US20120211130A1 - High-elongation rate aluminum alloy material for cable and preparation method thereof - Google Patents

High-elongation rate aluminum alloy material for cable and preparation method thereof Download PDF

Info

Publication number
US20120211130A1
US20120211130A1 US13/395,423 US201013395423A US2012211130A1 US 20120211130 A1 US20120211130 A1 US 20120211130A1 US 201013395423 A US201013395423 A US 201013395423A US 2012211130 A1 US2012211130 A1 US 2012211130A1
Authority
US
United States
Prior art keywords
aluminum alloy
alloy
rare earth
content
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/395,423
Other languages
English (en)
Inventor
Zemin Lin
Lehua Yu
Youmei Wan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Joy Sense Cable Co Ltd
Original Assignee
Anhui Joy Sense Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41093778&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20120211130(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Anhui Joy Sense Cable Co Ltd filed Critical Anhui Joy Sense Cable Co Ltd
Assigned to ANHUI JOYSENSES CABLE CO., LTD. reassignment ANHUI JOYSENSES CABLE CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIN, ZEMIN, WAN, YOUMEI, YU, LEHUA
Publication of US20120211130A1 publication Critical patent/US20120211130A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the present invention pertains to the field of nonferrous metal materials, in particular to an aluminum alloy material with high elongation for cables and a preparation method for the same.
  • the object of the present invention is to provide an aluminum alloy material with high elongation for cables.
  • the wires and cables have high elongation, and can be used safely and stably.
  • an aluminum alloy material with high elongation for cables comprising the following components: Fe: 0.30 ⁇ 1.20 wt %, Si: 0.03 ⁇ 0.10 wt %, rare earth elements (i.e. Ce and La): 0.01 ⁇ 0.30 wt %, and the rest are Al and inevitable impurities.
  • Another object of the present invention is to provide a method for preparing the aluminum alloy material with high elongation, comprising the following steps:
  • said rare earth-Al alloy is the alloy of Al and rare earth elements (Ce and La); next, adding a refining agent in 0.04 ⁇ 0.06 pbw and refining for 8 ⁇ 20 minutes; then, holding at the temperature for 20 ⁇ 40 minutes, and then casting;
  • Said aluminum alloy material further comprises inevitable impurity elements, the total content of which in the aluminum alloy material is lower than 0.3 wt %.
  • the content of Ca in the impurities is lower than 0.02 wt %, and the content of any other impurity element is lower than 0.01%, so as to reduce the influence of the impurity elements on the conductivity of the aluminum alloy material.
  • the aluminum alloy material with high elongation for cables provided in the present invention is a new type Al—Fe alloy material with the following advantages:
  • the content of Fe according to the present invention is controlled within the range of 0.30 ⁇ 1.20%; thus the strength of the aluminum alloy can be increased, and the creep resistance and thermal stability of the aluminum alloy can also be improved.
  • the creep resistance is improved by 300% when compared to the conventional EC-aluminum material; furthermore, Fe can improve the toughness of the aluminum alloy, and the compression factor of the aluminum alloy material in the compression and twisting process can be as high as 0.93 or above, which can not be achieved by the conventional EC-aluminum material.
  • the compacted conductor made of the aluminum alloy in the same outside diameter has larger sectional area, higher electrical conductivity and higher stability, and is lower in production cost.
  • the content of Si according to the present invention is controlled within the range of 0.03 ⁇ 0.10%, which ensures the enhancement effect of Si to the strength of the aluminum alloy.
  • the rare earth elements according to the present invention can reduce the content of Si, and thereby reduce the influence of Fe, in particular Si on the conductivity of aluminum alloy to a very low level; moreover, the addition of rare earth elements improves the crystal structure of the aluminum alloy material and thereby improves the processing properties of the aluminum alloy material, and is favorable for processing of the aluminum alloy material.
  • the rare earth elements according to the present invention are mainly Ce and La, which can well attain the performance described in 3).
  • the element B according to the present invention can react with impurity elements such as Ti, V, Mn, Cr, etc., and form chemical compounds, which deposit and then can be removed; therefore, the influence of impurity elements (e.g., Ti, V, Mn, Cr, etc.) on the conductivity of aluminum alloy can be reduced; thus, the conductivity of aluminum alloy can be improved.
  • impurity elements such as Ti, V, Mn, Cr, etc.
  • the alloy material is conducted by semi-annealing treatment when the aluminum alloy is prepared in the present invention; therefore, the adverse effect of stress to the structure of the conductor during the drawing and twisting process can be reduced, so that the conductivity can be up to or even higher than 61% IACS (the criterion for conductivity of conductors made of conventional EC-aluminum is 61% IACS); in addition, the annealing treatment can greatly improve the elongation and flexibility of the aluminum alloy material. Cables made of the aluminum alloy material provided in the present invention can have the elongation as high as 30%, and the flexibility 25% higher than that of the copper cables, and a bending radius as small as 7 times of the outside diameter, while the bending radius of copper cable is 15 times of the outside diameter.
  • the furnace temperature is increased to 720 ⁇ 760° C., and not higher than 760° C.
  • increasing the temperature is favorable for melting of the rare earth-Al alloy and B ⁇ Al alloy, and thereby the treatment effect of rare earth elements and element B can be improved.
  • Adding rare earth-Al alloy and B—Al alloy in different time periods is to allow the rare earth elements and element B to play a full part, so as to improve the effect.
  • the aluminum alloy liquid including which is located at the corner positions in the furnace should be agitated for 5 minutes.
  • the volume of water inside the casting wheels to that outside the casting wheels 3: 2; the volume of secondary cooling water should be adjusted according to the temperature of the cast strips.
  • the aluminum alloy material obtained in that way contains the following components measured by weight percentage: Fe: 0.3%, Si: 0.03%, Ce: 0.008%, La: 0.002%, B: 0.005%, Ca: 0.015%, Cu: 0.002%, Mg: 0.005%, Zn: 0.002%, Ti: 0.002%, V: 0.005%, Mn: 0.002%, Cr: 0.001%, Al: the remaining part.
  • element B reacts with impurity elements such as Ti, V, Mn, Cr, etc., and forms chemical compounds, which deposit and can be removed, the content of element B in the resulting aluminum alloy material is lower than the amount added actually. It is seen that the total impurity content in the aluminum alloy material is lower than 0.3%, wherein, the content of any other impurity element is lower than 0.01%, except for the content of Ca, which is lower than 0.02%.
  • Tensile strength and elongation are tested according to the method described in ASTM B577; conductivity is tested according to the method described in ASTM B193, flexibility is tested according to the method of “Partial Discharge Test after Bending Test” described in GB 12706.1, and creep property is tested according to the creep test method described in the manual “Wires and Cables”.
  • the performance data of the aluminum alloy material with high elongation in this embodiment is: tensile strength: 106 MPa; elongation: 28%; conductivity: 63.0% IACS; partial discharge test after 6 ⁇ bending radius test: passed; creep resistance: higher than EC-aluminum by 310%.
  • the furnace temperature is increased to 720 ⁇ 760° C., and not higher than 760° C. .
  • increasing the temperature is favorable for melting of the rare earth-Al alloy and B—Al alloy, and thereby the treatment effect of rare earth elements and element B can be improved.
  • Adding rare earth-Al alloy and B—Al alloy in different time periods is to allow to the rare earth elements and element B to play a full part, so as to improve the effect.
  • the aluminum alloy liquid including which is located at the corner positions in the furnace should be agitated for 5 minutes.
  • the volume of water inside the casting wheels to that outside the casting wheels 3: 2; the volume of secondary cooling water should be adjusted according to the temperature of the cast strips.
  • the aluminum alloy material obtained in that way contains the following components measured by weight percentage: Fe: 1.2%, Si: 0.08%, Ce: 0.019%, La: 0.10%, B: 0.004%, Ca: 0.01%, Cu: 0.002%, Mg: 0.004%, Zn: 0.003%, Ti: 0.002%, V: 0.002%, Mn: 0.005%, Cr: 0.002%, Al: the remaining part.
  • element B reacts with impurity elements such as Ti, V, Mn, Cr, etc., and forms chemical compounds, which deposit and can be removed, the content of element B in the resulting aluminum alloy material is lower than the amount added actually.
  • the total impurity content in the aluminum alloy material is lower than 0.3%, wherein, the content of any other impurity element is lower than 0.01%, except for the content of Ca, which is lower than 0.02%.
  • Tensile strength and elongation are tested according to the method described in ASTM B577; conductivity is tested according to the method described in ASTM B193, flexibility is tested according to the method of “Partial Discharge Test after Bending Test” described in GB 12706.1, and creep property is tested according to the creep test method described in the manual “Wires and Cables”.
  • the performance data of the aluminum alloy material with high conductivity, high elongation, high flexibility, and high creep resistance in this embodiment is: tensile strength: 92 MPa; elongation: 36%; conductivity: 61.0% IACS; partial discharge test after 7 ⁇ bending radius test: passed; creep resistance: higher than EC-aluminum by 330%.
  • the furnace temperature is increased to 720 ⁇ 760° C., and not higher than 760° C. .
  • increasing the temperature is favorable for melting of the rare earth-Al alloy and B—Al alloy, and the treatment effect of rare earth elements and element B can be improved.
  • the aluminum alloy liquid including which is located at the corner positions in the furnace should be agitated for 5 minutes.
  • the volume of water inside the casting wheels to that outside the casting wheels 3: 2; the volume of secondary cooling water should be adjusted according to the temperature of the cast strips.
  • the aluminum alloy material obtained in that way contains the following components measured by weight percentage: Fe: 0.55%, Si: 0.10%, Ce: 0.15%, La: 0.06%, B: 0.007%, Ca: 0.013%, Cu: 0.003%, Mg: 0.004%, Zn: 0.004%, Ti: 0.002%, V: 0.004%, Mn: 0.003%, Cr: 0.002%, Al: the remaining part.
  • element B reacts with impurity elements such as Ti, V, Mn, Cr, etc., and forms chemical compounds, which deposit and can be removed, the content of element B in the resulting aluminum alloy material is lower than the amount added actually.
  • the total impurity content in the aluminum alloy material is lower than 0.3%, wherein, the content of any other impurity element is lower than 0.01%, except for the content of Ca, which is lower than 0.02%.
  • Tensile strength and elongation are tested according to the method described in ASTM B577; conductivity is tested according to the method described in ASTM B193, flexibility is tested according to the method of “Partial Discharge Test after Bending Test” described in GB 12706.1, and creep property is tested according to the creep test method described in the manual “Wires and Cables”.
  • the performance data of the aluminum alloy material with high elongation in this embodiment is: tensile strength: 106 MPa, elongation: 30.2%; conductivity: 62.6% IACS; partial discharge test after 6 ⁇ bending radius test: passed; creep resistance: higher than EC-aluminum by 330%.
  • the furnace temperature is increased to 720 ⁇ 760° C., and not higher than 760° C.
  • increasing the temperature is favorable for melting of the rare earth-Al alloy and B—Al alloy, and the treatment effect of rare earth elements and element B can be improved.
  • the aluminum alloy liquid including which is located at the corner positions in the furnace should be agitated for 5 minutes.
  • the volume of water inside the casting wheels to that outside the casting wheels 3: 2; the volume of secondary cooling water should be adjusted according to the temperature of the cast strips.
  • the aluminum alloy material obtained in that way contains the following components measured by weight percentage: Fe: 0.80%, Si: 0.04%, Ce: 0.10%, La: 0.06%, B: 0.008%, Ca: 0.011%, Cu: 0.005%, Mg: 0.004%, Zn: 0.006%, Ti: 0.003%, V: 0.003%, Mn: 0.005%, Cr: 0.002%, Al: the remaining part.
  • element B reacts with impurity elements such as Ti, V, Mn, Cr, etc., and forms chemical compounds, which deposit and can be removed, the content of element B in the resulting aluminum alloy material is lower than the amount added actually.
  • the total impurity content in the aluminum alloy material is lower than 0.3%, wherein, the content of any other impurity element is lower than 0.01%, except for the content of Ca, which is lower than 0.02%.
  • Tensile strength and elongation are tested according to the method described in ASTM B577; conductivity is tested according to the method described in ASTM B193, flexibility is tested according to the method of “Partial Discharge Test after Bending Test” described in GB 12706.1, and creep property is tested according to the creep test method described in the manual “Wires and Cables”.
  • the performance data of the aluminum alloy material with high elongation in this embodiment is: tensile strength: 97 MPa; elongation: 35.2%; conductivity: 62.0% IACS; partial discharge test after 6 ⁇ bending radius test: passed; creep resistance: higher than EC-aluminum by 330%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)
US13/395,423 2009-04-24 2010-04-09 High-elongation rate aluminum alloy material for cable and preparation method thereof Abandoned US20120211130A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200910116635.7 2009-04-24
CN2009101166357A CN101525709B (zh) 2009-04-24 2009-04-24 电缆用高延伸率铝合金材料及其制备方法
PCT/CN2010/071654 WO2010121517A1 (zh) 2009-04-24 2010-04-09 电缆用高延伸率铝合金材料及其制备方法

Publications (1)

Publication Number Publication Date
US20120211130A1 true US20120211130A1 (en) 2012-08-23

Family

ID=41093778

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/395,423 Abandoned US20120211130A1 (en) 2009-04-24 2010-04-09 High-elongation rate aluminum alloy material for cable and preparation method thereof

Country Status (8)

Country Link
US (1) US20120211130A1 (zh)
EP (1) EP2468907A4 (zh)
JP (1) JP2012524837A (zh)
CN (1) CN101525709B (zh)
AU (1) AU2010239014B2 (zh)
CA (1) CA2773050A1 (zh)
RU (1) RU2550063C2 (zh)
WO (1) WO2010121517A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140319956A1 (en) * 2013-04-26 2014-10-30 GM Global Technology Operations LLC Aluminum alloy rotor for an electromagnetic device
CN104532067A (zh) * 2014-12-12 2015-04-22 华北电力大学 一种非热处理型中强度铝合金导体材料及其制备方法
CN113151716A (zh) * 2021-03-08 2021-07-23 上海工程技术大学 一种电缆屏蔽用Al-Fe-Mg-Cu系铝合金及其制备方法
WO2021206444A1 (ko) * 2020-04-08 2021-10-14 주식회사 큐프럼 머티리얼즈 배선막 제조 방법, 배선막 및 이를 포함하는 표시 장치
CN113689970A (zh) * 2021-08-23 2021-11-23 安徽中青欣意铝合金电缆有限公司 电动汽车充电用抗曲挠铝合金电缆及其制备方法
CN115595459A (zh) * 2022-09-19 2023-01-13 江苏中天科技股份有限公司(Cn) 高强高导铝合金单丝的制备方法及铝合金单丝
CN116435003A (zh) * 2023-05-24 2023-07-14 中天科技海缆股份有限公司 改性铝合金导体及其生产工艺、改性铝合金导体电缆

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101525709B (zh) * 2009-04-24 2010-08-11 安徽欣意电缆有限公司 电缆用高延伸率铝合金材料及其制备方法
CN101937733B (zh) * 2010-07-13 2012-04-18 安徽欣意电缆有限公司 民用铝合金布线的制备方法
CN101886198A (zh) * 2010-07-13 2010-11-17 安徽欣意电缆有限公司 电缆用高导电率铝合金材料及其制备方法
CN101880799A (zh) * 2010-07-13 2010-11-10 安徽欣意电缆有限公司 铝铁锌镁稀土合金电线及其制造方法
CN101914708B (zh) * 2010-08-20 2012-12-19 安徽省惠尔电气有限公司 一种Al-Fe-Cu合金材料及其制备方法
CN101948971B (zh) * 2010-09-16 2013-02-13 安徽亚南电缆厂 电缆用耐热型铝合金导体材料及其制备方法
CN102021442B (zh) * 2010-09-21 2012-08-29 安徽亚南电缆厂 一种特细铝合金线及其制备方法
CN101974709B (zh) * 2010-09-21 2011-12-14 安徽欣意电缆有限公司 特软铝合金导体及其制备方法
CN102002614A (zh) * 2010-10-08 2011-04-06 黄洋铜业有限公司 低阻铝导线及其生产方法
CN101962723A (zh) * 2010-10-27 2011-02-02 江西南缆集团有限公司 一种细小截面线材用铝合金材料及其制造方法
CN102134693A (zh) * 2011-03-15 2011-07-27 安徽欣意电缆有限公司 电缆用稀土铁铝合金导体材料的退火方法
CN102682872B (zh) * 2011-03-18 2014-03-26 上海电缆研究所 一种半硬铝线和架空导线及其制备方法
CN102146539A (zh) * 2011-03-18 2011-08-10 常州鸿泽澜线缆有限公司 一种用于高压电缆的铝合金导体及其制备方法
CN102206776B (zh) * 2011-05-25 2012-09-12 登封市银河铝箔有限公司 一种蜂窝铝箔材料
CN102354541B (zh) * 2011-06-24 2012-06-20 河北科力特电缆有限公司 高强度耐氧化铝合金导电线芯及其制造方法
CN102262913B (zh) * 2011-07-07 2013-05-08 安徽欣意电缆有限公司 稀土高铁铝合金导体材料
CN102347092B (zh) * 2011-10-10 2013-02-20 安徽欣意电缆有限公司 一种稀土铝合金材料
CN103060647B (zh) * 2011-10-24 2014-12-31 贵州华科铝材料工程技术研究有限公司 一种钌羰基配合物变质的高性能铝合金材料及其制备方法
CN103131903A (zh) * 2013-03-12 2013-06-05 江苏广庆电子材料有限公司 一种含稀土元素的高强高导铝合金材料及其加工方法
CN104046862A (zh) * 2014-05-20 2014-09-17 南京南车浦镇城轨车辆有限责任公司 含有稀土元素的a7n01铝合金及其板材的制备方法
CN104004947B (zh) * 2014-06-06 2016-05-04 江苏大学 600-650MPa强度高抗晶间腐蚀铝合金及其制备方法
CN104004946B (zh) * 2014-06-06 2016-03-30 江苏大学 690-730MPa超高强度80-100mm淬透性铝合金及其制备方法
CN104805338A (zh) * 2015-05-21 2015-07-29 广西友合铝材有限公司 一种稀土铝铁铜合金线材及其制备方法
CN105296816B (zh) * 2015-12-08 2016-09-14 江苏东强股份有限公司 高导电铝合金材料及其铝合金电缆导体的制备方法
CN105838942A (zh) * 2016-05-20 2016-08-10 淮安和通汽车零部件有限公司 一种6042铝合金及其制备方法
CN105861894A (zh) * 2016-05-20 2016-08-17 淮安和通汽车零部件有限公司 一种6401a铝合金及其制备方法
CN111224108A (zh) * 2020-01-19 2020-06-02 上海华峰铝业股份有限公司 一种低电阻率的锂离子电池正极集流体
CN114227060A (zh) * 2021-12-27 2022-03-25 广东凤铝铝业有限公司 一种提高新能源汽车用铝型材焊接性能的方法
CN115449730B (zh) * 2022-09-06 2023-07-07 合肥通用机械研究院有限公司 一种有效降低低硅铸造铝合金腐蚀速率的方法
CN115896653B (zh) * 2022-12-21 2024-04-02 广东领胜新材料科技有限公司 一种高强度铝合金圆杆的连铸连轧装置及方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615371A (en) * 1967-04-08 1971-10-26 Furukawa Electric Co Ltd Aluminum alloy for electric conductor
CH524225A (fr) * 1968-05-21 1972-06-15 Southwire Co Fil ou barre en alliage d'aluminium
EG10355A (en) * 1970-07-13 1976-05-31 Southwire Co Aluminum alloy used for electrical conductors and other articles and method of making same
ZA741430B (en) * 1974-03-05 1975-02-26 Southwire Co Aluminium alloy wire producs and method of preparation thereof
JPS585254B2 (ja) * 1975-02-14 1983-01-29 三菱電線工業株式会社 導電用軟質強力アルミニウム合金
JPS5272315A (en) * 1975-12-15 1977-06-16 Sumitomo Electric Ind Ltd Aluminum alloy for conductor
JPS5625950A (en) * 1979-08-08 1981-03-12 Furukawa Electric Co Ltd:The Heat resistant aluminum alloy having high electrical conductivity
JPS5684440A (en) * 1979-12-10 1981-07-09 Dainichi Nippon Cables Ltd Conductive high-strength aluminum alloy
JPS5831071A (ja) * 1981-08-18 1983-02-23 Furukawa Electric Co Ltd:The 耐熱アルミニウム合金導体の製造方法
US4397696A (en) * 1981-12-28 1983-08-09 Aluminum Company Of America Method for producing improved aluminum conductor from direct chill cast ingot
DE3914020A1 (de) * 1989-04-28 1990-10-31 Vaw Ver Aluminium Werke Ag Aluminiumwalzprodukt und verfahren zu seiner herstellung
JPH0372048A (ja) * 1989-08-11 1991-03-27 Sumitomo Light Metal Ind Ltd 安定したグレー色の陽極酸化皮膜を生成するアルミニウム合金
RU2141389C1 (ru) * 1998-06-10 1999-11-20 Локшин Михаил Зеликович Способ изготовления электротехнической проволоки из алюминиевых сплавов
JP3604595B2 (ja) * 1999-08-27 2004-12-22 三菱アルミニウム株式会社 Ps版用アルミニウム合金支持体及びその製造方法
JP3677213B2 (ja) * 2000-02-07 2005-07-27 コダックポリクロームグラフィックス株式会社 Ps版用アルミニウム合金支持体及びその製造方法
EP1138792B1 (en) * 2000-02-07 2004-04-07 Kodak Polychrome Graphics Company Ltd. Aluminium alloy support body for lithographic printing and method for producing the same
CN100561345C (zh) * 2005-05-20 2009-11-18 东北轻合金有限责任公司 印刷用ps版基用铝板的制造方法
ITMI20060297A1 (it) * 2006-02-17 2007-08-18 Angeli Prodotti S R L Cavo conduttore per linee elettriche
CN1941222A (zh) * 2006-09-07 2007-04-04 上海电缆研究所 一种制造高强度耐热铝合金线的方法
JP2008111142A (ja) * 2006-10-27 2008-05-15 Fujifilm Corp 平版印刷版用アルミニウム合金板および平版印刷版用支持体
RU2344187C2 (ru) * 2006-12-28 2009-01-20 Николай Степанович Куприянов Алюминиевый сплав
CN101525709B (zh) * 2009-04-24 2010-08-11 安徽欣意电缆有限公司 电缆用高延伸率铝合金材料及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140319956A1 (en) * 2013-04-26 2014-10-30 GM Global Technology Operations LLC Aluminum alloy rotor for an electromagnetic device
US9601978B2 (en) * 2013-04-26 2017-03-21 GM Global Technology Operations LLC Aluminum alloy rotor for an electromagnetic device
CN104532067A (zh) * 2014-12-12 2015-04-22 华北电力大学 一种非热处理型中强度铝合金导体材料及其制备方法
WO2021206444A1 (ko) * 2020-04-08 2021-10-14 주식회사 큐프럼 머티리얼즈 배선막 제조 방법, 배선막 및 이를 포함하는 표시 장치
CN113151716A (zh) * 2021-03-08 2021-07-23 上海工程技术大学 一种电缆屏蔽用Al-Fe-Mg-Cu系铝合金及其制备方法
CN113689970A (zh) * 2021-08-23 2021-11-23 安徽中青欣意铝合金电缆有限公司 电动汽车充电用抗曲挠铝合金电缆及其制备方法
CN115595459A (zh) * 2022-09-19 2023-01-13 江苏中天科技股份有限公司(Cn) 高强高导铝合金单丝的制备方法及铝合金单丝
CN116435003A (zh) * 2023-05-24 2023-07-14 中天科技海缆股份有限公司 改性铝合金导体及其生产工艺、改性铝合金导体电缆

Also Published As

Publication number Publication date
WO2010121517A1 (zh) 2010-10-28
EP2468907A4 (en) 2013-11-20
CA2773050A1 (en) 2010-10-28
JP2012524837A (ja) 2012-10-18
AU2010239014A1 (en) 2011-08-11
CN101525709B (zh) 2010-08-11
RU2011147346A (ru) 2013-05-27
AU2010239014B2 (en) 2014-06-26
RU2550063C2 (ru) 2015-05-10
EP2468907A1 (en) 2012-06-27
CN101525709A (zh) 2009-09-09

Similar Documents

Publication Publication Date Title
US20120211130A1 (en) High-elongation rate aluminum alloy material for cable and preparation method thereof
CN101914708B (zh) 一种Al-Fe-Cu合金材料及其制备方法
Karabay Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors
CN104946936B (zh) 一种架空导线用高导电率稀土硬铝单丝材料
CN102127666B (zh) 一种稀土铝合金导体的制备方法
JP2012524837A5 (zh)
CN112143945B (zh) 一种多种复合稀土元素的高强韧性铸造铝硅合金及其制备方法
CN105088033A (zh) 一种铝合金及其制备方法
CN103343302B (zh) 一种碳纤维复合铝导线及其制备方法
CN102903415B (zh) 一种异型耐氧化高导电率铝合金碳纤维导线及制造方法
CN105734372B (zh) Al‑Cu系铸造铝合金材料及其制备方法
CN101880799A (zh) 铝铁锌镁稀土合金电线及其制造方法
CN105063433A (zh) 一种高导耐热铝合金单丝及其制备方法
CN102864344A (zh) 一种电缆用稀土铝合金导体及其制造方法
CN108118197B (zh) 一种高导热压铸铝合金材料的制备方法
CN101974709A (zh) 特软铝合金导体及其制备方法
CN108559874B (zh) 一种高强高导的耐热铝合金导线及其制备方法
CN104831127A (zh) 一种高导电耐热铝合金线及其制备方法
CN101492783B (zh) 一种Al-Cu合金圆铝杆的配制方法
CN104975211A (zh) 一种高导电率热处理型中强铝合金导电单丝
CN102796921A (zh) 一种电缆用铝合金导线及其制备方法
CN106399744B (zh) 一种紫杂铜精炼用多元中间合金及其制备和应用
CN105369077A (zh) 一种铝合金导体材料及其制备方法
CN101914704B (zh) 一种含Cr的抗蠕变挤压锌合金及其制备方法
CN108823464B (zh) 一种铜合金材料及其制备方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: ANHUI JOYSENSES CABLE CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, ZEMIN;YU, LEHUA;WAN, YOUMEI;REEL/FRAME:027905/0437

Effective date: 20120309

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION