2011-08-28 2017-12-12 Endospan Ltd. Stent-grafts with post-deployment variable radial displacement
US9427339B2 (en) 2011-10-30 2016-08-30 Endospan Ltd. Triple-collar stent-graft
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
WO2013084235A3 (en) 2011-12-04 2013-08-29 Endospan Ltd. Branched stent-graft system
US9010608B2 (en) 2011-12-14 2015-04-21 Covidien Lp Releasable buttress retention on a surgical stapler
WO2013146614A1 (en) * 2012-03-30 2013-10-03 国立大学法人福井大学 Auxiliary clip for use in anastomotic operation
US9314600B2 (en) 2012-04-15 2016-04-19 Bioconnect Systems, Inc. Delivery system for implantable flow connector
CN102613997B (en) * 2012-04-27 2013-11-06 陈文胜 Small vessel distraction device
US9770350B2 (en) 2012-05-15 2017-09-26 Endospan Ltd. Stent-graft with fixation elements that are radially confined for delivery
DE102012107919A1 (en) 2012-08-28 2014-05-15 Aesculap Ag An electrosurgical instrument for producing an end-to-end anastomosis
ES2628297T3 (en) 2012-09-26 2017-08-02 Aesculap Ag Cutting apparatus and sealing tissue
CN105208969B (en) 2013-03-11 2017-10-20 恩多斯潘有限公司 The multi-component stent grafts for aortic dissection system
US9936951B2 (en) 2013-03-12 2018-04-10 Covidien Lp Interchangeable tip reload
DE102013006598A1 (en) * 2013-04-17 2014-10-23 Oerlikon Trading Ag, Trübbach Coating system with ZrO₂ for electrosurgical units
ES2451845B1 (en) * 2013-06-24 2015-03-18 Vicente Isidro ESQUEMBRE SUAY Prosthetic vascular anastomosis clip
US9205231B2 (en) 2013-10-17 2015-12-08 Arizona Medical Systems, LLC Over-the-needle vascular access guidewire
US9700312B2 (en) 2014-01-28 2017-07-11 Covidien Lp Surgical apparatus
JP5924363B2 (en) * 2014-03-31 2016-05-25 株式会社Aze The medical image diagnosis assisting apparatus, its control method and program
US9814563B1 (en) * 2014-04-25 2017-11-14 David M. Hoganson Hemodynamically optimized shunt
WO2017040884A1 (en) * 2015-09-04 2017-03-09 The Regents Of The University Of Michigan Device to aid in arterial microvascular anastomosis
CN106725972A (en) * 2017-01-20 2017-05-31 山东中医药大学 Artery clamp device and clamping facility

Family Cites Families (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US88705A (en) 1869-04-06 Improvement in carriage-wheels
US111948A (en) 1871-02-21 Improvement in passenger-registers for cars
JPS5554610U (en) * 1978-10-03 1980-04-12
US4214587A (en) 1979-02-12 1980-07-29 Sakura Chester Y Jr Anastomosis device and method
US4368736A (en) 1980-11-17 1983-01-18 Kaster Robert L Anastomotic fitting
US4366819A (en) 1980-11-17 1983-01-04 Kaster Robert L Anastomotic fitting
US4509890A (en) * 1981-10-13 1985-04-09 Micro Plastics Inc. Captive panel screw
EP0112363B1 (en) 1982-06-24 1986-10-15 Unilink Ab Surgical instrument for carrying out anastomosis with annular fastening means and fastening means for anastomosis
US4917091A (en) 1982-06-24 1990-04-17 Unilink Ab Annular fastening means
US4607637A (en) 1983-07-22 1986-08-26 Anders Berggren Surgical instrument for performing anastomosis with the aid of ring-like fastening elements and the fastening elements for performing anastomosis
US4665906A (en) 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US5067957A (en) 1983-10-14 1991-11-26 Raychem Corporation Method of inserting medical devices incorporating SIM alloy elements
US5190546A (en) 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
US4917087A (en) 1984-04-10 1990-04-17 Walsh Manufacturing (Mississuaga) Limited Anastomosis devices, kits and method
US4657019A (en) 1984-04-10 1987-04-14 Idea Research Investment Fund, Inc. Anastomosis devices and kits
US4787386A (en) 1984-04-10 1988-11-29 Idea Research Investment Fund, Inc. Anastomosis devices, and kits
US4562596A (en) * 1984-04-25 1986-01-07 Elliot Kornberg Aortic graft, device and method for performing an intraluminal abdominal aortic aneurysm repair
US4950227A (en) 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
FR2642571B1 (en) * 1989-01-30 1993-04-23 Cegelec connecting assembly for coaxial cable and corresponding connection module, in particular terminal block
US5609626A (en) * 1989-05-31 1997-03-11 Baxter International Inc. Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts
US5078736A (en) 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5234447A (en) 1990-08-28 1993-08-10 Robert L. Kaster Side-to-end vascular anastomotic staple apparatus
DE4034129C1 (en) * 1990-10-26 1992-05-07 Gkn Cardantec International Gesellschaft Fuer Antriebstechnik Mbh, 4300 Essen, De
US5690675A (en) 1991-02-13 1997-11-25 Fusion Medical Technologies, Inc. Methods for sealing of staples and other fasteners in tissue
US5156613A (en) 1991-02-13 1992-10-20 Interface Biomedical Laboratories Corp. Collagen welding rod material for use in tissue welding
US5749895A (en) 1991-02-13 1998-05-12 Fusion Medical Technologies, Inc. Method for bonding or fusion of biological tissue and material
WO1992014513A1 (en) 1991-02-13 1992-09-03 Interface Biomedical Laboratories Corp. Filler material for use in tissue welding
US5669934A (en) 1991-02-13 1997-09-23 Fusion Medical Technologies, Inc. Methods for joining tissue by applying radiofrequency energy to performed collagen films and sheets
US5304220A (en) 1991-07-03 1994-04-19 Maginot Thomas J Method and apparatus for implanting a graft prosthesis in the body of a patient
FR2685208B1 (en) * 1991-12-23 1998-02-27 Ela Medical Sa A ventricular cannulation.
US5366504A (en) * 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
JPH07275252A (en) 1992-06-30 1995-10-24 Ethicon Inc Flexible endoscopic surgical port
US5657429A (en) 1992-08-10 1997-08-12 Computer Motion, Inc. Automated endoscope system optimal positioning
US5868761A (en) 1992-10-09 1999-02-09 United States Surgical Corporation Surgical clip applier
US5779718A (en) 1992-10-09 1998-07-14 United States Surgical Corporation Method of anastomosing a vessel using a surgical clip applier
US5250033A (en) * 1992-10-28 1993-10-05 Interventional Thermodynamics, Inc. Peel-away introducer sheath having proximal fitting
US6036699A (en) 1992-12-10 2000-03-14 Perclose, Inc. Device and method for suturing tissue
DE69419804D1 (en) 1993-04-22 1999-09-09 Bard Inc C R Fixed vascular prosthesis
US5405322A (en) 1993-08-12 1995-04-11 Boston Scientific Corporation Method for treating aneurysms with a thermal source
WO1995013033A1 (en) 1993-11-08 1995-05-18 Lazarus Harrison M Intraluminal vascular graft and method
US5503635A (en) 1993-11-12 1996-04-02 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
US5443497A (en) 1993-11-22 1995-08-22 The Johns Hopkins University Percutaneous prosthetic by-pass graft and method of use
DK145593D0 (en) 1993-12-23 1993-12-23 Joergen A Rygaard Surgical double instrument for carrying out the connection MLM. arteries (end-to-side anastomosis)
DE4401227C2 (en) 1994-01-18 1999-03-18 Ernst Peter Prof Dr M Strecker In the body of a patient percutaneously implantable endoprosthesis
US5423821A (en) * 1994-01-18 1995-06-13 Pasque; Michael K. Sternal closure device
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5454790A (en) * 1994-05-09 1995-10-03 Innerdyne, Inc. Method and apparatus for catheterization access
US5972023A (en) 1994-08-15 1999-10-26 Eva Corporation Implantation device for an aortic graft method of treating aortic aneurysm
US5720755A (en) 1995-01-18 1998-02-24 Dakov; Pepi Tubular suturing device and methods of use
US6030392A (en) 1995-01-18 2000-02-29 Motorola, Inc. Connector for hollow anatomical structures and methods of use
US5591226A (en) 1995-01-23 1997-01-07 Schneider (Usa) Inc. Percutaneous stent-graft and method for delivery thereof
US5695504A (en) 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US6264684B1 (en) * 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
US5697968A (en) 1995-08-10 1997-12-16 Aeroquip Corporation Check valve for intraluminal graft
US5702418A (en) 1995-09-12 1997-12-30 Boston Scientific Corporation Stent delivery system
JPH11513577A (en) 1995-10-13 1999-11-24 トランスバスキュラー インコーポレイテッド Apparatus for tissue between transluminal intervention, the system and method
US6638293B1 (en) 1996-02-02 2003-10-28 Transvascular, Inc. Methods and apparatus for blocking flow through blood vessels
JP2000505316A (en) 1996-02-02 2000-05-09 トランスバスキュラー インコーポレイテッド Method and apparatus for joining the opening formed in the adjacent vessel or other anatomical structure
DE69633411D1 (en) 1995-10-13 2004-10-21 Transvascular Inc A device for avoidance of arterial constrictions and / or to perform other interventions transvaskularer
US5669924A (en) * 1995-10-26 1997-09-23 Shaknovich; Alexander Y-shuttle stent assembly for bifurcating vessels and method of using the same
US5591195A (en) 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
WO1997016122A1 (en) 1995-10-31 1997-05-09 Oticon A/S Method and anastomotic instrument for use when performing an end-to-side anastomosis
US5665117A (en) * 1995-11-27 1997-09-09 Rhodes; Valentine J. Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use
CN1216930A (en) 1996-02-02 1999-05-19 血管转换公司 Device, system and method for interstitial transvascular intervention
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
WO1997031575A1 (en) 1996-02-29 1997-09-04 Oticon A/S Method and anastomotic instrument for use when performing an end-to-side anastomosis
CA2248346C (en) 1996-04-30 2002-07-09 Bernafon Ag Method and anastomotic instrument for use when performing an end-to-side anastomosis
EP1026995A1 (en) 1996-05-17 2000-08-16 Jan Otto Solem A by-pass graft
US5797920A (en) 1996-06-14 1998-08-25 Beth Israel Deaconess Medical Center Catheter apparatus and method using a shape-memory alloy cuff for creating a bypass graft in-vivo
US5676670A (en) 1996-06-14 1997-10-14 Beth Israel Deaconess Medical Center Catheter apparatus and method for creating a vascular bypass in-vivo
US5690674A (en) * 1996-07-02 1997-11-25 Cordis Corporation Wound closure with plug
US5728133A (en) 1996-07-09 1998-03-17 Cardiologics, L.L.C. Anchoring device and method for sealing percutaneous punctures in vessels
CN1225565A (en) 1996-07-24 1999-08-11 詹·奥托·索里姆 Anastomotic fitting
US5779721A (en) 1996-07-26 1998-07-14 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other blood vessels
FR2751867B1 (en) * 1996-08-05 1999-05-21 Leriche Rene Ass prosthesis collar
US5755682A (en) 1996-08-13 1998-05-26 Heartstent Corporation Method and apparatus for performing coronary artery bypass surgery
JP3987979B2 (en) 1996-08-21 2007-10-10 クラジーチェク シー・エス・シー、 ミラン Internal shield of the fusion part of the vascular system
US5810884A (en) 1996-09-09 1998-09-22 Beth Israel Deaconess Medical Center Apparatus and method for closing a vascular perforation after percutaneous puncture of a blood vessel in a living subject
WO1998011847A1 (en) 1996-09-20 1998-03-26 Houser Russell A Radially expanding prostheses and systems for their deployment
US6293955B1 (en) 1996-09-20 2001-09-25 Converge Medical, Inc. Percutaneous bypass graft and securing system
US5755778A (en) 1996-10-16 1998-05-26 Nitinol Medical Technologies, Inc. Anastomosis device
US5861003A (en) 1996-10-23 1999-01-19 The Cleveland Clinic Foundation Apparatus and method for occluding a defect or aperture within body surface
US5976178A (en) 1996-11-07 1999-11-02 Vascular Science Inc. Medical grafting methods
WO1998019625A3 (en) 1996-11-08 1998-07-02 Russell A Houser Percutaneous bypass graft and securing system
US6019788A (en) 1996-11-08 2000-02-01 Gore Enterprise Holdings, Inc. Vascular shunt graft and junction for same
WO1998023228A1 (en) 1996-11-25 1998-06-04 Alza Corporation Directional drug delivery stent
US6010529A (en) 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
US5968053A (en) 1997-01-31 1999-10-19 Cardiac Assist Technologies, Inc. Method and apparatus for implanting a graft in a vessel of a patient
DE19704261C2 (en) 1997-02-05 1999-01-28 Aesculap Ag & Co Kg A surgical instrument
US7708769B1 (en) 1997-03-13 2010-05-04 United States Surgical Corporation Graft attachment assembly
US5972017A (en) 1997-04-23 1999-10-26 Vascular Science Inc. Method of installing tubular medical graft connectors
US6036702A (en) 1997-04-23 2000-03-14 Vascular Science Inc. Medical grafting connectors and fasteners
US6120432A (en) 1997-04-23 2000-09-19 Vascular Science Inc. Medical grafting methods and apparatus
US5944730A (en) 1997-05-19 1999-08-31 Cardio Medical Solutions, Inc. Device and method for assisting end-to-side anastomosis
US6056762A (en) 1997-05-22 2000-05-02 Kensey Nash Corporation Anastomosis system and method of use
WO1998055027A3 (en) 1997-06-05 2001-06-07 Vascular Science Inc Minimally invasive medical bypass methods and apparatus using partial relocation of tubular body conduit
US5957940A (en) 1997-06-30 1999-09-28 Eva Corporation Fasteners for use in the surgical repair of aneurysms
US5944750A (en) 1997-06-30 1999-08-31 Eva Corporation Method and apparatus for the surgical repair of aneurysms
EP0894475A1 (en) 1997-07-31 1999-02-03 Medtronic, Inc. Temporary vascular seal for anastomosis
US6017352A (en) 1997-09-04 2000-01-25 Kensey Nash Corporation Systems for intravascular procedures and methods of use
US6063114A (en) 1997-09-04 2000-05-16 Kensey Nash Corporation Connector system for vessels, ducts, lumens or hollow organs and methods of use
US5968090A (en) 1997-09-08 1999-10-19 United States Surgical Corp. Endovascular graft and method
US5984955A (en) 1997-09-11 1999-11-16 Wisselink; Willem System and method for endoluminal grafting of bifurcated or branched vessels
US5964782A (en) 1997-09-18 1999-10-12 Scimed Life Systems, Inc. Closure device and method
US6511506B2 (en) * 1997-10-01 2003-01-28 B. Braun Celsa Medical set for intervention on an anatomical duct, sealing ring pertaining to said set and use of said ring
US6074416A (en) 1997-10-09 2000-06-13 St. Jude Medical Cardiovascular Group, Inc. Wire connector structures for tubular grafts
US6001124A (en) 1997-10-09 1999-12-14 Vascular Science, Inc. Oblique-angle graft connectors
US5868759A (en) 1997-10-10 1999-02-09 United States Surgical Corporation Surgical clip applier
US6068654A (en) 1997-12-23 2000-05-30 Vascular Science, Inc. T-shaped medical graft connector
US6048362A (en) 1998-01-12 2000-04-11 St. Jude Medical Cardiovascular Group, Inc. Fluoroscopically-visible flexible graft structures
DE69833882D1 (en) * 1998-01-30 2006-05-11 St Jude Medical Atg Inc Medical graft connector or plug as well as process for their production
US5944738A (en) 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
US6007576A (en) 1998-02-06 1999-12-28 Mcclellan; Scott B. End to side anastomic implant
US6036703A (en) 1998-02-06 2000-03-14 Ethicon Endo-Surgery Inc. Method and apparatus for establishing anastomotic passageways
US6095997A (en) * 1998-03-04 2000-08-01 Corvascular, Inc. Intraluminal shunt and methods of use
ES2243050T3 (en) 1998-03-09 2005-11-16 Ethicon, Inc. Anastomosis device.
WO1999048427A1 (en) 1998-03-20 1999-09-30 Sumit Roy Method and device for suturless anastomosis
US5989287A (en) 1998-05-06 1999-11-23 Av Healing Llc Vascular graft assemblies and methods for implanting same
US6599302B2 (en) 1998-06-10 2003-07-29 Converge Medical, Inc. Aortic aneurysm treatment systems
US6143002A (en) * 1998-08-04 2000-11-07 Scimed Life Systems, Inc. System for delivering stents to bifurcation lesions
US6117147A (en) 1998-09-30 2000-09-12 Sulzer Carbomedics Inc. Device and method for reinforcing an anastomotic site
US6113612A (en) 1998-11-06 2000-09-05 St. Jude Medical Cardiovascular Group, Inc. Medical anastomosis apparatus
US6152937A (en) 1998-11-06 2000-11-28 St. Jude Medical Cardiovascular Group, Inc. Medical graft connector and methods of making and installing same
US6059824A (en) 1998-12-23 2000-05-09 Taheri; Syde A. Mated main and collateral stent and method for treatment of arterial disease
US6126007A (en) 1998-12-30 2000-10-03 St. Jude Medical, Inc. Tissue valve holder
WO2000053104A8 (en) 1999-03-09 2001-01-25 St Jude Medical Cardiovascular Medical grafting methods and apparatus
US6287335B1 (en) * 1999-04-26 2001-09-11 William J. Drasler Intravascular folded tubular endoprosthesis

Cited By (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040002721A1 (en) * 1999-09-01 2004-01-01 Podmore Jonathan L. Method and apparatus for performing end-to-end and end-to-side anastomosis with eversion of tissue edges
US8602966B2 (en) 2000-02-10 2013-12-10 Obtech Medical, AG Mechanical impotence treatment apparatus
US20080275296A1 (en) * 2000-02-10 2008-11-06 Obtech Medical Ag Mechanical impotence treatment apparatus
US20070073099A1 (en) * 2000-02-11 2007-03-29 Obtech Medical Ag Mechanical anal incontinence
US8734318B2 (en) 2000-02-11 2014-05-27 Obtech Medical Ag Mechanical anal incontinence
US20090018388A1 (en) * 2000-02-14 2009-01-15 Peter Forsell Penile prosthesis
US8764627B2 (en) 2000-02-14 2014-07-01 Obtech Medical Ag Penile prosthesis
US20020099392A1 (en) * 2001-01-24 2002-07-25 Mowry David H. Autoanastomosis device and connection technique
US20050027308A1 (en) * 2001-02-27 2005-02-03 Davis John W. Methods for performing anastomosis
US8758401B2 (en) 2001-09-06 2014-06-24 ProMed, Inc. Systems and methods for treating septal defects
US20040249398A1 (en) * 2001-09-06 2004-12-09 Ginn Richard S. Clip apparatus for closing septal defects and methods of use
US20090054912A1 (en) * 2001-09-06 2009-02-26 Heanue Taylor A Systems and Methods for Treating Septal Defects
US7678132B2 (en) 2001-09-06 2010-03-16 Ovalis, Inc. Systems and methods for treating septal defects
US7686828B2 (en) 2001-09-06 2010-03-30 Ovalis, Inc. Systems and methods for treating septal defects
US7740640B2 (en) 2001-09-06 2010-06-22 Ovalis, Inc. Clip apparatus for closing septal defects and methods of use
US20080015633A1 (en) * 2001-09-06 2008-01-17 Ryan Abbott Systems and Methods for Treating Septal Defects
US20060052821A1 (en) * 2001-09-06 2006-03-09 Ovalis, Inc. Systems and methods for treating septal defects
US20090088796A1 (en) * 2001-09-06 2009-04-02 Ryan Abbott Systems and Methods for Treating Septal Defects
US20060217763A1 (en) * 2001-09-06 2006-09-28 Ryan Abbott Systems and Methods for Treating Septal Defects
US20060212047A1 (en) * 2001-09-06 2006-09-21 Ryan Abbott Systems and Methods for Treating Septal Defects
US20040127917A1 (en) * 2001-09-07 2004-07-01 Ginn Richard S. Needle apparatus for closing septal defects and methods for using such apparatus
US8070826B2 (en) 2001-09-07 2011-12-06 Ovalis, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US8747483B2 (en) 2001-09-07 2014-06-10 ProMed, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US7967840B2 (en) 2001-12-19 2011-06-28 Nmt Medical, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
US7867250B2 (en) 2001-12-19 2011-01-11 Nmt Medical, Inc. Septal occluder and associated methods
US8758403B2 (en) 2001-12-19 2014-06-24 W.L. Gore & Associates, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
US20080228218A1 (en) * 2001-12-19 2008-09-18 Nmt Medical, Inc. Pfo closure device with flexible thrombogenic joint and improved dislodgement resistance
US20040133236A1 (en) * 2001-12-19 2004-07-08 Nmt Medical, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
US7182771B1 (en) 2001-12-20 2007-02-27 Russell A. Houser Vascular couplers, techniques, methods, and accessories
US20090054970A1 (en) * 2001-12-20 2009-02-26 Cardiovascular Technologies, Inc. Methods and Devices for Coupling a Device Insertable within a Mammalian Body
US20070225642A1 (en) * 2001-12-20 2007-09-27 Houser Russell A Catheter Securement Device
US20030144694A1 (en) * 2002-01-14 2003-07-31 Nmt Medical, Inc. Patent foramen ovale (PFO) closure method and device
US20070265642A1 (en) * 2002-01-14 2007-11-15 Nmt Medical, Inc. Patent foramen ovale (PFO) closure method and device
US9241695B2 (en) 2002-03-25 2016-01-26 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure clips
US7122041B2 (en) 2002-04-15 2006-10-17 Wilson-Cook Medical Inc. Clip device
US20070198060A1 (en) * 2002-06-03 2007-08-23 Nmt Medical, Inc. Device with biological tissue scaffold for percutaneous closure of an intracardiac defect and methods thereof
US20040098042A1 (en) * 2002-06-03 2004-05-20 Devellian Carol A. Device with biological tissue scaffold for percutaneous closure of an intracardiac defect and methods thereof
US9216014B2 (en) 2002-06-03 2015-12-22 W.L. Gore & Associates, Inc. Device with biological tissue scaffold for percutaneous closure of an intracardiac defect and methods thereof
US9028527B2 (en) 2002-06-05 2015-05-12 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with radial and circumferential support
US8784448B2 (en) 2002-06-05 2014-07-22 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with radial and circumferential support
US7766820B2 (en) 2002-10-25 2010-08-03 Nmt Medical, Inc. Expandable sheath tubing
US20080058859A1 (en) * 2002-11-06 2008-03-06 Chanduszko Andrzej J Medical Devices Utilizing Modified Shape Memory Alloy
US20040098121A1 (en) * 2002-11-07 2004-05-20 Nmt Medical, Inc. Patent foramen ovale (PFO) closure with magnetic force
US20040176799A1 (en) * 2002-12-09 2004-09-09 Nmt Medical, Inc. Septal closure devices
US9017373B2 (en) 2002-12-09 2015-04-28 W.L. Gore & Associates, Inc. Septal closure devices
US7658747B2 (en) 2003-03-12 2010-02-09 Nmt Medical, Inc. Medical device for manipulation of a medical implant
US20040181237A1 (en) * 2003-03-12 2004-09-16 Sean Forde Medical device for manipulation of a medical implant
US8903512B2 (en) * 2003-05-15 2014-12-02 Medtronic, Inc. Medical system including a novel bipolar pacing pair
US20040230276A1 (en) * 2003-05-15 2004-11-18 Marshall Mark T. Medical system including a novel bipolar pacing pair
US20090204194A1 (en) * 2003-05-15 2009-08-13 Medtronic, Inc. Medical system including a novel bipolar pacing pair
US20100145382A1 (en) * 2003-07-14 2010-06-10 Nmt Medical, Inc. Tubular patent foramen ovale (pfo) closure device with catch system
US9149263B2 (en) 2003-07-14 2015-10-06 W. L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US9861346B2 (en) 2003-07-14 2018-01-09 W. L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with linearly elongating petals
US9326759B2 (en) 2003-07-14 2016-05-03 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US7678123B2 (en) 2003-07-14 2010-03-16 Nmt Medical, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US8480706B2 (en) 2003-07-14 2013-07-09 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US20070010851A1 (en) * 2003-07-14 2007-01-11 Chanduszko Andrzej J Tubular patent foramen ovale (PFO) closure device with catch system
US20050043759A1 (en) * 2003-07-14 2005-02-24 Nmt Medical, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US7963952B2 (en) 2003-08-19 2011-06-21 Wright Jr John A Expandable sheath tubing
US20050080430A1 (en) * 2003-08-19 2005-04-14 Nmt Medical, Inc. Expandable sheath tubing
US20050059984A1 (en) * 2003-09-11 2005-03-17 Andrzej Chanduszko Devices, systems, and methods for suturing tissue
US7691112B2 (en) 2003-09-11 2010-04-06 Nmt Medical, Inc. Devices, systems, and methods for suturing tissue
US20050085843A1 (en) * 2003-10-21 2005-04-21 Nmt Medical, Inc. Quick release knot attachment system
US7666203B2 (en) 2003-11-06 2010-02-23 Nmt Medical, Inc. Transseptal puncture apparatus
US8157829B2 (en) 2003-11-06 2012-04-17 Pressure Products Medical Supplies, Inc. Transseptal puncture apparatus
US20050101984A1 (en) * 2003-11-06 2005-05-12 Nmt Medical, Inc. Transseptal puncture apparatus
US8292910B2 (en) 2003-11-06 2012-10-23 Pressure Products Medical Supplies, Inc. Transseptal puncture apparatus
US8992556B2 (en) 2003-11-06 2015-03-31 Pressure Products Medical Supplies, Inc. Transseptal puncture apparatus
US20050113868A1 (en) * 2003-11-20 2005-05-26 Devellian Carol A. Device, with electrospun fabric, for a percutaneous transluminal procedure, and methods thereof
US8753362B2 (en) 2003-12-09 2014-06-17 W.L. Gore & Associates, Inc. Double spiral patent foramen ovale closure clamp
US20050273119A1 (en) * 2003-12-09 2005-12-08 Nmt Medical, Inc. Double spiral patent foramen ovale closure clamp
US20060212071A1 (en) * 2003-12-11 2006-09-21 Ginn Richard S Systems and Methods for Closing Internal Tissue Defects
US20080269784A1 (en) * 2003-12-24 2008-10-30 Ryan Abbott Anastomosis device, tools and methods of using
US20050143758A1 (en) * 2003-12-24 2005-06-30 Ryan Abbott Anastomosis device, tools and methods of using
US20050149071A1 (en) * 2003-12-24 2005-07-07 Ryan Abbott Anastomosis device, tools and method of using
US8361111B2 (en) 2004-01-30 2013-01-29 W.L. Gore & Associates, Inc. Devices, systems and methods for closure of cardiac openings
US20050209636A1 (en) * 2004-01-30 2005-09-22 Nmt Medical, Inc. Devices, systems, and methods for closure of cardiac openings
US20050216054A1 (en) * 2004-01-30 2005-09-29 Nmt Medical, Inc. Devices, systems and methods for closure of cardiac openings
US7988690B2 (en) 2004-01-30 2011-08-02 W.L. Gore & Associates, Inc. Welding systems useful for closure of cardiac openings
US20050192626A1 (en) * 2004-01-30 2005-09-01 Nmt Medical, Inc. Devices, systems, and methods for closure of cardiac openings
US20050192654A1 (en) * 2004-01-30 2005-09-01 Nmt Medical, Inc. Welding systems useful for closure of cardiac openings
US8262694B2 (en) 2004-01-30 2012-09-11 W.L. Gore & Associates, Inc. Devices, systems, and methods for closure of cardiac openings
US7871419B2 (en) 2004-03-03 2011-01-18 Nmt Medical, Inc. Delivery/recovery system for septal occluder
US8945158B2 (en) 2004-03-03 2015-02-03 W.L. Gore & Associates, Inc. Delivery/recovery system for septal occluder
US8568431B2 (en) 2004-03-03 2013-10-29 W.L. Gore & Associates, Inc. Delivery/recovery system for septal occluder
US20110112633A1 (en) * 2004-03-03 2011-05-12 Nmt Medical, Inc. Delivery/recovery system for septal occluder
US20050267523A1 (en) * 2004-03-03 2005-12-01 Nmt Medical Inc. Delivery/recovery system for septal occluder
US20050234509A1 (en) * 2004-03-30 2005-10-20 Mmt Medical, Inc. Center joints for PFO occluders
US20100131006A1 (en) * 2004-04-09 2010-05-27 Nmt Medical, Inc. Split ends closure device
US20050267524A1 (en) * 2004-04-09 2005-12-01 Nmt Medical, Inc. Split ends closure device
US8828049B2 (en) 2004-04-09 2014-09-09 W.L. Gore & Associates, Inc. Split ends closure device and methods of use
US8361110B2 (en) 2004-04-26 2013-01-29 W.L. Gore & Associates, Inc. Heart-shaped PFO closure device
US20050267525A1 (en) * 2004-04-26 2005-12-01 Nmt Medical, Inc. Heart-shaped PFO closure device
US20050251154A1 (en) * 2004-05-06 2005-11-10 Nmt Medical, Inc. Double coil occluder
US8308760B2 (en) 2004-05-06 2012-11-13 W.L. Gore & Associates, Inc. Delivery systems and methods for PFO closure device with two anchors
US8568447B2 (en) 2004-05-06 2013-10-29 W.L. Gore & Associates, Inc. Delivery systems and methods for PFO closure device with two anchors
US20050273124A1 (en) * 2004-05-06 2005-12-08 Nmt Medical, Inc. Delivery systems and methods for PFO closure device with two anchors
US7842053B2 (en) 2004-05-06 2010-11-30 Nmt Medical, Inc. Double coil occluder
US20050288786A1 (en) * 2004-05-07 2005-12-29 Nmt Medical, Inc. Closure device with hinges
US9545247B2 (en) 2004-05-07 2017-01-17 W.L. Gore & Associates, Inc. Catching mechanisms for tubular septal occluder
US7704268B2 (en) 2004-05-07 2010-04-27 Nmt Medical, Inc. Closure device with hinges
US20050273135A1 (en) * 2004-05-07 2005-12-08 Nmt Medical, Inc. Catching mechanisms for tubular septal occluder
US8257389B2 (en) 2004-05-07 2012-09-04 W.L. Gore & Associates, Inc. Catching mechanisms for tubular septal occluder
US8480709B2 (en) 2004-05-07 2013-07-09 W.L. Gore & Associates, Inc. Catching mechanisms for tubular septal occluder
US20070073315A1 (en) * 2004-05-17 2007-03-29 Richard Ginn Systems And Methods For Closing Internal Tissue Defects
US8162963B2 (en) 2004-06-17 2012-04-24 Maquet Cardiovascular Llc Angled anastomosis device, tools and method of using
US20080287981A1 (en) * 2004-08-03 2008-11-20 Interventional Spine, Inc. Dilation introducer and methods for orthopedic surgery
US9387313B2 (en) 2004-08-03 2016-07-12 Interventional Spine, Inc. Telescopic percutaneous tissue dilation systems and related methods
US20090149857A1 (en) * 2004-08-03 2009-06-11 Triage Medical Telescopic Percutaneous Tissue Dilation Systems and Related Methods
US9138228B2 (en) 2004-08-11 2015-09-22 Emory University Vascular conduit device and system for implanting
US8764848B2 (en) 2004-09-24 2014-07-01 W.L. Gore & Associates, Inc. Occluder device double securement system for delivery/recovery of such occluder device
US20060122647A1 (en) * 2004-09-24 2006-06-08 Callaghan David J Occluder device double securement system for delivery/recovery of such occluder device
US8328797B2 (en) 2004-12-23 2012-12-11 C. R. Bard, Inc. Blood vessel transecting and anastomosis
US20060142788A1 (en) * 2004-12-23 2006-06-29 C. R. Bard, Inc. Blood vessel transecting and anastomosis
US9307992B2 (en) 2004-12-23 2016-04-12 C.R. Bard, Inc. Blood vessel transecting and anastomosis
US8430907B2 (en) 2005-03-18 2013-04-30 W.L. Gore & Associates, Inc. Catch member for PFO occluder
US8277480B2 (en) 2005-03-18 2012-10-02 W.L. Gore & Associates, Inc. Catch member for PFO occluder
US8636765B2 (en) 2005-03-18 2014-01-28 W.L. Gore & Associates, Inc. Catch member for PFO occluder
US8579936B2 (en) 2005-07-05 2013-11-12 ProMed, Inc. Centering of delivery devices with respect to a septal defect
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
US20070055333A1 (en) * 2005-09-06 2007-03-08 Sean Forde Removable intracardiac RF device
US9259267B2 (en) 2005-09-06 2016-02-16 W.L. Gore & Associates, Inc. Devices and methods for treating cardiac tissue
US7797056B2 (en) 2005-09-06 2010-09-14 Nmt Medical, Inc. Removable intracardiac RF device
US8795329B2 (en) 2005-09-06 2014-08-05 W.L. Gore & Associates, Inc. Removable intracardiac RF device
US9480409B2 (en) 2005-09-08 2016-11-01 Drexel University Sensing probe comprising multiple, spatially separate, sensing sites
US20090099441A1 (en) * 2005-09-08 2009-04-16 Drexel University Braided electrodes
US20070088388A1 (en) * 2005-09-19 2007-04-19 Opolski Steven W Delivery device for implant with dual attachment sites
US9084603B2 (en) 2005-12-22 2015-07-21 W.L. Gore & Associates, Inc. Catch members for occluder devices
US20070167981A1 (en) * 2005-12-22 2007-07-19 Nmt Medical, Inc. Catch members for occluder devices
US20070293875A1 (en) * 2006-03-10 2007-12-20 Wilson-Cook Medical, Inc. Clip device and protective cap, and methods of using the protective cap and clip device with an endoscope for grasping tissue endoscopically
US20070276415A1 (en) * 2006-03-31 2007-11-29 Nmt Medical, Inc. Screw catch mechanism for PFO occluder and method of use
US8870913B2 (en) 2006-03-31 2014-10-28 W.L. Gore & Associates, Inc. Catch system with locking cap for patent foramen ovale (PFO) occluder
US20070244517A1 (en) * 2006-03-31 2007-10-18 Nmt Medical, Inc. Deformable flap catch mechanism for occluder device
US8551135B2 (en) 2006-03-31 2013-10-08 W.L. Gore & Associates, Inc. Screw catch mechanism for PFO occluder and method of use
US8814947B2 (en) 2006-03-31 2014-08-26 W.L. Gore & Associates, Inc. Deformable flap catch mechanism for occluder device
US20070282355A1 (en) * 2006-06-01 2007-12-06 Wilson-Cook Medical Inc. Release mechanisms for a clip device
US8425412B2 (en) 2006-07-14 2013-04-23 Cook Medical Technologies Llc Papilla spreader
US20080015416A1 (en) * 2006-07-14 2008-01-17 Wilson-Cook Medical, Inc Papilla spreader
US20080082083A1 (en) * 2006-09-28 2008-04-03 Forde Sean T Perforated expandable implant recovery sheath
US8152822B2 (en) 2006-12-05 2012-04-10 Cook Medical Technologies Llc Combination therapy hemostatic clip
US20100016873A1 (en) * 2006-12-05 2010-01-21 Gayzik Caroline M Combination therapy hemostatic clip
US9005242B2 (en) 2007-04-05 2015-04-14 W.L. Gore & Associates, Inc. Septal closure device with centering mechanism
US9949728B2 (en) 2007-04-05 2018-04-24 W.L. Gore & Associates, Inc. Septal closure device with centering mechanism
US20080249562A1 (en) * 2007-04-05 2008-10-09 Nmt Medical, Inc. Septal closure device with centering mechanism
US9138562B2 (en) 2007-04-18 2015-09-22 W.L. Gore & Associates, Inc. Flexible catheter system
US8858489B2 (en) 2007-04-24 2014-10-14 Emory University Conduit device and system for implanting a conduit device in a tissue wall
WO2008131453A1 (en) 2007-04-24 2008-10-30 Emory University Conduit device and system for implanting a conduit device in a tissue wall
US20110028985A1 (en) * 2007-04-24 2011-02-03 Emory University Conduit device and system for implanting a conduit device in a tissue wall
US9950146B2 (en) 2007-04-24 2018-04-24 Emory Univeristy Conduit device and system for implanting a conduit device in a tissue wall
US9308015B2 (en) 2007-04-24 2016-04-12 Emory University Conduit device and system for implanting a conduit device in a tissue wall
US7846123B2 (en) 2007-04-24 2010-12-07 Emory University Conduit device and system for implanting a conduit device in a tissue wall
US8430836B2 (en) 2007-04-24 2013-04-30 Emory University Conduit device and system for implanting a conduit device in a tissue wall
US9839530B2 (en) 2007-06-26 2017-12-12 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US20130190787A1 (en) * 2007-08-02 2013-07-25 Bioconnect Systems, Inc. Implantable flow connector
US9282967B2 (en) * 2007-08-02 2016-03-15 Bioconnect Systems, Inc. Implantable flow connector
US9345485B2 (en) 2007-08-02 2016-05-24 Bioconnect Systems, Inc. Implantable flow connector
US8992409B2 (en) 2007-10-11 2015-03-31 Peter Forsell Method for controlling flow in a bodily organ
US20110066254A1 (en) * 2007-10-11 2011-03-17 Peter Forsell Method for controlling flow in a bodily organ
US9480551B2 (en) 2007-10-11 2016-11-01 Peter Forsell Implantable tissue connector
US8795153B2 (en) 2007-10-11 2014-08-05 Peter Forsell Method for treating female sexual dysfunction
US20100217289A1 (en) * 2007-10-11 2010-08-26 Peter Forsell Implantable tissue connector
US8696543B2 (en) 2007-10-11 2014-04-15 Kirk Promotion Ltd. Method for controlling flow of intestinal contents in a patient's intestines
US20090240100A1 (en) * 2007-10-11 2009-09-24 Milux Holding S.A. Schneider, Luxembourg Method for controlling flow of intestinal contents in a patient's intestines
WO2009046998A3 (en) * 2007-10-11 2009-07-23 Milux Holding Sa Implantable tissue connector
US20110087337A1 (en) * 2007-10-11 2011-04-14 Peter Forsell Apparatus for controlling flow in a bodily organ
US9662117B2 (en) 2007-10-11 2017-05-30 Peter Forsell Apparatus for controlling flow in a bodily organ
US9474517B2 (en) 2008-03-07 2016-10-25 W. L. Gore & Associates, Inc. Heart occlusion devices
US9931223B2 (en) 2008-04-05 2018-04-03 DePuy Synthes Products, Inc. Expandable intervertebral implant
US20110152862A1 (en) * 2008-08-19 2011-06-23 Achim Brodbeck Device for producing anastomoses and coagulation electrode
US9186147B2 (en) * 2008-08-19 2015-11-17 Erbe Elektromedizin Gmbh Device for producing anastomoses and coagulation electrode
US9011469B2 (en) * 2008-08-19 2015-04-21 Erbe Elektromedizin Gmbh Device for producing anastomoses and coagulation electrode
US9370656B2 (en) 2008-10-10 2016-06-21 Peter Forsell System, an apparatus, and a method for treating a sexual dysfunctional female patient
US8600510B2 (en) 2008-10-10 2013-12-03 Milux Holding Sa Apparatus, system and operation method for the treatment of female sexual dysfunction
US8874215B2 (en) 2008-10-10 2014-10-28 Peter Forsell System, an apparatus, and a method for treating a sexual dysfunctional female patient
US9504467B2 (en) 2009-12-23 2016-11-29 Boston Scientific Scimed, Inc. Less traumatic method of delivery of mesh-based devices into human body
US20140088681A1 (en) * 2010-01-27 2014-03-27 Sriram Iyer Device and method for preventing stenosis at an anastomosis site
US9895236B2 (en) 2010-06-24 2018-02-20 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US8764774B2 (en) 2010-11-09 2014-07-01 Cook Medical Technologies Llc Clip system having tether segments for closure
US9532773B2 (en) 2011-01-28 2017-01-03 Apica Cardiovascular Limited Systems for sealing a tissue wall puncture
US9320875B2 (en) 2011-02-01 2016-04-26 Emory University Systems for implanting and using a conduit within a tissue wall
US9770232B2 (en) 2011-08-12 2017-09-26 W. L. Gore & Associates, Inc. Heart occlusion devices
US9883951B2 (en) 2012-08-30 2018-02-06 Interventional Spine, Inc. Artificial disc
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US9808230B2 (en) 2014-06-06 2017-11-07 W. L. Gore & Associates, Inc. Sealing device and delivery system
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant

Also Published As

Publication number Publication date Type
US20030033005A1 (en) 2003-02-13 application
WO2000015144A1 (en) 2000-03-23 application
US20020099393A1 (en) 2002-07-25 application
WO1999063910A1 (en) 1999-12-16 application
US6887249B1 (en) 2005-05-03 grant
US6599302B2 (en) 2003-07-29 grant
US6361559B1 (en) 2002-03-26 grant
JP2002518082A (en) 2002-06-25 application
WO1999063910A9 (en) 2001-11-22 application
EP1005294A1 (en) 2000-06-07 application
US6648900B2 (en) 2003-11-18 grant
US6740101B2 (en) 2004-05-25 grant
US6648901B2 (en) 2003-11-18 grant
WO1999065409A1 (en) 1999-12-23 application
US6843795B1 (en) 2005-01-18 grant
US20020099394A1 (en) 2002-07-25 application
US20020013591A1 (en) 2002-01-31 application
US20020173808A1 (en) 2002-11-21 application

Similar Documents

Publication Publication Date Title
US6565582B2 (en) Devices and methods for performing a vascular anastomosis
US5695504A (en) Devices and methods for performing a vascular anastomosis
US6176864B1 (en) Anastomosis device and method
US7500988B1 (en) Stent for use in a stent graft
US6942692B2 (en) Supra-renal prosthesis and renal artery bypass
US6537288B2 (en) Implantable medical device such as an anastomosis device
US6419681B1 (en) Implantable medical device such as an anastomosis device
US6497710B2 (en) Method and system for attaching a graft to a blood vessel
US6293955B1 (en) Percutaneous bypass graft and securing system
US5895404A (en) Apparatus and methods for percutaneously forming a passageway between adjacent vessels or portions of a vessel
US5609628A (en) Intravascular graft and catheter
US6093166A (en) Coronary bypass implant
US6068638A (en) Device, system and method for interstitial transvascular intervention
US5676670A (en) Catheter apparatus and method for creating a vascular bypass in-vivo
US6458140B2 (en) Devices and methods for interconnecting vessels
US6709442B2 (en) Vascular bypass grafting instrument and method
US20100049223A1 (en) Prosthesis for anastomosis
US20050049615A1 (en) Methods for treating chronic obstructive pulmonary disease
US20090118726A1 (en) Systems and Methods for Transeptal Cardiac Procedures, Including Tissue Sealing Members Associated Methods
US20020092536A1 (en) Percutaneous bypass with branching vessel
US6017352A (en) Systems for intravascular procedures and methods of use
US6860891B2 (en) Arrangement and method for vascular anastomosis
US6461320B1 (en) Method and system for attaching a graft to a blood vessel
US7849860B2 (en) Methods and apparatus for transmyocardial direct coronary revascularization
US6669709B1 (en) Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED BYPASS TECHNOLOGIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOUSER, RUSSELL A.;WHAYNE, JAMES G.;FLEISCHMAN, SIDNEY D.;REEL/FRAME:010034/0220

Effective date: 19990601

AS Assignment

Owner name: IMPERIAL BANK, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:CONVERGE MEDICAL, INC.,FORMERLY KNOWN AS ADVANCED BYPASS TECHNOLOGIES,INC.;REEL/FRAME:011467/0941

Effective date: 20001122

AS Assignment

Owner name: EDWARDS LIFESCIENCES, LLC, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421

Effective date: 20030917

Owner name: FORWARD VENTURES IV B, L.P., CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421

Effective date: 20030917

Owner name: FORWARD VENTURES IV, L.P., CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421

Effective date: 20030917

Owner name: HAMILTON TECHNOLOGY VENTURES L.P., CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421

Effective date: 20030917

Owner name: JAFCO G-8 (A) INVESTMENT ENTERPRISE PARTNERSHIP, J

Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421

Effective date: 20030917

Owner name: JAFCO G-8 (B) INVESTMENT ENTERPRISE PARTNERSHIP, J

Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421

Effective date: 20030917

Owner name: JAFCO GC-1 INVESTMENT ENTERPRISE PARTNERSHIP, JAPA

Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421

Effective date: 20030917

Owner name: ST. PAUL VENTURE CAPITAL VI, LLC, MINNESOTA

Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421

Effective date: 20030917

AS Assignment

Owner name: CONVERGE MEDICAL, INC., CALIFORNIA

Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNORS:ST. PAUL VENTURE CAPITAL VI, LLC;FORWARD VENTURES IV, LP;FORWARD VENTURES IV B, LP;AND OTHERS;REEL/FRAME:014128/0591

Effective date: 20031022

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 20100326