US20120283355A1 - Tire Composition Using Elastomer Composite Blends - Google Patents

Tire Composition Using Elastomer Composite Blends Download PDF

Info

Publication number
US20120283355A1
US20120283355A1 US13/497,026 US201013497026A US2012283355A1 US 20120283355 A1 US20120283355 A1 US 20120283355A1 US 201013497026 A US201013497026 A US 201013497026A US 2012283355 A1 US2012283355 A1 US 2012283355A1
Authority
US
United States
Prior art keywords
elastomer
fluid
latex
elastomer latex
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/497,026
Other languages
English (en)
Inventor
Xuan Zhang
Ting Wang
Michael D. Morris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michelin Recherche et Technique SA Switzerland
Compagnie Generale des Etablissements Michelin SCA
Michelin Recherche et Technique SA France
Original Assignee
Michelin Recherche et Technique SA Switzerland
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Compagnie Generale des Etablissements Michelin SCA filed Critical Michelin Recherche et Technique SA Switzerland
Priority to US13/497,026 priority Critical patent/US20120283355A1/en
Assigned to CABOT CORPORATION reassignment CABOT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHANG, XUAN, MORRIS, MICHAEL D., WANG, TING
Assigned to CABOT CORPORATION reassignment CABOT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHANG, XUAN, MORRIS, MICHAEL D., WANG, TING
Assigned to COMPAGNIE GENERALE DES ETABLISSEMENTS, MICHELIN RECHERCHE ET TECHNIQUE S.A. reassignment COMPAGNIE GENERALE DES ETABLISSEMENTS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CABOT CORPORATION
Assigned to COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN, MICHELIN RECHERCHE ET TECHNIQUE S.A. reassignment COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN CORRECTIVE ASSIGNMENT TO CORRECT THE FIRST ASSIGNEES' NAME PREVIOUSLY RECORDED ON REEL 028498 FRAME 0939. Assignors: CABOT CORPORATION
Publication of US20120283355A1 publication Critical patent/US20120283355A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4336Mixers with a diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/32Mixing; Kneading continuous, with mechanical mixing or kneading devices with non-movable mixing or kneading devices
    • B29B7/325Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/287Raw material pre-treatment while feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/29Feeding the extrusion material to the extruder in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/14Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • C08L7/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • C08J2307/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/06Copolymers with styrene
    • C08J2409/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/52Aqueous emulsion or latex, e.g. containing polymers of a glass transition temperature (Tg) below 20°C

Definitions

  • This invention pertains to elastomer composites including a blend of elastomers, and methods of making such composites, more particularly this invention concerns tire comprising rubber compositions based on such elastomer composites
  • this filler should generally be present in the elastomeric matrix in a final form which is both as finely divided as possible and distributed as homogeneously as possible. Now, such conditions can only be obtained insofar as this filler has a very good ability firstly to be incorporated into the matrix during mixing with the elastomer and to be disagglomerated, and secondly to be dispersed homogeneously in this matrix.
  • Carbon black masterbatch is prepared with different grades of commercially available carbon black which vary both in surface area per unit weight and in structure, which describes the size and complexity of aggregates of carbon black formed by the fusion of primary carbon black particles to one another.
  • a continuous flow of a first fluid including an elastomer latex is fed to the mixing zone of a coagulum reactor.
  • a continuous flow of a second fluid including a carbon black slurry is fed under pressure to the mixing zone to form a mixture with the elastomer latex.
  • the mixing of the two fluids is sufficiently energetic to substantially completely coagulate the elastomer latex with the carbon black prior to a discharge end of the coagulum reactor.
  • the coagulum may then be fed to a dewatering extruder.
  • Blends of elastomers may be produced by dry-mixing two polymers together. Alternatively, blends may be produced by co-coagulating a mixture of elastomer latices (see, e.g., U.S. Pat. No. 4,271,213) or by recovering a polymer blend from a mixture of an elastomer latex and a solution containing a second polymer (see, e.g., U.S. Pat. No. 5,753,742).
  • U.S. Pat. No. 6,521,691 discloses a wet masterbatch method in which two polymer emulsions and a filler slurry may be combined and then coagulated to form a masterbatch.
  • U.S. Pat. No. 6,800,126 discloses that carbon black aggregates may be blended with an oil and a low-molecular weight elastomer latex to form a pre-blend, which preblend may be combined with an emulsion of a diene-based elastomer. A composite of the elastomer and the carbon black is then recovered from the mixture.
  • 4,578,411 discloses a method in which an elastomer latex, an elastomer solution, and a filler are combined, following which a composite of the two elastomers with the filler is recovered.
  • all of these references disclose the combination of the filler with the elastomer and the coagulation of the latex as separate processing steps. Between these two process stages, the filler can flocculate in the emulsion to the detriment of its even distribution in the final composite.
  • U.S. Pat. No. 6,048,923 discloses a wet masterbatch method in which coagulation ensues upon introduction of a filler slurry to an elastomer latex, resulting in superior dispersion of filler within the elastomer composite. No coagulant is required to form this “wet mix” elastomer composite.
  • the '923 patent discloses that blends of elastomer latices may be combined with the filler slurry to form a coagulum.
  • natural rubber latex is essentially a biological material, it contains a number of dissolved substances such as magnesium, potassium, phosphate, and sulfate ions, fatty acids, amino acids, carbohydrates, peptides, etc.
  • the high ionic strength of the aqueous carrier can cause synthetic latices with which natural rubber latex is combined to coagulate before the filler slurry is introduced to the elastomer latex blend.
  • Such synthetic latices are said to be incompatible with natural rubber latex. While it is possible to render the two latices compatible by adding surfactant to either the synthetic or the natural latex, the additional surfactant makes the latex more difficult to coagulate and increases the concentration of surfactant in the final rubber product.
  • a tire comprises a rubber composition based on an elastomer composite is prepared by a method including feeding a continuous flow of a first fluid comprising a first elastomer latex to a mixing zone of a coagulum reactor, feeding a continuous flow of a second fluid comprising a second elastomer latex to the mixing zone, feeding a continuous flow of a third fluid comprising a particulate filler slurry to the mixing zone, allowing the first elastomer latex and the second elastomer latex to coagulate with the particulate filler, and discharging a flow of coagulated wet mix elastomer composite from a discharge end of the coagulum reactor.
  • the first elastomer latex may include natural rubber latex
  • the second elastomer latex may include a synthetic elastomer latex.
  • the particulate filler may include carbon black.
  • the first fluid and the second fluid may combine with the third fluid to form a mixture, and the first fluid and the second fluid may combine with the third fluid substantially simultaneously.
  • the first fluid and the third fluid may combine to form a mixture, and the second fluid may combine with the mixture.
  • the first elastomer latex and the second elastomer latex may be incompatible.
  • the elastomer composite used for said tire composition may include natural rubber and about 1 to about 36 wt % styrene-butadiene rubber, for example about 20 to about 36 wt % styrene-butadiene rubber with respect to the total rubber content.
  • the elastomer composite may exhibit a macrodispersion of less than 0.1% undispersed area.
  • FIG. 1 is a schematic diagram of an apparatus for producing elastomer composite blends according to an exemplary embodiment of the invention.
  • FIGS. 2A and 2B are schematic diagrams of apparatus for injection of a second elastomer latex into a coagulum according to an exemplary embodiment of the invention.
  • FIG. 3 is a schematic diagram of a top view of the apparatus depicted in FIGS. 2A and 2B .
  • FIG. 4 is a schematic diagram illustrating the configuration of samples for electrical resistivity testing.
  • FIG. 5 is a graph of the natural log of resistivity with respect to loading levels of N234 carbon black comparing vulcanized elastomer composite blends produced according to an exemplary embodiment of the invention (triangles, numbers indicate the proportion of styrene-butadiene rubber by weight with respect to total rubber) to vulcanized elastomer composites produced from natural rubber latex via a wet masterbatch method (diamonds), vulcanized elastomer composite blends produced from natural rubber and styrene-butadiene rubber via a dry mixing method (stars), and vulcanized elastomer composites produced from natural rubber latex via a dry mixing method (squares).
  • an tire comprises a rubber composition which is based on an elastomer composite which is prepared by feeding a continuous flow of a first fluid comprising a first elastomer latex to a mixing zone of a coagulum reactor, feeding a continuous flow of a second fluid comprising a second elastomer latex to the mixing zone, feeding a continuous flow of a third fluid comprising a particulate filler slurry to the mixing zone, allowing the first elastomer latex and the second elastomer latex to coagulate with the particulate filler, and discharging a flow of elastomer composite from a discharge end of the coagulum reactor.
  • this method allows the production of elastomer composite blends, for example, blends of natural rubber latex and styrene-butadiene copolymers, from incompatible polymer emulsions.
  • said rubber composition may be used for the tread portion, sidewalls, wire skim and/or carcass.
  • stresses at given elongations reflect, among other things, the effect of filler morphology (particle size and structure) and surface activity, which determines filler-polymer and aggregate-aggregate interaction.
  • the ratio of the stress at 300% elongation to that at 100% elongation, T300/T100 provides a useful approach for quantifying the degree of polymer-filler interaction because the factors governing the stresses at different elongations are different. Structure affects the occlusion of rubber in the filler aggregates.
  • Increased occlusion increases the effective filler volume fraction, a description of the extent to which filler actually interacts with the rubber matrix and influences the properties of the rubber matrix composite, and thus the stresses at given elongations for the filled vulcanizate.
  • the effects of structure and surface area on stress should be the same.
  • any difference in stresses at different strains can be attributed to the crosslinking density of the polymer matrix, polymer-filler interaction, and aggregate-aggregate interaction, the last of which leads to filler agglomeration.
  • the agglomerates are not broken down, and the rubber trapped in the agglomerates can be treated as filler.
  • microdispersion This feature of the composite microstructure is termed microdispersion. Without being bound by any particular theory, it is believed that improvements in microdispersion result from better separation of individual filler aggregates and/or small clusters of aggregates (i.e., agglomerates) within the composite.
  • the term “aggregate” refers to the smallest dispersible unit of the filler.
  • carbon black aggregates are made up of primary particles of carbon black and generally cannot be broken into smaller pieces by mechanical forces.
  • the term “agglomerate” refers to a plurality of aggregates in physical contact with one another and held together by physical forces. These agglomerates may be broken by mechanical forces into smaller units or particles; the smaller units may be aggregates, smaller agglomerates, or both.
  • the difference in conductivity between carbon black and rubber may be exploited to characterize microdispersion in carbon black-rubber composites.
  • the conductivity of such composites depends primarily on the concentration and morphology (e.g., surface area, particle size, and structure) of the carbon black.
  • the conductivity of these composites is influenced by the state of dispersion of the carbon black in the rubber matrix.
  • the conductivity of a carbon black-rubber composite first increases, then decreases as the carbon black becomes more dispersed in the matrix (A. I. Medalia, “Electrical Conduction in Carbon Black Composites,” Rubber Chemistry and Technology, 1986, Vol. 59, p. 432).
  • the initial increase is attributed to the increasing distribution and dispersion of larger carbon black agglomerates, thereby decreasing the average distance between particles in the composite. Further improvements in dispersion lead to a decrease in conductivity. As noted above, this is attributed to the separation of small groups of individual carbon black aggregates within the system (Medalia, 1986).
  • a wet mix elastomer composite is prepared from natural rubber and carbon black.
  • the resulting vulcanized wet mix elastomer composite exhibits a resistivity satisfying In(resistivity) ⁇ 0.1(loading)+x, where x is 14.
  • the resistivity may also satisfy In(resistivity) ⁇ 0.1(loading)+x, where x is 14.5.
  • the resistivity may satisfy In(resistivity) ⁇ 0.1(loading)+y, where y is 17.
  • y may be 16.
  • the vulcanized wet mix elastomer composite exhibits a resistivity that is at least about 2.9 times higher, for example, at least about 3.5 times higher, at least about 4 times higher, at least about 4.5 times higher, or at least about 5 times higher than the resistivity of a vulcanized dry mix elastomer composite having the same composition and prepared using a comparative method, CTV Comparative Method 1 (defined below).
  • the resistivity may be from about 3 times to about 6 times higher, from about 4 times to about 5 times higher, from about 2 times to about 5.5 times higher, or from about 2.5 times to about 4.5 times higher for the vulcanized wet mix composite than for the vulcanized dry mix composite.
  • the wet mix elastomer composition may include less than 2 phr of surfactant, for example, less than 1.5 phr of surfactant, less than 1 phr of surfactant, less than 0.75 phr of surfactant, less than 0.5 phr of surfactant, or from 0.25 to 2 phr of surfactant.
  • CTV Method 1 means compounding a masterbatch in a 1.6 L Banbury mixer using the formulation in Table 1 and the procedure in Table 2. After each Banbury mixing stage, compounds are sheeted on a 2-roll mill operated at ambient temperature and about 40 rpm with a nip gap of about 2 mm using 4 cross-cuts and 2 end-rolls, with a rest time between stage 1 and stage 2 mixing from 4-6 hours. Compounds are then cured in a press at 150° C. using a mold with a 2 mm thick spacer for a time determined by a conventional rubber rheometer (i.e., T90+10% of T90).
  • Stage 1 Farrel BR Banbury mixer (1600 cc), 75% fill factor, 80 rpm, 60° C. 0
  • rubber-carbon black masterbatch 1 Add zinc oxide, stearic acid and 6PPD 1.5 Sweep 2.5 Dump Roll mill using 4 cross-cuts and 2 end rolls
  • Stage 2 Farrel BR Banbury mixer (1600 cc), 65% fill factor, 60 rpm, 50° C. 0
  • CTV Comparative Method 1 means preparing a vulcanized elastomer composite in a 1.6 L Banbury mixer using the formulation in Table 1 and the procedure in Table 3. After each Banbury mixing stage, compounds are sheeted on a 2-roll mill operated at ambient temperature and about 40 rpm with a nip gap of about 2 mm using 4 cross-cuts and 2 end-rolls, with a rest time between stage 1 and stage 2 mixing from 4-6 hours. Compounds are then cured in a press at 150° C. using a mold with a 2 mm thick spacer for a time determined by a conventional rubber rheometer (i.e., T90+10% of T90).
  • the vulcanized compounds can affect resistivity. To avoid skewing test results, the compounds should not be stored under conditions of high humidity or high temperature (e.g., greater than about 30 or 40° C.) for extended periods of time, nor should they be significantly mechanically deformed.
  • high humidity or high temperature e.g., greater than about 30 or 40° C.
  • Wet mix elastomer composite blends prepared according to certain embodiments of the invention exhibit a ratio of T300 to T100 that is at least about 18% greater than the same ratio for a vulcanized dry mix elastomer composite blend having the same composition.
  • the ratio T300/T100 may be at least about 20% greater, at least about 25% greater, at least about 30% greater, or at least about 35% greater for a vulcanized wet mix elastomer blend than for a dry mix elastomer composite blend.
  • the ratio T300/T100 may be from about 20% to about 30% greater, from about 25% to about 35% greater, from about 30% to about 40% greater, or from about 35% to about 45% greater for a wet mix elastomer composite blend than for a dry mix elastomer composite blend.
  • the wet mix elastomer composition may include less than 2 phr of surfactant, for example, less than 1.5 phr of surfactant, less than 1 phr of surfactant, less than 0.75 phr of surfactant, less than 0.5 phr of surfactant, or from 0.25 to 2 phr of surfactant.
  • wet mix elastomer composite blend refers to an elastomer composite blend which has been prepared by a wet masterbatch process.
  • dry mix elastomer composite blend refers to an elastomer composite blend which has been prepared by combining two dry elastomers (e.g., less than 1% water) and particulate filler in powder form or by combining dry elastomer with an elastomer masterbatch.
  • a particulate filler slurry is fed into a mixing portion 10 of a coagulum reactor 11 via a filler feed line 12 .
  • a first elastomer latex is fed into mixing portion 10 via first latex feed line 14 .
  • a second elastomer latex is fed into mixing portion 10 via second latex feed line 16 .
  • the two latices coagulate in the mixing portion 10 , and the coagulum, including both elastomers and particulate filler, proceeds through a diffuser portion 17 of coagulum reactor 11 .
  • the diffuser portion 17 has a series of sections 18 a - 18 d , each one having progressively higher diameter than the previous section 18 .
  • transition regions 20 a - c provide a gradual increase in diameter from one section 18 to the next.
  • the diffuser portion may have greater or fewer sections 18 than shown in the figure.
  • the elastomer composite coagulum emerges from diffuser portion 17 as “masterbatch crumb”.
  • the masterbatch crumb is passed from coagulum reactor 11 to a de-watering extruder via a simple gravity drop or other suitable apparatus known to those of skill in the art.
  • the dewatering extruder may bring the elastomer composite from, e.g., approximately 70-85% water content, to a desired water content, e.g., approximately 1% to 20% water content.
  • the optimal water content may vary with the elastomer employed, the type of filler, and the desired downstream processing procedure.
  • Suitable de-watering extruders are well known and commercially available from, for example, the French Oil Mill Machinery Co. (Piqua, Ohio, USA).
  • the resulting dewatered coagulum may be dried.
  • the dewatered coagulum is simply thermally dried.
  • the dewatered coagulum is mechanically masticated while drying.
  • the dewatered coagulum may be mechanically worked with one or more of a continuous mixer, an internal mixer, a twin screw extruder, a single screw extruder, or a roll mill.
  • Suitable masticating devices are well known and commercially available, including for example, a Unimix Continuous Mixer and MVX (Mixing, Venting, eXtruding) Machine from Farrel Corporation of Ansonia, Conn., a long continuous mixer from Pomini, Inc., a Pomini Continuous Mixer, twin rotor corotating intermeshing extruders, twin rotor counterrotating non-intermeshing extruders, Banbury mixers, Brabender mixers, intermeshing-type internal mixers, kneading-type internal mixers, continuous compounding extruders, the biaxial milling extruder produced by Kobe Steel, Ltd., and a Kobe Continuous Mixer.
  • MVX Manufacturing, Venting, eXtruding
  • additives can be combined with the dewatered coagulum in the mechanical mixer.
  • additives such as filler (which may be the same as, or different from, the filler used in the coagulum reactor; exemplary fillers include silica and zinc oxide, with zinc oxide also acting as a curing agent), other elastomers, other or additional masterbatch, antioxidants, antiozonants, plasticizers, processing aids (e.g., stearic acid, which can also be used as a curing agent, liquid polymers, oils, waxes, and the like), resins, flame-retardants, extender oils, lubricants, and a mixture of any of them, can be added in the mechanical mixer.
  • filler which may be the same as, or different from, the filler used in the coagulum reactor; exemplary fillers include silica and zinc oxide, with zinc oxide also acting as a curing agent
  • other elastomers include silica and zinc oxide, with zinc oxide also acting as a curing agent
  • additional elastomers can be combined with the dewatered coagulum to produce elastomer blends.
  • exemplary elastomers include, but are not limited to, rubbers, polymers (e.g., homopolymers, copolymers and/or terpolymers) of 1,3-butadiene, styrene, isoprene, isobutylene, 2,3-dialkyl-1,3-butadiene, where alkyl may be methyl, ethyl, propyl, etc., acrylonitrile, ethylene, and propylene and the like.
  • Methods of producing masterbatch blends are disclosed in our commonly owned U.S. Pat. Nos.
  • FIG. 2A shows an exemplary configuration in which materials emerging from filler feed line 212 , first latex feed line 214 , and second latex feed line 216 all combine with one another substantially simultaneously.
  • the angle beta between first latex feed line 214 and filler feed line 212 and the angle beta′ between second latex feed line 216 and filler feed line 212 may be varied independently. Either of these angles may vary from greater than 0° to less than 180°. Preferably, beta and beta′ are varied independently from 30° to 90°. The optimal angle may be determined in part by the relative flow rates of the three fluids and their compositions.
  • the angle alpha between the two latex feed lines may also be varied from greater than 0° to less than 180° ( FIG. 3 ).
  • a plurality of latex feed lines may be used for either or both of the first and second elastomer latex streams.
  • the injection points of the two latices may be staggered with respect to the injection of the filler slurry ( FIG. 2B ).
  • the outlet of first latex feed line 214 and second latex feed line 216 may be spaced by a distance x.
  • the first elastomer latex is prepared from a natural rubber latex.
  • iene elastomer or “diene” rubber should be understood as meaning, in a known way, an (one or more are understood) elastomer resulting at least in part (i.e., a homopolymer or a copolymer) from diene monomers (monomers carrying two carbon-carbon double bonds which may or may not be conjugated).
  • diene elastomers can be classified into two categories: “essentially unsaturated” or “essentially saturated”.
  • the term “essentially unsaturated” is understood to mean generally a diene elastomer resulting at least in part from conjugated diene monomers having a level of units of diene origin (conjugated dienes) which is greater than 15% (mol %); thus it is that diene elastomers such as butyl rubbers or copolymers of dienes and of ⁇ -olefins of EPDM type do not come within the preceding definition and can in particular be described as “essentially saturated” diene elastomers (low or very low level of units of diene origin, always less than 15%).
  • the term “highly unsaturated” diene elastomer is understood to mean in particular a diene elastomer having a level of units of diene origin (conjugated dienes) which is greater than 50%.
  • natural rubber belongs to the category of “highly unsaturated” diene elastomer.
  • exemplary natural rubber latices include but are not limited to field latex, latex concentrate (produced, for example, by evaporation, centrifugation or creaming), skim latex (a by-product of the centrifugation of natural rubber latex) and blends of any two or three of these in any proportion.
  • the latex should be appropriate for the intended purpose or application of the final rubber product.
  • the latex is provided typically in an aqueous carrier liquid. Selection of a suitable latex or blend of latices will be well within the ability of those skilled in the art given the benefit of the present disclosure and the knowledge of selection criteria generally well recognized in the industry.
  • the natural rubber latex may also be chemically modified in some manner. For example, it may be treated to chemically modify or reduce various non-rubber components, or the rubber molecules themselves may be modified with various monomers or other chemical groups such as chlorine.
  • Exemplary methods of chemically modifying natural rubber latex are disclosed in European Patent Publications Nos. 1489102, 1816144, and 1834980, Japanese Patent Publications Nos. 2006152211, 2006152212, 2006169483, 2006183036, 2006213878, 2006213879, 2007154089, and 2007154095, U.S. Pat. Nos. 6,841,606 and 7,312,271, and U.S. Patent Publication No. 2005-0148723. Other methods known to those of skill in the art may be employed as well.
  • the second elastomer latex is prepared using synthetic latex.
  • Synthetic diene elastomer of the composition in accordance with the invention is preferably chosen from the group of the highly unsaturated diene elastomers consisting of polybutadienes (abbreviated to “BR”), synthetic polyisoprenes (IR), butadiene copolymers, isoprene copolymers and the mixtures of these elastomers.
  • Such copolymers are more preferably chosen from the group consisting of butadiene/styrene copolymers (SBR), isoprene/butadiene copolymers (BIR), isoprene/styrene copolymers (SIR) and isoprene/butadiene/styrene copolymers (SBIR).
  • SBR butadiene/styrene copolymers
  • BIR isoprene/butadiene copolymers
  • SIR isoprene/styrene copolymers
  • SBIR isoprene/butadiene/styrene copolymers
  • the elastomers can, for example, be block, random, sequential or microsequential elastomers and can be prepared in dispersion or in solution; they can be coupled and/or star-branched or also functionalized with a coupling and/or star-branching or functionalization agent.
  • a coupling and/or star-branching or functionalization agent for coupling with carbon black, mention may be made, for example, of functional groups comprising a C—Sn bond or of aminated functional groups, such as benzophenone, for example;
  • a reinforcing inorganic filler such as silica, mention may be made, for example, of silanol functional groups or polysiloxane functional groups having a silanol end (such as described, for example, in U.S. Pat. No.
  • polybutadienes in particular those having a content of 1,2-units of between 4% and 80% or those having a content of cis-1,4-units of greater than 80%
  • polyisoprenes butadiene/styrene copolymers in particular those having a styrene content of between 5% and 50% by weight and more particularly between 20% and 40%
  • butadiene/isoprene copolymers in particular those having an isoprene content of between 5% and 90% by weight and a glass transition temperature (“Tg”—measured according to ASTM D 3418-82) of ⁇ 40° C.
  • Tg glass transition temperature
  • isoprene/styrene copolymers in particular those having a styrene content of between 5% and 50% by weight and a Tg of between ⁇ 25° C. and ⁇ 50° C.
  • butadiene/styrene/isoprene copolymers those having a styrene content of between 5% and 50% by weight and more particularly of between 10% and 40%, an isoprene content of between 15% and 60% by weight and more particularly between 20% and 50%, a butadiene content of between 5% and 50% by weight and more particularly of between 20% and 40%, a content of 1,2-units of the butadiene part of between 4% and 85%, a content of trans-1,4-units of the butadiene part of between 6% and 80%, a content of 1,2-plus 3,4-units of the isoprene part of between 5% and 70% and a content of trans-1,4-units of the isoprene part of between 10% and 50%, and more generally any butadiene/styrene/isoprene copolymer having a Tg of between ⁇ 20° C. and ⁇ 70° C., are suitable in particular.
  • emulsions of block copolymers are also suitable for use according to the teachings herein.
  • a coagulant for example, a salt or acid solution
  • the particulate filler fluid may be a carbon black slurry or any other suitable filler in a suitable carrier fluid. Selection of the carrier fluid will depend largely upon the choice of particulate filler and upon system parameters. Both aqueous and non-aqueous liquids may be used, with water being preferred in many embodiments in view of its cost, availability and suitability of use in the production of carbon black and certain other filler slurries. Small amounts of water-miscible organic solvents may also be included in aqueous carrier fluids.
  • particulate filler can include any material which is appropriate for use in the masterbatch process. Suitable particulate fillers include, for example, conductive fillers, reinforcing fillers, fillers comprising short fibers (typically having an L/D aspect ratio less than 40), flakes, etc. In addition to carbon black and silica-type fillers, discussed in more detail below, fillers can be formed of clay, glass, polymer, such as aramid fiber, etc. It is expected that any filler suitable for use in elastomer compositions may be incorporated into elastomer composites according to various embodiments of the invention. Of course, blends of the various particulate fillers discussed herein may also be used.
  • the carbon black filler can include also any material which can be slurried and combined with a latex.
  • Exemplary particulate fillers include but are not limited to carbon black, fumed silica, precipitated silica, coated carbon black, chemically functionalized carbon blacks, such as those having attached organic groups, and silicon-treated carbon black, either alone or in combination with each other.
  • Exemplary carbon blacks include ASTM N100 series-N900 series carbon blacks, for example N100 series carbon blacks, N200 series carbon blacks, N300 series carbon blacks, N700 series carbon blacks, N800 series carbon blacks, or N900 series carbon blacks.
  • Suitable chemically functionalized carbon blacks include those disclosed in International Application No. PCT/US95/16194 (WO 96/18688), the disclosure of which is hereby incorporated by reference.
  • Both silicon-coated and silicon-treated carbon blacks may be employed in various embodiments.
  • silicon-treated carbon black a silicon containing species such as an oxide or carbide of silicon is distributed through at least a portion of the carbon black aggregate as an intrinsic part of the carbon black.
  • Conventional carbon blacks exist in the form of aggregates, with each aggregate consisting of a single phase, which is carbon. This phase may exist in the form of a graphitic crystallite and/or amorphous carbon, and is usually a mixture of the two forms.
  • Carbon black aggregates may be modified by depositing silicon-containing species, such as silica, on at least a portion of the surface of the carbon black aggregates. The result may be described as silicon-coated carbon blacks.
  • silicon-treated carbon blacks are not carbon black aggregates which have been coated or otherwise modified, but actually represent a different kind of aggregate having two phases.
  • One phase is carbon, which will still be present as graphitic crystallite and/or amorphous carbon, while the second phase is silica (and possibly other silicon-containing species).
  • the silicon-containing species phase of the silicon-treated carbon black is an intrinsic part of the aggregate; it is distributed throughout at least a portion of the aggregate.
  • a variety of silicon-treated blacks are available from Cabot Corporation under the name EcoblackTM. It will be appreciated that the multiphase aggregates are quite different from the silica-coated carbon blacks mentioned above, which consist of pre-formed, single phase carbon black aggregates having silicon-containing species deposited on their surface.
  • Such carbon blacks may be surface-treated in order to place a silica functionality on the surface of the carbon black aggregate as described in, e.g., U.S. Pat. No. 6,929,783.
  • additives also may be pre-mixed, if suitable, with the particulate slurry or with either the first or second elastomer latex fluids or may be combined with the mixture of these during coagulation.
  • Additives also can be mixed into the coagulum.
  • Numerous additives are well known to those skilled in the art and include, for example, antioxidants, antiozonants, plasticizers, processing aids (e.g., liquid polymers, oils and the like), resins, flame-retardants, extender oils, lubricants, and a mixture of any of them.
  • Exemplary additives include but are not limited to zinc oxide and stearic acid. The general use and selection of such additives is well known to those skilled in the art.
  • the ratio of the dry rubber contents of the first and second elastomers may be adjusted by adjusting the relative flow rates of the two elastomers, by diluting one of the two elastomer latices, e.g., with water and/or skim latex, or both.
  • Other variables that may be manipulated to optimize the filler loading include the absolute flow rate of the elastomer latex streams and filler slurry (e.g., the production rate) and the relative flow rate of the elastomer latex streams and filler slurry (e.g., the filler loading).
  • the amount of filler in the elastomer composite may be any amount of filler that is used to make elastomer composites.
  • rubbers may be produced with at least 30 parts per hundred of rubber (phr), at least 40 phr, at least 50 phr, at least 55 phr, at least 60 phr, at least 65 phr at least 70 phr, at least 75 phr, at least 80 phr, at least 85 phr, at least 90 phr, at least 95 phr, or at least 100 phr of filler.
  • the invention also concerns the use of resulting elastomer composite blend accordingly to any of the mentioned embodiments for the fabrication of tires, in particular for the compositions of tire treads, tire sidewalls, wire-skim for tires, carcass and cushion gum for retread tires.
  • the rubber compositions of the invention also comprise all or a portion of the usual additives generally used in the elastomer compositions intended for the manufacture of treads for tyres, in particular for winter tyres, such as, for example, protection agents, such as antiozone waxes, chemical antiozonants, antioxidants, reinforcing resins, methylene acceptors (for example phenolic novolak resin) or methylene donors (for example HMT or H3M), a crosslinking system based either on sulphur or on donors of sulphur and/or peroxide and/or bismaleimides, vulcanization accelerators, or vulcanization activators.
  • protection agents such as antiozone waxes, chemical antiozonants, antioxidants, reinforcing resins, methylene acceptors (for example phenolic novolak resin) or methylene donors (for example HMT or H3M)
  • methylene acceptors for example phenolic novolak resin
  • compositions can also comprise coupling activators when a coupling agent is used, agents for covering the inorganic filler or more generally processing aids capable, in a known way, by virtue of an improvement in the dispersion of the filler in the rubber matrix and of a lowering of the viscosity of the compositions, of improving their property of processing in the raw state;
  • these agents are, for example, hydrolysable silanes, such as alkylalkoxysilanes, polyols, polyethers, amines, or hydroxylated or hydrolysable polyorganosiloxanes.
  • the rubber compositions of the invention are further processed in appropriate mixers using two successive preparation phases according to a general procedure well known to a person skilled in the art: a first phase of thermomechanical working or kneading (sometimes described as “non-productive” phase) at high temperature, up to a maximum temperature of between 130° C. and 200° C., preferably between 145° C. and 185° C., followed by a second phase of mechanical working (sometimes described as “productive” phase) at a lower temperature, typically of less than 120° C., for example between 60° C. and 100° C., finishing phase during which the crosslinking or vulcanization system is incorporated.
  • a first phase of thermomechanical working or kneading sometimes described as “non-productive” phase
  • a second phase of mechanical working sometimes described as “productive” phase
  • finishing phase during which the crosslinking or vulcanization system is incorporated.
  • the crosslinking system proper is preferably based on sulphur and on a primary vulcanization accelerator, in particular on an accelerator of sulphenamide type.
  • a primary vulcanization accelerator in particular on an accelerator of sulphenamide type.
  • various known secondary accelerators or vulcanization activators such as zinc oxide, stearic acid, guanidine derivatives (in particular diphenylguanidine), and the like, incorporated during the first non-productive phase and/or during the productive phase.
  • the level of sulphur is preferably between 0.5 and 12 phr, preferably between 1 and 10 phr, and that of the primary accelerator is preferably between 0.5 and 5.0 phr.
  • accelerator primary or secondary of any compound capable of acting as accelerator of the vulcanization of diene elastomers in the presence of sulphur, in particular accelerators of the thiazoles type and their derivatives, accelerators of thiurams types, or zinc dithiocarbamates.
  • These accelerators are more preferably chosen from the group consisting of 2-mercaptobenzothiazyl disulphide (abbreviated to “MBTS”), N-cyclohexyl-2-benzothiazolesulphenamide (abbreviated to “CBS”), N,N-dicyclohexyl-2-benzothiazolesulphenamide (“DCBS”), N-tert-butyl-2-benzothiazolesulphenamide (“TBBS”), N-tert-butyl-2-benzothiazolesulphenimide (“TBSI”), zinc dibenzyldithiocarbamate (“ZBEC”) and the mixtures of these compounds.
  • MBTS 2-mercaptobenzothiazyl disulphide
  • CBS N-cyclohexyl-2-benzothiazolesulphenamide
  • DCBS N,N-dicyclohexyl-2-benzothiazolesulphenamide
  • TBBS N-tert-butyl-2-benzothiazolesulphenamide
  • the final composition thus obtained is subsequently calendered, for example in the form of a sheet or of a plaque, in particular for laboratory characterization, or else extruded in the form of a rubber profiled element which can be used directly like for example tire tread.
  • the vulcanization (or curing) is carried out in a known way at a temperature generally of between 130° C. and 200° C. for a sufficient time which can vary, for example, between 5 and 90 min depending in particular on the curing temperature, the vulcanization system adopted and the vulcanization kinetics of the composition under consideration.
  • the invention relates to the rubber compositions and to the treads described above, both in the raw state (i.e., before curing) and in the cured state (i.e., after crosslinking or vulcanization).
  • Dry N234 carbon black (Cabot Corporation, Boston, Mass.) was mixed with water and ground to form a slurry having a concentration of about 10-15%.
  • the slurry was fed to a homogenizer at an operating pressure of around 3000 psig such that the slurry was introduced as a jet into the mixing zone to produce a finely ground carbon black slurry.
  • the carbon black flow rate was adjusted to about 690-1160 kg/hr to modify final carbon black loading levels.
  • the actual carbon black loading levels were determined by nitrogen pyrolysis or thermogravimetric analysis (TGA).
  • Field latex having a dry rubber content of about 27-31% was pumped to the mixing zone of the coagulum reactor.
  • the latex flow rate was adjusted between about 650-720 kg/h in order to modify final carbon black loading levels and the relative proportions of natural rubber and synthetic latex.
  • Styrene-butadiene latex (Nipol LX112, Zeon Corporation, Tokyo, Japan) was pumped to the mixing zone of the coagulum reactor for injection simultaneously with the natural rubber latex.
  • the latex flow rate was adjusted between about 130-310 kg/h in order to modify final carbon black loading levels and the relative proportions of natural rubber and synthetic latex.
  • the carbon black slurry, natural rubber latex, and synthetic latex were mixed by entraining the two latex streams into the carbon black slurry in a mixing portion of a coagulum reactor similar to that shown in FIG. 1 . During the entrainment process, the carbon black was intimately mixed into the latex and the mixture coagulated.
  • the masterbatch crumb discharged from the coagulum reactor was dewatered to 10-20% moisture with a dewatering extruder (The French Oil Machinery Company, Piqua, Ohio).
  • a dewatering extruder The French Oil Machinery Company, Piqua, Ohio.
  • the masterbatch crumb was compressed, and water squeezed from the crumb was ejected through a slotted barrel of the extruder.
  • the dewatered coagulum was dropped into a continuous compounder (Farrel Continuous Mixer (FCM), Farrel Corporation) where it was masticated and mixed with antioxidant.
  • FCM Full Mixer
  • the moisture content of the masticated masterbatch exiting the FCM was around 1-2%.
  • the product was further masticated and cooled on an open mill.
  • the cooled elastomer composite was compounded according to the formulation in Table 4 and the procedure outlined in Table 5.
  • Vulcanization was carried out in a heated press set at 150° C. for a time determined by a conventional rubber rheometer (i.e., T90+10% of T90, where T90 is the time to achieve 90% vulcanization).
  • Dry mix elastomer blends were prepared from coagulated natural rubber and either SBR1500, a coagulated rubber available from Polimeri Europa (Milan, Italy) or coagulated Nipol LX112 (Zeon Corporation). Nipol LX112 was coagulated with 0.15 kg of aqueous 10% Ca(NO 3 ) 2 per kilogram of latex after adjusting the pH to 3 with 10% H 2 SO 4 . These materials were compounded using the formulation in Table 4, above and the procedure in Table 6.
  • the tensile stress of vulcanized samples (T300 and T100) were measured according to ASTM standard D-412. Tan delta 60° was determined using a dynamic strain sweep between 0.01% and 60% at 10 Hz and 60° C. Tan ⁇ max was taken as the maximum value of tan ⁇ within this range of strains. Rebound was measured according to ASTM standard D7121.
  • Tan delta 30° was measured according to the following method: specimens were prepared by curing cylinders 16 mm in diameter and 10 mm in length between parallel plates coated with a ChemlokTM bonding agent. All test specimens were allowed to equilibrate in the test laboratory for at least 24 hours prior to testing, and all were allowed to warm-up for 15-20 minutes in the rheometer at the test temperature (30° C.). Samples were first strained to 25% at 1 Hz and held at 20% steady strain for 30 s before a strain sweep from 0.1% to 30%.
  • Macrodispersion was determined using a disperGrader available from Alpha Technologies (Akron, Ohio) according to the manufacturer's instructions. Vulcanized rubber is cut using the cutter available from Alpha Technologies. The freshly cut surface is then analyzed for undispersed area using the pre-programmed EXP_HISTOGRAM/30 Test. The average undispersed area is reported for each sample using three scans across three different areas of the sample.
  • FIG. 4 shows the configuration of samples for electrical testing. Sheets 300 measuring 150 mm by 70 mm were measured at four points close to the points 305 for electrical contact. Both surfaces of the sample were cleaned by wiping with isopropyl alcohol, following which the sample was only handled with gloves. Silver paint was applied to both ends 310 a of the sample and as two strips 310 b near the center of the sample. A template was used to apply the center strips 310 b of conductive paint. After the paint dried, the template was removed.
  • the prepared sample was placed on a flat, non-conductive base, and current supply electrodes were attached by metal bars at each end of the sheet. Gold electrodes were lowered onto the center paint strips with their closest edges spaced exactly 10 mm apart using a spring-loaded device that applied constant load. These were used for voltage measurement.
  • a signal generator was used to apply pulses of 50 ms duration, with a gap of 50 ms between pulses. The direction of the current was reversed for each pulse. The current was increased for each successive pulse and the voltage measured each time. The initial current and size of the current increments were chosen such that at least 50 data points were obtained over an output range of 0-10 V. The results were first checked to ensure that voltage was proportional to current.
  • the resistance was then obtained from a linear regression of a plot of voltage against current.
  • the measured resistance was converted to resistivity by multiplying it by the average sample thickness and dividing the result by the distance between the center electrodes (10 mm). All compounds were tested in triplicate, and the average result was used.
  • Table 7 shows the values of T300/T100, tan delta, and macrodispersion for vulcanizates of wet masterbatch samples and dry mixed samples prepared as described above.
  • the wet masterbatch materials exhibit superior microdispersion with respect to the dry mixed samples. This is reflected in the values of T300/T100 for the wet masterbatch and dry mixed samples.
  • the superior performance of the wet masterbatch samples reflects the superior interaction and dispersion of the carbon black filler with respect to the elastomer.
  • FIG. 5 compares the resistivity of a number of samples, including dry mixed and wet masterbatch materials produced with only natural rubber latex, blends prepared by dry mixing SBR with a wet masterbatch material produced with natural rubber latex, and blends prepared by the wet masterbatch method described in the Examples.
  • the masterbatches including only natural rubber latex were compounded using cyclohexyl benzothiazole sulfenamide (CBS) as the accelerator rather than TBBS.
  • CBS cyclohexyl benzothiazole sulfenamide
  • the difference in resistivity between these vulcanizates and vulcanizates prepared using TBBS as the accelerator is expected to be small.
  • the results show that the resistivity of wet mix elastomer composite blends is higher than that of dry mix elastomer composite blends.
  • the resistivity of both wet and dry mix elastomer composite blends is greater than that of the corresponding composites produced with only natural rubber latex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
US13/497,026 2009-09-17 2010-09-16 Tire Composition Using Elastomer Composite Blends Abandoned US20120283355A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/497,026 US20120283355A1 (en) 2009-09-17 2010-09-16 Tire Composition Using Elastomer Composite Blends

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US27684209P 2009-09-17 2009-09-17
PCT/US2010/002514 WO2011034581A2 (en) 2009-09-17 2010-09-16 Tire composition using elastomer composite blends
US13/497,026 US20120283355A1 (en) 2009-09-17 2010-09-16 Tire Composition Using Elastomer Composite Blends

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/002514 A-371-Of-International WO2011034581A2 (en) 2009-09-17 2010-09-16 Tire composition using elastomer composite blends

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/749,205 Continuation US20150291780A1 (en) 2009-09-17 2015-06-24 Tire Composition Using Elastomer Composite Blends

Publications (1)

Publication Number Publication Date
US20120283355A1 true US20120283355A1 (en) 2012-11-08

Family

ID=43759218

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/497,026 Abandoned US20120283355A1 (en) 2009-09-17 2010-09-16 Tire Composition Using Elastomer Composite Blends
US13/395,567 Abandoned US20120172517A1 (en) 2009-09-17 2010-09-16 Elastomer composite blends, method and apparatus for producing same
US14/749,205 Abandoned US20150291780A1 (en) 2009-09-17 2015-06-24 Tire Composition Using Elastomer Composite Blends
US14/815,080 Active US10030128B2 (en) 2009-09-17 2015-07-31 Elastomer composite blends, method and apparatus for producing same

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/395,567 Abandoned US20120172517A1 (en) 2009-09-17 2010-09-16 Elastomer composite blends, method and apparatus for producing same
US14/749,205 Abandoned US20150291780A1 (en) 2009-09-17 2015-06-24 Tire Composition Using Elastomer Composite Blends
US14/815,080 Active US10030128B2 (en) 2009-09-17 2015-07-31 Elastomer composite blends, method and apparatus for producing same

Country Status (15)

Country Link
US (4) US20120283355A1 (zh)
EP (2) EP2478052A4 (zh)
JP (3) JP5794989B2 (zh)
KR (1) KR101688256B1 (zh)
CN (2) CN102630244B (zh)
AR (2) AR078391A1 (zh)
AU (1) AU2010296000B2 (zh)
BR (2) BR112012005936A2 (zh)
CA (2) CA2773528A1 (zh)
EA (1) EA201270430A1 (zh)
IN (1) IN2012DN02288A (zh)
MX (1) MX2012003129A (zh)
MY (1) MY156788A (zh)
TW (3) TW201120108A (zh)
WO (2) WO2011034587A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9988502B2 (en) 2013-05-20 2018-06-05 Cabot Corporation Elastomer composites, blends and methods for preparing same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR122019017675B1 (pt) * 2008-02-08 2020-12-01 Cabot Corporation métodos de produção de um compósito de elastômero e compósitos de elastômero
IN2012DN02286A (zh) 2009-09-17 2015-08-21 Michelin & Cie
FR2984333B1 (fr) * 2011-12-14 2014-05-09 Michelin Soc Tech Procede de preparation d'un melange-maitre en phase liquide.
DE112012006073T5 (de) * 2012-03-22 2014-12-04 Thai Abs Company Limited Polymerzusammensetzungen oder Polymermischungen enthaltend Acrylnitril-Butadien-Styrol auf Basis von Naturkautschuk
AU2014205171B2 (en) 2013-01-14 2016-02-11 Cabot Corporation Method and apparatus for processing elastomer composite
JP5913387B2 (ja) * 2014-01-08 2016-04-27 住友ゴム工業株式会社 スタッドレスタイヤ
JP6313647B2 (ja) * 2014-05-08 2018-04-18 株式会社ブリヂストン ゴム組成物及びこれを用いてなるタイヤ
JP6532667B2 (ja) * 2014-11-12 2019-06-19 Toyo Tire株式会社 ゴムウエットマスターバッチの製造方法、ゴムウエットマスターバッチ、ゴム組成物および空気入りタイヤ
JP6744394B2 (ja) 2015-07-15 2020-08-19 キャボット コーポレイションCabot Corporation シリカで補強されたエラストマー複合材およびそれを含む製品
BR112018000833B1 (pt) 2015-07-15 2022-12-13 Cabot Corporation Métodos de produção de compósito de elastômero reforçado com sílica e artigo contendo o mesmo
JP6675176B2 (ja) * 2015-11-11 2020-04-01 株式会社ブリヂストン ウェットマスターバッチの製造方法
ES2721274T3 (es) 2016-06-07 2019-07-30 Trinseo Europe Gmbh Composición de caucho
JP6735650B2 (ja) * 2016-10-14 2020-08-05 Toyo Tire株式会社 更生タイヤの製造方法
ES2784531B2 (es) 2017-11-10 2023-09-29 Cabot Corp Metodos para producir un compuesto de elastomero y compuestos de elastomero
WO2019189243A1 (ja) 2018-03-26 2019-10-03 日本エイアンドエル株式会社 ゴム強化スチレン系樹脂パウダーの製造方法、ゴム強化スチレン系樹脂パウダー
KR102574107B1 (ko) * 2018-12-18 2023-09-04 오씨아이 주식회사 엘라스토머 복합체 제조 장치
JP6600437B1 (ja) * 2019-05-16 2019-10-30 日本エイアンドエル株式会社 ゴム強化熱可塑性樹脂パウダーの製造方法
SK932021A3 (sk) * 2019-06-05 2022-04-27 BEYOND LOTUS LLC c/o Corporation Service Company pôsob prípravy kompozitu obsahujúceho elastomér a plnivo

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060111475A1 (en) * 1996-04-01 2006-05-25 Cabot Corporation Novel elastomer composites, method and apparatus

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL263648A (zh) 1960-04-15
US3664978A (en) * 1970-06-22 1972-05-23 Phillips Petroleum Co Agglomeration of fine rubber particles
US4271213A (en) 1976-04-09 1981-06-02 The Goodyear Tire & Rubber Company Fused, thermoplastic partitioning agent and preparation of crumb rubber coated therewith
US4029633A (en) * 1976-04-14 1977-06-14 Cabot Corporation Carbon black-rubber masterbatch production
US4375497A (en) 1981-08-27 1983-03-01 The Goodyear Tire & Rubber Company Free flowing SBR black masterbatch powder
JPS58152031A (ja) * 1982-03-04 1983-09-09 Mitsubishi Chem Ind Ltd ゴム組成物の製造方法
US4455399A (en) * 1983-01-24 1984-06-19 The B. F. Goodrich Company Heterogeneous rubber compositions made from chemically similar blends
US4578411A (en) 1984-09-10 1986-03-25 The Goodyear Tire & Rubber Company Process for making powdered rubber
FR2588008B1 (fr) 1985-09-27 1988-06-24 Rhone Poulenc Chim Base Procede d'obtention d'une composition charge-polymere et produit obtenu
US4788229A (en) * 1987-12-07 1988-11-29 The Firestone Tire & Rubber Company Process, modified rubbers and rubber compositions
IL116377A (en) 1994-12-15 2003-05-29 Cabot Corp Reaction of carbon black with diazonium salts, resultant carbon black products and their uses
US6346579B1 (en) * 1995-08-23 2002-02-12 The Goodyear Tire & Rubber Company Pneumatic tire having a tread compound derived from latex blend
FR2740778A1 (fr) 1995-11-07 1997-05-09 Michelin & Cie Composition de caoutchouc a base de silice et de polymere dienique fonctionalise ayant une fonction silanol terminale
ATE411891T1 (de) * 1996-04-01 2008-11-15 Cabot Corp Neue elastomere verbundwerkstoffe, verfahren und vorrichtung zur herstellung derselben
US6075084A (en) 1996-04-01 2000-06-13 Cabot Corporation Elastomer composite blends and methods - II
US6365663B2 (en) * 1996-04-01 2002-04-02 Cabot Corporation Elastomer composite blends and methods-II
US5753742A (en) 1996-07-31 1998-05-19 The B.F.Goodrich Company High-solids, aqueous, polymeric dispersions
FR2765882B1 (fr) 1997-07-11 1999-09-03 Michelin & Cie Composition de caoutchouc a base de noir de carbone ayant de la silice fixee a sa surface et de polymere dienique fonctionnalise alcoxysilane
DE19814839A1 (de) * 1998-04-02 1999-10-07 Bayer Ag Hydrophobierte oxidische oder silikatische Füllstoffe enthaltende Emulsionskautschukmischungen sowie deren Verwendung zur Herstellung von Reifen
DE19815453A1 (de) 1998-04-07 1999-10-21 Pku Pulverkautschuk Union Gmbh Pulverförmige, füllstoffhaltige Kautschukpulver, Verfahren zu ihrer Herstellung und Verwendung
US6372822B1 (en) 1999-04-16 2002-04-16 Cabot Corporation Methods and apparatus for producing and treating novel elastomer composites
ATE290565T1 (de) 2000-02-24 2005-03-15 Michelin Soc Tech Vulkanisierbare kautschukmischung zur herstellung eines luftreifens und luftreifen, der eine solche zusammensetzung enthält
US6555606B1 (en) * 2000-03-20 2003-04-29 The Goodyear Tire & Rubber Company Preparation of rubber composition by organic solution mixing and articles thereof including tires
JP2001323071A (ja) * 2000-05-18 2001-11-20 Yokohama Rubber Co Ltd:The カーボンマスターバッチの製造方法
CA2380375A1 (fr) 2000-05-26 2001-12-06 Michelin Recherche Et Technique S.A. Composition de caoutchouc utilisable comme bande de roulement de pneumatique
US6521691B1 (en) 2000-09-18 2003-02-18 The Goodyear Tire & Rubber Company Preparation of rubber composition by aqueous elastomer emulsion mixing and articles thereof including tires
US6753375B2 (en) 2001-07-02 2004-06-22 The Goodyear Tire & Rubber Company Process for preparing composite, composition and article thereof
EP1607408B1 (en) 2001-07-27 2010-11-17 Bridgestone Corporation Natural rubber master batch, production method thereof, and natural rubber composition
ATE344124T1 (de) 2001-09-14 2006-11-15 Buehler Ag Verfahren und vorrichtung zur herstellung von elastomermischungen für die gummiherstellung
US6812277B2 (en) * 2001-10-31 2004-11-02 The Goodyear Tire & Rubber Company Tire with component comprised of a blend of polybutadiene-rich rubber composition which contains a minor portion of styrene-rich styrene/isoprene elastomer
US6908961B2 (en) * 2001-12-07 2005-06-21 Cabot Corporation Elastomer composites, elastomer blends and methods
US6800126B2 (en) 2002-02-12 2004-10-05 The Goodyear Tire & Rubber Company Preparation and use of composite of rubber and carbon black aggregates and articles of manufacture, including tires, having a component comprised thereof
US7427646B2 (en) 2002-03-28 2008-09-23 Bridgestone Corporation Natural rubber, rubber composition and pneumatic tire
FR2854404B1 (fr) 2003-04-29 2005-07-01 Michelin Soc Tech Procede d'obtention d'un elastomere greffe a groupes fonctionnels le long de la chaine et compositions de caoutchouc
DE602004032341D1 (de) 2003-06-30 2011-06-01 Zeon Corp Kieselsäure enthaltende kautschukzusammensetzung und herstellungsverfahren dafür
US7625971B2 (en) 2003-08-19 2009-12-01 Tokuyama Corporation Silica-loaded granular rubber and process for producing the same
JP2005220187A (ja) 2004-02-04 2005-08-18 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
WO2005100455A1 (en) 2004-04-12 2005-10-27 The Yokohama Rubber Co., Ltd. Method for producing composition containing polymer from liquid containing polymer component and drying apparatus for same
JP4815117B2 (ja) * 2004-09-30 2011-11-16 住友ゴム工業株式会社 天然ゴムラテックスの凝固法
EP1834980B1 (en) 2004-11-19 2012-04-25 Bridgestone Corporation Modified natural rubber masterbatch and method for production thereof, and rubber composition and tire
JP4963786B2 (ja) 2004-11-26 2012-06-27 株式会社ブリヂストン 変性天然ゴムラテックス及びその製造方法、変性天然ゴム及びその製造方法、並びにゴム組成物及びタイヤ
JP4770422B2 (ja) 2004-12-01 2011-09-14 株式会社ブリヂストン 空気入りタイヤ
JP4595513B2 (ja) 2004-12-01 2010-12-08 株式会社ブリヂストン 重荷重用空気入りタイヤ
JP4872209B2 (ja) 2004-12-01 2012-02-08 株式会社ブリヂストン 重荷重用空気入りタイヤ
JP4582703B2 (ja) 2004-12-20 2010-11-17 株式会社ブリヂストン ゴム組成物およびタイヤ
JP4726509B2 (ja) 2005-02-07 2011-07-20 株式会社ブリヂストン 天然ゴムマスターバッチ及びその製造方法、並びにこれを用いたゴム組成物及びタイヤ
JP4726510B2 (ja) 2005-02-07 2011-07-20 株式会社ブリヂストン 天然ゴムマスターバッチ、その製造方法、これを用いたゴム組成物及びタイヤ
US20060225615A1 (en) 2005-04-11 2006-10-12 Raman Narayan K Treated filler and process and producing
JP2007154089A (ja) 2005-12-07 2007-06-21 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
JP2007154095A (ja) 2005-12-07 2007-06-21 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
US7312271B2 (en) 2005-12-29 2007-12-25 Bridgestone Corporation Solution masterbatch process using fine particle silica for low hysteresis rubber
JP5250206B2 (ja) * 2006-03-28 2013-07-31 株式会社ブリヂストン 微生物分解した粉ゴムを用いた天然ゴム及び/又は合成イソプレンゴムマスターバッチの製造方法
DE602007005176D1 (de) 2006-01-20 2010-04-22 Bridgestone Corp Verfahren zur Herstellung eines Masterbatch aus Naturkautschuk unter Verwendung von biologisch abgebautem Gummipulver
JP5129928B2 (ja) * 2006-01-30 2013-01-30 株式会社ブリヂストン ゴムマスターバッチ及びその製造方法
KR20150083130A (ko) * 2007-08-30 2015-07-16 캐보트 코포레이션 엘라스토머 복합물 및 그의 제조 방법
BR122019017675B1 (pt) * 2008-02-08 2020-12-01 Cabot Corporation métodos de produção de um compósito de elastômero e compósitos de elastômero
IN2012DN02286A (zh) * 2009-09-17 2015-08-21 Michelin & Cie

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060111475A1 (en) * 1996-04-01 2006-05-25 Cabot Corporation Novel elastomer composites, method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9988502B2 (en) 2013-05-20 2018-06-05 Cabot Corporation Elastomer composites, blends and methods for preparing same
US10457783B2 (en) 2013-05-20 2019-10-29 Cabot Corporation Elastomer composites, blends and methods for preparing same
US10479869B2 (en) 2013-05-20 2019-11-19 Cabot Corporation Elastomer composites, blends and methods for preparing same

Also Published As

Publication number Publication date
AR078391A1 (es) 2011-11-02
BR112012008319A2 (pt) 2016-03-22
CA2773595C (en) 2014-02-04
CA2773595A1 (en) 2011-03-24
KR101688256B1 (ko) 2016-12-20
WO2011034581A2 (en) 2011-03-24
KR20120099408A (ko) 2012-09-10
EP2478052A4 (en) 2015-12-16
AR078390A1 (es) 2011-11-02
TW201120108A (en) 2011-06-16
JP2014148688A (ja) 2014-08-21
CN102639628A (zh) 2012-08-15
JP2013505325A (ja) 2013-02-14
MX2012003129A (es) 2012-04-19
JP2013505323A (ja) 2013-02-14
WO2011034587A3 (en) 2011-07-21
AU2010296000B2 (en) 2013-05-23
CN102639628B (zh) 2015-04-01
TW201120107A (en) 2011-06-16
CA2773528A1 (en) 2011-03-24
JP5794989B2 (ja) 2015-10-14
WO2011034581A3 (en) 2011-07-21
CN102630244A (zh) 2012-08-08
US20120172517A1 (en) 2012-07-05
BR112012008319B1 (pt) 2019-11-12
US10030128B2 (en) 2018-07-24
JP6002716B2 (ja) 2016-10-05
EP2478051A2 (en) 2012-07-25
EA201270430A1 (ru) 2012-10-30
WO2011034587A2 (en) 2011-03-24
BR112012005936A2 (pt) 2017-10-31
IN2012DN02288A (zh) 2015-08-14
CN102630244B (zh) 2014-12-17
US20150291780A1 (en) 2015-10-15
TW201516077A (zh) 2015-05-01
US20150337122A1 (en) 2015-11-26
MY156788A (en) 2016-03-31
TWI516528B (zh) 2016-01-11
AU2010296000A1 (en) 2012-03-29
EP2478051A4 (en) 2015-12-16
EP2478052A2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
US10030128B2 (en) Elastomer composite blends, method and apparatus for producing same
US10457783B2 (en) Elastomer composites, blends and methods for preparing same
US20150105491A1 (en) Formation of Latex Coagulum Composite for Tire Composition
US8536249B2 (en) Elastomer composite and method for producing it
CN111527132B (zh) 弹性体配混物的制备方法和弹性体配混物
AU2013202345B2 (en) Elastomer composite blends and method for producing same

Legal Events

Date Code Title Description
AS Assignment

Owner name: CABOT CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, XUAN;WANG, TING;MORRIS, MICHAEL D.;SIGNING DATES FROM 20101129 TO 20101208;REEL/FRAME:025453/0405

AS Assignment

Owner name: MICHELIN RECHERCHE ET TECHNIQUE S.A., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CABOT CORPORATION;REEL/FRAME:028498/0939

Effective date: 20120120

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CABOT CORPORATION;REEL/FRAME:028498/0939

Effective date: 20120120

Owner name: CABOT CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, XUAN;WANG, TING;MORRIS, MICHAEL D.;SIGNING DATES FROM 20101129 TO 20101208;REEL/FRAME:028498/0581

AS Assignment

Owner name: MICHELIN RECHERCHE ET TECHNIQUE S.A., SWITZERLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE FIRST ASSIGNEES' NAME PREVIOUSLY RECORDED ON REEL 028498 FRAME 0939;ASSIGNOR:CABOT CORPORATION;REEL/FRAME:029149/0001

Effective date: 20120120

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN, FR

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE FIRST ASSIGNEES' NAME PREVIOUSLY RECORDED ON REEL 028498 FRAME 0939;ASSIGNOR:CABOT CORPORATION;REEL/FRAME:029149/0001

Effective date: 20120120

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION