US20120073348A1 - Method for producing sealing elements - Google Patents
Method for producing sealing elements Download PDFInfo
- Publication number
- US20120073348A1 US20120073348A1 US13/322,095 US201013322095A US2012073348A1 US 20120073348 A1 US20120073348 A1 US 20120073348A1 US 201013322095 A US201013322095 A US 201013322095A US 2012073348 A1 US2012073348 A1 US 2012073348A1
- Authority
- US
- United States
- Prior art keywords
- tube
- strips
- elements
- forming
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/84—Making other particular articles other parts for engines, e.g. connecting-rods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
- B21C37/0815—Making tubes with welded or soldered seams without continuous longitudinal movement of the sheet during the bending operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
- B21C37/09—Making tubes with welded or soldered seams of coated strip material ; Making multi-wall tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/15—Making tubes of special shape; Making tube fittings
- B21C37/154—Making multi-wall tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D15/00—Corrugating tubes
- B21D15/04—Corrugating tubes transversely, e.g. helically
- B21D15/06—Corrugating tubes transversely, e.g. helically annularly
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/033—Deforming tubular bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/16—Making other particular articles rings, e.g. barrel hoops
- B21D53/20—Making other particular articles rings, e.g. barrel hoops washers, e.g. for sealing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/08—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
- F16J15/0887—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by elastic deformation of the packing
Definitions
- the invention relates to a method for producing annular metallic sealing elements.
- a sealing element has been disclosed by EP 1 306 589 A2, containing a first metallic layer comprising an oxide dispersion-strengthened alloy and a second metallic layer comprising a solid solution-hardened alloy, or a precipitation-hardened nickel-based alloy, or an oxide dispersion-strengthened alloy.
- the seal has a bellows-like structure. From a process engineering point of view, first and second pieces of the layers are cut out, with the two layers being formed to obtain first and second rings. The rings thus obtained are placed inside each other concentrically, and the material composite thus obtained is subsequently shaped to produce the end contour of a sealing element. Given the multiple work steps, this kind of shape-forming is considered to be complex and costly.
- DE 10 2007 038 713 A1 discloses a method for producing regionally reinforced hollow profiled sections from a metal, in particular steel or a steel alloy.
- a blank, together with a plurality of metal reinforcement elements disposed on the blank, are formed so as to obtain a hollow profiled section, by employing a roll-forming technique or by way of U-O forming, wherein the reinforcement elements disposed on the blank are positively connected to the formed blanks following the forming operation.
- the sealing elements thus produced should be suitable for specific applications, notably in the area of vehicle drive systems.
- This object is achieved by a method for producing annular metallic sealing elements by bringing at least two sheet metal strips or foil strips having predefinable thicknesses, lengths, and widths into operative connection with each other in the manner of a tailored blank or patchwork, and subsequently winding this composite to obtain a tube, wherein the mutually facing end regions of the tubular multilayer composite are connected to each other non-positively or positively or by bonding, or combinations thereof, notably by thermal action such as by welding or soldering, and either dividing the tube into individual ring elements, which are subsequently formed using mechanical shape-forming to obtain the respective sealing element, or forming the entire tube and dividing the tube thus profiled into ring elements to obtain individual sealing elements.
- This object is likewise achieved by a method for producing annular metallic sealing elements by generating tubes or tube segments having various external dimensions from sheet metal strips or foil strips having predefinable thicknesses, lengths, and widths, placing the tubes or tube segments inside each other to obtain a multilayer composite designed in the manner of tailored tubes, wherein the mutually facing end regions of the tubular multilayer composite are connected to each other non-positively or positively or by bonding, or combinations thereof, notably by thermal action such as by welding or soldering, and either dividing the multilayer composite into individual ring elements, which are subsequently formed using mechanical shape-forming to obtain the respective sealing element, or forming the entire tube and dividing the tube thus profiled into ring elements to obtain individual sealing elements.
- tailored blank is considered by a person skilled in the art to mean sheet metals or foils that are composed, for example, of various material grades and/or thicknesses. This prefabricated semi-finished product subsequently undergoes a mechanical forming operation.
- the term ‘patchwork’ is considered by a person skilled in the art to mean sheet metals or foils that are placed onto other smaller sheet metals or foils in the manner of patches and connected to the first sheet metals or foils.
- tailored tubes is considered by a person skilled in the art to mean tubular components that are formed by sheet metals or foils and are connected to each other.
- connection of the sheet metals, or the tubes, or the mutually opposing end regions of the wound sheet metals can be effected by all bonding, non-positive or positive connecting methods known in the art, or combinations thereof.
- Fields of application for sealing elements produced by a method according to the invention include gaskets in the area of a turbocharger, or flat gaskets or flange gaskets, notably in the exhaust tract of a motor vehicle. Moreover, the gaskets thus generated can be employed as housing seals, for example in the transmission housing of a vehicle.
- Possible starting materials are either thin sheet metal strips or foil strips (10 ⁇ m to 200 ⁇ m), or combinations with thicker sheet metal strips or foil strips (200 ⁇ m to 1,000 ⁇ m), of which the respective material composite is composed, either in the form of a sheet metal or a tube.
- Such layer systems can be produced from materials that do not result in any undesirable effects, such as varying thermal expansions or thermoelectric effects, for example.
- Suitable materials include cold rolled strips, spring steels, nickel-based alloys, bainitic materials, or the like.
- the sheet metal strips or foil strips employed can be coated as needed in some regions or over the entire surface.
- FIG. 1 is a schematic diagram of a layer composite that is composed in the manner of a tailored blank
- FIG. 2 is a schematic diagram of a layer composite that is composed in the manner of a patchwork
- FIGS. 3 and 4 are schematic diagrams of two tubes that are rolled from sheet metals having different rolling directions
- FIG. 5 is a schematic diagram of a tube wound helically from a long sheet metal strip
- FIGS. 6 and 7 are schematic diagrams of shape-forming operations for contouring a tube
- FIG. 8 is a schematic diagram of a shape-forming operation for generating a sealing element
- FIG. 9 is a schematic diagram of sealing elements having various designs.
- FIG. 10 is a schematic diagram of a cylinder-head gasket, containing a sealing element according to FIG. 9 .
- FIG. 1 shows a schematic diagram of a layer composite that is composed in the manner of a tailored blank and formed by three sheet metal strips 1 , 2 , 3 having various thicknesses.
- the respective lengths L and widths B of the sheet metal strips 1 , 2 , 3 are the same.
- the thicknesses of the sheet metal strips 1 and 3 range between 200 and 1,000 ⁇ m, while the thickness of the interposed sheet metal strip 2 ranges between 10 and 150 ⁇ m. This thickness information shall only be regarded as thickness information that is provided by way of example.
- the sheet metal strips 1 , 2 , 3 can be connected to each other by thermal action, for example by welding (not shown).
- a multilayer composite is thus generated, which is formed by the sheet metal strips 1 , 2 , 3 and is subsequently wound to obtain a tube 5 .
- the mutually opposing end regions 6 , 7 of the wound tube 5 can likewise be connected to each other by thermal action, for example by welding. This will depend on the particular use of the sealing element to be generated. If a joint—as is known for piston rings—should be required, the tube 5 can be designed in the appropriate manner as a tube segment, so that this joint (not shown) is maintained after the winding operation.
- FIG. 2 shows an alternative to FIG. 1 .
- a plurality of sheet metals 8 , 9 , 10 having substantially different thicknesses have been arranged adjoining each other.
- these sheet metals 8 to 10 are connected to each other by bonding (adhesion, welding, soldering).
- the patchwork thus generated is rolled (arrow), wherein the end regions are connected to each other analogously to FIG. 1 .
- a tube 5 ′ is obtained, having various thicknesses, as seen looking in the radial direction, or thickened regions in predefinable locations.
- This tube 5 ′ can subsequently be cut into individual ring elements, or the entire tube 5 ′ can be formed. Individual ring elements used to obtain sealing rings can be cut from the formed tube 5 ′.
- FIGS. 3 and 4 show sheet metal strips 11 , 12 that have different rolling directions and are likewise formed so as to obtain tubes 13 , 14 .
- the respective end regions 15 , 16 , 17 , 18 of the tubes 13 , 14 can be connected to each other by welding or soldering.
- tube segments can be formed, so that the end regions 15 , 16 , 17 , 18 are provided at a predefinable distance from each other.
- the tubes 13 , 14 have different diameters, with the outside diameter of the tube 14 approximately corresponding to the inside diameter of the tube 13 .
- These tubes 13 , 14 can now be pushed inside each other so as to generate a tailored tube. Any weld seams that may be present can be provided offset from each other, as needed. It is likewise conceivable to position the tubes 13 , 14 relative to each other so that they are brought into operative connection with each other by welding.
- FIG. 5 shows another embodiment of the method according to the invention.
- a long sheet metal strip 19 can be wound to obtain a helical tube 20 .
- the end region 21 of the sheet metal strip 19 can be connected to the winding region 22 by welding or soldering, if necessary. It is also conceivable to generate a positive or non-positive connection so as to connect the individual layers to each other.
- the tubes, or tube segments, generated in accordance with FIGS. 1 to 5 are now separated (for example by cutting) so as to obtain the corresponding ring elements, and supplied to a further processing operation. As addressed above, it is also possible to form the entire tube, wherein the tube thus profiled is cut into ring elements so as to obtain individual sealing elements.
- Suitable methods for this purpose include forming methods, such as hydroforming, rubber pad forming, or the use of upsetting presses. A person skilled in the art will select a suitable method, depending on the application.
- FIGS. 6 and 7 show various shape-forming processes for contouring the outer circumferential surface, for example of the tube 20 according to FIG. 5 .
- FIG. 6 shows the process of hydroforming
- FIG. 7 shows the process of rubber pad forming. In both instances, appropriate contours 20 ′, 20 ′′ are introduced into the tube 20 .
- FIG. 8 shows an enlarged view of an individual ring element 23 .
- This ring element 23 is placed in front of a negative mold 24 , which is provided with a corresponding negative profile 25 .
- a rotating roller 26 for example, the ring element 23 is pressed into the negative mold 25 .
- the sealing element 27 thus generated has a substantially V-shaped contour.
- a wide variety of contours of the sealing element 27 can be generated.
- FIG. 9 shows examples of sealing elements 27 having various contours.
- FIG. 10 is a schematic diagram of a flat gasket or a cylinder-head gasket 28 , such as can be used, for example, in the area of an internal combustion engine. Screw through-holes 29 and through-holes or combustion chamber through-passages 30 are apparent. A sealing element 27 , such as is shown in FIG. 9 , can be positioned in the region of the respective through-holes or combustion chamber through-passage 30 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Gasket Seals (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009022391A DE102009022391B4 (de) | 2009-05-22 | 2009-05-22 | Verfahren zur Herstellung ringförmig ausgebildeter Dichtungselemente |
DE102009022391.6 | 2009-05-22 | ||
PCT/DE2010/000565 WO2010133214A1 (fr) | 2009-05-22 | 2010-05-20 | Procédé de fabrication d'éléments d'étanchéité |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120073348A1 true US20120073348A1 (en) | 2012-03-29 |
Family
ID=42985393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/322,095 Abandoned US20120073348A1 (en) | 2009-05-22 | 2010-05-20 | Method for producing sealing elements |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120073348A1 (fr) |
EP (1) | EP2432604A1 (fr) |
CN (1) | CN102387875A (fr) |
DE (1) | DE102009022391B4 (fr) |
WO (1) | WO2010133214A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9457633B2 (en) * | 2014-10-21 | 2016-10-04 | Benteler Automobiltechnik Gmbh | Cross member system for a coupling device a motor vehicle |
WO2020150720A1 (fr) * | 2019-01-20 | 2020-07-23 | Techreo Llc | Structures tubulaires allongées |
US11779981B2 (en) | 2019-01-20 | 2023-10-10 | Kevin McNeil | Methods for making layered tubular structures |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8533957B2 (en) * | 2011-06-14 | 2013-09-17 | Amsted Rail Company, Inc. | Method of manufacturing a roller bearing seal |
CN104690127B (zh) * | 2015-03-19 | 2016-05-18 | 宁波永享铜管道有限公司 | 管件上鼓包加工装置及其加工方法 |
RU2704709C1 (ru) * | 2018-10-05 | 2019-10-30 | Акционерное общество ""Объединенная двигателестроительная корпорация" (АО "ОДК") | Способ изготовления двухслойного кольцевого жаропрочного уплотнения узлов газотурбинного двигателя |
CN109570318A (zh) * | 2018-10-23 | 2019-04-05 | 上海航天设备制造总厂有限公司 | 一种燃气涡轮排气道支承壁用钣金件流体成形方法 |
CN115870366A (zh) * | 2022-10-31 | 2023-03-31 | 江苏恒高电气制造有限公司 | 一种不锈钢多层波纹管同轴成型的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3797088A (en) * | 1972-09-08 | 1974-03-19 | Grotnes Machine Works Inc | Method of manufacturing cylindrical blanks |
US4387498A (en) * | 1979-03-28 | 1983-06-14 | Alfred Morhard | Method for making helically wound surface-coated tubes, and apparatus for carrying out this method |
US4688319A (en) * | 1981-09-11 | 1987-08-25 | Heinz Gross | Multi-layer helical seam steel pipe |
US5157984A (en) * | 1989-11-15 | 1992-10-27 | Aisin Aw Co., Ltd. | Sealing device of an automatic transmission |
US20020063145A1 (en) * | 2000-11-29 | 2002-05-30 | Lotspaih Steven R. | Reinforced hydroform tube |
US20060196033A1 (en) * | 2003-07-09 | 2006-09-07 | Thomas Ficker | Annular composite workpieces and a cold-rolling method for producing said workpieces |
US20080217866A1 (en) * | 2007-03-09 | 2008-09-11 | Bhawani Tripathy | Metal gasket |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1610383A (en) * | 1926-03-18 | 1926-12-14 | Wallace & Sons Mfg Co R | Method of forming metal parts from tubing |
US4162569A (en) * | 1977-10-17 | 1979-07-31 | Dana Corporation | Method of making metal gaskets |
JPH07103932B2 (ja) * | 1987-12-25 | 1995-11-08 | 日本バルカー工業株式会社 | 金属中空oリングの製造方法 |
US5249814A (en) * | 1992-01-31 | 1993-10-05 | Eg&G Pressure Science, Inc. | Multi-ply sealing rings and methods for manufacturing same |
US5630593A (en) * | 1994-09-12 | 1997-05-20 | Eg&G Pressure Science, Inc. | Pressure-energized sealing rings |
DE19755391A1 (de) * | 1997-12-12 | 1999-06-24 | Freudenberg Carl Fa | Verfahren zur Herstellung eines Dichtringes |
US6227546B1 (en) * | 1999-03-26 | 2001-05-08 | Jetseal, Inc. | Resilient seal and method of using a resilient seal |
US20030127807A1 (en) | 2001-10-29 | 2003-07-10 | More D. Gregory | High temperature seal |
DE102007025477A1 (de) * | 2007-05-31 | 2008-12-04 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Herstellung einer Ringdichtung |
DE102007038713B4 (de) | 2007-08-14 | 2009-07-23 | Thyssenkrupp Steel Ag | Verfahren zur Herstellung von partiell verstärkten Hohlprofilen |
DE102007049925B4 (de) * | 2007-10-18 | 2012-10-31 | Federal-Mogul Sealing Systems Gmbh | Geschweißte Metalldichtung |
-
2009
- 2009-05-22 DE DE102009022391A patent/DE102009022391B4/de not_active Expired - Fee Related
-
2010
- 2010-05-20 WO PCT/DE2010/000565 patent/WO2010133214A1/fr active Application Filing
- 2010-05-20 US US13/322,095 patent/US20120073348A1/en not_active Abandoned
- 2010-05-20 CN CN2010800161338A patent/CN102387875A/zh active Pending
- 2010-05-20 EP EP10732265A patent/EP2432604A1/fr not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3797088A (en) * | 1972-09-08 | 1974-03-19 | Grotnes Machine Works Inc | Method of manufacturing cylindrical blanks |
US4387498A (en) * | 1979-03-28 | 1983-06-14 | Alfred Morhard | Method for making helically wound surface-coated tubes, and apparatus for carrying out this method |
US4688319A (en) * | 1981-09-11 | 1987-08-25 | Heinz Gross | Multi-layer helical seam steel pipe |
US5157984A (en) * | 1989-11-15 | 1992-10-27 | Aisin Aw Co., Ltd. | Sealing device of an automatic transmission |
US20020063145A1 (en) * | 2000-11-29 | 2002-05-30 | Lotspaih Steven R. | Reinforced hydroform tube |
US20060196033A1 (en) * | 2003-07-09 | 2006-09-07 | Thomas Ficker | Annular composite workpieces and a cold-rolling method for producing said workpieces |
US20080217866A1 (en) * | 2007-03-09 | 2008-09-11 | Bhawani Tripathy | Metal gasket |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9457633B2 (en) * | 2014-10-21 | 2016-10-04 | Benteler Automobiltechnik Gmbh | Cross member system for a coupling device a motor vehicle |
WO2020150720A1 (fr) * | 2019-01-20 | 2020-07-23 | Techreo Llc | Structures tubulaires allongées |
US11779981B2 (en) | 2019-01-20 | 2023-10-10 | Kevin McNeil | Methods for making layered tubular structures |
Also Published As
Publication number | Publication date |
---|---|
WO2010133214A1 (fr) | 2010-11-25 |
DE102009022391A1 (de) | 2010-12-02 |
DE102009022391B4 (de) | 2011-06-22 |
CN102387875A (zh) | 2012-03-21 |
EP2432604A1 (fr) | 2012-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120073348A1 (en) | Method for producing sealing elements | |
US20120070272A1 (en) | Method for producing metal elements, in particular sealing elements | |
AU2018246660B2 (en) | Method for manufacturing clad steel pipe | |
US7204234B2 (en) | High-pressure fuel injection pipe | |
US20120073343A1 (en) | Method for producing metal sealing elements | |
US6286556B1 (en) | High-pressure fuel injection pipe for diesel engine | |
EP3056292B1 (fr) | Tubes de titane à paroi double et procédés de fabrication de cette tubulure | |
US20140255718A1 (en) | Superplastically formed ultrasonically welded metallic structure | |
US6994356B2 (en) | Gasket seal for flanges of piping and equipment, a method for manufacturing gasket seals, and a sealing ring for a gasket seal | |
US4656332A (en) | Use of the laser welding process for and method of manufacturing of welded construction parts for exhaust installations | |
US20130213167A1 (en) | Hollow gear ring and method for its manufacturing | |
GB2442238A (en) | Sheet metal blank for gas turbine engine casing | |
JPH11248045A (ja) | 重合鋼管 | |
JP2707852B2 (ja) | 二重金属管の製造方法 | |
US10265798B2 (en) | Magnetic pulse welding of engine components | |
JPH11290939A (ja) | 長尺二重金属管の製造方法 | |
US20220034364A1 (en) | Method for producing a sliding element | |
US9283602B2 (en) | Process and apparatus for producing a hollow body, and hollow body | |
KR20100035811A (ko) | 다층 강관의 제조방법 및 이 방법으로 제조된 다층 강관 | |
RU2271487C1 (ru) | Способ изготовления плоской прокладки и прокладка | |
JPH11241770A (ja) | 金属ガスケット材と金属ガスケット及びこれらの製造方法 | |
CN118816080A (zh) | 一种封闭截面管状零件及其制造方法 | |
JPH11132337A (ja) | シールリングの製造方法 | |
JPS63195308A (ja) | 鋼板を丸めて作る中空バルブ | |
GB2079891A (en) | Aluminium tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FEDERAL-MOGUL SEALING SYSTEMS GMBH, GERMAN DEMOCRA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PREHN, ROLF;REEL/FRAME:027271/0929 Effective date: 20110826 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |