US20110226603A1 - Method And Device For Producing Operating Materials Or Fuels - Google Patents

Method And Device For Producing Operating Materials Or Fuels Download PDF

Info

Publication number
US20110226603A1
US20110226603A1 US13/130,578 US200913130578A US2011226603A1 US 20110226603 A1 US20110226603 A1 US 20110226603A1 US 200913130578 A US200913130578 A US 200913130578A US 2011226603 A1 US2011226603 A1 US 2011226603A1
Authority
US
United States
Prior art keywords
solid
reactor
reaction
water
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/130,578
Other languages
English (en)
Inventor
Dominik Peus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20110226603A1 publication Critical patent/US20110226603A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/086Hydrothermal carbonization
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/10Recycling of a stream within the process or apparatus to reuse elsewhere therein
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/14Injection, e.g. in a reactor or a fuel stream during fuel production
    • C10L2290/141Injection, e.g. in a reactor or a fuel stream during fuel production of additive or catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/14Injection, e.g. in a reactor or a fuel stream during fuel production
    • C10L2290/146Injection, e.g. in a reactor or a fuel stream during fuel production of water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/46Compressors or pumps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/548Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the application relates to a method and apparatus for the production of materials or fuels, humus, Maillard or Maillard-like reaction products from a solid-fluid mixture of water and a carbon-containing component and for the treatment thereof, wherein the solid-fluid mixture is treated at a temperature of over 100° C. and a pressure of over 5 bar.
  • biomass is converted in a laboratory autoclave at 10 bar and 180° C. within half a day into a carbon-like material or its preliminary steps and water.
  • the use of humid biomass for energy recovery through the production of a fuel which is as consistent as possible is aimed for a long time, but has been limited in its use up to now due to the lacking efficiency.
  • Carbon dioxide emissions by combustion of fossil energy carriers are essentially seen to be responsible for the climate change.
  • a device for the treatment of biogenous residues which comprises a cylindrical reactor in which food waste and the like is submitted to a temperature pressure hydrolysis process or thermal pressure hydrolysis.
  • the reactor is in the form of a loop reactor having heatable casing surfaces.
  • a flow is produced within the reactor by means of a pump for ensuring mixing of the suspension.
  • the object is solved by advantageous method for the hydrolysis and/or production of materials or fuels, humus, Maillard or Maillard-like reaction products from a solid-fluid mixture of water and a carbon-containing component and for the treatment thereof, wherein the solid-fluid mixture is treated at a temperature of over 100° C. and a pressure of over 5 bar in a reactor for at least 1 hour.
  • feed materials that cannot be pumped are fed into the at least one reactor via a first feed strand, and pumpable heated feed materials are guided into the at least one reactor in a time-parallel manner or offset therefrom.
  • non-pumpable feed materials with a solid content of 25 to 97 percent are conveyed to the reactor via the first feed strand and that parallel or offset thereto pumpable heated feed materials with a solid content of 3 to 50 percent are guided via the second feed strand.
  • the ratio of the mass throughput of non-pumpable to pumpable feed materials is preferably 1:20 to 10:1.
  • the non-pumpable feed materials from the first feed strand are conveyed to the reactor under a pressure above the vapor pressure of the process water.
  • the conveying device for introducing the non-pumpable feed materials form the first feed strand to the reactor under pressure above the vapor pressure of the process water is preferably an injector, double screw extruder, an eccentric spiral pump, a piston pump, a spiral displacement pump, which are respectively equipped with or without compressor screws, or a double screw compressor.
  • the non-pumpable feed materials from the first feed strand are provided to the reactor at a pressure below the vapor pressure of the process water and are superposed with pumpable feed materials from the second feed strand.
  • the ratio of the mass throughput of provided vs. supplied feedstocks is preferably 1:20 to 10:1, or 1:5 to 1:1.
  • further feed strands are preferably used in the method.
  • the method according to the invention further comprises the common use of further devices such as storage containers, comminution apparatuses, mixing vessels, dosing devices, incubation vessels, conveying devices, process water vessels, tube lines, heat exchangers or reactors.
  • further devices such as storage containers, comminution apparatuses, mixing vessels, dosing devices, incubation vessels, conveying devices, process water vessels, tube lines, heat exchangers or reactors.
  • the object is also solved by a method for the hydrolysis of a carbon-containing component, for feeding a reactor and/or for producing materials or fuels, humus, Maillard or similar reaction products of a solid-fluid mixture of water and the carbon-containing component, where the solid-fluid mixture is treated at a temperature of above 100° C. and a pressure of above 5 bar.
  • the solid-fluid mixture thereby flows through a heat exchanger for heating, where the amount of the angle of the tube axis to the horizontal plane is larger than 10 degrees.
  • the viscosity of the solid-fluid mixture thereby for example decreases when passing through the feeding device and is for example reduced to at least three quarters of the viscosity of the feed materail at the end of the process.
  • the solid-fluid mixture flows through a heat exchanger for heating and is thereby guided through at least 60 percent of essentially vertical tube parts.
  • the solid-fluid mixture has for example a solid content between 3 and 35 or between 35 and 60% and/or is preferably guided to the heat exchanger by a pump.
  • the pump for conveying the solid-fluid mixture and/or a counterpressure pump can for example be designed for solid contents of at least 5 to 10 or 10 to 25 percent and/or be an eccentric spiral pump, a spiral displacement pump, or a piston pump.
  • an apparatus for treating a solid-fluid mixture of water and a carbon-containing component at a temperature above 100° C. and a pressure above 5 bar schreib which comprises a reactor and a feed apparatus.
  • the feed apparatus comprises a pump according to the invention for conveying solid-fluid mixtures with a solid content of at least 10 or at least 15 mass percent or a heat exchanger, where the amount of the angle of the tube axis to the horizontal plane is larger than 10 degrees.
  • the object is further alternatively solved by an apparatus for treating a solid-fluid mixture of water and a carbon-containing component at a temperature above 100° C. and a pressure above 5 bar, which comprises a reactor and a hydrloysis apparatus.
  • the hydrolysis apparatus comprises a pump according to the invention for conveying solid-fluid mixtures with a solid content of at least 10 or at least 15 mass percent or a heat exchanger, where the amount of the angle of the tube axis to the horizontal plane is larger than 10 degrees.
  • the hydrolysis apparatus can for example comprise a counterpressure pump.
  • the pump is an eccentric spiral pump or a piston pump.
  • the pump is thereby preferably designed for pressures of 10-130 bar.
  • the heat exchanger consists of at least 60% of vertical tube parts.
  • the heat exchanger can further be designed for passing through solid-fluid mixtures with a solid content of 3 to 50% essentially consisting of biomass including ligno cellulose and/or starch-containing material.
  • the heat exchanger is preferably designed for temperatures of 60 to 300° C., at least one module or a unit for of the heat exchanger for temperatures of 200 to 300° C., and/or for pressures of 10 to 120 bar, at least one module of a unit of the heat exchanger for pressures of 60 to 120 bar.
  • the heat exchanger or at least one module or a unit is designed for temperatures for up to 250° C.
  • media-contacted tubes of the heat exchanger consist of heat and corrosion-resistant and water-repellant material, for example of coated metal, noble metal, ceramic materials or enamel.
  • Media-contacting tubes of the heat exchanger thereby preferably consist of a corrosion-resistant material and/or of stainless steel as e.g. austenitic steel or steel with increasing chromium and molybdenum contents of the groups 6, 7 and 8, or of duplex steel, or of copper nickel alloy, high molybdenum-containing nickel ally or titanium.
  • the heat exchanger is a tube reactor with a tempering system, a double tube heat exchanger, a tube bundle or a plate heat exchanger or a combination thereof.
  • the heat exchanger preferably consists of several similar units and/or has a modular construction, wherein the similar units of the heat exchanger are arranged in a spatial vicinity to each other.
  • a tempering system of a tube reactor consists of a double wall, wherein the intermediate space of the double wall of the tube reactor is flown through by a heat energy carrier medium.
  • the heat energy carrier medium is thereby preferably a thermal oil, water vapor or process water, wherein the heat exchanger can be designed for different heat energy carrier media and/or for a target temperature of the heat energy carrier medium of 60 and 350° C.
  • the heat exchanger preferably consists of different modules, units or sections.
  • an apparatus for treating a solid-fluid mixture of water and a carbon-containing component at a temperature above 100° C. and a pressure above 5 bar which comprises a reactor and a feed apparatus and/or a hydrolysis apparatus, wherein the feed apparatus and/or the hydrolysis apparatus comprises/comprise the following devices: a pump for conveying solid-fluid mixtures with a solid content of at least 10 to 15 percent and/or a heat exchanger, where the amount of the angle of the tube axis to the horizontal plane is larger than 10 degrees.
  • the hydrolysis apparatus has a counter pressure pump.
  • the pump for conveying solid-fluid mixtures and/or the counter pressure pump is an eccentric spiral pump, a spiral displacement pump or a piston pump.
  • the pump and/or the counter pressure pump is/are designed at least for pressures of 10-30 bar.
  • the heat exchanger for passing through solid-fluid mixtures can consist of at least 60 percent of vertical tube parts and/or be designed for a solid content of 3 to 50 percent, wherein the solid content can essentially consist of biomass including lignocellulose and/or starch-containing material.
  • the heat exchanger is designed for temperatures of 60 to 300° C. or at least one module or a unit is designed for temperatures of 200 to 300° C.
  • the heat exchanger or at least one module or a unit of the heat exchanger is preferably designed for pressures of 10 to 120 bar and in an advantageous embodiment of the invention for pressures of 60 to 120 bar, and/or for temperatures up to 250° C.
  • the media-contacting tubes of the heat exchanger consist of heat- and corrosion-resistant and water-repellant material, for example of coated metal, and in an advantageous embodiment of the invention noble metal, ceramic materials or enamel.
  • the media-contacting tubes of the heat exchanger preferably consist of a corrosion-resistant material such as stainless steel including austenitic steels or steels with increasing chromium and molybdenum contents of the groups 6, 7 and 8 or also diplex steels, copper nickel alloys, high molybdenum-containing nickel alloys, as e.g. 2.4610, or titanium.
  • the heat exchanger is a tube reactor with a tempering system, a double tube heat exchanger, tube bundle or plate heat exchanger or a combination thereof.
  • the heat exchanger is designed for a target temperature of the heat carrier medium of 60 to 350° C.
  • the heat exchanger can also consist of different modules, units or sections.
  • the object is further solved by a method, where feed materials are supplied continuously to a first reactor via a heat exchanger over a period of at least six tenth of the reaction time, and the reaction mixture is guided in batch mode from one to the following reactor, wherein reaction products are discharged continuously from a last reactor over a period of at least six tenth of the reaction time.
  • the essential steps of the method according to the invention are thus carried out continuously, wherein the period, via which feed materials are introduced over a reaction cycle or over the time necessary for a passage of the material into the process via the heat exchanger, is at least six tenth of the reaction cycle.
  • no more than 60 Vol-% of a batch is supplied to the closed reactor during the dwelling time.
  • Batches with a remaining reaction time with a similar length are preferably combined from at least two reactors into the following reactor.
  • the remaining reaction times of combined batches should thereby not deviate from each other by no more than 50 percent of the longest remaining reaction times of the combined batches.
  • the last reactor is a further heat exchanger.
  • the further heat exchanger is preferably flown through by the feed materials for cooling the reaction mixture during at least six tenth of the reaction time.
  • at least one heat exchanger can be a tube reactor with a tempering system, a double tube heat exchanger, a tube bundle or plate heat exchanger or a combination thereof.
  • the heat exchanger is flown through by the feed materials for heating the feed materials during at least six tenth of the reaction time.
  • the reaction mixture is guided through a heat exchanger during the guiding from one reactor to the following one.
  • the reaction mixture is preferably guided through the heat exchanger for devolatilization, wherein the heat exchanger is preferably flown through by reaction participants during at least six tenth of the reaction time for the devolatilization.
  • a heat exchanger consists of several similar units and/or has a modular construction, wherein the similar units of the heat exchanger can be connected in series.
  • the modular units are preferably thereby arranged in a spatial vicinity to each other.
  • a tempering system of a tube reactor preferably consists of a double wall, wherein the intermediate space of the double wall of the tube reactor can be flown through be a heat energy carrier medium.
  • a thermal oil, water vapor or process water is thereby preferably used as the heat energy carrier medium, wherein different heat energy carrier media can be combined.
  • the target temperature of the heat energy carrier medium by which the heat exchanger is flown through is preferably between 60 and 350° C.
  • the heat exchanger consists of different modules, units or sections.
  • the temperature in a first section or module of the heat exchanger is for example at 60-100 or 80-120° C., in a second section or module between 100 and 140 or between 120 and 160° C., in a third section between 140 and 180 or between 160 and 200° C. and in a fourth section between 180 and 220, between 200 and 240 or between 240 and 350° C.
  • the units, modules or sections of the heat exchanger can thereby be connected in series in such a manner that the temperature of the solid-fluid mixture is again brought to a lower inlet or outlet temperature after reaching a highest or peak temperature of for example 220 to 260° C.
  • the heat exchanger is equipped with a holding path, by which the temperature is kept on an even level of for example +/ ⁇ 2 to 80° C.
  • the reaction mixture is guided into at least one reactor equipped with a stirring or mixing system after passing through the heat exchanger for mixing or swirling, or into a reactor whose height is at least double of its diameter.
  • the components consist of feed materials, water or catalysts.
  • components, reaction products, process water or catalysts are preferably withdrawn, wherein the period over which the components, reaction products, process water or catalysts are withdrawn ids at least preferably one hundredth of the dwelling time.
  • components, process water or catalysts can also be supplied for a period of at least one hundredth of the dwelling time. Supplied process water is thereby preferably treated, wherein the treatment of the supplied process water can comprise at least one solid-fluid separation or another water reconditioning measure.
  • the method takes place under oxygen closure.
  • the treatment of the solid-fluid mixture consisting of water and the carbon-containing component is preferably a hydrolysis.
  • the object is further solved by an apparatus for the production of materials or fuels, humus, Maillard or Maillard-like reaction products of a solid-fluid mixture of water and a carbon-containing component, wherein the solid-fluid mixture is treated at a temperature of over 100° C. and a pressure of over 5 bar, and water is withdrawn continuously or in intervals from the solid-fluid mixture in a membrane reactor during the reaction.
  • the object is further solved by a method for the production of materials or fuels, humus, Maillard or Maillard-like reaction products of a solid-fluid mixture of water and a carbon-containing component, and for the treatment thereof, wherein the solid-fluid mixture is treated at a temperature of over 100° C. and a pressure of over 5 bar.
  • reconditioned process water is partially used for preincubation, preheating of feed materials, production of the pumpability of a solid-fluid mixture, for reception in the reaction mixture, for overcoating or for the admixing to provided feed materials in a reactor of the plant, for the return in the running process, as heat carrier medium e.g. for further processes within or outside a plant and/or is used as a fertilizer component.
  • the reconditioning is preferably carried out by means of solid-liquid separation and/or carried out by evaporating water. Thereby, at least 1 to 10%, or more than 10% of the water are removed thereby.
  • the process water is taken either directly from the running process or from an insulated reservoir and which is designed as a pressure vessel for untreated process water for the reconditioning.
  • the water vapor obtained from the evaporation of the process water is used at a different location in the process, as for example for heating the feed materials prior to the entry into a heat exchanger, heating of thermal oil via a heat exchanger process and/or for operating an apparatus for drying reaction products as e.g. an air swirling mill.
  • reconditioned process water of a method for the production of materials or fuels, humus, Maillard or Maillard-like reaction products of a solid-fluid mixture of water and a carbon-containing component is also used according to the invention, wherein the solid-fluid mixture is treated at a temperature of over 100° C. and a pressure of over 5 bar, for the preincubation, preheating of feed materials, production of a pumpable solid-fluid mixture, for the reception in the reaction mixture, for the overcoating or for the admixing of provided feed material in a reactor of the plant, for returning into the running process, as heat energy carrier medium or as a fertilizer component.
  • the process water can thereby be obtained at temperatures of 1 to 50° C. above the temperature for the respective use.
  • heated process water with a temperature of 25 to 50, 50-70 or 70-99° C. is used.
  • the object is further solved by a pumpable fuel suspension or dispersion, which was produced from a solid-fluid mixture of water and a carbon-containing component by treatment at a temperature of above 100° C. and a pressure of above 5 bar according to the above-described method.
  • the suspension or the dispersion has a solid content of at least 40%, wherein the solid content has a carbon content of at least 50%.
  • the object is also solved by an additional suspension or dispersion for the production of ceramic materials, which was produced from a solid-fluid mixture of water and a carbon-containing component by treatment at a temperature of above 100° C. and a pressure of above 5 bar according to the above-described method.
  • the suspension or the dispersion has a solid content of at least 50%.
  • the additional material suspension or dispersion according to the invention is preferably used for the production of ceramic materials in a sol-gel method, wherein this use comprises the adding of the acidic suspension to an alkaline sol and thus the initiation of the gelating process.
  • a solid-fluid mixture of water and a carbon-containing component as feed or additional material for the production of an insulating and/or ceramic material is also claimed according to the invention, wherein the solid-fluid mixture is treated at a temperature of above 100° C. and a pressure of above 5 bar and the sulfur and/or ash content of the solid-fluid mixture is reduced by at least 50% or 75% with regard to the respective original content of the carbon-containing component.
  • the mixture is acidic and a ceramic material is produced by means of an alkaline sol.
  • the material is a silicium compound and the sol contains organic or inorganic silicates and/or silicon dioxide.
  • the sol is thereby preferably an aqueous solution of water glass.
  • the uses further comprise the production of a gel containing a carbon component and a silicate component and the heating of the gel up to the development of SiC gas.
  • the uses according to the invention also comprise the production of the ceramic material while using the SiC gas, wherein the SiC gas can penetrate a provided porous forming body. This porous forming body preferably contains graphite.
  • the produced material can for example be a silicium carbide such asSiC or SiSiC.
  • the object is further solved by a method for the production of materials or fuels, humus, Maillard or Maillard-like reaction products, which comprises the treatment of a solid-fluid mixture of water and a carbon-containing component, e.g. biomass, at a temperature of over 100° C. and a pressure of over 5 bar.
  • a method for the production of materials or fuels, humus, Maillard or Maillard-like reaction products which comprises the treatment of a solid-fluid mixture of water and a carbon-containing component, e.g. biomass, at a temperature of over 100° C. and a pressure of over 5 bar.
  • the treatment last for at least one hour (1 h) and/or comprises a processing of the biomass and/or a reconditioning of the reaction, intermediate, secondary and/or end products.
  • the temperature is preferably adjusted to above 160° C., preferably between 160 and 300° C. or between 185 and 225° C., and/or is controlled automatically.
  • the pressure is adjusted to at least 7 bar, between 10 and 34 bar, 10 and 17 bar, 18 and 26 bar or 27 and 34 bar.
  • the treatment duration can for example be at least 2 hours, 3 to 60 hours, 5 to 30 hours or 31 to 60 hours, 6 to 12 hours or 12 to 24 hours, wherein the treatment duration is preferably chosen in dependence on the type of biomass and/or the desired reaction product.
  • the biomass is pretreated, preferably be dewatering, comminution, preincubation with auxiliary materials, mixing and/or preheating.
  • the biomass is thereby incubated prior to the treatment at an acidic pH value.
  • the pH value can thereby for example be below 6, below 5, below 4, below 3 or below 2.
  • the biomass is comminuted prior to, during and/or after the treatment, preferably chaffed and/or milled.
  • the particle size of the comminuted biomass is thereby below 10 cm, below 1 cm or below 2 mm.
  • the catalyst can be composed of several components, which together form a catalyst mixture.
  • the catalyst is preferably an inorganic acid, preferably sulfuric acid and/or a mono, di- or tricarbonic acid, preferably tartaric acid or citric acid.
  • the acid used as catalyst can simultaneously also be used for adjusting the pH value for the incubation step.
  • the catalyst can comprise one or several metals and/or metal compounds, wherein the metal, the metals and the metal connections comprises/comprise at least one transition metal of the secondary groups Ia, IIa, IVa, Va, VIa, VIIa and Villa of the periodic system.
  • the catalyst preferably comprises at least one biocatalyst, preferably enzymes, micro organisms, plant cells, animal cells, and/or cell extracts.
  • the biomass is mixed prior to or during the treatment, preferably by stirring, mixing, suspending and/or swirling, wherein one or several mixing devices, preferably a liquid jet mixer, pump or nozzle can be used for mixing.
  • one or several mixing devices preferably a liquid jet mixer, pump or nozzle can be used for mixing.
  • the reaction products are dried with a drier after the treatment, preferably a convection or contact drier, with a with a flow and/or belt, and/or a fluidized bed drier.
  • process water accumulated during the course of the method is preferably withdrawn through at least one apparatus for solid-fluid separation and or cleaned and fed back to the reaction mixture.
  • the apparatus for the solid-fluid separation can thereby be at least one apparatus for the micro-, ultra-, nanofiltration and for the reverse osmosis method or a combination of different above-mention apparatuses, with ceramic filter elements and in an advantageous embodiment a rotation disk and/or a centrifugal membrane filter.
  • accumulated waste water is cleaned mechanically, chemically and/or biologically.
  • reaction, intermediate, secondary and/or end products comprise fuels from peat to lignite to black coal-like fuels, humus, Maillard- or Maillard-like reaction products, carbon-containing materials such as insulating materials, nano-sponges, pellets, fibers, cables, active or sorption coal, charcoal substitute material, highly compacted carbon products and materials, and also feed materials for graphite and graphite-containing or -like products and carbon fibers and feed materials for composite and fiber composite materials.
  • a plant for the production of materials or fuels, humus, Maillard or Maillard-like reaction products from a solid-fluid mixture of water and a carbon-containing component and for the treatment thereof at a temperature of over 100° C. and a pressure of over 5 bar which comprises the following devices: a feeding device comprising a pump for conveying solid-fluid mixtures with a solid content of at least 10 to 15%, and/or a heat exchanger, where the amount of the angle of the tube axis to the horizontal plane is larger than 10 degrees; and/or at least two reactors, of which at least one is equipped with a stirring or mixing system or has a height-diameter-ratio of at least 2:1.
  • the heat exchanger of the plant has the above-described characteristics.
  • the plant according to the invention further preferably has a devolatilization apparatus, wherein the devolatilization can comprise a reactor with a tempering system or a heat exchanger or a combination of both.
  • the object is further solved by a method for the production of materials or fuels, humus, Maillard or Maillard-like reaction products from a solid-fluid mixture of water and a carbon-containing component, wherein the solid-fluid mixture is treated at a temperature of over 100° C. and a pressure of over 5 bar, wherein the solid-fluid mixture passes through at least two reactors connected in parallel and at least one reactor connected upstream and/or at least one reactor connected downstream.
  • the solid-fluid mixture is preferably heated, comminuted, mixed and/or swirled in at least one reactor connected upstream.
  • the solid-fluid mixture is treated chemically in at least one reactor connected upstream, preferably adjusted to a certain pH value, and/or reconditioned in at least one reactor connected upstream, preferably by withdrawing liquid.
  • the solid-fluid mixture is devolatized in at least one reactor connected downstream, preferably by cooling the mixture, and/or is heated, comminuted, mixed and/or swirled in at least one reactor connected downstream.
  • the solid-fluid mixture can further also be treated chemically in at least one reactor connected downstream, preferably adjusted to a certain pH value.
  • the solid-fluid mixture can however also be reconditioned in a reactor connected downstream, preferably by withdrawing liquid.
  • an apparatus for the treatment of a solid-fluid mixture of water and a carbon-containing component at a temperature above 100° C. and a pressure above 5 bar which comprises a first reactor and at least one further reactor, wherein the further reactor is connected in parallel to the first reactor and wherein at least one reactor connected downstream is connected in parallel to the first reactor and wherein at least one reactor connected upstream and/or at least one reactor connected downstream is/are provided.
  • the reactor connected upstream is preferably a tube reactor, a membrane reactor and/or a reactor, which comprises at least one vertical basic body.
  • the reactor connected downstream is preferably also a tube reactor, a membrane reactor and/or a reactor, which comprises at least one vertical basic body.
  • the height-diameter ratio of the cylindrical basic body is preferably 1:0.5, 1:2, 1:5 or lower.
  • the reactor connected downstream has a different volume than the first reactor, preferably a larger volume for the devolatilization of the solid-fluid mixture.
  • the mixture in the reactor connected downstream is additionally cooled for the devolatilization.
  • the reactor connected downstream has a lower wall thickness than the first reactor.
  • the object is further solved by a method for the production of materials or fuels, humus, Maillard or Maillard-like reaction products from a solid-fluid mixture of water and a carbon-containing component, wherein the solid-fluid mixture is treated at a temperature of over 100° C. and a pressure of over 5 bar.
  • the solid-fluid mixture is supplied continuously to at least one first reactor, treated in at least one second reactor and is withdrawn from at least one third reactor.
  • At least one parallel reactor is provided, which is connected in parallel to at least one of the first, second and/or third reactors, in which the supply, treating and/or withdrawal takes place at the same time.
  • the solid-fluid mixture is preferably heated, comminuted, mixed and/or swirled in at least a first and/or third reactor.
  • the solid-fluid mixture can also be treated chemically in at least one first and/or third reactor, preferably adjusted to a certain pH value.
  • the solid-fluid mixture is reconditioned in at least one first and/or third reactor, preferably by withdrawing fluid.
  • the solid-fluid mixture is preferably devolatized then in at least a third reactor, preferably by cooling.
  • a device for treating a solid-fluid mixture of water and a carbon-containing component at a temperature of above 100° C. and a pressure of above 5 bar which comprises at least three reactors, wherein at least one first reactor is provided for receiving the solid-fluid mixture, at least one second reactor for treating the solid-fluid mixture and at least one third reactor for removing the solid-fluid mixture.
  • At least one parallel reactor is provided thereby, which is connected in parallel with at least one of the first, second and/or third reactors.
  • the first reactor for receiving the solid-fluid mixture is a reactor connected upstream in the sense of the previous description.
  • the third reactor for removing the solid-fluid mixture is a reactor connected downstream in the sense of the previous description.
  • An exemplary method according to the invention provides that the carbon-containing solid-fluid mixture and/or the feed material are additionally processed prior to and/or during the treatment, and/or the reaction, intermediate secondary and/or end products are conditioned or processed.
  • the yield of fuel, humus, carbon-containing materials and/or Maillard or Maillard-like reaction products can be substantially increased in a cost-effective manner.
  • the proportion of carbon, which is lost during the conversion process is substantially smaller than with other methods. Little or no carbon is lost in the course of an orderly conversion process.
  • the carbon loss is over 30 percent with alcoholic fermentation processes, about 50 percent with the conversion into biogas, about 70 percent for a wood carbonization process, and over 90 percent for a composting process.
  • carbon is released as carbon dioxide or also as methane, which are each regarded as greenhouse gases and being harmful to the climate. This is not the case with the method according to the invention.
  • the method according to the invention has a high degree of efficiency.
  • the alcoholic fermentation only has an estimated net efficiency with regard to the energy yield of three to five percent compared to the energy stored in the original biomass or educts.
  • no or only very little CO 2 is set free.
  • about half of the carbon released as CO 2 is set free.
  • only a few substrates are suitable for the economical operation of a biogas plant.
  • the reactors in which the treatment takes place can have special characteristics.
  • the inner surface of the reactor can be corrosion-resistant or provided with an appropriate coating due to the extreme conditions.
  • a device for the mixing of the solid-fluid mixture can be provided.
  • the invention relates for example to a method for the production of materials and/or fuels, humus and/or Maillard and/or Maillard-like reaction products from carbon-containing solid-fluid mixtures, wherein the solid-fluid mixture is treated at a temperature of over 100° C. and a pressure of over 5 bar for a treatment period of at least 30 to 60 minutes.
  • the method is carried out in a semi-continuous or continuous manner. This means that the treatment of the solid-fluid mixture is not carried out in a discontinuous manner that is in a batch mode, in particular during the reaction process. Temperature and pressure ratios are mainly kept in the operating region for the optimizing reaction space usage and for minimizing the dwelling times.
  • feed materials and catalysts can be introduced into the reaction space in a time-delayed manner, process water and non-converted feed materials and other fed materials can be removed and be recycled according to requirement and contraries, reaction, intermediate, by and/or end products can be withdrawn.
  • further method steps as for example the reconditioning and/or cleaning of process water, waste water, waste air, reaction, intermediate, by and/or end products is carried out continuously or in intervals.
  • the temperature is adjusted to above 160° C., or between 160 and 300 ° C., or between 185 and 225° C., and/or that the temperature is controlled automatically.
  • the pressure is adjusted to above 7 bar, or between 10 and 34 bar, or between 10 and 17 bar, 17 and 26 bar or 26 and 34 bar.
  • the treatment duration is at least 30 to 60 minutes, 1-3, 3-6 or 6-24 hours, in some cases also 24-60 hours.
  • the treatment duration or conditions are chosen in dependence on the type of the feed material and/or the solid-fluid mixture and/or the desired reaction product.
  • accumulated waste water is cleaned mechanically, chemically and/or biologically.
  • outlet air accumulated during the treatment, processing and/or conditioning is cleaned or treated mechanically, chemically and/or biologically.
  • the solid-fluid mixture consists at least partially of biomass.
  • the principle of the hydrothermal carbonization is thereby used by the supply of pressure and heat, so as to initially depolymerize and hydrolyze wet biomass while releasing heat energy in the efficient and highly economic method according to the application.
  • the polymerization of the resulting monomers leads to the development of carbon-containing reaction products within a few hours. Desired reaction products are produced in dependence on the reaction conditions. After a shorter reaction duration, humus results initially among others, and, during the further course of the reaction, fuels with increasing carbon content, which are suitable for energy production.
  • the application also provides the production of different reaction, intermediate, secondary and/or end products according to the method of the application, including the production of fuels, from peat, and lignite to black coal-like fuels, humus, Maillard- or Maillard-like reaction products, carbon-containing materials such as insulating materials, nano sponges, pellets, fibers, cables, active or sorption coal, charcoal substitute material, highly compacted carbon products and materials, and in particular also feed materials for graphite and graphite-containing or -like products and carbon fibers and feed materials for composite and fiber composite materials.
  • fuels from peat, and lignite to black coal-like fuels, humus, Maillard- or Maillard-like reaction products
  • carbon-containing materials such as insulating materials, nano sponges, pellets, fibers, cables, active or sorption coal, charcoal substitute material, highly compacted carbon products and materials, and in particular also feed materials for graphite and graphite-containing or -like products and carbon fibers and feed materials for composite and fiber composite materials.
  • the reactor is a cascade, tube, cycle reactor, loop and/or a stirring reactor and/or preferably a membrane and/or fluidized bed reactor.
  • At least one reactor or a combination of different reactors preferably have at least one characteristic and preferably combinations of characteristics of a cascade, tube, cycle reactor, a loop or a stirring reactor, or of a membrane or fluidized bed reactor.
  • At least one reactor comprises at least one membrane part and/or at least a device for the generation of a circulating fluidized bed layer.
  • the apparatus for treating the biomass comprises at least one reactor for the reception of the biomass and at least a device for the processing of the biomass and/or conditioning of the reaction products and/or secondary products.
  • the reactor is a tubular reactor, cycle reactor, and especially advantageously a loop reactor or stirring reactor and/or preferably a membrane or fluidized bed reactor.
  • At least one reactor preferably comprises at least one membrane part and/or at least a device for the generation of a circulating fluidized bed layer.
  • the reactor is designed for temperatures of at least 100° C., and at least a pressure of above 5 bar.
  • Several reactors for the reception and treatment of the biomass can be provided to increase the capacity or the flow rate of the plant according to the invention. These can be connected in series.
  • the material and/or fuel according to the invention is produced from biomass and comprises, compared to biomass, a carbon fraction which is higher by 1 to 300 percent based on the percentage mass fraction of the elements (dry mass).
  • the material and/or fuel according to the invention can comprise a carbon fraction increased by 10 to 300 percent, also 50 to 300 percent, or also 100 to 300 percent or 200 to 300 percent, compared to the biomass, based on the percentage mass fraction of the elements (dry mass).
  • the material and/or fuel according to the invention can alternatively comprise a carbon fraction increased by 5 to 200 percent, also 10 to 150 percent, also 10 to 120 percent, and 50 to 100 percent, compared to the biomass, based on the percentage mass fraction of the elements (dry mass).
  • the material and/or fuel according to the invention comprises a carbon fraction compared to the feed material of 50 to 90 percent, also of 55 to 80 percent, and also of over 98 to percent, respectively based on the percentage mass fraction of the elements (dry mass).
  • the hydrogen fraction of the material and/or fuel compared to the biomass is reduced by 1 to 300 percent, also 5 to 200 percent, and also 20 to 100 percent, respectively based on the percentage mass fraction of the elements (dry mass).
  • the oxygen fraction of the material and/or fuel compared to the feed material is reduced by 1 to 300 percent, also 5 to 200 percent, and also 15 to 100 percent, respectively based on the percentage mass fraction of the elements (dry mass).
  • the nitrogen fraction of the material and/or fuel is reduced by 1 to 300 percent, 5 to 200 percent or 15 to 100 percent, respectively based on the percentage mass fraction of the elements (dry mass).
  • the material and/or fuel according to the application can comprise at least or more than 65 percent of the original fuel value of the feed materials and in particular the biomass based on the dry mass.
  • the material and/or fuel according to the application can have, due to its composition and structure compared to the biomass or alternative fossil or biomass fuels, significantly more advantageous and environmentally friendly combustion characteristics, for example due to reduced ash parts, lower chlorine, nitrate, sulfur and heavy metal content, and lower emissions of dust or particulate matter, fine dust and gaseous toxic substances including nitrogen and sulfur oxides.
  • the material and/or fuel according to the invention can further also comprise a higher reactivity and a lower initiation temperature of combustion compared to the biomass or alternative solid fossil or biomass fuels.
  • the material and/or fuel according to the invention turns sufficiently porous, it can be comminuted with a lower energy expenditure than solid fossil fuels having a comparable fuel value or carbon content.
  • a large surface results with a small particle size of the material and/or fuel according to the invention, in particular a particle size of about 2 nanometers to 50 micrometers, also below one micrometer, and also below 200 nanometer.
  • the material and/or fuel according to the invention can then be dried easily due to the small particle size and its large surface.
  • the material and/or fuel according to the invention contains Maillard or Maillard-like reaction products.
  • the material and/or fuel of biomass is produced according to a method which comprises at least the following steps: the treatment of the biomass at a temperature of above 100° C. and a pressure of above 5 bar for a treatment duration of at least one hour and treatment of the biomass and/or conditioning of the reaction, intermediate, secondary and/or end products.
  • the temperature can be adjusted to over 160° C., also between 160 and 300° C., and also between 185 and 225° C.
  • the pressure can be adjusted to at least 7 bar, also between 10 and 34 bar, and also between 10 and 17 bar, 18 and 26 bar or 27 and 34 bar.
  • the treatment duration is at least 2 hours, 3 to 60 hours, also 5 to 30 hours or 31 to 60 hours, 6 to 12 hours or 13 to 24 hours.
  • the reaction products are dried with a drier, also with a convection or contact drier, with a flow and/or belt, and/or with a fluidized bed drier up to a desired residual moisture content of 6 to 25 percent, also 10 to 20 percent, or also 12 to 15 percent.
  • the reaction, intermediate, secondary and end products of the method described above comprise fuels ranging from peat, and lignite to black coal-like fuels, humus, Maillard- or Maillard-like reaction products, and carbon-containing materials such as insulating materials, nano sponges, pellets, fibers, cables, active or sorption coal, charcoal substitute material, highly compacted carbon products and materials and in particular also feed materials for graphite and graphite-containing or -like products and carbon fibers and feed materials for composite or fiber composite materials.
  • the application further relates to the use of the material or fuel produced according to the invention for the generation of energy from biomass.
  • Biomass comprises, contrary to fossil fuels, renewable raw materials which are available in the long term as domestic energy carriers, as well as all liquid and solid organic substances and products of biological and biochemical processes and their conversion products which have a sufficiently high carbon content for this method and which can also otherwise be processed in their composition and property to economically usable reaction, intermediate, secondary and end products by the method according to the invention including fuels.
  • the feed materials are for example among carbohydrates, sugar and starches, agricultural and forestry products, also specially cultivated energy plants (fast growing tree types, reeds, whole grain plants and similar), soy, sugar cane and grain straw, as well as biogenous residual, waste substances and secondary products, plants and plant residues of different origin (grass verges, landscape cultivation goods and similar), agricultural waste including straw, sugar cane leaves, waste grain, unsalable parts of agricultural products as for example potatoes or sugar beets, decomposed silage parts and other fodder leftovers, grass clippings, grain straw, beet leaf, sugar cane leaves, carbon-containing residue and waste materials including organic waste, high-heating value fractions of house and industrial waste (residual waste), sludge, different types and classes of wood including forest wood, timber, pallets, old furniture, saw dust, residues and waste from the food industry including kitchen and food waste, waste vegetables, waste grease and paper and pulp, textiles in particular of natural fibers and natural polymers and animal excrements including liquid manure, horse
  • the processing of the biomass and/or of the solid-fluid mixture in the sense of the application is the treatment of the feed material, reaction and/or intermediate products in different steps before and after the chemical conversion process.
  • the processing comprises all steps, processes and influences or effects on the reaction partners, including the pretreatment and/or after-treatment.
  • pretreatment all influences or effects are understood which influence the solid-fluid mixture for the start-up of the conversion reaction until the end of the filling process of the reaction space and the start of the supply of energy.
  • a preheating of the feed material and a comminution with mainly, that is, more than two thirds of the components of the reaction mixture, particle size of under 10 mm within or outside the reaction space is regarded as pretreatment.
  • Solid-fluid mixtures in the sense of the application are all suspensions, dispersions and other dispersive systems, including liquid-containing solids, in particular biomass.
  • the method according to the invention finds use particularly for those solid-fluid mixtures which lead to an increase of the content of the liquid phase or to a solvent and/or to the physical or chemical change of the solid which enable an improved solid-fluid separation or changed ratios with higher solid parts during the reaction progress in a physical or chemical manner.
  • Feed materials in this context are liquid-containing or non-liquid-containing solids which are used for the production of the solid-fluid mixture.
  • Reconditioning or conditioning of the reaction products and/or secondary products in the sense of the application comprises all influences or effects on the secondary and/or end products of the conversion reaction, by means of which these are brought into the desired or necessary form.
  • the semi-continuous or continuous method in the sense of the application is to be understood as the production of reaction, intermediate, secondary and end products on a pilot plant station and/or industrial scale, in which at least one criterion, or also two or also more of the criteria cited below are fulfilled:
  • a container is to be understood as an object open or closed at the top having a cavity on its inside which particularly serves for the purpose to separate its content from its environment.
  • Reaction spaces or pressure container spaces are defined by the existence of spatial regions also within only one reaction or pressure container space, in which are present reaction conditions which are measurably deviant from one another.
  • a deviant reaction condition thereby comes about through a constructive, mechanical condition and is dependent on flow and/or phase, chemical, electrical or electrochemical conditions or other type of influences.
  • the apparatus used for this purpose goes beyond an autoclave for laboratory purposes equipped with an electrically operated stirring or mixing system with a single shaft with magnetic coupling and features a wall-side heat transfer of a compression-loaded smooth inner side of the outer reactor wall by an electrically heated casing container which can be separated with a few hand grips.
  • reaction cycle, cycle or reaction is to be understood as the duration of a single conversion reaction which starts with the introduction of the starting products into the reaction space and the supply of energy which serves for the start-up of the conversion reaction.
  • a cycle lasts from the start of the reaction process to the existence of the desired reaction product in the reaction mixture without after-treatment or conditioning, or until the completion of the reaction process.
  • Apparatuses which transfer the energy to the reaction mixture mechanically or by means of ultrasound, depending on flow, thermal conditions or depending on construction and thereby effect a movement of the reactor content by stirring or agitation are among the stirring or mixing systems.
  • the movement of the reaction mixture by apparatuses such as pumps, liquid stream mixers or jet vacuum pumps, spray valves or jet nozzles and mechanical and thermal mixers or the direction of the reaction mixture along pressure gradients are also among these.
  • a plant consists of at least two apparatuses or devices for carrying out the method according to application. At least two containers or vessels, at least one of these a reactor, can be connected in such a manner that a pressure equalization or the storage of compressed media can be realized.
  • An integral or essential component of the plant is an apparatus or a container when, in the case of a failure of this component, the efficiency of the method is restricted in particular in view of its cost-effectiveness by at least two, or by five, and by at least ten percent.
  • a coherent process is present if apparatuses or devices of a plant are commonly used. More than 200 kilograms of feed material can be processed in such a plant per week in relation to the dry matter.
  • a plant is commonly used when apparatuses or devices are connected to one another or by line connections or spatially by methods which allow an exchange of starting, intermediate, secondary and reaction products and also other reaction participants or the common use of the same within a radius of 50 km.
  • the start or the initiation of the reaction or of the reaction process is characterized by the achievement of at least one target parameter of the reaction procedure including pressure or temperature, where the conversion reaction of the hydrothermal carbonization can take place over a period of at least one hour.
  • the end of the reaction process is characterized by the continual leaving of at least one of the target parameters of the reaction procedure prior to the emptying of the reaction space.
  • Reaction, intermediate or secondary products or partners in the sense of the application are all solid, liquid and gaseous substances which are or have been under operation conditions (pressure higher than 5 bar, temperature higher than 100° C.) independently of their length of stay in the reaction space.
  • Solid-fluid-mixtures in the sense of the application are all suspensions, dispersions and other disperse systems, including liquid-containing solids, in particular biomass.
  • the device according to the invention is in particular used for those solid-fluid mixtures which lead, during the reaction process, to an increase of the content of the liquid phase or to solvent and/or to the physical or chemical change of the solid which enable an improved solid-fluid separation or changed ratios with higher solid parts.
  • Suspensions and dispersions are both heterogeneous solid-fluid mixtures.
  • a heterogeneous (immiscible) substance mixture of a liquid and a solid is to be understood as a suspension.
  • a suspension has at least one solid phase and at least one liquid phase.
  • Colloidal dispersions, micelles, vesicles, emulsions, gels and aerosols as for example paints, emulsions or foams are among the disperse systems, that is binary mixtures of small particles and a continual dispersion medium.
  • Maillard-like reaction products in the sense of the application are to be understood as compounds which are intermediate, secondary, end products or reaction partners of Maillard reaction products and which can possess similar chemical, physical or biological properties.
  • the advanced glycation end products (AGE) which are generated by rearrangement of the primary Amadori products are among these compounds and which further react to the end products of the Maillard reaction, the advanced glycation end products (AGE).
  • the AGEs can form crosslinks with other proteins through rearrangement and polymerization. Due to the development path, there are numerous different and complex forms of AGEs, whereby NE-(carboxymethyl)lysine (CML), furosine and pentosidine have been examined most intensely up to now.
  • CML NE-(carboxymethyl)lysine
  • Polytetrafluoroethylene (PTFE)-like substances are to be understood as substances and compounds of similar or related or non-related classes having at least one or several characteristics of polytetrafluoroethylene as for example reaction inertness, very low friction coefficient, very low refractive index, high heat resistance, low adhesion durability of surface contaminations or smooth surface.
  • Fuels are substances which serve for the energy production and which are converted into energy by means of chemical, electrical or other methods.
  • Materials are substances which are processed into a product by further processing, treatment or conditioning or which go into an end product as work objects.
  • the characteristics of the reaction product such as degree of purity, form, structure, density, mechanical resistance or strength, particle size, surface structure, composition, combustion characteristics, fuel value and energy content depend on the methods or reaction conditions, that is, the parameters which are responsible for the control of the method according to the invention, that is, for the process procedure.
  • the feed material and the reaction, intermediate, secondary and/or end products are processed in different steps before and after the chemical conversion process.
  • the processing steps aim for a substance conversion in the industrial or technical measure.
  • processing is to be understood as more than a manual disassembly or a manual comminution with a pair of scissors.
  • the processing of the biomass and/or the reconditioning of the reaction products and/or the secondary products in the method according to the invention goes beyond an electrically operated stirring or mixing system with a single shaft with magnetic coupling and features a wall-side heat transfer of a compression-loaded smooth inner side of the outer reactor wall by an electrically heated casing container which can be separated with a few hand grips. It also comprises the criteria mentioned for the stirring or mixing system and/or tempering system mentioned under point 9 and 10 for the semi-continuous or continuous method.
  • the biomass can usually already be comminuted before the storage, and particularly before the actual conversion process, in particular before and/or after the filling into the reaction space.
  • An apparatus for milling for example a grinder or a wet mill is usually used for grinding. Different chaffing, mill, and or wet mill types are used depending on the feed material and the desired particle size.
  • the particle size influences the reaction progress. Thus, the smaller the particle size, the larger is the surface of the feed material. The larger the surface of the reaction partners, the faster is the chemical conversion.
  • the particle size of the comminuted biomass can thus be under 10 cm, also under 1 cm, and also under 2 mm.
  • the energy, time and material effort during the comminution process is thereby dependent on the process procedure and in particular on the configuration of the feed material, particle size and length of stay.
  • the incubation in an acid environment or medium with a pH-value which is below 6, also below 5, and also below 4, below 3 or also under 2, is part of the pretreatment.
  • the necessary time of this step decreases with increasing comminution and with decreasing pH-value.
  • the incubation at an acidic pH-value can for example take place after the comminution.
  • the incubation takes place in an insulated incubation vessel equipped with a double wall or another tempering system.
  • the tempering system is essentially used via process heat or waste heat from the production process according to the invention or another process or with partially purified and heated process water.
  • the incubation period is at least 10 to 60 minutes, 1 to 10 or 10 to 60 hours.
  • a preincubation can considerably reduce the reaction time in dependence on the feed materials and other pretreatment steps.
  • the savings in time are over 3-10, 10-20 percent or more under ideal conditions.
  • Each reactor following the first reactor can be connected to an apparatus for the solid-fluid separation.
  • the solid-fluid separation takes place continuously or intermittently over a period of at least one twentieth of the dwelling time in a reactor. It can be adapted to the requirements depending on the needs and performance of the apparatus used.
  • the withdrawn process water is kept in an insulated corrosion-resistant vessel or pressure vessel under air exclusion.
  • the process water For enriching the process water, it is either removed directly from the running process from a reservoir for untreated process water.
  • the enrichment of process water is carried out on the one hand by one or several apparatuses for the solid-fluid separation mentioned in this patent specification and/or on the other hand by evaporating water for example in an evaporator.
  • the water vapor obtained from the evaporation process is used at another location in the process, for example for heating the feed materials prior to entry to a heat exchanger, heating of thermal oil via a heat exchanger process or for operating an apparatus for drying of reaction products such as an air agitator mill or at another drying apparatus mentioned at another location of this document.
  • At least 1-5, 5-20, or 20-70 percent of the water is removed for the enrichment of the process water.
  • other methods mentioned in this patent specification will also be used, as for example reverse osmosis, however, with the disadvantage that the temperature has to be reduced more due to temperature-sensitive membranes.
  • the process water is stored in an insulated and corrosion-resistant vessel or as a process water reservoir designed as a pressure vessel if possible with exclusion of air.
  • Enriched process water is partially used for the preincubation, preheating of feed materials, production of a pumpable solid-fluid mixture, for the absorption in the reaction mixture, for coating of admixing to provided feed materials in a reactor of the plant, for returning into the running process, as heat carrier medium for further processes within or outside a plant and/or as fertilizer component.
  • the process water is obtained at temperatures of 1 to 50° C. over the temperatures for the respective use.
  • process water or enriched process water with a temperature of 25 to 50, 50-70 or 70-99° C.
  • the pH-value is advantageously below 6 or below 4 or below 2 for these purposes.
  • process water or enriched process water with a temperature of 25 to 50, 50-70 or 70-99° C. as heat carrier medium for further processes within or outside a plant. Temperatures of over 100 or 200° C. can however also be of advantages for these purposes, as well as for the admixing to a provided feed material in a reactor of the plant for return to the running process.
  • the necessary pH-value is obtained on the one hand by the amount of evaporated water or which is eliminated in another manner, and on the other hand by the use of acid as catalysts, the boiling point of which is above the one of water.
  • Enriched process water contains catalyst components insofar they have a boiling point above the one of water.
  • Sulfuric acid has thus for example a boiling point of 279° C.
  • the decomposition point of phosphoric acid is 213° C.
  • An acidization, that is a decreasing pH-value is achieved by continuous evaporation of water at temperatures below the boiling point of the acids, even if it can hardly be avoided that catalyst components escape with the process water from the process water despite a higher boiling point.
  • the process water vapor is used at another location in the process, for example for heating the feed materials prior to entry into a heat exchanger, heating of thermal oil via a heat exchanger process or for operating an apparatus for drying reaction products such as an air agitator mill and/or at a drying apparatus mentioned at another location of this document.
  • a cleaning of the process water vapor takes place depending on the application.
  • Enriched process water can be conveyed with several pumps mentioned in this document at temperatures also above 250° C., for example by a helical displacement pump.
  • the temperature is decreased for example via a heat exchanger at ambient pressure or prior to the feed into an apparatus or a mixer at ambient pressure, so that the soli-fluid mixture has a temperature of 50-60 or 60-80° C.
  • the biomass is thoroughly mixed with the catalyst or the catalyst mixture.
  • the catalyst then forms, together with the biomass, a reaction mixture.
  • the mixing process alternatively takes place within a reactor.
  • the compaction of the reaction mixture can take place in one or several steps outside or within a reactor.
  • a high compaction is advantageous, which again means a better usage of the reaction space.
  • the measure of the compaction depends on the transferability into a reactor, from the desired reaction product and from the process procedure.
  • the reaction mixture can for example also be introduced into a reactor after the pretreatment.
  • a preheating can for example occur before the introduction of reaction components into the pressure container space. All reaction partners can be preheated.
  • all, but in particular the biomass can be heated to approximately 60-90° C.
  • the preheating takes place for example by the supply of heat energy and in particular by addition of process water close to boiling, a preheated biomass suspension or other water at about one bar absolute pressure or by the supply of water or process steam or other heat energy carriers.
  • Heat energy from heat exchanger processes can alternatively or additionally be used for this.
  • the reaction time is, depending on the desired reaction product, between one to 60 hours, between three and 40 hours or between five and 18 hours.
  • the reaction time is considered as finished or the reaction as terminated, when no noteworthy enthalpy is released anymore.
  • a minimal pretreatment and/or the omission of individual pretreatment steps can increase the reaction time to over 60 hours.
  • the reaction time depends on the composition and the characteristics of the respective feed material. The larger the surface, the smaller the particle size, the smaller the lignin or cellulose proportion and the larger the carbohydrate proportion, the faster the heat energy is released in the depolymerization phase and the faster the stabilization phase is reached and the reaction or retention time is reduced.
  • the shorter the conversion time of the respective feed material the greater the delay can be for example the introduction into an already running reaction in the reactor.
  • a shorter reaction time is also achieved with relative large proportions of fat and non-vegetable, non-crosslinked, for example animal or bacterial proteins.
  • the expiration of the heat energy release during the reaction process is an indicator for the
  • temperatures of up to 300° C. can be achieved. But temperatures between 185 to 205° C. are advantageous as well as 215° C. or 225° C.
  • a pressure is built up under exclusion of air, which is for example between 7 and 90 bar.
  • a pressure between 11 and 18 bar is advantageous, also between 18 and 26 bar and also between 26 and 34 bar.
  • the apparatus according to the invention comprises a reactor which can be developed differently in dependence on the processes progressing therein, the used amount and the type of the solids and/or of the desired reaction product.
  • At least one of the reactors according to the invention can for example be a cascade, tube, circuit, loop, membrane, fluidized bed and/or a stirring vessel or a stirring vessel reactor or comprise individual characteristics or a combination of different characteristics of these reactors.
  • the fluidized bed of the reactor is preferably circulating.
  • the reactor according to the invention or a combination of the different reactors can be used for different treatment times and processing steps within a plant.
  • the reactor can be designed as a pressure vessel due to the necessary pressure. The design of the pressure vessel form depends on the process procedure and on the mixing technique used.
  • the reactor is formed as a type of multi membrane fluidized bed reactor with a circulating fluidized bed.
  • a reactor combines the advantageous characteristics of different membrane and fluidized bed reactor types.
  • the reactor according to the invention can have one or more of the following characteristics.
  • the reactor can comprise at least one pressure container and at least one apparatus for the solid-fluid separation and is then also called a membrane reactor.
  • the reactor can have at least one coarse and/or a fine filtration or a combination of both apparatuses, which can also be combined into a filtration apparatus.
  • At least one of the pressure vessels can have a stirring and/or mixing system, which can thereby be called stirring vessel reactor.
  • the sum of all reaction spaces of the pressure vessels or reactors can have a volume of 0.5 to 10,000 cubic meters, also of 5 to 2,000 cubic meters, and also of 50 to 500 cubic meters.
  • the sum of all containers of a plant including the reaction spaces of the pressure vessels or reactors, hoppers and storage spaces can have a volume of 0.5 to 10,000 cubic meters, also 10,000 to 70,000 cubic meters, and also 50,000 to 500,000 cubic meters.
  • the water content of the biomass can be up to 95 percent or more of the total weight.
  • the integration of a dewatering process which precedes the conversion reaction can be useful for this reason. Due to the high moisture content and the low packed weight of many biomasses, the transferability is limited, so that the initial solid proportion in the reaction space can be approximately between 5 and 30 percent.
  • the yield of the reaction product can thereby be in the region of a single figure percentage related to the total reaction space volume. As a consequence, a relatively large reaction space volume is necessary. Large reaction space volumes can be realized by connecting several pressure vessels or reactors.
  • At least one pressure vessel for the reception of the compressed process gas formed or contained in the reactors can be used and integrated into the plant.
  • the process gas is cleaned in an own cleaning process for example in an air cleaning plant, before it is discharged to the ambient air or it is fed to the combustion air in its own combustion process within or outside the plant.
  • the process gas is fed in the oxidation process in line with a wet oxidation, which operates with compressed air. If a heat recovery is connected with this process, an advantage results that oxidizable components in the process gas are converted to heat energy and are recovered via a heat exchanger process.
  • the solid portion can be increased during the method by continual separation or withdrawal of single reactants as for example water during the process progress.
  • the solid content can increase from for example originally 15 percent to 20 to 30 percent, 31 to 45 or 46 to 70 percent, depending on the reaction procedure or treatment conditions.
  • the volume per reactor can simultaneously decrease as the reaction progresses. At the same time, feed material which can be converted faster can be added so that a higher operational capacity at a given reactor volume can be achieved.
  • a connection of several reactors in series which are for example separated by valves, further enables a selective filling or refilling of individual pressure vessels with fresh feed material, reactants or catalysts for the purpose of increasing the throughput.
  • the transfer of the reaction mixture from one pressure vessel to the next essentially takes place at operating conditions in the sense of a continuous process management.
  • the reactor according to the invention can comprise a vertical cylindrical basic body.
  • the diameter-height ratio is at least 1:0.5, 1:2, 1:5 or larger.
  • the upper base can be formed as a torospherical head. In the upper part, preferably the upper half or the upper two thirds, it can comprise a conical form with a slowly growing diameter towards the bottom.
  • the cone-shaped base can comprise an angle to the reactor axis of 45 degrees, 40 degrees or smaller than 35 degrees.
  • the transition of for example from the wall to the base region can be rounded to minimize disruption of the flow.
  • the placement of the nozzle for the supply of the reaction mixture can be variable and is for example in the upper half, preferably in the upper third of the pressure vessel.
  • the supply can take place via a valve via the outlet nozzle which is approximately in the centre of the base or the cone base.
  • the components and the nozzles of the reactor can be connected by welding.
  • the lid can be mounted.
  • the ratio of the diameter to the height can be approximately at one to two to one to three, but also at one to four to one to five, and also at one to five to one to six.
  • a membrane reactor is an apparatus which allows the combination of at least one chemical reaction with a membrane method or a solid-fluid separation. Thereby, both processes are coupled integrally, so that synergies can develop. Both processes can be accommodated simultaneously in a single housing or a plant.
  • During the chemical reaction at least one component of the reaction mixture is converted.
  • reaction, intermediate, secondary and end products can selectively be removed from the reaction mixture, educts can be added in a controlled manner, or the contact of the educts can be intensified. Reaction, intermediate, secondary and end products, and in particular water is removed continually or in intervals from the reaction mixture. A distinct increase of the throughput can thereby be achieved.
  • the combination, positioning, design and control of the respective tempering system results from the process procedure and particularly depend on the composition of the feed material.
  • All process water systems outside and within the reactor can be used for the tempering process. This can take place on the one hand by external, that is, heat exchange processes outside the reactor, and on the other hand by the introduction of tempered process water as a thinning, tempering, suction medium or propellant for mixers, pumps and/or nozzles as aspired material for the liquid jet or jet vacuum pumps.
  • a mixing of process and fresh water can also serve for an optimized reactor tempering.
  • the process procedure can thereby additionally be optimized, by for example decreasing the concentration of certain inorganic substances.
  • the introduction can advantageously be a tempering medium, in particular by injecting tempered water or recycled process water at locations which are critical with regard to the temperature.
  • the tempering is additionally controlled via the process procedure.
  • the time-delayed introduction of feed material in dependence of its conversion characteristics is an essential element of the temperature control.
  • the viscosity, density and magnitude and other characteristics of the feed material or the reaction mixture change. These changes can be attributed to chemical reactions and structural changes of the carbon-containing feed material, which can also be attributed to the depolymerization and later to the restructuring of the feed material.
  • different requirements are made of the mixing process in dependence on the process procedure.
  • a mixing and/or flow distribution which is as even and homogeneous as possible, depends on the state of the process, the feed material, the solid concentrations and the requirements which are made of the reaction product.
  • the materials present in the process water depend on the mixture of the feed material and the process procedure including the catalysts. Materials previously bound to the biomass are dissolved by the procedural disintegration. Numerous elements including chlorine, sulfur, nitrate and their salts and metals, in particular heavy metals and minerals and alkalis as for example potassium or sodium and their salts pass into the aqueous phase in a certain part during the chemical conversion process. One part is again bound in the solid phase. The remaining part remains in the liquid phase. The parts of the materials which go into the liquid phase, are also dependent on the concentration difference, that is, the concentration already present in the liquid phase. A saturation up to the precipitation of certain materials takes place with increasing concentrations.
  • Inorganic materials and compounds for example sulfate and chloride, can thus precipitate as salts and thereby influence the process procedure and the reactor components unfavorably.
  • the part of organic carbon compounds in the liquid phase can be above 50 g per liter.
  • the chemical oxygen demand (COD) value of the process water is already in the higher 5 digit region (mg O 2 /l) without recycling and thereby significantly exceeds the legal introduction boundary values.
  • the chemical oxygen demand (COD) is to be generally understood as the amount of oxygen that is necessary to chemically oxidize all organic contents of a defined material amount.
  • a process water fraction of 10 to 35 percent, also from 35 to 60 percent, or also from 60 to 85 percent is recycled in dependence on the moisture content of the feed material and the process procedure including the solid-fluid ratio.
  • An almost complete return of the process water that is, a circuit closure or restriction of the process water circuit is only possible in a limited manner with the aim to save fresh water and to reduce the waste water volume.l
  • inorganic materials such as sulfate, nitrate, calcium, chlorine, phosphorous or their compounds results.
  • Inorganic contraries concentrations accelerate the corrosion.
  • Lime deposits disrupt the flow in the reactor and also damage mountings such as pumps, valves and nozzles. The requirements and cost of the design of the reactor increase thereby.
  • Sulfates can precipitate. The duration of the accumulation or saturation depends on the material composition of the feed material and the process procedure.
  • the chemical conversion process usually lasts several hours. During this time, complex chemical processes connected with material changes take place which have to be considered for the optimization of the process procedure.
  • reaction products are for example withdrawn towards the end of the last two process phases.
  • Propellant or tempering means as for example a gas, water, in particular process water and/or process/synthesis gas and catalysts are withdrawn or supplied during the running process. Reactants and in particular secondary products are removed, which disturb the course of the chemical reaction, the mixing and also the flow.
  • Different methods can be used for the deposition of the solid materials and in particular the reaction products in the reaction mixture.
  • the solid-fluid separation serves for the separation of the liquid phase, whereby a concentration of the solids is achieved.
  • Different sifting processes (coarse sifting, fine sifting), filtration processes and/or the deposition by centrifugal force by means of a cyclone can be combined with one another for the separation of the solids. So as to reduce the effort of a filtration or the sifting during the process, one or several filtration or sifting processes are carried out within the scope of the pretreatment.
  • At least one coarse or one fine filtration or a combination of these two methods can take place.
  • the filtration methods in particular micro and/or ultrafiltration method or a combination of both, one third to two thirds of the total organic carbon compounds can be removed from the process water.
  • the solid-fluid separation is preferably carried out at operating conditions, and usually goes beyond the use of simple paper filter as are for example used on a laboratory scale.
  • the choice of the used methods depends amongst others on the chemical composition, particle size distribution, density, particle form, firmness and solubility and includes the use of electrical currents and loads, different densities and centrifugal forces and different particle sizes.
  • the dynamic, static, vacuum, pressure and sterile filtration are among the apparatuses used.
  • apparatuses are used where the underlying method or function principle of hydrocyclones, centrifuges, electrical or magnetic separation devices and/or filtration methods is used.
  • the preferred filtration methods are particularly among those which can be used with the reaction conditions of the hydrothermal carbonization.
  • rotation disk filters or centrifugal membrane filters are preferably used.
  • the preferred material which is responsible for the formation of the pores consists of metal and in particular of ceramics.
  • the form of the pore-forming material is preferably disk-shaped.
  • the aqueous phase is introduced into a process water reservoir in a filtered or unfiltered manner.
  • the characteristics of the solids to be separated, and thereby the choice of the methods chosen for the separation depend on the process procedure and on the characteristics of the desired reaction product. The further the process has progressed and the higher the density of the reaction product, the easier it is to carry out the separation process.
  • the separation preferably takes place near the operating conditions.
  • the solid amount in the filtrate usually sinks proportionally to the pore size and can increase significantly by the use of an ultrafiltration method and be over two thirds to four fifth.
  • One or several apparatuses for the solid-fluid separation are integrated into the process for the elimination of sand and other contraries with a high density or a high weight which become separable in the course of the treatment of the biomass.
  • the use of the principle of the centrifugal force separation of solids is particularly advantageous for the cleaning of the process water which is used as propellant jet medium to protect pumps, mixers and nozzles.
  • Process water is withdrawn for reconditioning or treatment during the process at one or several locations from the upper half the upper third or from the upper quarter of the reactor. Reconditioned or treated process water is returned to the water circuit of the plant for recycling.
  • At least one and preferably several process water reservoirs can be used for every individual reactor or for several combined reactors. Different cleaning steps precede the individual process water reservoirs.
  • the volume of individual or a common process water reservoir is approximately 35 to 85 percent of the total volume of all reactors in its sum.
  • the process water reservoir is designed for the temperature and pressure load of the reactors, so that pressure reduction and heat exchange apparatuses are not compellingly necessary.
  • a process water cleaning is integrated into the water circuit of the described plant.
  • Different treatment or reconditioning methods are necessary depending on the use of the reconditioned process water.
  • Different mechanical, chemical and biological methods and apparatuses are used for this individually or in combination. Aerobic and anaerobic high performance bio reactors, bio membrane reactors, anaerobic and animate slurry methods.
  • the above-mentioned methods and apparatuses integrated or connected into the process water circuit shall decrease the content of organic compounds in the circuit water considerably, but the measure of the return of the process water has to be made dependent on the concentrations of organic substances which are not sufficiently disintegrated and high alkali metal or mineral material concentrations as for example calcium. So as to be able to return a part of the process water as high as possible, a particularly effective combination of different methods and apparatuses is to be used.
  • the apparatus for the mechanical waste water cleaning is a filter, a microfilter or an ultrafilter, and can be congruent with the methods for the solid-fluid separation described above.
  • the apparatus for the solid-fluid separation, into which the filter(s) are built is preferably a rotation disk filter and especially a centrifugal membrane filter.
  • an apparatus in the steel construction manner is to be used preferably, for example a high performance bioreactor in the biomembrane method, preferably an aerobic process water treatment, especially a loop reactor.
  • the loop reactor should have an effective nozzle for mixing the solid and liquid phases in its design.
  • a reactor for the anaerobic process water treatment or also reverse electrodialysis can be used, particularly for the nitrate recovery, distillation, vaporization and/or ion exchange methods and active coal.
  • the cooling of the reaction product in particular below the boiling temperature at one bar absolute pressure usually takes place outside the reaction space, also in an apparatus for devolatilization.
  • the heat energy released thereby can be made available for other processes via heat exchanger processes.
  • One or several comminution steps take place before, during or after this process. For this mills or pressing methods are preferably used.
  • the separation of the solid phase from the reaction mixture usually takes place in the first step in mechanical and in the second step in thermal separation devices.
  • a static thickener is used for reducing the water content under the action of gravity with or without mechanical rotating apparatus or a raking machine, for example a stationary thickener or a throughput thickener.
  • the control of the supply amount can be made by a dosing device.
  • the device enables to dispense the thickened mixture evenly dosed and to several machines with a correspondingly high volume.
  • the thickener can also be integrated directly into the drying apparatus. An advantageous design of the cone construction makes it possible that the drying apparatus is charged directly with the mixture. External installations can be foregone with a corresponding adjustment of the process magnitudes.
  • the mixture to be thickened can alternatively be introduced under pressure to an arched sieve surface or a curved screen.
  • a hydrocyclone offers a further advantageous separation method, in which solid and liquid are separated by centrifugal acceleration.
  • the thickened mixture in the underflow is supplied to the drying apparatus and the processed or clarified liquid leaves the hydrocyclone in the overflow.
  • a continuous and an optimized supply to the drying apparatus can be ensured by preceding and adjusted thickening devices and interposed dosing apparatuses. This is particularly important with the use of a shear centrifuge for drying. Shear centrifuges have a high operational safety and are suitable for dehumidifying and washing of granular solids.
  • Thermal drying methods are preferably used for drying in addition to mechanical apparatus which often has to be connected ahead of the drying for energetic reasons.
  • the amounts supplied to the drying procedure have a weight above one kilogram.
  • a continuous operation is preferred to a charge operation.
  • the drying process takes place by means of at least one or several driers or by a combination of different apparatuses for separation and/or drying.
  • a convection drier is for example used for drying the reaction and secondary products.
  • the goods to be dried thereby come into contact with hot drying gas. It is hereby disadvantageous that the used gas has to be discharged and usually has to be cleaned with dust separators.
  • the gas is possibly returned to the moisture after condensing.
  • a fluidized bed drier can for example be used as convection drier.
  • Spray, nozzle tower or flow driers can also be used depending on the present or desired particle size.
  • a continuous process is advantageous, where one or more tray, drum or tunnel drier are used.
  • a contact drier is used, essentially only the contact surface is available for the heat transfer.
  • a belt, vacuum belt, drum, screw, cylinder, roller or belt drier and preferably a vacuum drum filter or drier is used.
  • a disk drier can alternatively or additionally be used, depending on the throughput.
  • the drying process can take place by means of a hot gaseous medium as for example air at temperatures between 61 and 95° C., between 65 and 90° C. or between 70 and 85° C. Alternatively, overheated water vapor or water vapor having a temperature of 130 to 180° C. is used above all in the thermal drying apparatuses.
  • a combined mechanical-thermal method can be used for the separation or for drying.
  • the advantage of a mechanical-thermal process compared to the conventional methods is significantly lower residual moisture of the product, whereby an improved conveyability or transportability of the product is achieved, especially with fine particle or nanosystems.
  • the use of steam as a further driving dehumidification potential results in an increase of the performance for centrifuges working in a filtrating manner.
  • the mechanism of the even mechanical displacement by a condensation front cooperates with the mass force and practically leads to a complete depletion of the coarse capillary system. Steam pressure filtration is for example among the methods using this mechanism.
  • reaction product uses saturated or overheated steam for a gas difference pressure removal instead of pressurized air.
  • a steam pressure superposed centrifugal dehumidification is used especially preferred.
  • the process of the combined steam pressure and centrifugal dehumidification transfers the fine disperse solid of the reaction product from the suspension into a dry, pure, free flowing end product according to the invention.
  • the residual moisture content of the reaction products according to the invention is advantageously about 6 to 25 percent, also 10 to 20 percent or also 12 to 15 percent.
  • the reaction mixture is present as a suspension after the conversion reaction.
  • the following reaction, intermediate, secondary and/or end products result in dependence on the feed material: Fuels ranging from peat-like, over lignite-like to black coal-like fuels, humus, Maillard- or Maillard-like reaction products, carbon-containing materials such as insulating materials, nano sponges, pellets, fibers, cables, active or sorption coal, charcoal substitute material, highly compacted carbon products and materials and in particular also feed material for graphite and graphite-containing or -like products and carbon fibers and feed material for composite or fiber composite materials.
  • Fuels ranging from peat-like, over lignite-like to black coal-like fuels, humus, Maillard- or Maillard-like reaction products, carbon-containing materials such as insulating materials, nano sponges, pellets, fibers, cables, active or sorption coal, charcoal substitute material, highly compacted carbon products and materials and in particular also feed material for graphite and graphite-containing or -like products and carbon fibers and feed material for composite or fiber composite materials.
  • Pure, purest and ultra pure coal-like materials belong to the products according to the application. They have advantageous characteristics, which can mainly be ascribed to the reduction of mineral materials compared to the feed material. Pure coal is mainly to be understood the combustible part of the coal and purest coal is also to be understood as active coal or charcoal. The mineral content of ultra pure coal is for example under 0.1 percent by weight.
  • Organic and also inorganic materials are also removed from the feed material during the course of the method or the chemical conversion process and are thus made available and more easily accessible.
  • the improved accessibility is in part due to the dissolution of previously inaccessible or chemically bound materials that have partially gone into the aqueous phase. The degree to which this occurs depends on the reaction or treatment conditions.
  • inorganic materials such alkalis, metals, salts and acids including humic acid-like materials, calcium, magnesium, chlorine, iron, aluminum, phosphorous, potassium, sodium, nitrogen and their compounds are also among the materials which are removed or available and more easily accessible.
  • the solid carbonaceous components of the reaction product which are present as materials and/or fuels after the conversion reaction, have the following characteristics amongst others:
  • the composition of the materials and/or fuels can be controlled by the reaction procedure.
  • the concentration of individual materials cannot readily be varied selectively and independently of other materials offhand.
  • different material groups and parameters can be changed in the same direction. For example, during a reduction of the sulfur content, the chlorine and ash content is also reduced at the same time.
  • the carbon fraction for grass, cut hedges (thuja) and sugar beet was over 50 to 63 percent of the percentage mass fraction of the elements (dry mass) and was thereby approximately 20 to 60 percent above the mass fraction of the feed material.
  • the oxygen fraction was reduced up to half, and the nitrogen fraction about a quarter, and the hydrogen fraction was reduced up to about a quarter.
  • the carbon fraction of the materials and/or fuels is increased by 10 to 300 percent, also 50 to 300 percent, also 100 to 300 percent or also by 200 to 300 percent, compared to the biomass.
  • the carbon fraction of the materials and/or fuels is increased by 5 to 200 percent, preferably 10 to 150 percent, 10 to 120 percent or by 50 to 100 percent, compared to the feed material.
  • the carbon fraction of the materials and/or fuel is usually between 40 to 95 percent, also 50 to 90 percent, or also 55 to 80 percent.
  • the carbon fraction can, in dependence on the reaction procedure and on the feed material, also achieve higher purity degrees of over 98 percent.
  • the hydrogen fraction of the material and/or fuel is reduced up to nine tenth to a third, also a third to a twentieth or up to a twentieth to a fiftieth compared to the feed material.
  • the oxygen fraction of the material and/or fuel is reduced up to nine tenth to a third, also a third to a twentieth or up to a twentieth to a hundredth compared to the feed material.
  • the nitrogen fraction of the material and/or fuel is reduced up to nine tenth to a third, also a third to a twentieth or up to a twentieth to a hundredth compared to the feed material.
  • the sulfur fraction of the material and/or fuel can be a fraction of the biomass and is reduced up to nine tenth to a third, also a third to a fiftieth or also up to a fiftieth to a thousandth compared to the feed material.
  • the ash fraction of the material and/or fuel can be a fraction of the biomass and is reduced up to nine tenth to a third, also a third to a fiftieth or also up to a fiftieth to a thousandth compared to the feed material.
  • the fine dust fraction of the material and/or fuel can be a fraction of the biomass and is reduced up to nine tenth to a third, also a third to a fiftieth or also up to a fiftieth to a thousandth compared to the feed material.
  • a reduction of the mineral parts and of the ash and particulate fine dust part during the combustion to a multiple of for example considerably above 300 percent can be enabled by a high fraction of process water.
  • a thinning of the mentioned fractions of substances, but also of numerous other materials occurs by the increase of the proportion of process water, which were originally contained in the feed material and which are removed during the conversion reaction and are dissolved. It could be said that these materials are washed out, so that the fraction of the soluble materials can practically be reduced proportional to the supplied process water in the solid phase. Even when a catalyst component is left out or sub-optimal reaction conditions prevail, a higher carbon fraction can still be achieved, which is more than 5 to 10 percent over the one of the feed material.
  • a carbon fraction of 55 to 77 percent can be obtained with an appropriate treatment of the biomass and the process procedure.
  • favorable feed material including adjustment of the catalyst mixture, carbon values of 78 percent and more can also be achieved. These values can thereby be compared to that of fossil fuels.
  • the carbon fraction of the material or and/or fuel has indeed increased, but the energy content or the fuel value can have decreased up to 36 percent.
  • the energy content or the fuel value can have decreased up to 36 percent.
  • the fuel value of the material and/or of the fuel is about 65 to 85 percent, or, in another example of the embodiment, 70 to 80 percent, compared to the feed material. The less carbohydrate is contained in the feed material, the lower is the energy release during the conversion reaction. This involves a higher fuel value of the reaction product at the same time, compared to the feed material.
  • the energy contents of the reaction product depending on the biomass used can be described as follows in an exemplary manner: If lignocellulosic biomass such as cut greens or harvest waste is used as feed material, the fuel value of the material and/or of the fuel is about 70 to 90 percent, and also 75 to 85 percent related to the mass weight of the feed material. If biomass with a low carbohydrate, cellulose or lignin fraction as for example clearing or sewage sludge is used as feed material, the fuel value of the material and/or of the fuel is about 80 to 95 percent, and also 85 to 90 percent related to the mass weight of the feed material. Pure, purest or ultra pure coal can be used in a versatile manner, for example as chemical basic and feed material for further processing in the chemical industry or as fuel for a carbon fuel cell.
  • the density of most feed material is at 200 to 600 kg/m 3 , and occasionally to 800 kg/m 3 (dry weight)
  • the density of the reaction product can reach above 900 to 1200 kg/m 3 , occasionally also values of 1250 to 1350 kg/m 3 , under the assumption that the air between the particles of the reaction products is eliminated or pressed out.
  • a larger surface results compared to the feed material. This makes the drying with the same moisture content easier than with naturally occurring carbon compounds with a comparable carbon content.
  • the large surface contributes at the same time to a lower ignition temperature.
  • the treatment method is more efficient and economical for the purpose of an industrial production of materials and/or fuels from biomass compared to the conventional methods for energy recovery from biomass.
  • the material conversion of the biomass practically no carbon has to be lost.
  • more than 95 percent of the carbon contained in the feed material passes into the solid components of the reaction product, which can be used for energy recovery.
  • the remainder of the carbon compounds goes into the liquid phase.
  • practically hardly any noteworthy amounts of carbon dioxide or other greenhouse gases are released.
  • About 1-4 percent of the carbon of the feed material can go into the liquid phase. The fraction thereby depends on the process procedure, in particular on the carbon content of the feed material and on the liquid-solid ratio of the reaction mixture.
  • Carbon-containing nanomaterials and structures are formed by the reaction procedure, in particular by the choice and composition of the feed material and catalysts. These materials partially have useful material and surface characteristics. Among these are for example nano-sponges which can be used as water reservoirs or insulating materials.
  • the so-called Maillard reaction during with heating processes such as baking, frying, roasting, grilling and deep-frying of proteins or albuminous and carbohydrate-rich food at temperatures over 130° C.
  • Maillard reaction red to yellow-brown, sometimes black-colored polymers, the melanoidines, result from carbohydrates and amino acids in addition to a plurality of flavoring agents.
  • melanoidines are formed by high temperatures as they occur during baking and roasting, but the reaction is also accelerated by higher pressures. They thereby form a substantial part of the food in products such as bread, coffee, malt, nuts or cornflakes and makes for example up to 30 percent of coffee.
  • Maillard or Maillard-like reaction products are formed in high concentrations during the hydrothermal carbonization.
  • the solid (amongst others solid) and in the liquid phase (e.g. process water) there are relatively high concentrations of the indicator substance CML, which are usually between 0.3-2 mmol/mol lysine. Higher concentrations are usually present in the liquid phase, that is, in the process water, than in the solid phase of the reaction product.
  • concentrations or concentration ratios depend on the solid-fluid ratio and on the composition of the feed material and the process procedure. Antioxidant and chemo-preventive characteristics are assigned to CML.
  • the humus which is produced in the method according to the invention by means of hydrothermal carbonization results by a comparably shorter dwelling time compared to reaction products having a higher fuel value. It usually still comprises fiber-containing material (amongst others lignin and cellulose) of the feed material. The biopolymers are not completely depolymerized.
  • the humus produced according to the invention has a carbon fraction of at least 30 to 45 percent and a heating value of at least 15 to 24 MJ/kg, and can be burnt well.
  • the humus produced according to the method of the application can partially have similar characteristics as natural humus and partially also turf or peat.
  • the above characteristics for the reaction products of the method of the application are valid for the combustion characteristics.
  • Certain materials can be enriched in the humus by an optimized process procedure, in particular by the concentration difference between the solid and liquid phase within the reaction mixture. This is desired during the utilization of the humus as CO 2 /carbon sink or fertilizer. Unlike this, during the processing of admixture of humus produced according to the invention to products, where an enrichment of certain materials is not desired. In addition, an enrichment of mineral materials and alkalis and other substances, which are detrimental for the product utilization, is avoided.
  • the humus produced according to the invention is a uniform humus and fuel, the characteristics of which can be calculated and controlled via the composition of the feed material and the catalysts, as well as the process procedure. Humus produced according to the invention can be produced within hours. The method according to the invention is thereby considerably faster than other known production methods of humus, which usually take weeks or months.
  • the materials and/or fuels produced according to the method of the application including turf or peat or turf-like or peat-like materials have the following characteristics:
  • the different types and species of fossil coal have very different chemical compositions and characteristics, depending on the point of origin and mining area, so that every type of coal has unique and unmistakable characteristic features.
  • the heating value of fossil Lausitz raw brown coal is for example 8.700 kJ/kg, the water content about 56 percent, sulfur content about 0.7 percent, and the ash content about 4.5 percent.
  • the water, sulfur, and ash content of the fuel or material according to the invention are all lower, while the fuel value usually is clearly above 20.000 kJ/kg.
  • One kilowatt of fossil Lausitz raw lignite can be generated independently of the water content. In contrast, more than double the amount of current can be generated from the same amount of fuel.
  • NE-(carboxymethyl) lysine CML
  • CML NE-(carboxymethyl) lysine
  • Concentrations of 0.2 to over 1.5 mmol/mol lysine were measured, whereby higher parts were measured in the liquid phase than in the solid phase.
  • the distribution of the concentrations depends on the feed material, the reaction conditions, and the process procedure.
  • fossil coal is present in clumps or, depending on the mining depth, in relatively highly compressed agglomerates, which have to be comminuted with a high energy effort.
  • the combustion characteristics of the fuel are in particular more advantageous, not only compared to fossil types of coal, but also compared to most of the currently available fuels of renewable raw materials. At least one, but often several or all of the following parameters are more favorable with fuels, in particular compared to the feed material or alternative fossil or biomass fuels: reduced ash parts, less chlorine, nitrate, sulfur, heavy metals and lower emissions of dust, fine dust and gaseous toxic substances including nitrogen and sulfur oxides. This is also valid for the compacted forms of fuels such as briquettes and pellets.
  • Double-stranded hydrolysis or reactor batch feeding for HTC and TDH The invention is explained in more detail in an exemplary manner in the following by means of the drawings described in the following.
  • FIG. 1 shows a schematic depiction of a plant in an exemplary manner while considering a double-strand feed apparatus.
  • FIG. 2 shows a schematic depiction of reactors arranged in parallel with respectively a reactor connected downstream in an exemplary manner.
  • FIG. 3 shows a schematic depiction of a plant for the thermally induced hydrolysis in an exemplary manner.
  • FIG. 1 shows a schematic depiction of a plant in an exemplary manner with special consideration of a double-stranded batch feeding apparatus for the method according to the invention.
  • the apparatus consists of the feed strands I and II, and the devolatilization strand III.
  • the strand I serves for feeding feed materials with a high solid content of for example 3 to 50 percent related to the total volume.
  • the “dry” biomass is stored in a hopper ( 1 ) and brought to a vessel ( 2 ), preferably a bottom plate outfeed vessel ( 2 ), from there.
  • the feed materials are fed to a comminution apparatus ( 3 ), for example executed as a wet or dry mill or as another suitable mechanical comminution unit via a conveying device, which can for example be a screw conveyor or a conveyor belt, and are fed from there into a mixing vessel ( 6 ).
  • the dry biomass is mixed thoroughly with concentrated process water from the reservoir ( 4 ) and at least one catalyst from the vessel ( 5 ) in the mixing vessel ( 6 ) by means of an agitator.
  • the mixture is fed to the incubation vessel ( 8 ) via the conveying device ( 7 ).
  • the incubation vessel ( 8 ) enables a residence time of the catalyst on the material.
  • the vessels ( 6 ) and ( 8 ) are double-walled and have a hot water connection, so as to enable a preheating of the material to 50-60° C.
  • the incubated material of the “dry” feed materials is fed via the conveyor devices ( 9 ) and ( 10 ), which are for example designed as screw conveyors or as conveyor belts, via a feed apparatus ( 21 ) from the first feed strand to the first reactor ( 19 ) under pressure above the vapor pressure of the process water.
  • the feed apparatus consists of a force conveyor, which is for example an injector, double screw extruder, an eccentric spiral pump, a piston pump, a spiral displacement pump, which are respectively equipped with or without compressor screws, or a double screw compressor.
  • the feed apparatus ( 21 ) can additionally be provided with a shutoff device.
  • the feed apparatus ( 21 ) ensures that the incubated material from the strand I with a pressure level above the inner reactor pressure is brought into the reactor ( 19 ), and prevents backlashes into the feed device.
  • Pumpable feed materials with a solid content of 3 to 50 percent related to the entire volume are transferred to a mixing device ( 14 ) from a storage vessel ( 12 ) by means of a conveying device ( 13 ) and mixed in the mixing vessel ( 14 ) with process water from the reservoir ( 4 ) and catalyst from a vessel ( 15 ), incubated in an incubation vessel ( 16 ) and fed to the reactor ( 19 ) via a suitable conveyor device ( 17 ), which can for example be designed as a piston, spiral displacement, or eccentric spiral pump.
  • the material is heated to at least 160-180, 200-220 or 220 to 250° C. via the heat exchanger unit ( 18 ).
  • the feed materials pretreated in such a manner from the feed strand II are guided from the feed strand I via the feed materials fed or presented to the conveyor previously, in a parallel manner or afterwards.
  • the ratio of the mass flow rate of feed strand Ito feed strand II or of presented to fed feed materials is for example 1:20, 1:5, 1:1, or 10:1.
  • An even mixture of the presented or of the fed material takes place in the first reactor via a mixing or stirring apparatus ( 20 ).
  • the heating and the discharge of an exothermic reaction occurring with the reaction takes place via a heat exchanger apparatus ( 22 ) in connection with the double wall ( 23 ) of the reactor ( 19 ) and/or other heat exchangers brought into the reactor or which are in connection with the reaction mixture.
  • These can for example be formed as spiral, tubular, bundle or spiral heat exchangers.
  • a conveyor means for accelerating fluids can be used additionally.
  • the second reactor ( 24 ) situated in the flow direction behind the first reactor ( 19 ) has a smaller volume. Because process water is withdrawn by means of an apparatus described in another part, whereby the volume of the reaction mixture is reduced. Lower reactor volumes or smaller reaction spaces are thereby needed in the further course of the process.
  • the withdrawal of process water simultaneously also enables the merging of the diminished reaction volumes from different parallel reactors or of reaction mixtures, which are merged in a single reactor in a parallel or time-delayed manner with a reaction stage deviating up to 50 percent of the total reaction time or with a reaction time deviating up to 50 percent.
  • the volume of this reactor is for example 5, 10 or 20 percent below the volume of the sum of all reactor volumes, from which the reactor receives the reaction mixture.
  • the reactor ( 24 ) is also equipped with heat exchanger device ( 22 ), a stirring device ( 20 ) and a double wall ( 23 ), and keeps the temperature over the dwelling time constant at the level necessary for the reaction.
  • the released reaction heat is discharged via the heat exchanger device ( 22 ), whereby a cooling is achieved.
  • a devolatilization of the material in the devolatilization vessel ( 26 ) takes place via the heat exchanger unit ( 25 ).
  • the material can also be treated thermally via stirring device ( 20 ), heat exchanger device ( 22 ) and double wall ( 23 ).
  • the heat exchanger ( 27 ) ensures a cooling of the material to temperatures below the evaporation temperature of water.
  • the flow and the pressure devolatilization are thereby controlled thereby via a devolatilization pump which is directed backwards, which is formed as a force conveyor, eccentric spiral displacement or piston membrane pump.
  • the wet feed material is stored in the devolatilization vessel ( 29 ). Accumulated heat can be discharged via its double wall. Excess process water is separated via the subsequent solid-fluid separation ( 30 ), which is designed as a decanter, centrifuge, cyclone, filter chamber press, filtration apparatus or an apparatus for a separation or drying serving for the same purpose or mentioned in another part of this specification, and the process water is again made available for other processes within the method according to the invention. The final product is stored temporarily in the store ( 31 ) for the further use.
  • the feeding of a first or several first reactors can also take place via a single feed strand, that is, via the feed strand I or II alone or independent of a second feed strand.
  • This is unproblematic, if “wet” feed materials are fed. But if a reactor is filled with “dry” and free flowing feed material, a sufficient supply of water has to be considered.
  • process water or enriched process water at temperatures of over 60, 100, 160 or 200° C. is thereby advantageous, where a filling just, that is up to 5, 10, 40 or 60 percent below the free flowing pile or of the filling level of the “dry” feed material is sufficient.
  • the filling height with process water within the reactor depends amongst others on the bulk density and other consistency of the feed material.
  • the viscosity of the solid-fluid mixture decreases when progressing through the charging apparatus and is reduced to over three quarters, to over the half or to over a fifth of the viscosity of the feed material at the end of the process. However, it is valid for the viscosity measurement, that no water was withdrawn or evaporated during the conversion process, that is, between the measurements.
  • FIG. 2 shows a schematic depiction of reactor arranged in parallel ( 19 ) and ( 24 ) with a respective reactor ( 32 ) and ( 33 ) connected downstream in an exemplary manner.
  • Reactors ( 19 , 24 or 32 , 22 ) are meant to be a reactor configuration, where several reactors are filled or emptied in parallel, so that a continuous inlet and outlet flow is realized.
  • An inlet and outlet flow is continuous if at least 10-30, 30-60 or 60-90 percent of the reaction time are flown through the devices connected upstream or downstream of the at least one reactor. Heat exchangers for heating and cooling the reaction mixture are among these devices.
  • each reactor can be filled or emptied independently from another one. While a first reactor is filled and a second reactor is emptied, the reaction volume will be held in a third reactor under operating conditions for a period of 10-100, 100-300 or 300-1600 minutes. If a first reactor is filled, it becomes a third reactor, that is, it takes on the function of a third reactor, in that a dwelling time of at least 1-9, 10-30, 30-60 or 60-99 percent of the reaction time is enabled. If a second reactor is emptied, it becomes a first reactor, that is, it takes on the function of a first reactor which is filled again.
  • a third reactor can also consist of an indefinite number of reactors.
  • the treatment of organic wastes by fermentation leads to a reduction of the biomass use by 10 to 20 or 20 to 30 or more percent related to organic solid content for producing the same amount of energy according to the invention of the hydrolysis method according to the invention.
  • Different method for pretreating of biomasses prior to introduction into a fermenter of a biogas plant were suggested.
  • a so-called thermal pressure hydrolysis was developed a few years ago, where the feed materials are guided through a loop reactor (DE19723519) or hydrolysis reactor (DE3928815) and are heated to a temperature of 180° C.
  • the execution of a microbiological hydrolysis was suggested in a tubular reactor (DE4403391).
  • thermal pressure analysis or thermally induced hydrolysis biomass is treated over a period of about 20 minutes. This is a clearly lower period compared to the hydrothermal carbonization.
  • the sedimentation behavior of biomasses and the swelling behavior of polymer structures in lignocellulose-containing biomass and of starch in agricultural products was probably underestimated during heating.
  • Swelling is a reversible volume increase of a solid body through exposure to fluids, vapors and gases.
  • the polymer structure swells by means of water inclusion.
  • a physical and chemical swelling process are differentiated. With physical swelling, the water looks for example a place in the pores of the wood and the interspaces. The resulting surface tension between the water and the wood is also called capillary force.
  • a chemical swelling process is present, where water is added to hydrophilic structures as for example OH groups in amino acids. By its hydratizing effect via hydrogen bridges.
  • Starch occurs in nature in the form of starch granules, which can be elutriated or suspended in cold water. This mainly takes place between 47 and 57° C. At higher temperatures between 55-86° C., the starch granules dissolve.
  • the starch which consists of amylose and amylopectine leaves little by little, for example at 62.5° C. with potato starch and 67.5° C. with wheat starch. The viscosity of the solution thereby increases considerably, and a gel forms. Gels are traditionally also called glues, as they often behave like glues. The entire process of the starch swelling and gel formation is therefore called gelatinization.
  • the starch glue has different stiffening capacities depending on the type of starch. The swelling behavior is increased again by pressure and heat and proceeds in an accelerated manner under the conditions of a thermally induced hydrolysis.
  • starch part can vary strongly in different biomasses.
  • maize silage With maize silage, it can for example be between 1.2 and 44.4 weight percent related to the dry substance.
  • the stiffening capacity of maize starch glue is larger than that of wheat starch glue, and this is again larger than potato starch glue.
  • Biomass or feed materials with high starch contents of for example over 10-30, 30-50 or over 50 percent related to the dry mass are guided directly into the first reactor via the strand for “dry” biomass, that is, the feed strand I, and are coated there with liquid heated biomass from the feed strand II and/or mixed.
  • the heat exchangers formed as tubular reactors were installed horizontally due to the considerable lengths of the straight tube pieces, that is, vertical to the gravitational force.
  • a method for hydrolysis or for heating biomass is suggested with the present invention, which is characterized in that the solid-fluid mixture passes through a heat exchanger for heating and that the solid-fluid mixture is guided through the tube parts which are not curved in an essentially parallel manner to the gravitational force for avoiding caking and/or blockages.
  • the heat exchanger is designed in such a manner that the amount of the angle of the tube axis to the horizontal plane is larger than 4 or 7 or larger than 10 degrees in the embodiment.
  • the heat exchanger consists of at least 20, 40 or 60 percent of vertical tube parts.
  • Vertical tube parts are the parts of the tubes carrying the media, whose amount of the angle of the tube axis to the vertical plane is at the most 70 or 50 or 45 degrees.
  • Vertical means an angle of below 45 degrees to the vertical, where the angle of the vertical tube parts is at the most 10 degrees to the vertical in the embodiment.
  • the heat exchanger consists for example of a tubular reactor or a tubular bundle or plate heat exchanger or a combination of these apparatuses.
  • the heat exchanger is designed in a modular manner and can consist of different modules, units or sections.
  • the modular units are arranged in spatial vicinity to each other that several heat exchanger units can be connected in series.
  • the tempering system of the heat exchanger consists of a double wall, the interspace of which is flown through by a heat energy carrier medium.
  • the heat energy medium is for example a thermal oil, water vapor or process water from the method according to the invention or another process. Different heat carrier media can also be combined.
  • the target temperature of this medium is between 60 and 350° C.
  • the temperature in a first section or module is for example at 60-100 or 80-120° C., in a second section or module between 100 and 140 or 120 and 160° C., in a third section between 140 and 180 or 160 and 200° C., and in a forth section between 180 and 220, 200 and 240, or 240 and 350° C.
  • the temperatures of the heat carrier medium can also be varied up to 20, 40 or 60° C.
  • the units, modules or sections of the heat exchanger are connected in series in such a manner that the temperature of the solid-fluid is brought again to a lower inlet or outlet temperature after achieving a highest or peak temperature of for example 220 to 260° C.
  • the heat exchanger is equipped with a hydrolysis reactor which keeps the material at a level of for example +/ ⁇ 2 to 8° C. and ensures a dwelling time of for example at least 20 minutes corresponding to the regional sanitary regulations.
  • FIG. 3 shows a schematic depiction of a plant for the thermally induced hydrolysis with a double-stranded feed.
  • the apparatus for the hydrolysis consists of the feed strands I and II and the devolatilization strand III.
  • the strand I serves for conveying feed materials with a high solid content of for example 3 to 50 percent related to the total volume.
  • the “dry” biomass is stored in a hopper 1 and brought to a bottom plate outfeed vessel ( 2 ) from there.
  • the feed materials are fed to a comminution apparatus ( 3 ) via a conveying device, which can for example be a screw conveyor or a conveyor belt, and are fed from there into a mixing vessel ( 6 ).
  • the dry biomass is mixed thoroughly with concentrated process water from the reservoir ( 4 ) and the catalyst dosing feeder ( 5 ) in the mixing vessel by means of an agitator.
  • the mixture is fed to the incubation vessel 8 via a further conveying device 7 , which can for example be a screw conveyor or a conveyor belt.
  • the incubation vessel enables a residence time of the catalyst on the material.
  • the vessels ( 7 ) and ( 8 ) are double-walled and have a hot water connection, so as to enable a preheating of the material to 50-60° C.
  • the incubated material of the “dry” feed materials is fed via the conveyor devices ( 9 ) and ( 10 ) to the reactor feed apparatus ( 21 ).
  • the feed apparatus consists of a force conveyor, which is for example an injector, double screw extruder, an eccentric spiral pump, a piston pump, a spiral displacement pump, which are respectively equipped with or without compressor screws, or a double screw compressor and is provided with stopping apparatuses.
  • the feed apparatus ensures that the incubated material from the strand I with a pressure level above the inner reactor pressure is brought into the reactor ( 19 ), and prevents backlashes into the feed device.
  • Pumpable feed materials with a solid content of 3 to 50 percent related to the entire volume are mixed in the mixing vessel ( 14 ) with process water ( 4 ) and catalyst ( 15 ) via the feed strand II, incubated ( 16 ) and are fed to the reactor via a suitable conveyor device ( 17 ) (e.g. piston, spiral displacement, or eccentric spiral pump).
  • the material is heated to least 180-200° C. via the heat exchanger unit 18 .
  • a single hydrolysis reactor ( 40 ) replaces the reactors ( 19 , 24 , 32 , 33 ) in FIG. 1 or 2 .
  • the elements of the plant otherwise coincide with FIG. 1 or 2 , so that they are respectively provided with the same reference numerals.
  • fluid, pumpable biomass from the feed strand II is mixed with dry biomass from the feed strand I.
  • the dry biomass from the feed strand I is supplied to the hydrolysis reactor ( 40 ) via a suitable introduction apparatus ( 41 ).
  • the material can additionally be influenced thermally via a heat exchanger ( 42 ) and the double wall ( 43 ) of the hydrolysis reactor ( 40 ).
  • a devolatilization of the material takes place via the heat exchanger ( 27 ) into the devolatilization vessel ( 29 ).
  • the heat exchanger ( 27 ) ensures a cooling of the material to temperatures below the evaporation temperature of water.
  • the passage and the pressure devolatilization are thereby controlled via a backwards-oriented devolatilization pump, which is designed as a force conveyor, eccentric spiral, spiral displacement or piston membrane pump.
  • the wet feed material is stored in the devolatilization vessel ( 29 ). Accumulated heat can be discharged via the double wall. Excess process water is separated via the subsequent solid-fluid separation ( 30 ), which is designed as a decanter, centrifuge, cyclone, filter chamber press, filtration or devices used for a similar purpose or described in another part of the specification, and the process water is again made available for other processes within the method according to the invention.
  • the final product is stored temporarily in the store ( 27 ) for the further use.
  • the hydrolysis method is extensively operated in a continuous manner. That is, the period in which feed materials are brought into the process via a reaction cycle or via a heat exchanger unit ( 18 ) for the time necessary for the passage of the material, is at least six tenth of the reaction cycle. The same period is valid for the filling process into the heat exchanger ( 27 ) for cooling or into the devolatilization vessel ( 29 ) in an offset manner.
  • a throughput of the plant is thereby defined via the conveying device ( 17 ) and the introduction apparatus ( 19 ).
  • the backward-directed devolatilization pump ( 28 ) is controlled at different locations of the plant in its rotation speed in such a manner that an evaporation of the material is prevented with the pressure present in the plant.
  • a valve can also be used for devolatilization as an alternative to a devolatilization pump.
  • the devolatilization apparatus or pump ( 28 ) is controlled by temperature and/or pressure. A longer dwelling time in the heat exchanger is achieved via a reduction of the rotation speed. The temperature of the medium is reduced thereby. The temperature is adjusted in such a manner as is necessary in the following apparatus or in the subsequent process. If the reaction mixture is for example guided further into a vessel with ambient pressure, the adjustment to a temperature below the boiling point is necessary, so as to avoid undirected and uncontrolled evaporation processes. Temperatures above the boiling point can be desired with feeding into another drying process, depending on the embodiment some of which are described in another part of this patent specification.
  • the devolatilization pump ( 28 ) is controlled in such a manner that the remaining residual pressure is sufficient for the conveyance in a subsequent process or an apparatus.
  • the residual pressure is for example below 10, 5, 2 or 1 bar.
  • the decrease of the viscosity during the course of the method can be seen as a measure of the progress of the hydrolysis.
  • the viscosity of the solid-fluid mixture is reduced when passing through the apparatus for hydrolysis and is reduced to at least three quarters, half or a fifth of the viscosity of the feed material.
  • the adjustment of a solid content as high as possible is necessary to increase the throughput of the feed materials or the yield of the hydrolyzed material.
  • the limiting factor for maximizing the solid content is the pumpability for the mainly wet biomass on the one hand and the conveyability independent of a pump of rather dry biomass connected with introduction into a reactor.
  • an additional suspension or dispersion is produced for the production of ceramic materials.
  • the invention relates to a method for the production of an object at least partially with a structure consisting of a ceramic and a carbon-containing material or other substance, of a blank of a carbon-containing material.
  • silicon carbide is a very high-strength substance which can only be shaped or finished mechanically with great difficulty.
  • Silicon carbide is a non-toxic high temperature ceramics which is of high interest especially due to its excellent properties, as amongst others high diamond-like hardness, optical transparence, semiconductor character, high thermal conductivity, chemical and thermal durability, and is thus used in many different areas of engineering, e.g. the production of refractory materials, insulators, and also as semiconductor material.
  • the production of objects of silicon carbide has thereby a high economic importance.
  • Objects of silicon carbide are usually produced by means of conventional sintering methods, where a compactly ground silicon carbide powder is baked using different bonding agents at high temperatures.
  • the disadvantage of this procedure is the porosity of the resulting objects in addition to the necessary high temperatures and long sintering times, which only allows a use for certain applications.
  • From DE3322060 is known another production method for objects of silicon carbide, where an object of a carbon-containing material as graphite is produced true to measurement and shape and subsequently, the carbon of the object is replaced by silicon carbide at least near the surface by means of diffusion processes during a long-term annealing treatment.
  • the object is packed into a granulated material of silicon dioxide during annealing, and e.g. hydrogen gas is directed over the granulated material during annealing.
  • a gas with notable silicon monoxide is to be produced, which can then diffuse into the carbon-containing material of the object near the surface and react with the carbon of the object in such a manner that silicon carbide forms in the matrix of the object.
  • an exchange of the carbon of the object with silicon carbide can be achieved at least near the surface, whereby a corresponding improvement of the regions of the object near the surface can be achieved.
  • the generation of the silicon monoxide gas is elaborate and the necessary amount parts of the silicon monoxide in this gas can only be held and dosed with difficulty. It is thus the object of the present invention to provide improved production methods for objects of ceramic materials and especially silicon carbide, where an object of carbon-containing material or a porous ceramic substance and especially silicon carbide can be converted to silicon carbide totally or partially in a simple and safe manner.
  • the additional substance suspension or dispersion is obtained by means of the production of a solid-fluid mixture of water and a carbon-containing component as starting or additional component for the production of an insulating and/or ceramic material, wherein the solid-fluid mixture is treated at a temperature of over 100° C. and a pressure of over 5 bar. This is possibly by means of the high purity of the suspension and the extensive elimination of impurities.
  • the sulfur and ash content serves for the characterization of the purity of the additional substance suspension or dispersion, as other parameters such as alkali metals, chlorine, phosphorous, calcium, nitrogen, magnesium, chromium, copper, lead, and zinc behave in a similar manner.
  • the content of the above-mentioned substances in the carbon-containing solid-fluid mixture is reduced correspondingly.
  • the purity of the carbon present in the solid-fluid mixture increases by numerous additional washing steps, which develop a higher efficiency by high pressure and temperature.
  • the sulfur and/or ash content of the solid-fluid mixture is thereby reduced by at least 50% or 75% in relation to the respective original content of the carbon-containing component.
  • the sulfur and ash contents can be reduced by more than 80, 90 or 99% in relation to the respective original content of the carbon-containing component.
  • the sulfur and ash content is reduced continuously during the course of the reaction process in connection with washing processes, and it is reduced to over two tenths, one twentieth, or one hundredth of the sulfur and ash content of the feed material towards the end of the process.
  • the mixture is acidic due to the preincubation in the acidic medium and the addition of acids as catalyst, and thus lends itself for the production of a ceramic material by means of an alkaline sol.
  • the gelation process can be initiated by means of a sol-gel method by adding the acidic additional substance suspension or dispersion to an alkaline sol.
  • a silicon compound and a sol containing organic or inorganic silicates and/or silica result through this treatment method and further method steps.
  • the sol is an aqueous solution of water glass.
  • a carbon component and a silicate component are used for the production of the gel.
  • the gel is heated up to the development of SiC gas until the SiC gas penetrates a provided porous mold.
  • the mold contains purified, pure, highly pure or ultrapure carbon.
  • the carbon is finely divided in the high-carbon silicon granulated material, that the silicon dioxide immediately reacts with this carbon when the granulated material is heated, and thereby forms a silicon-carbide containing gas, preferably mainly pure silicon carbide gas.
  • a distribution of the carbon in the silicon dioxide can be achieved by the small size of the carbon particles in the additional substance suspension or dispersion, by which the formation of the silicon-carbide containing gas takes place considerably below the normal sublimation temperature of the silicon carbide, especially already at temperatures between 1700° C. and 1900° C.
  • the formed silicon carbide gas can thereby diffuse directly into the object in the described manner.
  • the silicon carbide-containing gas penetrates the object of carbon-containing material in a gaseous manner and displaces the carbon of the object from the carbon matrix.
  • the carbon-rich silicon granulated material is produced in a sol-gel process with subsequent carbon-thermal reduction.
  • a sol-gel process for producing the carbon-rich silicon dioxide granulated material the distribution of the carbon or also of other substances of the granulated material to be added can be adjusted in a very exact and very fine manner, virtually on an atomic basis, whereby the formation of the silicon carbide-containing gas is improved or will be enabled to a larger scale for the first time.
  • the silicon oxide-containing gas forming during the annealing process can immediately react with the carbon and the other substances to be added, and is immediately available for the diffusion processes near the surface of the object.
  • From DE 102006055469 is known a method for producing an object, where the object is manufactured from a blank at least partially with silicon carbide structure from a carbon-containing material, wherein the object of the carbon-containing material is manufactured in a first step according to its desired final shape and/or final measurements, and subsequently the object of carbon-containing material is surrounded at least in regions with a carbon-rich silicon dioxide granulated material and is annealed at least once in this enclosure in a protective gas atmosphere at an annealing temperature, where the silicon dioxide granulated material discharges silicon-carbide-containing gas which penetrates the object and converts the carbon-containing material partially or totally into silicon carbide.
  • the sol-gel process uses a soluble hydrolyzable inorganic or organic silicate as staring product for producing the carbon-rich silicon dioxide granulated material.
  • a large number of feasible starting substances are comprised herein, which are available as silicon supplier for forming the granulated material and can be used favorably in the sol-gel process.
  • the following explicitly given substances are hereby only agents of the previously mentioned substance classes and cannot be seen as a concluding listing of substances to be used.
  • Water-soluble alkali silicates such as water glass can be used as starting substances for the sol-gel process with the inorganic silicates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Carbon And Carbon Compounds (AREA)
US13/130,578 2008-11-21 2009-11-23 Method And Device For Producing Operating Materials Or Fuels Abandoned US20110226603A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008058444.4A DE102008058444B4 (de) 2007-11-21 2008-11-21 Verfahren und Verwendung einer Vorrichtung zur Herstellung von Brennstoffen, Humus oder Suspensionen davon
DE102008058444.4 2008-11-21
PCT/IB2009/055293 WO2010058377A2 (de) 2008-11-21 2009-11-23 Verfahren und vorrichtung zur herstellung von werk-oder brennstoffen

Publications (1)

Publication Number Publication Date
US20110226603A1 true US20110226603A1 (en) 2011-09-22

Family

ID=42199030

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/130,578 Abandoned US20110226603A1 (en) 2008-11-21 2009-11-23 Method And Device For Producing Operating Materials Or Fuels

Country Status (14)

Country Link
US (1) US20110226603A1 (de)
EP (2) EP2467201B1 (de)
JP (1) JP6281802B2 (de)
CN (1) CN102325587A (de)
AR (1) AR074660A1 (de)
BR (1) BRPI0922500B1 (de)
DE (1) DE102008058444B4 (de)
DK (1) DK2467201T3 (de)
ES (1) ES2751198T3 (de)
HU (1) HUE046579T2 (de)
LT (1) LT2467201T (de)
PL (1) PL2467201T3 (de)
PT (1) PT2467201T (de)
WO (1) WO2010058377A2 (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110056125A1 (en) * 2008-04-17 2011-03-10 Csl Carbon Solutions Ltd. Process for converting biomass to coal-like material using hydrothermal carbonisation
US20130011327A1 (en) * 2010-03-24 2013-01-10 Dominik Peus Method and Device for Treating Solid-Fluid Mixtures
US20130104450A1 (en) * 2010-04-29 2013-05-02 Mortimer Technology Holdings Limited Torrefaction process
EP2653451A1 (de) * 2012-04-20 2013-10-23 CS Carbon Solutions Verfahren und Vorrichtung für die Behandlung von Prozesswasser aus einem organischen Materialumwandlungsverfahren
WO2013171081A1 (en) * 2012-05-18 2013-11-21 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Hydrothermal carbonization method for the coalification of carbohydrate-containing biomass
CN103480312A (zh) * 2013-09-18 2014-01-01 基伊埃工程技术(中国)有限公司 一种管式美拉德反应设备
US20150303447A1 (en) * 2012-08-29 2015-10-22 Nippon Coke & Engineering Co., Ltd. Apparatus for manufacturing negative-electrode carbon material, and method for manufacturing negative-electrode carbon material using same
CN105174325A (zh) * 2015-09-28 2015-12-23 江苏振宇环保科技有限公司 一种利用糠醛渣制备糠醛废水处理剂的方法
US9228784B2 (en) 2009-07-08 2016-01-05 Sartorius Stedim Biotech Gmbh Plate heat exchanger
CN109401931A (zh) * 2018-12-08 2019-03-01 内蒙古弘达生物环保科技有限责任公司 一种沼气工程原料的进料及预处理系统
US20190234649A1 (en) * 2018-01-29 2019-08-01 Brian Gregory Phillips Tubular-shaped and modular air handling unit (ahu) for heating, ventilating, and air conditioning (hvac) systems
US10781389B2 (en) 2015-09-28 2020-09-22 Grenol Ip Gmbh System for the treatment of organic waste
CN112662444A (zh) * 2019-10-16 2021-04-16 柳晶(溧阳)环保科技有限公司 一种超声分离铸造除尘灰中煤粉的方法
US11254883B2 (en) 2020-06-30 2022-02-22 Duke Technologies, Llc Method and system for treating renewable feedstocks
US11525096B2 (en) 2020-06-30 2022-12-13 Duke Technologies, Llc Method for treating renewable feedstocks
EP3649218B1 (de) * 2017-07-07 2023-09-06 IFP Energies nouvelles Verfahren zur verarbeitung von biomasse durch vermahlen mit einem rohstoff auf fossiler basis
CN116813173A (zh) * 2023-07-03 2023-09-29 中国海洋大学 一种海底采矿土资源化利用方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008058444B4 (de) * 2007-11-21 2020-03-26 Antacor Ltd. Verfahren und Verwendung einer Vorrichtung zur Herstellung von Brennstoffen, Humus oder Suspensionen davon
ES2564184T3 (es) 2008-11-17 2016-03-18 Ingelia, S.L. Sistema de control de presión y temperatura de al menos un reactor químico para tratar biomasa
DE102009027007A1 (de) * 2009-06-17 2010-12-23 Technische Universität Berlin Verfahren zur Herstellung von mineralischem Biodünger
DE102010013050A1 (de) 2010-03-27 2011-09-29 Terranova Energy Gmbh Additiv zur Verbesserung der Hydrothermalen Karbonisierung von Biomasse
DE102010020712A1 (de) 2010-05-17 2011-11-17 Terranova Energy Gmbh Verfahren zur Erwärmung und Trocknung der Stoffströme bei der Hydrothermalen Karbonisierung
DE102010006263A1 (de) 2010-01-28 2011-08-18 TerraNova Energy GmbH, 40231 Verfahren zur thermischen Verwertung von durch hydrothermale Karbonisierung hergestellte Brennstoffen, insbesondere Kohlestaub
DE102010000576B4 (de) 2010-02-26 2013-06-27 G+R Technology Group Ag Anlage und Verfahren zur hydrothermalen Karbonisierung von Biomasse
DE102010064715B3 (de) 2010-03-24 2022-04-28 Antacor Ltd. Verfahren und Verwendung eines Rohrreaktors zur Behandlung von Fest-Flüssig-Gemischen
EP2388305A3 (de) 2010-05-17 2012-01-25 TerraNova Energy GmbH Thermische Verwertung fester Brennstoffe
DE102011012756A1 (de) 2011-03-01 2012-09-06 Terranova Energy Gmbh Verfahren zur Reinigung von Abwasser aus der Hydrothermalen Karbonisierung von Biomasse
DE202011110246U1 (de) * 2011-03-04 2013-04-25 Ava-Co2 Schweiz Ag Vorrichtung zur hydrothermalen Karbonisierung
DE102011051269A1 (de) * 2011-06-22 2012-12-27 DIL Deutsches Institut für Lebensmitteltechnik e.V. Beschickungsbehälter und Verfahren zur zeitgleichen Hochdruck- und Temperaturbehandlung eines Nahrungsmittels in einem Hochdruckkessel
BE1020209A5 (nl) * 2011-08-30 2013-06-04 Renovius Man Opwerking van vervuilde biomassa stromen.
DE102011055987A1 (de) * 2011-12-02 2013-06-06 Thomas Reichhart Vorrichtung zur hydrothermalen Karbonisierung von Biomasse
DE102011055983A1 (de) * 2011-12-02 2013-06-06 Thomas Reichhart Verfahren sowie Vorrichtung zur hydrothermalen Karbonisierung von Biomasse
DE102012002098A1 (de) * 2012-02-06 2013-08-08 Eurofoam Deutschland Gmbh Hydrothermale Karbonisierung von Kunststoffmaterial
CN102873078A (zh) * 2012-09-30 2013-01-16 浙江爱科乐环保有限公司 厨余垃圾处理方法
DE102012019659A1 (de) 2012-10-08 2014-04-10 Terranova Energy Gmbh Verfahren zur Herstellung von Düngemittel
EP2765178A1 (de) * 2013-02-07 2014-08-13 Arbaflame Technology AS Verfahren zur Herstellung von kohlenstoffangereichertem Biomassematerial
FR3008693B1 (fr) 2013-07-18 2019-05-03 Terranova Energy Gmbh Procede de carbonisation hydrothermale optimise et installation pour sa mise en oeuvre
DE102013013085B3 (de) 2013-08-07 2015-02-05 Eurofoam Deutschland Gmbh Schaumstoffe Partikel eines kohleähnlichen Feststoffs, Verwendungen und Herstellungsverfahren
DE102014004056A1 (de) 2014-03-21 2015-09-24 Terranova Energy Gmbh Verfahren zur Vermeidung von Teer bei der Entwässerung von Kohleschlamm
DE102015002416A1 (de) 2015-02-26 2016-09-01 Terranova Energy Gmbh Verfahren zur Abtrennung von Phosphor aus Klärschlamm
CN104927046B (zh) * 2015-06-25 2017-06-06 安庆市虹泰新材料有限责任公司 一种聚酰胺的生产系统及其生产方法
DE102015016194A1 (de) 2015-12-15 2017-06-22 Terranova Energy Gmbh Verfahren zur Faulung und hydrothermalen Karbonisierung von Klärschlamm
DE102017123281A1 (de) 2017-10-06 2019-04-11 Terranova Energy Gmbh Verfahren zur Herstellung einer geruchsfreien HTC-Kohle und geruchsfreie HTC-Kohle
CN111955634A (zh) * 2020-08-25 2020-11-20 福建拓天生物科技有限公司 一种复合薏米红曲粉,及其高效复配制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184443A1 (de) * 2000-09-04 2002-03-06 Biofuel B.V. Verfahren zur Herstellung von flüssigen Brennstoffen aus Biomasse
WO2008081407A2 (de) * 2006-12-28 2008-07-10 Schweiger, Martin Aus biomasse hergestellter werk- und/oder brennstoff
WO2009090072A1 (de) * 2008-01-16 2009-07-23 Lucia Viviane Sanders Hydrothermale karbonisierung von biomasse

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1471949A (en) * 1974-06-19 1977-04-27 Shell Int Research Process for the upgrading of coal or the like
US4266083A (en) * 1979-06-08 1981-05-05 The Rust Engineering Company Biomass liquefaction process
FI58346C (fi) * 1979-12-18 1981-01-12 Tampella Oy Ab Foerfarande foer kontinuerlig foersockring av cellulosa av vaextmaterial
US4513030A (en) * 1982-06-18 1985-04-23 The United States Of America As Represented By The United States Department Of Energy Method of producing silicon carbide articles
US4700445A (en) * 1982-07-12 1987-10-20 Rubin Raskin Method of manufacturing heat transfer panels by inflation
US4579562A (en) * 1984-05-16 1986-04-01 Institute Of Gas Technology Thermochemical beneficiation of low rank coals
GB8511587D0 (en) * 1985-05-08 1985-06-12 Shell Int Research Producing hydrocarbon-containing liquids
DE3928815A1 (de) * 1988-12-13 1990-06-21 Still Otto Gmbh Verfahren zur behandlung von biomassen, z. b. bei der biologischen abwasserreinigung anfallenden klaerschlaemmen, guelle, sonstigen mikrobiologischen oder nachwachsenden biomassen
DE4403391A1 (de) * 1994-02-04 1995-08-10 Thyssen Still Otto Gmbh Verfahren zur Gewinnung von Wasserstoff und Carbonsäuren aus Biomassenhydrolysat
DE19723510C1 (de) * 1997-06-05 1999-02-18 Atz Evus Verfahren und Vorrichtung zur Behandlung biogener Restmassen
DE19723519A1 (de) 1997-06-05 1998-12-10 Kuesters Eduard Maschf Kalander
JP2000189781A (ja) * 1998-12-28 2000-07-11 Toshiba Corp 高圧処理装置、高圧処理装置への供給方法および高圧処理装置の保護方法
JP3901984B2 (ja) * 2001-10-25 2007-04-04 日揮株式会社 バイオマス水スラリー及びその製造方法
JP2005205252A (ja) * 2004-01-20 2005-08-04 Kobe Steel Ltd バイオマスを含む高濃度スラリー、および高濃度スラリーの製造方法、並びにバイオマス燃料の製造方法
DE102006055469A1 (de) * 2006-11-23 2008-05-29 Universität Paderborn Verfahren zur Herstellung eines Gegenstandes zumindest teilweise mit Siliziumkarbidgefüge aus einem Rohling aus einem kohlenstoffhaltigen Material
PL2131953T3 (pl) * 2007-02-08 2019-07-31 Grenol Ip Gmbh Hydrotermalne karbonizowanie biomasy
DE102007012112C5 (de) * 2007-03-13 2016-08-18 Loritus Gmbh Vorrichtung und Verfahren zur hydrothermalen Karbonisierung von Biomasse
JP2008253861A (ja) * 2007-03-30 2008-10-23 Bussan Food Science Kk バイオマス処理用連続式高圧水熱反応装置
DE102007022840A1 (de) * 2007-05-11 2008-12-24 Suncoal Industries Gmbh Verfahren zur Kühlung und Vorwärmung einer Anlage zur hydrothermalen Carbonisierung von Biomasse
WO2008138637A2 (de) * 2007-05-11 2008-11-20 Suncoal Industries Gmbh Verfahren und vorrichtung zur hydrothermalen karbonisierung (htc) von biomasse mit einer htc-anlage
DE102008058444B4 (de) * 2007-11-21 2020-03-26 Antacor Ltd. Verfahren und Verwendung einer Vorrichtung zur Herstellung von Brennstoffen, Humus oder Suspensionen davon
DE202008012419U1 (de) * 2008-09-18 2008-11-20 Agrokraft Gmbh Vorrichtung zur Behandlung von Biomasse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184443A1 (de) * 2000-09-04 2002-03-06 Biofuel B.V. Verfahren zur Herstellung von flüssigen Brennstoffen aus Biomasse
WO2008081407A2 (de) * 2006-12-28 2008-07-10 Schweiger, Martin Aus biomasse hergestellter werk- und/oder brennstoff
US20100162619A1 (en) * 2006-12-28 2010-07-01 Dominik Peus Material and/or fuel produced from biomass
WO2009090072A1 (de) * 2008-01-16 2009-07-23 Lucia Viviane Sanders Hydrothermale karbonisierung von biomasse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
English Translation of WO 2009/090072 A1 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110056125A1 (en) * 2008-04-17 2011-03-10 Csl Carbon Solutions Ltd. Process for converting biomass to coal-like material using hydrothermal carbonisation
US9228784B2 (en) 2009-07-08 2016-01-05 Sartorius Stedim Biotech Gmbh Plate heat exchanger
US20130011327A1 (en) * 2010-03-24 2013-01-10 Dominik Peus Method and Device for Treating Solid-Fluid Mixtures
US11097249B2 (en) * 2010-03-24 2021-08-24 Antacor, Ltd. Method and device for treating solid-fluid mixtures
US20130104450A1 (en) * 2010-04-29 2013-05-02 Mortimer Technology Holdings Limited Torrefaction process
EP2653451A1 (de) * 2012-04-20 2013-10-23 CS Carbon Solutions Verfahren und Vorrichtung für die Behandlung von Prozesswasser aus einem organischen Materialumwandlungsverfahren
EP2653452A1 (de) * 2012-04-20 2013-10-23 CS Carbon Solutions Vorrichtung und Verfahren für die Behandlung von Prozesswasser aus einem hydrothermalen organischen Materialumwandlungsverfahren
WO2013171081A1 (en) * 2012-05-18 2013-11-21 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Hydrothermal carbonization method for the coalification of carbohydrate-containing biomass
US20150303447A1 (en) * 2012-08-29 2015-10-22 Nippon Coke & Engineering Co., Ltd. Apparatus for manufacturing negative-electrode carbon material, and method for manufacturing negative-electrode carbon material using same
US10044024B2 (en) 2012-08-29 2018-08-07 Nippon Power Graphite Co., Ltd. Apparatus for manufacturing negative-electrode carbon material, and method for manufacturing negative-electrode carbon material using same
CN103480312A (zh) * 2013-09-18 2014-01-01 基伊埃工程技术(中国)有限公司 一种管式美拉德反应设备
US10781389B2 (en) 2015-09-28 2020-09-22 Grenol Ip Gmbh System for the treatment of organic waste
CN105174325A (zh) * 2015-09-28 2015-12-23 江苏振宇环保科技有限公司 一种利用糠醛渣制备糠醛废水处理剂的方法
EP3649218B1 (de) * 2017-07-07 2023-09-06 IFP Energies nouvelles Verfahren zur verarbeitung von biomasse durch vermahlen mit einem rohstoff auf fossiler basis
US20190234649A1 (en) * 2018-01-29 2019-08-01 Brian Gregory Phillips Tubular-shaped and modular air handling unit (ahu) for heating, ventilating, and air conditioning (hvac) systems
CN109401931A (zh) * 2018-12-08 2019-03-01 内蒙古弘达生物环保科技有限责任公司 一种沼气工程原料的进料及预处理系统
CN112662444A (zh) * 2019-10-16 2021-04-16 柳晶(溧阳)环保科技有限公司 一种超声分离铸造除尘灰中煤粉的方法
US11414609B2 (en) 2020-06-30 2022-08-16 Duke Technologies, Llc System for treating renewable feedstocks
US11525096B2 (en) 2020-06-30 2022-12-13 Duke Technologies, Llc Method for treating renewable feedstocks
US11254883B2 (en) 2020-06-30 2022-02-22 Duke Technologies, Llc Method and system for treating renewable feedstocks
CN116813173A (zh) * 2023-07-03 2023-09-29 中国海洋大学 一种海底采矿土资源化利用方法

Also Published As

Publication number Publication date
DE102008058444B4 (de) 2020-03-26
DK2467201T3 (da) 2019-10-28
EP2467201B1 (de) 2019-07-17
ES2751198T3 (es) 2020-03-30
WO2010058377A3 (de) 2011-06-23
WO2010058377A2 (de) 2010-05-27
AR074660A1 (es) 2011-02-02
BRPI0922500B1 (pt) 2021-07-27
CN102325587A (zh) 2012-01-18
JP6281802B2 (ja) 2018-02-21
EP2467201A4 (de) 2016-01-20
BRPI0922500A2 (pt) 2018-06-05
HUE046579T2 (hu) 2020-03-30
PT2467201T (pt) 2019-11-15
EP2467201A2 (de) 2012-06-27
DE102008058444A1 (de) 2009-05-28
LT2467201T (lt) 2019-11-11
EP3656836A1 (de) 2020-05-27
JP2012509383A (ja) 2012-04-19
PL2467201T3 (pl) 2020-03-31

Similar Documents

Publication Publication Date Title
US20110226603A1 (en) Method And Device For Producing Operating Materials Or Fuels
US11124723B2 (en) Apparatus and system for producing solid fuel from biomass
CN102260506B (zh) 一种橡胶树加工板材的废弃料综合利用的方法
TWI427142B (zh) 用以處理材料與燃料的方法及裝置
AU2013201163A1 (en) Apparatus and method for producing carbon enriched material and fuel from biomass

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION