US20120103581A1 - Header unit and heat exchanger having the same - Google Patents

Header unit and heat exchanger having the same Download PDF

Info

Publication number
US20120103581A1
US20120103581A1 US13/317,733 US201113317733A US2012103581A1 US 20120103581 A1 US20120103581 A1 US 20120103581A1 US 201113317733 A US201113317733 A US 201113317733A US 2012103581 A1 US2012103581 A1 US 2012103581A1
Authority
US
United States
Prior art keywords
header
refrigerant
header unit
cover
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/317,733
Other languages
English (en)
Inventor
Kang Tae Seo
Hong Gi Cho
Hayase Gaku
Dong Hyun Kim
Yong Hwa Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHO, HONG GI, CHOI, YONG HWA, Gaku, Hayase, KIM, DONG HYUN, SEO, KANG TAE
Publication of US20120103581A1 publication Critical patent/US20120103581A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0256Arrangements for coupling connectors with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys

Definitions

  • Embodiments of the present disclosure relate to a header unit, and, more particularly, to a header unit made of an aluminum material.
  • An air conditioner is a system configured to control heat and humidity of ambient air. Heat exchange of such an air conditioner with ambient air is achieved by a simple refrigeration cycle.
  • the refrigeration cycle may include a compressor, a condenser, an expansion valve, and an evaporator.
  • High-temperature and high-pressure refrigerant emerging from the compressor exchanges heat with outdoor air while passing through the condenser, so that it is changed into a low temperature state.
  • the refrigerant is then changed into a low-temperature and low-pressure state while passing through the expansion valve.
  • the low-temperature and low-pressure refrigerant subsequently exchanges heat with indoor air while passing through the evaporator, so that the indoor air is cooled.
  • Heat exchangers are classified into a heat exchanger for a vehicle and a domestic heat exchanger in accordance with the installation place thereof.
  • the vehicle heat exchanger and domestic heat exchanger are different from each other in terms of the kind of refrigerant used therein and the operation environments of the installation place thereof such as air flow and air velocity. For this reason, these heat exchangers have different design factors in terms of material and size, in order to obtain optimal heat exchange efficiencies.
  • a header unit includes a body, and a cover coupled to the body, wherein the body supports outer and inner sides of the cover in a simultaneous manner.
  • the body may include a base and a seating groove provided at the base.
  • the cover may include a support portion and a side wall portion provided at the support portion. At least a part of the side wall portion of the cover may be fitted in the seating groove of the body.
  • the seating groove of the body may include outer and inner side wall portions protruded from the base.
  • the outer side wall portion may be protruded to a higher level than the inner side wall portion.
  • the body may further include an intermediate barrier wall protruded from the base.
  • the intermediate barrier wall of the body may be coupled to the support portion of the cover in a caulking fashion.
  • the header unit may further include a plurality of partition plates installed at the body and the cover while being arranged in a longitudinal direction of the body and the cover, and at least one of the partition plates is inserted into the intermediate barrier wall of the body.
  • the header unit may further include a plurality of tubes fitted in the support portion of the cover. Stoppers to set respective insertion positions of the tubes may be formed at the intermediate barrier wall of the body.
  • the header unit may further include a plurality of tubes fitted in the support portion of the cover.
  • Each of the tubes may be maintained to be spaced apart from the intermediate barrier wall by a predetermined gap before a coupling process for the tubes.
  • the gap may be filled up by a clad material in the coupling process.
  • the header unit may be made of an aluminum material.
  • a refrigerant introduction pipe may be connected to at least a portion of the header unit.
  • the refrigerant introduction pipe may be made of a copper material.
  • a connecting pipe made of a stainless steel material may be arranged between the header unit and the refrigerant introduction pipe.
  • a refrigerant introduction pipe may be connected to at least a portion of the header unit.
  • the refrigerant introduction pipe may be made of a copper material.
  • the refrigerant introduction pipe may be provided with a reinforcing member enclosing the refrigerant introduction pipe, to be firmly supported by the header unit.
  • a refrigerant discharge pipe may be connected to at least a portion of the header unit.
  • the refrigerant discharge pipe may be made of a copper material.
  • a connecting pipe made of a stainless steel material may be arranged between the header unit and the refrigerant discharge pipe.
  • a refrigerant discharge pipe may be connected to at least a portion of the header unit.
  • the refrigerant discharge pipe may be made of a copper material.
  • the refrigerant discharge pipe may be provided with a reinforcing member enclosing the refrigerant discharge pipe, to be firmly supported by the header unit.
  • An R-22 or R-410A-series refrigerant may flow in the header unit.
  • a heat exchanger includes a pair of header units, and a pair of heat exchanging units arranged between the header units, wherein each of the header units includes a body, and a cover coupled to the body, wherein the body supports outer and inner sides of the cover in a simultaneous manner.
  • Each of the header units may further include a plurality of partition plates fitted in the body and the cover to partition the header unit into a plurality of portions.
  • the header units and the heat exchanging units may be made of an aluminum material.
  • An R-22 or R-410A-series refrigerant may flow in the header units and the heat exchanging units.
  • the heat exchanger may further include at least one refrigerant circuit to define at least one refrigerant path through which refrigerant introduced into one of the header units is discharged out of the header unit after exchanging heat in the heating exchanging units.
  • a header unit includes a body, and a cover coupled to the body, wherein at least a portion of the body supports an end of the cover.
  • the at least a portion of the body may be provided with a seating groove to support outer and inner sides of the end of the cover in a simultaneous manner.
  • the seating groove may include outer and inner side wall portions to support the outer and inner sides of the end of the cover, respectively.
  • FIG. 1 is a perspective view illustrating a heat exchanger according to an exemplary embodiment of the present disclosure
  • FIG. 2 is an exploded perspective view illustrating a structure of the first header unit according to an exemplary embodiment of the present disclosure
  • FIG. 3 is a sectional view illustrating a portion of the first header unit of FIG. 2 to which a refrigerant introduction pipe according to an exemplary embodiment of the present disclosure is coupled;
  • FIG. 4 is a sectional view illustrating a portion of the first header unit of FIG. 2 to which a refrigerant discharge pipe according to an exemplary embodiment of the present disclosure is coupled;
  • FIG. 5 is a sectional view illustrating a portion of the first header unit of FIG. 2 to which a partition plate according to an exemplary embodiment of the present disclosure is coupled;
  • FIG. 6 is a sectional view illustrating a portion of the first header unit of FIG. 2 to which a tube according to an exemplary embodiment of the present disclosure is coupled;
  • FIG. 7 is an exploded perspective view illustrating a structure of the second header unit according to an exemplary embodiment of the present disclosure
  • FIG. 8 is a sectional view illustrating a portion of the second header unit of FIG. 7 at which a through hole according to an exemplary embodiment of the present disclosure is formed;
  • FIG. 9 is a sectional view illustrating a portion of the first header unit of FIG. 7 to which a partition plate according to an exemplary embodiment of the present disclosure is coupled;
  • FIG. 10 is a sectional view illustrating tube structures of the first and second heat exchanging units according to an exemplary embodiment of the present disclosure
  • FIG. 11 is a perspective view illustrating fin structures of the first and second heat exchanging units according to an exemplary embodiment of the present disclosure
  • FIGS. 12 and 13 are sectional views illustrating a refrigerant introduction pipe according to another exemplary embodiment of the present disclosure.
  • FIG. 14 is a perspective view illustrating a heat exchanger according to another exemplary embodiment of the present disclosure.
  • FIGS. 15 and 16 are sectional views illustrating a first structure of a first header unit included in the heat exchanger of FIG. 14 ;
  • FIGS. 17 and 18 are sectional views illustrating a second structure of the first header unit included in the heat exchanger of FIG. 14 ;
  • FIG. 19 is a schematic view illustrating refrigerant flows in the heat exchanger according to an exemplary embodiment of the present disclosure.
  • FIG. 1 is a perspective view illustrating a heat exchanger according to an exemplary embodiment of the present disclosure.
  • the heat exchanger which is designated by reference numeral 1 , may be used to exchange heat with indoor air.
  • the heat exchanger 1 may be an evaporator (or condenser) installed in a building.
  • the heat exchanger 1 is distinguished from a heat exchanger installed in a vehicle.
  • a refrigerant for a vehicle heat exchanger such as R-12 or R-134a (Maximum operating pressure only for cooling ⁇ 3: 60-70 kg/cm 2 ) is used.
  • R-12 or R-134a Maximum operating pressure only for cooling ⁇ 3: 60-70 kg/cm 2
  • a refrigerant for a domestic heat exchanger such as R-22 or R-410A (Maximum operating pressure for cooling/heating ⁇ 3: 130-140 kg/cm 2 ) is used.
  • the two heat exchangers have different shapes and structures in that they use different gas pressures because they use different kinds of refrigerant and have different functions, namely, a cooling function and a cooling/heating function, respectively.
  • the following description will be given of the heat exchanger 1 , which is made of an aluminum material and uses a refrigerant for a domestic air conditioner such as R-22 or R-410A.
  • the heat exchanger 1 includes a pair of header units 10 and 20 , and a pair of heat exchanging units 30 and 40 arranged between the header units 10 and 20 .
  • the header units 10 and 20 are horizontally arranged, whereas the heat exchanging units 30 and 40 are vertically arranged.
  • the header unit 10 which is arranged at a lower position, is referred to as a first header unit
  • the header unit 20 which is arranged at an upper position, is referred to as a second header unit.
  • the heat exchanging unit 30 which is arranged at a front side, is referred to as a first heat exchanging unit, whereas the heat exchanging unit 40 , which is arranged at a rear side, is referred to as a second heat exchanging unit.
  • FIG. 2 is an exploded perspective view illustrating a structure of the first header unit according to an exemplary embodiment of the present disclosure.
  • FIG. 3 is a sectional view illustrating a portion of the first header unit of FIG. 2 to which a refrigerant introduction pipe according to an exemplary embodiment of the present disclosure is coupled.
  • FIG. 4 is a sectional view illustrating a portion of the first header unit of FIG. 2 to which a refrigerant discharge pipe according to an exemplary embodiment of the present disclosure is coupled.
  • FIG. 5 is a sectional view illustrating a portion of the first header unit of FIG. 2 to which a partition plate according to an exemplary embodiment of the present disclosure is coupled.
  • FIG. 6 is a sectional view illustrating a portion of the first header unit of FIG. 2 to which a tube according to an exemplary embodiment of the present disclosure is coupled.
  • the first header unit 10 may include a body 50 , a cover 60 , and a plurality of partition plates 70 .
  • the body 50 may be formed to substantially have a “ ⁇ ” shape.
  • the body 50 may include a base 51 , seating grooves 52 , an intermediate barrier wall 53 , and stoppers 54 .
  • the cover 60 may be formed to substantially have an “inverted U”-shape.
  • the cover 60 may include a support portion 61 and side wall portions 62 .
  • the intermediate barrier wall 53 of the body 50 is upwardly protruded from a central portion of the base 51 of the body 50 , and is inserted into the support portion 61 of the cover 60 .
  • An upper end of the intermediate barrier wall 53 is outwardly protruded from the support portion 61 , and is then coupled with the support portion 61 in a caulking fashion.
  • the intermediate barrier wall 53 divides the first header unit 10 into a first header 11 and a second header 12 , which are sealed from each other.
  • each seating groove 52 of the body 50 includes an outer side wall portion 52 a and an inner side wall portion 52 b to define a groove having a certain depth.
  • Each side wall portion 62 is fitted between the outer and inner side wall portions 52 a and 52 b of the corresponding seating groove 52 .
  • the outer and inner side wall portions 52 a and 52 b of each seating groove 52 in the body 50 support outer and inner surfaces of a free end part of the corresponding side wall portion 62 in the cover 60 , respectively.
  • the outer side wall portion 52 a is upwardly protruded to a higher level than the inner side wall portion 52 b . Since the body 50 has a structure capable of supporting both the outer and inner surfaces of the cover 60 , it may be possible to secure desired stiffness against the inner pressure of refrigerant.
  • Tubes 31 and tubes 41 are fitted in left and right side regions of the support portion 61 in the cover 60 , respectively. Since the tubes 31 and 41 have the same structure, the following description will be given only in conjunction with the tubes 31 for simplicity of description.
  • Each tube 31 is inserted into the support portion 61 until they come into contact with the corresponding stopper 54 formed at the intermediate barrier wall 53 .
  • the installation position of each tube 31 is set.
  • Each tube 31 may be spaced apart from the intermediate barrier wall 53 by a predetermined gap G.
  • the gap G maintained between the tube 31 and the intermediate barrier wall 53 before a brazing process may be 0.2 to 0.3 mm. This gap G is filled up by a clad material in the brazing process. As a result, the coupling force between the intermediate barrier wall 53 and the tube 31 increases, so that desired stiffness against the inner pressure of refrigerant may be secured.
  • Partition plates 70 are installed at opposite ends of the first header 11 to seal the first header 11 .
  • Another partition plate 70 is also installed at a central region of the first header 11 .
  • the first header 11 is partitioned into two tanks 11 a and 11 b .
  • a group of tubes 31 which are included in the first heat exchanging unit 30 , are connected to each of the first and second tanks 11 a and 11 b .
  • refrigerant flows in the first header 11 in the form of a plurality of flows separated from one another by a plurality of partition plates 70 .
  • partition plates 70 are installed at opposite ends of the second header 12 to seal the second header 12 .
  • the second header 12 is partitioned into a single tank 12 a . Accordingly, all tubes 41 of the second heat exchanging unit 40 are connected to the tank 12 a of the second header 12 .
  • refrigerant flows in the second header 12 in the form of a unified flow.
  • the heat exchanger 1 may have a compact structure because the second header 12 communicates with a single refrigerant discharge pipe 90 .
  • an additional partition plate 70 is installed at the first header 11 adjacent to the partition plate 70 arranged at one end of the first header 11 (the right end in the illustrated case) while being spaced apart from the adjacent partition plate 70 .
  • the intermediate barrier wall 53 is partially removed in a region between the adjacent partition plates 70 of the first header 11 in order to allow a space defined between the adjacent partition plates 70 to communicate with the second header 12 ( FIG. 4 ).
  • the refrigerant discharge pipe 90 is connected to a portion of the first header unit 10 at which the first and second headers 11 and 12 communicate with each other through the removed portion of the intermediate barrier wall 53 .
  • Each partition plate 70 is structured such that at least a portion thereof is fitted in the intermediate barrier wall 53 .
  • a plurality of refrigerant introduction pipes is installed at respective tanks of the first header 11 .
  • two refrigerant introduction pipes 81 and 82 are provided.
  • the first refrigerant introduction pipe 81 is connected to the first tank 11 a of the first header 11
  • the second refrigerant introduction pipe 82 is connected to the second tank 11 b of the first header 11 .
  • each of the refrigerant introduction pipes 81 and 82 is fitted through one side wall portion 62 of the cover 60 in the first header 11 .
  • a first connecting pipe 83 may be fitted between each of the refrigerant introduction pipes 81 and 82 and the side wall portion 62 of the cover 60 .
  • the refrigerant introduction pipes 81 and 82 are made of a copper material whereas the cover 60 is made of an aluminum material
  • the first connecting pipe 83 which is made of a stainless steel material, is interposed between each of the refrigerant introduction pipes 81 and 82 and the cover 60 in order to prevent promoted corrosion of the different materials (the copper and aluminum materials) that may occur when the copper and aluminum materials come into contact with each other.
  • a first reinforcing member 84 is provided at the side wall portion 62 of the cover 60 to support each of the refrigerant introduction pipes 81 and 82 .
  • each of the refrigerant introduction pipes 81 and 82 is firmly supported by the side wall portion 62 of the cover 60 .
  • the first reinforcing member 84 is made of an aluminum material.
  • another first connecting pipe 83 is also provided between the first reinforcing member 84 , which is made of an aluminum material, and each of the refrigerant introduction pipes 81 and 82 , which are made of a copper material.
  • the refrigerant discharge pipe 90 is arranged in a region adjacent to the right ends of the first and second headers 11 and 12 .
  • the refrigerant discharge pipe 90 is installed at a central region in the support portion 61 of the cover 60 . Since the intermediate barrier wall 53 is partially removed from a region beneath the refrigerant discharge pipe 90 , the first and second headers 11 and 12 communicate with each other in the region.
  • the refrigerant discharge pipe 90 has a larger diameter than the refrigerant introduction pipes 81 and 82 , in order to prevent loss of pressure caused by an increase in the volume of refrigerant occurring when the refrigerant is changed from a liquid phase to a gas phase during heat exchange.
  • the heat exchanger 1 may have a compact structure.
  • a second connecting pipe 91 may be fitted between the refrigerant discharge pipe 90 and the support portion 61 of the cover 60 . Since the refrigerant discharge pipe 90 is made of a copper material whereas the cover 60 is made of an aluminum material, the second connecting pipe 91 , which is made of a stainless steel material, is interposed between the refrigerant discharge pipe 90 and the cover 60 in order to prevent promoted corrosion of the different materials (the copper and aluminum materials) that may occur when the copper and aluminum materials come into contact with each other.
  • a second reinforcing member 92 is provided at the support portion 61 of the cover 60 to support the refrigerant discharge pipe 90 .
  • the second reinforcing member 92 is made of an aluminum material.
  • another second connecting pipe 91 is also provided between the second reinforcing member 92 , which is made of an aluminum material, and the refrigerant discharge pipe 90 , which is made of a copper material.
  • FIG. 7 is an exploded perspective view illustrating a structure of the second header unit according to an exemplary embodiment of the present disclosure.
  • FIG. 8 is a sectional view illustrating a portion of the second header unit of FIG. 7 at which a through hole according to an exemplary embodiment of the present disclosure is formed.
  • FIG. 9 is a sectional view illustrating a portion of the first header unit of FIG. 7 to which a partition plate according to an exemplary embodiment of the present disclosure is coupled.
  • the second header unit 20 may include a body 50 , a cover 60 , and a plurality of partition plates 70 .
  • the body 50 may be formed to substantially have a “ ⁇ ” shape.
  • the body 50 may include a base 51 , seating grooves 52 , an intermediate barrier wall 53 , and stoppers 54 .
  • the cover 60 may be formed to substantially have a “inverted U”-shape.
  • the cover 60 may include a support portion 61 and side wall portions 62 .
  • the second header unit 20 will be described in conjunction with portions different from those of the body 50 and cover 60 in the first header unit 10 , except for the same portions as the first header unit 10 .
  • the intermediate barrier wall 53 of the body 50 divides the second header unit 20 into a third header 21 and a fourth header 22 , which are sealed from each other.
  • a plurality of through holes 53 a is formed through the intermediate barrier wall 53 to be arranged in a longitudinal direction of the intermediate barrier wall 53 . Accordingly, refrigerant may flow from the third header 21 to the fourth header 22 through the plural through holes 53 a.
  • Partition plates 70 are installed at opposite ends of the third header 21 to seal the third header 21 .
  • Another partition plate 70 is also installed at a central region of the third header 21 .
  • the third header 21 is partitioned into two tanks 21 a and 21 b .
  • a group of tubes 31 which are included in the first heat exchanging unit 30 , are connected to each of the first and second tanks 21 a and 21 b .
  • refrigerant flows in the third header 21 in the form of a plurality of flows separated from one another by a plurality of partition plates 70 .
  • partition plates 70 are installed at opposite ends of the fourth header 22 to seal the fourth header 22 .
  • Another partition plate 70 is also installed at a central region of the fourth header 22 .
  • the fourth header 22 is partitioned into two tanks 22 a and 22 b .
  • a group of tubes 41 which are included in the second heat exchanging unit 40 , are connected to each of the first and second tanks 22 a and 22 b .
  • each of the third and fourth headers 21 and 22 is divided into a plurality of header portions defining a plurality of connecting passages to connect the first and second heat exchanging units 30 and 40 .
  • FIG. 10 is a sectional view illustrating tube structures of the first and second heat exchanging units according to an exemplary embodiment of the present disclosure.
  • FIG. 11 is a perspective view illustrating fin structures of the first and second heat exchanging units according to an exemplary embodiment of the present disclosure.
  • the first heat exchanging unit 30 may include a plurality of tubes 31 and fins 35
  • the second heat exchanging unit 40 may include a plurality of tubes 41 and fins 35 . Since the tubes 31 and 41 have the same structure, the following description will be given only in conjunction with the tubes 31 , for simplicity of description.
  • Each tube 31 has a planar structure having a plurality of microchannels 32 .
  • the number of microchannels 32 in each tube 31 may be about 6 to 10.
  • Each tube 31 may have a width W of 7 to 13 mm, and a height H of 2 to 3 mm.
  • the spacing S between the adjacent microchannels may be 0.7 to 0.8 mm.
  • Each fin 35 is arranged between the adjacent tubes 31 .
  • Each fin 35 has a corrugated structure.
  • the corrugated structure is formed by alternately and repeatedly bending the fin 35 through about 90° to form successive bent portions spaced apart from one another by a certain distance. That is, the fin 35 is structured to be perpendicularly protruded from the corresponding tubes 31 .
  • the fin 35 is coupled to the corresponding tubes 31 through a brazing process. In the brazing process, fillets 36 are formed at contact regions between the fin 35 and each tube 31 .
  • Louvers 37 are formed at each fin 35 .
  • the louvers 37 function to enhance heat exchange efficiency and easy drainage. That is, the louvers 37 generate turbulent air flows to increase the contact time and area of the fin 35 with air, thereby achieving an enhancement in heat exchange efficiency. Also, the louvers 37 reduce the surface tension of condensed water, thereby achieving an enhancement in drainage performance.
  • FIGS. 12 and 13 are sectional views illustrating a refrigerant introduction pipe according to another exemplary embodiment of the present disclosure.
  • the refrigerant introduction pipes 81 and 82 may be coupled to the first header 11 of the first header unit 10 to form an integrated structure. That is, the refrigerant introduction pipes 81 and 82 , which are made of an aluminum material, may be coupled to the first header 11 of the first header unit 10 , which is made of an aluminum material through a brazing process.
  • Each of the refrigerant introduction pipes 81 and 82 may include a vertical portion 85 a , a horizontal portion 85 b , and a bent portion 85 c to connect the vertical portion 85 a and horizontal portion 85 b.
  • the horizontal portion 85 b of the first refrigerant introduction pipe 81 corresponds to the first tank 11 a of the first header 11
  • the horizontal portion 85 b of the second refrigerant introduction pipe 82 corresponds to the second tank 11 b of the first header 11 .
  • the vertical portion 85 a of each of the refrigerant introduction pipes 81 and 82 is connected to a refrigerant line (not shown) made of a copper material.
  • a connecting pipe made of a stainless steel material may be interposed to prevent promoted corrosion of the different materials (the copper and aluminum materials) that may occur when the copper and aluminum materials come into contact with each other.
  • the vertical portion 85 a has a smaller diameter than the horizontal portion 85 b . In particular, this diameter difference is abrupt at the bent portion 85 c .
  • the bent portion 85 may function as a factor to obstruct smooth distribution of refrigerant because it abruptly changes the flow direction of the refrigerant from a vertical direction to a horizontal direction.
  • a diffusion member 86 is installed at a portion of the horizontal portion 85 b adjacent to the vertical portion 85 a in order to appropriately distribute the refrigerant flowing from the vertical portion 85 a to the horizontal portion 85 b .
  • the diffusion member 86 may have a circular protrusion structure.
  • the diffusion member 86 may be installed at a portion of the vertical portion 85 a adjacent to the horizontal portion 85 b.
  • a plurality of introduction pipe guide members 87 may be installed at the horizontal portion 85 b to guide the refrigerant appropriately distributed by the diffusion member 86 .
  • the plural introduction pipe guide members 87 appropriately distribute the refrigerant to a corresponding one of the tanks 11 a and 11 b of the first header 11 in the first header unit 10 .
  • the refrigerant appropriately distributed in the corresponding one of the tanks 11 a and 11 b of the first header 11 in the first header unit 10 then flows to the tubes 31 of the first heat exchanging unit 30 .
  • FIG. 14 is a perspective view illustrating a heat exchanger according to another exemplary embodiment of the present disclosure.
  • FIGS. 15 and 16 are sectional views illustrating a first structure of a first header unit included in the heat exchanger of FIG. 14 .
  • a plurality of refrigerant introduction pipes for example, refrigerant introduction pipes 81 and 82 , and a refrigerant discharge pipe 90 may be installed together at the right end of a heat exchanger 2 .
  • a first header 11 included in a first header unit 10 communicates with the refrigerant introduction pipes 81 and 82 .
  • the first header 11 includes a first tank 11 a to communicate with the first refrigerant introduction pipe 81 , and a second tank 11 b to communicate with the second refrigerant introduction pipe 82 .
  • the first and second tanks 11 a and 11 b are separated from each other by a horizontal partition plate 71 and vertical partition plates 72 provided at opposite sides of the horizontal partition plate 71 .
  • a group of tubes 31 a which define refrigerant paths, are connected to the first tank 11 a .
  • a group of tubes 31 b which define refrigerant paths, are connected to the second tank 11 b.
  • a second header 12 included in the first header unit 10 communicates with the refrigerant discharge pipe 90 .
  • the second header 12 includes a single tank 12 a to communicate with the refrigerant discharge pipe 90 .
  • the heat exchanger 2 shown in FIG. 14 has been described in conjunction with portions different from those of the heat exchanger 1 shown in FIG. 1 . No description will be given of the same portions of the heat exchanger 2 of FIG. 14 as the heat exchanger 1 of FIG. 1 .
  • FIGS. 17 and 18 are sectional views illustrating a second structure of the first header unit included in the heat exchanger of FIG. 14 .
  • a plurality of refrigerant introduction pipes for example, refrigerant introduction pipes 81 and 82 , and a refrigerant discharge pipe 90 may be installed together at the right end of the heat exchanger 2 .
  • a first header 11 included in a first header unit 10 communicates with the refrigerant introduction pipes 81 and 82 .
  • the first header 11 includes a first tank 11 a to communicate with the first refrigerant introduction pipe 81 , and a second tank 11 b to communicate with the second refrigerant introduction pipe 82 .
  • the first and second tanks 11 a and 11 b are separated from each other by partition plates 70 .
  • the first header 11 also includes a first refrigerant passage 14 a extending from the first refrigerant introduction pipe 81 to the first tank 11 a , and a second refrigerant passage 14 b extending from the second refrigerant introduction pipe 82 to the second tank 11 b .
  • the first and second refrigerant passages 14 a and 14 b are formed in accordance with an extrusion molding process.
  • a second header 12 included in the first header unit 10 communicates with the refrigerant discharge pipe 90 .
  • the second header 12 includes a single tank 12 a to communicate with the refrigerant discharge pipe 90 .
  • the heat exchanger 2 shown in FIG. 17 has been described in conjunction with portions different from those of the heat exchanger 1 shown in FIG. 1 . No description will be given of the same portions of the heat exchanger 2 of FIG. 17 as the heat exchanger 1 of FIG. 1 .
  • FIG. 19 is a schematic view illustrating refrigerant flows in the heat exchanger according to an exemplary embodiment of the present disclosure.
  • the heat exchanger includes a plurality of refrigerant circuits.
  • the plurality of refrigerant circuits may include a first refrigerant circuit 101 and a second refrigerant circuit 102 .
  • the first refrigerant circuit 101 is a refrigerant path through which refrigerant introduced into the first refrigerant introduction pipe 81 is discharged through the refrigerant discharge pipe 90 after passing through the first tank 11 a of the first header 11 , the grouped tubes 31 of the first heat exchanging unit 30 , the first tank 21 a of the third header 21 , the first tank 22 a of the fourth header 22 , the grouped tubes 41 of the second heat exchanging unit 40 , and the second header 12 .
  • the second refrigerant circuit 102 is a refrigerant path through which refrigerant introduced into the second refrigerant introduction pipe 82 is discharged through the refrigerant discharge pipe 90 after passing through the second tank 11 b of the first header 11 , the grouped tubes 31 of the first heat exchanging unit 30 , the second tank 21 b of the third header 21 , the second tank 22 b of the fourth header 22 , the grouped tubes 41 of the second heat exchanging unit 40 , and the second header 12 .
  • the refrigerant circuits 101 and 102 As a plurality of refrigerant circuits, for example, the refrigerant circuits 101 and 102 , are provided, it may be possible to achieve efficient refrigerant distribution, and thus to achieve an enhancement in heat exchange efficiency.
  • Separate refrigerant flows may be defined in accordance with the provision of a plurality of refrigerant introduction pipes, for example, the refrigerant introduction pipes 81 and 82 . Accordingly, even when the heat exchanger has an increased height, it may be possible to reliably supply refrigerant up to an uppermost portion of the heat exchanger, and thus to enhance operation reliability.
  • the second header 12 which is partitioned into the single tank 12 a , communicates with the single refrigerant discharge pipe 90 , it may be possible to simplify the structure of the second header 12 and the structure of the refrigerant discharge pipe 90 . Also, the refrigerant discharge pipe 90 is arranged at one end of the first header unit 10 . Accordingly, the heat exchanger has a compact structure.
  • each of the first header 11 of the first header unit 10 and the third header 21 and fourth header 22 of the second header unit 20 may be partitioned into a single tank.
  • the heat exchanger may include a single refrigerant circuit.
  • each of the first header 11 of the first header unit 10 and the third header 21 and fourth header 22 of the second header unit 20 may be partitioned into three or more tanks.
  • the heat exchanger may include three or more refrigerant circuits.
  • first refrigerant circuit 101 and second refrigerant circuit 102 may have opposite refrigerant flow directions, respectively.
  • the heat exchanger is made of an aluminum material. That is, the first header unit 10 , second header unit 20 , first heat exchanging unit 30 , and second heat exchanging unit 40 are made of an aluminum material, and are coupled together through a brazing process.
  • standard fracture pressure corresponds to 3 times maximum operating pressure. That is, the internal pressure design standard for refrigerant used in such a domestic heat exchanger, such as R-22 or R-410A, corresponds to 130-140 kg/cm 2 when the heat exchanger is used for cooling/heating.
  • the outer side wall portion 52 a and inner side wall portion 52 b of the body 50 are structured to simultaneously support the outer and inner surfaces of the side wall portion 62 of the cover 60 .
  • the heat exchanger also has a structure in which, when each partition plate 70 is coupled to the body 50 and cover 60 , at least a portion of the partition plate 70 is fitted in the intermediate barrier wall 53 .
  • a cladding material is filled in the gap G between each tube 31 and the intermediate barrier wall 53 in the brazing process. Thus, the tube 31 may be firmly supported.
  • the connecting pipes 83 and 91 are interposed between the first header unit 10 , which is made of an aluminum material, and each of the refrigerant introduction pipes 81 and 82 , which are made of a copper material, and between the first header unit 10 and the refrigerant discharge pipe 90 , which is made of a copper material, respectively. Accordingly, it may possible to prevent promoted corrosion of the different materials (the copper and aluminum materials) that may occur when the copper and aluminum materials come into contact with each other.
  • the reinforcing members 84 and 92 enclose each of the refrigerant introduction pipes 81 and 82 and the refrigerant discharge pipe 90 , to firmly support the corresponding pipes, respectively.
  • the heat exchanger may secure operation reliability and stiffness against refrigerant gas pressure while reducing manufacturing costs.
  • the heat exchanger may have a compact structure, so that the installation space thereof may be minimized.
  • it may be possible to provide a compact air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)
US13/317,733 2010-10-28 2011-10-27 Header unit and heat exchanger having the same Abandoned US20120103581A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100106370A KR101786965B1 (ko) 2010-10-28 2010-10-28 헤더유닛 및 이를 가지는 열교환기
KR10-2010-0106370 2010-10-28

Publications (1)

Publication Number Publication Date
US20120103581A1 true US20120103581A1 (en) 2012-05-03

Family

ID=45047582

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/317,733 Abandoned US20120103581A1 (en) 2010-10-28 2011-10-27 Header unit and heat exchanger having the same

Country Status (4)

Country Link
US (1) US20120103581A1 (de)
EP (1) EP2447661A3 (de)
KR (1) KR101786965B1 (de)
CN (1) CN102455087B (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120085514A1 (en) * 2010-10-08 2012-04-12 Carrier Corporation Furnace heat exchanger coupling
US20130126142A1 (en) * 2010-05-14 2013-05-23 Dionysios Didymiotis Rear door heat exchanger
US20160201990A1 (en) * 2015-01-09 2016-07-14 Trane International Inc. Heat exchanger
US20190049157A1 (en) * 2016-03-04 2019-02-14 Modine Manufacturing Company Heating and Cooling System, and Heat Exchanger for the Same
JP2019052784A (ja) * 2017-09-13 2019-04-04 三菱電機株式会社 熱交換器及び空気調和機
JP2020169814A (ja) * 2016-04-27 2020-10-15 東芝ライフスタイル株式会社 冷蔵庫
US11555660B2 (en) * 2017-08-03 2023-01-17 Mitsubishi Electric Corporation Refrigerant distributor, heat exchanger, and refrigeration cycle apparatus
US12000657B2 (en) 2018-12-28 2024-06-04 Samsung Electronics Co., Ltd. Heat exchanger

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983126B (zh) 2014-05-28 2016-08-24 丹佛斯微通道换热器(嘉兴)有限公司 换热器
PL228879B1 (pl) * 2015-09-15 2018-05-30 Enbio Tech Spolka Z Ograniczona Odpowiedzialnoscia Wymiennik ciepła
CN116235017A (zh) * 2020-09-18 2023-06-06 翰昂汽车零部件有限公司 具有用于减小热应力的装置的热交换器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107926A (en) * 1990-04-03 1992-04-28 Thermal Components, Inc. Manifold assembly for a parallel flow heat exchanger
US5152339A (en) * 1990-04-03 1992-10-06 Thermal Components, Inc. Manifold assembly for a parallel flow heat exchanger
US5246066A (en) * 1992-06-01 1993-09-21 General Motors Corporation One piece extruded tank
US5329995A (en) * 1992-08-28 1994-07-19 Valeo Engine Cooling Incorporated Heat exchanger assembly I
US5816316A (en) * 1996-02-20 1998-10-06 Valeo Thermique Moteur Heat exchanger with a brazed header, in particular for a motor vehicle
US6453988B1 (en) * 1999-07-28 2002-09-24 Mitsubishi Heavy Industries, Ltd. Heat exchanger and dimple tube used in the same, the tube having larger opposed protrusions closest to each end of tube
US20050172664A1 (en) * 2002-12-21 2005-08-11 Jae-Heon Cho Evaporator
US20060086489A1 (en) * 2002-11-15 2006-04-27 Hajime Ohata Tank for heat exchanger
US20060213651A1 (en) * 2003-07-08 2006-09-28 Showa Denko K.K. Heat exchanger
US20070284086A1 (en) * 2006-05-04 2007-12-13 Jerome Matter Transition assembly and method of connecting to a heat exchanger
US7549465B2 (en) * 2006-04-25 2009-06-23 Lennox International Inc. Heat exchangers based on non-circular tubes with tube-endplate interface for joining tubes of disparate cross-sections

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174373A (en) * 1990-07-13 1992-12-29 Sanden Corporation Heat exchanger
SE516092C2 (sv) * 1995-01-25 2001-11-19 Valeo Engine Cooling Ab Värmeväxlartank för montering i en oljekylare, förfarande för framställning av en sådantank, samt värmeväxlare
US20020057941A1 (en) * 1999-06-15 2002-05-16 Ichio Nakajima Connection structure between a pipe and a tube for use in a heat exchanger
DE20121257U1 (de) * 2001-10-12 2002-07-04 Erbsloeh Aluminium Gmbh Stranggepreßtes Profil, insbesondere für Wärmetauscher
DE10150213A1 (de) * 2001-10-12 2003-05-08 Erbsloeh Aluminium Gmbh Stranggepreßtes Profil, insbesondere für Wärmetauscher
FR2860063A1 (fr) * 2003-09-23 2005-03-25 Valeo Climatisation Procede d'assemblage d'une boite collectrice sur un collecteur d'un echangeur de chaleur, et assemblage ainsi obtenu
JP4413047B2 (ja) * 2004-03-17 2010-02-10 株式会社日本クライメイトシステムズ 熱交換器
JP4786234B2 (ja) * 2004-07-05 2011-10-05 昭和電工株式会社 熱交換器
DE102004036022A1 (de) * 2004-07-23 2006-02-16 Behr Industry Gmbh & Co. Kg Sammelkasten für einen mehrreihigen Wärmetauscher
JP4533040B2 (ja) * 2004-08-24 2010-08-25 カルソニックカンセイ株式会社 熱交換器のヘッダタンクと冷媒流通配管との接続構造
JP2006145058A (ja) * 2004-11-16 2006-06-08 Sanden Corp 熱交換器
JP4898300B2 (ja) * 2006-05-30 2012-03-14 昭和電工株式会社 エバポレータ
JP4440957B2 (ja) * 2007-10-11 2010-03-24 カルソニックカンセイ株式会社 熱交換器
JP2010112695A (ja) * 2008-10-07 2010-05-20 Showa Denko Kk エバポレータ
ES2810865T3 (es) * 2009-01-25 2021-03-09 Evapco Alcoil Inc Intercambiador de calor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107926A (en) * 1990-04-03 1992-04-28 Thermal Components, Inc. Manifold assembly for a parallel flow heat exchanger
US5152339A (en) * 1990-04-03 1992-10-06 Thermal Components, Inc. Manifold assembly for a parallel flow heat exchanger
US5246066A (en) * 1992-06-01 1993-09-21 General Motors Corporation One piece extruded tank
US5329995A (en) * 1992-08-28 1994-07-19 Valeo Engine Cooling Incorporated Heat exchanger assembly I
US5816316A (en) * 1996-02-20 1998-10-06 Valeo Thermique Moteur Heat exchanger with a brazed header, in particular for a motor vehicle
US6453988B1 (en) * 1999-07-28 2002-09-24 Mitsubishi Heavy Industries, Ltd. Heat exchanger and dimple tube used in the same, the tube having larger opposed protrusions closest to each end of tube
US20060086489A1 (en) * 2002-11-15 2006-04-27 Hajime Ohata Tank for heat exchanger
US20050172664A1 (en) * 2002-12-21 2005-08-11 Jae-Heon Cho Evaporator
US20060213651A1 (en) * 2003-07-08 2006-09-28 Showa Denko K.K. Heat exchanger
US7549465B2 (en) * 2006-04-25 2009-06-23 Lennox International Inc. Heat exchangers based on non-circular tubes with tube-endplate interface for joining tubes of disparate cross-sections
US20070284086A1 (en) * 2006-05-04 2007-12-13 Jerome Matter Transition assembly and method of connecting to a heat exchanger

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130126142A1 (en) * 2010-05-14 2013-05-23 Dionysios Didymiotis Rear door heat exchanger
US20120085514A1 (en) * 2010-10-08 2012-04-12 Carrier Corporation Furnace heat exchanger coupling
US9631877B2 (en) * 2010-10-08 2017-04-25 Carrier Corporation Furnace heat exchanger coupling
US20160201990A1 (en) * 2015-01-09 2016-07-14 Trane International Inc. Heat exchanger
US10161685B2 (en) * 2015-01-09 2018-12-25 Trane International Inc. Heat exchanger with partitioned inlet header for enhanced flow distribution and refrigeration system using the heat exchanger
US20190049157A1 (en) * 2016-03-04 2019-02-14 Modine Manufacturing Company Heating and Cooling System, and Heat Exchanger for the Same
US10907865B2 (en) * 2016-03-04 2021-02-02 Modine Manufacturing Company Heating and cooling system, and heat exchanger for the same
JP2020169814A (ja) * 2016-04-27 2020-10-15 東芝ライフスタイル株式会社 冷蔵庫
US11555660B2 (en) * 2017-08-03 2023-01-17 Mitsubishi Electric Corporation Refrigerant distributor, heat exchanger, and refrigeration cycle apparatus
JP2019052784A (ja) * 2017-09-13 2019-04-04 三菱電機株式会社 熱交換器及び空気調和機
US12000657B2 (en) 2018-12-28 2024-06-04 Samsung Electronics Co., Ltd. Heat exchanger

Also Published As

Publication number Publication date
CN102455087B (zh) 2016-03-23
KR101786965B1 (ko) 2017-11-15
EP2447661A2 (de) 2012-05-02
EP2447661A3 (de) 2014-11-05
CN102455087A (zh) 2012-05-16
KR20120044849A (ko) 2012-05-08

Similar Documents

Publication Publication Date Title
US9546824B2 (en) Heat exchanger
US20120103581A1 (en) Header unit and heat exchanger having the same
AU2014291046B2 (en) Heat exchanger
US9377253B2 (en) Connection device for multiple non-parallel heat exchangers
US10041710B2 (en) Heat exchanger and air conditioner
KR102174510B1 (ko) 냉장고의 냉각 사이클
EP3141859B1 (de) Mikrokanalwärmetauscher
US20140096944A1 (en) Heat exchanger
US20130180695A1 (en) Header unit and heat exchanger having the same
WO2010008960A2 (en) Integrated multi-circuit microchannel heat exchanger
US11022372B2 (en) Air conditioner
JP2010112580A (ja) 熱交換器
KR20130084179A (ko) 열교환기
JP2014066502A (ja) 熱交換器および冷凍装置
KR100893746B1 (ko) 공기조화기
KR100825708B1 (ko) 이산화탄소용 열교환기
JP2020148346A (ja) 熱交換器及び空気調和機
JP2020115070A (ja) 熱交換器
JP6817996B2 (ja) 熱交換器用のヘッダ、熱交換器、室外機及び空気調和機
KR100925097B1 (ko) 수랭식 열교환기
KR20040017968A (ko) 열교환기의 물빠짐 구조
JP2020115069A (ja) 熱交換器
CN116086047A (zh) 一种换热装置及冰箱
KR101357938B1 (ko) 냉매 시스템
JP2020085268A (ja) 熱交換器

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEO, KANG TAE;CHO, HONG GI;GAKU, HAYASE;AND OTHERS;REEL/FRAME:027281/0252

Effective date: 20111021

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION