US20120208187A1 - Method and Kit for Determining Severity and Progression of Periodontal Disease - Google Patents

Method and Kit for Determining Severity and Progression of Periodontal Disease Download PDF

Info

Publication number
US20120208187A1
US20120208187A1 US13/316,198 US201113316198A US2012208187A1 US 20120208187 A1 US20120208187 A1 US 20120208187A1 US 201113316198 A US201113316198 A US 201113316198A US 2012208187 A1 US2012208187 A1 US 2012208187A1
Authority
US
United States
Prior art keywords
il1b3877
periodontal disease
patient
allele
progression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/316,198
Other languages
English (en)
Inventor
Kenneth Kornman
Xiaodong Wu
Hwa-Ying Wang
Steven Offenbacher
James Beck
John Rogus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seaport Diagnostics Inc
Original Assignee
Interleukin Genetics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interleukin Genetics Inc filed Critical Interleukin Genetics Inc
Priority to US13/316,198 priority Critical patent/US20120208187A1/en
Assigned to INTERLEUKIN GENETICS, INC. reassignment INTERLEUKIN GENETICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OFFENBACHER, STEVEN, BECK, JAMES, ROGUS, JOHN, WANG, HWA-YING, KORNMAN, KENNETH S., WU, XIAODONG
Publication of US20120208187A1 publication Critical patent/US20120208187A1/en
Priority to US13/962,637 priority patent/US9347090B2/en
Priority to US15/144,263 priority patent/US20160244841A1/en
Assigned to ORIG3N, INC. reassignment ORIG3N, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERLEUKIN GENETICS, INC
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/172Haplotypes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/18Dental and oral disorders

Definitions

  • the present invention relates generally to an improved method for determining a patient's risk of severe periodontal disease and/or risk of periodontal disease progression and a kit for use in such an improved method.
  • Gingivitis is an early stage of the periodontal disease where the gums may become red, swollen and bleed easily. Gingivitis is usually painless and, if not treated, can advance to periodontitis, which may be classified by the magnitude of tissue destruction as mild, moderate, or severe. Periodontitis is primarily a disease of adults and is usually not detectable until after the age of 35. Usually bacteria that are present in dental plaque initiate periodontal disease. Toxins produced by the bacteria in the plaque activate the body's inflammatory and other immune mechanisms which ultimately lead to the destruction of the bone and gum tissue that support the teeth.
  • U.S. Pat. No. 5,328,829 discloses a method for determination of active periodontal disease sites within the oral cavity by measuring interleukin IL-1.beta. at the site. Smoking has been associated with an increased prevalence and severity of periodontitis. However, a significant number of individuals with periodontitis have never smoked.
  • a genetic testing kit was developed to predicts risk for periodontal diseases using two variations in the human genome, one located in IL1A gene (IL1A +4845) and the other in IL1B gene (IL1B +3954). Carriers of at least one copy of the minor allele in each of these gene variations have increased susceptibility to periodontal disease. See U.S. Pat. No. 5,686,246. However, such a test has a limited utility in some ethnic populations and the test identifies only a small portion of people who are at risk for periodontal diseases in those populations. There is the need to find more sensitive method of determining risks of periodontal disease in all ethnic populations.
  • the present invention is directed to a method of determining whether a patient is predisposed to having severe periodontal disease and/or having high risk of progression of periodontal disease, comprising the steps of (i) taking a biological sample from said patient; (ii) genotyping said biological sample for genetic polymorphism pattern comprising IL 1B (rs16944), IL 1B (rs1143623) and IL 1B (rs4848306); and (iii) comparing said genetic polymorphism patterns to a reference composite genotype pattern; wherein the similarity of said genetic polymorphism patterns to said reference pattern indicate said patient's predisposition to having severe periodontal disease and/or having high risk of progression of periodontal disease.
  • the present invention is also directed to a testing kit for determining whether a patient is predisposed to having severe periodontal disease and/or having high risk of progression of periodontal disease, comprising (i) biological sample collection means; (ii) a means for determining genetic polymorphism pattern; and (iii) a control sample containing IL 1B (rs16944), IL 1B (rs1143623), IL 1B (rs4848306) and IL 1B ((rs1143633).
  • the invention relates to the discovery of a polymorphism in the IL-1B gene which is associated with susceptibility to periodontal disease. Accordingly, ascertainment of genotype at this polymorphism provides a useful genetic test for susceptibility to periodontal disease.
  • Asian means people whose ancestral homes are in one of the countries in Asia, including, but is not limited to China, India, Japan, regardless of where they live currently.
  • African means people whose ancestral homes are in one of the countries in African regardless of where they live currently.
  • a method of determining whether a patient is predisposed to having severe periodontal disease and/or having high risk of progression of periodontal disease comprising the steps of (i) taking a biological sample from said patient; (ii) genotyping said biological sample for genetic polymorphism pattern comprising IL 1B (rs16944), IL 1B (rs1143623) and IL 1B (rs4848306); and (iii) comparing said genetic polymorphism pattern to a reference composite genotype pattern; wherein the similarity of said genetic polymorphism patterns to said reference pattern indicate said patient's predisposition to having severe periodontal disease and/or having high risk of progression of periodontal disease.
  • Also provided herein is a method of determining whether a patient is predisposed to having severe periodontal disease and/or having high risk of progression of periodontal disease, comprising the steps of (i) taking a biological sample from said patient; (ii) genotyping said biological sample for genetic polymorphism pattern comprising IL 1B (rs16944), IL 1B (rs1143623) and IL 1B (rs4848306), wherein the presence of one of the genetic polymorphism patterns listed in Tables 4-6 indicates said patient's predisposition to having severe periodontal disease and/or having high risk of progression of periodontal disease.
  • the composite genotypes of IL1B gene can be defined by the conventional alleles. Two composite genotype patterns are shown below as examples.
  • the biological sample is selected from the group consisting of saliva, buccal cells, blood, tissue samples and urine.
  • the method is for determining whether said patient is predisposed to having severe periodontal disease or for determining said patient's risk of progression of periodontal disease.
  • the patient is Caucasian, African, Chinese or of other ethnicities.
  • the present invention has identified IL1 SNPs and haplotypes that are highly prevalent in all major ethnic populations. Specific composite genotypes were significantly associated with more severe periodontitis in Caucasians, African-Americans and Chinese. Any difference between ethnic groups may be caused by different gene-gene interactions between ethnic groups may contribute to these different findings and that the gene-environment interactions may differ between ethnic groups.
  • the patient is Caucasian, African, Chinese or of other ethnicities.
  • This kit may contain one or more oligonucleotides, including 5′ and 3′ oligonucleotides that hybridize 5′ and 3′ to at least one allele of an IL-1 locus haplotype.
  • PCR amplification oligonucleotides should hybridize between 25 and 2500 base pairs apart, preferably between about 100 and about 500 bases apart, in order to produce a PCR product of convenient size for subsequent analysis.
  • Suitable primers for the detection of a human polymorphism in these genes can be readily designed using this sequence information and standard techniques known in the art for the design and optimization of primers sequences.
  • Optimal design of such primer sequences can be achieved, for example, by the use of commercially available primer selection programs such as Primer 2.1, Primer 3 or GeneFisher (See also, Nicklin M. H. J., Weith A. Duff G. W., “A Physical Map of the Region Encompassing the Human Interleukin-1 ⁇ , interleukin-1 ⁇ , and Interleukin-1 Receptor Antagonist Genes” Genomics 19: 382 (1995); Nothwang H. G., et al.
  • oligonucleotides may be any of a variety of natural and/or synthetic compositions such as synthetic oligonucleotides, restriction fragments, cDNAs, synthetic peptide nucleic acids (PNAs), and the like.
  • the assay kit and method may also employ labeled oligonucleotides to allow ease of identification in the assays. Examples of labels which may be employed include radio-labels, enzymes, fluorescent compounds, streptavidin, avidin, biotin, magnetic moieties, metal binding moieties, antigen or antibody moieties, and the like.
  • the kit may, optionally, also include DNA sampling means.
  • DNA sampling means are well known to one of skill in the art and can include, but not be limited to substrates, such as filter papers, the AmpliCardTM (University of Sheffield, Sheffield, England S10 2JF; Tarlow, J W, et al., J. of Invest. Dermatol.
  • DNA purification reagents such as NucleonTM kits, lysis buffers, proteinase solutions and the like
  • PCR reagents such as 10 ⁇ reaction buffers, thermostable polymerase, dNTPs, and the like
  • allele detection means such as the HinfI restriction enzyme, allele specific oligonucleotides, degenerate oligonucleotide primers for nested PCR from dried blood.
  • Instructions e.g., written, tape, VCR, CD-ROM, etc.
  • Instructions for carrying out the assay may be included in the kit.
  • SNPs single nucleotide polymorphisms
  • SNPs single nucleotide polymorphisms
  • SNPs are major contributors to genetic variation, comprising some 80% of all known polymorphisms, and their density in the human genome is estimated to be on average 1 per 1,000 base pairs. SNPs are most frequently biallelic-occurring in only two different forms (although up to four different forms of an SNP, corresponding to the four different nucleotide bases occurring in DNA, are theoretically possible).
  • SNPs are mutationally more stable than other polymorphisms, making them suitable for association studies in which linkage disequilibrium between markers and an unknown variant is used to map disease-causing mutations.
  • SNPs typically have only two alleles, they can be genotyped by a simple plus/minus assay rather than a length measurement, making them more amenable to automation.
  • the method includes the steps of (i) collecting a sample of cells from a patient, (ii) isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, (iii) contacting the nucleic acid sample with one or more primers which specifically hybridize 5′ and 3′ to at least one allele of an IL-1 proinflammatory haplotype under conditions such that hybridization and amplification of the allele occurs, and (iv) detecting the amplification product.
  • nucleic acid e.g., genomic, mRNA or both
  • the allele of an IL-1 proinflammatory haplotype is identified by alterations in restriction enzyme cleavage patterns.
  • sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis.
  • allele refers to the different sequence variants found at different polymorphic regions.
  • IL-1RN VNTR
  • the sequence variants may be single or multiple base changes, including without limitation insertions, deletions, or substitutions, or may be a variable number of sequence repeats.
  • allelic pattern refers to the identity of an allele or alleles at one or more polymorphic regions.
  • an allelic pattern may consist of a single allele at a polymorphic site, as for IL-1RN (VNTR) allele 1, which is an allelic pattern having at least one copy of IL-1 RN allele 1 at the VNTR of the IL-1RN gene loci.
  • VNTR IL-1RN
  • an allelic pattern may consist of either a homozygous or heterozygous state at a single polymorphic site.
  • IL-1-RN (VNTR) allele 2,2 is an allelic pattern in which there are two copies of the second allele at the VNTR marker of IL-1RN that corresponds to the homozygous IL-RN (VNTR) allele 2 state.
  • an allelic pattern may consist of the identity of alleles at more than one polymorphic site.
  • control refers to any sample appropriate to the detection technique employed.
  • the control sample may contain the products of the allele detection technique employed or the material to be tested. Further, the controls may be positive or negative controls.
  • the control sample may comprise DNA fragments of an appropriate size.
  • the control sample may comprise a sample of a mutant protein.
  • the control sample comprises the material to be tested.
  • the controls may be a sample of genomic DNA or a cloned portion of the IL-1 gene cluster.
  • the control sample is preferably a highly purified sample of genomic DNA.
  • haplotype as used herein is intended to refer to a set of alleles that are inherited together as a group (are in linkage disequilibrium) at statistically significant levels (P corr ⁇ 0.05).
  • an IL-1 haplotype refers to a haplotype in the IL-1 loci.
  • An IL-1 inflammatory or proinflammatory haplotype refers to a haplotype that is indicative of increased agonist and/or decreased antagonist activities.
  • IL-1 gene cluster and “IL-1 loci” as used herein include all the nucleic acid at or near the 2q13 region of chromosome 2, including at least the IL-1A, IL-1B and IL-1RN genes and any other linked sequences. (Nicklin et al., Genomics 19: 382-84, 1994).
  • the gene accession number for IL-1A, IL-1B, and IL-1RN are X03833, X04500, and X64532, respectively.
  • IL-1 X (Z) allele Y refers to a particular allelic form, designated Y, occurring at an IL-1 locus polymorphic site in gene X, wherein X is IL-1 A, B, or RN and positioned at or near nucleotide Z, wherein nucleotide Z is numbered relative to the major transcriptional start site, which is nucleotide +1, of the particular IL-1 gene X.
  • IL-1 X allele (Z) refers to all alleles of an IL-1 polymorphic site in gene X positioned at or near nucleotide Z.
  • IL-1RN (+2018) allele refers to alternative forms of the IL-1RN gene at marker +2018.
  • IL-1RN (+2018) allele 2 refers to a form of the IL-1RN gene which contains a cytosine (C) at position +2018 of the sense strand.
  • C cytosine
  • IL-1RN (+2018) allele 1 refers to a form of the IL-1 RN gene which contains a thymine (T) at position +2018 of the plus strand.
  • IL-1RN (+2018) allele 2 refers to the homozygous IL-1RN (+2018) allele 2 state.
  • IL-1RN (+2018) allele 1,1 refers to the homozygous IL-1RN (+2018) allele 1 state.
  • IL-1RN (+2018) allele 1,2 refers to the heterozygous allele 1 and 2 state.
  • an allele is named by the nucleotide at the polymorphic site.
  • IL-1RN (+2018) allele T refers to a form of the IL-1 RN gene which contains a thymine (T) at position +2018 of the plus strand.
  • “Increased risk” refers to a statistically higher frequency of occurrence of the disease or condition in an individual carrying a particular polymorphic allele in comparison to the frequency of occurrence of the disease or condition in a member of a population that does not carry the particular polymorphic allele.
  • an isolated nucleic acid encoding one of the subject IL-1 polypeptides preferably includes no more than 10 kilobases (kb) of nucleic acid sequence which naturally immediately flanks the IL-1 gene in genomic DNA, more preferably no more than 5 kb of such naturally occurring flanking sequences, and most preferably less than 1.5 kb of such naturally occurring flanking sequence.
  • kb kilobases
  • isolated also refers to a nucleic acid or peptide that is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized.
  • isolated nucleic acid is meant to include nucleic acid fragments which are not naturally occurring as fragments and would not be found in the natural state.
  • isolated is also used herein to refer to polypeptides which are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides.
  • a “non-human animal” of the invention includes mammals such as rodents, non-human primates, sheep, dogs, cows, goats, etc. amphibians, such a s members of the Xenopus genus, and transgenic avians (e.g. chickens, birds, etc.).
  • the term “chimeric animal” is used herein to refer to animals in which the recombinant gene is found, or in which the recombinant gene is expressed in some but not all cells of the animal.
  • tissue-specific chimeric animal indicates that one of the recombinant IL-1 genes is present and/or expressed or disrupted in some tissues but not others.
  • non-human mammal refers to any member of the class Mammalia, except for humans.
  • nucleic acid refers to polynucleotides or oligonucleotides such as deoxyribonucleic acid (DNA), and, where appropriate, ribonucleic acid (RNA).
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • the term should also be understood to include, as equivalents, analogs of either RNA or DNA made from nucleotide analogs (e.g. peptide nucleic acids) and as applicable to the embodiment being described, single (sense or antisense) and double-stranded polynucleotides.
  • polymorphism refers to the coexistence of more than one form of a gene or portion (e.g., allelic variant) thereof.
  • a portion of a gene of which there are at least two different forms, i.e., two different nucleotide sequences, is referred to as a “polymorphic region of a gene”.
  • a specific genetic sequence at a polymorphic region of a gene is an allele.
  • a polymorphic region can be a single nucleotide, the identity of which differs in different alleles.
  • a polymorphic region can also be several nucleotides long.
  • propensity to disease means that certain alleles are hereby discovered to be associated with or predictive of a subject's incidence of developing a particular disease (e.g. a periodontal disease). The alleles are thus over-represented in frequency in individuals with disease as compared to healthy individuals. Thus, these alleles can be used to predict disease even in pre-symptomatic or pre-diseased individuals.
  • wild-type allele refers to an allele of a gene which, when present in two copies in a subject results in a wild-type phenotype. There can be several different wild-type alleles of a specific gene, since certain nucleotide changes in a gene may not affect the phenotype of a subject having two copies of the gene with the nucleotide changes.
  • Genetic screening can be broadly defined as testing to determine if a patient has mutations (alleles or polymorphisms) that either cause a disease state or are “linked” to the mutation causing a disease state.
  • Linkage refers to the phenomenon that DNA sequences which are close together in the genome have a tendency to be inherited together. Two sequences may be linked because of some selective advantage of co-inheritance. More typically, however, two polymorphic sequences are co-inherited because of the relative infrequency with which meiotic recombination events occur within the region between the two polymorphisms.
  • the co-inherited polymorphic alleles are said to be in linkage disequilibrium with one another because, in a given human population, they tend to either both occur together or else not occur at all in any particular member of the population. Indeed, where multiple polymorphisms in a given chromosomal region are found to be in linkage disequilibrium with one another, they define a quasi-stable genetic “haplotype.” In contrast, recombination events occurring between two polymorphic loci cause them to become separated onto distinct homologous chromosomes. If meiotic recombination between two physically linked polymorphisms occurs frequently enough, the two polymorphisms will appear to segregate independently and are said to be in linkage equilibrium.
  • the severity of periodontal disease refers to the amount of periodontal ligament fibers that have been lost, termed clinical attachment loss. According to the American Academy of Periodontology, the classification of severity is as follows:
  • any range of numbers recited in the specification or paragraphs hereinafter describing or claiming various aspects of the invention, such as that representing a particular set of properties, units of measure, conditions, physical states or percentages, is intended to literally incorporate expressly herein by reference or otherwise, any number falling within such range, including any subset of numbers or ranges subsumed within any range so recited.
  • SNPs with high frequency in all ethnic groups included the previously identified functional SNPs in the IL1B promoter (rs16944, rs1143623, rs4848306) and another IL1B SNP (rs1143633).
  • Four IL1B promoter haplotypes (B1-B4) predominated with B3 and B4 having very different frequencies across ethnicities.
  • Multiple composite genotypes in the IL1B gene were associated with severe periodontitis and elevated gingival fluid IL1 ⁇ in Caucasians.
  • IL-1 genes that determine IL-1 biological activity.
  • IL1B gene is most relevant. So we initially focused on this gene.
  • the three functional SNPs form eight possible haplotypes. Four of them, named B1 through B4, account for more than 95% of all haplotypes observed in major ethnic groups. These four common haplotypes in turn form ten possible diplotypes or haplotype pairs. The results of the analysis are summarized in Tables 2 and 3. It should be noted that the frequency of these haplotypes or diplotypes is different between ethnic populations.
  • haplotypes/diplotypes are functional and they influence the clinical levels of the inflammatory markers IL-1beta and CRP. For example, some diplotypes including B3B3, B2B3, and B3B4 are associated with increased levels of both IL-1beta and CRP. While some diplotypes, including B1B1 and B1B3, are only associated with increased levels of IL-1beta. Interestingly, the effect of these haplotypes on IL1-beta expression may be context-dependent. For example, B2 haplotype was associated with lower levels of IL1-beta in gingival crevicular fluid. But, in an in vitro analysis, this haplotype was associated with the highest levels of promoter activity.
  • IL1B3877 rs1143633
  • Table 4 lists the patterns that are associated with several periodontitis in Caucasians. Some of these patterns are similar and share a subset of identical genotypes. For African Americans, the patterns associated with severe periodontitis are listed in Table 5. Some of these patterns are also associated with severe disease in Caucasians. There are 5 patterns associated with severe periodontitis in Chinese, as shown in Table 6. These patterns are different from those observed in African Americans or Caucasians. Composite genotype patterns associated with severe periodontitis in Caucasians, African Americans and Chinese are listed in Tables 4, 5, and 6, respectively.
  • d If there is an “and” between an IL1B diplotype and an IL1B3877 genotype, it means having the respective diplotype and genotype at the two loci.
  • B1B1 and IL1B3877 1.1” means that an individual carries diplotype B1B1 at the IL1B promoter region and genotype 1.1 at the IL1B3877 locus.
  • IL1B diplotypes B1B1, B1B2, B1B3, B1B4, B2B2, B2B3, B2B4, B3B3, B3B4, and B4B4.
  • Table 3 c.
  • d If there is an “and” between an IL1B diplotype and an IL1B3877 genotype, it means having the respective diplotype and genotype at the two loci.
  • IL1B diplotypes B1B1, B1B2, B1B3, B1B4, B2B2, B2B3, B2B4, B3B3, B3B4, and B4B4. b. If there is an “and” between an IL1B diplotype and an IL1B3877 genotype, it means having the respective diplotype and genotype at the two loci.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
US13/316,198 2010-12-09 2011-12-09 Method and Kit for Determining Severity and Progression of Periodontal Disease Abandoned US20120208187A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/316,198 US20120208187A1 (en) 2010-12-09 2011-12-09 Method and Kit for Determining Severity and Progression of Periodontal Disease
US13/962,637 US9347090B2 (en) 2010-12-09 2013-08-08 Method for determining severity and progression of periodontal disease
US15/144,263 US20160244841A1 (en) 2010-12-09 2016-05-02 Method for determining severity and progression of periodontal disease

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US42162810P 2010-12-09 2010-12-09
US201161452157P 2011-03-13 2011-03-13
US13/316,198 US20120208187A1 (en) 2010-12-09 2011-12-09 Method and Kit for Determining Severity and Progression of Periodontal Disease

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/962,637 Continuation US9347090B2 (en) 2010-12-09 2013-08-08 Method for determining severity and progression of periodontal disease

Publications (1)

Publication Number Publication Date
US20120208187A1 true US20120208187A1 (en) 2012-08-16

Family

ID=46207769

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/316,198 Abandoned US20120208187A1 (en) 2010-12-09 2011-12-09 Method and Kit for Determining Severity and Progression of Periodontal Disease
US13/962,637 Active 2032-04-19 US9347090B2 (en) 2010-12-09 2013-08-08 Method for determining severity and progression of periodontal disease
US15/144,263 Abandoned US20160244841A1 (en) 2010-12-09 2016-05-02 Method for determining severity and progression of periodontal disease

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/962,637 Active 2032-04-19 US9347090B2 (en) 2010-12-09 2013-08-08 Method for determining severity and progression of periodontal disease
US15/144,263 Abandoned US20160244841A1 (en) 2010-12-09 2016-05-02 Method for determining severity and progression of periodontal disease

Country Status (10)

Country Link
US (3) US20120208187A1 (enExample)
EP (1) EP2649203B1 (enExample)
JP (2) JP6138692B2 (enExample)
CN (1) CN103547680B (enExample)
AU (2) AU2011338210B2 (enExample)
BR (1) BR112013014479B1 (enExample)
NZ (2) NZ701432A (enExample)
RU (2) RU2018122965A (enExample)
SG (1) SG191078A1 (enExample)
WO (1) WO2012079010A2 (enExample)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017123696A1 (en) 2016-01-12 2017-07-20 Interleukin Genetics, Inc. Methods for predicting response to treatment
WO2018130670A1 (en) 2017-01-12 2018-07-19 Cardioforecast Ltd Methods and kits for treating cardiovascular disease
WO2020245402A1 (en) 2019-06-06 2020-12-10 Cardioforecast Ltd Compositions and methods for treating lung, colorectal and breast cancer
WO2021028469A1 (en) 2019-08-12 2021-02-18 Sitokine Limited Compositions and methods for treating cytokine release syndrome and neurotoxicity
WO2021205013A1 (en) 2020-04-09 2021-10-14 Sitokine Limited Compositions and methods for treating covid-19
US20250046463A1 (en) * 2021-11-12 2025-02-06 Mars, Incorporated Systems and methods for generating health reports based on veterinary oral care health test

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918706B (zh) * 2015-12-25 2019-05-21 广州瑞博奥生物科技有限公司 一种检测牙周病相关蛋白的抗体芯片试剂盒
GB201818627D0 (en) * 2018-11-15 2019-01-02 Mars Inc Analytical systems
JP7097855B2 (ja) * 2019-04-24 2022-07-08 ジェネシスヘルスケア株式会社 歯周病のリスクを判定する方法
KR102571131B1 (ko) * 2021-06-01 2023-08-24 부산대학교 산학협력단 치주염 감별용 바이오마커 조성물, 치주염 중증도 감별용 바이오마커 조성물, 및 이를 이용한 진단 키트

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152124A1 (en) * 1997-05-29 2004-08-05 Duff Gordon W. Diagnostics and therapeutics for diseases associated with an IL-1 inflammatory haplotype

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110920A (en) 1982-01-22 1992-05-05 Cetus Corporation HLA typing method and DNA probes used therein
US4582788A (en) 1982-01-22 1986-04-15 Cetus Corporation HLA typing method and cDNA probes used therein
US4666828A (en) 1984-08-15 1987-05-19 The General Hospital Corporation Test for Huntington's disease
US4801531A (en) 1985-04-17 1989-01-31 Biotechnology Research Partners, Ltd. Apo AI/CIII genomic polymorphisms predictive of atherosclerosis
US5268267A (en) 1987-08-21 1993-12-07 The General Hospital Corporation Method for diagnosing small cell carcinoma
US5272057A (en) 1988-10-14 1993-12-21 Georgetown University Method of detecting a predisposition to cancer by the use of restriction fragment length polymorphism of the gene for human poly (ADP-ribose) polymerase
US5328829A (en) 1990-07-05 1994-07-12 Forsyth Dental Infirmary For Children Method of determining sites of active periodontal disease
US5686246A (en) * 1995-08-03 1997-11-11 Kornman; Kenneth S. Detecting genetic predisposition to periodontal disease
US20050282198A1 (en) * 1997-05-29 2005-12-22 Interleukin Genetics, Inc. Diagnostics and therapeutics for diseases associated with an IL-1 inflammatory haplotype
US6130042A (en) * 1998-03-05 2000-10-10 The United States Of America As Represented By The Department Of Health And Human Services Compositions and methods for diagnosing periodontal disease
ES2356167T3 (es) * 2004-05-03 2011-04-05 Interleukin Genetics, Inc. Método de diagnóstico y terapia para enfermedades asociadas con un haplotipo inflamatorio il-1.
US20080118920A1 (en) * 2004-05-03 2008-05-22 Duff Gordon W Diagnostics And Therapeutics For Diseases Associated With An Il-1 Inflammatory Haplotype
EP2304052A2 (en) * 2008-05-02 2011-04-06 Interleukin Genetics, Inc. Detecting genetic predisposition to osteoarthritis associated conditions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152124A1 (en) * 1997-05-29 2004-08-05 Duff Gordon W. Diagnostics and therapeutics for diseases associated with an IL-1 inflammatory haplotype

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ahern, H. The Scientist 9(15):20 (24 July 1995)(6 pages). *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017123696A1 (en) 2016-01-12 2017-07-20 Interleukin Genetics, Inc. Methods for predicting response to treatment
US10894985B2 (en) 2016-01-12 2021-01-19 Sitokine Limited Methods for predicting response to treatment
WO2018130670A1 (en) 2017-01-12 2018-07-19 Cardioforecast Ltd Methods and kits for treating cardiovascular disease
US10329620B2 (en) 2017-01-12 2019-06-25 Cardioforecast Ltd. Methods and kits for treating cardiovascular disease
US10337070B2 (en) 2017-01-12 2019-07-02 Cardioforecast Ltd. Methods and kits for treating cardiovascular disease
US11486006B2 (en) 2017-01-12 2022-11-01 Sitokine Limited Methods and kits for treating cardiovascular disease
WO2020245402A1 (en) 2019-06-06 2020-12-10 Cardioforecast Ltd Compositions and methods for treating lung, colorectal and breast cancer
WO2021028469A1 (en) 2019-08-12 2021-02-18 Sitokine Limited Compositions and methods for treating cytokine release syndrome and neurotoxicity
WO2021205013A1 (en) 2020-04-09 2021-10-14 Sitokine Limited Compositions and methods for treating covid-19
US20250046463A1 (en) * 2021-11-12 2025-02-06 Mars, Incorporated Systems and methods for generating health reports based on veterinary oral care health test

Also Published As

Publication number Publication date
JP6138692B2 (ja) 2017-05-31
JP2017121237A (ja) 2017-07-13
JP6622731B2 (ja) 2019-12-18
EP2649203A2 (en) 2013-10-16
AU2016202211B2 (en) 2017-02-23
EP2649203A4 (en) 2014-05-07
CN103547680A (zh) 2014-01-29
AU2016202211A1 (en) 2016-05-05
AU2011338210A1 (en) 2013-07-25
WO2012079010A2 (en) 2012-06-14
RU2018122965A3 (enExample) 2019-04-11
BR112013014479A2 (pt) 2016-09-20
JP2013544536A (ja) 2013-12-19
RU2013131239A (ru) 2015-01-20
RU2018122965A (ru) 2019-03-06
RU2664431C2 (ru) 2018-08-17
CN103547680B (zh) 2017-05-24
NZ701432A (en) 2016-06-24
BR112013014479B1 (pt) 2020-10-27
US20160244841A1 (en) 2016-08-25
SG191078A1 (en) 2013-07-31
EP2649203B1 (en) 2019-07-24
US9347090B2 (en) 2016-05-24
WO2012079010A3 (en) 2012-08-23
AU2011338210B2 (en) 2016-05-12
NZ612799A (en) 2015-04-24
US20130337448A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
US9347090B2 (en) Method for determining severity and progression of periodontal disease
AU755107B2 (en) Prediction of inflammatory disease associated with IL-1 geneloci polymorphisms
JP5762282B2 (ja) 変形性関節症に関連する状態に対する遺伝的素因の検出
CN1753903B (zh) 影响转录和对炎性和传染性疾病的敏感性的白细胞介素-1基因座的功能多态性
CA2723247A1 (en) Detecting genetic predisposition to osteoarthritis associated conditions
AU6067900A (en) Diagnostics and therapeutics for diseases associated with an il-1 inflammatory haplotype
US20100092959A1 (en) Single nucleotide polymorphisms as genetic markers for childhood leukemia
Jirapongsananuruk et al. CYBB mutation analysis in X-linked chronic granulomatous disease
US20050244830A1 (en) Quantitative multiplex amplification on a genomic scale, and applications for detecting genomic rearrangements
HK1188260B (en) Improved method for determining severity and progression of periodontal disease
HK1188260A (en) Improved method for determining severity and progression of periodontal disease
JP6892102B2 (ja) ウシ白血病ウイルス(blv)プロウイルスロードの判定方法およびその利用
Chai et al. Genetic polymorphisms and periodontitis
US20080057507A1 (en) Genetic Marker for Prostate Cancer
AU2015202038A1 (en) Detecting Genetic Predisposition To Osteoarthritis Associated Conditions

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERLEUKIN GENETICS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KORNMAN, KENNETH S.;WU, XIAODONG;WANG, HWA-YING;AND OTHERS;SIGNING DATES FROM 20120223 TO 20120416;REEL/FRAME:028144/0435

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ORIG3N, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERLEUKIN GENETICS, INC;REEL/FRAME:044485/0984

Effective date: 20171122