US20110207893A1 - Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof - Google Patents
Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof Download PDFInfo
- Publication number
- US20110207893A1 US20110207893A1 US13/060,542 US200913060542A US2011207893A1 US 20110207893 A1 US20110207893 A1 US 20110207893A1 US 200913060542 A US200913060542 A US 200913060542A US 2011207893 A1 US2011207893 A1 US 2011207893A1
- Authority
- US
- United States
- Prior art keywords
- surface modifier
- poly
- trimer
- active group
- surface active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 CC1(C)CC(C)(CN**)CC(*)C1 Chemical compound CC1(C)CC(C)(CN**)CC(*)C1 0.000 description 13
- AWLALLYSLKZALY-UHFFFAOYSA-N CC(=O)CCC1(C)CC(N2C(=O)N(C3CCCC(CCC(=O)OCC(C)(C)COC(=O)OCC(C)(C)COC(=O)CCC4(C)CC(N5C(=O)N(C6CC(C)(C)CC(C)(CNC(C)=O)C6)C(=O)N(C6CC(C)(C)CC(C)(CNC(C)=O)C6)C5=O)CC(C)(C)C4)C3)C(=O)N(C3CC(C)(C)CC(C)(CNC(C)=O)C3)C2=O)CC(C)(C)C1.CC(=O)NCC1(C)CC(N2C(=O)N(C3CC(C)(C)CC(C)(CNC(C)=O)C3)C(=O)N(C3CC(C)(C)CC(C)(COC#N)C3)C2=O)CC(C)(C)C1.CC(C)(CO)COC(=O)OCC(C)(C)CO.CC1(C)CC(N2C(=O)N(C3CC(C)(C)CC(C)(COC#N)C3)C(=O)N(C3CC(C)(C)CC(C)(COC#N)C3)C2=O)CC(C)(CN=C=O)C1.CSC Chemical compound CC(=O)CCC1(C)CC(N2C(=O)N(C3CCCC(CCC(=O)OCC(C)(C)COC(=O)OCC(C)(C)COC(=O)CCC4(C)CC(N5C(=O)N(C6CC(C)(C)CC(C)(CNC(C)=O)C6)C(=O)N(C6CC(C)(C)CC(C)(CNC(C)=O)C6)C5=O)CC(C)(C)C4)C3)C(=O)N(C3CC(C)(C)CC(C)(CNC(C)=O)C3)C2=O)CC(C)(C)C1.CC(=O)NCC1(C)CC(N2C(=O)N(C3CC(C)(C)CC(C)(CNC(C)=O)C3)C(=O)N(C3CC(C)(C)CC(C)(COC#N)C3)C2=O)CC(C)(C)C1.CC(C)(CO)COC(=O)OCC(C)(C)CO.CC1(C)CC(N2C(=O)N(C3CC(C)(C)CC(C)(COC#N)C3)C(=O)N(C3CC(C)(C)CC(C)(COC#N)C3)C2=O)CC(C)(CN=C=O)C1.CSC AWLALLYSLKZALY-UHFFFAOYSA-N 0.000 description 1
- DUMSDLPWUAVLJQ-UHFFFAOYSA-N CC(C)(CCC1)CC1N Chemical compound CC(C)(CCC1)CC1N DUMSDLPWUAVLJQ-UHFFFAOYSA-N 0.000 description 1
- IRFPRRVXKOPIJI-UHFFFAOYSA-N CC1=CC=C(CC2=CC=C(N3C(=O)N(C4=CC=C(CC5=CC=C(N=C=O)C=C5)C=C4)C(=O)N(C4=CC=C(CC5=CC=C(OC#N)C=C5)C=C4)C3=O)C=C2)C=C1.CC1=CC=C(N2C(=O)N(C3=CC=C(C)C(N=C=O)=C3)C(=O)N(C3=CC=C(C)C(OC#N)=C3)C2=O)C=C1C Chemical compound CC1=CC=C(CC2=CC=C(N3C(=O)N(C4=CC=C(CC5=CC=C(N=C=O)C=C5)C=C4)C(=O)N(C4=CC=C(CC5=CC=C(OC#N)C=C5)C=C4)C3=O)C=C2)C=C1.CC1=CC=C(N2C(=O)N(C3=CC=C(C)C(N=C=O)=C3)C(=O)N(C3=CC=C(C)C(OC#N)=C3)C2=O)C=C1C IRFPRRVXKOPIJI-UHFFFAOYSA-N 0.000 description 1
- ZUWCZTHYHNDISN-UHFFFAOYSA-N CC1CCC(CC2CCC(N3C(=O)N(C4CCC(CC5CCC(N=C=O)CC5)CC4)C(=O)N(C4CCC(CC5CCC(OC#N)CC5)CC4)C3=O)CC2)CC1.CCC1(C)CC(N2C(=O)N(C3CC(C)(C)CC(C)(COC#N)C3)C(=O)N(C3CC(C)(C)CC(C)(COC#N)C3)C2=O)CC(C)(C)C1.CCCCCC.CCCCCCCCC(=O)N(CCCCCCOC#N)C(=O)CCCCCCCN=C=O.CN1C(=O)N(CCCCCCN=C=O)C(=O)N(N=C=O)C1=O Chemical compound CC1CCC(CC2CCC(N3C(=O)N(C4CCC(CC5CCC(N=C=O)CC5)CC4)C(=O)N(C4CCC(CC5CCC(OC#N)CC5)CC4)C3=O)CC2)CC1.CCC1(C)CC(N2C(=O)N(C3CC(C)(C)CC(C)(COC#N)C3)C(=O)N(C3CC(C)(C)CC(C)(COC#N)C3)C2=O)CC(C)(C)C1.CCCCCC.CCCCCCCCC(=O)N(CCCCCCOC#N)C(=O)CCCCCCCN=C=O.CN1C(=O)N(CCCCCCN=C=O)C(=O)N(N=C=O)C1=O ZUWCZTHYHNDISN-UHFFFAOYSA-N 0.000 description 1
- WMMDACNXAFFTCV-UHFFFAOYSA-N CCC(CCCCO)CCCCCO.CCCCCNC(C(=O)N(CCCCCCCC(=O)OCCCCCC(CC)CCCCOC(=O)CCCCCCCN(C(=O)C(NCCCCC)C(C)NO)C(=O)C(NCCCCC)C(C)NO)C(=O)C(NCCCCC)C(C)NO)C(C)NO.CCCCCNC(C(=O)N(CCCCCCN=C=O)C(=O)C(NCCCCC)C(C)NO)C(C)NO.CSC.[H]N(CCCCCCN=C=O)C(=O)N(CCCCCCOC#N)C(=O)N([H])CCCCCCN=C=O Chemical compound CCC(CCCCO)CCCCCO.CCCCCNC(C(=O)N(CCCCCCCC(=O)OCCCCCC(CC)CCCCOC(=O)CCCCCCCN(C(=O)C(NCCCCC)C(C)NO)C(=O)C(NCCCCC)C(C)NO)C(=O)C(NCCCCC)C(C)NO)C(C)NO.CCCCCNC(C(=O)N(CCCCCCN=C=O)C(=O)C(NCCCCC)C(C)NO)C(C)NO.CSC.[H]N(CCCCCCN=C=O)C(=O)N(CCCCCCOC#N)C(=O)N([H])CCCCCCN=C=O WMMDACNXAFFTCV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/71—Monoisocyanates or monoisothiocyanates
- C08G18/714—Monoisocyanates or monoisothiocyanates containing nitrogen in addition to isocyanate or isothiocyanate nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/227—Catalysts containing metal compounds of antimony, bismuth or arsenic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/288—Compounds containing at least one heteroatom other than oxygen or nitrogen
- C08G18/2885—Compounds containing at least one heteroatom other than oxygen or nitrogen containing halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/44—Polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6204—Polymers of olefins
- C08G18/6208—Hydrogenated polymers of conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/751—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
- C08G18/752—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
- C08G18/753—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
- C08G18/755—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/7806—Nitrogen containing -N-C=0 groups
- C08G18/7818—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
- C08G18/7831—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing biuret groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
- C08G18/792—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8061—Masked polyisocyanates masked with compounds having only one group containing active hydrogen
- C08G18/8083—Masked polyisocyanates masked with compounds having only one group containing active hydrogen with compounds containing at least one heteroatom other than oxygen or nitrogen
- C08G18/8087—Masked polyisocyanates masked with compounds having only one group containing active hydrogen with compounds containing at least one heteroatom other than oxygen or nitrogen containing halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/04—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
- C08L27/06—Homopolymers or copolymers of vinyl chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/06—Polysulfones; Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/139—Open-ended, self-supporting conduit, cylinder, or tube-type article
Definitions
- the invention relates to surface modifying macromolecules (SMMs) having high degradation temperatures and their use in the manufacture of articles made from base polymers which require high temperature processing.
- SMMs surface modifying macromolecules
- Various fluorochemicals have been used to impart water and oil repellency, as well as soil resistance, to a variety of substrates. These fluorochemicals have most often been applied topically (for example, by spraying, padding, or finish bath immersion).
- the resulting repellent substrates have found use in numerous applications where water and/or oil repellency (as well as soil resistance) characteristics are valued, such as in protective garments for medical technicians and laboratory workers.
- the repellent substrates can be used, for example, where it is desirable to prevent passage of blood, blood-borne pathogens, and other body fluids across the fabric (i.e., to block exposure to chemically toxic or infectious agents), and to reduce exposure to low surface tension chemicals, such as alcohols, ketones, and aldehydes.
- Medical care garments and protective wear garments used commercially are often fully or partially constructed of extruded articles e.g. thermoplastic films, thermoplastic fibers, fibrous non-woven materials, thermoplastic foam materials etc. Examples of these products are in surgical drapes, gowns and bandages, protective wear garments (e.g., workers overalls, facemasks, and labcoats, among others). These materials require high temperature processing conditions often exceeding 200° C.
- fluorochemicals lack the requisite thermal stability to be processed at temperatures above 200° C. (for example, in melt spun applications where high extrusion temperatures often exceeding 275-300° C. are involved).
- thermally s′ additives which can be used in admixture with base polymers that require high temperature processing to impart water, oil repellency, and/or lower surface energy.
- the invention provides surface modifying macromolecule (SMM or surface modifier) additives having high degradation temperatures. These SMMs are useful in the manufacture of articles made from base polymers which require high temperature processing.
- the invention features a surface modifier of formula (I):
- A is a soft segment including hydrogenated polybutadiene, poly (2,2 dimethyl-1-3-propylcarbonate), polybutadiene, poly (diethylene glycol)adipate, diethylene glycol-ortho phthalic anhydride polyester, poly (hexamethyhlenecarbonate)diol, hydroxyl terminated polydimethylsiloxanes (PrO-PDMS-PrO) block copolymer, poly(tetramethyleneoxide)diol, hydrogenated-hydroxyl terminated polyisoprene, poly(ethyleneglycol)-block-poly(propyleneglycol))-block-poly(ethylene glycol), 1,12-dodecanediol, poly(hexamethylene carbonate), poly (ethylene-co-butylene), 1,6-hexanediol-ortho phthalic anhydride polyester, neopentyl glycol-ortho phthalic anhydride polyester,
- Surface modifiers of formula (I) can have a thermal degradation temperature of at least 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395, 400, 405, 410, 415, 420, 425, 430, 435, 440, 445, or even 350° C.
- the surface modifier has a thermal degradation temperature of between 200 and 250° C., 220 and 250° C., 220 and 300° C., 220 and 280° C., 220 and 260° C., 240 and 300° C., 240 and 280° C., 240 and 260° C., 260 and 300° C., 260 and 280° C., 200 and 345° C., 220 and 345° C., 250 and 345° C., 275 and 345° C., 300 and 450° C., 320 and 450° C., 340 and 450° C., 360 and 450° C., 380 and 450° C., 400 and 450° C., 420 and 450° C., 300 and 430° C., 300 and 410° C., 300 and 400° C., 300 and 380° C., 300 and 360° C., 300 and 340° C., and 300 and 320° C., 300 and 320° C., 300 and
- the soft segment has a number average molecular weight (M n ) of 500 to 3,500 Daltons.
- M n is between 500 to 1000, 500 to 1250, 500 to 1500, 500 to 1750, 500 to 2000, 500 to 2250, 500 to 2500, 500 to 2750, 500 to 3000, 500 to 3250, 1000 to 1250, 1000 to 1500, 1000 to 1750, 1000 to 2000, 1000 to 2250, 1000 to 2500, 1000 to 2750, 1000 to 3000, 1000 to 3250, 1000 to 3500, 1500 to 1750, 1500 to 2000, 1500 to 2250, 1500 to 2500, 1500 to 2750, 1500 to 3000, 1500 to 3250, or 1500 to 3500 Daltons.
- the surface active group has a molecular weight of between 100-1,500 Daltons. In still other embodiments, the surface active group has a molecular weight of between 100-1,500,100-1,400,100-1,300,100-1,200,100-1,100,100-1,000,100-900, 100-900, 100-800, 100-700, 100-600, 100-500, 100-400, 100-300, or 100-200 Daltons.
- Surface active groups include, without limitation, polydimethylsiloxanes, hydrocarbons, polyfluoroalkyl, fluorinated polyethers, and combinations thereof.
- the surface active group is a polyfluoroalkyl, such as 1H,1H,2H,2H-perfluoro-1-decanol ((CF 3 )(CF 2 ) 7 CH 2 CH 2 OH), 1H,1H,2H,2H-perfluoro-1-octanol ((CF 3 )(CF 2 ) 5 CH 2 CH 2 OH); 1H,1H,5H-perfluoro-1-pentanol (CHF 2 (CF 2 ) 3 CH 2 OH); and 1H,1H, perfluoro-1-butanol ((CF 3 )(CF 2 ) 2 CH 2 OH), or mixtures thereof (e.g., mixtures of (CF 3 )(CF 2 ) 7 CH 2 CH 2 OH and (CF 3 )(CF 2
- n is an integer from 0-5 (e.g., 0, 1, 2, 3, 4, or 5). Desirably, n is 0, 1, or 2.
- the surface modifiers of the invention can have a theoretical molecular weight of less than 25 kDa, desirably less than 20 kDa, 18 kDa, 16 kDa, 15 kDa, 14 kDa, 13 kDa, 12 kDa, 11 kDa, 10 kDa, 8 kDa, 6 kDa, or even 4 kDa.
- the surface modifiers of the invention have a theoretical molecular weight of 9 kDa, 8.5 kDa, 7.5 kDa, 7 kDa, 6.5 kDa, 5.5 kDa, 5 kDa, 4.5 kDa, 3.5 kDa, 3 kDa, 2.5 kDa, 2 kDa, 1.5 kDa or 1 kDa.
- the surface modifiers of the invention can include from 5% to 35%, 10% to 35%, 5 to 30%, 10 to 30%, 5 to 20%, 5 to 15%, or 15 to 30% (w/w) of the hard segment; from 40 to 90%, 50 to 90%, 60 to 90%, 40 to 80%, or 40 to 70% (w/w) of the soft segment; and from 25 to 55%, 25 to 50%, 25 to 45%, 25 to 40%, 25 to 35%, 25 to 30%, 30 to 55%, 30 to 50%, 30 to 45%, 30 to 40%, 30 to 35%, 35 to 55%, 35 to 50%, 35 to 45%, 35 to 40%, 40 to 55%, 40 to 50%, 40 to 45%, 45 to 55%, 45 to 50%, or 50-55% (w/w) of the surface active group.
- the invention also features an admixture including a surface modifier of the invention admixed with a base polymer.
- the base polymer is selected from polypropylenes, polyethylenes, polyesters, polyurethanes, nylons, polysilicones, polystyrenes, poly(methyl methacrylates), polyvinylacetates, polycarbonates, poly(acrylonitrile-butadiene)s, polyvinylchloride, and blends thereof.
- SMMs including hydrogenated polybutadiene can be admixed with polypropylenes or polyethylenes
- SMMs including poly (2,2 dimethyl-1-3-propylcarbonate) can be admixed with polyurethanes
- SMMs including poly (ethylene-co-butylene) can be admixed with polyethylenes or polyurethanes.
- the admixtures can be prepared by (i) combining the base polymer and the surface modifier to form a mixture, and (ii) heating the mixture above 200° C., 220° C., 250° C., 270° C., 300° C., 320° C. or 350° C.
- the admixtures of the invention contain from 0.05% to 20%, 0.05% to 15%, 0.05% to 13%, 0.05% to 10%, 0.05% to 5%, 0.05% to 3%, 0.5% to 15%, 0.5% to 10%, 0.5% to 6%, 0.5% to 4%, 1% to 15%, 1% to 10%, 1% to 8%, 1% to 6%, 1% to 5%, 2% to 5%, or 4% to 8% (w/w) surface modifier.
- the invention further features an article formed from an admixture of the invention.
- Articles that can be formed using the admixtures of the invention include, without limitation, surgical caps, surgical sheets, surgical covering clothes, surgical gowns, masks, gloves, surgical drapes, filter (e.g., part of a respirator, water filter, air filter, or face mask), cables, films, panels, pipes, fibers, sheets, and implantable medical device (e.g., a cardiac-assist device, a catheter, a stent, a prosthetic implant, an artificial sphincter, or a drug delivery device).
- a cardiac-assist device e.g., a catheter, a stent, a prosthetic implant, an artificial sphincter, or a drug delivery device.
- the invention also features a method for making an article by (i) combining a base polymer with a surface modifier of the invention to form a mixture, and (ii) heating the mixture to at least 150° C. Desirably, the mixture is heated to a temperature of between 250° C. and 450° C.
- the invention further features a method for increasing the thermal degradation temperature of a surface modifier of formula (I):
- A is a soft segment
- B is a hard segment including a urethane trimer or biuret trimer
- each G is a surface active group
- n is an integer between 0-10, and
- step (a) or (b) is performed in the presence of a bismuth (e.g, a bismuth carboxylate) catalyst.
- a bismuth e.g, a bismuth carboxylate
- the diol soft segment is selected from hydrogenated-hydroxyl terminated polybutadiene, poly (2,2 dimethyl-1-3-propylcarbonate) diol, poly (hexamethylene carbonate)diol, poly (ethylene-co-butylene)diol, hydroxyl terminated polybutadiene polyol, poly (diethylene glycol)adipate, poly(tetramethylene oxide) diol, diethylene glycol-ortho phthalic anhydride polyester polyol, 1,6-hexanediol-ortho phthalic anhydride polyester polyol, neopentyl glycol-ortho phthalic anhydride polyester polyol, and bisphenol A ethoxylate diol.
- step (a) includes reacting a diisocyanate with hydrogenated-hydroxyl terminated polybutadiene or poly (2,2 dimethyl-1-3-propylcarbonate) diol.
- the diisocyanate is selected from 3-isocyanatomethyl, 3,5,5-trimethyl cyclohexylisocyanate; 4,4′-methylene bis(cyclohexyl isocyanate); 4,4′-methylene bis(phenyl) isocyanate; toluene-2,4 diisocyanate); and hexamethylene diisocyanate.
- Monohydroxylic surface active groups useful in making the SMMs of the invention include any disclosed herein.
- the monohydroxylic surface active group is selected from compounds of the general formula CF 3 (CF 2 ) r CH 2 CH 2 OH wherein r is 2-20, and CF 3 (CF 2 ) s (CH 2 CH 2 O) ⁇ CH 2 CH 2 OH wherein ⁇ is 1-10 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) and s is 1-20 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20.
- the invention also features a surface modifier of formula (II):
- A is a soft segment
- B is a hard segment including a urethane trimer or biuret trimer
- B′ is a hard segment including a urethane
- each G is a surface active group
- n is an integer between 0 to 10 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) and the surface modifier has a thermal degradation temperature of between 250° C. and 450° C.
- Surface modifiers of formula (II) can have a thermal degradation temperature of at least 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395, 400, 405, 410, 415, 420, 425, 430, 435, 440, 445, or even 350° C.
- the surface modifier has a thermal degradation temperature of between 200 and 250° C., 220 and 250° C., 220 and 300° C., 220 and 280° C., 220 and 260° C., 240 and 300° C., 240 and 280° C., 240 and 260° C., 260 and 300° C., 260 and 280° C., 200 and 345° C., 220 and 345° C., 250 and 345° C., 275 and 345° C., 300 and 450° C., 320 and 450° C., 340 and 450° C., 360 and 450° C., 380 and 450° C., 400 and 450° C., 420 and 450° C., 300 and 430° C., 300 and 410° C., 300 and 400° C., 300 and 380° C., 300 and 360° C., 300 and 340° C., and 300 and 320° C., 300 and 320° C., 300 and
- the invention also features a method of increasing repellency by annealing a surface modifier with a base polymer where the annealing temperature is between 50° C. and 75° C. and the annealing time is between 1-24 hours.
- the surface modifier has the following structure
- A is a soft segment
- B is a hard segment including a urethane trimer or biuret trimer
- B′ is a hard segment including a urethane
- each G is a surface active group
- n is an integer between 0 to 10 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) and the surface modifier has a thermal degradation temperature of between 250° C. and 450° C.
- the surface modifier has a thermal degradation temperature of between 200 and 250° C., 220 and 250° C., 220 and 300° C., 220 and 280° C., 220 and 260° C., 240 and 300° C., 240 and 280° C., 240 and 260° C., 260 and 300° C., 260 and 280° C., 200 and 345° C., 220 and 345° C., 250 and 345° C., 275 and 345° C., 300 and 450° C., 320 and 450° C., 340 and 450° C., 360 and 450° C., 380 and 450° C., 400 and 450° C., 420 and 450° C., 300 and 430° C., 300 and 410° C., 300 and 400° C., 300 and 380° C., 300 and 360° C., 300 and 340° C., and 300 and 320° C., 300 and 320° C., 300 and
- the annealing temperature is 50° C., 51° C., 52° C., 53° C., 54° C., 54.4° C., 55° C., 56° C., 57° C., 58° C., 59° C., 60° C., 61° C., 62° C., 63° C., 64° C., 65° C., 70° C., or 75° C.
- the annealing time is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 hours.
- surface modifier refers to the compounds described herein or in U.S. Pat. No. 6,127,507 or in U.S. patent application Ser. No. 12/002,226, each of which is herein incorporated by reference.
- a surface modifier can also be described as a relatively low molecular weight polymer or oligomer containing a central portion of less than 20 kDa and covalently attached to at least one surface active group. The low molecular weight of the surface modifier allows for diffusion among the macromolecular polymer chains of a base polymer.
- surface active group is meant a lipophilic group covalently tethered to a surface modifier.
- the surface active group can be positioned to cap one or both termini of the central polymeric portion of the surface modifier or can be attached to one or more side chains present in the central polymeric portion of the surface modifier.
- surface active groups include, without limitation, polydimethylsiloxanes, hydrocarbons, polyfluoroalkyl, fluorinated polyethers, and combinations thereof.
- thermal degradation temperature refers to the temperature at which there is an onset of weight loss (a first onset representing a small weight loss, followed by a second onset at a considerably higher temperature representing the major fraction of the weight) of the SMM during thermographic analysis.
- the thermal stability of the SMMs have also been tested under rigorous heating conditions e.g. 220, 260 and 300° C. for 10 and 25 minutes and the corresponding weight losses have been determined at these temperatures. These are typical temperatures experienced by polymers during processing at conditions that require high temperatures.
- the prolonged heating times of 10 and 25 minutes under isothermal conditions are rather harsh where in reality the polymers would only experience shorter residence time during actual processing (e.g., ⁇ 5 minutes) Additionally, the prolonged heating times are to test the integrity of these surface modifiers and gauge the extent of degradation through the weight losses occurring at 10 and 25 minutes. This analysis is described in Example 1.
- FIGS. 1 a - 1 n show the chemical structures of SMM1-SMM14.
- FIG. 9 shows thermal data and polymer characterization data, including TGA and EA results, for SMM1-SMM14.
- FIG. 10 is a plot showing the surface modification of various base polymers, e.g., polyurethane, siloxane, polypropylene, and polyvinyl chloride, when admixed with SMM and the percent fluorine on the surface of these polymers after XPS analysis.
- base polymers e.g., polyurethane, siloxane, polypropylene, and polyvinyl chloride
- FIG. 11 shows the IPA repellency of surface-modified meltblown (MB) fabric as function of annealing time & temperature.
- FIG. 12 shows the IPA repellency of surface modified MB fabric after a sterilization cycle.
- FIG. 13 illustrates the repellency of treated and untreated nonwoven fabric.
- FIG. 14 illustrates repellency achieved on MB fabrics after brief, direct contact with hot plate surfaces at 100-130° C.
- FIG. 15 shows repellency to alcohol solutions with concentrations as high as 80 vol % IPA can be achieved on spunbond fabrics modified with SMMs.
- the methods and compositions of the invention feature thermally stable SMMs useful for the surface modification of a range of commercially available base polymers which are processed at high temperatures, such as polypropylene, polyethylene, polyesters, nylon, polyurethanes, silicones, PVC, polycarbonates, polysulfones, polyethersulfones, among others.
- the invention features a series of SMMs based on biurets and isocyanurates of hexamethylene diisocyanate and isophorone diisocyanate having enhanced fluorination.
- the SMMs also possess high temperature stability at temperatures >200° C. and compatibility with base polymers (e.g., polyurethanes, polyethylenes, polypropylenes, polysiloxanes, polyvinyl chlorides, and polycarbonate) and may be used in the manufacture of articles for both implantable and non-implantable devices.
- base polymers e.g., polyurethanes, polyethylenes, polypropylenes, polysiloxanes, polyvinyl chlorides, and polycarbonate
- the SMM additives in this invention are added into the desired base polymer during processing whether it is being extruded, meltspun, spunbond, solvent spun, or injection molded.
- the additives can impart material properties that include, but are not limited to: (a) heat and chemical resistance, mechanical strength, (b) oil and water repellency, (c) surface smoothness, (d resistance to hydrocarbons, acids, polar solvents and bases, (e) dimensional stability at high temperatures, (f) hydrophobicity, (g) non-adhesive characteristics, (h) hydrophilicity characteristics, (i) biocompatibility, and (j) surface hardness.
- Exemplary soft segments include, but are not limited to: hydrogenated-hydroxyl terminated polybutadiene (HLBH), poly (2,2 dimethyl-1-3-propylcarbonate)diol (PCN), poly (hexamethylene carbonate)diol (PHCN), poly(ethylene-co-butylene)diol (PEB), hydroxyl terminated polybutadiene polyol (LBHP), poly(diethylene glycol)adipate (PEGA), poly(tetramethylene oxide)diol (PTMO), diethylene glycol-orthophthalic anhydride polyester polyol (PDP), 1,6-hexanediol-ortho phthalic anhydride polyester polyol (SPH), neopentyl glycol-orthophthalic anhydride polyester polyol (SPN), bisphenol A ethoxylate diol (BPAE), hydrogenated hydroxyl terminated polyisoprene (HHTPI), poly(2-butyl-2-eth
- Suitable hard segments include biuret and urethane trimers (e.g., biurets and isocyanurates of hexamethylene diisocyanate and isophorone diisocyanate).
- Exemplary trimers suitable for use as hard segments are available as Desmodur products from Bayer.
- Exemplary Desmodur products useful in the macromolecules of the invention include:
- Surface active groups include, without limitation, polydimethylsiloxanes, hydrocarbons, polyfluoroalkyl, fluorinated polyethers, and combinations thereof.
- the surface active group is a polyfluoroalkyl, such as 1H,1H,2H,2H-perfluoro-1-decanol; 1H,1H,2H,2H-perfluoro-1-octanol; 1H,1H,5H-perfluoro-1-pentanol; and 1H,1H, perfluoro-1-butanol, or mixtures thereof or a radical of the general formulas CH m F (3-m) (CF 2 ) r CH 2 CH 2 — or CH m F (3-m) (CF 2 ) s (CH 2 CH 2 O) ⁇ —, where m is 0, 1, 2, or 3; ⁇ is an integer between 1-10; r is an integer between 2-20; and s is an integer between 1-20.
- Surface modifiers of the invention can be prepared as described in U.S. Pat. No. 6,127,507, incorporated herein by reference, and in Examples 1-6.
- Surface modifiers, according to the invention can be selected in a manner that they contain a soft segment selected to impart thermal stability.
- Such soft segments can include hydrogenated-hydroxyl terminated polybutadiene, poly (2,2 dimethyl-1-3-propylcarbonate) diol, hydroxyl terminated polybutadiene polyol, poly (diethylene glycol)adipate, diethylene glycol-ortho phthalic anhydride polyester polyol, and 1,6-hexanediol-ortho phthalic anhydride polyester polyol.
- the invention also includes methods for increasing the thermal stability of an SMM using the synthetic methods described herein to improve their compatibility with the conditions characteristic of base polymer processing techniques.
- the SMMs of the invention are prepared using catalysts that do not include tin, such as bismuth catalysts (e.g., bismuth carboxylate catalysts). It has been shown that residual tin in the final product is cytotoxic, and small amounts can also catalyze and accelerate the degradation of an SMM upon heating, leading to reduced thermal stability.
- bismuth catalysts e.g., bismuth carboxylate catalysts
- Bismuth is non cytotoxic and environmentally friendly.
- the use of bismuth catalysts increases the biocompatibility of the polymers and leads to improved reaction kinetics, producing products that have narrower molecular weight distributions and are more thermally stable.
- residual bismuth levels must be kept to a minimum to prevent depolymerization upon heating.
- Bismuth catalysts that can be purchased for use in the methods of the invention include Bi348, Bi221, and Bi601 (bismuth carboxylates, King Industries, Norwalk Conn.), as well as bismuth tris(neodecanoate) (NeoBi 200, Shepherd Chemicals).
- the soft segment of the surface modifier can function as an anchor for the surface modifier within the base polymer substrate upon admixture.
- the surface active groups are responsible, in part, for carrying the surface modifier to the surface of the admixture, where the surface active groups are exposed on the surface.
- Suitable base polymers include, without limitation, commodity plastics such as poly(vinyl chloride), polyethylenes (high density, low density, very low density), polypropylene, and polystyrene; engineering plastics such as, for example, polyesters (e.g., poly (ethylene terephthalate) and poly (butylene terephthalate)), polyamides (aliphatic, amorphous, aromatic), polycarbonates (e.g., aromatic polycarbonates such as those derived from bisphenol A), polyoxymethylenes, polyacrylates and polymethacrylates (e.g., poly (methyl methacrylate)), some modified polystyrenes (for example, styrene-acrylonitrile (SAN) and acrylonitrile-butadiene-styrene (ABS) copolymers), high-impact polystyrenes (SB), fluoroplastics, and blends such as poly (phenylene oxide)-polys
- commodity plastics such as poly(vin
- the base polymer is combined with a surface modifier of the invention to form an admixture.
- Thermoplastic polymers are more preferred in view of their melt processability.
- the thermoplastic polymers are melt processable at elevated temperatures (e.g., above 200° C., 240° C., 270° C., or even 300° C.).
- Desirable thermoplastic base polymers for use in the admixtures of the invention include, without limitation, polypropylenes, polyethylenes, polyesters, polyurethanes, nylons, polystyrene, poly(methyl methacrylates), polyvinylacetates, polycarbonates, poly(acrylonitrile-butadiene), styrene, polyvinylchloride, and blends thereof.
- the surface modifier is added prior to melt processing of the base polymer to produce various articles.
- the surface modifier can be, for example, mixed with pelletized or powdered polymer and then melt processed by known methods such as, for example, molding, melt blowing, melt spinning, or melt extrusion.
- the surface modifier can be mixed directly with the polymer in the melt condition or can first be pre-mixed with the polymer in the form of a concentrate of the surface modifier/polymer admixture in a brabender mixer. If desired, an organic solution of the surface modifier can be mixed with powdered or pelletized polymer, followed by evaporation of the solvent and then by melt processing.
- the surface modifier can be injected into a molten polymer stream to form an admixture immediately prior to extrusion into fibers, or any other desired shape.
- an annealing step can be carried out to enhance the development of repellent characteristics of the base polymer.
- the melt processed combination can also be embossed between two heated rolls, one or both of which can be patterned.
- An annealing step typically is conducted below the melt temperature of the polymer (e.g., at about 150-220° C. for up to 5 minutes in the case of polyamide).
- the finished article can be subjected to a heated sterilization process (e.g., ethylene oxide sterilization (EtO sterilization) at 54.4° C.).
- the surface modifier is added to thermoplastic or thermosetting polymer in amounts sufficient to achieve the desired repellency properties for a particular application.
- the amount of surface modifier used is in the range of 0.05-15% (w/w) of the admixture.
- the amounts can be determined empirically and can be adjusted as necessary or desired to achieve the repellency properties without compromising other physical properties of the polymer.
- the base polymer-SMM admixture is processed to produce melt-blown or melt-spun fibers
- these fibers can be used to make non-woven fabrics which have utility in any application where some level of repellency is desired.
- the SMMs of the invention can be used for medical fabrics, medical and industrial apparel, fabrics for use in making clothing, home furnishings, and filtration systems, such as chemical process filters or respirators. Other applications are in the automotive and construction industries.
- the fabrics exhibit alcohol and water repellency characteristics.
- the fabrics can also exhibit oil repellency (and soil resistance) characteristics under a variety of environmental conditions and can be used in a variety of applications.
- Non-woven webs or fabrics can be prepared by processes used in the manufacture of either melt-blown or spunbonded webs. For example, a process similar to that described by Wente in “Superfine Thermoplastic Fibers,” Indus. Eng'g Chem. 48, 1342 (1956) or by Wente et al. in “Manufacture of Superfine Organic Fibers,” Naval Research Laboratories Report No. 4364 (1954) can be used.
- Multi-layer constructions made from non-woven fabrics enjoy wide industrial and commercial utility, for example, as medical fabrics. The makeup of the constituent layers of such multi-layer constructions can be varied according to the desired end-use characteristics, and the constructions can comprise two or more layers of melt-blown and spunbonded webs in many useful combinations such as those described in U.S. Pat.
- the surface modifier can be used in one or more layers to impart repellency characteristics to the overall construction.
- the base polymer-SMM admixture is melt processed to produce a desired shape using an appropriate mold.
- the surface modifiers and admixtures of the invention can be used in films and nonwoven applications, e.g surgical drapes, gowns, face masks, wraps, bandages and other protective wear garments for medical technicians (e.g. workers overalls, labcoats) require high temperature processing often exceeding 200° C. in the form of extruded articles (e.g., thermoplastic films, thermoplastic fibers, fibrous nonwoven materials, thermoplastic foam materials etc) where processing temperatures can reach a range of 250-300° C.
- the surface modifiers and admixtures of the invention can also be used in implantable medical devices (e.g central venous catheters to impart reduced occlusion properties, and increased blood compatibility).
- the surface modifiers and admixtures of the invention may also be used in hollow fiber membrane filtration made from polyethylene, polypropylenes or polysiloxane base polymers for fluid or gas separation.
- the surface modifiers and admixtures of the invention have the required high temperature stability during the processing in nonwoven fabric manufacturing or the compatibility with the polymers that are used in catheter manufacture.
- the admixtures therefore can provide the required resistance to degradation at high temperatures while providing the water and/or oil and/or alcohol repellency together with the desired biocompatible properties.
- the technology involves the incorporation of the SMMs into the base polymers which then bloom to the surface, thus modifying the surface of the polymers but keeping the bulk properties intact.
- the base polymers now have a fluorinated surface with a high degree of hydrophobicity.
- Implanted devices include, without limitation, prostheses such as pacemakers, electrical leads such as pacing leads, defibrillators, artificial hearts, ventricular assist devices, anatomical reconstruction prostheses such as breast implants, artificial heart valves, heart valve stents, pericardial patches, surgical patches, coronary stents, vascular grafts, vascular and structural stents, vascular or cardiovascular shunts, biological conduits, pledges, sutures, annuloplasty rings, stents, staples, valved grafts, dermal grafts for wound healing, orthopedic spinal implants, orthopedic pins, intrauterine devices, urinary stents, maxial facial reconstruction plating, dental implants, intraocular lenses, clips, sternal wires, bone, skin, ligaments, tendons, and combination thereof.
- prostheses such as pacemakers, electrical leads such as pacing leads, defibrillators, artificial hearts, ventricular assist devices, anatomical reconstruction prostheses such as breast implants, artificial heart valves,
- Percutaneous devices include, without limitation, catheters of various types, cannulas, drainage tubes such as chest tubes, surgical instruments such as forceps, retractors, needles, and gloves, and catheter cuffs.
- Cutaneous devices include, without limitation, burn dressings, wound dressings and dental hardware, such as bridge supports and bracing components.
- admixtures that include a surface modifier that includes a polysiloxane as a soft segment are used in the manufacture of catheters.
- the SMMs of the invention can be constructed by appropriate design combinations of the hard segments (e.g., diisocyanates or triisocyanates), central soft segments (e.g., diols), and the fluorinated end-capping groups to form a wide range of polyurethanes with the desired high degradation temperatures, and specifically employing bismuth catalysts in the polymerization.
- the hard segments e.g., diisocyanates or triisocyanates
- central soft segments e.g., diols
- fluorinated end-capping groups e.g., fluorinated end-capping groups
- HMDI 4,4′-methylene bis(cyclohexyl isocyanate)
- IPDI Isophorone Diisocyanate
- TMXDI m-tetramethylenexylene Diisocyanate
- HLBH Hydrogenated-hydroxyl terminated polybutadiene
- PCN Poly (2,2 dimethyl-1-3-propylcarbonate) diol
- PHCN Poly (hexamethylene carbonate)diol
- PEGA Poly (diethylene glycol)adipate
- PTMO Poly(tetramethylene Oxide) diol
- PDP Diethylene Glycol-Ortho phthalic Anhydride polyester
- HHTPI hydrogenated hydroxyl terminated polyisoprene
- C22 hydroxylterminated polydimethylsiloxanes block copolymer
- DDD 1,12-dodecanediol
- the bismuth catalysts listed above can be purchased from King Industries (Norwalk Conn.). Any bismuth catalyst known in the art can be used to synthesize the SMMs of the invention.
- SMM4 and SMM6 may be synthesized by a 2-step convergent method according to the schemes depicted in schemes 1 and 2.
- the polyisocyanate such as Desmodur N3200 or Desmodur 4470 is reacted dropwise with the surface active group (e.g., a fluoroalkyl alcohol) in an organic solvent (e.g. anhydrous THF or dimethylacetamide (DMAC)) in the presence of a catalyst at 25° C. for 2 hours.
- an organic solvent e.g. anhydrous THF or dimethylacetamide (DMAC)
- the catalyst residues are eliminated by first dissolving the SMM in hot THF or in hot IPA followed by reacting the SMM with EDTA solution, followed by precipitation in MeOH. Finally, the SMM is dried in a rotary evaporator at 120-140° C. prior to use.
- THF 300 mL of THF (or DMAC) was then added to the Desmodur N3300 containing vessel, and the mixture was stirred to dissolve the polyisocyanate. Similarly, 622 mL of THF was added to the HLBH polyol, and the mixture was stirred to dissolve the polyol. Likewise, 428 mL of THF (or DMAC) was added to the perfluorinated alcohol and the mixture was stirred to dissolve. Similarly for K-Kat 348 which was dissolved in 77 mL of THF or DMAC. Stirring was continued to ensure all the reagents were dissolved in their respective vessels.
- the SMM solution was allowed to cool at ambient temperature.
- a 30 L flask was filled with 15 liters of MeOH (methanol) and the polymer solution was slowly pored into this vessel with constant stirring for 10 minutes, at which time the polymer began to precipitate out.
- the crude polymer was allowed to settle, and the supernatant was siphoned out.
- the polymer was washed 2 ⁇ with MeOH (5 L), each time with vigorous stirring.
- the polymer was redissolved in THF at 70° C., and an EDTA solution (240 mL) was added. This was stirred at 70° C., after which another 240 mL of EDTA solution was added. The heat was turned off, and the solution was stirred for another 30 minutes.
- FIGS. 1 a - 1 n Examples of exemplary SMMs that can be prepared according to the procedures described herein are illustrated in FIGS. 1 a - 1 n.
- Thermogravimetric analysis (TGA) is often used to determine thermal stability by means of weight-loss decomposition profiles as a function of temperature. This was carried out using a TA instruments TGA Q500 (V6.3 Build 189 with autosampler) Thermogravimetric Analyzer operating in Dynamic (High Resolution), Hi-ResTM mode ⁇ resolution: 4, max ramp: 50° C./min, max temp: 500° C.
- the Hi-Res TGA mode varies the heating rate as a function of sample weight loss rate, which allows the use of high heating rates during no weight loss regions and reduced heating rates at weight loss transitions to more accurately depict the decomposition characteristics of the test sample. This technique improves the reproducibility and resolution of onsets by separating overlapping or poorly defined events and it eliminates the dependence of decomposition behavior on the heating rate.
- FIGS. 2-8 show the thermal degradation pattern of various examples of SMM having different chemistries.
- SMM2 FIG. 2
- SMM3 FIG. 3
- SMM 5 FIG. 4
- SMM 7 FIG. 5
- SMM8 FIG. 6
- SMM10 FIG. 7
- SMM 11 FIG. 8
- Other thermal data and polymer characterization data, including TGA and EA results, are summarized in FIG. 9 .
- CarbothaneTM (Thermedics Inc MA, USA), PE, and PP were used as control polymer and the base polymer.
- SMM admixtures prepared according to Example 2 were analyzed by XPS to determine the concentration of surface fluorine (hydrophobic) as well as the Urethane chemistries (polar groups). The measurements were performed at a single take-off angle of 90° corresponding to a depth of 100 ⁇ or at 20° corresponding to a depth of 10 ⁇ , and a surface area of 4 ⁇ 7 mm 2 was analyzed.
- the films were investigated for relative atomic percentages of fluorine (F), oxygen (O), nitrogen, carbon (C), and silicon (Si).
- the SMM additives were compounded into master batches and diluted to concentrations of 2-3 weight % in the meltblowing process.
- Processing aids e.g., commercially available low-molecular weight hydrocarbon polymers
- Nonwoven fabric was obtained in the meltblowing process conducted at 260° C. with a throughput of 0.4 g/hole/min.
- the nonwoven fabric produced was soft in texture, with a basis weight of ⁇ 25 gsm and a fiber diameter of ⁇ 3 ⁇ m.
- Repellency tests using various concentrations of 70% isopropanol (IPA) solutions were conducted on the fabric immediately after it emerged from the meltblowing process line. The fabric was again tested after annealing at low temperatures in an air flow oven.
- the American Association of Textile Chemists and Colorists (AATCC) standard test method 193-2005 was used for repellency testing of the fabric, with the modification that solutions were prepared in volumetric concentrations instead of ratios.
- AATCC American Association of Textile Chemists and Colorists
- FIG. 13 illustrates the repellency of treated and untreated nonwoven fabric.
- the control fabric polypropylene without SMM treatment
- the fabric on the right shows remarkable repellency indicated by the shape of the IPA droplet on the fabric without wetting.
- Heat exposure encountered during sterilization is sufficient to promote migration of SMM additives, with no additional annealing required.
- desired repellency of the fabric can also be achieved by brief contact exposure (2-10 seconds) to temperatures of 100-130° C.
- Fabrics for medical garments may experience such conditions during standard manufacturing processes, such as drying of anti-static treatments or calendar bonding of multilayer fabrics.
- FIG. 14 illustrates repellency achieved on MB fabrics after brief, direct contact with hot plate surfaces at 100-130° C.
- SMMs were used in a spunbond (SB) trial conducted on R&D prototyping equipment set up to mimic conditions of a spunbond pilot line. Specifically, a small-scale extruder with 4 temperature zones was connected to a metering pump and a die with 68 spinnerette holes. The extruder was positioned on scaffolding above a guiding shaft that directed the extruded fibers into an attenuator gun supplied with high pressure air, which was used to stretch the extruded fibers. The attenuated fibers were deposited on a moving mesh in a random fashion. The nonwoven webs thus formed were not bonded.
- SB spunbond
- the compounded resins were extruded into spunbond nonwoven webs using the R&D equipment at a process temperature of 230° C. at the die.
- FIG. 15 shows repellency to alcohol solutions with concentrations as high as 80 vol % IPA can be achieved on spunbond fabrics modified with SMMs.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyurethanes Or Polyureas (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/060,542 US20110207893A1 (en) | 2008-08-28 | 2009-08-28 | Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9266708P | 2008-08-28 | 2008-08-28 | |
PCT/US2009/055418 WO2010025398A1 (fr) | 2008-08-28 | 2009-08-28 | Biuret thermiquement stable et macromolécules à base d’isocyanurate modificatrices de surface et leurs utilisations |
US13/060,542 US20110207893A1 (en) | 2008-08-28 | 2009-08-28 | Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/055418 A-371-Of-International WO2010025398A1 (fr) | 2008-08-28 | 2009-08-28 | Biuret thermiquement stable et macromolécules à base d’isocyanurate modificatrices de surface et leurs utilisations |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/323,427 Continuation US8318867B2 (en) | 2008-08-28 | 2011-12-12 | Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof |
US14/188,441 Continuation US9751972B2 (en) | 2008-08-28 | 2014-02-24 | Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110207893A1 true US20110207893A1 (en) | 2011-08-25 |
Family
ID=41721959
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/060,542 Abandoned US20110207893A1 (en) | 2008-08-28 | 2009-08-28 | Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof |
US13/323,427 Active US8318867B2 (en) | 2008-08-28 | 2011-12-12 | Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof |
US14/188,441 Active US9751972B2 (en) | 2008-08-28 | 2014-02-24 | Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof |
US15/665,528 Abandoned US20180179327A1 (en) | 2008-08-28 | 2017-08-01 | Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof |
US16/776,382 Abandoned US20200165376A1 (en) | 2008-08-28 | 2020-01-29 | Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/323,427 Active US8318867B2 (en) | 2008-08-28 | 2011-12-12 | Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof |
US14/188,441 Active US9751972B2 (en) | 2008-08-28 | 2014-02-24 | Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof |
US15/665,528 Abandoned US20180179327A1 (en) | 2008-08-28 | 2017-08-01 | Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof |
US16/776,382 Abandoned US20200165376A1 (en) | 2008-08-28 | 2020-01-29 | Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof |
Country Status (9)
Country | Link |
---|---|
US (5) | US20110207893A1 (fr) |
EP (1) | EP2321360B1 (fr) |
JP (1) | JP5529135B2 (fr) |
CN (1) | CN102203153B (fr) |
CA (1) | CA2735442C (fr) |
DK (1) | DK2321360T3 (fr) |
ES (1) | ES2854798T3 (fr) |
HK (1) | HK1162556A1 (fr) |
WO (1) | WO2010025398A1 (fr) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110009799A1 (en) * | 2009-05-15 | 2011-01-13 | Interface Biologics, Inc. | Antithrombogenic hollow fiber membranes and filters |
US20110031100A1 (en) * | 2008-12-02 | 2011-02-10 | University Of Ottawa | Composite membranes for membrane distillation and related methods of manufacture |
US8603070B1 (en) | 2013-03-15 | 2013-12-10 | Angiodynamics, Inc. | Catheters with high-purity fluoropolymer additives |
US8784402B1 (en) | 2013-03-15 | 2014-07-22 | Angiodynamics, Inc. | Catheters with fluoropolymer additives |
US9206283B1 (en) | 2013-03-15 | 2015-12-08 | Angiodynamics, Inc. | Thermoplastic polyurethane admixtures |
US9764884B2 (en) | 2014-10-06 | 2017-09-19 | Interface Biologics, Inc. | Packaging materials including a barrier film |
US9867908B2 (en) | 2006-11-07 | 2018-01-16 | Angiodynamics, Inc. | Dialysis catheters with fluoropolymer additives |
US10166321B2 (en) | 2014-01-09 | 2019-01-01 | Angiodynamics, Inc. | High-flow port and infusion needle systems |
CN110167995A (zh) * | 2016-10-18 | 2019-08-23 | 界面生物公司 | 具有表面改性大分子的塑化pvc混合物和由其制成的制品 |
CN110891620A (zh) * | 2017-05-30 | 2020-03-17 | 赢创加拿大公司 | 具有改性表面的人工瓣膜 |
CN112135882A (zh) * | 2018-05-18 | 2020-12-25 | 赢创加拿大公司 | 抗细菌粘附的表面 |
US10961340B2 (en) | 2017-07-14 | 2021-03-30 | Fresenius Medical Care Holdings, Inc. | Method for providing surface modifying composition with improved byproduct removal |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2102258B1 (fr) | 2006-12-14 | 2016-10-19 | Interface Biologics Inc. | Macromolécules modificatrices de surface à fortes températures de dégradation et leur utilisation |
WO2010025398A1 (fr) * | 2008-08-28 | 2010-03-04 | Interface Biologics Inc. | Biuret thermiquement stable et macromolécules à base d’isocyanurate modificatrices de surface et leurs utilisations |
CN102933658A (zh) | 2009-12-18 | 2013-02-13 | 界面生物公司 | 从自组装涂层局部递送药物 |
US9464160B2 (en) | 2010-08-27 | 2016-10-11 | The Chemours Company Fc, Llc | Fluorinated ethoxylated polyurethanes |
CN103108891B (zh) * | 2010-09-24 | 2014-08-27 | 日本曹达株式会社 | 末端丙烯酸改性聚丁二烯或末端丙烯酸改性氢化聚丁二烯的制造方法以及含有它们的组合物 |
SG11201708658VA (en) * | 2015-04-24 | 2017-11-29 | Lubrizol Advanced Mat Inc | Surface modified polymer compositions |
US10827757B2 (en) | 2015-10-12 | 2020-11-10 | Lubrizol Advanced Materials, Inc. | Biocidally active polymer compositions |
WO2017195035A1 (fr) * | 2016-05-10 | 2017-11-16 | Interface Biologics, Inc. | Capteurs de glucose implantables à surface biostable |
EP3497145B1 (fr) * | 2016-08-09 | 2021-07-07 | Solvay Specialty Polymers Italy S.p.A. | Composition contenant des polymeres aromatiques et fluores |
MX2019009454A (es) * | 2017-02-09 | 2019-11-05 | Evonik Degussa Gmbh | Polimeros para el acabado textil hidrofobico y oleofobico. |
WO2019021258A1 (fr) * | 2017-07-28 | 2019-01-31 | Sabic Global Technologies B.V. | Matériel de laboratoire présentant des propriétés de liaison de protéine et/ou d'adn réduites |
CN112638436A (zh) | 2018-05-22 | 2021-04-09 | 界面生物公司 | 用于将药物递送至血管壁的组合物和方法 |
KR20230074543A (ko) * | 2020-09-25 | 2023-05-30 | 에보닉 캐나다 인크. | 윤활성 또는 저마찰 특성을 갖는 표면 |
EP4301498A1 (fr) | 2021-05-14 | 2024-01-10 | Fresenius Medical Care Holdings, Inc. | Membrane polymère et ses procédés de production |
CN113980228A (zh) * | 2021-10-12 | 2022-01-28 | 广州先进技术研究所 | 一种大分子表面改性剂及其合成方法 |
JP2023152867A (ja) * | 2022-03-30 | 2023-10-17 | 三井化学株式会社 | スパンボンド不織布、衛生材料及びスパンボンド不織布の製造方法 |
Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3392183A (en) * | 1963-02-08 | 1968-07-09 | Bayer Ag | Preparation of biuret polyisocyanates |
US3427366A (en) * | 1965-06-18 | 1969-02-11 | Sinclair Research Inc | Hydrocarbon rubber and polyurethane prepared from a polyisocyanate and an hydroxy terminated diene polymer |
US3872058A (en) * | 1971-09-27 | 1975-03-18 | Amc Corp | Fluorinated polyurethane stain repellents |
US4312907A (en) * | 1979-07-20 | 1982-01-26 | Hiraoka & Co. Ltd. | Water-impermeable sheet material |
US4584362A (en) * | 1985-02-27 | 1986-04-22 | Cosan Chemical Corporation | Bismuth catalyst system for preparing polyurethane elastomers |
US4661530A (en) * | 1982-07-16 | 1987-04-28 | Medtronic, Inc. | Biocompatible, antithrombogenic materials suitable for reconstructive surgery |
US4742090A (en) * | 1986-03-31 | 1988-05-03 | The Dow Chemical Company | Bismuth/carboxylic acid catalysts for preparing elastomers |
US4788083A (en) * | 1986-03-27 | 1988-11-29 | Ashland Oil, Inc. | Tin or bismuth complex catalysts and trigger cure of coatings therewith |
US4792354A (en) * | 1986-02-05 | 1988-12-20 | Asahi Glass Company Ltd. | Water and oil repellent having excellent desoiling properties |
US4861830A (en) * | 1980-02-29 | 1989-08-29 | Th. Goldschmidt Ag | Polymer systems suitable for blood-contacting surfaces of a biomedical device, and methods for forming |
US4994503A (en) * | 1989-09-13 | 1991-02-19 | The Dow Chemical Company | Particulate polymer and polymer compositions therewith |
US5064871A (en) * | 1989-07-19 | 1991-11-12 | Essex Specialty Products, Inc. | Latent catalysts comprising bismuth carboxylates and zirconium carboxylates |
US5145727A (en) * | 1990-11-26 | 1992-09-08 | Kimberly-Clark Corporation | Multilayer nonwoven composite structure |
US5149576A (en) * | 1990-11-26 | 1992-09-22 | Kimberly-Clark Corporation | Multilayer nonwoven laminiferous structure |
US5242995A (en) * | 1991-01-07 | 1993-09-07 | Korea Institute Of Science And Technology | Perfluorocarbon-grafted polyurethane with improved blood compatibility and process for their preparation |
US5395525A (en) * | 1991-10-23 | 1995-03-07 | Hisateru Takano | Apparatus for exchanging substances |
US5486570A (en) * | 1994-09-29 | 1996-01-23 | Shell Oil Company | Polyurethane sealants and adhesives containing saturated hydrocarbon polyols |
US5543200A (en) * | 1994-12-19 | 1996-08-06 | Gencorp Inc. | Abrasion-resistant article coated with a coating compositions based on fluorinated monohydric alcohol |
US5589563A (en) * | 1992-04-24 | 1996-12-31 | The Polymer Technology Group | Surface-modifying endgroups for biomedical polymers |
US5779897A (en) * | 1996-11-08 | 1998-07-14 | Permea, Inc. | Hollow fiber membrane device with inert filaments randomly distributed in the inter-fiber voids |
US5908701A (en) * | 1996-12-10 | 1999-06-01 | The Dow Chemical Company | Preparation of filled reactive polyurethane carpet backing formulations using an in-line continuous mixing process |
US5929201A (en) * | 1996-03-29 | 1999-07-27 | Elsicon, Inc. | Fluorinated amine products |
US6111049A (en) * | 1996-02-09 | 2000-08-29 | Shell Oil Company | Polyurethanes having improved moisture resistance |
US6127485A (en) * | 1997-07-28 | 2000-10-03 | 3M Innovative Properties Company | High temperature-stable fluorochemicals as hydrophobic and oleophobic additives to synthetic organic polymers |
US6127507A (en) * | 1995-08-03 | 2000-10-03 | Santerre; Paul J. | Fluoroligomer surface modifiers for polymers and articles made therefrom |
US6254645B1 (en) * | 1999-08-20 | 2001-07-03 | Genencor International, Inc. | Enzymatic modification of the surface of a polyester fiber or article |
US6353057B1 (en) * | 1999-02-10 | 2002-03-05 | King Industries, Inc. | Catalyzing cationic resin and blocked polyisocyanate with bismuth carboxylate |
US6448364B1 (en) * | 2001-03-16 | 2002-09-10 | Bayer Corporation | IMR having synergistic effect with stabilizing system additives and catalyst package |
RU2215012C2 (ru) * | 2001-11-27 | 2003-10-27 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Состав для защиты полимерных композиционных материалов |
US20040121175A1 (en) * | 2002-12-20 | 2004-06-24 | Flexman Edmund A. | Layered articles having polyoxymethylene blend substrates with enhanced surface properties and at least one layer thereon and process for making the same |
US20050176893A1 (en) * | 2004-01-20 | 2005-08-11 | Dipak Rana | Hydrophilic surface modifying macromolecules (H-phil SMM) and H-phil SMM blended membranes |
US20070037891A1 (en) * | 2005-04-15 | 2007-02-15 | Roseita Esfand | Methods and compositions for the delivery of biologically active agents |
US20080228253A1 (en) * | 2006-12-14 | 2008-09-18 | Sanjoy Mullick | Surface modifying macromolecules with high degradation temperatures and uses thereof |
US20090211968A1 (en) * | 2006-01-17 | 2009-08-27 | Interface Biologics, Inc. | Alcohol and Water Repellant Non-Woven Fabrics |
US20110009799A1 (en) * | 2009-05-15 | 2011-01-13 | Interface Biologics, Inc. | Antithrombogenic hollow fiber membranes and filters |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS585320A (ja) | 1981-07-01 | 1983-01-12 | Toray Ind Inc | グラフト共重合体 |
JPS6041950B2 (ja) | 1981-09-04 | 1985-09-19 | 旭硝子株式会社 | 抗凝血性材料 |
JPS5849770A (ja) * | 1981-09-17 | 1983-03-24 | Dai Ichi Kogyo Seiyaku Co Ltd | 有機高分子材料の接着性改良剤 |
NL8800577A (nl) | 1988-03-08 | 1989-10-02 | Stichting Tech Wetenschapp | Werkwijze voor het aanbrengen van een bloedcompatibele bekleding op polyetherurethaanvormstukken. |
US4841007A (en) | 1988-03-28 | 1989-06-20 | Becton Dickinson And Company | Fluorinated polyetherurethanes and medical devices therefrom |
US5264572A (en) * | 1990-03-12 | 1993-11-23 | Asahi Denka Kogyo K.K. | Catalyst for isocyanate trimerization |
DE4308807A1 (de) | 1993-03-19 | 1994-09-22 | Gambro Dialysatoren | Verfahren zur Herstellung hydrophiler Membranen |
DE69705399T2 (de) * | 1996-05-17 | 2002-05-02 | Minnesota Mining And Mfg. Co., Saint Paul | Eine gute leistung beider lufttrocknung von wäsche versorgende fluorochemische polyurethane |
US5989698A (en) | 1997-02-10 | 1999-11-23 | 3M Innovative Properties Company | Coated porous materials |
EP0981562B1 (fr) | 1997-05-14 | 2002-09-04 | Minnesota Mining And Manufacturing Company | Composition fluoree renfermant un polyurethanne qui possede un oligomere fluore et un segment hydrophile pour conferer des proprietes facilitant le lavage a un substrat |
FR2766828B1 (fr) | 1997-07-31 | 1999-10-22 | Hospal Ind | Compositions generatrices de polyurethane non cytotoxique |
ITMI991303A1 (it) * | 1999-06-11 | 2000-12-11 | Ausimont Spa | Oligouretani fluorurati |
DE69923359T2 (de) * | 1999-10-28 | 2005-12-22 | 3M Innovative Properties Co., Saint Paul | Zusammensetzungen und daraus hergestellte gegenstände |
SE0203857L (sv) | 2002-12-20 | 2004-06-21 | Gambro Lundia Ab | Permselektivt membran och förfarande för tillverkning därav |
US20050129882A1 (en) * | 2003-12-16 | 2005-06-16 | Snow Larry G. | Processes for preparing printable and printed articles |
US8933166B2 (en) * | 2004-09-01 | 2015-01-13 | Ppg Industries Ohio, Inc. | Poly(ureaurethane)s, articles and coatings prepared therefrom and methods of making the same |
US20070014927A1 (en) * | 2005-07-15 | 2007-01-18 | Buckanin Richard S | Fluorochemical urethane composition for treatment of fibrous substrates |
US20070032624A1 (en) * | 2005-08-05 | 2007-02-08 | Bayer Materialscience Llc | Low surface energy polyisocyanates and their use in one- or two-component coating compositions |
US7470745B2 (en) * | 2006-11-13 | 2008-12-30 | E. I. Du Pont De Nemours And Company | Perfluoroether based polymers |
WO2010025398A1 (fr) * | 2008-08-28 | 2010-03-04 | Interface Biologics Inc. | Biuret thermiquement stable et macromolécules à base d’isocyanurate modificatrices de surface et leurs utilisations |
CN102933658A (zh) | 2009-12-18 | 2013-02-13 | 界面生物公司 | 从自组装涂层局部递送药物 |
-
2009
- 2009-08-28 WO PCT/US2009/055418 patent/WO2010025398A1/fr active Application Filing
- 2009-08-28 US US13/060,542 patent/US20110207893A1/en not_active Abandoned
- 2009-08-28 JP JP2011525245A patent/JP5529135B2/ja active Active
- 2009-08-28 EP EP09810679.2A patent/EP2321360B1/fr active Active
- 2009-08-28 CA CA2735442A patent/CA2735442C/fr active Active
- 2009-08-28 DK DK09810679.2T patent/DK2321360T3/da active
- 2009-08-28 ES ES09810679T patent/ES2854798T3/es active Active
- 2009-08-28 CN CN200980142812.7A patent/CN102203153B/zh active Active
-
2011
- 2011-12-12 US US13/323,427 patent/US8318867B2/en active Active
-
2012
- 2012-03-27 HK HK12103020.4A patent/HK1162556A1/xx unknown
-
2014
- 2014-02-24 US US14/188,441 patent/US9751972B2/en active Active
-
2017
- 2017-08-01 US US15/665,528 patent/US20180179327A1/en not_active Abandoned
-
2020
- 2020-01-29 US US16/776,382 patent/US20200165376A1/en not_active Abandoned
Patent Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3392183A (en) * | 1963-02-08 | 1968-07-09 | Bayer Ag | Preparation of biuret polyisocyanates |
US3427366A (en) * | 1965-06-18 | 1969-02-11 | Sinclair Research Inc | Hydrocarbon rubber and polyurethane prepared from a polyisocyanate and an hydroxy terminated diene polymer |
US3872058A (en) * | 1971-09-27 | 1975-03-18 | Amc Corp | Fluorinated polyurethane stain repellents |
US4312907A (en) * | 1979-07-20 | 1982-01-26 | Hiraoka & Co. Ltd. | Water-impermeable sheet material |
US4861830A (en) * | 1980-02-29 | 1989-08-29 | Th. Goldschmidt Ag | Polymer systems suitable for blood-contacting surfaces of a biomedical device, and methods for forming |
US4661530A (en) * | 1982-07-16 | 1987-04-28 | Medtronic, Inc. | Biocompatible, antithrombogenic materials suitable for reconstructive surgery |
US4584362A (en) * | 1985-02-27 | 1986-04-22 | Cosan Chemical Corporation | Bismuth catalyst system for preparing polyurethane elastomers |
US4584362B1 (fr) * | 1985-02-27 | 1990-03-13 | Cosan Chem Corp | |
US4792354A (en) * | 1986-02-05 | 1988-12-20 | Asahi Glass Company Ltd. | Water and oil repellent having excellent desoiling properties |
US4788083A (en) * | 1986-03-27 | 1988-11-29 | Ashland Oil, Inc. | Tin or bismuth complex catalysts and trigger cure of coatings therewith |
US4742090A (en) * | 1986-03-31 | 1988-05-03 | The Dow Chemical Company | Bismuth/carboxylic acid catalysts for preparing elastomers |
US5064871A (en) * | 1989-07-19 | 1991-11-12 | Essex Specialty Products, Inc. | Latent catalysts comprising bismuth carboxylates and zirconium carboxylates |
US4994503A (en) * | 1989-09-13 | 1991-02-19 | The Dow Chemical Company | Particulate polymer and polymer compositions therewith |
US5145727A (en) * | 1990-11-26 | 1992-09-08 | Kimberly-Clark Corporation | Multilayer nonwoven composite structure |
US5149576A (en) * | 1990-11-26 | 1992-09-22 | Kimberly-Clark Corporation | Multilayer nonwoven laminiferous structure |
US5242995A (en) * | 1991-01-07 | 1993-09-07 | Korea Institute Of Science And Technology | Perfluorocarbon-grafted polyurethane with improved blood compatibility and process for their preparation |
US5395525A (en) * | 1991-10-23 | 1995-03-07 | Hisateru Takano | Apparatus for exchanging substances |
US5589563A (en) * | 1992-04-24 | 1996-12-31 | The Polymer Technology Group | Surface-modifying endgroups for biomedical polymers |
US5486570A (en) * | 1994-09-29 | 1996-01-23 | Shell Oil Company | Polyurethane sealants and adhesives containing saturated hydrocarbon polyols |
US5543200A (en) * | 1994-12-19 | 1996-08-06 | Gencorp Inc. | Abrasion-resistant article coated with a coating compositions based on fluorinated monohydric alcohol |
US6127507A (en) * | 1995-08-03 | 2000-10-03 | Santerre; Paul J. | Fluoroligomer surface modifiers for polymers and articles made therefrom |
US6111049A (en) * | 1996-02-09 | 2000-08-29 | Shell Oil Company | Polyurethanes having improved moisture resistance |
US5929201A (en) * | 1996-03-29 | 1999-07-27 | Elsicon, Inc. | Fluorinated amine products |
US5779897A (en) * | 1996-11-08 | 1998-07-14 | Permea, Inc. | Hollow fiber membrane device with inert filaments randomly distributed in the inter-fiber voids |
US5908701A (en) * | 1996-12-10 | 1999-06-01 | The Dow Chemical Company | Preparation of filled reactive polyurethane carpet backing formulations using an in-line continuous mixing process |
US6127485A (en) * | 1997-07-28 | 2000-10-03 | 3M Innovative Properties Company | High temperature-stable fluorochemicals as hydrophobic and oleophobic additives to synthetic organic polymers |
US6353057B1 (en) * | 1999-02-10 | 2002-03-05 | King Industries, Inc. | Catalyzing cationic resin and blocked polyisocyanate with bismuth carboxylate |
US6254645B1 (en) * | 1999-08-20 | 2001-07-03 | Genencor International, Inc. | Enzymatic modification of the surface of a polyester fiber or article |
US6448364B1 (en) * | 2001-03-16 | 2002-09-10 | Bayer Corporation | IMR having synergistic effect with stabilizing system additives and catalyst package |
RU2215012C2 (ru) * | 2001-11-27 | 2003-10-27 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Состав для защиты полимерных композиционных материалов |
US20040121175A1 (en) * | 2002-12-20 | 2004-06-24 | Flexman Edmund A. | Layered articles having polyoxymethylene blend substrates with enhanced surface properties and at least one layer thereon and process for making the same |
US20050176893A1 (en) * | 2004-01-20 | 2005-08-11 | Dipak Rana | Hydrophilic surface modifying macromolecules (H-phil SMM) and H-phil SMM blended membranes |
US20070037891A1 (en) * | 2005-04-15 | 2007-02-15 | Roseita Esfand | Methods and compositions for the delivery of biologically active agents |
US20090211968A1 (en) * | 2006-01-17 | 2009-08-27 | Interface Biologics, Inc. | Alcohol and Water Repellant Non-Woven Fabrics |
US20080228253A1 (en) * | 2006-12-14 | 2008-09-18 | Sanjoy Mullick | Surface modifying macromolecules with high degradation temperatures and uses thereof |
US20110271961A1 (en) * | 2006-12-14 | 2011-11-10 | Interface Biologics Inc. | Surface modifying macromolecules with high degradation temperatures and uses thereof |
US20110009799A1 (en) * | 2009-05-15 | 2011-01-13 | Interface Biologics, Inc. | Antithrombogenic hollow fiber membranes and filters |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9867908B2 (en) | 2006-11-07 | 2018-01-16 | Angiodynamics, Inc. | Dialysis catheters with fluoropolymer additives |
US20110031100A1 (en) * | 2008-12-02 | 2011-02-10 | University Of Ottawa | Composite membranes for membrane distillation and related methods of manufacture |
US9346021B2 (en) * | 2008-12-02 | 2016-05-24 | Membrane Distillation Desalination Ltd., Co. | Composite membranes for membrane distillation and related methods of manufacture |
US11766511B2 (en) | 2009-05-15 | 2023-09-26 | Interface Biologics, Inc. | Antithrombogenic hollow fiber membranes and filters |
US9884146B2 (en) | 2009-05-15 | 2018-02-06 | Interface Biologics Inc. | Antithrombogenic hollow fiber membranes and filters |
US8877062B2 (en) | 2009-05-15 | 2014-11-04 | Interface Biologics, Inc. | Antithrombogenic hollow fiber membranes and filters |
US20110009799A1 (en) * | 2009-05-15 | 2011-01-13 | Interface Biologics, Inc. | Antithrombogenic hollow fiber membranes and filters |
US9687597B2 (en) | 2009-05-15 | 2017-06-27 | Interface Biologies, Inc. | Antithrombogenic hollow fiber membranes and filters |
US9206283B1 (en) | 2013-03-15 | 2015-12-08 | Angiodynamics, Inc. | Thermoplastic polyurethane admixtures |
US9744269B2 (en) | 2013-03-15 | 2017-08-29 | Interface Biologics, Inc. | Thermoplastic polyurethane admixtures |
US8784402B1 (en) | 2013-03-15 | 2014-07-22 | Angiodynamics, Inc. | Catheters with fluoropolymer additives |
US8603070B1 (en) | 2013-03-15 | 2013-12-10 | Angiodynamics, Inc. | Catheters with high-purity fluoropolymer additives |
US10166321B2 (en) | 2014-01-09 | 2019-01-01 | Angiodynamics, Inc. | High-flow port and infusion needle systems |
US9764884B2 (en) | 2014-10-06 | 2017-09-19 | Interface Biologics, Inc. | Packaging materials including a barrier film |
CN110167995A (zh) * | 2016-10-18 | 2019-08-23 | 界面生物公司 | 具有表面改性大分子的塑化pvc混合物和由其制成的制品 |
US10557030B2 (en) | 2016-10-18 | 2020-02-11 | Evonik Canada Inc. | Plasticized PVC admixtures with surface modifying macromolecules and articles made therefrom |
EP3529300A4 (fr) * | 2016-10-18 | 2020-03-18 | Evonik Canada Inc. | Mélanges de pvc plastifiés avec des macromolécules modifiant la surface et articles fabriqués à partir de ceux-ci |
CN110891620A (zh) * | 2017-05-30 | 2020-03-17 | 赢创加拿大公司 | 具有改性表面的人工瓣膜 |
US10961340B2 (en) | 2017-07-14 | 2021-03-30 | Fresenius Medical Care Holdings, Inc. | Method for providing surface modifying composition with improved byproduct removal |
CN112135882A (zh) * | 2018-05-18 | 2020-12-25 | 赢创加拿大公司 | 抗细菌粘附的表面 |
Also Published As
Publication number | Publication date |
---|---|
US20180179327A1 (en) | 2018-06-28 |
US20150025198A1 (en) | 2015-01-22 |
JP2012501377A (ja) | 2012-01-19 |
WO2010025398A1 (fr) | 2010-03-04 |
EP2321360B1 (fr) | 2020-11-25 |
US9751972B2 (en) | 2017-09-05 |
US20120148774A1 (en) | 2012-06-14 |
US20200165376A1 (en) | 2020-05-28 |
EP2321360A1 (fr) | 2011-05-18 |
US8318867B2 (en) | 2012-11-27 |
HK1162556A1 (en) | 2012-08-31 |
CN102203153B (zh) | 2014-03-12 |
JP5529135B2 (ja) | 2014-06-25 |
DK2321360T3 (da) | 2021-02-08 |
EP2321360A4 (fr) | 2013-10-30 |
ES2854798T3 (es) | 2021-09-22 |
CA2735442C (fr) | 2018-09-11 |
CN102203153A (zh) | 2011-09-28 |
CA2735442A1 (fr) | 2010-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200165376A1 (en) | Thermally stable biuret and isocyanurate based surface modifying macromolecules and uses thereof | |
DE69027950T2 (de) | Auf Polyurethan basierende Polymermaterialien und diese verwendende biomedizinische Artikel und pharmazeutische Zusammensetzungen | |
JP5491191B2 (ja) | 高い分解温度を有する表面改質用高分子及びその使用 | |
DE60222563T2 (de) | Bioaktive oberflächen-modifizierer für polymere und die daraus hergestellten gegenstände | |
CN110891621B (zh) | 具有改性表面的血管移植物 | |
JP7118000B2 (ja) | 殺生物活性ポリマー組成物 | |
TW201002371A (en) | Medical devices with hydrophilic coatings | |
US9982132B2 (en) | Alloy comprising polyolefin and thermoplastic polyurethane | |
JP2011514425A (ja) | 親水性ポリウレタン溶液 | |
WO2011032650A2 (fr) | Polyuréthane-urées hydrophiles à base de cyclohexandiméthanol | |
US20240165307A1 (en) | Medical composition and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERFACE BIOLOGICS, INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MULLICK, SANJOY;PIOTROWICZ, ALEXANDRA;HO, JEANNETTE;AND OTHERS;REEL/FRAME:028759/0688 Effective date: 20081027 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |