US20120241135A1 - Heat exchanger for cooling interior of housing - Google Patents

Heat exchanger for cooling interior of housing Download PDF

Info

Publication number
US20120241135A1
US20120241135A1 US13/289,360 US201113289360A US2012241135A1 US 20120241135 A1 US20120241135 A1 US 20120241135A1 US 201113289360 A US201113289360 A US 201113289360A US 2012241135 A1 US2012241135 A1 US 2012241135A1
Authority
US
United States
Prior art keywords
heat exchanger
inside air
housing
air
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/289,360
Other languages
English (en)
Inventor
Hiroshi Takigawa
Yoshiki Hashimoto
Yoshikiyo Tanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Assigned to FANUC CORPORATION reassignment FANUC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HASHIMOTO, YOSHIKI, TAKIGAWA, HIROSHI, TANABE, YOSHIKIYO
Publication of US20120241135A1 publication Critical patent/US20120241135A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/202Air circulating in closed loop within enclosure wherein heat is removed through heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded

Definitions

  • the present invention relates to a heat exchanger for cooling the interior of a housing, installable in a small housing and capable of achieving a high heat exchange efficiency and a high flow rate of inside air.
  • FIG. 14 An example of a prior art heat exchanger for cooling the interior of a housing by exchanging heat between the air inside the housing and the air outside the housing will be described with reference to FIG. 14 .
  • An inside air passage 19 through which the air inside a housing 2 containing heat generating parts flows and an outside air passage 20 through which the air outside the housing 2 flows are separated by a heat exchanger heat sink 12 (see FIG. 3 ) having fins mounted on both sides of a base plate or corrugated fins 18 (see FIG. 4 ).
  • An inside air fan 5 forces the air inside the housing 2 to flow in and flow through the inside air passage 19 .
  • an outside air fan 6 forces the air outside the housing 2 to flow in and flow through the outside air passage 20 . With this, heat is exchanged between the air inside the housing 2 and the air outside the housing 2 .
  • FIG. 15 Another example of a prior art heat exchanger for cooling the interior of a housing by exchanging heat between the air inside the housing and the air outside the housing will be described with reference to FIG. 15 .
  • Japanese Patent Application Laid-Open No. 2005-150667 discloses a heat exchanger for cooling the interior of a housing, which is a cooling device to be retrofitted to the housing and has a double structure formed of an inner air conduit through which the air inside the housing flows and an outer air conduit through which the air outside the housing flows.
  • a double structure formed of an inner air conduit through which the air inside the housing flows and an outer air conduit through which the air outside the housing flows.
  • the amount of heat dissipated by heat transfer from the heat generating parts to the air inside the housing is proportional to the difference between the temperature of the heat generating parts and the temperature of the air inside the housing, and is also proportional to the square root of the velocity of the air flowing over the surfaces of the heat generating parts.
  • a stirring fan is also contemplated to increase the velocity of the air flowing inside the housing, but it requires its installation space inside the housing and inevitably enlarges the housing. To increase the velocity of the air flowing inside the housing without using a stirring fan, it suffices to increase the flow rate of the air flowing through the inside air outlets of the heat exchanger.
  • heat absorbing fins installed in the inside air passage of the heat exchanger has to be finely pitched to increase their surface areas, but such finely pitched fins would cause a significant pressure drop of the air flowing between them and reduce the flow rate as shown in FIG. 13 according to the pressure-flow rate characteristics (P-Q characteristics) of the inside air fan that forces the air to flow through the inside air passage.
  • an object of the present invention is to provide an inexpensive heat exchanger that is installable in a small housing and capable of achieving both a high heat exchange efficiency and a high flow rate of inside air.
  • a heat exchanger for cooling the interior of a housing includes a heat exchanger case mounted on a wall of a housing containing heat generating parts, the heat exchanger case having an inside air inlet through which an air flows into the housing and an inside air outlet through which an air flows back to the housing formed therein, a single heat exchanger heat sink including a first partitioning member for separating the inside of the heat exchanger case into an inside air passage through which the air from inside the housing flows and an outside air passage through which the air from outside the housing flows, inner fins provided on a surface of the first partitioning member facing the inside air passage, and outer fins provided on a surface of the first partitioning member facing the outside air passage, an inside air fan for forcing the air inside the housing to flow in the inside air passage having the inner fins provided therein through the inside air inlet and discharging the air flowing in the inside air passage through the inside air outlet, and an outside air fan for forcing the air outside the housing to flow in the outside air passage having the outer fins provided therein through an outside air in
  • the inside air outlets include at least one first inside air outlet formed in the heat exchanger case at a portion near one longitudinal end of the heat exchanger heat sink, and at least one second inside air outlet formed in the heat exchanger case at a portion near another longitudinal end of the heat exchanger heat sink.
  • the inside air inlet is formed in the heat exchanger case between the first inside air outlet and the second inside air outlet.
  • the inside air fan is an axial fan disposed facing front edges of the inner fins. The inside air fan forces the air inside the housing to flow in the inside air passage through the inside air inlet and discharge the air flowing through the inside air passage through both of the first inside air outlet and the second inside air outlet.
  • the inside air inlet and the inside air fan may be installed at a position where the temperature of the air discharged from the first inside air outlet and the temperature of the air discharged from the second inside air outlet become substantially equal to each other.
  • the heat exchanger case may be a substantially rectangular parallelepiped structure made of a sheet metal, equipped with a flange for attaching the structure to a wall of the housing and having the first inside air outlet and the second inside air outlet formed therein.
  • the heat exchanger heat sink may be an aluminum or aluminum alloy molded product manufactured by extrusion from a die and cut to a specific dimension in the longitudinal direction without any other cutting process.
  • a first filling member may be installed between front edges of the inner fins and an inner surface of the heat exchanger case between the inside air inlet and the first inside air outlet
  • a second filling member may be installed between the front edges of the inner fins and an inner surface of the heat exchanger case between the inside air inlet and the second inside air outlet.
  • a second partitioning member having no fins formed on the surface thereof and having substantially the same width as the first partitioning member may be connected to one or both longitudinal ends of the first partitioning member forming the heat exchanger heat sink to separate the one or both longitudinal ends of the heat exchanger heat sink from the heat exchanger case.
  • the present invention can provide an inexpensive heat exchanger that is installable in a small housing and capable of achieving both a high heat exchange efficiency and a high flow rate of inside air.
  • FIG. 1 is a perspective view of a heat exchanger for cooling the interior of a housing according to the first embodiment of the present invention
  • FIG. 2 is a schematic sectional view showing the structure of the heat exchanger in FIG. 1 ;
  • FIG. 3 is a perspective view of a heat exchanger heat sink used in the heat exchanger in FIG. 1 ;
  • FIG. 4 is a perspective view of corrugated fins used in the heat exchanger in FIG. 1 ;
  • FIG. 5 is a perspective view of a first variation of the heat exchanger in FIG. 1 , with a heat exchanger case having a different structure from that in FIG. 1 ;
  • FIG. 6 is a schematic sectional view showing the structure of the heat exchanger in FIG. 5 ;
  • FIG. 7 is a schematic sectional view showing a second variation of the heat exchanger in FIG. 1 , with an outside air fan and outside air outlets mounted at different positions from those in FIG. 1 ;
  • FIG. 8 is a schematic sectional view showing the structure of a heat exchanger for cooling the interior of a housing according to the second embodiment of the present invention.
  • FIG. 9 is a schematic sectional view showing the structure of a heat exchanger for cooling the interior of a housing according to the third embodiment of the present invention.
  • FIG. 10A is a schematic sectional view showing the structure of a heat exchanger for cooling the interior of a housing according to the fourth embodiment of the present invention.
  • FIG. 10B shows the heat exchanger in FIG. 10A , wherein the panel having an outside air fan attached thereto is removed from the housing containing heat generating parts;
  • FIG. 11A is a schematic sectional view showing the structure of a heat exchanger for cooling the interior of a housing according to the fifth embodiment of the present invention.
  • FIG. 11B is an external view, as viewed from an inside air fan mounting surface, of the heat exchanger case of the heat exchanger in FIG. 11A from which an inside air fan is removed;
  • FIG. 12 is a schematic sectional view showing the structure of a heat exchanger for cooling the interior of a housing according to the sixth embodiment of the present invention.
  • FIG. 13 is a graph schematically showing the pressure-flow rate characteristics (P-Q characteristics) of the axial fan and centrifugal fan;
  • FIG. 14 is a schematic sectional view of a first example of structure of a prior art heat exchanger for cooling the interior of a housing.
  • FIG. 15 is a schematic sectional view of a second example of structure of a prior art heat exchanger for cooling the interior of a housing.
  • a heat exchanger for cooling the interior of a housing according to the first embodiment of the present invention will now be described with reference to FIGS. 1-4 .
  • an air inside a housing 2 containing hermetically heat generating parts such as electronic parts and electric wiring parts is forced by an inside air fan 5 , which is attached to an outer surface of a heat exchanger case 3 and connected to an inside air inlet 7 and is arranged to face front edges 15 of inner fins 14 (see FIG. 3 ), to flow in the heat exchanger case 3 through an inside air inlet 7 formed therein and flow into an inside air passage 19 .
  • the air flows partially upward and partially downward, losing heat as it flows between the inner fins 14 installed in the inside air passage 19 , and is discharged through the first, or upper, inside air outlet 8 and second, or lower, inside air outlet 9 .
  • the temperature of the air drops because its heat is removed by the inner fins 14 .
  • the low temperature air discharged through the first and second inside air outlets 8 , 9 flows over the surfaces of the heat generating parts (not shown), taking heat from them and decreasing their temperature.
  • the air inside the heat-generating-part containing housing 2 which circulates within the housing 2 and takes heat from the heat generating parts so that temperature of the air is raised, is forced again by the inside air fan 5 back to the heat exchanger 1 .
  • the difference between the temperature of the heat generating parts and the air temperature inside the housing 2 should be large and that a large volume of air should flow through the first and second inside air outlets 8 , 9 and flow over the surfaces of the heat generating parts at high velocity.
  • the first inside air outlet 8 is formed in the upper section of the inside air passage 19
  • the second inside air outlet 9 is formed in the lower section of the inside air passage 19
  • the inside air fan 5 and inside air inlet 7 are located between the first inside air outlet 8 and the second inside air outlet 9 .
  • the heat exchanger heat sink 12 can therefore use long and fine-pitched (i.e., a large number of) fins 14 , 16 having a large surface area, as shown in FIG. 3 .
  • the fins with a large surface area provide a high heat exchange efficiency.
  • the heat exchanger case 3 is a substantially rectangular parallelepiped structure equipped with a flange 4 (see FIG. 5 ) for attaching the heat exchanger case 3 to an inner wall of the heat-generating-part containing housing 2 , as well as openings for the inside air inlet 7 and inside air outlets 8 , 9 .
  • the heat exchanger case 3 with such a structure can be easily made at low cost by sheet metal working.
  • the heat exchanger heat sink 12 shown in FIG. 3 is an aluminum or aluminum alloy product molded by extrusion using a die and has identical cross sections at any level in the longitudinal (height) direction.
  • the heat exchanger heat sink 12 can be manufactured at low cost by simply cutting the molded product extruded from the die to a predetermined length without any other cutting process.
  • This heat exchanger heat sink 12 can be manufactured at the lowest cost if it can be manufactured only by cutting the aluminum or aluminum alloy product molded by extrusion from a die to a predetermined length.
  • the parts cost and assembly cost required for the heat exchanger heat sink 12 can be reduced by using a single heat exchanger heat sink 12 for the plurality of inside air outlets 8 , 9 .
  • the heat exchanger case 3 is a simple rectangular parallelepiped structure that can be manufactured easily only by cutting, bending, and bonding a sheet metal, without any machining or molding process that would increase the manufacturing cost or the thickness of the heat exchanger case 3 and make its downsizing difficult, a thin and lightweight heat exchanger case 3 can be obtained at low cost.
  • Increasing the width of the heat exchanger heat sink 12 or the height of the fins in order to increase the surface area of the fins would generally require a large and expensive extrusion die.
  • the surface area of the fins can be increased by increasing the length (height) of the heat exchanger heat sink 12 without the need to enlarge the extrusion die.
  • the structure having the inside air inlet 7 disposed between the first inside air outlet 8 and second inside air outlet 9 is particularly effective to increase the flow rate of the inside air.
  • corrugated fins 18 shown in FIG. 4 may be used instead of the heat exchanger heat sink 12 shown in FIG. 3 formed of the first partitioning member 13 , inner fins 14 , and outer fins 16 .
  • the first and second inside air outlets 8 , 9 disposed in the upper and lower sections of the inside air passage 19 are formed in the side of the heat exchanger case 3 to which the inside air fan 5 is attached.
  • at least one of the first and second inside air outlets 8 , 9 disposed in the upper and lower sections of the inside air passage 19 may be formed in a side of the heat exchanger case 3 that is perpendicular to the side to which the inside air fan 5 is attached, as shown in FIGS. 5 and 6 .
  • FIG. 5 shows an example in which the first inside air outlet 8 is formed in the top of the heat exchanger case 3
  • FIG. 6 shows an example in which the first and second inside air outlets 8 , 9 are formed in the top and bottom of the heat exchanger case 3 .
  • the first and second inside air outlets 8 , 9 formed in the top and/or bottom of the heat exchanger case 3 as shown in FIG. 5 or 6 prevent air accumulation spots from being created in the first corners 25 , 25 (see FIG. 2 ) formed by the first partitioning member 13 and inner fins 14 forming the heat exchanger heat sink 12 and the heat exchanger case 3 , so the air can flow smoothly between the inner fins 14 to both longitudinal ends of the heat exchanger heat sink 12 .
  • This enables the surfaces of the inner fins 14 to be efficiently utilized for heat exchange and can provide a high heat exchange efficiency.
  • the low temperature air discharged through the first and second inside air outlets 8 , 9 may sometimes become difficult to flow easily toward the heat generating parts, but such a problem may be solved by attaching a deflection plate 27 to at least one of the first and second inside air outlets 8 , 9 to deflect the air flow discharged therethrough as shown in FIG. 6 .
  • deflection plates may be attached to the first and second inside air outlets 8 , 9 to selectively direct the air from the outlets 8 , 9 toward those heat generating parts.
  • the air outside the heat-generating-part containing housing 2 is forced by the outside air fan (axial fan) 6 disposed facing front edges 17 of the outer fins 16 to flow in the housing 2 through the outside air inlet 10 formed in the wall of the housing 2 .
  • the air flows into the outside air passage 20 , takes heat from the outer fins 16 installed in the outside air passage 20 as it flows between the outer fins 16 , and is discharged through the outside air outlet 11 .
  • a baffle plate 28 (see FIG. 2 ) is provided to prevent the air outside the heat-generating-part containing housing 2 forced by the outside air fan 6 to flow in the outside air passage 20 through the outside air inlet 10 from exiting through the outside air outlet 11 without flowing between the outer fins 16 .
  • the outside air fan 6 is located near the lower end of the heat exchanger heat sink 12 and the outside air outlet 11 is formed in the housing 2 at a portion near the upper end of the heat exchanger heat sink 12 , as shown in FIG. 2 .
  • the outside air fan 6 may be located near the upper end of the heat exchanger heat sink 12 and the outside air outlet 11 may be formed in the housing 2 at a portion near the lower end of the heat exchanger heat sink 12 .
  • the outside air fan 6 may be located near the middle in the longitudinal direction of the heat exchanger heat sink 12 and one of the outside air outlets may be formed in the housing 2 at a portion near the lower end of the heat exchanger heat sink 12 and the other one of the outside air outlets may be formed in the housing 2 at a portion near the upper end of the heat exchanger heat sink 12 , as shown in FIG. 7 .
  • the heat exchanger heat sink 12 is vertically oriented in the heat exchanger case 3 with the first inside air outlet 8 and second inside air outlet 9 being located near the upper and lower ends, respectively, of the heat exchanger heat sink 12 as shown in FIGS. 2 and 3 .
  • the heat exchanger heat sink 12 may be horizontally oriented in the heat exchanger case 3 with the first inside air outlet 8 and second inside air outlet 9 being located near the left and right ends, respectively, of the heat exchanger heat sink 12 .
  • a fan guard may be provided outside the outside air fan 6 and the outside air outlet 11 may have punched slits to prevent the entrance of foreign matters.
  • the heat exchanger according to the first embodiment of the present invention is the same as those of the prior art in that it employs a single heat exchanger heat sink longitudinally extending in the air flow direction and an axial fan advantageous in obtaining a large air flow rate so as to force the air to flow from one end of the heat exchanger heat sink to the other end thereof.
  • the distance through which the air flows between the inner fins 14 from the inside air inlet 7 to the first and second inside air outlets 8 , 9 is approximately one half the distance of the prior art described above and the cross-sectional area of the inside air passage 19 through which the air flows between the inner fins 14 is approximately double that of the prior art.
  • the pressure drop of the air flow caused by the inner fins 14 is significantly reduced and the flow rate of the air discharged through the first inside air outlet 8 and second inside air outlet 9 is significantly increased according to the P-Q characteristics of the inside air fan 5 , so that the temperature of the air inside the housing as well as the temperature of the heat generating parts can be kept low without using a stirring fan.
  • the pressure drop of the air flow caused by the inner fins 14 is reduced as described above, fine-pitched inner fins 14 causing a high pressure drop can be used. Consequently, since the volume of the heat exchanger heat sink 12 can be reduced while the surface area of the inner fins 14 can be kept to the same degree, the entire size of the heat exchanger can be reduced.
  • the arrangement of this embodiment is also applicable to a heat-generating-part containing housing 2 of small size. This embodiment is also advantageous in downsizing the entire size of the heat exchanger, because the pressure drop is reduced as described above and a necessary air flow rate can be obtained with a relatively small fan.
  • the inside air inlet 7 and inside air fan 5 are installed at a position where the amount of heat dissipation per unit flow rate of the inside air from the inside air inlet 7 to the first inside air outlet 8 and the amount of heat dissipation per unit flow rate of the inside air from the inside air inlet 7 to the second inside air outlet 9 become substantially equal to each other. With this, the temperature of the air discharged from the first inside air outlet 8 and the temperature of the air discharged from the second inside air outlet 9 become substantially equal to each other.
  • the heat exchanger according to this embodiment only differs from the prior art heat exchanger (illustrated in FIG. 14 ) in the positions of the inside air inlet and inside air fan and the number of openings for the inside air outlets formed in the heat exchanger case.
  • the heat exchanger according to this embodiment can be manufactured at low cost because there are no additional parts, no replacement with expensive parts, no additional assembling steps, and little factors that increase the cost, as compared with the prior art heat exchanger.
  • the structure of the heat exchanger shown in FIG. 2 may be modified by attaching both the inside air fan 5 and the outside air fan 6 such that the air is sent in the directions opposite to the directions shown in FIG. 2 , replacing accordingly the first and second inside air outlets 8 , 9 with the first and second inside air inlets, replacing the inside air inlet 7 and outside air inlet 10 with the inside air outlet and outside air outlet, and replacing the outside air outlet 11 with the outside air inlet.
  • a heat exchanger for cooling the interior of a housing according to the second embodiment of the present invention will now be described with reference to FIG. 8 .
  • the outside air fan 6 is mounted inside the housing 2 containing heat generating parts as shown in FIG. 2 .
  • the outside air fan 6 is mounted outside the housing 2 . With this arrangement, the outside air fan 6 protrudes out of the housing 2 .
  • the heat exchanger In the heat exchanger according to this embodiment, if there are no restrictions in aesthetic terms or in terms of the installation location of the housing 2 , no baffle plate 28 (see FIG. 6 ) is required to prevent the air outside the housing 2 forced by the outside air fan 6 to flow in the outside air passage 20 through the outside air inlet 10 from exiting through the outside air outlet 11 without passing through the outer fins 16 . Accordingly, in this embodiment, since the space occupied by the baffle plate 28 is not required, the size (in this case, the thickness (i.e., depth)) of the heat exchanger 1 can be reduced, in addition to the reduction in the number of parts, parts cost, and assembly cost.
  • a heat exchanger for cooling the interior of a housing according to the third embodiment of the present invention will now be described with reference to FIG. 9 .
  • the outside air fan 6 is disposed facing the front edges of the outer fins 16 , as shown in FIG. 2 .
  • the outside air fan 6 is installed in a space extended in the longitudinal direction from the heat exchanger heat sink 12 (right above the heat exchanger heat sink 12 in FIG. 9 ) and a third partitioning member 24 is connected to the first partitioning member 13 forming the heat exchanger heat sink 12 .
  • the air forced by the outside air fan 6 to flow in the outside air passage 20 from outside the housing 2 through the outside air inlet 10 flows between the outer fins 16 forming the heat exchanger heat sink 12 without being mixed with the air coming from inside the housing 2 and is discharged through the outside air outlet 11 .
  • the vertical dimension (height) of the heat exchanger 1 is increased, but its thickness (depth) can be reduced, although the outside air fan 6 does not protrude out of the housing 2 in its depth direction. Consequently, the heat exchanger according to this embodiment is applicable to small housings that have enough height but not enough depth.
  • a heat exchanger for cooling the interior of a housing according to fourth embodiment of the present invention will now described with reference to FIGS. 10A and 10B .
  • the outside air inlet 10 and outside air outlet 11 are formed in the wall of the heat-generating-part containing housing 2 and the outside air fan 6 is mounted on the inner wall of the housing 2 so as to be connected to the outside air inlet 10 , as shown in FIG. 2 .
  • an opening larger than the outside air inlet 10 and outside air outlet 11 is formed in the wall of the heat-generating-part containing housing 2 and is covered by a panel 29 mounted outside the housing 2 .
  • This panel 29 has an outside air inlet 10 and an outside air outlet 11 formed as shown in FIG. 10B .
  • the outside air fan 6 is mounted on the side of the panel 29 facing the housing 2 so as to be connected to the outside air inlet 10 .
  • the heat exchanger facilitates the cleaning of the outer fins 16 contaminated or clogged by dusts, cutting fluid, etc., sucked from outside the housing 2 , as well as the cleaning, replacement, or other maintenance of the outside air fan 6 without the need to open the door of the housing 2 and thus also prevents the interior of the heat-generating-part containing housing 2 from being contaminated by opening the door.
  • a heat exchanger for cooling the interior of a housing according to the fifth embodiment of the present invention will now described with reference to FIGS. 11A and 11B .
  • the gap between the inside air fan 5 and the front edges of the inner fins 14 is limited to the thickness of a thin metal plate forming the heat exchanger case 3 as shown in FIG. 2 .
  • a first filling member 21 is installed between the front edges 15 of the inner fins 14 and the inner surface of the heat exchanger case 3 between the inside air inlet 7 and the first inside air outlet 8
  • a second filling member 22 is installed between the front edges 15 of the inner fins 14 and the inner surface of the heat exchanger case 3 between the inside air inlet 7 and the second inside air outlet 9 .
  • the first filling member 21 and the second filling member 22 have the same thickness.
  • the first filling member 21 and second filling member 22 By installing the first filling member 21 and second filling member 22 , a gap is formed between the front edges of the inner fins 14 and the inner surface of the heat exchanger case 3 adjacent to the inside air fan 5 .
  • the air drawn in by the inside air fan 5 reliably flows between the inner fins of the heat exchanger heat sink 12 extending around the inside air fan 5 , so a small-sized inside air fan 5 having a small diameter can be incorporated into the heat exchanger 1 .
  • the first and second filling members 21 , 22 have a thickness in the range of several millimeters to a dozen or so millimeters. Increasing the thickness thereof more than necessary is meaningless and would inhibit downsizing of the heat exchanger 1 .
  • a heat exchanger for cooling the interior of a housing according to the sixth embodiment of the present invention will now be described with reference to FIG. 12 .
  • the longitudinal (upper and lower) ends of the heat exchanger heat sink 12 are in contact with the heat exchanger case 3 as shown in FIG. 2 .
  • second partitioning members 23 , 23 having substantially the same width as the first partitioning member 13 and having no fins on the surface thereof are connected to the longitudinal (upper and lower) ends of the first partitioning member 13 forming the heat exchanger heat sink 12 to separate the longitudinal ends of the heat exchanger heat sink 12 from the heat exchanger case 3 .
  • the second partitioning member 23 may be attached to only one end (e.g., only upper end) of the first partitioning member 13 of the heat exchanger heat sink 12 for dimensional reasons.
  • the second partitioning members 23 thus arranged prevent air accumulation spots from being created in the first corner 25 formed by the first partitioning member 13 and inner fins 14 forming the heat exchanger heat sink 12 and the heat exchanger case 3 and in the second corner 26 formed by the first partitioning member 13 , outer fins 16 , and heat exchanger case 3 .
  • the second partitioning members 23 slightly increase the cost of the heat exchanger 1 , they enhance the heat exchange efficiency by helping the air pass smoothly between the inner fins 14 or outer fins 16 to the upper and lower ends of the heat exchanger heat sink 12 and thus the surfaces of the inner fins 14 and/or outer fins 16 forming the heat exchanger heat sink 12 be used efficiently.
  • the upper and lower sections of the inner fins 14 and/or outer fins 16 forming the heat exchanger heat sink 12 may be partially removed by cutting to separate the longitudinal ends of the heat exchanger heat sink 12 from the heat exchanger case 3 .
  • the first and second inside air outlets 8 , 9 formed in the top and bottom, instead of being formed in the side wall, of the heat exchanger case 3 as in FIG. 5 or 6 can prevent the air accumulation spots from being created, but make it difficult to direct the cool air discharged through the first and second inside air outlets 8 , 9 toward the heat generating parts.
  • the outside air outlet 11 cannot be formed in the top or bottom of the heat exchanger case 3 ; it can be formed only in the side wall of the housing 2 .
  • the gap between the longitudinal ends of the heat exchanger heat sink 12 and the inner surface of the heat exchanger case 3 is in a range of several millimeters to dozen or so millimeters, because an unnecessarily wide gap between the longitudinal ends of the heat exchanger heat sink 12 and the inner surface of the heat exchanger case 3 could not noticeably increase the heat exchange efficiency.
  • an inexpensive, small-sized heat exchanger 1 can be implemented that is capable of achieving both a high heat exchange efficiency and a high flow rate of inside air and is applicable to a small housing containing parts that generate a large amount of heat.
  • the heat exchange efficiency as used herein is a value obtained by dividing the difference between the amount of heat generated inside the housing 2 and the amount of heat dissipated from the surface of the housing 2 by the difference ( ⁇ T (K)) between the air temperature inside the housing 2 and the air temperature outside the housing 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
US13/289,360 2011-03-22 2011-11-04 Heat exchanger for cooling interior of housing Abandoned US20120241135A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-062991 2011-03-22
JP2011062991A JP5053447B1 (ja) 2011-03-22 2011-03-22 筐体内冷却用熱交換器

Publications (1)

Publication Number Publication Date
US20120241135A1 true US20120241135A1 (en) 2012-09-27

Family

ID=46860628

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/289,360 Abandoned US20120241135A1 (en) 2011-03-22 2011-11-04 Heat exchanger for cooling interior of housing

Country Status (4)

Country Link
US (1) US20120241135A1 (ja)
JP (1) JP5053447B1 (ja)
CN (1) CN102695402B (ja)
DE (1) DE102012102195A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051253A1 (en) * 2008-09-02 2010-03-04 Scott Dickey Semiconductor processing heat exchanger system
US20150147951A1 (en) * 2012-08-01 2015-05-28 Panasonic Intellectual Property Management Co., Lt d. Heating element housing device
US9366422B2 (en) 2012-03-22 2016-06-14 Makersled Llc Slotted heatsinks and systems and methods related thereto
US10003159B2 (en) 2013-10-18 2018-06-19 JTech Solutions, Inc. Enclosed power outlet
US10205283B2 (en) 2017-04-13 2019-02-12 JTech Solutions, Inc. Reduced cross-section enclosed power outlet
USD841592S1 (en) 2018-03-26 2019-02-26 JTech Solutions, Inc. Extendable outlet
USD843321S1 (en) 2018-03-26 2019-03-19 JTech Solutions, Inc. Extendable outlet
US11458643B2 (en) 2017-02-27 2022-10-04 Kawasaki Jukogyo Kabushiki Kaisha Robot controller
USD999742S1 (en) 2021-04-01 2023-09-26 JTech Solutions, Inc. Safety interlock outlet box
CN116997167A (zh) * 2023-09-26 2023-11-03 沈阳新松机器人自动化股份有限公司 一种内置式热交换器结构
WO2024044740A1 (en) * 2022-08-25 2024-02-29 Chargepoint, Inc. Thermal management system for an electric vehicle supply equipment (evse) that includes a dual-sided heatsink

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104769365A (zh) * 2012-11-12 2015-07-08 松下知识产权经营株式会社 冷却装置以及搭载有该冷却装置的发热体收纳装置
WO2017094933A1 (ko) * 2015-12-03 2017-06-08 잘만테크 주식회사 냉각효율 증대를 위한 전자기기 케이스
KR101993798B1 (ko) * 2017-06-19 2019-07-01 주식회사 현대이엔지 열교환기
JP6446118B1 (ja) * 2017-12-05 2018-12-26 馬鞍山市明珠電子科技有限公司 レーザー加工機
CN110418557A (zh) * 2019-08-26 2019-11-05 北京东土科技股份有限公司 一种密封型机箱散热装置及密封型机箱
CN113071351A (zh) * 2021-03-29 2021-07-06 阳光电源股份有限公司 充电桩设备及其散热器
EP4075933A1 (de) * 2021-04-14 2022-10-19 Siemens Aktiengesellschaft Wärmetauscheranordnung

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035281A (en) * 1989-09-07 1991-07-30 Mclean Midwest Corporation Heat exchanger for cooling and method of servicing same
JPH058253A (ja) * 1991-07-05 1993-01-19 Toowa Kk 電子部品の樹脂封止成形装置
US5954124A (en) * 1997-03-31 1999-09-21 Nec Corporation Heat exchanging device
US6039111A (en) * 1997-02-14 2000-03-21 Denso Corporation Cooling device boiling and condensing refrigerant
US6101090A (en) * 1998-03-24 2000-08-08 Lucent Technologies, Inc. Electronic apparatus having an environmentally sealed external enclosure
US20010037875A1 (en) * 1999-06-11 2001-11-08 Andrea L. Mays Stackable heat sink for electronic components
US6789612B1 (en) * 1999-09-29 2004-09-14 Denso Corporation Cooling device with waterproof structure
US20050061485A1 (en) * 2002-07-09 2005-03-24 Kazuo Hirafuji Heat exchanger
US7036560B1 (en) * 1998-09-25 2006-05-02 Eugeniusz Rylewski Heat exchange unit, in particular for ventilating a building
US7108052B2 (en) * 2003-06-26 2006-09-19 Tellabs Petaluma, Inc. Low-cost method of forming a heat exchanger with an increased heat transfer efficiency
US20070169920A1 (en) * 2006-01-24 2007-07-26 Delta Electronics, Inc. Heat exchanger
US20100218919A1 (en) * 2007-03-13 2010-09-02 Panasonic Corporation Cooling Device
US8462504B2 (en) * 2010-12-23 2013-06-11 Delta Electronics, Inc. Air-cooled heat exchanger and electronic device with same
US20140290904A1 (en) * 2007-12-17 2014-10-02 Panasonic Corporation Heat exchange device and device for receiving heat generation body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639505Y2 (ja) * 1987-04-01 1994-10-12 昭和アルミニウム株式会社 密閉式制御盤に取り付けられる熱交換器
JP3303588B2 (ja) * 1995-03-29 2002-07-22 三菱電機株式会社 制御盤
JP2001168564A (ja) * 1999-12-13 2001-06-22 Yaskawa Electric Corp 電子機器筐体の熱交換器
JP4403823B2 (ja) 2003-10-24 2010-01-27 株式会社デンソー 冷却装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035281A (en) * 1989-09-07 1991-07-30 Mclean Midwest Corporation Heat exchanger for cooling and method of servicing same
JPH058253A (ja) * 1991-07-05 1993-01-19 Toowa Kk 電子部品の樹脂封止成形装置
US6039111A (en) * 1997-02-14 2000-03-21 Denso Corporation Cooling device boiling and condensing refrigerant
US5954124A (en) * 1997-03-31 1999-09-21 Nec Corporation Heat exchanging device
US6101090A (en) * 1998-03-24 2000-08-08 Lucent Technologies, Inc. Electronic apparatus having an environmentally sealed external enclosure
US7036560B1 (en) * 1998-09-25 2006-05-02 Eugeniusz Rylewski Heat exchange unit, in particular for ventilating a building
US20010037875A1 (en) * 1999-06-11 2001-11-08 Andrea L. Mays Stackable heat sink for electronic components
US6789612B1 (en) * 1999-09-29 2004-09-14 Denso Corporation Cooling device with waterproof structure
US20050061485A1 (en) * 2002-07-09 2005-03-24 Kazuo Hirafuji Heat exchanger
US7108052B2 (en) * 2003-06-26 2006-09-19 Tellabs Petaluma, Inc. Low-cost method of forming a heat exchanger with an increased heat transfer efficiency
US20070169920A1 (en) * 2006-01-24 2007-07-26 Delta Electronics, Inc. Heat exchanger
US20100218919A1 (en) * 2007-03-13 2010-09-02 Panasonic Corporation Cooling Device
US20140290904A1 (en) * 2007-12-17 2014-10-02 Panasonic Corporation Heat exchange device and device for receiving heat generation body
US8462504B2 (en) * 2010-12-23 2013-06-11 Delta Electronics, Inc. Air-cooled heat exchanger and electronic device with same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
english translation of JP patent H5-8253 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051253A1 (en) * 2008-09-02 2010-03-04 Scott Dickey Semiconductor processing heat exchanger system
US9366422B2 (en) 2012-03-22 2016-06-14 Makersled Llc Slotted heatsinks and systems and methods related thereto
US20150147951A1 (en) * 2012-08-01 2015-05-28 Panasonic Intellectual Property Management Co., Lt d. Heating element housing device
US10003159B2 (en) 2013-10-18 2018-06-19 JTech Solutions, Inc. Enclosed power outlet
US11458643B2 (en) 2017-02-27 2022-10-04 Kawasaki Jukogyo Kabushiki Kaisha Robot controller
USD844564S1 (en) 2017-04-13 2019-04-02 JTech Solutions, Inc. Extendable outlet
USD844563S1 (en) 2017-04-13 2019-04-02 JTech Solutions, Inc. Extendable outlet
US10205283B2 (en) 2017-04-13 2019-02-12 JTech Solutions, Inc. Reduced cross-section enclosed power outlet
USD841592S1 (en) 2018-03-26 2019-02-26 JTech Solutions, Inc. Extendable outlet
USD843321S1 (en) 2018-03-26 2019-03-19 JTech Solutions, Inc. Extendable outlet
USD999742S1 (en) 2021-04-01 2023-09-26 JTech Solutions, Inc. Safety interlock outlet box
WO2024044740A1 (en) * 2022-08-25 2024-02-29 Chargepoint, Inc. Thermal management system for an electric vehicle supply equipment (evse) that includes a dual-sided heatsink
US12005797B2 (en) * 2022-08-25 2024-06-11 Chargepoint, Inc. Thermal management system for an electric vehicle supply equipment (EVSE) that includes a dual-sided heatsink
CN116997167A (zh) * 2023-09-26 2023-11-03 沈阳新松机器人自动化股份有限公司 一种内置式热交换器结构

Also Published As

Publication number Publication date
JP2012199412A (ja) 2012-10-18
JP5053447B1 (ja) 2012-10-17
CN102695402B (zh) 2014-03-12
CN102695402A (zh) 2012-09-26
DE102012102195A1 (de) 2013-02-07

Similar Documents

Publication Publication Date Title
US20120241135A1 (en) Heat exchanger for cooling interior of housing
EP2040008B1 (en) Outdoor unit of air conditioner
US7331378B2 (en) Microchannel heat sink
JP4504385B2 (ja) 機器アセンブリ
EP1830403A2 (en) A heat sink with a centrifugal fan
EP2890227B1 (en) Electric power conversion apparatus
US7363768B2 (en) Outdoor unit of refrigerator, and electrical equipment box of outdoor unit
RU2465751C1 (ru) Шкаф радиоэлектронной аппаратуры
JP2004156814A (ja) 室外ユニットの電装品箱
JP2002319785A (ja) 盤用熱交換器
CN217979061U (zh) 一种空调室外机和空调设备
KR20240028977A (ko) 전기 제어 박스, 공기조화기 실외기 및 공기조화기
CN109564013B (zh) 空调机的室外机
CN213633081U (zh) 一种风冷散热器以及生物气溶胶检测装置
JPWO2018061071A1 (ja) 空気調和機の室外機
CN106961238B (zh) 电动机驱动装置
WO2021149142A1 (ja) 空気調和機の室外機
CN118612985A (zh) 电控箱体及空调器
CN218548559U (zh) 一种电池箱用散热装置
CN217685393U (zh) 空调室内机
CN213244723U (zh) 一种压缩机电控冷却器
CN211045422U (zh) 微通道散热底板
CN217685402U (zh) 空调室内机
CN218495186U (zh) 空调室外机及空调器
CN218376797U (zh) 高效散热的空压机

Legal Events

Date Code Title Description
AS Assignment

Owner name: FANUC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKIGAWA, HIROSHI;HASHIMOTO, YOSHIKI;TANABE, YOSHIKIYO;REEL/FRAME:027177/0383

Effective date: 20110909

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION