US20100331585A1 - Phenanthrene derivative, and material for organic el element - Google Patents

Phenanthrene derivative, and material for organic el element Download PDF

Info

Publication number
US20100331585A1
US20100331585A1 US12/668,105 US66810508A US2010331585A1 US 20100331585 A1 US20100331585 A1 US 20100331585A1 US 66810508 A US66810508 A US 66810508A US 2010331585 A1 US2010331585 A1 US 2010331585A1
Authority
US
United States
Prior art keywords
group
phenanthroline
skeleton
carbon atoms
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/668,105
Inventor
Masahiro Kawamura
Kazuki Nishimura
Yoriyuki Takashima
Mitsunori Ito
Toshihiro Iwakuma
Toshinari Ogiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Assigned to IDEMITSU KOSAN CO., LTD. reassignment IDEMITSU KOSAN CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ITO, MITSUNORI, IWAKUMA, TOSHIHIRO, KAWAMURA, MASAHIRO, NISHIMURA, KAZUKI, OGIWARA, TOSHINARI, TAKASHIMA, YORIYUKI
Publication of US20100331585A1 publication Critical patent/US20100331585A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/547Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered
    • C07C13/567Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered with a fluorene or hydrogenated fluorene ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/24Polycyclic condensed hydrocarbons containing two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/30Phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/08Radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO

Definitions

  • the present invention relates to a phenanthrene derivative and a material for organic EL devices.
  • Organic electroluminescence devices which include organic emitting layers between anodes and cathodes, are known to emit light using exciton energy generated by recombination of holes and electrons injected into the organic emitting layers.
  • Such an organic EL device is advantageous as a self-emitting device, and expected to serve as an emitting device excellent in luminous efficiency, image quality, power saving and thin design.
  • a doping method for use of an emitting material in an organic EL device, a doping method, according to which a dopant material is doped to a host material, has been known as a usable method.
  • the exciton energy generated by the host is transferred to the dopant, so that light is emitted from the dopant.
  • Patent Document 1 JP-A-2007-84485
  • Patent Document 2 JP-A-2006-151966
  • Patent Document 3 JP-A-2005-19219
  • Patent Document 4 JP-A-2005-8588
  • Patent Document 5 JP-A-2004-18510
  • Patent Document 6 WO2007/46658
  • Patent Document 7 JP-A-2003-142267
  • Patent Document 8 JP-A-2004-75567
  • Patent Document 9 WO2006/114966
  • Patent Document 10 JP-A-2005-197262
  • Patent Document 11 WO2006/39982
  • an aspect of the invention provides a phenanthrene derivative and organic-EL-device material capable of providing an organic EL device excellent in luminous efficiency, heat resistance and lifetime and free from pixel defects.
  • an organic EL device having high efficiency, high heat resistance and long lifetime without pixel defects can be provided by using a phenanthrene derivative represented by the following formula (1) as an organic-EL-device material, and reached the present invention.
  • a phenanthrene derivative according to an aspect of the invention is represented by a formula (1) below.
  • Ar 1 and Ar 2 each represent an aromatic hydrocarbon ring group having 6 to 18 carbon atoms for forming the ring, the aromatic hydrocarbon ring group containing none of anthracene skeleton, pyrene skeleton, aceanthrylene skeleton and naphthacene skeleton.
  • Ar 1 and Ar 2 may be bonded in any positions of the phenanthrene skeleton.
  • R 1 represents an alkyl group, cycloalkyl group, alkoxy group, cyano group, silyl group, halogen atom or an aryl group. R 1 may be bonded in any positions of the phenanthrene skeleton.
  • k represents an integer of 0 to 8, which represents the number of substituents R 1 directly bonded to the phenanthrene main chain.
  • the plurality of R 1 may be mutually the same or different.
  • n and m each represent an integer of 1 to 3.
  • the pluralities of Ar 1 and Ar 2 may be independently the same or different.
  • a material for organic EL devices contains the phenanthrene derivative represented by the formula (1).
  • An organic EL device includes a single-layered or multilayered organic thin-film layer between a cathode and an anode, the organic thin-film layer including an emitting layer, at least one layer of the organic thin-film layer containing the phenanthrene derivative represented by the formula (1).
  • the aspects of the invention can provide a phenanthrene derivative and organic-EL-device material capable of providing an organic EL device excellent in luminous efficiency, heat resistance and lifetime and free from pixel defects.
  • a phenanthrene derivative according to an aspect of the invention is represented by a formula (1) below.
  • Ar 1 and Ar 2 each represent an aromatic hydrocarbon ring group having 6 to 18 carbon atoms for forming the ring, the aromatic hydrocarbon ring group containing none of anthracene skeleton, pyrene skeleton, aceanthrylene skeleton and naphthacene skeleton.
  • Ar 1 and Ar 2 may be bonded in any positions of the phenanthrene skeleton.
  • R 1 represents an alkyl group, cycloalkyl group, alkoxy group, cyano group, silyl group, halogen atom or an aryl group. R 1 may be bonded in any position of the phenanthrene skeleton.
  • k represents an integer of 0 to 8, which represents the number of substituents R 1 directly bonded to the phenanthrene main chain.
  • the plurality of R 1 may be mutually the same or different.
  • n and m each represent an integer of 1 to 3.
  • the pluralities of Ar 1 and Ar 2 may be independently the same or different.
  • Ar 1a , Ar 1b and Ar 1c in the formulae (1-m-1) to (1-m-3) and Ar 1a , Ar 2b and Ar 2c in the formulae (1-n-1) to (1-n-3) may each be independently the same or different.
  • (—[Ar 1 ] m —H) (—[Ar 2 ] n —H)
  • at least either one of (—[Ar 1 ] m —H) and (—[Ar 2 ] n —H) is bonded in 1st, 4th, 5th, 8th, 9th or 10th position of the phenanthrene skeleton.
  • ring carbon atoms means carbon atoms that form a saturated ring, unsaturated ring or aromatic ring
  • ring atoms means carbon atoms and hetero atoms that form a hetero ring (encompassing a saturated ring, unsaturated ring and aromatic ring).
  • the phenanthrene derivative according to the aspect of the invention is favorably usable as an organic-EL-device material capable of providing an organic EL device excellent in luminous efficiency, heat resistance and lifetime and free from pixel defects.
  • n and n are more than 4, the molecular weight is increased, and the deposition would not be favorably performed. Accordingly, m and n are preferably 1 to 4.
  • Groups of compounds having highly symmetric molecular structures are highly apt to be crystallized, so that such groups of compounds would hardly maintain their amorphousness while being formed into films.
  • the molecular asymmetry and the presence of twist in the molecule can synergistically prevent the crystallization of the compound in the films of the organic EL device, which is indispensable in solving the problems.
  • R 1 is preferably selected from an aryl group having 6 to 30 carbon atoms, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a cyano group, a silyl group having 3 to 30 carbon atoms and a halogen atom.
  • Examples of the aryl group having 6 to 30 carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, a p-terphenyl-4-yl group, a p-terphenyl-3-yl group, a p-terphenyl-2-yl group, an m-terphenyl-4-yl group, an m-terphenyl-3-yl group, an m-terphenyl-2-yl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a p-t-butylpheny
  • alkyl group having 1 to 30 carbon atoms examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 2-hydroxyisobutyl group, a 1,2-dihydroxyethyl group, a 1,3-dihydroxyisopropyl group, a 2,3-dihydroxy-t-butyl group, a 1,2,3-trihydroxypropyl group, a chloromethyl group, a 1-chloroethyl group, a 2-chloroethyl group, a 2-chlorois
  • Examples of the cycloalkyl group having 3 to 30 carbon atoms include a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and a 3,5-tetramethylcyclohexyl group, and a cyclohexyl group, a cyclooctyl group, and a 3,5-tetramethylcyclohexyl group are preferred.
  • the alkoxy group having 1 to 20 carbon atoms is a group represented by —OY.
  • Y include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 2-hydroxyisobutyl group, a 1,2-dihydroxyethyl group, a 1,3-dihydroxyisopropyl group, a 2,3-dihydroxy-t-butyl group, a 1,2,3-trihydroxypropyl group, a chloromethyl group, a 1-chloroethyl group, a 2-chlor
  • the silyl group having 3 to 30 carbon atoms is preferably, for instance, an alkylsilyl group or an aralkylsilyl group having 3 to 20 carbon atoms.
  • Examples thereof include a trimethylsilyl group, a triethylsilyl group, a tributylsilyl group, a trioctylsilyl group, a triisobutylsilyl group, a dimethylethylsilyl group, a dimethylisopropylsilyl group, a dimethylpropylsilyl group, a dimethylbutylsilyl group, a dimethyltertiarybutylsilyl group, a diethylisopropylsilyl group, a phenyldimethylsilyl group, a diphenylmethylsilyl group, a diphenyltertiarybutyl group, and a triphenylsilyl group.
  • halogen atom represented by R 1 examples include fluorine, chlorine, bromine, and iodine.
  • the substituting position of Ar 1 and Ar 2 in the phenanthrene skeleton may be 1,2-position, 1,3-position, 1,4-position, 1,5-position, 1,6-position, 1,7-position, 1,8-position, 1,9-position, 1,10-position, 2,3-position, 2,4-position, 2,5-position, 2,6-position, 2,7-position, 2,8-position, 2,9-position, 2,10-position, 3,4-position, 3,5-position, 3,6-position, 3,7-position, 3,8-position, 3,9-position, 3,10-position, 4,5-position, 4,6-position, 4,7-position, 4,8-position, 4,9-position, 4,10-position or 9,10-position.
  • the substituting position is preferably 2,7-position, 2,9-position, 2,10-position, 3,6-position, 4,9-position, 4,10-position or 9,10-position.
  • the phenanthrene derivative is more preferably a phenanthrene derivative represented by the following formula (1-a) to formula (1-l) (see, Chemical Formula 4).
  • the phenanthrene derivative is more preferably a phenanthrene derivative represented by the following formula (1-c) to formula (1-l) (see, Chemical Formula 5).
  • Ar 1 and Ar 2 each preferably represent a group selected from a substituted or unsubstituted benzene skeleton, naphthalene skeleton, fluorene skeleton, fluoranthene skeleton, triphenylene skeleton, chrysene skeleton, benzophenanthrene skeleton, dibenzophenanthrene skeleton, benzotriphenylene skeleton, picene skeleton and benzo[b]fluoranthene skeleton.
  • the triplet energy gap can be made sufficiently large.
  • the phenanthrene derivative is favorably usable as a phosphorescent host capable of transferring energy to the phosphorescent emitting material.
  • a “fluorescent host” and a “phosphorescent host” herein respectively mean a host combined with a fluorescent dopant and a host combined with a phosphorescent dopant, and that a distinction between the fluorescent host and phosphorescent host is not unambiguously derived only from a molecular structure of the host in a limited manner.
  • the fluorescent host herein means a material for forming a fluorescent-emitting layer containing a fluorescent dopant, and does not mean a host that is only usable as a host of a fluorescent material.
  • the phosphorescent host herein means a material for forming a phosphorescent-emitting layer containing a phosphorescent dopant, and does not mean a host that is only usable as a host of a phosphorescent material.
  • k is preferably 0, 1 or 2.
  • the substituent(s) is preferably a group selected from an alkyl group having 1 to 30 carbon atoms, cycloalkyl group having 3 to 30 carbon atoms, alkoxy group having 1 to 20 carbon atoms, cyano group, silyl group having 3 to 30 carbon atoms and halogen atom.
  • alkyl group, cycloalkyl group, alkoxy group and silyl group as the substituent(s) for Ar 1 and Ar 2 are the same as enumerated with respect to R 1 .
  • Examples of the phenanthrene derivative according to the aspect of the invention are as follows.
  • a material for organic EL devices contains the phenanthrene derivative represented by the formula (1).
  • the material for organic EL devices according to the aspect of the invention is preferably used as the host material of the emitting layer.
  • organic-EL-device material containing the phenanthrene derivative represented by the formula (1) as the host material of the emitting layer, an emitting layer of high efficiency and long lifetime is obtainable.
  • the organic EL device includes a single-layered or multilayered organic thin-film layer provided between a cathode and an anode, and the organic thin-film layer includes an emitting layer. At least one layer of the organic thin-film layer contains the organic-EL-device material according to the aspect of the invention.
  • Structure examples of a multilayered organic EL device are structures that respectively include: an anode, hole transporting layer (hole injecting layer), emitting layer and cathode; an anode, emitting layer, electron transporting layer (electron injecting layer) and cathode; an anode, hole transporting layer (hole injecting layer), emitting layer, electron transporting layer (electron injecting layer) and cathode; and an anode, hole transporting layer (hole injecting layer), emitting layer, hole blocking layer, electron transporting layer (electron injecting layer) and cathode.
  • the organic EL device 1 includes a transparent substrate 2 , an anode 3 , a cathode 4 and an organic thin-film layer 10 positioned between the anode 3 and the cathode 4 .
  • the organic thin-film layer 10 includes a phosphorescent-emitting layer 5 containing host and phosphorescent dopant.
  • a layer such as a hole injecting/transporting layer 6 may be provided between the phosphorescent-emitting layer 5 and the anode 3 while a layer such as an electron injecting/transporting layer 7 may be provided between the phosphorescent-emitting layer 5 and the cathode 4 .
  • an electron blocking layer may be provided to the phosphorescent-emitting layer 5 adjacently to the anode 3 while a hole blocking layer may be provided to the phosphorescent-emitting layer 5 adjacently to the cathode 4 .
  • the “hole injecting/transporting layer” herein means “at least either one of a hole injecting layer and a hole transporting layer” while the “electron injecting/transporting layer” herein means “at least either one of an electron injecting layer and an electron transporting layer.”
  • the emitting layer preferably contains the organic-EL-device material according to the aspect of the invention as the host material. Further, the emitting layer preferably contains the host material and a phosphorescent-emitting material, and the host material is preferably the organic-EL-device material.
  • the phosphorescent-emitting material examples include metal complexes that contain: a metal selected from Ir, Pt, Os, Au, Cu, Re and Ru; and a ligand.
  • the phosphorescent-emitting material is preferably a compound containing a metal selected from iridium (Ir), osmium (Os) and platinum (Pt) because such a compound, which exhibits high phosphorescence quantum yield, can further enhance external quantum efficiency of the emitting device.
  • the phosphorescent-emitting material is more preferably a metal complex such as an iridium complex, osmium complex or platinum complex, among which an iridium complex and platinum complex are more preferable and ortho metalation of an iridium complex is the most preferable. Further preferable examples of the ortho metalation of the metal complex are iridium complexes and the like shown below.
  • the emitting layer contains the host material and the phosphorescent-emitting material, and the above iridium complex is used as the phosphorescent-emitting material.
  • the maximum wavelength of the emission by the phosphorescent-emitting material is preferably 520 nm to 700 nm, more preferably 590 nm to 700 nm.
  • the organic EL device By doping the phosphorescent-emitting material (phosphorescent dopant) having such an emission wavelength to the organic-EL-device material according to the aspect of the invention so as to form the emitting layer, the organic EL device can exhibit high efficiency.
  • the organic EL device according to the aspect of the invention may include the hole transporting layer (or the hole injecting layer).
  • the hole transporting layer (or the hole injecting layer) may preferably contain the organic-EL-device material according to the aspect of the invention.
  • the organic EL device according to the aspect of the invention includes at least either one of the electron transporting layer and the hole blocking layer, the at least either one of the electron transporting layer and the hole blocking layer may preferably contain the organic-EL-device material according to the aspect of the invention.
  • a reduction-causing dopant may be preferably contained in an interfacial region between the cathode and the organic thin-film layer.
  • the organic EL device can emit light with enhanced luminance intensity and have a longer lifetime.
  • the reduction-causing dopant may be at least one compound selected from an alkali metal, alkali metal complex, alkali metal compound, alkali earth metal, alkali earth metal complex, alkali earth metal compound, rare-earth metal, rare-earth metal complex, rare-earth metal compound and the like.
  • the alkali metal examples include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), Cs (work function: 1.95 eV) and the like, among which a substance having a work function of 2.9 eV or less is particularly preferable.
  • the reduction-causing dopant is preferably K, Rb or Cs, more preferably Rb or Cs, the most preferably Cs.
  • alkali earth metal examples include Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), Ba (work function: 2.52 eV) and the like, among which a substance having a work function of 2.9 eV or less is particularly preferable.
  • Examples of the rare-earth metal are Sc, Y, Ce, Tb, Yb and the like, among which a substance having a work function of 2.9 eV or less is particularly preferable.
  • alkali metal compound examples include an alkali oxide such as Li 2 O, Cs 2 O and K 2 O, and an alkali halide such as LiF, NaF, CsF and KF. LiF, Li 2 O, and NaF are preferable.
  • alkali earth metal compound examples include BaO, SrO, CaO and their mixture such as Ba x Sr 1-x O (0 ⁇ x ⁇ 1) and Ba x Ca 1-x O (0 ⁇ x ⁇ 1). BaO, SrO, and CaO are preferable.
  • rare earth metal compound examples include YbF 3 , ScF 3 , SeO 3 , Y 2 O 3 , Ce 2 O 3 , GdF 3 and TbF 3 .
  • YbF 3 , ScF 3 , and TbF 3 are preferable.
  • the alkali metal complex, alkali earth metal complex and rare earth metal complex are not specifically limited as long as they contain at least one metal ion of an alkali metal ion, an alkali earth metal ion and a rare earth metal ion.
  • the ligand is preferably quinolynol, benzoquinolynol, acridinol, phenanthridinol, hydroxyphenyloxazole, hydroxyphenylthiazole, hydroxydiaryloxadiazole, hydroxydiarylthiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzoimidazole, hydroxybenzotriazole, hydroxyfluboran, bipyridyl, phenanthroline, phthalocyanin, porphyrin, cyclopentadiene, ⁇ -diketones, azomethines, and derivatives thereof.
  • the ligand is not limited thereto.
  • the reduction-causing dopant is added to preferably form a layer or an island pattern in the interfacial region.
  • the layer of the reduction-causing dopant or the island pattern of the reduction-causing dopant is preferably formed by depositing the reduction-causing dopant by resistance heating deposition while an emitting material for forming the interfacial region or an organic substance as an electron-injecting material are simultaneously deposited, so that the reduction-causing dopant is dispersed in the organic substance.
  • Dispersion concentration at which the reduction-causing dopant is dispersed in the organic substance is a mole ratio (organic substance to reduction-causing dopant) of 100:1 to 1:100, preferably 5:1 to 1:5.
  • the emitting material or the electron injecting material for forming the organic layer of the interfacial region is initially layered, and the reduction-causing dopant is subsequently deposited singularly thereon by resistance heating deposition to form a preferably 0.1 to 15 nm-thick layer.
  • the emitting material or the electron injecting material for forming the organic layer of the interfacial region is initially formed in an island shape, and the reduction-causing dopant is subsequently deposited singularly thereon by resistance heating deposition to form a preferably 0.05 to 1 nm-thick island shape.
  • a ratio of the main component to the reduction-causing dopant in the organic EL device according to the aspect of the invention is preferably a mole ratio (main component to reduction-causing dopant) of 5:1 to 1:5, more preferably 2:1 to 1:2.
  • the organic EL device preferably includes the electron injecting layer between the emitting layer and the cathode, and the electron injecting layer preferably contains a nitrogen-containing cyclic derivative as the main component.
  • the main component means that the nitrogen-containing cyclic derivative is contained in the electron injecting layer at a content of 50 mass % or more.
  • the electron injecting layer or the electron transporting layer which aids injection of the electrons into the emitting layer, has a high electron mobility.
  • the electron injecting layer is provided for adjusting energy level, by which, for instance, sudden changes of the energy level can be reduced.
  • a preferable example of an electron transporting material for forming the electron injecting layer is an aromatic heterocyclic compound having in the molecule at least one heteroatom. Particularly, a nitrogen-containing cyclic derivative is preferable.
  • a preferable example of the nitrogen-containing cyclic derivative is a nitrogen-containing cyclic metal chelate complex represented by the following formula (A).
  • R 2 to R 7 each independently represent a hydrogen atom, a halogen atom, an oxy group, an amino group, a hydrocarbon group having 1 to 40 carbon atoms, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, or a heterocyclic group. These groups may be substituted or unsubstituted.
  • halogen atom examples include fluorine, chlorine, bromine, and iodine.
  • substituted or unsubstituted amino group include an alkylamino group, an arylamino group, and an aralkylamino group.
  • hydrocarbon group having 1 to 40 carbon atoms examples include a substituted or unsubstituted alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and an aralkyl group.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, an n-nonyl group, an n-decyl group, an n-undecyl group, an n-dodecyl group, an n-tridecyl group, an n-tetradecyl group, an n-pentadecyl group, an n-hexadecyl group, an n-heptadecyl group, an n-octadecyl group, a neopentyl group, a 1-methylpentyl group, a
  • alkenyl group examples include a vinyl group, an allyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, a 1,3-butanedienyl group, a 1-methylvinyl group, a styryl group, a 2,2-diphenylvinyl group, a 1,2-diphenylvinyl group, a 1-methylallyl group, a 1,1-dimethylallyl group, a 2-methylallyl group, a 1-phenylallyl group, a 2-phenylallyl group, a 3-phenylallyl group, a 3,3-diphenylallyl group, a 1,2-dimethylallyl group, a 1-phenyl-1-butenyl group, and a 3-phenyl-1-butenyl group.
  • a styryl group, a 2,2-diphenylvinyl group, and a 1,2-diphenylvinyl group are preferred.
  • cycloalkyl group examples include a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and a 3,5-tetramethylcyclohexyl group.
  • a cyclohexyl group, a cyclooctyl group, and a 3,5-tetramethylcyclohexyl group are preferable.
  • the alkoxy group is a group represented by —OY.
  • Example of Y are the same as those described above for the alkyl group.
  • the preferred examples are also the same.
  • non-fused aryl group examples include a phenyl group, a biphenyl-2-yl group, a biphenyl-3-yl group, a biphenyl-4-yl group, a p-terphenyl-4-yl group, a p-terphenyl-3-yl group, a p-terphenyl-2-yl group, an m-terphenyl-4-yl group, an m-terphenyl-3-yl group, an m-terphenyl-2-yl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a p-t-butylphenyl group, a p-(2-phenylpropyl)phenyl group, a 4′-methylbiphenylyl group, a 4′′-t-butyl-p-terphenyl-4-yl group, an o-cumenyl group, an m
  • a phenyl group preferred are a phenyl group, a biphenyl-2-yl group, a biphenyl-3-yl group, a biphenyl-4-yl group, an m-terphenyl-4-yl group, an m-terphenyl-3-yl group, an m-terphenyl-2-yl group, a p-tolyl group, a 3,4-xylyl group, and an m-quarterphenyl-2-yl group.
  • fused aryl group examples include a 1-naphthyl group and a 2-naphthyl group.
  • the heterocyclic group is a mono ring or a fused ring.
  • the heterocyclic group preferably has 1 to 20 ring carbon atoms, more preferably 1 to 12 ring carbon atoms, and still more preferably 2 to 10 ring carbon atoms.
  • An example thereof is an aromatic heterocyclic group having at least one hetero atom selected from a nitrogen atom, an oxygen atom, a sulfur atom and a selenium atom.
  • heterocyclic group examples include groups that are derived from pyrrolidine, piperidine, piperazine, morpholine, thiophene, selenophene, furan, pyrrol, imidazole, pyrazole, pyridine, pyrazine, pyridazine, pyrimidine, trizaole, triazine, indole, indazole, purine, thiazoline, thiazole, thiadiazole, oxazoline, oxazole, oxadiazole, quinoline, isoquinoline, phthalazine, naphthridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, benzimidazole, benzoxazole, benzothiazole, benzotriazole, tetrazaindene, carbazole, and azepine
  • the heterocyclic group is derived from furan, thiophene, pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, phthalazine, naphthiridine, quinoxaline and quinazoline. More preferably, the heterocyclic group is a group derived from furan, thiophene, pyridine and quinoline, and still more preferably a quinolinyl group.
  • aralkyl group examples include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylisopropyl group, a 2-phenylisopropyl group, a phenyl-t-butyl group, a ⁇ -naphthylmethyl group, a 1- ⁇ -naphthylethyl group, a 2- ⁇ -naphthylethyl group, a 1- ⁇ -naphthylisopropyl group, a 2- ⁇ -naphthylisopropyl group, a ⁇ -naphthylmethyl group, a 1- ⁇ -naphthylethyl group, a 2- ⁇ -naphthylethyl group, a 1- ⁇ -naphthylisopropyl group, a 2- ⁇ -naphthylisopropyl group, a
  • a benzyl group preferred are a benzyl group, a p-cyanobenzyl group, an m-cyanobenzyl group, an o-cyanobenzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylisopropyl group, and a 2-phenylisopropyl group.
  • the aryloxy group is represented by —OY′.
  • Y′ include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a 1-naphthacenyl group, a 2-naphthacenyl group, a 9-naphthacenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, a p-terphenyl-4-yl group, a p-terphenyl-3-y
  • the heteroaryloxy group in the aryloxy group is represented by —OZ′.
  • Z′ include a 2-pyrrolyl group, a 3-pyrrolyl group, a pyrazinyl group, a 2-pyrizinyl group, a 3-pyrizinyl group, a 4-pyrizinyl group, a 2-indolyl group, a 3-indolyl group, a 4-indolyl group, a 5-indolyl group, a 6-indolyl group, a 7-indolyl group, a 1-isoindolyl group, a 3-isoindolyl group, a 4-isoindolyl group, a 5-isoindolyl group, a 6-isoindolyl group, a 7-isoindolyl group, a 2-furyl group, a 3-furyl group, a 2-benzofuranyl group, a 3-benzofuranyl group
  • the alkoxycarbonyl group is represented by —COOY′.
  • Examples of Y′ are the same as the examples of the alkyl group.
  • the alkylamino group and the aralkylamino group are represented by —NQ 1 Q 2 .
  • Examples for each of Q 1 and Q 2 are the same as the examples described in relation to the alkyl group and the aralkyl group, and preferable examples for each of Q 1 and Q 2 are also the same as those described in relation to the alkyl group and the aralkyl group.
  • Either one of Q 1 and Q 2 may be a hydrogen atom.
  • the arylamino group is represented by —NAr 1 Ar 2 .
  • Examples for each of Ar 1 and Ar 2 are the same as the examples described in relation to the non-fused aryl group and the fused aryl group.
  • Either one of Ar 1 and Ar 2 may be a hydrogen atom.
  • M aluminum (Al), gallium (Ga) or indium (In), among which In is preferable.
  • L in the formula (A) represents a group represented by the following formula (A′) or the following formula (A′′).
  • R 8 to R 12 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 40 carbon atoms. Adjacent groups may form a cyclic structure.
  • R 13 to R 27 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 40 carbon atoms. Adjacent groups may form a cyclic structure.
  • Examples of the hydrocarbon group having 1 to 40 carbon atoms represented by each of R 8 to R 12 and R 13 to R 27 in the formulae (A′) and (A′′) are the same as those of R 2 to R 7 .
  • Examples of a divalent group formed when an adjacent set of R 8 to R 12 and R 13 to R 27 forms a cyclic structure are a tetramethylene group, a pentamethylene group, a hexamethylene group, a diphenylmethane-2,2′-diyl group, a diphenylethane-3,3′-diyl group, a diphenylpropane-4,4′-diyl group and the like.
  • nitrogen-containing cyclic metal chelate complex represented by the formula (A) will be shown below.
  • the nitrogen-containing cyclic metal chelate complex is not limited to the exemplary compounds shown below.
  • the electron injecting layer preferably contains a nitrogen-containing heterocyclic derivative.
  • the electron injecting layer or the electron transporting layer which aids injection of the electrons into the emitting layer, has a high electron mobility.
  • the electron injecting layer is provided for adjusting energy level, by which, for instance, sudden changes of the energy level can be reduced.
  • 8-hydroxyquinoline or a metal complex of its derivative an oxadiazole derivative and a nitrogen-containing heterocyclic derivative are preferable.
  • An example of the 8-hydroxyquinoline or the metal complex of its derivative is a metal chelate oxinoid compound containing a chelate of oxine (typically 8-quinolinol or 8-hydroxyquinoline).
  • tris(8-quinolinol) aluminum can be used.
  • the oxadiazole derivative are as follows.
  • Ar 17 , Ar 18 , Ar 19 , Ar 21 , Ar 22 and Ar 25 each represent a substituted or unsubstituted aryl group.
  • Ar 17 , Ar 19 and Ar 22 may be the same as or different from Ar 18 , Ar 21 and Ar 25 respectively.
  • Ar 20 , Ar 23 and Ar 24 each represent a substituted or unsubstituted arylene group.
  • Ar 23 and Ar 24 may be mutually the same or different.
  • Examples of the arylene group are a phenylene group, naphthylene group, biphenylene group, anthranylene group, perylenylene group and pyrenylene group.
  • Examples of the substituent therefor are an alkyl group having 1 to 10 carbon atoms, alkoxy group having 1 to 10 carbon atoms and cyano group.
  • Such an electron transport compound is preferably an electron transport compound that can be favorably formed into a thin film(s). Examples of the electron transport compounds are as follows.
  • nitrogen-containing heterocyclic derivative is a nitrogen-containing compound that is not a metal complex, the derivative being formed of an organic compound represented by one of the following general formulae.
  • examples of the nitrogen-containing heterocyclic derivative are five-membered ring or six-membered ring derivative having a skeleton represented by the formula (A) and a derivative having a structure represented by the formula (B).
  • X represents a carbon atom or nitrogen atom.
  • Z 1 and Z 2 each independently represent an atom group capable of forming a nitrogen-containing heterocycle.
  • the nitrogen-containing heterocyclic derivative is an organic compound having nitrogen-containing aromatic polycyclic series having a five-membered ring or six-membered ring.
  • the nitrogen-containing heterocyclic derivative may be a nitrogen-containing aromatic polycyclic organic compound having a skeleton formed by a combination of the skeletons respectively represented by the formulae (A) and (B), or by a combination of the skeletons respectively represented by the formulae (A) and (C).
  • a nitrogen-containing group of the nitrogen-containing organic compound is selected from nitrogen-containing heterocyclic groups respectively represented by the following general formulae.
  • R represents an aryl group having 6 to 40 carbon atoms, heteroaryl group having 3 to 40 carbon atoms, alkyl group having 1 to 20 carbon atoms or alkoxy group having 1 to 20 carbon atoms; and n represents an integer of 0 to 5. When n is an integer of 2 or more, plural R may be mutually the same or different.
  • a preferable specific compound is a nitrogen-containing heterocyclic derivative represented by the following formula.
  • HAr represents a substituted or unsubstituted nitrogen-containing heterocycle having 3 to 40 carbon atoms
  • L 1 represents a single bond, substituted or unsubstituted arylene group having 6 to 40 carbon atoms or substituted or unsubstituted heteroarylene group having 3 to 40 carbon atoms
  • Ar 1 represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 40 carbon atoms
  • Ar 2 represents a substituted or unsubstituted aryl group having 6 to 40 carbon atoms or substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms.
  • HAr is exemplarily selected from the following group.
  • L 1 is exemplarily selected from the following group.
  • Ar 2 is exemplarily selected from the following group.
  • Ar 1 is exemplarily selected from the following arylanthranil groups.
  • R 1 to R 14 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a heteroaryl group having 3 to 40 carbon atoms.
  • Ar 3 represents a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a heteroaryl group having 3 to 40 carbon atoms.
  • the nitrogen-containing heterocyclic derivative may be a nitrogen-containing heterocyclic derivative in which R 1 to R 8 in the structure of Ar 1 represented by the above formula each represent a hydrogen atom.
  • R 1 to R 4 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted alicyclic group, a substituted or unsubstituted carbocyclic aromatic ring group, or substituted or unsubstituted heterocyclic group.
  • X i and X 2 each independently represent an oxygen atom, a sulfur atom or a dicyanomethylene group.
  • R 1 , R 2 , R 3 and R 4 which may be mutually the same or different, each represent an aryl group represented by the following formula.
  • R 5 , R 6 , R 7 , R 8 and R 9 which may be mutually the same or different, each represent a hydrogen atom, a saturated or unsaturated alkoxyl group, alkyl group, amino group or alkylamino group. At least one of R 5 , R 6 , R 7 , R 8 and R 9 represents a saturated or unsaturated alkoxyl group, alkyl group, amino group or alkylamino group.
  • a polymer compound containing the nitrogen-containing heterocyclic group or a nitrogen-containing heterocyclic derivative may be used.
  • the electron transporting layer preferably contains at least one of nitrogen-containing heterocycle derivatives respectively represented by the following formulae (201) to (203).
  • R represents a hydrogen atom, substituted or unsubstituted aryl group having 6 to 60 carbon atoms, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms or substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms;
  • n represents an integer of 0 to 4;
  • R 1 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms or alkoxy group having 1 to 20 carbon atoms;
  • R 2 and R 3 each independently represent a hydrogen atom, substituted or unsubstituted aryl group having 6 to 60 carbon atoms, substitute
  • Ar 3 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms or a group represented by —Ar 1 —Ar 2 (Ar 1 and Ar 2 may be the same as the above).
  • R represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • the aryl group having 6 to 60 carbon atom is preferably an aryl group having 6 to 40 carbon atoms, more preferably an aryl group having 6 to 20 carbon atoms.
  • Examples of such an aryl group are a phenyl group, naphthyl group, anthryl group, phenanthryl group, naphthacenyl group, chrysenyl group, pyrenyl group, biphenyl group, terphenyl group, tolyl group, t-butylphenyl group, (2-phenylpropyl)phenyl group, fluoranthenyl group, fluorenyl group, a monovalent group formed of spirobifluorene, perfluorophenyl group, perfluoronaphthyl group, perfluoroanthryl group, perfluorobiphenyl group, a monovalent group formed of 9-phenylanthracene, a monovalent group formed of 9-(1′nap
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • Examples of such an alkyl group are a methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, and a haloalkyl group such as trifluoromethyl group.
  • the alkyl group may be linear, cyclic or branched.
  • the alkoxy group having 1 to 20 carbon atoms is preferably an alkoxy group having 1 to 6 carbon atoms.
  • Examples of such an alkoxy group are a methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, and hexyloxy group.
  • the alkoxy group may be linear, cyclic or branched.
  • Examples of a substituent for the group represented by R are a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms.
  • halogen atom examples include fluorine, chlorine, bromine, iodine and the like.
  • Examples for each of the alkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, and an aryl group having 6 to 40 carbon atoms may be the same as the above examples.
  • Examples of the aryloxy group having 6 to 40 carbon atoms are a phenoxy group and a biphenyloxy group.
  • heteroaryl group having 3 to 40 carbon atoms examples include a pyrrolyl group, furyl group, thienyl group, silolyl group, pyridyl group, quinolyl group, isoquinolyl group, benzofuryl group, imidazolyl group, pyrimidyl group, carbazolyl group, selenophenyl group, oxadiazolyl group and triazolyl group.
  • n is an integer in a range of 0 to 4, preferably 0 to 2.
  • R 1 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted quinolyl group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms.
  • R 2 and R 3 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted quinolyl group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • L represents a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridinylene group, a substituted or unsubstituted quinolinylene group, or a substituted or unsubstituted fluorenylene group.
  • the arylene group having 6 to 60 carbon atoms is preferably an arylene group having 6 to 40 carbon atoms, more preferably an arylene group having 6 to 20 carbon atoms.
  • An example of such an arylene group is a divalent group formed by removing one hydrogen atom from the aryl group having been described in relation to R.
  • Examples of a substituent for the group represented by L are the same as those described in relation to R.
  • L is preferably a group selected from groups represented by the following formulae.
  • Ar 1 represents a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridinylene group, or a substituted or unsubstituted quinolinylene group.
  • Examples of a substituent for the groups represented by Ar 1 and Ar 2 are the same as those described in relation to R.
  • Ar 1 is preferably selected from fused ring groups respectively represented by the following formulae (101) to (110).
  • the fused rings each may be linked with a link group formed of a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms.
  • the rings each are linked with plural link groups, the plural link groups may be mutually the same or different. Examples for each of the groups are the same as those described above.
  • L′ represents a single bond or a group selected from groups represented by the following formulae.
  • Ar 1 represented by the formula (103) is preferably a fused ring group represented by any one of the following formulae (111) to (125).
  • the fused rings each may be linked with a link group formed of a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms.
  • the rings each are linked with plural link groups, the plural link groups may be mutually the same or different. Examples for each of the groups are the same as those described above.
  • Ar 2 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted quinolyl group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • Ar 3 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted quinolyl group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, or a group represented by —Ar 1 —Ar 2 (Ar 1 and Ar 2 are the same as the above).
  • Ar 3 is preferably selected from fused ring groups respectively represented by the following formulae (126) to (135).
  • the fused rings each may be linked with a link group formed of a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms.
  • the rings each are linked with plural link groups, the plural link groups may be mutually the same or different. Examples for each of the groups are the same as those described above.
  • L′ represents the same as the above.
  • R′ represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms. Examples for each of the groups are the same as those described above.
  • Ar 3 represented by the formula (128) is preferably a fused ring group represented by any one of the following formulae (136) to (158).
  • the fused rings each may be linked with a link group formed of a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms.
  • the rings each are linked with plural link groups, the plural link groups may be mutually the same or different. Examples for each of the groups are the same as those described above.
  • R′ is the same as the above.
  • Ar 2 and Ar 3 each independently are preferably a group selected from groups represented by the following formulae.
  • HAr represents any one of the following structures respectively in the structures represented by the formulae (201) to (203).
  • the compounds (1-1), (1-5), (1-7), (2-1), (3-1), (4-2), (4-6), (7-2), (7-7), (7-8), (7-9) and (9-7) are particularly preferred.
  • the thickness of the electron injecting layer or the electron transporting layer is not specifically limited, the thickness is preferably 1 to 100 nm.
  • the electron injecting layer preferably contains an inorganic compound such as an insulator or a semiconductor in addition to the nitrogen-containing cyclic derivative.
  • an insulator or a semiconductor when contained in the electron injecting layer, can effectively prevent a current leak, thereby enhancing electron injectability of the electron injecting layer.
  • the insulator it is preferable to use at least one metal compound selected from a group consisting of an alkali metal chalcogenide, an alkali earth metal chalcogenide, a halogenide of alkali metal and a halogenide of alkali earth metal.
  • the electron injecting layer from the alkali metal chalcogenide or the like, the electron injecting capability can preferably be further enhanced.
  • preferable examples of the alkali metal chalcogenide are Li 2 O, K 2 O, Na 2 S, Na 2 Se and Na 2 O
  • preferable example of the alkali earth metal chalcogenide are CaO, BaO, SrO, BeO, BaS and CaSe.
  • halogenide of the alkali metal are LiF, NaF, KF, LiCl, KCl and NaCl.
  • halogenide of the alkali earth metal are fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halogenides other than the fluoride.
  • Examples of the semiconductor are one of or a combination of two or more of an oxide, a nitride or an oxidized nitride containing at least one element selected from Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb and Zn.
  • An inorganic compound for forming the electron injecting layer is preferably a microcrystalline or amorphous semiconductor film. When the electron injecting layer is formed of such semiconductor film, more uniform thin film can be formed, thereby reducing pixel defects such as a dark spot.
  • Examples of such an inorganic compound are the above-described alkali metal chalcogenide, alkali earth metal chalcogenide, halogenide of the alkali metal and halogenide of the alkali earth metal.
  • the electron injecting layer in the aspect of the invention may preferably contain the above-described reduction-causing dopant.
  • the hole injecting layer or the hole transporting layer may contain an aromatic amine compound such as an aromatic amine derivative represented by the following (I).
  • Ar 1 to Ar 4 represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • Examples of the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a 1-naphthacenyl group, a 2-naphthacenyl group, a 9-naphthacenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, a p-terphenyl-4-yl group, a p-ter
  • Examples of the substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms include a 1-pyrrolyl group, a 2-pyrrolyl group, a 3-pyrrolyl group, a pyrazinyl group, a 2-pyrizinyl group, a 3-pyrizinyl group, a 4-pyrizinyl group, a 1-indolyl group, a 2-indolyl group, a 3-indolyl group, a 4-indolyl group, a 5-indolyl group, a 6-indolyl group, a 7-indolyl group, a 1-isoindolyl group, a 2-isoindolyl group, a 3-isoindolyl group, a 4-isoindolyl group, a 5-isoindolyl group, a 6-isoindolyl group, a 7-isoindolyl group, a 2-fury
  • L indicates a linking group.
  • the examples are a divalent group obtained by linking a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms, or at least two arylene groups or heteroarylene groups via a single bond, an ether bond, a thioether bond, an alkylene group having 1 to 20 carbon atoms, an alkenylene group having 2 to 20 carbon atoms, or an amino group.
  • Examples of the arylene group having 6 to 50 ring carbon atoms include a 1,4-phenylene group, a 1,2-phenylene group, a 1,3-phenylene group, a 1,4-naphthylene group, a 2,6-naphthylene group, a 1,5-naphthylene group, a 9,10-anthranylene group, a 9,10-phenanthrenylene group, a 3,6-phenanthrenylene group, a 1,6-pyrenylene group, a 2,7-pyrenylene group, a 6,12-chrysenylene group, a 4,4′-biphenylene group, a 3,3′-biphenylene group, a 2,2′-biphenylene group, and a 2,7-fluorenylene group.
  • the arylene group having 5 to 50 ring atoms examples include a 2,5-thiophenylene group, a 2,5-silolylene group, and a 2,5-oxadiazolylene group.
  • the arylene group is 1,4-phenylene group, a 1,2-phenylene group, a 1,3-phenylene group, a 1,4-naphthylene group, a 9,10-anthranylene group, a 6,12-chrysenylene group, a 4,4′-biphenylene group, a 3,3′-biphenylene group, a 2,2′-biphenylene group, or a 2,7-fluorenylene group.
  • the arylene groups or heteroarylene groups adjacent to each other may form a new ring by bonding to each other via a divalent group.
  • the divalent group for forming a ring include a tetramethylene group, a pentamethylene group, a hexamethylene group, a diphenylmethane-2,2′-diyl group, a diphenylethane-3,3′-diyl group, and a diphenylpropane-4,4′-diyl group.
  • Examples of the substituent group of Ar 1 to Ar 4 and L include a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryloxy group having 5 to 50 ring atoms, a substituted or unsubstituted arylthio group having 6 to 50 ring carbon atoms, a substituted or un
  • Examples of the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a 1-naphthacenyl group, a 2-naphthacenyl group, a 9-naphthacenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, a p-terphenyl-4-yl group, a p-ter
  • Examples of the substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms include a 1-pyrrolyl group, a 2-pyrrolyl group, a 3-pyrrolyl group, a pyrazinyl group, a 2-pyrizinyl group, a 3-pyrizinyl group, a 4-pyrizinyl group, a 1-indolyl group, a 2-indolyl group, a 3-indolyl group, a 4-indolyl group, a 5-indolyl group, a 6-indolyl group, a 7-indolyl group, a 1-isoindolyl group, a 2-isoindolyl group, a 3-isoindolyl group, a 4-isoindolyl group, a 5-isoindolyl group, a 6-isoindolyl group, a 7-isoindolyl group, a 2-fury
  • Examples of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 2-hydroxyisobutyl group, a 1,2-dihydroxyethyl group, a 1,3-dihydroxyisopropyl group, a 2,3-dihydroxy-t-butyl group, a 1,2,3-trihydroxypropyl group, a chloromethyl group, a 1-chloroethyl group, a 2-chloroethy
  • Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, a 1-norbornyl group, and a 2-norbornyl group.
  • the substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms is a group represented by —OY.
  • Y include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 2-hydroxyisobutyl group, a 1,2-dihydroxyethyl group, a 1,3-dihydroxyisopropyl group, a 2,3-dihydroxy-t-butyl group, a 1,2,3-trihydroxypropyl group, a chloromethyl group, a 1-chloroeth
  • Examples of the substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylisopropyl group, a 2-phenylisopropyl group, a phenyl-t-butyl group, a ⁇ -naphthylmethyl group, a 1- ⁇ -naphthylethyl group, a 2- ⁇ -naphthylethyl group, a 1- ⁇ -naphthylisopropyl group, a 2- ⁇ -naphthylisopropyl group, a ⁇ -naphthylmethyl group, a 1-3-naphthylethyl group, a 2- ⁇ -naphthylethyl group, a 1- ⁇ -naphthylisopropyl group, a
  • the substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms is represented by —OY′.
  • Y′ include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a 1-naphthacenyl group, a 2-naphthacenyl group, a 9-naphthacenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, a p-terpheny
  • the substituted or unsubstituted heteroaryloxy group having 5 to 50 ring atoms is represented by —OZ′.
  • Z′ include a 2-pyrrolyl group, a 3-pyrrolyl group, a pyrazinyl group, a 2-pyrizinyl group, a 3-pyrizinyl group, a 4-pyrizinyl group, a 2-indolyl group, a 3-indolyl group, a 4-indolyl group, a 5-indolyl group, a 6-indolyl group, a 7-indolyl group, a 1-isoindolyl group, a 3-isoindolyl group, a 4-isoindolyl group, a 5-isoindolyl group, a 6-isoindolyl group, a 7-isoindolyl group, a 2-furyl group, a 3-furyl group, a 2-benzofuranyl
  • the substituted or unsubstituted arylthio group having 6 to 50 ring carbon atoms is represented by —SY′′.
  • Y′′ include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a 1-naphthacenyl group, a 2-naphthacenyl group, a 9-naphthacenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, a p-terphen
  • the substituted or unsubstituted heteroarylthio group having 5 to 50 ring atoms is represented by —SZ′′, and examples of Z′′ include a 2-pyrrolyl group, a 3-pyrrolyl group, a pyrazinyl group, a 2-pyrizinyl group, a 3-pyrizinyl group, a 4-pyrizinyl group, a 2-indolyl group, a 3-indolyl group, a 4-indolyl group, a 5-indolyl group, a 6-indolyl group, a 7-indolyl group, a 1-isoindolyl group, a 3-isoindolyl group, a 4-isoindolyl group, a 5-isoindolyl group, a 6-isoindolyl group, a 7-isoindolyl group, a 2-furyl group, a 3-furyl group, a 2-benzofur
  • the substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms is represented by —COOZ.
  • Z include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 2-hydroxyisobutyl group, a 1,2-dihydroxyethyl group, a 1,3-dihydroxyisopropyl group, a 2,3-dihydroxy-t-butyl group, a 1,2,3-trihydroxypropyl group, a chloromethyl group, a 1-chloroeth
  • the amino group which is substituted with a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or with a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms is represented by —NPQ.
  • Examples of P and Q include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a 1-naphthacenyl group, a 2-naphthacenyl group, a 9-naphthacenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, a p-terphenyl-4-yl group, a p-terphenyl-3-yl group, a p-terphenyl-2-y
  • Aromatic amine represented by the following general formula (II) can also be preferably used for forming the hole injecting layer or the hole transporting layer.
  • Ar 1 to Ar 3 each represent the same as those represented by Ar 1 to Ar 4 of the above formula (I). Examples of the compound represented by the general formula (II) are shown below. However, the compound represented by the formula (II) is not limited thereto.
  • the anode of the organic EL device is used for injecting holes into the hole transporting layer or the emitting layer. It is effective that the anode has a work function of 4.5 eV or more.
  • Exemplary materials for the anode for use in the aspect of the invention are indium-tin oxide (ITO), tin oxide (NESA), gold, silver, platinum and copper.
  • the cathode is preferably formed of a material with smaller work function in order to inject electrons into the electron injecting layer or the emitting layer.
  • a material for the cathode is subject to no specific limitation, examples of the material are indium, aluminum, magnesium, alloy of magnesium and indium, alloy of magnesium and aluminum, alloy of aluminum and lithium, alloy of aluminum, scandium and lithium, alloy of magnesium and silver and the like.
  • a method of forming each of the layers in the organic EL device according to the aspect of the invention is not particularly limited.
  • a conventionally-known methods such as vacuum deposition or spin coating may be employed for forming the layers.
  • the organic thin-film layer containing the compound represented by the formula (1), which is used in the organic EL device according to the aspect of the invention may be formed by a conventional coating method such as vacuum deposition, molecular beam epitaxy (MBE method) and coating methods using a solution such as a dipping, spin coating, casting, bar coating, and roll coating.
  • MBE method molecular beam epitaxy
  • each organic layer of the organic EL device is not particularly limited, the thickness is generally preferably in a range of several nanometers to 1 ⁇ m because an excessively-thinned film likely entails defects such as a pin hole while an excessively-thickened film requires high voltage to be applied and deteriorates efficiency.
  • the organic EL device is formed on a light-transmissive substrate.
  • the light-transmissive substrate, which supports the organic EL device is preferably a smoothly-shaped substrate that transmits 50% or more of light in a visible region of 400 nm to 700 nm.
  • the light-transmissive substrate is exemplarily a glass plate, a polymer plate or the like.
  • glass plate materials such as soda-lime glass, barium/strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass and quartz can be used.
  • polystyrene resin for the polymer plate, materials such as polycarbonate, acryl, polyethylene terephthalate, polyether sulfide and polysulfone can be used.
  • the reaction mixture was added with aqueous solution of hydrochloric acid and stirred at room temperature for 1 hour.
  • the reaction mixture was added with 3 L of toluene, and aqueous phase thereof was eliminated. After organic phase thereof was dried with magnesium sulfate, the solvent was distilled away under reduced pressure. By recrystallizing the obtained solid by toluene, 126 g of 3-(2-naphthyl)phenylboronic acid was obtained at an yield of 67%.
  • reaction mixture was added with aqueous solution of hydrochloric acid and stirred at room temperature for 1 hour. After the reaction, the reaction mixture was added with toluene, and aqueous phase thereof was eliminated. Then, organic phase thereof was dried with magnesium sulfate, and the solvent was distilled away under reduced pressure. By recrystallizing the obtained solid by toluene, 33.6 g of 4-(2-naphthyl)phenylboronic acid was obtained at an yield of 84%.
  • reaction mixture was added with aqueous solution of hydrochloric acid and stirred at room temperature for 1 hour. After the reaction, the reaction mixture was added with toluene, and aqueous phase thereof was eliminated. Then, organic phase thereof was dried with magnesium sulfate, and the solvent was distilled away under reduced pressure. By recrystallizing the obtained solid by toluene, 126 g of 3-(1-naphthyl)phenylboronic acid was obtained at an yield of 67%.
  • reaction mixture was added with aqueous solution of hydrochloric acid and stirred at room temperature for 1 hour. After the reaction, the reaction mixture was added with toluene, and aqueous phase thereof was eliminated. Then, organic phase thereof was dried with magnesium sulfate, and the solvent was distilled away under reduced pressure. By recrystallizing the obtained solid by toluene, 126 g of 4-(1-naphthyl)phenylboronic acid was obtained at an yield of 67%.
  • the reaction mixture was warmed up and then stirred at room temperature for 16 hours.
  • the reaction mixture was added with aqueous solution of hydrochloric acid and stirred at room temperature for 1 hour.
  • the reaction mixture was added with toluene, and aqueous phase thereof was eliminated.
  • organic phase thereof was washed with water and dried with magnesium sulfate, and the solvent was distilled away under reduced pressure.
  • the obtained residue was added with aqueous solution of hydrochloric acid, and extracted with toluene. After liquid separation, organic phase thereof was washed with aqueous solution of sodium hydrogencarbonate, and subsequently washed with water and saturated sodium chloride solution. The organic phase was dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Then, the residue was refined by column chromatography, so that 14.5 g of trimethyl((4-naphthalene-2-yl)phenyl)ethynyl)silane was obtained at an yield of 68%.
  • the obtained residue was added with aqueous solution of hydrochloric acid, and extracted with toluene. After liquid separation, organic phase thereof was washed with aqueous solution of sodium hydrogencarbonate, and subsequently washed with water and saturated sodium chloride solution. The organic phase was dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Then, the residue was refined by column chromatography, so that 15.2 g of trimethyl((4-naphthalene-1-yl)phenyl)ethynyl)silane was obtained at an yield of 72%.
  • the obtained residue was added with aqueous solution of hydrochloric acid, and extracted with toluene. After liquid separation, organic phase thereof was washed with aqueous solution of sodium hydrogencarbonate, and subsequently washed with water and saturated sodium chloride solution. The organic phase was dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Then, the residue was refined by column chromatography, so that 19.0 g of trimethyl((3-naphthalene-2-yl)phenyl)ethynyl)silane was obtained at an yield of 72%.
  • reaction mixture was extracted with toluene. After liquid separation, organic phase thereof was washed with saturated sodium chloride solution and dried with anhydrous sodium sulfate. The solvent was distilled away under reduced pressure, and the residue was refined by silica-gel column chromatography and recrystallized by toluene, such that 3.93 g of 2-bromo-7-(3-(naphthalene-1-yl)phenyl)phenanthrene was obtained at an yield of 29%.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • the compound 1-2 was synthesized in the same manner as the compound 1-1, except that 3-(2-naphthyl)phenylboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid and that 1-naphthaleneboronic acid was used in place of 2-naphthaleneboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • the compound 1-5 was synthesized in the same manner as the compound 1-1, except that 3-(2-naphthyl)phenylboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • the compound 1-6 was synthesized in the same manner as the compound 1-1, except that 4-(1-naphthyl)phenylboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid and that 1-naphthaleneboronic acid was used in place of 2-naphthaleneboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • the compound 1-8 was synthesized in the same manner as the compound 1-1, except that 2-naphthaleneboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid and that 4-biphenylboronic acid was used in place of 2-naphthaleneboronic acid.
  • the compound 1-9 was synthesized in the same manner as the compound 1-1, except that 4-(1-naphthyl)phenylboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • the compound 1-13 was synthesized in the same manner as the compound 1-1, except that 4-(2-naphthyl)phenylboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • the compound 1-17 was synthesized in the same manner as the compound 1-1, except that 1-naphthaleneboronic acid was used in place of 2-naphthaleneboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • the compound 1-18 was synthesized in the same manner as the compound 1-1, except that 3-(2-naphthyl)phenylboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid and that 6-phenyl-2-naphthaleneboronic acid was used in place of 2-naphthaleneboronic acid.
  • the compound 1-21 was synthesized in the same manner as the compound 1-1, except that 4-(2-naphthyl)phenylboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid and that 1-naphthaleneboronic acid was used in place of 2-naphthaleneboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • the reaction mixture was added with aqueous solution of sodium bisulfite, and extracted with dichloromethane.
  • the organic phase was washed with water and saturated sodium chloride solution.
  • the organic phase was dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Then, the residue was refined by flash column chromatography, so that 4.6 g of 9-iodo-10-(4-(naphthalene-2-yl)phenyl)-4-phenylphenanthrene was obtained at an yield of 72%.
  • the organic phase was washed with water and saturated sodium chloride solution.
  • the organic phase was dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Then, the residue was refined by flash column chromatography, so that 1.32 g of the compound 1-61 was obtained at an yield of 56%.
  • the compound 1-76 was synthesized in the same manner as the compound 1-61, except that 2-bromo-p-terphenyl was used in place of 2-bromo-o-terphenyl and that 1-naphthaleneboronic acid was used in place of 2-naphthaleneboronic acid.
  • the compound 1-77 was synthesized in the same manner as the compound 1-61, except that 2-bromo-p-terphenyl was used in place of 2-bromo-o-terphenyl and that 1-(4-ethynylphenyl)naphthalene was used in place of 2-(4-ethynylphenyl)naphthalene.
  • the compound 1-78 was synthesized in the same manner as the compound 1-61, except that 2-bromo-p-terphenyl was used in place of 2-bromo-o-terphenyl and that 2-(3-ethynylphenyl)naphthalene was used in place of 2-(4-ethynylphenyl)naphthalene.
  • the reaction mixture was added with aqueous solution of sodium bisulfite, and extracted with dichloromethane.
  • the organic phase was washed with water and saturated sodium chloride solution.
  • the organic phase was dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Then, the residue was refined by flash column chromatography, so that 7.3 g of 9-iodo-2,10-diphenylphenanthrene was obtained at an yield of 71%.
  • the reaction mixture was cooled down to room temperature, added with water and stirred for 1 hour at room temperature.
  • the obtained solid was washed with water, methanol, dimethoxyethane and toluene in this order.
  • the obtained solid was thermally melted in toluene, refined by silica-gel column chromatography and further recrystallized with toluene. Then, 2.10 g of the compound 1-91 was obtained at an yield of 60%.
  • the compound 1-93 was synthesized in the same manner as the compound 1-91, except that 3-(2-naphthyl)phenylboronic acid was used in place of 4-(2-naphthyl)phenylboronic acid.
  • the compound 1-111 was synthesized in the same manner as the compound 1-91, except that 2-bromobiphenyl was used in place of 2-bromo-p-terphenyl and that 2-(4-ethynylphenyl)naphthalene was used in place of ethynylbenzene.
  • the compound 1-112 was synthesized in the same manner as the compound 1-91, except that 2-bromobiphenyl was used in place of 2-bromo-p-terphenyl, that 2-(3-ethynylphenyl)naphthalene was used in place of ethynylbenzene and that 3-(2-naphthyl)phenylboronic acid was used in place of 4-(2-naphthyl)phenylboronic acid.
  • the compound 1-113 was synthesized in the same manner as the compound 1-91, except that 2-bromobiphenyl was used in place of 2-bromo-p-terphenyl, that 1-(4-ethynylphenyl)naphthalene was used in place of ethynylbenzene and that 4-(1-naphthyl)phenylboronic acid was used in place of 4-(2-naphthyl)phenylboronic acid.
  • the compound 1-114 was synthesized in the same manner as the compound 1-91, except that 2-bromobiphenyl was used in place of 2-bromo-p-terphenyl, that 1-(3-ethynylphenyl)naphthalene was used in place of ethynylbenzene and that 3-(1-naphthyl)phenylboronic acid was used in place of 4-(2-naphthyl)phenylboronic acid.
  • a glass substrate (size: 25 mm ⁇ 75 mm ⁇ 0.7 mm thick) having an ITO transparent electrode (manufactured by Asahi Glass Co., Ltd) was ultrasonic-cleaned in isopropyl alcohol for five minutes, and then UV/ozone-cleaned for 30 minutes. After the glass substrate having the transparent electrode line was cleaned, the glass substrate was mounted on a substrate holder of a vacuum deposition apparatus, so that 50-nm thick film of HT1 was initially formed on a surface of the glass substrate where the transparent electrode line was provided so as to cover the transparent electrode.
  • the HT1 film serves as a hole injecting/transporting layer.
  • 40-nm thick film of the new host compound 1-1 and Ir(piq) 3 as a phosphorescent-emitting dopant were co-deposited by resistance heating so that Ir(piq) 3 was contained therein at a content of 10 mass %.
  • the co-deposited film serves as an emitting layer (phosphorescent-emitting layer).
  • 40-nm thick film of ET1 was formed.
  • the film of ET1 serves as an electron transporting layer.
  • 0.5-nm thick film of LiF was formed as an electron-injecting electrode (cathode) at a film-forming speed of 1 ⁇ /min.
  • Metal (Al) was vapor-deposited on the LiF film to form a 150-nm thick metal cathode, thereby providing the organic EL device.
  • the organic EL devices according respectively to Examples 2 to 20 and Comparatives 1 to 3 were formed in the same manner as Example 1 except that host compounds shown in Table 1 were respectively used in place of the new host compound 1-1.
  • the organic EL devices according to Examples 1 to 20 and Comparatives 1 to 3 each were driven by direct-current electricity to emit light, so that voltage, luminous efficiency and time elapsed until the initial luminance intensity of 3000 cd/m 2 was reduced to the half (i.e., time until half-life) at a current density of 10 mA/cm 2 were measured for each organic EL device. Then, pixel uniformity when each organic EL device was driven at 70 degrees C. was visually checked, among which devices having uniform pixels are rated as A while devices having non-uniform pixels are rated as B. The results of the evaluation are shown in Table 1.
  • Example 1 1-1 5.4 8.4 8000 A
  • Example 2 1-2 5.2 7.9 9000 A
  • Example 3 1-5 5.3 8.2 8500 A
  • Example 4 1-6 5.5 10.3 7000 A
  • Example 5 1-8 5.1 7.8 8000 A
  • Example 6 1-9 5.4 9.2 7000 A
  • Example 7 1-13 5.2 8.5 8000 A
  • Example 8 1-17 5.5 10.1 7500 A
  • Example 9 1-18 5.3 8.0 9000 A
  • Example 10 1-21 5.2 7.5 10000 A
  • Example 11 1-61 5.5 9.8 12000 A
  • Example 14 1-78 5.4 9.3 13000 A
  • Example 15 1-91 5.4 9.5 10000 A
  • Example 16 1-93 5.5 9.5 11000 A
  • Example 17 1-111 5.6 9.6 9000 A
  • Example 18 1-112 5.6 9.6 9000 A
  • Example 19 1-113 5.5 9.5 9000 A
  • the organic EL devices according to Examples 1 to 20 in which the phenanthrene derivative according to the aspect of the invention was used as the host of the phosphorescent-emitting layer, were excellent in terms of the time until half-life, pixel uniformity when driven at as high a temperature as 70 degrees C. and luminous efficiency.
  • the organic EL device according to the aspect of the invention are excellent in luminous efficiency, heat resistance and lifetime and free from pixel defects.
  • the invention is applicable to a phenanthrene derivative, a material for organic EL devices and an organic EL device using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A phenanthrene derivative is represented by a formula (1) below. In the formula (1), Ar1 and Ar2 each represent an aromatic hydrocarbon ring group having 6 to 18 carbon atoms for forming the ring. The aromatic hydrocarbon ring group contains none of anthracene skeleton, pyrene skeleton, aceanthrylene skeleton and naphthacene skeleton. R1 represents a substituent, the number of which may be 0, 1 or more. R1 may be bonded in any position of the phenanthrene skeleton. n and m each represent an integer of 1 to 3. k represents an integer of 0 to 8.
Figure US20100331585A1-20101230-C00001

Description

    TECHNICAL FIELD
  • The present invention relates to a phenanthrene derivative and a material for organic EL devices.
  • BACKGROUND ART
  • Organic electroluminescence devices (organic EL devices), which include organic emitting layers between anodes and cathodes, are known to emit light using exciton energy generated by recombination of holes and electrons injected into the organic emitting layers.
  • Such an organic EL device is advantageous as a self-emitting device, and expected to serve as an emitting device excellent in luminous efficiency, image quality, power saving and thin design.
  • For use of an emitting material in an organic EL device, a doping method, according to which a dopant material is doped to a host material, has been known as a usable method.
  • In order to efficiently generate exciton from injected energy and to efficiently use exciton energy for light emission, the exciton energy generated by the host is transferred to the dopant, so that light is emitted from the dopant.
  • For instance, fused aromatic compounds and the like having phenanthrene skeletons shown in Patent Documents 1 to 11 have been used as the host or dopant.
  • However, while there has recently been an increasing demand for organic EL devices excellent in luminous efficiency, heat resistance and lifetime and free from pixel defects, no organic-EL-device material or no host material has been found capable of providing such excellent organic EL devices.
  • In this respect, in order to enhance internal quantum efficiency and achieve high luminous efficiency, developments have been made on an emitting material (phosphorescent material) that emits light using triplet exciton. In recent years, there has been a report on a phosphorescent organic device.
  • Since the internal quantum efficiency can be enhanced up to 75% or more (up to approximately 100% in theory) by using such a phosphorescent material, an organic EL device having high efficiency and consuming less power can be obtained.
  • However, although exhibiting much higher luminous efficiency, traditional phosphorescent organic EL devices have such a short lifetime as to be practically inapplicable.
  • Patent Document 1: JP-A-2007-84485
  • Patent Document 2: JP-A-2006-151966
  • Patent Document 3: JP-A-2005-19219
  • Patent Document 4: JP-A-2005-8588
  • Patent Document 5: JP-A-2004-18510
  • Patent Document 6: WO2007/46658
  • Patent Document 7: JP-A-2003-142267
  • Patent Document 8: JP-A-2004-75567
  • Patent Document 9: WO2006/114966
  • Patent Document 10: JP-A-2005-197262
  • Patent Document 11: WO2006/39982
  • DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
  • In order to solve the above-described problems, an aspect of the invention provides a phenanthrene derivative and organic-EL-device material capable of providing an organic EL device excellent in luminous efficiency, heat resistance and lifetime and free from pixel defects.
  • Means for Solving the Problems
  • After conducting concentrated studies in order to achieve such an object, the inventors have found that an organic EL device having high efficiency, high heat resistance and long lifetime without pixel defects can be provided by using a phenanthrene derivative represented by the following formula (1) as an organic-EL-device material, and reached the present invention.
  • A phenanthrene derivative according to an aspect of the invention is represented by a formula (1) below.
  • Figure US20100331585A1-20101230-C00002
  • In the formula (1), Ar1 and Ar2 each represent an aromatic hydrocarbon ring group having 6 to 18 carbon atoms for forming the ring, the aromatic hydrocarbon ring group containing none of anthracene skeleton, pyrene skeleton, aceanthrylene skeleton and naphthacene skeleton. Ar1 and Ar2 may be bonded in any positions of the phenanthrene skeleton.
  • R1 represents an alkyl group, cycloalkyl group, alkoxy group, cyano group, silyl group, halogen atom or an aryl group. R1 may be bonded in any positions of the phenanthrene skeleton.
  • k represents an integer of 0 to 8, which represents the number of substituents R1 directly bonded to the phenanthrene main chain. When k is 2 or more, the plurality of R1 may be mutually the same or different.
  • n and m each represent an integer of 1 to 3. When m+n≧2, the pluralities of Ar1 and Ar2 may be independently the same or different.
  • When (—[Ar1]m—H)=(—[Ar2]n—H), at least either one of (—[Ar1]m—H) and (—[Ar2]—H) is bonded in 1st, 4th, 5th, 8th, 9th or 10th position of the phenanthrene skeleton.
  • A material for organic EL devices according another aspect of the invention contains the phenanthrene derivative represented by the formula (1).
  • An organic EL device according to a still further aspect of the invention includes a single-layered or multilayered organic thin-film layer between a cathode and an anode, the organic thin-film layer including an emitting layer, at least one layer of the organic thin-film layer containing the phenanthrene derivative represented by the formula (1).
  • The aspects of the invention can provide a phenanthrene derivative and organic-EL-device material capable of providing an organic EL device excellent in luminous efficiency, heat resistance and lifetime and free from pixel defects.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Exemplary preferable embodiment(s) of the invention will be described below.
  • [Phenanthrene Derivative]
  • A phenanthrene derivative according to an aspect of the invention is represented by a formula (1) below.
  • Figure US20100331585A1-20101230-C00003
  • In the formula (1), Ar1 and Ar2 each represent an aromatic hydrocarbon ring group having 6 to 18 carbon atoms for forming the ring, the aromatic hydrocarbon ring group containing none of anthracene skeleton, pyrene skeleton, aceanthrylene skeleton and naphthacene skeleton. Ar1 and Ar2 may be bonded in any positions of the phenanthrene skeleton.
  • R1 represents an alkyl group, cycloalkyl group, alkoxy group, cyano group, silyl group, halogen atom or an aryl group. R1 may be bonded in any position of the phenanthrene skeleton.
  • k represents an integer of 0 to 8, which represents the number of substituents R1 directly bonded to the phenanthrene main chain. When k is 2 or more, the plurality of R1 may be mutually the same or different.
  • n and m each represent an integer of 1 to 3. When m+n≧2, the pluralities of Ar1 and Ar2 may be independently the same or different.
  • When m is 1 to 3, (—[Ar1]m—H) is represented by the following formula (1-m).
  • When m is 1, (—Ar1a—H) is represented by the following formula (1-m-1).
  • When m is 2, (—Ar1a—Ar1b—H) is represented by the following formula (1-m-2).
  • When m is 3, (—Ar1a—Ar1b—Ar1c—H) is represented by the following formula (1-m-3).
  • When n is 1 to 3, (—[Ar2]n—H) is represented by the following formula (1-n).
  • When n is 1, (—Ar2a—H) is represented by the following formula (1-n-1).
  • When n is 2, (—Ar2a—Ar2b—H) is represented by the following formula (1-n-2).
  • When n is 3, (—Ar2a—Ar2b—Ar2c—H) is represented by the following formula (1-n-3).
  • Ar1a, Ar1b and Ar1c in the formulae (1-m-1) to (1-m-3) and Ar1a, Ar2b and Ar2c in the formulae (1-n-1) to (1-n-3) may each be independently the same or different. When (—[Ar1]m—H)=(—[Ar2]n—H), at least either one of (—[Ar1]m—H) and (—[Ar2]n—H) is bonded in 1st, 4th, 5th, 8th, 9th or 10th position of the phenanthrene skeleton.
  • Herein, the “ring carbon atoms” means carbon atoms that form a saturated ring, unsaturated ring or aromatic ring, and the “ring atoms” means carbon atoms and hetero atoms that form a hetero ring (encompassing a saturated ring, unsaturated ring and aromatic ring).
  • The phenanthrene derivative according to the aspect of the invention is favorably usable as an organic-EL-device material capable of providing an organic EL device excellent in luminous efficiency, heat resistance and lifetime and free from pixel defects.
  • Organic compounds having an anthracene skeleton, pyrene skeleton, aceanthrylene skeleton or naphthacene skeleton exhibit such small triplet energy that the obtained phosphorescent organic EL device would hardly provide efficient emission. Thus, it is unfavorable that Ar1 and Ar2 have these structures.
  • In addition, when Ar1 and Ar2 have more than 18 ring carbon atoms, the triplet energy is reduced. Hence, unfavorably, the obtained phosphorescent organic EL device would hardly provide efficient emission.
  • When m and n are more than 4, the molecular weight is increased, and the deposition would not be favorably performed. Accordingly, m and n are preferably 1 to 4.
  • Groups of compounds having highly symmetric molecular structures are highly apt to be crystallized, so that such groups of compounds would hardly maintain their amorphousness while being formed into films.
  • In contrast, for instance, by:
  • (1) introducing a twist in the molecule with use of a steric hindrance caused by a hydrogen atom in the peri position of a molecule to which Ar1 or Ar2 is bonded (e.g., when Ar1 or Ar2 is bonded in α-position of a naphthalene skeleton or when Ar1 or Ar2 substitutes a phenanthrene skeleton in 1st, 4th, 5th, 8th, 9th or 10th position);
    (2) introducing a sterically-hindered substituent; or
    (3) asymmetrically forming the molecule,
    it is possible to prevent the crystallization of the compound and to obtain a highly amorphous film.
  • When (—[Ar1]m—H)=(—[Ar2]n—H) in the following general formulae (1-a) and (1-b), the molecule is symmetric with no twist. Thus, such a compound would be highly apt to be crystallized, and would hardly maintain their amorphousness while being formed into films. Accordingly, these structures are excluded according to the aspect of the invention.
  • Figure US20100331585A1-20101230-C00004
  • As described above, according to the aspect of the invention, the molecular asymmetry and the presence of twist in the molecule can synergistically prevent the crystallization of the compound in the films of the organic EL device, which is indispensable in solving the problems.
  • Only the phenanthrene derivative that satisfies all of the above requirements is favorably usable as an organic-EL-device material capable of providing an organic EL device excellent in luminous efficiency, heat resistance and lifetime and free from pixel defects.
  • In the above formula (1), R1 is preferably selected from an aryl group having 6 to 30 carbon atoms, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a cyano group, a silyl group having 3 to 30 carbon atoms and a halogen atom.
  • Examples of the aryl group having 6 to 30 carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, a p-terphenyl-4-yl group, a p-terphenyl-3-yl group, a p-terphenyl-2-yl group, an m-terphenyl-4-yl group, an m-terphenyl-3-yl group, an m-terphenyl-2-yl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a p-t-butylphenyl group, a p-(2-phenylpropyl)phenyl group, a 3-methyl-2-naphthyl group, a 4-methyl-1-naphthyl group, a 4′-methylbiphenylyl group, and a 4′-t-butyl-p-terphenyl-4-yl group.
  • Examples of the alkyl group having 1 to 30 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 2-hydroxyisobutyl group, a 1,2-dihydroxyethyl group, a 1,3-dihydroxyisopropyl group, a 2,3-dihydroxy-t-butyl group, a 1,2,3-trihydroxypropyl group, a chloromethyl group, a 1-chloroethyl group, a 2-chloroethyl group, a 2-chloroisobutyl group, a 1,2-dichloroethyl group, a 1,3-dichloroisopropyl group, a 2,3-dichloro-t-butyl group, a 1,2,3-trichloropropyl group, a bromomethyl group, a 1-bromoethyl group, a 2-bromoethyl group, a 2-bromoisobutyl group, a 1,2-dibromoethyl group, a 1,3-dibromoisopropyl group, a 2,3-dibromo-t-butyl group, a 1,2,3-tribromopropyl group, an iodomethyl group, a 1-iodoethyl group, a 2-iodoethyl group, a 2-iodoisobutyl group, a 1,2-diiodoethyl group, a 1,3-diiodoisopropyl group, a 2,3-diiodo-t-butyl group, a 1,2,3-triiodopropyl group, an aminomethyl group, a 1-aminoethyl group, a 2-aminoethyl group, a 2-aminoisobutyl group, a 1,2-diaminoethyl group, a 1,3-diaminoisopropyl group, a 2,3-diamino-t-butyl group, a 1,2,3-triaminopropyl group, a cyanomethyl group, a 1-cyanoethyl group, a 2-cyanoethyl group, a 2-cyanoisobutyl group, a 1,2-dicyanoethyl group, a 1,3-dicyanoisopropyl group, a 2,3-dicyano-t-butyl group, a 1,2,3-tricyanopropyl group, a nitromethyl group, a 1-nitroethyl group, a 2-nitroethyl group, a 2-nitroisobutyl group, a 1,2-dinitroethyl group, a 1,3-dinitroisopropyl group, a 2,3-dinitro-t-butyl group, and a 1,2,3-trinitropropyl group.
  • Examples of the cycloalkyl group having 3 to 30 carbon atoms include a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and a 3,5-tetramethylcyclohexyl group, and a cyclohexyl group, a cyclooctyl group, and a 3,5-tetramethylcyclohexyl group are preferred.
  • The alkoxy group having 1 to 20 carbon atoms is a group represented by —OY. Examples of Y include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 2-hydroxyisobutyl group, a 1,2-dihydroxyethyl group, a 1,3-dihydroxyisopropyl group, a 2,3-dihydroxy-t-butyl group, a 1,2,3-trihydroxypropyl group, a chloromethyl group, a 1-chloroethyl group, a 2-chloroethyl group, a 2-chloroisobutyl group, a 1,2-dichloroethyl group, a 1,3-dichloroisopropyl group, a 2,3-dichloro-t-butyl group, a 1,2,3-trichloropropyl group, a bromomethyl group, a 1-bromoethyl group, a 2-bromoethyl group, a 2-bromoisobutyl group, a 1,2-dibromoethyl group, a 1,3-dibromoisopropyl group, a 2,3-dibromo-t-butyl group, a 1,2,3-tribromopropyl group, an iodomethyl group, a 1-iodoethyl group, a 2-iodoethyl group, a 2-iodoisobutyl group, a 1,2-diiodoethyl group, a 1,3-diiodoisopropyl group, a 2,3-diiodo-t-butyl group, a 1,2,3-triiodopropyl group, an aminomethyl group, a 1-aminoethyl group, a 2-aminoethyl group, a 2-aminoisobutyl group, a 1,2-diaminoethyl group, a 1,3-diaminoisopropyl group, a 2,3-diamino-t-butyl group, a 1,2,3-triaminopropyl group, a cyanomethyl group, a 1-cyanoethyl group, a 2-cyanoethyl group, a 2-cyanoisobutyl group, a 1,2-dicyanoethyl group, a 1,3-dicyanoisopropyl group, a 2,3-dicyano-t-butyl group, a 1,2,3-tricyanopropyl group, a nitromethyl group, a 1-nitroethyl group, a 2-nitroethyl group, a 2-nitroisobutyl group, a 1,2-dinitroethyl group, a 1,3-dinitroisopropyl group, a 2,3-dinitro-t-butyl group, and a 1,2,3-trinitropropyl group.
  • The silyl group having 3 to 30 carbon atoms is preferably, for instance, an alkylsilyl group or an aralkylsilyl group having 3 to 20 carbon atoms. Examples thereof include a trimethylsilyl group, a triethylsilyl group, a tributylsilyl group, a trioctylsilyl group, a triisobutylsilyl group, a dimethylethylsilyl group, a dimethylisopropylsilyl group, a dimethylpropylsilyl group, a dimethylbutylsilyl group, a dimethyltertiarybutylsilyl group, a diethylisopropylsilyl group, a phenyldimethylsilyl group, a diphenylmethylsilyl group, a diphenyltertiarybutyl group, and a triphenylsilyl group.
  • Examples of the halogen atom represented by R1 include fluorine, chlorine, bromine, and iodine.
  • In the formula (1), the substituting position of Ar1 and Ar2 in the phenanthrene skeleton may be 1,2-position, 1,3-position, 1,4-position, 1,5-position, 1,6-position, 1,7-position, 1,8-position, 1,9-position, 1,10-position, 2,3-position, 2,4-position, 2,5-position, 2,6-position, 2,7-position, 2,8-position, 2,9-position, 2,10-position, 3,4-position, 3,5-position, 3,6-position, 3,7-position, 3,8-position, 3,9-position, 3,10-position, 4,5-position, 4,6-position, 4,7-position, 4,8-position, 4,9-position, 4,10-position or 9,10-position. The substituting position is preferably 2,7-position, 2,9-position, 2,10-position, 3,6-position, 4,9-position, 4,10-position or 9,10-position. When (—[Ar1]m—H)≠(—[Ar2]n—H), the phenanthrene derivative is more preferably a phenanthrene derivative represented by the following formula (1-a) to formula (1-l) (see, Chemical Formula 4). When (—[Ar1]m—H)=(—[Ar2]n—H), the phenanthrene derivative is more preferably a phenanthrene derivative represented by the following formula (1-c) to formula (1-l) (see, Chemical Formula 5).
  • Figure US20100331585A1-20101230-C00005
    Figure US20100331585A1-20101230-C00006
    Figure US20100331585A1-20101230-C00007
  • In the formula (1), Ar1 and Ar2 each preferably represent a group selected from a substituted or unsubstituted benzene skeleton, naphthalene skeleton, fluorene skeleton, fluoranthene skeleton, triphenylene skeleton, chrysene skeleton, benzophenanthrene skeleton, dibenzophenanthrene skeleton, benzotriphenylene skeleton, picene skeleton and benzo[b]fluoranthene skeleton.
  • By employing these structures for Ar1 and Ar2, the triplet energy gap can be made sufficiently large. Thus, the phenanthrene derivative is favorably usable as a phosphorescent host capable of transferring energy to the phosphorescent emitting material.
  • It should be noted that a “fluorescent host” and a “phosphorescent host” herein respectively mean a host combined with a fluorescent dopant and a host combined with a phosphorescent dopant, and that a distinction between the fluorescent host and phosphorescent host is not unambiguously derived only from a molecular structure of the host in a limited manner.
  • In other words, the fluorescent host herein means a material for forming a fluorescent-emitting layer containing a fluorescent dopant, and does not mean a host that is only usable as a host of a fluorescent material.
  • Likewise, the phosphorescent host herein means a material for forming a phosphorescent-emitting layer containing a phosphorescent dopant, and does not mean a host that is only usable as a host of a phosphorescent material.
  • In the formula (1), k is preferably 0, 1 or 2.
  • When Ar1 and Ar2 in the formula (1) have substituent(s), the substituent(s) is preferably a group selected from an alkyl group having 1 to 30 carbon atoms, cycloalkyl group having 3 to 30 carbon atoms, alkoxy group having 1 to 20 carbon atoms, cyano group, silyl group having 3 to 30 carbon atoms and halogen atom. Examples of the alkyl group, cycloalkyl group, alkoxy group and silyl group as the substituent(s) for Ar1 and Ar2 are the same as enumerated with respect to R1.
  • Examples of the phenanthrene derivative according to the aspect of the invention are as follows.
  • Figure US20100331585A1-20101230-C00008
    Figure US20100331585A1-20101230-C00009
    Figure US20100331585A1-20101230-C00010
    Figure US20100331585A1-20101230-C00011
    Figure US20100331585A1-20101230-C00012
    Figure US20100331585A1-20101230-C00013
    Figure US20100331585A1-20101230-C00014
    Figure US20100331585A1-20101230-C00015
    Figure US20100331585A1-20101230-C00016
    Figure US20100331585A1-20101230-C00017
    Figure US20100331585A1-20101230-C00018
    Figure US20100331585A1-20101230-C00019
    Figure US20100331585A1-20101230-C00020
    Figure US20100331585A1-20101230-C00021
    Figure US20100331585A1-20101230-C00022
    Figure US20100331585A1-20101230-C00023
    Figure US20100331585A1-20101230-C00024
    Figure US20100331585A1-20101230-C00025
    Figure US20100331585A1-20101230-C00026
    Figure US20100331585A1-20101230-C00027
    Figure US20100331585A1-20101230-C00028
    Figure US20100331585A1-20101230-C00029
  • [Organic-EL-Device Material]
  • A material for organic EL devices according another aspect of the invention contains the phenanthrene derivative represented by the formula (1).
  • The material for organic EL devices according to the aspect of the invention is preferably used as the host material of the emitting layer.
  • By using the organic-EL-device material containing the phenanthrene derivative represented by the formula (1) as the host material of the emitting layer, an emitting layer of high efficiency and long lifetime is obtainable.
  • [Organic EL Device]
  • Next, an organic EL device according to a still further aspect of the invention will be described below.
  • The organic EL device according to the aspect of the invention includes a single-layered or multilayered organic thin-film layer provided between a cathode and an anode, and the organic thin-film layer includes an emitting layer. At least one layer of the organic thin-film layer contains the organic-EL-device material according to the aspect of the invention.
  • Structure examples of a multilayered organic EL device are structures that respectively include: an anode, hole transporting layer (hole injecting layer), emitting layer and cathode; an anode, emitting layer, electron transporting layer (electron injecting layer) and cathode; an anode, hole transporting layer (hole injecting layer), emitting layer, electron transporting layer (electron injecting layer) and cathode; and an anode, hole transporting layer (hole injecting layer), emitting layer, hole blocking layer, electron transporting layer (electron injecting layer) and cathode.
  • The organic EL device 1 includes a transparent substrate 2, an anode 3, a cathode 4 and an organic thin-film layer 10 positioned between the anode 3 and the cathode 4.
  • The organic thin-film layer 10 includes a phosphorescent-emitting layer 5 containing host and phosphorescent dopant. A layer such as a hole injecting/transporting layer 6 may be provided between the phosphorescent-emitting layer 5 and the anode 3 while a layer such as an electron injecting/transporting layer 7 may be provided between the phosphorescent-emitting layer 5 and the cathode 4.
  • In addition, an electron blocking layer may be provided to the phosphorescent-emitting layer 5 adjacently to the anode 3 while a hole blocking layer may be provided to the phosphorescent-emitting layer 5 adjacently to the cathode 4.
  • With this arrangement, electrons and holes can be trapped in the phosphorescent-emitting layer 5, thereby enhancing probability of exciton generation in the phosphorescent-emitting layer 5.
  • It should be noted that the “hole injecting/transporting layer” herein means “at least either one of a hole injecting layer and a hole transporting layer” while the “electron injecting/transporting layer” herein means “at least either one of an electron injecting layer and an electron transporting layer.”
  • In the organic EL device according to the aspect of the invention, the emitting layer preferably contains the organic-EL-device material according to the aspect of the invention as the host material. Further, the emitting layer preferably contains the host material and a phosphorescent-emitting material, and the host material is preferably the organic-EL-device material.
  • Examples of the phosphorescent-emitting material are metal complexes that contain: a metal selected from Ir, Pt, Os, Au, Cu, Re and Ru; and a ligand. The phosphorescent-emitting material is preferably a compound containing a metal selected from iridium (Ir), osmium (Os) and platinum (Pt) because such a compound, which exhibits high phosphorescence quantum yield, can further enhance external quantum efficiency of the emitting device. The phosphorescent-emitting material is more preferably a metal complex such as an iridium complex, osmium complex or platinum complex, among which an iridium complex and platinum complex are more preferable and ortho metalation of an iridium complex is the most preferable. Further preferable examples of the ortho metalation of the metal complex are iridium complexes and the like shown below.
  • Figure US20100331585A1-20101230-C00030
    Figure US20100331585A1-20101230-C00031
    Figure US20100331585A1-20101230-C00032
    Figure US20100331585A1-20101230-C00033
    Figure US20100331585A1-20101230-C00034
    Figure US20100331585A1-20101230-C00035
    Figure US20100331585A1-20101230-C00036
    Figure US20100331585A1-20101230-C00037
    Figure US20100331585A1-20101230-C00038
    Figure US20100331585A1-20101230-C00039
    Figure US20100331585A1-20101230-C00040
  • In the organic EL device according to the aspect of the invention, the emitting layer contains the host material and the phosphorescent-emitting material, and the above iridium complex is used as the phosphorescent-emitting material.
  • In the aspect of the invention, the maximum wavelength of the emission by the phosphorescent-emitting material is preferably 520 nm to 700 nm, more preferably 590 nm to 700 nm.
  • By doping the phosphorescent-emitting material (phosphorescent dopant) having such an emission wavelength to the organic-EL-device material according to the aspect of the invention so as to form the emitting layer, the organic EL device can exhibit high efficiency.
  • The organic EL device according to the aspect of the invention may include the hole transporting layer (or the hole injecting layer). The hole transporting layer (or the hole injecting layer) may preferably contain the organic-EL-device material according to the aspect of the invention. Alternatively, when the organic EL device according to the aspect of the invention includes at least either one of the electron transporting layer and the hole blocking layer, the at least either one of the electron transporting layer and the hole blocking layer may preferably contain the organic-EL-device material according to the aspect of the invention.
  • In the organic EL device according to the aspect of the invention, a reduction-causing dopant may be preferably contained in an interfacial region between the cathode and the organic thin-film layer.
  • With this arrangement, the organic EL device can emit light with enhanced luminance intensity and have a longer lifetime.
  • The reduction-causing dopant may be at least one compound selected from an alkali metal, alkali metal complex, alkali metal compound, alkali earth metal, alkali earth metal complex, alkali earth metal compound, rare-earth metal, rare-earth metal complex, rare-earth metal compound and the like.
  • Examples of the alkali metal are Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), Cs (work function: 1.95 eV) and the like, among which a substance having a work function of 2.9 eV or less is particularly preferable. Among the above, the reduction-causing dopant is preferably K, Rb or Cs, more preferably Rb or Cs, the most preferably Cs.
  • Examples of the alkali earth metal are Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), Ba (work function: 2.52 eV) and the like, among which a substance having a work function of 2.9 eV or less is particularly preferable.
  • Examples of the rare-earth metal are Sc, Y, Ce, Tb, Yb and the like, among which a substance having a work function of 2.9 eV or less is particularly preferable.
  • Since the above preferable metals have particularly high reducibility, addition of a relatively small amount of the metals to an electron injecting zone can enhance luminance intensity and lifetime of the organic EL device.
  • Examples of the alkali metal compound include an alkali oxide such as Li2O, Cs2O and K2O, and an alkali halide such as LiF, NaF, CsF and KF. LiF, Li2O, and NaF are preferable.
  • Examples of the alkali earth metal compound include BaO, SrO, CaO and their mixture such as BaxSr1-xO (0<x<1) and BaxCa1-xO (0<x<1). BaO, SrO, and CaO are preferable.
  • Examples of the rare earth metal compound include YbF3, ScF3, SeO3, Y2O3, Ce2O3, GdF3 and TbF3. YbF3, ScF3, and TbF3 are preferable.
  • The alkali metal complex, alkali earth metal complex and rare earth metal complex are not specifically limited as long as they contain at least one metal ion of an alkali metal ion, an alkali earth metal ion and a rare earth metal ion. In addition, the ligand is preferably quinolynol, benzoquinolynol, acridinol, phenanthridinol, hydroxyphenyloxazole, hydroxyphenylthiazole, hydroxydiaryloxadiazole, hydroxydiarylthiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzoimidazole, hydroxybenzotriazole, hydroxyfluboran, bipyridyl, phenanthroline, phthalocyanin, porphyrin, cyclopentadiene, β-diketones, azomethines, and derivatives thereof. However, the ligand is not limited thereto.
  • The reduction-causing dopant is added to preferably form a layer or an island pattern in the interfacial region. The layer of the reduction-causing dopant or the island pattern of the reduction-causing dopant is preferably formed by depositing the reduction-causing dopant by resistance heating deposition while an emitting material for forming the interfacial region or an organic substance as an electron-injecting material are simultaneously deposited, so that the reduction-causing dopant is dispersed in the organic substance. Dispersion concentration at which the reduction-causing dopant is dispersed in the organic substance is a mole ratio (organic substance to reduction-causing dopant) of 100:1 to 1:100, preferably 5:1 to 1:5.
  • When the reduction-causing dopant forms the layer, the emitting material or the electron injecting material for forming the organic layer of the interfacial region is initially layered, and the reduction-causing dopant is subsequently deposited singularly thereon by resistance heating deposition to form a preferably 0.1 to 15 nm-thick layer.
  • When the reduction-causing dopant forms the island pattern, the emitting material or the electron injecting material for forming the organic layer of the interfacial region is initially formed in an island shape, and the reduction-causing dopant is subsequently deposited singularly thereon by resistance heating deposition to form a preferably 0.05 to 1 nm-thick island shape.
  • A ratio of the main component to the reduction-causing dopant in the organic EL device according to the aspect of the invention is preferably a mole ratio (main component to reduction-causing dopant) of 5:1 to 1:5, more preferably 2:1 to 1:2.
  • The organic EL device according to the aspect of the invention preferably includes the electron injecting layer between the emitting layer and the cathode, and the electron injecting layer preferably contains a nitrogen-containing cyclic derivative as the main component.
  • It should be noted that “as the main component” means that the nitrogen-containing cyclic derivative is contained in the electron injecting layer at a content of 50 mass % or more.
  • The electron injecting layer or the electron transporting layer, which aids injection of the electrons into the emitting layer, has a high electron mobility. The electron injecting layer is provided for adjusting energy level, by which, for instance, sudden changes of the energy level can be reduced.
  • A preferable example of an electron transporting material for forming the electron injecting layer is an aromatic heterocyclic compound having in the molecule at least one heteroatom. Particularly, a nitrogen-containing cyclic derivative is preferable.
  • A preferable example of the nitrogen-containing cyclic derivative is a nitrogen-containing cyclic metal chelate complex represented by the following formula (A).
  • Figure US20100331585A1-20101230-C00041
  • R2 to R7 each independently represent a hydrogen atom, a halogen atom, an oxy group, an amino group, a hydrocarbon group having 1 to 40 carbon atoms, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, or a heterocyclic group. These groups may be substituted or unsubstituted.
  • Examples of the halogen atom include fluorine, chlorine, bromine, and iodine. In addition, examples of the substituted or unsubstituted amino group include an alkylamino group, an arylamino group, and an aralkylamino group.
  • Examples of the hydrocarbon group having 1 to 40 carbon atoms include a substituted or unsubstituted alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and an aralkyl group.
  • Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, an n-nonyl group, an n-decyl group, an n-undecyl group, an n-dodecyl group, an n-tridecyl group, an n-tetradecyl group, an n-pentadecyl group, an n-hexadecyl group, an n-heptadecyl group, an n-octadecyl group, a neopentyl group, a 1-methylpentyl group, a 2-methylpentyl group, a 1-pentylhexyl group, a 1-butylpentyl group, a 1-heptyloctyl group, a 3-methylpentyl group, a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 2-hydroxyisobutyl group, a 1,2-dihydroxyethyl group, a 1,3-dihydroxyisopropyl group, a 2,3-dihydroxy-t-butyl group, a 1,2,3-trihydroxypropyl group, a chloromethyl group, a 1-chloroethyl group, a 2-chloroethyl group, a 2-chloroisobutyl group, a 1,2-dichloroethyl group, a 1,3-dichloroisopropyl group, a 2,3-dichloro-t-butyl group, a 1,2,3-trichloropropyl group, a bromomethyl group, a 1-bromoethyl group, a 2-bromoethyl group, a 2-bromoisobutyl group, a 1,2-dibromoethyl group, a 1,3-dibromoisopropyl group, a 2,3-dibromo-t-butyl group, a 1,2,3-tribromopropyl group, an iodomethyl group, a 1-iodoethyl group, a 2-iodoethyl group, a 2-iodoisobutyl group, a 1,2-diiodoethyl group, a 1,3-diiodoisopropyl group, a 2,3-diiodo-t-butyl group, a 1,2,3-triiodopropyl group, an aminomethyl group, a 1-aminoethyl group, a 2-aminoethyl group, a 2-aminoisobutyl group, a 1,2-diaminoethyl group, a 1,3-diaminoisopropyl group, a 2,3-diamino-t-butyl group, a 1,2,3-triaminopropyl group, a cyanomethyl group, a 1-cyanoethyl group, a 2-cyanoethyl group, a 2-cyanoisobutyl group, a 1,2-dicyanoethyl group, a 1,3-dicyanoisopropyl group, a 2,3-dicyano-t-butyl group, a 1,2,3-tricyanopropyl group, a nitromethyl group, a 1-nitroethyl group, a 2-nitroethyl group, a 1,2-dinitroethyl group, a 2,3-dinitro-t-butyl group, and a 1,2,3-trinitropropyl group.
  • Among these, preferred are a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, an n-nonyl group, an n-decyl group, an n-undecyl group, an n-dodecyl group, an n-tridecyl group, an n-tetradecyl group, an n-pentadecyl group, an n-hexadecyl group, an n-heptadecyl group, an n-octadecyl group, a neopentyl group, a 1-methylpentyl group, a 1-pentylhexyl group, a 1-butylpentyl group, and a 1-heptyloctyl group.
  • Examples of the alkenyl group include a vinyl group, an allyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, a 1,3-butanedienyl group, a 1-methylvinyl group, a styryl group, a 2,2-diphenylvinyl group, a 1,2-diphenylvinyl group, a 1-methylallyl group, a 1,1-dimethylallyl group, a 2-methylallyl group, a 1-phenylallyl group, a 2-phenylallyl group, a 3-phenylallyl group, a 3,3-diphenylallyl group, a 1,2-dimethylallyl group, a 1-phenyl-1-butenyl group, and a 3-phenyl-1-butenyl group. A styryl group, a 2,2-diphenylvinyl group, and a 1,2-diphenylvinyl group are preferred.
  • Examples of the cycloalkyl group include a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and a 3,5-tetramethylcyclohexyl group. A cyclohexyl group, a cyclooctyl group, and a 3,5-tetramethylcyclohexyl group are preferable.
  • The alkoxy group is a group represented by —OY. Example of Y are the same as those described above for the alkyl group. The preferred examples are also the same.
  • Examples of the non-fused aryl group include a phenyl group, a biphenyl-2-yl group, a biphenyl-3-yl group, a biphenyl-4-yl group, a p-terphenyl-4-yl group, a p-terphenyl-3-yl group, a p-terphenyl-2-yl group, an m-terphenyl-4-yl group, an m-terphenyl-3-yl group, an m-terphenyl-2-yl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a p-t-butylphenyl group, a p-(2-phenylpropyl)phenyl group, a 4′-methylbiphenylyl group, a 4″-t-butyl-p-terphenyl-4-yl group, an o-cumenyl group, an m-cumenyl group, a p-cumenyl group, a 2,3-xylyl group, a 3,4-xylyl group, a 2,5-xylyl group, a mesityl group, and an m-quarterphenyl group.
  • Among these, preferred are a phenyl group, a biphenyl-2-yl group, a biphenyl-3-yl group, a biphenyl-4-yl group, an m-terphenyl-4-yl group, an m-terphenyl-3-yl group, an m-terphenyl-2-yl group, a p-tolyl group, a 3,4-xylyl group, and an m-quarterphenyl-2-yl group.
  • Examples of the fused aryl group include a 1-naphthyl group and a 2-naphthyl group.
  • The heterocyclic group is a mono ring or a fused ring. The heterocyclic group preferably has 1 to 20 ring carbon atoms, more preferably 1 to 12 ring carbon atoms, and still more preferably 2 to 10 ring carbon atoms. An example thereof is an aromatic heterocyclic group having at least one hetero atom selected from a nitrogen atom, an oxygen atom, a sulfur atom and a selenium atom. Examples of the heterocyclic group include groups that are derived from pyrrolidine, piperidine, piperazine, morpholine, thiophene, selenophene, furan, pyrrol, imidazole, pyrazole, pyridine, pyrazine, pyridazine, pyrimidine, trizaole, triazine, indole, indazole, purine, thiazoline, thiazole, thiadiazole, oxazoline, oxazole, oxadiazole, quinoline, isoquinoline, phthalazine, naphthridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, benzimidazole, benzoxazole, benzothiazole, benzotriazole, tetrazaindene, carbazole, and azepine. Preferably, the heterocyclic group is derived from furan, thiophene, pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, phthalazine, naphthiridine, quinoxaline and quinazoline. More preferably, the heterocyclic group is a group derived from furan, thiophene, pyridine and quinoline, and still more preferably a quinolinyl group.
  • Examples of the aralkyl group include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylisopropyl group, a 2-phenylisopropyl group, a phenyl-t-butyl group, a α-naphthylmethyl group, a 1-α-naphthylethyl group, a 2-α-naphthylethyl group, a 1-α-naphthylisopropyl group, a 2-α-naphthylisopropyl group, a β-naphthylmethyl group, a 1-β-naphthylethyl group, a 2-β-naphthylethyl group, a 1-β-naphthylisopropyl group, a 2-β-naphthylisopropyl group, a p-methylbenzyl group, an m-methylbenzyl group, an o-methylbenzyl group, a p-chlorobenzyl group, an m-chlorobenzyl group, an o-chlorobenzyl group, a p-bromobenzyl group, an m-bromobenzyl group, an o-bromobenzyl group, a p-iodobenzyl group, an m-iodobenzyl group, an o-iodobenzyl group, a p-hydroxybenzyl group, an m-hydroxybenzyl group, an o-hydroxybenzyl group, a p-aminobenzyl group, an m-aminobenzyl group, an o-aminobenzyl group, a p-nitrobenzyl group, an m-nitrobenzyl group, an o-nitrobenzyl group, a p-cyanobenzyl group, an m-cyanobenzyl group, an o-cyanobenzyl group, a 1-hydroxy-2-phenylisopropyl group, and a 1-chloro-2-phenylisopropyl group.
  • Among these, preferred are a benzyl group, a p-cyanobenzyl group, an m-cyanobenzyl group, an o-cyanobenzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylisopropyl group, and a 2-phenylisopropyl group.
  • The aryloxy group is represented by —OY′. Examples of Y′ include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a 1-naphthacenyl group, a 2-naphthacenyl group, a 9-naphthacenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, a p-terphenyl-4-yl group, a p-terphenyl-3-yl group, a p-terphenyl-2-yl group, an m-terphenyl-4-yl group, an m-terphenyl-3-yl group, an m-terphenyl-2-yl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a p-t-butylphenyl group, a p-(2-phenylpropyl)phenyl group, a 3-methyl-2-naphthyl group, a 4-methyl-1-naphthyl group, a 4-methyl-1-anthryl group, a 4% methylbiphenylyl group, and a 4′-t-butyl-p-terphenyl-4-yl group.
  • The heteroaryloxy group in the aryloxy group is represented by —OZ′. Examples of Z′ include a 2-pyrrolyl group, a 3-pyrrolyl group, a pyrazinyl group, a 2-pyrizinyl group, a 3-pyrizinyl group, a 4-pyrizinyl group, a 2-indolyl group, a 3-indolyl group, a 4-indolyl group, a 5-indolyl group, a 6-indolyl group, a 7-indolyl group, a 1-isoindolyl group, a 3-isoindolyl group, a 4-isoindolyl group, a 5-isoindolyl group, a 6-isoindolyl group, a 7-isoindolyl group, a 2-furyl group, a 3-furyl group, a 2-benzofuranyl group, a 3-benzofuranyl group, a 4-benzofuranyl group, a 5-benzofuranyl group, a 6-benzofuranyl group, a 7-benzofuranyl group, a 1-isobenzofuranyl group, a 3-isobenzofuranyl group, a 4-isobenzofuranyl group, a 5-isobenzofuranyl group, a 6-isobenzofuranyl group, a 7-isobenzofuranyl group, a 2-quinolyl group, a 3-quinolyl group, a 4-quinolyl group, a 5-quinolyl group, a 6-quinolyl group, a 7-quinolyl group, a 8-quinolyl group, a 1-isoquinolyl group, a 3-isoquinolyl group, a 4-isoquinolyl group, a 5-isoquinolyl group, a 6-isoquinolyl group, a 7-isoquinolyl group, a 8-isoquinolyl group, a 2-quinoxalinyl group, a 5-quinoxalinyl group, a 6-quinoxalinyl group, a 1-carbazolyl group, a 2-carbazolyl group, a 3-carbazolyl group, a 4-carbazolyl group, a 1-phenanthridinyl group, a 2-phenanthridinyl group, a 3-phenanthridinyl group, a 4-phenanthridinyl group, a 6-phenanthridinyl group, a 7-phenanthridinyl group, a 8-phenanthridinyl group, a 9-phenanthridinyl group, a 10-phenanthridinyl group, a 1-acridinyl group, a 2-acridinyl group, a 3-acridinyl group, a 4-acridinyl group, a 9-acridinyl group, a 1,7-phenanthroline-2-yl group, a 1,7-phenanthroline-3-yl group, a 1,7-phenanthroline-4-yl group, a 1,7-phenanthroline-5-yl group, a 1,7-phenanthroline-6-yl group, a 1,7-phenanthroline-8-yl group, a 1,7-phenanthroline-9-yl group, a 1,7-phenanthroline-10-yl group, a 1,8-phenanthroline-2-yl group, a 1,8-phenanthroline-3-yl group, a 1,8-phenanthroline-4-yl group, a 1,8-phenanthroline-5-yl group, a 1,8-phenanthroline-6-yl group, a 1,8-phenanthroline-7-yl group, a 1,8-phenanthroline-9-yl group, a 1,8-phenanthroline-10-yl group, a 1,9-phenanthroline-2-yl group, a 1,9-phenanthroline-3-yl group, a 1,9-phenanthroline-4-yl group, a 1,9-phenanthroline-5-yl group, a 1,9-phenanthrolin-6-yl group, a 1,9-phenanthrolin-7-yl group, a 1,9-phenanthroline-8-yl group, a 1,9-phenanthroline-10-yl group, a 1,10-phenanthroline-2-yl group, a 1,10-phenanthroline-3-yl group, a 1,10-phenanthroline-4-yl group, a 1,10-phenanthroline-5-yl group, a 2,9-phenanthroline-1-yl group, a 2,9-phenanthroline-3-yl group, a 2,9-phenanthroline-4-yl group, a 2,9-phenanthroline-5-yl group, a 2,9-phenanthroline-6-yl group, a 2,9-phenanthroline-7-yl group, a 2,9-phenanthroline-8-yl group, a 2,9-phenanthroline-10-yl group, a 2,8-phenanthroline-1-yl group, a 2,8-phenanthroline-3-yl group, a 2,8-phenanthroline-4-yl group, a 2,8-phenanthroline-5-yl group, a 2,8-phenanthroline-6-yl group, a 2,8-phenanthroline-7-yl group, a 2,8-phenanthroline-9-yl group, a 2,8-phenanthroline-10-yl group, a 2,7-phenanthroline-1-yl group, a 2,7-phenanthroline-3-yl group, a 2,7-phenanthroline-4-yl group, a 2,7-phenanthroline-5-yl group, a 2,7-phenanthroline-6-yl group, a 2,7-phenanthroline-8-yl group, a 2,7-phenanthroline-9-yl group, a 2,7-phenanthroline-10-yl group, a 1-phenazinyl group, a 2-phenazinyl group, a 1-phenothiazinyl group, a 2-phenothiazinyl group, a 3-phenothiazinyl group, a 4-phenothiazinyl group, a 1-phenoxazinyl group, a 2-phenoxazinyl group, a 3-phenoxazinyl group, a 4-phenoxazinyl group, a 2-oxazolyl group, a 4-oxazolyl group, a 5-oxazolyl group, a 2-oxadiazolyl group, a 5-oxadiazolyl group, a 3-furazanyl group, a 2-thienyl group, a 3-thienyl group, a 2-methylpyrrol-1-yl group, a 2-methylpyrrol-3-yl group, a 2-methylpyrrol-4-yl group, a 2-methylpyrrol-5-yl group, a 3-methylpyrrol-1-yl group, a 3-methylpyrrol-2-yl group, a 3-methylpyrrol-4-yl group, a 3-methylpyrrol-5-yl group, a 2-t-butylpyrrol-4-yl group, a 3-(2-phenylpropyl)pyrrol-1-yl group, a 2-methyl-1-indolyl group, a 4-methyl-1-indolyl group, a 2-methyl-3-indolyl group, a 4-methyl-3-indolyl group, a 2-t-butyl 1-indolyl group, a 4-t-butyl 1-indolyl group, a 2-t-butyl 3-indolyl group, and a 4-t-butyl 3-indolyl group.
  • The alkoxycarbonyl group is represented by —COOY′. Examples of Y′ are the same as the examples of the alkyl group.
  • The alkylamino group and the aralkylamino group are represented by —NQ1Q2. Examples for each of Q1 and Q2 are the same as the examples described in relation to the alkyl group and the aralkyl group, and preferable examples for each of Q1 and Q2 are also the same as those described in relation to the alkyl group and the aralkyl group. Either one of Q1 and Q2 may be a hydrogen atom.
  • The arylamino group is represented by —NAr1Ar2. Examples for each of Ar1 and Ar2 are the same as the examples described in relation to the non-fused aryl group and the fused aryl group. Either one of Ar1 and Ar2 may be a hydrogen atom.
  • M represents aluminum (Al), gallium (Ga) or indium (In), among which In is preferable.
  • L in the formula (A) represents a group represented by the following formula (A′) or the following formula (A″).
  • Figure US20100331585A1-20101230-C00042
  • In the formula, R8 to R12 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 40 carbon atoms. Adjacent groups may form a cyclic structure. In the formula, R13 to R27 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 40 carbon atoms. Adjacent groups may form a cyclic structure.
  • Examples of the hydrocarbon group having 1 to 40 carbon atoms represented by each of R8 to R12 and R13 to R27 in the formulae (A′) and (A″) are the same as those of R2 to R7.
  • Examples of a divalent group formed when an adjacent set of R8 to R12 and R13 to R27 forms a cyclic structure are a tetramethylene group, a pentamethylene group, a hexamethylene group, a diphenylmethane-2,2′-diyl group, a diphenylethane-3,3′-diyl group, a diphenylpropane-4,4′-diyl group and the like.
  • Examples of the nitrogen-containing cyclic metal chelate complex represented by the formula (A) will be shown below. However, the nitrogen-containing cyclic metal chelate complex is not limited to the exemplary compounds shown below.
  • Figure US20100331585A1-20101230-C00043
    Figure US20100331585A1-20101230-C00044
    Figure US20100331585A1-20101230-C00045
    Figure US20100331585A1-20101230-C00046
    Figure US20100331585A1-20101230-C00047
    Figure US20100331585A1-20101230-C00048
    Figure US20100331585A1-20101230-C00049
  • According to the aspect of the invention, the electron injecting layer preferably contains a nitrogen-containing heterocyclic derivative.
  • The electron injecting layer or the electron transporting layer, which aids injection of the electrons into the emitting layer, has a high electron mobility. The electron injecting layer is provided for adjusting energy level, by which, for instance, sudden changes of the energy level can be reduced. As a material for the electron injecting layer or the electron transporting layer, 8-hydroxyquinoline or a metal complex of its derivative, an oxadiazole derivative and a nitrogen-containing heterocyclic derivative are preferable. An example of the 8-hydroxyquinoline or the metal complex of its derivative is a metal chelate oxinoid compound containing a chelate of oxine (typically 8-quinolinol or 8-hydroxyquinoline). For instance, tris(8-quinolinol) aluminum can be used. Examples of the oxadiazole derivative are as follows.
  • Figure US20100331585A1-20101230-C00050
  • In the formula, Ar17, Ar18, Ar19, Ar21, Ar22 and Ar25 each represent a substituted or unsubstituted aryl group. Ar17, Ar19 and Ar22 may be the same as or different from Ar18, Ar21 and Ar25 respectively. Ar20, Ar23 and Ar24 each represent a substituted or unsubstituted arylene group. Ar23 and Ar24 may be mutually the same or different.
  • Examples of the arylene group are a phenylene group, naphthylene group, biphenylene group, anthranylene group, perylenylene group and pyrenylene group. Examples of the substituent therefor are an alkyl group having 1 to 10 carbon atoms, alkoxy group having 1 to 10 carbon atoms and cyano group. Such an electron transport compound is preferably an electron transport compound that can be favorably formed into a thin film(s). Examples of the electron transport compounds are as follows.
  • Figure US20100331585A1-20101230-C00051
  • An example of the nitrogen-containing heterocyclic derivative is a nitrogen-containing compound that is not a metal complex, the derivative being formed of an organic compound represented by one of the following general formulae. Examples of the nitrogen-containing heterocyclic derivative are five-membered ring or six-membered ring derivative having a skeleton represented by the formula (A) and a derivative having a structure represented by the formula (B).
  • Figure US20100331585A1-20101230-C00052
  • In the formula (B), X represents a carbon atom or nitrogen atom. Z1 and Z2 each independently represent an atom group capable of forming a nitrogen-containing heterocycle.
  • Figure US20100331585A1-20101230-C00053
  • Preferably, the nitrogen-containing heterocyclic derivative is an organic compound having nitrogen-containing aromatic polycyclic series having a five-membered ring or six-membered ring. When the nitrogen-containing heterocyclic derivative includes such nitrogen-containing aromatic polycyclic series having plural nitrogen atoms, the nitrogen-containing heterocyclic derivative may be a nitrogen-containing aromatic polycyclic organic compound having a skeleton formed by a combination of the skeletons respectively represented by the formulae (A) and (B), or by a combination of the skeletons respectively represented by the formulae (A) and (C).
  • A nitrogen-containing group of the nitrogen-containing organic compound is selected from nitrogen-containing heterocyclic groups respectively represented by the following general formulae.
  • Figure US20100331585A1-20101230-C00054
  • In the formulae: R represents an aryl group having 6 to 40 carbon atoms, heteroaryl group having 3 to 40 carbon atoms, alkyl group having 1 to 20 carbon atoms or alkoxy group having 1 to 20 carbon atoms; and n represents an integer of 0 to 5. When n is an integer of 2 or more, plural R may be mutually the same or different.
  • A preferable specific compound is a nitrogen-containing heterocyclic derivative represented by the following formula.

  • HAr-L1-Ar1−Ar2  [Chemical Formula 29]
  • In the formula, HAr represents a substituted or unsubstituted nitrogen-containing heterocycle having 3 to 40 carbon atoms; L1 represents a single bond, substituted or unsubstituted arylene group having 6 to 40 carbon atoms or substituted or unsubstituted heteroarylene group having 3 to 40 carbon atoms; Ar1 represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 40 carbon atoms; and Ar2 represents a substituted or unsubstituted aryl group having 6 to 40 carbon atoms or substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms.
  • HAr is exemplarily selected from the following group.
  • Figure US20100331585A1-20101230-C00055
    Figure US20100331585A1-20101230-C00056
    Figure US20100331585A1-20101230-C00057
  • L1 is exemplarily selected from the following group.
  • Figure US20100331585A1-20101230-C00058
  • Ar2 is exemplarily selected from the following group.
  • Figure US20100331585A1-20101230-C00059
  • Ar1 is exemplarily selected from the following arylanthranil groups.
  • Figure US20100331585A1-20101230-C00060
  • In the formula, R1 to R14 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a heteroaryl group having 3 to 40 carbon atoms. Ar3 represents a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a heteroaryl group having 3 to 40 carbon atoms.
  • The nitrogen-containing heterocyclic derivative may be a nitrogen-containing heterocyclic derivative in which R1 to R8 in the structure of Ar1 represented by the above formula each represent a hydrogen atom.
  • Other than the above, the following compound (see JP-A-9-3448) can be favorably used.
  • Figure US20100331585A1-20101230-C00061
  • In the formula, R1 to R4 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted alicyclic group, a substituted or unsubstituted carbocyclic aromatic ring group, or substituted or unsubstituted heterocyclic group. Xi and X2 each independently represent an oxygen atom, a sulfur atom or a dicyanomethylene group.
  • Alternatively, the following compound (see JP-A-2000-173774) can also be favorably used.
  • Figure US20100331585A1-20101230-C00062
  • In the formula, R1, R2, R3 and R4, which may be mutually the same or different, each represent an aryl group represented by the following formula.
  • Figure US20100331585A1-20101230-C00063
  • In the formula, R5, R6, R7, R8 and R9, which may be mutually the same or different, each represent a hydrogen atom, a saturated or unsaturated alkoxyl group, alkyl group, amino group or alkylamino group. At least one of R5, R6, R7, R8 and R9 represents a saturated or unsaturated alkoxyl group, alkyl group, amino group or alkylamino group.
  • A polymer compound containing the nitrogen-containing heterocyclic group or a nitrogen-containing heterocyclic derivative may be used.
  • The electron transporting layer preferably contains at least one of nitrogen-containing heterocycle derivatives respectively represented by the following formulae (201) to (203).
  • Figure US20100331585A1-20101230-C00064
  • In the formulae (201) to (203): R represents a hydrogen atom, substituted or unsubstituted aryl group having 6 to 60 carbon atoms, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms or substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms; n represents an integer of 0 to 4; R1 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms or alkoxy group having 1 to 20 carbon atoms; R2 and R3 each independently represent a hydrogen atom, substituted or unsubstituted aryl group having 6 to 60 carbon atoms, substituted or unsubstituted pyrydyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms or substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms; L represents a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, substituted or unsubstituted pyridinylene group, substituted or unsubstituted quinolinylene group or substituted or unsubstituted fluorenylene group; Ar1 represents a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, substituted or unsubstituted pyridinylene group or substituted or unsubstituted quinolinylene group; Ar2 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms or substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • Ar3 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms or a group represented by —Ar1—Ar2 (Ar1 and Ar2 may be the same as the above).
  • In the formulae (201) to (203), R represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • The aryl group having 6 to 60 carbon atom is preferably an aryl group having 6 to 40 carbon atoms, more preferably an aryl group having 6 to 20 carbon atoms. Examples of such an aryl group are a phenyl group, naphthyl group, anthryl group, phenanthryl group, naphthacenyl group, chrysenyl group, pyrenyl group, biphenyl group, terphenyl group, tolyl group, t-butylphenyl group, (2-phenylpropyl)phenyl group, fluoranthenyl group, fluorenyl group, a monovalent group formed of spirobifluorene, perfluorophenyl group, perfluoronaphthyl group, perfluoroanthryl group, perfluorobiphenyl group, a monovalent group formed of 9-phenylanthracene, a monovalent group formed of 9-(1′naphthyl)anthracene, a monovalent group formed of 9-(2′-naphthyl)anthracene, a monovalent group formed of 6-phenylchrysene, and a monovalent group formed of 9-[4-(diphenylamine) phenyl]anthracene, among which a phenyl group, naphthyl group, biphenyl group, terphenyl group, 9-(10-phenyl)anthryl group, 9-[10-(1′-naphthyl)]anthryl group and 9-[10-(2′-naphthyl)]anthryl group are preferable.
  • The alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms. Examples of such an alkyl group are a methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, and a haloalkyl group such as trifluoromethyl group. When such an alkyl group has 3 or more carbon atoms, the alkyl group may be linear, cyclic or branched.
  • The alkoxy group having 1 to 20 carbon atoms is preferably an alkoxy group having 1 to 6 carbon atoms. Examples of such an alkoxy group are a methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, and hexyloxy group. When such an alkoxy group has 3 or more carbon atoms, the alkoxy group may be linear, cyclic or branched.
  • Examples of a substituent for the group represented by R are a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms.
  • Examples of the halogen atom are fluorine, chlorine, bromine, iodine and the like.
  • Examples for each of the alkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, and an aryl group having 6 to 40 carbon atoms may be the same as the above examples.
  • Examples of the aryloxy group having 6 to 40 carbon atoms are a phenoxy group and a biphenyloxy group.
  • Examples of the heteroaryl group having 3 to 40 carbon atoms are a pyrrolyl group, furyl group, thienyl group, silolyl group, pyridyl group, quinolyl group, isoquinolyl group, benzofuryl group, imidazolyl group, pyrimidyl group, carbazolyl group, selenophenyl group, oxadiazolyl group and triazolyl group.
  • n is an integer in a range of 0 to 4, preferably 0 to 2.
  • In the formulae (201), R1 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted quinolyl group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms.
  • Examples for each of the groups, the preferable number of carbon atoms contained in each of the groups, and preferable examples of the substituent for each of the groups are the same as those described in relation to R.
  • In the formulae (202) and (203), R2 and R3 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted quinolyl group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • Examples for each of the groups, the preferable number of carbon atoms contained in each of the groups, and preferable examples of the substituent for each of the groups are the same as those described in relation to R.
  • In the formulae (201) to (203), L represents a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridinylene group, a substituted or unsubstituted quinolinylene group, or a substituted or unsubstituted fluorenylene group.
  • The arylene group having 6 to 60 carbon atoms is preferably an arylene group having 6 to 40 carbon atoms, more preferably an arylene group having 6 to 20 carbon atoms. An example of such an arylene group is a divalent group formed by removing one hydrogen atom from the aryl group having been described in relation to R. Examples of a substituent for the group represented by L are the same as those described in relation to R.
  • Alternatively, L is preferably a group selected from groups represented by the following formulae.
  • Figure US20100331585A1-20101230-C00065
  • In the formulae (201), Ar1 represents a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridinylene group, or a substituted or unsubstituted quinolinylene group. Examples of a substituent for the groups represented by Ar1 and Ar2 are the same as those described in relation to R.
  • Alternatively, Ar1 is preferably selected from fused ring groups respectively represented by the following formulae (101) to (110).
  • Figure US20100331585A1-20101230-C00066
    Figure US20100331585A1-20101230-C00067
  • In the formulae (101) to (110), the fused rings each may be linked with a link group formed of a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms. When the rings each are linked with plural link groups, the plural link groups may be mutually the same or different. Examples for each of the groups are the same as those described above.
  • In the formula (110), L′ represents a single bond or a group selected from groups represented by the following formulae.
  • Figure US20100331585A1-20101230-C00068
  • The structure of Ar1 represented by the formula (103) is preferably a fused ring group represented by any one of the following formulae (111) to (125).
  • Figure US20100331585A1-20101230-C00069
    Figure US20100331585A1-20101230-C00070
    Figure US20100331585A1-20101230-C00071
  • In the formulae (111) to (125), the fused rings each may be linked with a link group formed of a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms. When the rings each are linked with plural link groups, the plural link groups may be mutually the same or different. Examples for each of the groups are the same as those described above.
  • In the formula (201), Ar2 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted quinolyl group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • Examples for each of the groups, the preferable number of carbon atoms contained in each of the groups, and preferable examples of the substituent for each of the groups are the same as those described in relation to R.
  • In the formulae (202) and (203), Ar3 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted quinolyl group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, or a group represented by —Ar1—Ar2 (Ar1 and Ar2 are the same as the above).
  • Examples for each of the groups, the preferable number of carbon atoms contained in each of the groups, and preferable examples of the substituent for each of the groups are the same as those described in relation to R.
  • Alternatively, Ar3 is preferably selected from fused ring groups respectively represented by the following formulae (126) to (135).
  • Figure US20100331585A1-20101230-C00072
    Figure US20100331585A1-20101230-C00073
  • In the formulae (126) to (135), the fused rings each may be linked with a link group formed of a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms. When the rings each are linked with plural link groups, the plural link groups may be mutually the same or different. Examples for each of the groups are the same as those described above.
  • In the formula (135), L′ represents the same as the above.
  • In the formulae (126) to (135), R′ represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms. Examples for each of the groups are the same as those described above.
  • The structure of Ar3 represented by the formula (128) is preferably a fused ring group represented by any one of the following formulae (136) to (158).
  • Figure US20100331585A1-20101230-C00074
    Figure US20100331585A1-20101230-C00075
    Figure US20100331585A1-20101230-C00076
    Figure US20100331585A1-20101230-C00077
  • In the formulae (136) to (158), the fused rings each may be linked with a link group formed of a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms. When the rings each are linked with plural link groups, the plural link groups may be mutually the same or different. Examples for each of the groups are the same as those described above. R′ is the same as the above.
  • Alternatively, Ar2 and Ar3 each independently are preferably a group selected from groups represented by the following formulae.
  • Figure US20100331585A1-20101230-C00078
  • Examples of the nitrogen-containing heterocyclic derivative represented by any one of the formulae (201) to (203) according to the aspect of the invention will be shown below. However, the invention is not limited to the exemplary compounds shown below.
  • In the chart shown below, HAr represents any one of the following structures respectively in the structures represented by the formulae (201) to (203).
  • Figure US20100331585A1-20101230-C00079
  • [Chemical Formula 46]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    1-1
    Figure US20100331585A1-20101230-C00080
    Figure US20100331585A1-20101230-C00081
    Figure US20100331585A1-20101230-C00082
    Figure US20100331585A1-20101230-C00083
    2
    Figure US20100331585A1-20101230-C00084
    Figure US20100331585A1-20101230-C00085
    Figure US20100331585A1-20101230-C00086
    Figure US20100331585A1-20101230-C00087
    3
    Figure US20100331585A1-20101230-C00088
    Figure US20100331585A1-20101230-C00089
    Figure US20100331585A1-20101230-C00090
    Figure US20100331585A1-20101230-C00091
    4
    Figure US20100331585A1-20101230-C00092
    Figure US20100331585A1-20101230-C00093
    Figure US20100331585A1-20101230-C00094
    Figure US20100331585A1-20101230-C00095
    5
    Figure US20100331585A1-20101230-C00096
    Figure US20100331585A1-20101230-C00097
    Figure US20100331585A1-20101230-C00098
    Figure US20100331585A1-20101230-C00099
    6
    Figure US20100331585A1-20101230-C00100
    Figure US20100331585A1-20101230-C00101
    Figure US20100331585A1-20101230-C00102
    Figure US20100331585A1-20101230-C00103
    7
    Figure US20100331585A1-20101230-C00104
    Figure US20100331585A1-20101230-C00105
    Figure US20100331585A1-20101230-C00106
    Figure US20100331585A1-20101230-C00107
    8
    Figure US20100331585A1-20101230-C00108
    Figure US20100331585A1-20101230-C00109
    Figure US20100331585A1-20101230-C00110
    Figure US20100331585A1-20101230-C00111
    9
    Figure US20100331585A1-20101230-C00112
    Figure US20100331585A1-20101230-C00113
    Figure US20100331585A1-20101230-C00114
    Figure US20100331585A1-20101230-C00115
    10
    Figure US20100331585A1-20101230-C00116
    Figure US20100331585A1-20101230-C00117
    Figure US20100331585A1-20101230-C00118
    Figure US20100331585A1-20101230-C00119
    11
    Figure US20100331585A1-20101230-C00120
    Figure US20100331585A1-20101230-C00121
    Figure US20100331585A1-20101230-C00122
    Figure US20100331585A1-20101230-C00123
    12
    Figure US20100331585A1-20101230-C00124
    Figure US20100331585A1-20101230-C00125
    Figure US20100331585A1-20101230-C00126
    Figure US20100331585A1-20101230-C00127
    13
    Figure US20100331585A1-20101230-C00128
    Figure US20100331585A1-20101230-C00129
    Figure US20100331585A1-20101230-C00130
    Figure US20100331585A1-20101230-C00131
    14
    Figure US20100331585A1-20101230-C00132
    Figure US20100331585A1-20101230-C00133
    Figure US20100331585A1-20101230-C00134
    Figure US20100331585A1-20101230-C00135
  • [Chemical Formula 47]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    2-1
    Figure US20100331585A1-20101230-C00136
    Figure US20100331585A1-20101230-C00137
    Figure US20100331585A1-20101230-C00138
    Figure US20100331585A1-20101230-C00139
    2
    Figure US20100331585A1-20101230-C00140
    Figure US20100331585A1-20101230-C00141
    Figure US20100331585A1-20101230-C00142
    Figure US20100331585A1-20101230-C00143
    3
    Figure US20100331585A1-20101230-C00144
    Figure US20100331585A1-20101230-C00145
    Figure US20100331585A1-20101230-C00146
    Figure US20100331585A1-20101230-C00147
    4
    Figure US20100331585A1-20101230-C00148
    Figure US20100331585A1-20101230-C00149
    Figure US20100331585A1-20101230-C00150
    Figure US20100331585A1-20101230-C00151
    5
    Figure US20100331585A1-20101230-C00152
    Figure US20100331585A1-20101230-C00153
    Figure US20100331585A1-20101230-C00154
    Figure US20100331585A1-20101230-C00155
    6
    Figure US20100331585A1-20101230-C00156
    Figure US20100331585A1-20101230-C00157
    Figure US20100331585A1-20101230-C00158
    Figure US20100331585A1-20101230-C00159
    7
    Figure US20100331585A1-20101230-C00160
    Figure US20100331585A1-20101230-C00161
    Figure US20100331585A1-20101230-C00162
    Figure US20100331585A1-20101230-C00163
    8
    Figure US20100331585A1-20101230-C00164
    Figure US20100331585A1-20101230-C00165
    Figure US20100331585A1-20101230-C00166
    Figure US20100331585A1-20101230-C00167
    9
    Figure US20100331585A1-20101230-C00168
    Figure US20100331585A1-20101230-C00169
    Figure US20100331585A1-20101230-C00170
    Figure US20100331585A1-20101230-C00171
  • [Chemical Formula 48]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    3-1
    Figure US20100331585A1-20101230-C00172
    Figure US20100331585A1-20101230-C00173
    Figure US20100331585A1-20101230-C00174
    Figure US20100331585A1-20101230-C00175
    2
    Figure US20100331585A1-20101230-C00176
    Figure US20100331585A1-20101230-C00177
    Figure US20100331585A1-20101230-C00178
    Figure US20100331585A1-20101230-C00179
    3
    Figure US20100331585A1-20101230-C00180
    Figure US20100331585A1-20101230-C00181
    Figure US20100331585A1-20101230-C00182
    Figure US20100331585A1-20101230-C00183
    4
    Figure US20100331585A1-20101230-C00184
    Figure US20100331585A1-20101230-C00185
    Figure US20100331585A1-20101230-C00186
    Figure US20100331585A1-20101230-C00187
    5
    Figure US20100331585A1-20101230-C00188
    Figure US20100331585A1-20101230-C00189
    Figure US20100331585A1-20101230-C00190
    Figure US20100331585A1-20101230-C00191
    6
    Figure US20100331585A1-20101230-C00192
    Figure US20100331585A1-20101230-C00193
    Figure US20100331585A1-20101230-C00194
    Figure US20100331585A1-20101230-C00195
  • [Chemical Formula 49]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    4-1
    Figure US20100331585A1-20101230-C00196
    Figure US20100331585A1-20101230-C00197
    Figure US20100331585A1-20101230-C00198
    Figure US20100331585A1-20101230-C00199
    2
    Figure US20100331585A1-20101230-C00200
    Figure US20100331585A1-20101230-C00201
    Figure US20100331585A1-20101230-C00202
    Figure US20100331585A1-20101230-C00203
    3
    Figure US20100331585A1-20101230-C00204
    Figure US20100331585A1-20101230-C00205
    Figure US20100331585A1-20101230-C00206
    Figure US20100331585A1-20101230-C00207
    4
    Figure US20100331585A1-20101230-C00208
    Figure US20100331585A1-20101230-C00209
    Figure US20100331585A1-20101230-C00210
    Figure US20100331585A1-20101230-C00211
    5
    Figure US20100331585A1-20101230-C00212
    Figure US20100331585A1-20101230-C00213
    Figure US20100331585A1-20101230-C00214
    Figure US20100331585A1-20101230-C00215
    6
    Figure US20100331585A1-20101230-C00216
    Figure US20100331585A1-20101230-C00217
    Figure US20100331585A1-20101230-C00218
    Figure US20100331585A1-20101230-C00219
    7
    Figure US20100331585A1-20101230-C00220
    Figure US20100331585A1-20101230-C00221
    Figure US20100331585A1-20101230-C00222
    Figure US20100331585A1-20101230-C00223
    8
    Figure US20100331585A1-20101230-C00224
    Figure US20100331585A1-20101230-C00225
    Figure US20100331585A1-20101230-C00226
    Figure US20100331585A1-20101230-C00227
    9
    Figure US20100331585A1-20101230-C00228
    Figure US20100331585A1-20101230-C00229
    Figure US20100331585A1-20101230-C00230
    Figure US20100331585A1-20101230-C00231
    10
    Figure US20100331585A1-20101230-C00232
    Figure US20100331585A1-20101230-C00233
    Figure US20100331585A1-20101230-C00234
    Figure US20100331585A1-20101230-C00235
    11
    Figure US20100331585A1-20101230-C00236
    Figure US20100331585A1-20101230-C00237
    Figure US20100331585A1-20101230-C00238
    Figure US20100331585A1-20101230-C00239
    12
    Figure US20100331585A1-20101230-C00240
    Figure US20100331585A1-20101230-C00241
    Figure US20100331585A1-20101230-C00242
    Figure US20100331585A1-20101230-C00243
  • [Chemical Formula 50]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    5-1
    Figure US20100331585A1-20101230-C00244
    Figure US20100331585A1-20101230-C00245
    Figure US20100331585A1-20101230-C00246
    Figure US20100331585A1-20101230-C00247
    2
    Figure US20100331585A1-20101230-C00248
    Figure US20100331585A1-20101230-C00249
    Figure US20100331585A1-20101230-C00250
    Figure US20100331585A1-20101230-C00251
    3
    Figure US20100331585A1-20101230-C00252
    Figure US20100331585A1-20101230-C00253
    Figure US20100331585A1-20101230-C00254
    Figure US20100331585A1-20101230-C00255
    4
    Figure US20100331585A1-20101230-C00256
    Figure US20100331585A1-20101230-C00257
    Figure US20100331585A1-20101230-C00258
    Figure US20100331585A1-20101230-C00259
    5
    Figure US20100331585A1-20101230-C00260
    Figure US20100331585A1-20101230-C00261
    Figure US20100331585A1-20101230-C00262
    Figure US20100331585A1-20101230-C00263
    6
    Figure US20100331585A1-20101230-C00264
    Figure US20100331585A1-20101230-C00265
    Figure US20100331585A1-20101230-C00266
    Figure US20100331585A1-20101230-C00267
  • [Chemical Formula 51]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    6-1
    Figure US20100331585A1-20101230-C00268
    Figure US20100331585A1-20101230-C00269
    Figure US20100331585A1-20101230-C00270
    Figure US20100331585A1-20101230-C00271
    2
    Figure US20100331585A1-20101230-C00272
    Figure US20100331585A1-20101230-C00273
    Figure US20100331585A1-20101230-C00274
    Figure US20100331585A1-20101230-C00275
    3
    Figure US20100331585A1-20101230-C00276
    Figure US20100331585A1-20101230-C00277
    Figure US20100331585A1-20101230-C00278
    Figure US20100331585A1-20101230-C00279
    4
    Figure US20100331585A1-20101230-C00280
    Figure US20100331585A1-20101230-C00281
    Figure US20100331585A1-20101230-C00282
    Figure US20100331585A1-20101230-C00283
    5
    Figure US20100331585A1-20101230-C00284
    Figure US20100331585A1-20101230-C00285
    Figure US20100331585A1-20101230-C00286
    Figure US20100331585A1-20101230-C00287
  • [Chemical Formula 52]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    7-1
    Figure US20100331585A1-20101230-C00288
    Figure US20100331585A1-20101230-C00289
    Figure US20100331585A1-20101230-C00290
    Figure US20100331585A1-20101230-C00291
    2
    Figure US20100331585A1-20101230-C00292
    Figure US20100331585A1-20101230-C00293
    Figure US20100331585A1-20101230-C00294
    Figure US20100331585A1-20101230-C00295
    3
    Figure US20100331585A1-20101230-C00296
    Figure US20100331585A1-20101230-C00297
    Figure US20100331585A1-20101230-C00298
    Figure US20100331585A1-20101230-C00299
    4
    Figure US20100331585A1-20101230-C00300
    Figure US20100331585A1-20101230-C00301
    Figure US20100331585A1-20101230-C00302
    Figure US20100331585A1-20101230-C00303
    5
    Figure US20100331585A1-20101230-C00304
    Figure US20100331585A1-20101230-C00305
    Figure US20100331585A1-20101230-C00306
    Figure US20100331585A1-20101230-C00307
    6
    Figure US20100331585A1-20101230-C00308
    Figure US20100331585A1-20101230-C00309
    Figure US20100331585A1-20101230-C00310
    Figure US20100331585A1-20101230-C00311
    7
    Figure US20100331585A1-20101230-C00312
    Figure US20100331585A1-20101230-C00313
    Figure US20100331585A1-20101230-C00314
    Figure US20100331585A1-20101230-C00315
    8
    Figure US20100331585A1-20101230-C00316
    Figure US20100331585A1-20101230-C00317
    Figure US20100331585A1-20101230-C00318
    Figure US20100331585A1-20101230-C00319
    9
    Figure US20100331585A1-20101230-C00320
    Figure US20100331585A1-20101230-C00321
    Figure US20100331585A1-20101230-C00322
    Figure US20100331585A1-20101230-C00323
    10
    Figure US20100331585A1-20101230-C00324
    Figure US20100331585A1-20101230-C00325
    Figure US20100331585A1-20101230-C00326
    Figure US20100331585A1-20101230-C00327
  • [Chemical Formula 53]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    8-1
    Figure US20100331585A1-20101230-C00328
    Figure US20100331585A1-20101230-C00329
    Figure US20100331585A1-20101230-C00330
    Figure US20100331585A1-20101230-C00331
    2
    Figure US20100331585A1-20101230-C00332
    Figure US20100331585A1-20101230-C00333
    Figure US20100331585A1-20101230-C00334
    Figure US20100331585A1-20101230-C00335
    3
    Figure US20100331585A1-20101230-C00336
    Figure US20100331585A1-20101230-C00337
    Figure US20100331585A1-20101230-C00338
    Figure US20100331585A1-20101230-C00339
    4
    Figure US20100331585A1-20101230-C00340
    Figure US20100331585A1-20101230-C00341
    Figure US20100331585A1-20101230-C00342
    Figure US20100331585A1-20101230-C00343
    5
    Figure US20100331585A1-20101230-C00344
    Figure US20100331585A1-20101230-C00345
    Figure US20100331585A1-20101230-C00346
    Figure US20100331585A1-20101230-C00347
    6
    Figure US20100331585A1-20101230-C00348
    Figure US20100331585A1-20101230-C00349
    Figure US20100331585A1-20101230-C00350
    Figure US20100331585A1-20101230-C00351
    7
    Figure US20100331585A1-20101230-C00352
    Figure US20100331585A1-20101230-C00353
    Figure US20100331585A1-20101230-C00354
    Figure US20100331585A1-20101230-C00355
    8
    Figure US20100331585A1-20101230-C00356
    Figure US20100331585A1-20101230-C00357
    Figure US20100331585A1-20101230-C00358
    Figure US20100331585A1-20101230-C00359
    9
    Figure US20100331585A1-20101230-C00360
    Figure US20100331585A1-20101230-C00361
    Figure US20100331585A1-20101230-C00362
    Figure US20100331585A1-20101230-C00363
    10
    Figure US20100331585A1-20101230-C00364
    Figure US20100331585A1-20101230-C00365
    Figure US20100331585A1-20101230-C00366
    Figure US20100331585A1-20101230-C00367
    11
    Figure US20100331585A1-20101230-C00368
    Figure US20100331585A1-20101230-C00369
    Figure US20100331585A1-20101230-C00370
    Figure US20100331585A1-20101230-C00371
    12
    Figure US20100331585A1-20101230-C00372
    Figure US20100331585A1-20101230-C00373
    Figure US20100331585A1-20101230-C00374
    Figure US20100331585A1-20101230-C00375
    13
    Figure US20100331585A1-20101230-C00376
    Figure US20100331585A1-20101230-C00377
    Figure US20100331585A1-20101230-C00378
    Figure US20100331585A1-20101230-C00379
  • [Chemical Formula 54]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    9-1
    Figure US20100331585A1-20101230-C00380
    Figure US20100331585A1-20101230-C00381
    Figure US20100331585A1-20101230-C00382
    Figure US20100331585A1-20101230-C00383
    2
    Figure US20100331585A1-20101230-C00384
    Figure US20100331585A1-20101230-C00385
    Figure US20100331585A1-20101230-C00386
    Figure US20100331585A1-20101230-C00387
    3
    Figure US20100331585A1-20101230-C00388
    Figure US20100331585A1-20101230-C00389
    Figure US20100331585A1-20101230-C00390
    Figure US20100331585A1-20101230-C00391
    4
    Figure US20100331585A1-20101230-C00392
    Figure US20100331585A1-20101230-C00393
    Figure US20100331585A1-20101230-C00394
    Figure US20100331585A1-20101230-C00395
    5
    Figure US20100331585A1-20101230-C00396
    Figure US20100331585A1-20101230-C00397
    Figure US20100331585A1-20101230-C00398
    Figure US20100331585A1-20101230-C00399
    6
    Figure US20100331585A1-20101230-C00400
    Figure US20100331585A1-20101230-C00401
    Figure US20100331585A1-20101230-C00402
    Figure US20100331585A1-20101230-C00403
    7
    Figure US20100331585A1-20101230-C00404
    Figure US20100331585A1-20101230-C00405
    Figure US20100331585A1-20101230-C00406
    Figure US20100331585A1-20101230-C00407
    8
    Figure US20100331585A1-20101230-C00408
    Figure US20100331585A1-20101230-C00409
    Figure US20100331585A1-20101230-C00410
    Figure US20100331585A1-20101230-C00411
    9
    Figure US20100331585A1-20101230-C00412
    Figure US20100331585A1-20101230-C00413
    Figure US20100331585A1-20101230-C00414
    Figure US20100331585A1-20101230-C00415
    10
    Figure US20100331585A1-20101230-C00416
    Figure US20100331585A1-20101230-C00417
    Figure US20100331585A1-20101230-C00418
    Figure US20100331585A1-20101230-C00419
    11
    Figure US20100331585A1-20101230-C00420
    Figure US20100331585A1-20101230-C00421
    Figure US20100331585A1-20101230-C00422
    Figure US20100331585A1-20101230-C00423
    12
    Figure US20100331585A1-20101230-C00424
    Figure US20100331585A1-20101230-C00425
    Figure US20100331585A1-20101230-C00426
    Figure US20100331585A1-20101230-C00427
    13
    Figure US20100331585A1-20101230-C00428
    Figure US20100331585A1-20101230-C00429
    Figure US20100331585A1-20101230-C00430
    Figure US20100331585A1-20101230-C00431
    14
    Figure US20100331585A1-20101230-C00432
    Figure US20100331585A1-20101230-C00433
    Figure US20100331585A1-20101230-C00434
    Figure US20100331585A1-20101230-C00435
  • [Chemical Formula 55]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    10-1
    Figure US20100331585A1-20101230-C00436
    Figure US20100331585A1-20101230-C00437
    Figure US20100331585A1-20101230-C00438
    Figure US20100331585A1-20101230-C00439
    2
    Figure US20100331585A1-20101230-C00440
    Figure US20100331585A1-20101230-C00441
    Figure US20100331585A1-20101230-C00442
    Figure US20100331585A1-20101230-C00443
    3
    Figure US20100331585A1-20101230-C00444
    Figure US20100331585A1-20101230-C00445
    Figure US20100331585A1-20101230-C00446
    Figure US20100331585A1-20101230-C00447
    4
    Figure US20100331585A1-20101230-C00448
    Figure US20100331585A1-20101230-C00449
    Figure US20100331585A1-20101230-C00450
    Figure US20100331585A1-20101230-C00451
    5
    Figure US20100331585A1-20101230-C00452
    Figure US20100331585A1-20101230-C00453
    Figure US20100331585A1-20101230-C00454
    Figure US20100331585A1-20101230-C00455
    6
    Figure US20100331585A1-20101230-C00456
    Figure US20100331585A1-20101230-C00457
    Figure US20100331585A1-20101230-C00458
    Figure US20100331585A1-20101230-C00459
    7
    Figure US20100331585A1-20101230-C00460
    Figure US20100331585A1-20101230-C00461
    Figure US20100331585A1-20101230-C00462
    Figure US20100331585A1-20101230-C00463
    8
    Figure US20100331585A1-20101230-C00464
    Figure US20100331585A1-20101230-C00465
    Figure US20100331585A1-20101230-C00466
    Figure US20100331585A1-20101230-C00467
    9
    Figure US20100331585A1-20101230-C00468
    Figure US20100331585A1-20101230-C00469
    Figure US20100331585A1-20101230-C00470
    Figure US20100331585A1-20101230-C00471
  • [Chemical Formula 56]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    11-1
    Figure US20100331585A1-20101230-C00472
    Figure US20100331585A1-20101230-C00473
    Figure US20100331585A1-20101230-C00474
    Figure US20100331585A1-20101230-C00475
    2
    Figure US20100331585A1-20101230-C00476
    Figure US20100331585A1-20101230-C00477
    Figure US20100331585A1-20101230-C00478
    Figure US20100331585A1-20101230-C00479
    3
    Figure US20100331585A1-20101230-C00480
    Figure US20100331585A1-20101230-C00481
    Figure US20100331585A1-20101230-C00482
    Figure US20100331585A1-20101230-C00483
    4
    Figure US20100331585A1-20101230-C00484
    Figure US20100331585A1-20101230-C00485
    Figure US20100331585A1-20101230-C00486
    Figure US20100331585A1-20101230-C00487
    5
    Figure US20100331585A1-20101230-C00488
    Figure US20100331585A1-20101230-C00489
    Figure US20100331585A1-20101230-C00490
    Figure US20100331585A1-20101230-C00491
    6
    Figure US20100331585A1-20101230-C00492
    Figure US20100331585A1-20101230-C00493
    Figure US20100331585A1-20101230-C00494
    Figure US20100331585A1-20101230-C00495
  • [Chemical Formula 57]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    12-1
    Figure US20100331585A1-20101230-C00496
    Figure US20100331585A1-20101230-C00497
    Figure US20100331585A1-20101230-C00498
    Figure US20100331585A1-20101230-C00499
    2
    Figure US20100331585A1-20101230-C00500
    Figure US20100331585A1-20101230-C00501
    Figure US20100331585A1-20101230-C00502
    Figure US20100331585A1-20101230-C00503
    3
    Figure US20100331585A1-20101230-C00504
    Figure US20100331585A1-20101230-C00505
    Figure US20100331585A1-20101230-C00506
    Figure US20100331585A1-20101230-C00507
    4
    Figure US20100331585A1-20101230-C00508
    Figure US20100331585A1-20101230-C00509
    Figure US20100331585A1-20101230-C00510
    Figure US20100331585A1-20101230-C00511
    5
    Figure US20100331585A1-20101230-C00512
    Figure US20100331585A1-20101230-C00513
    Figure US20100331585A1-20101230-C00514
    Figure US20100331585A1-20101230-C00515
    6
    Figure US20100331585A1-20101230-C00516
    Figure US20100331585A1-20101230-C00517
    Figure US20100331585A1-20101230-C00518
    Figure US20100331585A1-20101230-C00519
    7
    Figure US20100331585A1-20101230-C00520
    Figure US20100331585A1-20101230-C00521
    Figure US20100331585A1-20101230-C00522
    Figure US20100331585A1-20101230-C00523
    8
    Figure US20100331585A1-20101230-C00524
    Figure US20100331585A1-20101230-C00525
    Figure US20100331585A1-20101230-C00526
    Figure US20100331585A1-20101230-C00527
    9
    Figure US20100331585A1-20101230-C00528
    Figure US20100331585A1-20101230-C00529
    Figure US20100331585A1-20101230-C00530
    Figure US20100331585A1-20101230-C00531
    10
    Figure US20100331585A1-20101230-C00532
    Figure US20100331585A1-20101230-C00533
    Figure US20100331585A1-20101230-C00534
    Figure US20100331585A1-20101230-C00535
    11
    Figure US20100331585A1-20101230-C00536
    Figure US20100331585A1-20101230-C00537
    Figure US20100331585A1-20101230-C00538
    Figure US20100331585A1-20101230-C00539
  • [Chemical Formula 58]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    13-1
    Figure US20100331585A1-20101230-C00540
    Figure US20100331585A1-20101230-C00541
    Figure US20100331585A1-20101230-C00542
    Figure US20100331585A1-20101230-C00543
    2
    Figure US20100331585A1-20101230-C00544
    Figure US20100331585A1-20101230-C00545
    Figure US20100331585A1-20101230-C00546
    Figure US20100331585A1-20101230-C00547
    3
    Figure US20100331585A1-20101230-C00548
    Figure US20100331585A1-20101230-C00549
    Figure US20100331585A1-20101230-C00550
    Figure US20100331585A1-20101230-C00551
    4
    Figure US20100331585A1-20101230-C00552
    Figure US20100331585A1-20101230-C00553
    Figure US20100331585A1-20101230-C00554
    Figure US20100331585A1-20101230-C00555
    5
    Figure US20100331585A1-20101230-C00556
    Figure US20100331585A1-20101230-C00557
    Figure US20100331585A1-20101230-C00558
    Figure US20100331585A1-20101230-C00559
    6
    Figure US20100331585A1-20101230-C00560
    Figure US20100331585A1-20101230-C00561
    Figure US20100331585A1-20101230-C00562
    Figure US20100331585A1-20101230-C00563
  • [Chemical Formula 59]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    14-1
    Figure US20100331585A1-20101230-C00564
    Figure US20100331585A1-20101230-C00565
    Figure US20100331585A1-20101230-C00566
    Figure US20100331585A1-20101230-C00567
    2
    Figure US20100331585A1-20101230-C00568
    Figure US20100331585A1-20101230-C00569
    Figure US20100331585A1-20101230-C00570
    Figure US20100331585A1-20101230-C00571
    3
    Figure US20100331585A1-20101230-C00572
    Figure US20100331585A1-20101230-C00573
    Figure US20100331585A1-20101230-C00574
    Figure US20100331585A1-20101230-C00575
    4
    Figure US20100331585A1-20101230-C00576
    Figure US20100331585A1-20101230-C00577
    Figure US20100331585A1-20101230-C00578
    Figure US20100331585A1-20101230-C00579
    5
    Figure US20100331585A1-20101230-C00580
    Figure US20100331585A1-20101230-C00581
    Figure US20100331585A1-20101230-C00582
    Figure US20100331585A1-20101230-C00583
  • [Chemical Formula 60]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    15-1
    Figure US20100331585A1-20101230-C00584
    Figure US20100331585A1-20101230-C00585
    Figure US20100331585A1-20101230-C00586
    Figure US20100331585A1-20101230-C00587
    2
    Figure US20100331585A1-20101230-C00588
    Figure US20100331585A1-20101230-C00589
    Figure US20100331585A1-20101230-C00590
    Figure US20100331585A1-20101230-C00591
    3
    Figure US20100331585A1-20101230-C00592
    Figure US20100331585A1-20101230-C00593
    Figure US20100331585A1-20101230-C00594
    Figure US20100331585A1-20101230-C00595
    4
    Figure US20100331585A1-20101230-C00596
    Figure US20100331585A1-20101230-C00597
    Figure US20100331585A1-20101230-C00598
    Figure US20100331585A1-20101230-C00599
    5
    Figure US20100331585A1-20101230-C00600
    Figure US20100331585A1-20101230-C00601
    Figure US20100331585A1-20101230-C00602
    Figure US20100331585A1-20101230-C00603
    6
    Figure US20100331585A1-20101230-C00604
    Figure US20100331585A1-20101230-C00605
    Figure US20100331585A1-20101230-C00606
    Figure US20100331585A1-20101230-C00607
    7
    Figure US20100331585A1-20101230-C00608
    Figure US20100331585A1-20101230-C00609
    Figure US20100331585A1-20101230-C00610
    Figure US20100331585A1-20101230-C00611
    8
    Figure US20100331585A1-20101230-C00612
    Figure US20100331585A1-20101230-C00613
    Figure US20100331585A1-20101230-C00614
    Figure US20100331585A1-20101230-C00615
    9
    Figure US20100331585A1-20101230-C00616
    Figure US20100331585A1-20101230-C00617
    Figure US20100331585A1-20101230-C00618
    Figure US20100331585A1-20101230-C00619
    10
    Figure US20100331585A1-20101230-C00620
    Figure US20100331585A1-20101230-C00621
    Figure US20100331585A1-20101230-C00622
    Figure US20100331585A1-20101230-C00623
  • [Chemical Formula 61]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    16-1
    Figure US20100331585A1-20101230-C00624
    Figure US20100331585A1-20101230-C00625
    Figure US20100331585A1-20101230-C00626
    Figure US20100331585A1-20101230-C00627
    2
    Figure US20100331585A1-20101230-C00628
    Figure US20100331585A1-20101230-C00629
    Figure US20100331585A1-20101230-C00630
    Figure US20100331585A1-20101230-C00631
    3
    Figure US20100331585A1-20101230-C00632
    Figure US20100331585A1-20101230-C00633
    Figure US20100331585A1-20101230-C00634
    Figure US20100331585A1-20101230-C00635
    4
    Figure US20100331585A1-20101230-C00636
    Figure US20100331585A1-20101230-C00637
    Figure US20100331585A1-20101230-C00638
    Figure US20100331585A1-20101230-C00639
    5
    Figure US20100331585A1-20101230-C00640
    Figure US20100331585A1-20101230-C00641
    Figure US20100331585A1-20101230-C00642
    Figure US20100331585A1-20101230-C00643
    6
    Figure US20100331585A1-20101230-C00644
    Figure US20100331585A1-20101230-C00645
    Figure US20100331585A1-20101230-C00646
    Figure US20100331585A1-20101230-C00647
    7
    Figure US20100331585A1-20101230-C00648
    Figure US20100331585A1-20101230-C00649
    Figure US20100331585A1-20101230-C00650
    Figure US20100331585A1-20101230-C00651
    8
    Figure US20100331585A1-20101230-C00652
    Figure US20100331585A1-20101230-C00653
    Figure US20100331585A1-20101230-C00654
    Figure US20100331585A1-20101230-C00655
  • [Chemical Formula 62]
    HAr—L—Ar1—Ar2
    HAr L Ar1 Ar2
    17-1
    Figure US20100331585A1-20101230-C00656
    Figure US20100331585A1-20101230-C00657
    Figure US20100331585A1-20101230-C00658
    Figure US20100331585A1-20101230-C00659
    2
    Figure US20100331585A1-20101230-C00660
    Figure US20100331585A1-20101230-C00661
    Figure US20100331585A1-20101230-C00662
    Figure US20100331585A1-20101230-C00663
    3
    Figure US20100331585A1-20101230-C00664
    Figure US20100331585A1-20101230-C00665
    Figure US20100331585A1-20101230-C00666
    Figure US20100331585A1-20101230-C00667
    4
    Figure US20100331585A1-20101230-C00668
    Figure US20100331585A1-20101230-C00669
    Figure US20100331585A1-20101230-C00670
    Figure US20100331585A1-20101230-C00671
    5
    Figure US20100331585A1-20101230-C00672
    Figure US20100331585A1-20101230-C00673
    Figure US20100331585A1-20101230-C00674
    Figure US20100331585A1-20101230-C00675
    6
    Figure US20100331585A1-20101230-C00676
    Figure US20100331585A1-20101230-C00677
    Figure US20100331585A1-20101230-C00678
    Figure US20100331585A1-20101230-C00679
    7
    Figure US20100331585A1-20101230-C00680
    Figure US20100331585A1-20101230-C00681
    Figure US20100331585A1-20101230-C00682
    Figure US20100331585A1-20101230-C00683
    8
    Figure US20100331585A1-20101230-C00684
    Figure US20100331585A1-20101230-C00685
    Figure US20100331585A1-20101230-C00686
    Figure US20100331585A1-20101230-C00687
  • Among the above examples, the compounds (1-1), (1-5), (1-7), (2-1), (3-1), (4-2), (4-6), (7-2), (7-7), (7-8), (7-9) and (9-7) are particularly preferred.
  • Although thickness of the electron injecting layer or the electron transporting layer is not specifically limited, the thickness is preferably 1 to 100 nm.
  • The electron injecting layer preferably contains an inorganic compound such as an insulator or a semiconductor in addition to the nitrogen-containing cyclic derivative. Such an insulator or a semiconductor, when contained in the electron injecting layer, can effectively prevent a current leak, thereby enhancing electron injectability of the electron injecting layer.
  • As the insulator, it is preferable to use at least one metal compound selected from a group consisting of an alkali metal chalcogenide, an alkali earth metal chalcogenide, a halogenide of alkali metal and a halogenide of alkali earth metal. By forming the electron injecting layer from the alkali metal chalcogenide or the like, the electron injecting capability can preferably be further enhanced. Specifically, preferable examples of the alkali metal chalcogenide are Li2O, K2O, Na2S, Na2Se and Na2O, while preferable example of the alkali earth metal chalcogenide are CaO, BaO, SrO, BeO, BaS and CaSe. Preferable examples of the halogenide of the alkali metal are LiF, NaF, KF, LiCl, KCl and NaCl. Preferable examples of the halogenide of the alkali earth metal are fluorides such as CaF2, BaF2, SrF2, MgF2 and BeF2, and halogenides other than the fluoride.
  • Examples of the semiconductor are one of or a combination of two or more of an oxide, a nitride or an oxidized nitride containing at least one element selected from Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb and Zn. An inorganic compound for forming the electron injecting layer is preferably a microcrystalline or amorphous semiconductor film. When the electron injecting layer is formed of such semiconductor film, more uniform thin film can be formed, thereby reducing pixel defects such as a dark spot. Examples of such an inorganic compound are the above-described alkali metal chalcogenide, alkali earth metal chalcogenide, halogenide of the alkali metal and halogenide of the alkali earth metal.
  • The electron injecting layer in the aspect of the invention may preferably contain the above-described reduction-causing dopant.
  • The hole injecting layer or the hole transporting layer (including the hole injecting/transporting layer) may contain an aromatic amine compound such as an aromatic amine derivative represented by the following (I).
  • Figure US20100331585A1-20101230-C00688
  • In the above formula (I), Ar1 to Ar4 represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • Examples of the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a 1-naphthacenyl group, a 2-naphthacenyl group, a 9-naphthacenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, a p-terphenyl-4-yl group, a p-terphenyl-3-yl group, a p-terphenyl-2-yl group, an m-terphenyl-4-yl group, an m-terphenyl-3-yl group, an m-terphenyl-2-yl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a p-t-butylphenyl group, a p-(2-phenylpropyl)phenyl group, a 3-methyl-2-naphthyl group, a 4-methyl-1-naphthyl group, a 4-methyl-1-anthryl group, a 4′-methylbiphenylyl group, a 4′-t-butyl-p-terphenyl-4-yl group, a fluoranthenyl group, and a fluorenyl group.
  • Examples of the substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms include a 1-pyrrolyl group, a 2-pyrrolyl group, a 3-pyrrolyl group, a pyrazinyl group, a 2-pyrizinyl group, a 3-pyrizinyl group, a 4-pyrizinyl group, a 1-indolyl group, a 2-indolyl group, a 3-indolyl group, a 4-indolyl group, a 5-indolyl group, a 6-indolyl group, a 7-indolyl group, a 1-isoindolyl group, a 2-isoindolyl group, a 3-isoindolyl group, a 4-isoindolyl group, a 5-isoindolyl group, a 6-isoindolyl group, a 7-isoindolyl group, a 2-furyl group, a 3-furyl group, a 2-benzofuranyl group, a 3-benzofuranyl group, a 4-benzofuranyl group, a 5-benzofuranyl group, a 6-benzofuranyl group, a 7-benzofuranyl group, a 1-isobenzofuranyl group, a 3-isobenzofuranyl group, a 4-isobenzofuranyl group, a 5-isobenzofuranyl group, a 6-isobenzofuranyl group, a 7-isobenzofuranyl group, a quinolyl group, a 3-quinolyl group, a 4-quinolyl group, a 5-quinolyl group, a 6-quinolyl group, a 7-quinolyl group, a 8-quinolyl group, a 1-isoquinolyl group, a 3-isoquinolyl group, a 4-isoquinolyl group, a 5-isoquinolyl group, a 6-isoquinolyl group, a 7-isoquinolyl group, a 8-isoquinolyl group, a 2-quinoxalinyl group, a 5-quinoxalinyl group, a 6-quinoxalinyl group, a 1-carbazolyl group, a 2-carbazolyl group, a 3-carbazolyl group, a 4-carbazolyl group, a 9-carbazolyl group, a 1-phenanthridinyl group, a 2-phenanthridinyl group, a 3-phenanthridinyl group, a 4-phenanthridinyl group, a 6-phenanthridinyl group, a 7-phenanthridinyl group, a 8-phenanthridinyl group, a 9-phenanthridinyl group, a 10-phenanthridinyl group, a 1-acridinyl group, a 2-acridinyl group, a 3-acridinyl group, a 4-acridinyl group, a 9-acridinyl group, a 1,7-phenanthroline-2-yl group, a 1,7-phenanthroline-3-yl group, a 1,7-phenanthroline-4-yl group, a 1,7-phenanthroline-5-yl group, a 1,7-phenanthroline-6-yl group, a 1,7-phenanthroline-8-yl group, a 1,7-phenanthroline-9-yl group, a 1,7-phenanthroline-10-yl group, a 1,8-phenanthroline-2-yl group, a 1,8-phenanthroline-3-yl group, a 1,8-phenanthroline-4-yl group, a 1,8-phenanthroline-5-yl group, a 1,8-phenanthroline-6-yl group, a 1,8-phenanthroline-7-yl group, a 1,8-phenanthroline-9-yl group, a 1,8-phenanthroline-10-yl group, a 1,9-phenanthroline-2-yl group, a 1,9-phenanthroline-3-yl group, a 1,9-phenanthroline-4-yl group, a 1,9-phenanthroline-5-yl group, a 1,9-phenanthroline-6-yl group, a 1,9-phenanthroline-7-yl group, a 1,9-phenanthroline-8-yl group, a 1,9-phenanthroline-10-yl group, a 1,10-phenanthroline-2-yl group, a 1,10-phenanthroline-3-yl group, a 1,10-phenanthroline-4-yl group, a 1,10-phenanthroline-5-yl group, a 2,9-phenanthroline-1-yl group, a 2,9-phenanthroline-3-yl group, a 2,9-phenanthroline-4-yl group, a 2,9-phenanthroline-5-yl group, a 2,9-phenanthroline-6-yl group, a 2,9-phenanthroline-7-yl group, a 2,9-phenanthroline-8-yl group, a 2,9-phenanthroline-10-yl group, a 2,8-phenanthroline-1-yl group, a 2,8-phenanthroline-3-yl group, a 2,8-phenanthroline-4-yl group, a 2,8-phenanthroline-5-yl group, a 2,8-phenanthroline-6-yl group, a 2,8-phenanthroline-7-yl group, a 2,8-phenanthroline-9-yl group, a 2,8-phenanthroline-10-yl group, a 2,7-phenanthroline-1-yl group, a 2,7-phenanthroline-3-yl group, a 2,7-phenanthroline-4-yl group, a 2,7-phenanthroline-5-yl group, a 2,7-phenanthroline-6-yl group, a 2,7-phenanthroline-8-yl group, a 2,7-phenanthroline-9-yl group, a 2,7-phenanthroline-10-yl group, a 1-phenazinyl group, a 2-phenazinyl group, a 1-phenothiazinyl group, a 2-phenothiazinyl group, a 3-phenothiazinyl group, a 4-phenothiazinyl group, a 10-phenothiazinyl group, a 1-phenoxazinyl group, a 2-phenoxazinyl group, a 3-phenoxazinyl group, a 4-phenoxazinyl group, a 10-phenoxazinyl group, a 2-oxazolyl group, a 4-oxazolyl group, a 5-oxazolyl group, a 2-oxadiazolyl group, a 5-oxadiazolyl group, a 3-furazanyl group, a 2-thienyl group, a 3-thienyl group, a 2-methylpyrrol-1-yl group, a 2-methylpyrrol-3-yl group, a 2-methylpyrrol-4-yl group, a 2-methylpyrrol-5-yl group, a 3-methylpyrrol-1-yl group, a 3-methylpyrrol-2-yl group, a 3-methylpyrrol-4-yl group, a 3-methylpyrrol-5-yl group, a 2-t-butylpyrrol-4-yl group, a 3-(2-phenylpropyl)pyrrol-1-yl group, a 2-methyl-1-indolyl group, a 4-methyl-1-indolyl group, a 2-methyl-3-indolyl group, a 4-methyl-3-indolyl group, a 2-t-butyl 1-indolyl group, a 4-t-butyl 1-indolyl group, a 2-t-butyl 3-indolyl group, and a 4-t-butyl 3-indolyl group. Preferred are a phenyl group, a naphthyl group, a biphenyl group, an anthranil group, a phenanthryl group, a pyrenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group and the like.
  • L indicates a linking group. The examples are a divalent group obtained by linking a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms, or at least two arylene groups or heteroarylene groups via a single bond, an ether bond, a thioether bond, an alkylene group having 1 to 20 carbon atoms, an alkenylene group having 2 to 20 carbon atoms, or an amino group. Examples of the arylene group having 6 to 50 ring carbon atoms include a 1,4-phenylene group, a 1,2-phenylene group, a 1,3-phenylene group, a 1,4-naphthylene group, a 2,6-naphthylene group, a 1,5-naphthylene group, a 9,10-anthranylene group, a 9,10-phenanthrenylene group, a 3,6-phenanthrenylene group, a 1,6-pyrenylene group, a 2,7-pyrenylene group, a 6,12-chrysenylene group, a 4,4′-biphenylene group, a 3,3′-biphenylene group, a 2,2′-biphenylene group, and a 2,7-fluorenylene group. Examples of the arylene group having 5 to 50 ring atoms include a 2,5-thiophenylene group, a 2,5-silolylene group, and a 2,5-oxadiazolylene group. Preferably, the arylene group is 1,4-phenylene group, a 1,2-phenylene group, a 1,3-phenylene group, a 1,4-naphthylene group, a 9,10-anthranylene group, a 6,12-chrysenylene group, a 4,4′-biphenylene group, a 3,3′-biphenylene group, a 2,2′-biphenylene group, or a 2,7-fluorenylene group.
  • When L is a linking group consisting of two or more arylene groups or heteroarylene groups, the arylene groups or heteroarylene groups adjacent to each other may form a new ring by bonding to each other via a divalent group. Examples of the divalent group for forming a ring include a tetramethylene group, a pentamethylene group, a hexamethylene group, a diphenylmethane-2,2′-diyl group, a diphenylethane-3,3′-diyl group, and a diphenylpropane-4,4′-diyl group.
  • Examples of the substituent group of Ar1 to Ar4 and L include a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryloxy group having 5 to 50 ring atoms, a substituted or unsubstituted arylthio group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroarylthio group having 5 to 50 ring atoms, a substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, an amino group which is substituted with a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a heteroaryl group having 5 to 50 ring atoms, a halogen atom, cyano group, a nitro group, and a hydroxy group.
  • Examples of the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a 1-naphthacenyl group, a 2-naphthacenyl group, a 9-naphthacenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, a p-terphenyl-4-yl group, a p-terphenyl-3-yl group, a p-terphenyl-2-yl group, an m-terphenyl-4-yl group, an m-terphenyl-3-yl group, an m-terphenyl-2-yl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a p-t-butylphenyl group, a p-(2-phenylpropyl)phenyl group, a 3-methyl-2-naphthyl group, a 4-methyl-1-naphthyl group, a 4-methyl-1-anthryl group, a 4′-methylbiphenylyl group, a 4′-t-butyl-p-terphenyl-4-yl group, a fluoranthenyl group, and a fluorenyl group.
  • Examples of the substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms include a 1-pyrrolyl group, a 2-pyrrolyl group, a 3-pyrrolyl group, a pyrazinyl group, a 2-pyrizinyl group, a 3-pyrizinyl group, a 4-pyrizinyl group, a 1-indolyl group, a 2-indolyl group, a 3-indolyl group, a 4-indolyl group, a 5-indolyl group, a 6-indolyl group, a 7-indolyl group, a 1-isoindolyl group, a 2-isoindolyl group, a 3-isoindolyl group, a 4-isoindolyl group, a 5-isoindolyl group, a 6-isoindolyl group, a 7-isoindolyl group, a 2-furyl group, a 3-furyl group, a 2-benzofuranyl group, a 3-benzofuranyl group, a 4-benzofuranyl group, a 5-benzofuranyl group, a 6-benzofuranyl group, a 7-benzofuranyl group, a 1-isobenzofuranyl group, a 3-isobenzofuranyl group, a 4-isobenzofuranyl group, a 5-isobenzofuranyl group, a 6-isobenzofuranyl group, a 7-isobenzofuranyl group, a quinolyl group, a 3-quinolyl group, a 4-quinolyl group, a 5-quinolyl group, a 6-quinolyl group, a 7-quinolyl group, a 8-quinolyl group, a 1-isoquinolyl group, a 3-isoquinolyl group, a 4-isoquinolyl group, a 5-isoquinolyl group, a 6-isoquinolyl group, a 7-isoquinolyl group, a 8-isoquinolyl group, a 2-quinoxalinyl group, a 5-quinoxalinyl group, a 6-quinoxalinyl group, a 1-carbazolyl group, a 2-carbazolyl group, a 3-carbazolyl group, a 4-carbazolyl group, a 9-carbazolyl group, a 1-phenanthridinyl group, a 2-phenanthridinyl group, a 3-phenanthridinyl group, a 4-phenanthridinyl group, a 6-phenanthridinyl group, a 7-phenanthridinyl group, a 8-phenanthridinyl group, a 9-phenanthridinyl group, a 10-phenanthridinyl group, a 1-acridinyl group, a 2-acridinyl group, a 3-acridinyl group, a 4-acridinyl group, a 9-acridinyl group, a 1,7-phenanthroline-2-yl group, a 1,7-phenanthroline-3-yl group, a 1,7-phenanthroline-4-yl group, a 1,7-phenanthroline-5-yl group, a 1,7-phenanthroline-6-yl group, a 1,7-phenanthroline-8-yl group, a 1,7-phenanthroline-9-yl group, a 1,7-phenanthroline-10-yl group, a 1,8-phenanthroline-2-yl group, a 1,8-phenanthroline-3-yl group, a 1,8-phenanthroline-4-yl group, a 1,8-phenanthroline-5-yl group, a 1,8-phenanthroline-6-yl group, a 1,8-phenanthroline-7-yl group, a 1,8-phenanthroline-9-yl group, a 1,8-phenanthroline-10-yl group, a 1,9-phenanthroline-2-yl group, a 1,9-phenanthroline-3-yl group, a 1,9-phenanthroline-4-yl group, a 1,9-phenanthroline-5-yl group, a 1,9-phenanthroline-6-yl group, a 1,9-phenanthroline-7-yl group, a 1,9-phenanthroline-8-yl group, a 1,9-phenanthroline-10-yl group, a 1,10-phenanthroline-2-yl group, a 1,10-phenanthroline-3-yl group, a 1,10-phenanthroline-4-yl group, a 1,10-phenanthroline-5-yl group, a 2,9-phenanthroline-1-yl group, a 2,9-phenanthroline-3-yl group, a 2,9-phenanthroline-4-yl group, a 2,9-phenanthroline-5-yl group, a 2,9-phenanthroline-6-yl group, a 2,9-phenanthroline-7-yl group, a 2,9-phenanthroline-8-yl group, a 2,9-phenanthroline-10-yl group, a 2,8-phenanthroline-1-yl group, a 2,8-phenanthroline-3-yl group, a 2,8-phenanthroline-4-yl group, a 2,8-phenanthroline-5-yl group, a 2,8-phenanthroline-6-yl group, a 2,8-phenanthroline-7-yl group, a 2,8-phenanthroline-9-yl group, a 2,8-phenanthroline-10-yl group, a 2,7-phenanthroline-1-yl group, a 2,7-phenanthroline-3-yl group, a 2,7-phenanthroline-4-yl group, a 2,7-phenanthroline-5-yl group, a 2,7-phenanthroline-6-yl group, a 2,7-phenanthroline-8-yl group, a 2,7-phenanthroline-9-yl group, a 2,7-phenanthroline-10-yl group, a 1-phenazinyl group, a 2-phenazinyl group, a 1-phenothiazinyl group, a 2-phenothiazinyl group, a 3-phenothiazinyl group, a 4-phenothiazinyl group, a 10-phenothiazinyl group, a 1-phenoxazinyl group, a 2-phenoxazinyl group, a 3-phenoxazinyl group, a 4-phenoxazinyl group, a 10-phenoxazinyl group, a 2-oxazolyl group, a 4-oxazolyl group, a 5-oxazolyl group, a 2-oxadiazolyl group, a 5-oxadiazolyl group, a 3-furazanyl group, a 2-thienyl group, a 3-thienyl group, a 2-methylpyrrol-1-yl group, a 2-methylpyrrol-3-yl group, a 2-methylpyrrol-4-yl group, a 2-methylpyrrol-5-yl group, a 3-methylpyrrol-1-yl group, a 3-methylpyrrol-2-yl group, a 3-methylpyrrol-4-yl group, a 3-methylpyrrol-5-yl group, a 2-t-butylpyrrol-4-yl group, a 3-(2-phenylpropyl)pyrrol-1-yl group, a 2-methyl-1-indolyl group, a 4-methyl-1-indolyl group, a 2-methyl-3-indolyl group, a 4-methyl-3-indolyl group, a 2-t-butyl 1-indolyl group, a 4-t-butyl 1-indolyl group, a 2-t-butyl 3-indolyl group, and a 4-t-butyl 3-indolyl group.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 2-hydroxyisobutyl group, a 1,2-dihydroxyethyl group, a 1,3-dihydroxyisopropyl group, a 2,3-dihydroxy-t-butyl group, a 1,2,3-trihydroxypropyl group, a chloromethyl group, a 1-chloroethyl group, a 2-chloroethyl group, a 2-chloroisobutyl group, a 1,2-dichloroethyl group, a 1,3-dichloroisopropyl group, a 2,3-dichloro-t-butyl group, a 1,2,3-trichloropropyl group, a bromomethyl group, a 1-bromoethyl group, a 2-bromoethyl group, a 2-bromoisobutyl group, a 1,2-dibromoethyl group, a 1,3-dibromoisopropyl group, a 2,3-dibromo-t-butyl group, a 1,2,3-tribromopropyl group, an iodomethyl group, a 1-iodoethyl group, a 2-iodoethyl group, a 2-iodoisobutyl group, a 1,2-diiodoethyl group, a 1,3-diiodoisopropyl group, a 2,3-diiodo-t-butyl group, a 1,2,3-triiodopropyl group, an aminomethyl group, a 1-aminoethyl group, a 2-aminoethyl group, a 2-aminoisobutyl group, a 1,2-diaminoethyl group, a 1,3-diaminoisopropyl group, a 2,3-diamino-t-butyl group, a 1,2,3-triaminopropyl group, a cyanomethyl group, a 1-cyanoethyl group, a 2-cyanoethyl group, a 2-cyanoisobutyl group, a 1,2-dicyanoethyl group, a 1,3-dicyanoisopropyl group, a 2,3-dicyano-t-butyl group, a 1,2,3-tricyanopropyl group, a nitromethyl group, a 1-nitroethyl group, a 2-nitroethyl group, a 2-nitroisobutyl group, a 1,2-dinitroethyl group, a 1,3-dinitroisopropyl group, a 2,3-dinitro-t-butyl group, and a 1,2,3-trinitropropyl group.
  • Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, a 1-norbornyl group, and a 2-norbornyl group.
  • The substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms is a group represented by —OY. Examples of Y include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 2-hydroxyisobutyl group, a 1,2-dihydroxyethyl group, a 1,3-dihydroxyisopropyl group, a 2,3-dihydroxy-t-butyl group, a 1,2,3-trihydroxypropyl group, a chloromethyl group, a 1-chloroethyl group, a 2-chloroethyl group, a 2-chloroisobutyl group, a 1,2-dichloroethyl group, a 1,3-dichloroisopropyl group, a 2,3-dichloro-t-butyl group, a 1,2,3-trichloropropyl group, a bromomethyl group, a 1-bromoethyl group, a 2-bromoethyl group, a 2-bromoisobutyl group, a 1,2-dibromoethyl group, a 1,3-dibromoisopropyl group, a 2,3-dibromo-t-butyl group, a 1,2,3-tribromopropyl group, an iodomethyl group, a 1-iodoethyl group, a 2-iodoethyl group, a 2-iodoisobutyl group, a 1,2-diiodoethyl group, a 1,3-diiodoisopropyl group, a 2,3-diiodo-t-butyl group, a 1,2,3-triiodopropyl group, an aminomethyl group, a 1-aminoethyl group, a 2-aminoethyl group, a 2-aminoisobutyl group, a 1,2-diaminoethyl group, a 1,3-diaminoisopropyl group, a 2,3-diamino-t-butyl group, a 1,2,3-triaminopropyl group, a cyanomethyl group, a 1-cyanoethyl group, a 2-cyanoethyl group, a 2-cyanoisobutyl group, a 1,2-dicyanoethyl group, a 1,3-dicyanoisopropyl group, a 2,3-dicyano-t-butyl group, a 1,2,3-tricyanopropyl group, a nitromethyl group, a 1-nitroethyl group, a 2-nitroethyl group, a 2-nitroisobutyl group, a 1,2-dinitroethyl group, a 1,3-dinitroisopropyl group, a 2,3-dinitro-t-butyl group, and a 1,2,3-trinitropropyl group.
  • Examples of the substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylisopropyl group, a 2-phenylisopropyl group, a phenyl-t-butyl group, a α-naphthylmethyl group, a 1-α-naphthylethyl group, a 2-α-naphthylethyl group, a 1-α-naphthylisopropyl group, a 2-α-naphthylisopropyl group, a β-naphthylmethyl group, a 1-3-naphthylethyl group, a 2-β-naphthylethyl group, a 1-β-naphthylisopropyl group, a 2-β-naphthylisopropyl group, a 1-pyrrolylmethyl group, a 2-(1-pyrrolyl)ethyl group, a p-methylbenzyl group, an m-methylbenzyl group, an o-methylbenzyl group, a p-chlorobenzyl group, an m-chlorobenzyl group, an o-chlorobenzyl group, a p-bromobenzyl group, an m-bromobenzyl group, an o-bromobenzyl group, a p-iodobenzyl group, an m-iodobenzyl group, an o-iodobenzyl group, a p-hydroxybenzyl group, an m-hydroxybenzyl group, an o-hydroxybenzyl group, a p-aminobenzyl group, an m-aminobenzyl group, an o-aminobenzyl group, a p-nitrobenzyl group, an m-nitrobenzyl group, an o-nitrobenzyl group, a p-cyanobenzyl group, an m-cyanobenzyl group, an o-cyanobenzyl group, a 1-hydroxy-2-phenylisopropyl group, and a 1-chloro-2-phenylisopropyl group.
  • The substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms is represented by —OY′. Examples of Y′ include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a 1-naphthacenyl group, a 2-naphthacenyl group, a 9-naphthacenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, a p-terphenyl-4-yl group, a p-terphenyl-3-yl group, a p-terphenyl-2-yl group, an m-terphenyl-4-yl group, an m-terphenyl-3-yl group, an m-terphenyl-2-yl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a p-t-butylphenyl group, a p-(2-phenylpropyl)phenyl group, a 3-methyl-2-naphthyl group, a 4-methyl-1-naphthyl group, a 4-methyl-1-anthryl group, a 4′-methylbiphenylyl group, and a 4′-t-butyl-p-terphenyl-4-yl group.
  • The substituted or unsubstituted heteroaryloxy group having 5 to 50 ring atoms is represented by —OZ′. Examples of Z′ include a 2-pyrrolyl group, a 3-pyrrolyl group, a pyrazinyl group, a 2-pyrizinyl group, a 3-pyrizinyl group, a 4-pyrizinyl group, a 2-indolyl group, a 3-indolyl group, a 4-indolyl group, a 5-indolyl group, a 6-indolyl group, a 7-indolyl group, a 1-isoindolyl group, a 3-isoindolyl group, a 4-isoindolyl group, a 5-isoindolyl group, a 6-isoindolyl group, a 7-isoindolyl group, a 2-furyl group, a 3-furyl group, a 2-benzofuranyl group, a 3-benzofuranyl group, a 4-benzofuranyl group, a 5-benzofuranyl group, a 6-benzofuranyl group, a 7-benzofuranyl group, a 1-isobenzofuranyl group, a 3-isobenzofuranyl group, a 4-isobenzofuranyl group, a 5-isobenzofuranyl group, a 6-isobenzofuranyl group, a 7-isobenzofuranyl group, a 2-quinolyl group, a 3-quinolyl group, a 4-quinolyl group, a 5-quinolyl group, a 6-quinolyl group, a 7-quinolyl group, a 8-quinolyl group, a 1-isoquinolyl group, a 3-isoquinolyl group, a 4-isoquinolyl group, a 5-isoquinolyl group, a 6-isoquinolyl group, a 7-isoquinolyl group, a 8-isoquinolyl group, a 2-quinoxalinyl group, a 5-quinoxalinyl group, a 6-quinoxalinyl group, a 1-carbazolyl group, a 2-carbazolyl group, a 3-carbazolyl group, a 4-carbazolyl group, a 1-phenanthridinyl group, a 2-phenanthridinyl group, a 3-phenanthridinyl group, a 4-phenanthridinyl group, a 6-phenanthridinyl group, a 7-phenanthridinyl group, a 8-phenanthridinyl group, a 9-phenanthridinyl group, a 10-phenanthridinyl group, a 1-acridinyl group, a 2-acridinyl group, a 3-acridinyl group, a 4-acridinyl group, a 9-acridinyl group, a 1,7-phenanthroline-2-yl group, a 1,7-phenanthroline-3-yl group, a 1,7-phenanthroline-4-yl group, a 1,7-phenanthroline-5-yl group, a 1,7-phenanthroline-6-yl group, a 1,7-phenanthroline-8-yl group, a 1,7-phenanthroline-9-yl group, a 1,7-phenanthroline-10-yl group, a 1,8-phenanthroline-2-yl group, a 1,8-phenanthroline-3-yl group, a 1,8-phenanthroline-4-yl group, a 1,8-phenanthroline-5-yl group, a 1,8-phenanthroline-6-yl group, a 1,8-phenanthroline-7-yl group, a 1,8-phenanthroline-9-yl group, a 1,8-phenanthroline-10-yl group, a 1,9-phenanthroline-2-yl group, a 1,9-phenanthroline-3-yl group, a 1,9-phenanthroline-4-yl group, a 1,9-phenanthroline-5-yl group, a 1,9-phenanthroline-6-yl group, a 1,9-phenanthroline-7-yl group, a 1,9-phenanthroline-8-yl group, a 1,9-phenanthroline-10-yl group, a 1,10-phenanthroline-2-yl group, a 1,10-phenanthroline-3-yl group, a 1,10-phenanthroline-4-yl group, a 1,10-phenanthroline-5-yl group, a 2,9-phenanthroline-1-yl group, a 2,9-phenanthroline-3-yl group, a 2,9-phenanthroline-4-yl group, a 2,9-phenanthroline-5-yl group, a 2,9-phenanthroline-6-yl group, a 2,9-phenanthroline-7-yl group, a 2,9-phenanthroline-8-yl group, a 2,9-phenanthroline-10-yl group, a 2,8-phenanthroline-1-yl group, a 2,8-phenanthroline-3-yl group, a 2,8-phenanthroline-4-yl group, a 2,8-phenanthroline-5-yl group, a 2,8-phenanthroline-6-yl group, a 2,8-phenanthroline-7-yl group, a 2,8-phenanthroline-9-yl group, a 2,8-phenanthroline-10-yl group, a 2,7-phenanthroline-1-yl group, a 2,7-phenanthroline-3-yl group, a 2,7-phenanthroline-4-yl group, a 2,7-phenanthroline-5-yl group, a 2,7-phenanthroline-6-yl group, a 2,7-phenanthroline-8-yl group, a 2,7-phenanthroline-9-yl group, a 2,7-phenanthroline-10-yl group, a 1-phenazinyl group, a 2-phenazinyl group, a 1-phenothiazinyl group, a 2-phenothiazinyl group, a 3-phenothiazinyl group, a 4-phenothiazinyl group, a 1-phenoxazinyl group, a 2-phenoxazinyl group, a 3-phenoxazinyl group, a 4-phenoxazinyl group, a 2-oxazolyl group, a 4-oxazolyl group, a 5-oxazolyl group, a 2-oxadiazolyl group, a 5-oxadiazolyl group, a 3-furazanyl group, a 2-thienyl group, a 3-thienyl group, a 2-methylpyrrol-1-yl group, a 2-methylpyrrol-3-yl group, a 2-methylpyrrol-4-yl group, a 2-methylpyrrol-5-yl group, a 3-methylpyrrol-1-yl group, a 3-methylpyrrol-2-yl group, a 3-methylpyrrol-4-yl group, a 3-methylpyrrol-5-yl group, a 2-t-butylpyrrol-4-yl group, a 3-(2-phenylpropyl)pyrrol-1-yl group, a 2-methyl-1-indolyl group, a 4-methyl-1-indolyl group, a 2-methyl-3-indolyl group, a 4-methyl-3-indolyl group, a 2-t-butyl 1-indolyl group, a 4-t-butyl 1-indolyl group, a 2-t-butyl 3-indolyl group, and a 4-t-butyl 3-indolyl group.
  • The substituted or unsubstituted arylthio group having 6 to 50 ring carbon atoms is represented by —SY″. Examples of Y″ include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a 1-naphthacenyl group, a 2-naphthacenyl group, a 9-naphthacenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, a p-terphenyl-4-yl group, a p-terphenyl-3-yl group, a p-terphenyl-2-yl group, an m-terphenyl-4-yl group, an m-terphenyl-3-yl group, an m-terphenyl-2-yl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a p-t-butylphenyl group, a p-(2-phenylpropyl)phenyl group, a 3-methyl-2-naphthyl group, a 4-methyl-1-naphthyl group, a 4-methyl-1-anthryl group, a 4′-methylbiphenylyl group, and a 4′-t-butyl-p-terphenyl-4-yl group.
  • The substituted or unsubstituted heteroarylthio group having 5 to 50 ring atoms is represented by —SZ″, and examples of Z″ include a 2-pyrrolyl group, a 3-pyrrolyl group, a pyrazinyl group, a 2-pyrizinyl group, a 3-pyrizinyl group, a 4-pyrizinyl group, a 2-indolyl group, a 3-indolyl group, a 4-indolyl group, a 5-indolyl group, a 6-indolyl group, a 7-indolyl group, a 1-isoindolyl group, a 3-isoindolyl group, a 4-isoindolyl group, a 5-isoindolyl group, a 6-isoindolyl group, a 7-isoindolyl group, a 2-furyl group, a 3-furyl group, a 2-benzofuranyl group, a 3-benzofuranyl group, a 4-benzofuranyl group, a 5-benzofuranyl group, a 6-benzofuranyl group, a 7-benzofuranyl group, a 1-isobenzofuranyl group, a 3-isobenzofuranyl group, a 4-isobenzofuranyl group, a 5-isobenzofuranyl group, a 6-isobenzofuranyl group, a 7-isobenzofuranyl group, a 2-quinolyl group, a 3-quinolyl group, a 4-quinolyl group, a 5-quinolyl group, a 6-quinolyl group, a 7-quinolyl group, a 8-quinolyl group, a 1-isoquinolyl group, a 3-isoquinolyl group, a 4-isoquinolyl group, a 5-isoquinolyl group, a 6-isoquinolyl group, a 7-isoquinolyl group, a 8-isoquinolyl group, a 2-quinoxalinyl group, a 5-quinoxalinyl group, a 6-quinoxalinyl group, a 1-carbazolyl group, a 2-carbazolyl group, a 3-carbazolyl group, a 4-carbazolyl group, a 1-phenanthridinyl group, a 2-phenanthridinyl group, a 3-phenanthridinyl group, a 4-phenanthridinyl group, a 6-phenanthridinyl group, a 7-phenanthridinyl group, a 8-phenanthridinyl group, a 9-phenanthridinyl group, a 10-phenanthridinyl group, a 1-acridinyl group, a 2-acridinyl group, a 3-acridinyl group, a 4-acridinyl group, a 9-acridinyl group, a 1,7-phenanthroline-2-yl group, a 1,7-phenanthroline-3-yl group, a 1,7-phenanthroline-4-yl group, a 1,7-phenanthroline-5-yl group, a 1,7-phenanthroline-6-yl group, a 1,7-phenanthroline-8-yl group, a 1,7-phenanthroline-9-yl group, a 1,7-phenanthroline-10-yl group, a 1,8-phenanthroline-2-yl group, a 1,8-phenanthroline-3-yl group, a 1,8-phenanthroline-4-yl group, a 1,8-phenanthroline-5-yl group, a 1,8-phenanthroline-6-yl group, a 1,8-phenanthroline-7-yl group, a 1,8-phenanthroline-9-yl group, a 1,8-phenanthroline-10-yl group, a 1,9-phenanthroline-2-yl group, a 1,9-phenanthroline-3-yl group, a 1,9-phenanthroline-4-yl group, a 1,9-phenanthroline-5-yl group, a 1,9-phenanthroline-6-yl group, a 1,9-phenanthroline-7-yl group, a 1,9-phenanthroline-8-yl group, a 1,9-phenanthroline-10-yl group, a 1,10-phenanthroline-2-yl group, a 1,10-phenanthroline-3-yl group, a 1,10-phenanthroline-4-yl group, a 1,10-phenanthroline-5-yl group, a 2,9-phenanthroline-1-yl group, a 2,9-phenanthroline-3-yl group, a 2,9-phenanthroline-4-yl group, a 2,9-phenanthroline-5-yl group, a 2,9-phenanthroline-6-yl group, a 2,9-phenanthroline-7-yl group, a 2,9-phenanthroline-8-yl group, a 2,9-phenanthroline-10-yl group, a 2,8-phenanthroline-1-yl group, a 2,8-phenanthroline-3-yl group, a 2,8-phenanthroline-4-yl group, a 2,8-phenanthroline-5-yl group, a 2,8-phenanthroline-6-yl group, a 2,8-phenanthroline-7-yl group, a 2,8-phenanthroline-9-yl group, a 2,8-phenanthroline-10-yl group, a 2,7-phenanthroline-1-yl group, a 2,7-phenanthroline-3-yl group, a 2,7-phenanthroline-4-yl group, a 2,7-phenanthroline-5-yl group, a 2,7-phenanthroline-6-yl group, a 2,7-phenanthroline-8-yl group, a 2,7-phenanthroline-9-yl group, a 2,7-phenanthroline-10-yl group, a 1-phenazinyl group, a 2-phenazinyl group, a 1-phenothiazinyl group, a 2-phenothiazinyl group, a 3-phenothiazinyl group, a 4-phenothiazinyl group, a 1-phenoxazinyl group, a 2-phenoxazinyl group, a 3-phenoxazinyl group, a 4-phenoxazinyl group, a 2-oxazolyl group, a 4-oxazolyl group, a 5-oxazolyl group, a 2-oxadiazolyl group, a 5-oxadiazolyl group, a 3-furazanyl group, a 2-thienyl group, a 3-thienyl group, a 2-methylpyrrol-1-yl group, a 2-methylpyrrol-3-yl group, a 2-methylpyrrol-4-yl group, a 2-methylpyrrol-5-yl group, a 3-methylpyrrol-1-yl group, a 3-methylpyrrol-2-yl group, a 3-methylpyrrol-4-yl group, a 3-methylpyrrol-5-yl group, a 2-t-butylpyrrol-4-yl group, a 3-(2-phenylpropyl)pyrrol-1-yl group, a 2-methyl-1-indolyl group, a 4-methyl-1-indolyl group, a 2-methyl-3-indolyl group, a 4-methyl-3-indolyl group, a 2-t-butyl 1-indolyl group, a 4-t-butyl 1-indolyl group, a 2-t-butyl 3-indolyl group, and a 4-t-butyl 3-indolyl group.
  • The substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms is represented by —COOZ. Examples of Z include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 2-hydroxyisobutyl group, a 1,2-dihydroxyethyl group, a 1,3-dihydroxyisopropyl group, a 2,3-dihydroxy-t-butyl group, a 1,2,3-trihydroxypropyl group, a chloromethyl group, a 1-chloroethyl group, a 2-chloroethyl group, a 2-chloroisobutyl group, a 1,2-dichloroethyl group, a 1,3-dichloroisopropyl group, a 2,3-dichloro-t-butyl group, a 1,2,3-trichloropropyl group, a bromomethyl group, a 1-bromoethyl group, a 2-bromoethyl group, a 2-bromoisobutyl group, a 1,2-dibromoethyl group, a 1,3-dibromoisopropyl group, a 2,3-dibromo-t-butyl group, a 1,2,3-tribromopropyl group, an iodomethyl group, a 1-iodoethyl group, a 2-iodoethyl group, a 2-iodoisobutyl group, a 1,2-diiodoethyl group, a 1,3-diiodoisopropyl group, a 2,3-diiodo-t-butyl group, a 1,2,3-triiodopropyl group, an aminomethyl group, a 1-aminoethyl group, a 2-aminoethyl group, a 2-aminoisobutyl group, a 1,2-diaminoethyl group, a 1,3-diaminoisopropyl group, a 2,3-diamino-t-butyl group, a 1,2,3-triaminopropyl group, a cyanomethyl group, a 1-cyanoethyl group, a 2-cyanoethyl group, a 2-cyanoisobutyl group, a 1,2-dicyanoethyl group, a 1,3-dicyanoisopropyl group, a 2,3-dicyano-t-butyl group, a 1,2,3-tricyanopropyl group, a nitromethyl group, a 1-nitroethyl group, a 2-nitroethyl group, a 2-nitroisobutyl group, a 1,2-dinitroethyl group, a 1,3-dinitroisopropyl group, a 2,3-dinitro-t-butyl group, and a 1,2,3-trinitropropyl group.
  • The amino group which is substituted with a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or with a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms is represented by —NPQ. Examples of P and Q include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a 1-naphthacenyl group, a 2-naphthacenyl group, a 9-naphthacenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, a p-terphenyl-4-yl group, a p-terphenyl-3-yl group, a p-terphenyl-2-yl group, an m-terphenyl-4-yl group, an m-terphenyl-3-yl group, an m-terphenyl-2-yl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a p-t-butylphenyl group, a p-(2-phenylpropyl)phenyl group, a 3-methyl-2-naphthyl group, a 4-methyl-1-naphthyl group, a 4-methyl-1-anthryl group, a 4′-methylbiphenylyl group, a 4′-t-butyl-p-terphenyl-4-yl group, a 2-pyrrolyl group, a 3-pyrrolyl group, a pyrazinyl group, a 2-pyrizinyl group, a 3-pyrizinyl group, a 4-pyrizinyl group, a 2-indolyl group, a 3-indolyl group, a 4-indolyl group, a 5-indolyl group, a 6-indolyl group, a 7-indolyl group, a 1-isoindolyl group, a 3-isoindolyl group, a 4-isoindolyl group, a 5-isoindolyl group, a 6-isoindolyl group, a 7-isoindolyl group, a 2-furyl group, a 3-furyl group, a 2-benzofuranyl group, a 3-benzofuranyl group, a 4-benzofuranyl group, a 5-benzofuranyl group, a 6-benzofuranyl group, a 7-benzofuranyl group, a 1-isobenzofuranyl group, a 3-isobenzofuranyl group, a 4-isobenzofuranyl group, a 5-isobenzofuranyl group, a 6-isobenzofuranyl group, a 7-isobenzofuranyl group, a 2-quinolyl group, a 3-quinolyl group, a 4-quinolyl group, a 5-quinolyl group, a 6-quinolyl group, a 7-quinolyl group, a 8-quinolyl group, a 1-isoquinolyl group, a 3-isoquinolyl group, a 4-isoquinolyl group, a 5-isoquinolyl group, a 6-isoquinolyl group, a 7-isoquinolyl group, a 8-isoquinolyl group, a 2-quinoxalinyl group, a 5-quinoxalinyl group, a 6-quinoxalinyl group, a 1-carbazolyl group, a 2-carbazolyl group, a 3-carbazolyl group, a 4-carbazolyl group, a 1-phenanthridinyl group, a 2-phenanthridinyl group, a 3-phenanthridinyl group, a 4-phenanthridinyl group, a 6-phenanthridinyl group, a 7-phenanthridinyl group, a 8-phenanthridinyl group, a 9-phenanthridinyl group, a 10-phenanthridinyl group, a 1-acridinyl group, a 2-acridinyl group, a 3-acridinyl group, a 4-acridinyl group, a 9-acridinyl group, a 1,7-phenanthroline-2-yl group, a 1,7-phenanthroline-3-yl group, a 1,7-phenanthroline-4-yl group, a 1,7-phenanthroline-5-yl group, a 1,7-phenanthroline-6-yl group, a 1,7-phenanthroline-8-yl group, a 1,7-phenanthroline-9-yl group, a 1,7-phenanthroline-10-yl group, a 1,8-phenanthroline-2-yl group, a 1,8-phenanthroline-3-yl group, a 1,8-phenanthroline-4-yl group, a 1,8-phenanthroline-5-yl group, a 1,8-phenanthroline-6-yl group, a 1,8-phenanthroline-7-yl group, a 1,8-phenanthroline-9-yl group, a 1,8-phenanthroline-10-yl group, a 1,9-phenanthroline-2-yl group, a 1,9-phenanthroline-3-yl group, a 1,9-phenanthroline-4-yl group, a 1,9-phenanthroline-5-yl group, a 1,9-phenanthroline-6-yl group, a 1,9-phenanthroline-7-yl group, a 1,9-phenanthroline-8-yl group, a 1,9-phenanthroline-10-yl group, a 1,10-phenanthroline-2-yl group, a 1,10-phenanthroline-3-yl group, a 1,10-phenanthroline-4-yl group, a 1,10-phenanthroline-5-yl group, a 2,9-phenanthroline-1-yl group, a 2,9-phenanthroline-3-yl group, a 2,9-phenanthroline-4-yl group, a 2,9-phenanthroline-5-yl group, a 2,9-phenanthroline-6-yl group, a 2,9-phenanthroline-7-yl group, a 2,9-phenanthroline-8-yl group, a 2,9-phenanthroline-10-yl group, a 2,8-phenanthroline-1-yl group, a 2,8-phenanthroline-3-yl group, a 2,8-phenanthroline-4-yl group, a 2,8-phenanthroline-5-yl group, a 2,8-phenanthroline-6-yl group, a 2,8-phenanthroline-7-yl group, a 2,8-phenanthroline-9-yl group, a 2,8-phenanthroline-10-yl group, a 2,7-phenanthroline-1-yl group, a 2,7-phenanthroline-3-yl group, a 2,7-phenanthroline-4-yl group, a 2,7-phenanthroline-5-yl group, a 2,7-phenanthroline-6-yl group, a 2,7-phenanthroline-8-yl group, a 2,7-phenanthroline-9-yl group, a 2,7-phenanthroline-10-yl group, a 1-phenazinyl group, a 2-phenazinyl group, a 1-phenothiazinyl group, a 2-phenothiazinyl group, a 3-phenothiazinyl group, a 4-phenothiazinyl group, a 1-phenoxazinyl group, a 2-phenoxazinyl group, a 3-phenoxazinyl group, a 4-phenoxazinyl group, a 2-oxazolyl group, a 4-oxazolyl group, a 5-oxazolyl group, a 2-oxadiazolyl group, a 5-oxadiazolyl group, a 3-furazanyl group, a 2-thienyl group, a 3-thienyl group, a 2-methylpyrrol-1-yl group, a 2-methylpyrrol-3-yl group, a 2-methylpyrrol-4-yl group, a 2-methylpyrrol-5-yl group, a 3-methylpyrrol-1-yl group, a 3-methylpyrrol-2-yl group, a 3-methylpyrrol-4-yl group, a 3-methylpyrrol-5-yl group, a 2-t-butylpyrrol-4-yl group, a 3-(2-phenylpropyl)pyrrol-1-yl group, a 2-methyl-1-indolyl group, a 4-methyl-1-indolyl group, a 2-methyl-3-indolyl group, a 4-methyl-3-indolyl group, a 2-t-butyl 1-indolyl group, a 4-t-butyl 1-indolyl group, a 2-t-butyl 3-indolyl group, and a 4-t-butyl 3-indolyl group.
  • Examples of the compound represented by the formula (I) are shown below. However, the compound is not limited thereto.
  • Figure US20100331585A1-20101230-C00689
    Figure US20100331585A1-20101230-C00690
    Figure US20100331585A1-20101230-C00691
    Figure US20100331585A1-20101230-C00692
    Figure US20100331585A1-20101230-C00693
    Figure US20100331585A1-20101230-C00694
    Figure US20100331585A1-20101230-C00695
    Figure US20100331585A1-20101230-C00696
  • Aromatic amine represented by the following general formula (II) can also be preferably used for forming the hole injecting layer or the hole transporting layer.
  • Figure US20100331585A1-20101230-C00697
  • In the formula (II), Ar1 to Ar3 each represent the same as those represented by Ar1 to Ar4 of the above formula (I). Examples of the compound represented by the general formula (II) are shown below. However, the compound represented by the formula (II) is not limited thereto.
  • Figure US20100331585A1-20101230-C00698
    Figure US20100331585A1-20101230-C00699
    Figure US20100331585A1-20101230-C00700
    Figure US20100331585A1-20101230-C00701
  • The anode of the organic EL device is used for injecting holes into the hole transporting layer or the emitting layer. It is effective that the anode has a work function of 4.5 eV or more. Exemplary materials for the anode for use in the aspect of the invention are indium-tin oxide (ITO), tin oxide (NESA), gold, silver, platinum and copper. The cathode is preferably formed of a material with smaller work function in order to inject electrons into the electron injecting layer or the emitting layer. Although a material for the cathode is subject to no specific limitation, examples of the material are indium, aluminum, magnesium, alloy of magnesium and indium, alloy of magnesium and aluminum, alloy of aluminum and lithium, alloy of aluminum, scandium and lithium, alloy of magnesium and silver and the like.
  • A method of forming each of the layers in the organic EL device according to the aspect of the invention is not particularly limited. A conventionally-known methods such as vacuum deposition or spin coating may be employed for forming the layers. The organic thin-film layer containing the compound represented by the formula (1), which is used in the organic EL device according to the aspect of the invention, may be formed by a conventional coating method such as vacuum deposition, molecular beam epitaxy (MBE method) and coating methods using a solution such as a dipping, spin coating, casting, bar coating, and roll coating.
  • Although the thickness of each organic layer of the organic EL device is not particularly limited, the thickness is generally preferably in a range of several nanometers to 1 μm because an excessively-thinned film likely entails defects such as a pin hole while an excessively-thickened film requires high voltage to be applied and deteriorates efficiency.
  • The organic EL device is formed on a light-transmissive substrate. The light-transmissive substrate, which supports the organic EL device, is preferably a smoothly-shaped substrate that transmits 50% or more of light in a visible region of 400 nm to 700 nm.
  • The light-transmissive substrate is exemplarily a glass plate, a polymer plate or the like.
  • For the glass plate, materials such as soda-lime glass, barium/strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass and quartz can be used.
  • For the polymer plate, materials such as polycarbonate, acryl, polyethylene terephthalate, polyether sulfide and polysulfone can be used.
  • Synthesis Example
  • Next, the invention will be described in further detail with reference to synthesis reference(s) and synthesis example(s). However, the invention is not limited to such synthesis examples.
  • [Synthesis Reference 1-1] Synthesis of 2-(3-bromophenyl)naphthalene
  • Figure US20100331585A1-20101230-C00702
  • Under an argon gas atmosphere, 243 g (1.41 mol) of 2-naphthaleneboronic acid, 400 g (1.41 mol) of 3-bromoiodobenzene, 3.27 g (28.2 mmol) of tetrakis(triphenylphosphine)palladium(0), 6.4 L of toluene and 3.2 L of aqueous solution of 2M sodium carbonate were added together, and stirred while being refluxed for 24 hours. After the reaction was over, the mixture experienced filtration, through which aqueous phase thereof was eliminated. After organic phase thereof was washed by water and dried with magnesium sulfate, the toluene was distilled away under reduced pressure. Residue thereof was refined by silica-gel column chromatography, such that 303 g of 2-(3-bromophenyl)naphthalene was obtained at an yield of 76%.
  • [Synthesis Reference 1-2] Synthesis of 3-(2-naphthyl)phenylboronic acid
  • Figure US20100331585A1-20101230-C00703
  • Under an argon gas atmosphere, a mixture of 212 g (748 mmol) of 2(3-bromophenyl)naphthalene and 3 L of dehydrated TI-IF was cooled down to minus 10 degree C., and 600 ml (948 mmol) of hexane solution of 1.6M n-butyllithium was dropped into the mixture while the mixture was being stirred. Then, the mixture was stirred at 0 degree C. for 2 hours. The reaction solution was again cooled down to minus 78 degrees C., and 450 g (2.39 mol) of triisopropylborate was dropped into the solution. Then, the solution was stirred at room temperature for 17 hours. The reaction mixture was added with aqueous solution of hydrochloric acid and stirred at room temperature for 1 hour. The reaction mixture was added with 3 L of toluene, and aqueous phase thereof was eliminated. After organic phase thereof was dried with magnesium sulfate, the solvent was distilled away under reduced pressure. By recrystallizing the obtained solid by toluene, 126 g of 3-(2-naphthyl)phenylboronic acid was obtained at an yield of 67%.
  • [Synthesis Reference 2-1] Synthesis of 2-(3-bromophenyl)naphthalene
  • Figure US20100331585A1-20101230-C00704
  • Under an argon gas atmosphere, 70.0 g (407 mmol) of 2-naphthaleneboronic acid, 115.10 g (407 mmol) of 4-bromoiodobenzene, 9.40 g (8.14 mmol) of tetrakis(triphenylphosphine)palladium(0), 1.2 L of toluene and 600 mL of aqueous solution of 2M sodium carbonate were added together, and stirred at 90 degrees C. for 20 hours. After the reaction was over, toluene was distilled away and methanol was added. Then, the precipitated solid was separated by filtration. The obtained solid was recrystallized with acetic ether and methanol and dried. 77.2 g of 2-(4-bromophenyl)naphthalene was obtained at an yield of 67%.
  • [Synthesis Reference 2-2] Synthesis of 4-(2-naphthyl)phenylboronic acid
  • Figure US20100331585A1-20101230-C00705
  • Under an argon gas atmosphere, a mixture of 50.0 g (177 mmol) of 2(4-bromophenyl)naphthalene and 500 mL of dehydrated THF was cooled down to minus 60 degree C. Then, 136 ml (212 mmol) of hexane solution of 1.56M n-butyllithium was dropped into the mixture while the mixture was being stirred. The reaction mixture was further stirred at minus 60 degrees for 1 hour. 99.6 g (529 mmol) of triisopropylborate was dropped into the reaction mixture at minus 60 degrees C. Subsequently, the reaction mixture was warmed up to room temperature, and stirred for 18 hours. The reaction mixture was added with aqueous solution of hydrochloric acid and stirred at room temperature for 1 hour. After the reaction, the reaction mixture was added with toluene, and aqueous phase thereof was eliminated. Then, organic phase thereof was dried with magnesium sulfate, and the solvent was distilled away under reduced pressure. By recrystallizing the obtained solid by toluene, 33.6 g of 4-(2-naphthyl)phenylboronic acid was obtained at an yield of 84%.
  • [Synthesis Reference 3-1] Synthesis of 1-(3-bromophenyl)naphthalene
  • Figure US20100331585A1-20101230-C00706
  • Under an argon gas atmosphere, 200.0 g (1.163 mol) of 1-naphthaleneboronic acid, 329.0 g (1.163 mol) of 3-bromoiodobenzene, 26.9 g (23.3 mmol) of tetrakis(triphenylphosphine)palladium(0), 3.7 L of toluene and 1.74 L of aqueous solution of 2M sodium carbonate were added together, and stirred while being refluxed for 24 hours. After the reaction was over, the mixture experienced filtration, through which aqueous phase thereof was eliminated. After organic phase thereof was washed by water and dried with magnesium sulfate, the toluene was distilled away under reduced pressure. Residue thereof was refined by silica-gel column chromatography, such that 250 g of 1-(3-bromophenyl)naphthalene was obtained at an yield of 76%.
  • [Synthesis Reference 3-2] Synthesis of 3-(1-naphthyl)phenylboronic acid
  • Figure US20100331585A1-20101230-C00707
  • Under an argon gas atmosphere, a mixture of 200.0 g (706.3 mmol) of 1-(3-bromophenyl)naphthalene and 2.1 L of dehydrated THF was cooled down to minus 60 degree C. Then, 543 ml (847 mmol) of hexane solution of 1.56M n-butyllithium was dropped into the mixture while the mixture was being stirred. The reaction mixture was further stirred at minus 60 degrees for 2 hours. The reaction solution was again cooled down to minus 60 degrees C., and 398.5 g (2.119 mol) of triisopropylborate was dropped into the solution. Subsequently, the reaction mixture was warmed up to room temperature, and stirred for 17 hours. The reaction mixture was added with aqueous solution of hydrochloric acid and stirred at room temperature for 1 hour. After the reaction, the reaction mixture was added with toluene, and aqueous phase thereof was eliminated. Then, organic phase thereof was dried with magnesium sulfate, and the solvent was distilled away under reduced pressure. By recrystallizing the obtained solid by toluene, 126 g of 3-(1-naphthyl)phenylboronic acid was obtained at an yield of 67%.
  • [Synthesis Reference 4-1] Synthesis of 1-(4-bromophenyl)naphthalene
  • Figure US20100331585A1-20101230-C00708
  • Under an argon gas atmosphere, 200.0 g (1.163 mol) of 1-naphthaleneboronic acid, 329.0 g (1.163 mol) of 4-bromoiodobenzene, 26.9 g (23.3 mmol) of tetrakis(triphenylphosphine)palladium(0), 3.7 L of toluene and 1.74 L of aqueous solution of 2M sodium carbonate were added together, and stirred at 90 degrees C. for 24 hours. After the reaction was over, the mixture experienced filtration, through which aqueous phase thereof was eliminated. The organic phase thereof was washed by water and dried with magnesium sulfate, and the toluene was then distilled away under reduced pressure. Residue thereof was refined by silica-gel column chromatography, such that 268 g of 1-(4-bromophenyl) naphthalene was obtained at an yield of 81%.
  • [Synthesis Reference 4-2] Synthesis of 4-(1-naphthyl)phenylboronic acid
  • Figure US20100331585A1-20101230-C00709
  • Under an argon gas atmosphere, a mixture of 208.8 g (737.4 mmol) of 1-(4-bromophenyl)naphthalene and 2.1 L of dehydrated TI-IF was cooled down to minus 60 degree C. Then, 567 ml (884.9 mmol) of hexane solution of 1.56M n-butyllithium was dropped into the mixture while the mixture was being stirred. The reaction mixture was further stirred at minus 60 degrees for 2 hours. 416 g (2.21 mol) of triisopropylborate was dropped into the reaction mixture at minus 60 degrees C. The reaction mixture was then stirred at room temperature for 17 hours. The reaction mixture was added with aqueous solution of hydrochloric acid and stirred at room temperature for 1 hour. After the reaction, the reaction mixture was added with toluene, and aqueous phase thereof was eliminated. Then, organic phase thereof was dried with magnesium sulfate, and the solvent was distilled away under reduced pressure. By recrystallizing the obtained solid by toluene, 126 g of 4-(1-naphthyl)phenylboronic acid was obtained at an yield of 67%.
  • [Synthesis Reference 5-1] Synthesis of 2-bromo-6-phenylnaphthalene
  • Figure US20100331585A1-20101230-C00710
  • Under an argon gas atmosphere, 128.0 g (1.049 mol) of phenylboronic acid, 300.0 g (1.163 mol) of 2,6-dibromonaphthalene, 24.2 g (21.0 mmol) of tetrakis(triphenylphosphine)palladium(0), 4.3 L of dimethoxyethane and 1.60 L of aqueous solution of 2M sodium carbonate were added together, and stirred at 78 degrees C. for 24 hours. The reaction mixture was added with toluene and water, and aqueous phase thereof was eliminated. After organic phase thereof was washed by water and dried with magnesium sulfate, the toluene was distilled away under reduced pressure. Residue thereof was refined by silica-gel column chromatography and recrystallized with hexane such that 108 g of 2-bromo-6-phenylnaphthalene was obtained at an yield of 36%.
  • [Synthesis Reference 5-2] Synthesis of 6-phenylnaphthalene-2-boronic acid
  • Figure US20100331585A1-20101230-C00711
  • Under an argon gas atmosphere, a mixture of 100.0 g (353.1 mmol) of 2-bromo-6-phenylnaphthalene, 1.2 L of dehydrated THF and 1.2 L of dehydrated diethyl ether was cooled down to minus 20 degree C. Then, 280 ml (437 mmol) of hexane solution of 1.56M n-butyllithium was dropped into the mixture while the mixture was being stirred. The reaction mixture was further stirred at minus 20 degrees for 1 hour. The reaction mixture was cooled down to minus 60 degrees C., and 199.3 g (1.06 mol) of triisopropylborate was dropped into the mixture. The reaction mixture was warmed up and then stirred at room temperature for 16 hours. The reaction mixture was added with aqueous solution of hydrochloric acid and stirred at room temperature for 1 hour. After the reaction, the reaction mixture was added with toluene, and aqueous phase thereof was eliminated. Then, organic phase thereof was washed with water and dried with magnesium sulfate, and the solvent was distilled away under reduced pressure. By recrystallizing the obtained solid with hexane, 58.0 g of 6-phenylnaphthalene-2-boronic acid was obtained at an yield of 55%.
  • [Synthesis Reference 6-1] Synthesis of 2-(4-ethynylphenyl)naphthalene
  • Figure US20100331585A1-20101230-C00712
  • Under an argon gas atmosphere, a mixture of 20.0 g (70.63 mmol) of 2-(4-bromophenyl)naphthalene, 1.73 g (1.41 mmol) of PdCl2(PPh3)2, 0.54 g (2.83 mmol) of CuI and 100 mL of triethylamine was cooled down to 0 degree C., and added with 8.32 g (84.8 mmol) of trimethylsilylacetylene. Then, the mixture was stirred at room temperature for 4 hours. After the reaction was over, insoluble matters were removed by filtration, and the solvent was distilled away. The obtained residue was added with aqueous solution of hydrochloric acid, and extracted with toluene. After liquid separation, organic phase thereof was washed with aqueous solution of sodium hydrogencarbonate, and subsequently washed with water and saturated sodium chloride solution. The organic phase was dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Then, the residue was refined by column chromatography, so that 14.5 g of trimethyl((4-naphthalene-2-yl)phenyl)ethynyl)silane was obtained at an yield of 68%.
  • A mixture of 14.5 g (48.3 mmol) of the obtained trimethyl((4-naphthalene-2-yl)phenyl)ethynyl)silane, tetrahydrofuran (THF) and methanol (MeOH) was added with 48 ml of 0.1M potassium hydrate, and stirred at room temperature for 1 hour. The reaction mixture was added with water, and extracted with toluene. Organic phase thereof was washed with saturated sodium chloride solution and dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Residue thereof was refined by column chromatography, such that 9.5 g of 2-(4-ethynylphenyl)naphthalene was obtained at an yield of 86%.
  • [Synthesis Reference 7-1] Synthesis of 1-(4-ethynylphenyl)naphthalene
  • Figure US20100331585A1-20101230-C00713
  • Under an argon gas atmosphere, a mixture of 20.0 g (70.63 mmol) of 1-(4-bromophenyl)naphthalene, 1.73 g (1.41 mmol) of PdCl2(PPh3)2, 0.54 g (2.83 mmol) of CuI and 100 mL of triethylamine was cooled down to 0 degree C., and added with 8.32 g (84.8 mmol) of trimethylsilylacetylene. Then, the mixture was stirred at room temperature for 4 hours. After the reaction was over, insoluble matters were removed by filtration, and the solvent was distilled away. The obtained residue was added with aqueous solution of hydrochloric acid, and extracted with toluene. After liquid separation, organic phase thereof was washed with aqueous solution of sodium hydrogencarbonate, and subsequently washed with water and saturated sodium chloride solution. The organic phase was dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Then, the residue was refined by column chromatography, so that 15.2 g of trimethyl((4-naphthalene-1-yl)phenyl)ethynyl)silane was obtained at an yield of 72%.
  • A mixture of 15.2 g (50.6 mmol) of the obtained trimethyl((4-naphthalene-1-yl)phenyl)ethynyl)silane, THF and MeOH was added with 48 ml of 0.1M potassium hydrate, and stirred at room temperature for 1 hour. The reaction mixture was added with water, and extracted with toluene. Organic phase thereof was washed with saturated sodium chloride solution and dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Residue thereof was refined by column chromatography, such that 9.8 g of 1-(4-ethynylphenyl)naphthalene was obtained at an yield of 85%.
  • [Synthesis Reference 8-1] Synthesis of 2-(3-ethynylphenyl)naphthalene
  • Figure US20100331585A1-20101230-C00714
  • Under an argon gas atmosphere, a mixture of 25.0 g (88.3 mmol) of 2-(3-bromophenyl)naphthalene, 2.17 g (1.77 mmol) of PdCl2(PPh3)2, 0.67 g (3.53 mmol) of CuI and 120 mL of triethylamine was cooled down to 0 degree C., and added with 10.41 g (106 mmol) of trimethylsilylacetylene. Then, the mixture was stirred at room temperature for 4 hours. After the reaction was over, insoluble matters were removed by filtration, and the solvent was distilled away. The obtained residue was added with aqueous solution of hydrochloric acid, and extracted with toluene. After liquid separation, organic phase thereof was washed with aqueous solution of sodium hydrogencarbonate, and subsequently washed with water and saturated sodium chloride solution. The organic phase was dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Then, the residue was refined by column chromatography, so that 19.0 g of trimethyl((3-naphthalene-2-yl)phenyl)ethynyl)silane was obtained at an yield of 72%.
  • A mixture of 19.0 g (63.2 mmol) of the obtained trimethyl((3-naphthalene-2-yl)phenyl)silane, THF and MeOH was added with 60 mL of aqueous solution of 0.1M potassium hydrate, and stirred at room temperature for 1 hour. The reaction mixture was added with water, and extracted with toluene. Organic phase thereof was washed with saturated sodium chloride solution and dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Residue thereof was refined by column chromatography, such that 12.5 g of 2-(3-ethynylphenyl)naphthalene was obtained at an yield of 87%.
  • Synthesis Example 1-1 Synthesis of Compound 1-1
  • Figure US20100331585A1-20101230-C00715
  • Under an argon gas atmosphere, 10.0 g (29.8 mmol) of 2,7-dibromophenanthrene, 7.38 g (29.8 mmol) of 3-(1-naphthyl)phenylboronic acid, 0.69 g (0.60 mmol) of tetrakis (triphenylphosphine) palladium(0), 200 mL of toluene, 50 mL of dimethoxyethane and 44.6 mL of aqueous solution of 2M sodium carbonate were mixed, and stirred at 90 degrees C. for 10 hours. Subsequently, the reaction mixture was cooled down to room temperature, added with water and stirred for one hour. Then, the reaction mixture was extracted with toluene. After liquid separation, organic phase thereof was washed with saturated sodium chloride solution and dried with anhydrous sodium sulfate. The solvent was distilled away under reduced pressure, and the residue was refined by silica-gel column chromatography and recrystallized by toluene, such that 3.93 g of 2-bromo-7-(3-(naphthalene-1-yl)phenyl)phenanthrene was obtained at an yield of 29%.
  • Under an argon gas atmosphere, 3.93 g (8.56 mmol) of 2-bromo-7-(3-(naphthalene-1-yl)phenyl)phenanthrene, 1.54 g (8.98 mmol) of 2-naphthaleneboronic acid, 0.20 g (0.17 mmol) of tetrakis(triphenylphosphine) palladium(0), 100 mL of toluene and 12.8 mL of aqueous solution of 2M sodium carbonate were mixed, and stirred at 90 degrees C. for 10 hours. Subsequently, the reaction mixture was cooled down to room temperature, added with water and stirred for 1 hour at room temperature. After the solid was separated by filtration, the obtained solid was washed with water, methanol, dimethoxyethane and toluene in this order. The obtained solid was thermally melted in toluene, refined by silica-gel column chromatography and further recrystallized with toluene. Then, 2.60 g of the compound 1-1 was obtained at an yield of 60%.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • Synthesis Example 1-2 Synthesis of Compound 1-2
  • Figure US20100331585A1-20101230-C00716
  • The compound 1-2 was synthesized in the same manner as the compound 1-1, except that 3-(2-naphthyl)phenylboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid and that 1-naphthaleneboronic acid was used in place of 2-naphthaleneboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • Synthesis Example 1-3 Synthesis of Compound 1-5
  • Figure US20100331585A1-20101230-C00717
  • The compound 1-5 was synthesized in the same manner as the compound 1-1, except that 3-(2-naphthyl)phenylboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • Synthesis Example 1-4 Synthesis of Compound 1-6
  • Figure US20100331585A1-20101230-C00718
  • The compound 1-6 was synthesized in the same manner as the compound 1-1, except that 4-(1-naphthyl)phenylboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid and that 1-naphthaleneboronic acid was used in place of 2-naphthaleneboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • Synthesis Example 1-5 Synthesis of Compound 1-8
  • Figure US20100331585A1-20101230-C00719
  • The compound 1-8 was synthesized in the same manner as the compound 1-1, except that 2-naphthaleneboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid and that 4-biphenylboronic acid was used in place of 2-naphthaleneboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 456 while a calculated molecular weight was 456.2.
  • Synthesis Example 1-6 Synthesis of Compound 1-9
  • Figure US20100331585A1-20101230-C00720
  • The compound 1-9 was synthesized in the same manner as the compound 1-1, except that 4-(1-naphthyl)phenylboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • Synthesis Example 1-7 Synthesis of Compound 1-13
  • Figure US20100331585A1-20101230-C00721
  • The compound 1-13 was synthesized in the same manner as the compound 1-1, except that 4-(2-naphthyl)phenylboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • Synthesis Example 1-8 Synthesis of Compound 1-17
  • Figure US20100331585A1-20101230-C00722
  • The compound 1-17 was synthesized in the same manner as the compound 1-1, except that 1-naphthaleneboronic acid was used in place of 2-naphthaleneboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • Synthesis Example 1-9 Synthesis of Compound 1-18
  • Figure US20100331585A1-20101230-C00723
  • The compound 1-18 was synthesized in the same manner as the compound 1-1, except that 3-(2-naphthyl)phenylboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid and that 6-phenyl-2-naphthaleneboronic acid was used in place of 2-naphthaleneboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 582 while a calculated molecular weight was 582.23.
  • Synthesis Example 1-10 Synthesis of Compound 1-21
  • Figure US20100331585A1-20101230-C00724
  • The compound 1-21 was synthesized in the same manner as the compound 1-1, except that 4-(2-naphthyl)phenylboronic acid was used in place of 3-(1-naphthyl)phenylboronic acid and that 1-naphthaleneboronic acid was used in place of 2-naphthaleneboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 506 while a calculated molecular weight was 506.2.
  • Synthesis Example 1-11 Synthesis of Compound 1-61
  • Figure US20100331585A1-20101230-C00725
  • Under an argon gas atmosphere, a mixture of 10.0 g (32.3 mmol) of 2-bromo-o-terphenyl, 8.12 g (35.6 mmol) of 2-(4-ethynylphenyl)naphthalene and 120 mL of triethylamine was added with 0.79 g (0.65 mmol) of PdCl2(PPh3)2 and 0.25 g (1.29 mmol) of CuI. Then, the mixture was stirred at 60 degrees C. for 4 hours. After the reaction was over, insoluble matters were removed by filtration, and the solvent was distilled away under reduced pressure. The reaction mixture was added with aqueous solution of hydrochloric acid, and extracted with toluene. Organic phase thereof was washed with aqueous solution of sodium hydrogencarbonate, and subsequently washed with water and saturated sodium chloride solution. After liquid separation, the organic phase was dried with anhydrous sodium sulfate and followed by filtration. The solvent was then distilled away. The residue was refined by column chromatography, so that 7.8 g of 2-(4-(terphenyl-2-ylethynyl)phenyl)naphthalene was obtained at an yield of 83%.
  • Under an argon gas atmosphere, a mixture of 5.00 g (11.0 mmol) of 2-(4-(terphenyl-2-ylethynyl)phenyl)naphthalene and 85 mL of dichloromethane was cooled down to minus 78 degree C., and added with a mixture containing 2.13 g (13.1 mmol) of IC1 and 30 mL of dichloromethane. The mixture was stirred at minus 78 degrees C. for 1 hour.
  • The reaction mixture was added with aqueous solution of sodium bisulfite, and extracted with dichloromethane. The organic phase was washed with water and saturated sodium chloride solution. The organic phase was dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Then, the residue was refined by flash column chromatography, so that 4.6 g of 9-iodo-10-(4-(naphthalene-2-yl)phenyl)-4-phenylphenanthrene was obtained at an yield of 72%.
  • Under an argon gas atmosphere, a mixture of 3.0 g (5.15 mmol) of 1,4-bis(10-iodo-7-phenylphenanthrene-9-yl)benzene and 60 mL of dehydrated THF was cooled down to minus 70 degree C. Then, 7.73 ml (7.73 mmol) of hexane solution of 1.00M s-butyllithium was dropped into the mixture while the mixture was being stirred. The mixture was stirred at minus 70 degrees C. for 30 minutes. The reaction mixture was added with 30 mL of MeOH, warmed up to room temperature and stirred for 1 hour. The reaction mixture was added with aqueous solution of hydrochloric acid, and extracted with toluene. The organic phase was washed with water and saturated sodium chloride solution. The organic phase was dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Then, the residue was refined by flash column chromatography, so that 1.32 g of the compound 1-61 was obtained at an yield of 56%.
  • Mass-spectrum analysis consequently showed that m/e was equal to 456 while a calculated molecular weight was 456.19.
  • Synthesis Example 1-12 Synthesis of Compound 1-76
  • Figure US20100331585A1-20101230-C00726
  • The compound 1-76 was synthesized in the same manner as the compound 1-61, except that 2-bromo-p-terphenyl was used in place of 2-bromo-o-terphenyl and that 1-naphthaleneboronic acid was used in place of 2-naphthaleneboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 456 while a calculated molecular weight was 456.19.
  • Synthesis Example 1-13 Synthesis of Compound 1-77
  • Figure US20100331585A1-20101230-C00727
  • The compound 1-77 was synthesized in the same manner as the compound 1-61, except that 2-bromo-p-terphenyl was used in place of 2-bromo-o-terphenyl and that 1-(4-ethynylphenyl)naphthalene was used in place of 2-(4-ethynylphenyl)naphthalene.
  • Mass-spectrum analysis consequently showed that m/e was equal to 456 while a calculated molecular weight was 456.19.
  • Synthesis Example 1-14 Synthesis of Compound 1-78
  • Figure US20100331585A1-20101230-C00728
  • The compound 1-78 was synthesized in the same manner as the compound 1-61, except that 2-bromo-p-terphenyl was used in place of 2-bromo-o-terphenyl and that 2-(3-ethynylphenyl)naphthalene was used in place of 2-(4-ethynylphenyl)naphthalene.
  • Mass-spectrum analysis consequently showed that m/e was equal to 456 while a calculated molecular weight was 456.19.
  • Synthesis Example 1-15 Synthesis of Compound 1-91
  • Figure US20100331585A1-20101230-C00729
  • Under an argon gas atmosphere, a mixture of 10.0 g (32.3 mmol) of 2-bromo-p-terphenyl, 3.63 g (35.6 mmol) of ethynylbenzene and 90 mL of triethylamine was added with 0.79 g (0.65 mmol) of PdCl2(PPh3)2 and 0.25 g (1.29 mmol) of CuI. Then, the mixture was stirred at 60 degrees C. for 4 hours. After the reaction was over, insoluble matters were removed by filtration, and the solvent was distilled away under reduced pressure. The reaction mixture was added with aqueous solution of hydrochloric acid, and extracted with toluene. Organic phase thereof was washed with aqueous solution of sodium hydrogencarbonate, and subsequently washed with water and saturated sodium chloride solution. After liquid separation, the organic phase was dried with anhydrous sodium sulfate and followed by filtration. The solvent was then distilled away. The residue was refined by column chromatography, so that 7.4 g of 2′-(phenylethynyl)biphenyl-4-ylbenzene was obtained at an yield of 69%.
  • Under an argon gas atmosphere, a mixture of 7.4 g (22.4 mmol) of 2′-(phenylethynyl)biphenyl-4-ylbenzene and 140 mL of dichloromethane was cooled down to minus 78 degree C., and added with a mixture containing 4.36 g (26.9 mmol) of IC1 and 60 mL of dichloromethane. The mixture was stirred at minus 78 degrees C. for 1 hour.
  • The reaction mixture was added with aqueous solution of sodium bisulfite, and extracted with dichloromethane. The organic phase was washed with water and saturated sodium chloride solution. The organic phase was dried with anhydrous sodium sulfate. After filtration, the solvent was distilled away. Then, the residue was refined by flash column chromatography, so that 7.3 g of 9-iodo-2,10-diphenylphenanthrene was obtained at an yield of 71%.
  • Under an argon gas atmosphere, 3.00 g (6.57 mmol) of 9-iodo-2,10-diphenylphenanthrene, 1.79 g (7.23 mmol) of 4-(2-naphthyl)phenylboronic acid, 0.38 g (0.33 mmol) of tetrakis(triphenylphosphine) palladium(0), 30 mL of toluene, 30 mL of dimethoxyethane and 9.86 g (19.7 mmol) of aqueous solution of 2M sodium carbonate were mixed, and stirred at 80 degrees C. for 10 hours. Subsequently, the reaction mixture was cooled down to room temperature, added with water and stirred for 1 hour at room temperature. After the solid was separated by filtration, the obtained solid was washed with water, methanol, dimethoxyethane and toluene in this order. The obtained solid was thermally melted in toluene, refined by silica-gel column chromatography and further recrystallized with toluene. Then, 2.10 g of the compound 1-91 was obtained at an yield of 60%.
  • Mass-spectrum analysis consequently showed that m/e was equal to 532 while a calculated molecular weight was 532.22.
  • Synthesis Example 1-16 Synthesis of Compound 1-93
  • Figure US20100331585A1-20101230-C00730
  • The compound 1-93 was synthesized in the same manner as the compound 1-91, except that 3-(2-naphthyl)phenylboronic acid was used in place of 4-(2-naphthyl)phenylboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 532 while a calculated molecular weight was 532.22.
  • Synthesis Example 1-17 Synthesis of Compound 1-111
  • Figure US20100331585A1-20101230-C00731
  • The compound 1-111 was synthesized in the same manner as the compound 1-91, except that 2-bromobiphenyl was used in place of 2-bromo-p-terphenyl and that 2-(4-ethynylphenyl)naphthalene was used in place of ethynylbenzene.
  • Mass-spectrum analysis consequently showed that m/e was equal to 582 while a calculated molecular weight was 582.23.
  • Synthesis Example 1-18 Synthesis of Compound 1-112
  • Figure US20100331585A1-20101230-C00732
  • The compound 1-112 was synthesized in the same manner as the compound 1-91, except that 2-bromobiphenyl was used in place of 2-bromo-p-terphenyl, that 2-(3-ethynylphenyl)naphthalene was used in place of ethynylbenzene and that 3-(2-naphthyl)phenylboronic acid was used in place of 4-(2-naphthyl)phenylboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 582 while a calculated molecular weight was 582.23.
  • Synthesis Example 1-19 Synthesis of Compound 1-113
  • Figure US20100331585A1-20101230-C00733
  • The compound 1-113 was synthesized in the same manner as the compound 1-91, except that 2-bromobiphenyl was used in place of 2-bromo-p-terphenyl, that 1-(4-ethynylphenyl)naphthalene was used in place of ethynylbenzene and that 4-(1-naphthyl)phenylboronic acid was used in place of 4-(2-naphthyl)phenylboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 582 while a calculated molecular weight was 582.23.
  • Synthesis Example 1-20 Synthesis of Compound 1-114
  • Figure US20100331585A1-20101230-C00734
  • The compound 1-114 was synthesized in the same manner as the compound 1-91, except that 2-bromobiphenyl was used in place of 2-bromo-p-terphenyl, that 1-(3-ethynylphenyl)naphthalene was used in place of ethynylbenzene and that 3-(1-naphthyl)phenylboronic acid was used in place of 4-(2-naphthyl)phenylboronic acid.
  • Mass-spectrum analysis consequently showed that m/e was equal to 582 while a calculated molecular weight was 582.23.
  • An equipment used in the measurement of mass spectrometry and measurement conditions thereof in the above synthesis examples will be described below.
      • Equipment: JSM-700 (manufactured by Japan Electron Optics Laboratories Ltd.)
      • Condition: accelerating voltage 8 kV
        • scanning range m/z=50 to 3000
      • Emitter type: carbon
      • Emitter currency: 0 mA→2 mA/minute→40 mA (maintained for 10 minutes)
    EXAMPLES
  • Next, the invention will be described in further detail with reference to examples. However, the invention is not limited to such examples.
  • Structures of compounds used in Examples and Comparatives will be shown below.
  • Figure US20100331585A1-20101230-C00735
    Figure US20100331585A1-20101230-C00736
  • Figure US20100331585A1-20101230-C00737
    Figure US20100331585A1-20101230-C00738
    Figure US20100331585A1-20101230-C00739
    Figure US20100331585A1-20101230-C00740
  • Example 1 Manufacturing of Organic EL Device
  • A glass substrate (size: 25 mm×75 mm×0.7 mm thick) having an ITO transparent electrode (manufactured by Asahi Glass Co., Ltd) was ultrasonic-cleaned in isopropyl alcohol for five minutes, and then UV/ozone-cleaned for 30 minutes. After the glass substrate having the transparent electrode line was cleaned, the glass substrate was mounted on a substrate holder of a vacuum deposition apparatus, so that 50-nm thick film of HT1 was initially formed on a surface of the glass substrate where the transparent electrode line was provided so as to cover the transparent electrode. The HT1 film serves as a hole injecting/transporting layer. Subsequently to the formation of the hole injecting/transporting layer, 40-nm thick film of the new host compound 1-1 and Ir(piq)3 as a phosphorescent-emitting dopant were co-deposited by resistance heating so that Ir(piq)3 was contained therein at a content of 10 mass %. The co-deposited film serves as an emitting layer (phosphorescent-emitting layer). After the film of the emitting layer was formed, 40-nm thick film of ET1 was formed. The film of ET1 serves as an electron transporting layer. Then, 0.5-nm thick film of LiF was formed as an electron-injecting electrode (cathode) at a film-forming speed of 1 Å/min. Metal (Al) was vapor-deposited on the LiF film to form a 150-nm thick metal cathode, thereby providing the organic EL device.
  • Examples 2 to 20 and Comparatives 1 to 3
  • The organic EL devices according respectively to Examples 2 to 20 and Comparatives 1 to 3 were formed in the same manner as Example 1 except that host compounds shown in Table 1 were respectively used in place of the new host compound 1-1.
  • [Evaluation on Emitting Performance of Organic EL Device]
  • The organic EL devices according to Examples 1 to 20 and Comparatives 1 to 3 each were driven by direct-current electricity to emit light, so that voltage, luminous efficiency and time elapsed until the initial luminance intensity of 3000 cd/m2 was reduced to the half (i.e., time until half-life) at a current density of 10 mA/cm2 were measured for each organic EL device. Then, pixel uniformity when each organic EL device was driven at 70 degrees C. was visually checked, among which devices having uniform pixels are rated as A while devices having non-uniform pixels are rated as B. The results of the evaluation are shown in Table 1.
  • TABLE 1
    Luminous Time until Pixel Uniformity
    Host Voltage Efficiency Half-Life when Driven
    Example Compound (V) (cd/A) (hour) at 70 C. °
    Example 1 1-1  5.4 8.4 8000 A
    Example 2 1-2  5.2 7.9 9000 A
    Example 3 1-5  5.3 8.2 8500 A
    Example 4 1-6  5.5 10.3 7000 A
    Example 5 1-8  5.1 7.8 8000 A
    Example 6 1-9  5.4 9.2 7000 A
    Example 7 1-13 5.2 8.5 8000 A
    Example 8 1-17 5.5 10.1 7500 A
    Example 9 1-18 5.3 8.0 9000 A
    Example 10 1-21 5.2 7.5 10000 A
    Example 11 1-61 5.5 9.8 12000 A
    Example 12 1-76 5.4 9.5 12000 A
    Example 13 1-77 5.3 9.4 11000 A
    Example 14 1-78 5.4 9.3 13000 A
    Example 15 1-91 5.4 9.5 10000 A
    Example 16 1-93 5.5 9.5 11000 A
    Example 17  1-111 5.6 9.6 9000 A
    Example 18  1-112 5.6 9.6 9000 A
    Example 19  1-113 5.5 9.5 9000 A
    Example 20  1-114 5.5 9.4 9500 A
    Comparative 1 CBP 5.4 6.3 1200 B
    Comparative 2 Compound A 5.5 7.2 800 B
    Comparative 3 Compound B 5.4 6.5 1100 B
  • As appreciated from the above, in comparison with Comparatives 1 to 3, the organic EL devices according to Examples 1 to 20, in which the phenanthrene derivative according to the aspect of the invention was used as the host of the phosphorescent-emitting layer, were excellent in terms of the time until half-life, pixel uniformity when driven at as high a temperature as 70 degrees C. and luminous efficiency.
  • Accordingly, the organic EL device according to the aspect of the invention are excellent in luminous efficiency, heat resistance and lifetime and free from pixel defects.
  • INDUSTRIAL APPLICABILITY
  • The invention is applicable to a phenanthrene derivative, a material for organic EL devices and an organic EL device using the same.

Claims (9)

1. A phenanthrene derivative, represented by a formula (I) below,
Figure US20100331585A1-20101230-C00741
where: Ar1 and Ar2 each represent an aromatic hydrocarbon ring group having 6 to 18 carbon atoms for forming the ring, the aromatic hydrocarbon ring group containing none of anthracene skeleton, pyrene skeleton, aceanthrylene skeleton and naphthacene skeleton, optionally, Ar1 and Ar2 being bonded in any positions of a phenanthrene skeleton;
R1 represents an alkyl group, cycloalkyl group, alkoxy group, cyano group, silyl group, halogen atom or aryl group, optionally, R1 being be bonded in any position of the phenanthrene skeleton;
k represents an integer of 0 to 8, k representing the number of substituents R1 directly bonded to a phenanthrene main chain, optionally, the plurality of R1 being mutually the same or different when k is 2 or more;
n and m each represent an integer of 1 to 3, optionally, the pluralities of Ar1 and Ar2 being independently the same or different when m+n≧2; and
when (—[Ar1]m—H)=(—[Ar2]n—H), either one of (—[Ar1]m—H) and (—[Ar2]n—H) is bonded in 1st, 4th, 5th, 8th, 9th or 10th position of the phenanthrene skeleton.
2. The phenanthrene derivative according to claim 1, wherein Ar1 and Ar2 in the formula (1) represent a group selected from the group consisting of a substituted or unsubstituted benzene skeleton, naphthalene skeleton, fluorene skeleton, fluoranthene skeleton, triphenylene skeleton, chrysene skeleton, benzophenanthrene skeleton, dibenzophenanthrene skeleton, benzotriphenylene skeleton, picene skeleton and benzo[b]fluoranthene skeleton.
3. The phenanthrene derivative according to claim 1, wherein k is 0, 1 or 2.
4. The phenanthrene derivative according to claim 1, wherein
when Ar1 and Ar2 in the formula (1) have substituent(s), the substituent(s) is a group selected from the group consisting of an alkyl group, cycloalkyl group, alkoxy group, cyano group, silyl group and halogen atom.
5. The phenanthrene derivative according to claim 1, wherein (—[Ar1]m—H) is not equal to (—[Ar2]n—H) in the formula (1).
6. The phenanthrene derivative according to claim 1, wherein the formula (1) is represented by any one of formulae (1-a) to (1-l) below.
Figure US20100331585A1-20101230-C00742
Figure US20100331585A1-20101230-C00743
7. A material for an organic EL device, comprising the phenanthrene derivative according to claim 1.
8. The material for an organic EL device devices according to claim 7, wherein the EL device comprises a phosphorescent-emitting material.
9. The material for organic EL devices according to claim 7, wherein the material is a host material of an emitting layer.
US12/668,105 2007-07-07 2008-07-04 Phenanthrene derivative, and material for organic el element Abandoned US20100331585A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007-179121 2007-07-07
JP2007179121 2007-07-07
JP2007-179120 2007-07-07
JP2007179120 2007-07-07
PCT/JP2008/062128 WO2009008341A1 (en) 2007-07-07 2008-07-04 Phenanthrene derivative, and material for organic el element

Publications (1)

Publication Number Publication Date
US20100331585A1 true US20100331585A1 (en) 2010-12-30

Family

ID=40220726

Family Applications (6)

Application Number Title Priority Date Filing Date
US12/102,457 Expired - Fee Related US8025815B2 (en) 2007-07-07 2008-04-14 Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
US12/102,562 Expired - Fee Related US8034256B2 (en) 2007-07-07 2008-04-14 Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
US12/102,401 Expired - Fee Related US8029697B2 (en) 2007-07-07 2008-04-14 Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
US12/102,484 Expired - Fee Related US8021574B2 (en) 2007-07-07 2008-04-14 Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
US12/668,105 Abandoned US20100331585A1 (en) 2007-07-07 2008-07-04 Phenanthrene derivative, and material for organic el element
US12/667,777 Expired - Fee Related US8568903B2 (en) 2007-07-07 2008-07-04 Phenanthrene derivative, and material for organic EL element

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US12/102,457 Expired - Fee Related US8025815B2 (en) 2007-07-07 2008-04-14 Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
US12/102,562 Expired - Fee Related US8034256B2 (en) 2007-07-07 2008-04-14 Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
US12/102,401 Expired - Fee Related US8029697B2 (en) 2007-07-07 2008-04-14 Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
US12/102,484 Expired - Fee Related US8021574B2 (en) 2007-07-07 2008-04-14 Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/667,777 Expired - Fee Related US8568903B2 (en) 2007-07-07 2008-07-04 Phenanthrene derivative, and material for organic EL element

Country Status (5)

Country Link
US (6) US8025815B2 (en)
JP (5) JPWO2009008198A1 (en)
KR (5) KR20100042273A (en)
TW (6) TW200909559A (en)
WO (6) WO2009008198A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100327230A1 (en) * 2007-07-07 2010-12-30 Idemitsu Kosan Co., Ltd. Phenanthrene derivative, and material for organic el element
US20120104364A1 (en) * 2010-10-29 2012-05-03 Chien-Hong Cheng 9,10-bisphenylphenanthrene derivative and organic light emitting diode using the same
US20120319091A1 (en) * 2010-01-21 2012-12-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising same
US9006503B2 (en) 2009-01-23 2015-04-14 Merck Patent Gmbh Organic electroluminescence devices containing substituted benzo[C]phenanthrenes
US9040720B2 (en) 2010-09-27 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US20150303386A1 (en) * 2012-12-27 2015-10-22 Canon Kabushiki Kaisha Organic light-emitting device and display apparatus
US9590208B2 (en) 2012-03-14 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9660195B2 (en) 2008-03-19 2017-05-23 Idemitsu Kosan Co., Ltd. Anthracene derivative having a phenanthryl group
US10361389B2 (en) 2012-08-03 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
US10439005B2 (en) 2013-08-26 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US10686153B2 (en) 2014-05-13 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Exciplex light-emitting device
US10756287B2 (en) 2009-12-01 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10903440B2 (en) 2015-02-24 2021-01-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11018313B2 (en) 2012-08-10 2021-05-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US11387422B2 (en) 2014-05-30 2022-07-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11495763B2 (en) 2012-02-09 2022-11-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element

Families Citing this family (548)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070884B2 (en) 2005-04-13 2015-06-30 Universal Display Corporation Hybrid OLED having phosphorescent and fluorescent emitters
US8586204B2 (en) 2007-12-28 2013-11-19 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
US9051344B2 (en) 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
TWI391396B (en) 2006-02-10 2013-04-01 Universal Display Corp Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1',2'-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
US8778508B2 (en) 2006-12-08 2014-07-15 Universal Display Corporation Light-emitting organometallic complexes
US20130032785A1 (en) 2011-08-01 2013-02-07 Universal Display Corporation Materials for organic light emitting diode
US9130177B2 (en) 2011-01-13 2015-09-08 Universal Display Corporation 5-substituted 2 phenylquinoline complexes materials for light emitting diode
EP2121871B1 (en) 2007-03-08 2013-08-14 Universal Display Corporation Phosphorescent materials
US8779655B2 (en) * 2007-07-07 2014-07-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
US8652652B2 (en) 2007-08-08 2014-02-18 Universal Display Corporation Single triphenylene chromophores in phosphorescent light emitting diodes
US8367850B2 (en) 2007-08-08 2013-02-05 Universal Display Corporation Benzo-fused thiophene or benzo-fused furan compounds comprising a triphenylene group
US8900724B2 (en) * 2007-11-19 2014-12-02 Idemitsu Kosan Co., Ltd. Monobenzochrysene derivative, a material for an organic electroluminescence device containing the same, and an organic electroluminescence device using the material
EP2075306A3 (en) * 2007-12-25 2009-08-12 Yamagata Promotional Organization for Industrial Technology Organic electroluminescence material and element using the same
WO2009085344A2 (en) 2007-12-28 2009-07-09 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
JP2009221442A (en) * 2008-03-19 2009-10-01 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element and organic electroluminescent element
EP2860171B1 (en) 2008-06-30 2017-02-01 Universal Display Corporation Hole transport materials containing triphenylene
WO2010027583A1 (en) 2008-09-03 2010-03-11 Universal Display Corporation Phosphorescent materials
JP5463802B2 (en) * 2008-09-04 2014-04-09 三菱化学株式会社 Organic electroluminescent element material, composition for organic electroluminescent element, organic electroluminescent element, organic EL display, organic EL illumination, and naphthalene compound
KR101551207B1 (en) * 2008-09-04 2015-09-08 롬엔드하스전자재료코리아유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same
US9034483B2 (en) 2008-09-16 2015-05-19 Universal Display Corporation Phosphorescent materials
JP5676454B2 (en) 2008-09-25 2015-02-25 ユニバーサル ディスプレイ コーポレイション Organic selenium materials and their use in organic light emitting devices
CN103396455B (en) * 2008-11-11 2017-03-01 通用显示公司 Phosphorescent emitters
US8815415B2 (en) 2008-12-12 2014-08-26 Universal Display Corporation Blue emitter with high efficiency based on imidazo[1,2-f] phenanthridine iridium complexes
WO2010074181A1 (en) * 2008-12-26 2010-07-01 出光興産株式会社 Organic electroluminescence element and compound
US9067947B2 (en) 2009-01-16 2015-06-30 Universal Display Corporation Organic electroluminescent materials and devices
DE102009012346B4 (en) * 2009-03-09 2024-02-15 Merck Patent Gmbh Organic electroluminescent device and method for producing the same
JP5709382B2 (en) 2009-03-16 2015-04-30 キヤノン株式会社 Novel chrysene compound and organic light emitting device having the same
US8709615B2 (en) 2011-07-28 2014-04-29 Universal Display Corporation Heteroleptic iridium complexes as dopants
US11910700B2 (en) 2009-03-23 2024-02-20 Universal Display Corporation Heteroleptic iridium complexes as dopants
US8722205B2 (en) 2009-03-23 2014-05-13 Universal Display Corporation Heteroleptic iridium complex
US8039129B2 (en) 2009-04-06 2011-10-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
US8039127B2 (en) * 2009-04-06 2011-10-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
TWI609855B (en) 2009-04-28 2018-01-01 環球展覽公司 Iridium complex with methyl-d3 substitution
US8586203B2 (en) 2009-05-20 2013-11-19 Universal Display Corporation Metal complexes with boron-nitrogen heterocycle containing ligands
CN102484922B (en) 2009-09-07 2015-08-19 株式会社半导体能源研究所 Light-emitting component, luminescent device, illuminating device and electronic device
US8545996B2 (en) 2009-11-02 2013-10-01 The University Of Southern California Ion-pairing soft salts based on organometallic complexes and their applications in organic light emitting diodes
US8580394B2 (en) 2009-11-19 2013-11-12 Universal Display Corporation 3-coordinate copper(I)-carbene complexes
EP2525425B1 (en) 2010-01-15 2014-10-15 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
JP5047314B2 (en) 2010-01-15 2012-10-10 富士フイルム株式会社 Organic electroluminescence device
KR101450959B1 (en) * 2010-01-15 2014-10-15 이데미쓰 고산 가부시키가이샤 Nitrogenated heterocyclic ring derivative and organic electroluminescent element comprising same
US8288187B2 (en) 2010-01-20 2012-10-16 Universal Display Corporation Electroluminescent devices for lighting applications
US9156870B2 (en) * 2010-02-25 2015-10-13 Universal Display Corporation Phosphorescent emitters
US9175211B2 (en) * 2010-03-03 2015-11-03 Universal Display Corporation Phosphorescent materials
KR101823602B1 (en) 2010-03-25 2018-01-30 유니버셜 디스플레이 코포레이션 Solution processable doped triarylamine hole injection materials
US8968887B2 (en) 2010-04-28 2015-03-03 Universal Display Corporation Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
EP2564438B1 (en) 2010-04-28 2016-10-19 Universal Display Corporation Depositing premixed materials
US8742657B2 (en) 2010-06-11 2014-06-03 Universal Display Corporation Triplet-Triplet annihilation up conversion (TTA-UC) for display and lighting applications
US8673458B2 (en) 2010-06-11 2014-03-18 Universal Display Corporation Delayed fluorescence OLED
WO2012016074A1 (en) 2010-07-29 2012-02-02 University Of Southern California Co-deposition methods for the fabrication of organic optoelectronic devices
WO2012021315A2 (en) * 2010-08-11 2012-02-16 E. I. Du Pont De Nemours And Company Electroactive compound and composition and electronic device made with the composition
KR101753172B1 (en) 2010-08-20 2017-07-04 유니버셜 디스플레이 코포레이션 Bicarbazole compounds for oleds
US8932734B2 (en) 2010-10-08 2015-01-13 Universal Display Corporation Organic electroluminescent materials and devices
US8269317B2 (en) 2010-11-11 2012-09-18 Universal Display Corporation Phosphorescent materials
US20120138906A1 (en) 2010-12-07 2012-06-07 The University of Southern California USC Stevens Institute for Innovation Capture agents for unsaturated metal complexes
US10008677B2 (en) 2011-01-13 2018-06-26 Universal Display Corporation Materials for organic light emitting diode
US8415031B2 (en) 2011-01-24 2013-04-09 Universal Display Corporation Electron transporting compounds
US8748011B2 (en) 2011-02-23 2014-06-10 Universal Display Corporation Ruthenium carbene complexes for OLED material
US8563737B2 (en) 2011-02-23 2013-10-22 Universal Display Corporation Methods of making bis-tridentate carbene complexes of ruthenium and osmium
WO2012116231A2 (en) 2011-02-23 2012-08-30 Universal Display Corporation Novel tetradentate platinum complexes
US9005772B2 (en) 2011-02-23 2015-04-14 Universal Display Corporation Thioazole and oxazole carbene metal complexes as phosphorescent OLED materials
US8492006B2 (en) 2011-02-24 2013-07-23 Universal Display Corporation Germanium-containing red emitter materials for organic light emitting diode
US8883322B2 (en) 2011-03-08 2014-11-11 Universal Display Corporation Pyridyl carbene phosphorescent emitters
JP5872930B2 (en) * 2011-03-31 2016-03-01 ユー・ディー・シー アイルランド リミテッド Organic electroluminescent device and charge transport material
US8580399B2 (en) 2011-04-08 2013-11-12 Universal Display Corporation Substituted oligoazacarbazoles for light emitting diodes
US8564192B2 (en) 2011-05-11 2013-10-22 Universal Display Corporation Process for fabricating OLED lighting panels
US8927308B2 (en) 2011-05-12 2015-01-06 Universal Display Corporation Method of forming bus line designs for large-area OLED lighting
US8432095B2 (en) 2011-05-11 2013-04-30 Universal Display Corporation Process for fabricating metal bus lines for OLED lighting panels
US8795850B2 (en) 2011-05-19 2014-08-05 Universal Display Corporation Phosphorescent heteroleptic phenylbenzimidazole dopants and new synthetic methodology
US9212197B2 (en) 2011-05-19 2015-12-15 Universal Display Corporation Phosphorescent heteroleptic phenylbenzimidazole dopants
US8748012B2 (en) 2011-05-25 2014-06-10 Universal Display Corporation Host materials for OLED
US10079349B2 (en) 2011-05-27 2018-09-18 Universal Display Corporation Organic electroluminescent materials and devices
US10158089B2 (en) 2011-05-27 2018-12-18 Universal Display Corporation Organic electroluminescent materials and devices
EP3178832A1 (en) 2011-06-08 2017-06-14 Universal Display Corporation Heteroleptic iridium carbene complexes and light emitting device using them
US8884316B2 (en) 2011-06-17 2014-11-11 Universal Display Corporation Non-common capping layer on an organic device
US8659036B2 (en) 2011-06-17 2014-02-25 Universal Display Corporation Fine tuning of emission spectra by combination of multiple emitter spectra
KR101873447B1 (en) 2011-06-22 2018-07-03 삼성디스플레이 주식회사 Novel compound and organic light emitting device containing same
US9023420B2 (en) 2011-07-14 2015-05-05 Universal Display Corporation Composite organic/inorganic layer for organic light-emitting devices
US9397310B2 (en) 2011-07-14 2016-07-19 Universal Display Corporation Organice electroluminescent materials and devices
KR101965014B1 (en) 2011-07-14 2019-04-02 유니버셜 디스플레이 코포레이션 Inorganic hosts in oleds
US9783564B2 (en) 2011-07-25 2017-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US8409729B2 (en) 2011-07-28 2013-04-02 Universal Display Corporation Host materials for phosphorescent OLEDs
US8926119B2 (en) 2011-08-04 2015-01-06 Universal Display Corporation Extendable light source with variable light emitting area
US8552420B2 (en) 2011-08-09 2013-10-08 Universal Display Corporation OLED light panel with controlled brightness variation
US9493698B2 (en) 2011-08-31 2016-11-15 Universal Display Corporation Organic electroluminescent materials and devices
US8652656B2 (en) 2011-11-14 2014-02-18 Universal Display Corporation Triphenylene silane hosts
US9193745B2 (en) 2011-11-15 2015-11-24 Universal Display Corporation Heteroleptic iridium complex
US9217004B2 (en) 2011-11-21 2015-12-22 Universal Display Corporation Organic light emitting materials
US9512355B2 (en) 2011-12-09 2016-12-06 Universal Display Corporation Organic light emitting materials
US20130146875A1 (en) 2011-12-13 2013-06-13 Universal Display Corporation Split electrode for organic devices
US8987451B2 (en) 2012-01-03 2015-03-24 Universal Display Corporation Synthesis of cyclometallated platinum(II) complexes
US9461254B2 (en) 2012-01-03 2016-10-04 Universal Display Corporation Organic electroluminescent materials and devices
US9163174B2 (en) 2012-01-04 2015-10-20 Universal Display Corporation Highly efficient phosphorescent materials
KR102012047B1 (en) 2012-01-06 2019-08-19 유니버셜 디스플레이 코포레이션 Highly efficient phosphorescent materials
US8969592B2 (en) 2012-01-10 2015-03-03 Universal Display Corporation Heterocyclic host materials
US10211413B2 (en) 2012-01-17 2019-02-19 Universal Display Corporation Organic electroluminescent materials and devices
US9118017B2 (en) 2012-02-27 2015-08-25 Universal Display Corporation Host compounds for red phosphorescent OLEDs
US9386657B2 (en) 2012-03-15 2016-07-05 Universal Display Corporation Organic Electroluminescent materials and devices
US9054323B2 (en) 2012-03-15 2015-06-09 Universal Display Corporation Secondary hole transporting layer with diarylamino-phenyl-carbazole compounds
US8723209B2 (en) 2012-04-27 2014-05-13 Universal Display Corporation Out coupling layer containing particle polymer composite
US9184399B2 (en) 2012-05-04 2015-11-10 Universal Display Corporation Asymmetric hosts with triaryl silane side chains
US9773985B2 (en) 2012-05-21 2017-09-26 Universal Display Corporation Organic electroluminescent materials and devices
US9670404B2 (en) 2012-06-06 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US9502672B2 (en) 2012-06-21 2016-11-22 Universal Display Corporation Organic electroluminescent materials and devices
US9725476B2 (en) 2012-07-09 2017-08-08 Universal Display Corporation Silylated metal complexes
US9231218B2 (en) 2012-07-10 2016-01-05 Universal Display Corporation Phosphorescent emitters containing dibenzo[1,4]azaborinine structure
US9540329B2 (en) 2012-07-19 2017-01-10 Universal Display Corporation Organic electroluminescent materials and devices
US9059412B2 (en) 2012-07-19 2015-06-16 Universal Display Corporation Transition metal complexes containing substituted imidazole carbene as ligands and their application in OLEDs
US9663544B2 (en) 2012-07-25 2017-05-30 Universal Display Corporation Organic electroluminescent materials and devices
US9318710B2 (en) 2012-07-30 2016-04-19 Universal Display Corporation Organic electroluminescent materials and devices
US9978958B2 (en) 2012-08-24 2018-05-22 Universal Display Corporation Phosphorescent emitters with phenylimidazole ligands
US8952362B2 (en) 2012-08-31 2015-02-10 The Regents Of The University Of Michigan High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion
US10957870B2 (en) 2012-09-07 2021-03-23 Universal Display Corporation Organic light emitting device
US9287513B2 (en) 2012-09-24 2016-03-15 Universal Display Corporation Organic electroluminescent materials and devices
US9312505B2 (en) 2012-09-25 2016-04-12 Universal Display Corporation Organic electroluminescent materials and devices
US9252363B2 (en) 2012-10-04 2016-02-02 Universal Display Corporation Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers
US8692241B1 (en) 2012-11-08 2014-04-08 Universal Display Corporation Transition metal complexes containing triazole and tetrazole carbene ligands
US8946697B1 (en) 2012-11-09 2015-02-03 Universal Display Corporation Iridium complexes with aza-benzo fused ligands
US9748500B2 (en) 2015-01-15 2017-08-29 Universal Display Corporation Organic light emitting materials
US9634264B2 (en) 2012-11-09 2017-04-25 Universal Display Corporation Organic electroluminescent materials and devices
US9685617B2 (en) 2012-11-09 2017-06-20 Universal Display Corporation Organic electronuminescent materials and devices
US10069090B2 (en) 2012-11-20 2018-09-04 Universal Display Corporation Organic electroluminescent materials and devices
US9190623B2 (en) 2012-11-20 2015-11-17 Universal Display Corporation Organic electroluminescent materials and devices
US9512136B2 (en) 2012-11-26 2016-12-06 Universal Display Corporation Organic electroluminescent materials and devices
US9166175B2 (en) 2012-11-27 2015-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US9196860B2 (en) 2012-12-04 2015-11-24 Universal Display Corporation Compounds for triplet-triplet annihilation upconversion
US8716484B1 (en) 2012-12-05 2014-05-06 Universal Display Corporation Hole transporting materials with twisted aryl groups
US9209411B2 (en) 2012-12-07 2015-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US9653691B2 (en) 2012-12-12 2017-05-16 Universal Display Corporation Phosphorescence-sensitizing fluorescence material system
US10400163B2 (en) 2013-02-08 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US10367154B2 (en) 2013-02-21 2019-07-30 Universal Display Corporation Organic electroluminescent materials and devices
US8927749B2 (en) 2013-03-07 2015-01-06 Universal Display Corporation Organic electroluminescent materials and devices
US9419225B2 (en) 2013-03-14 2016-08-16 Universal Display Corporation Organic electroluminescent materials and devices
US9997712B2 (en) 2013-03-27 2018-06-12 Universal Display Corporation Organic electroluminescent materials and devices
US9537106B2 (en) 2013-05-09 2017-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US9735373B2 (en) 2013-06-10 2017-08-15 Universal Display Corporation Organic electroluminescent materials and devices
US9673401B2 (en) 2013-06-28 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US10199581B2 (en) 2013-07-01 2019-02-05 Universal Display Corporation Organic electroluminescent materials and devices
US10121975B2 (en) 2013-07-03 2018-11-06 Universal Display Corporation Organic electroluminescent materials and devices
US9761807B2 (en) 2013-07-15 2017-09-12 Universal Display Corporation Organic light emitting diode materials
US9553274B2 (en) 2013-07-16 2017-01-24 Universal Display Corporation Organic electroluminescent materials and devices
US9324949B2 (en) 2013-07-16 2016-04-26 Universal Display Corporation Organic electroluminescent materials and devices
US9224958B2 (en) 2013-07-19 2015-12-29 Universal Display Corporation Organic electroluminescent materials and devices
US20150028290A1 (en) 2013-07-25 2015-01-29 Universal Display Corporation Heteroleptic osmium complex and method of making the same
US9831437B2 (en) 2013-08-20 2017-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US10074806B2 (en) 2013-08-20 2018-09-11 Universal Display Corporation Organic electroluminescent materials and devices
US9932359B2 (en) 2013-08-30 2018-04-03 University Of Southern California Organic electroluminescent materials and devices
US10199582B2 (en) 2013-09-03 2019-02-05 University Of Southern California Organic electroluminescent materials and devices
US9735378B2 (en) 2013-09-09 2017-08-15 Universal Display Corporation Organic electroluminescent materials and devices
US9748503B2 (en) 2013-09-13 2017-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US10003034B2 (en) 2013-09-30 2018-06-19 Universal Display Corporation Organic electroluminescent materials and devices
US9831447B2 (en) 2013-10-08 2017-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US9293712B2 (en) 2013-10-11 2016-03-22 Universal Display Corporation Disubstituted pyrene compounds with amino group containing ortho aryl group and devices containing the same
US9853229B2 (en) 2013-10-23 2017-12-26 University Of Southern California Organic electroluminescent materials and devices
US20150115250A1 (en) 2013-10-29 2015-04-30 Universal Display Corporation Organic electroluminescent materials and devices
US9306179B2 (en) 2013-11-08 2016-04-05 Universal Display Corporation Organic electroluminescent materials and devices
US9647218B2 (en) 2013-11-14 2017-05-09 Universal Display Corporation Organic electroluminescent materials and devices
US9905784B2 (en) 2013-11-15 2018-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US10056565B2 (en) 2013-11-20 2018-08-21 Universal Display Corporation Organic electroluminescent materials and devices
US10644251B2 (en) 2013-12-04 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
US9876173B2 (en) 2013-12-09 2018-01-23 Universal Display Corporation Organic electroluminescent materials and devices
US10355227B2 (en) 2013-12-16 2019-07-16 Universal Display Corporation Metal complex for phosphorescent OLED
US9847496B2 (en) 2013-12-23 2017-12-19 Universal Display Corporation Organic electroluminescent materials and devices
US10135008B2 (en) 2014-01-07 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices
US9978961B2 (en) 2014-01-08 2018-05-22 Universal Display Corporation Organic electroluminescent materials and devices
US9755159B2 (en) 2014-01-23 2017-09-05 Universal Display Corporation Organic materials for OLEDs
US9935277B2 (en) 2014-01-30 2018-04-03 Universal Display Corporation Organic electroluminescent materials and devices
US9590194B2 (en) 2014-02-14 2017-03-07 Universal Display Corporation Organic electroluminescent materials and devices
US10003033B2 (en) 2014-02-18 2018-06-19 Universal Display Corporation Organic electroluminescent materials and devices
US9847497B2 (en) 2014-02-18 2017-12-19 Universal Display Corporation Organic electroluminescent materials and devices
US10707423B2 (en) 2014-02-21 2020-07-07 Universal Display Corporation Organic electroluminescent materials and devices
US9502656B2 (en) 2014-02-24 2016-11-22 Universal Display Corporation Organic electroluminescent materials and devices
US9647217B2 (en) 2014-02-24 2017-05-09 Universal Display Corporation Organic electroluminescent materials and devices
US10403825B2 (en) 2014-02-27 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US9590195B2 (en) 2014-02-28 2017-03-07 Universal Display Corporation Organic electroluminescent materials and devices
US9181270B2 (en) 2014-02-28 2015-11-10 Universal Display Corporation Method of making sulfide compounds
US9673407B2 (en) 2014-02-28 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US9190620B2 (en) 2014-03-01 2015-11-17 Universal Display Corporation Organic electroluminescent materials and devices
KR101645200B1 (en) * 2014-03-04 2016-08-03 한국교통대학교산학협력단 Benzoquinoline derivative and organoelectroluminescent device employing the same
US9397309B2 (en) 2014-03-13 2016-07-19 Universal Display Corporation Organic electroluminescent devices
US10208026B2 (en) 2014-03-18 2019-02-19 Universal Display Corporation Organic electroluminescent materials and devices
US9748504B2 (en) 2014-03-25 2017-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US9929353B2 (en) 2014-04-02 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US9691993B2 (en) 2014-04-09 2017-06-27 Universal Display Corporation Organic electroluminescent materials and devices
US10008679B2 (en) 2014-04-14 2018-06-26 Universal Display Corporation Organic electroluminescent materials and devices
US9905785B2 (en) 2014-04-14 2018-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US9450198B2 (en) 2014-04-15 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US10256427B2 (en) 2014-04-15 2019-04-09 Universal Display Corporation Efficient organic electroluminescent devices
US9741941B2 (en) 2014-04-29 2017-08-22 Universal Display Corporation Organic electroluminescent materials and devices
US10457699B2 (en) 2014-05-02 2019-10-29 Universal Display Corporation Organic electroluminescent materials and devices
US10403830B2 (en) 2014-05-08 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US10301338B2 (en) 2014-05-08 2019-05-28 Universal Display Corporation Organic electroluminescent materials and devices
US10636983B2 (en) 2014-05-08 2020-04-28 Universal Display Corporation Organic electroluminescent materials and devices
EP3140871B1 (en) 2014-05-08 2018-12-26 Universal Display Corporation Stabilized imidazophenanthridine materials
US9997716B2 (en) 2014-05-27 2018-06-12 Universal Display Corporation Organic electroluminescent materials and devices
US10461260B2 (en) 2014-06-03 2019-10-29 Universal Display Corporation Organic electroluminescent materials and devices
US9911931B2 (en) 2014-06-26 2018-03-06 Universal Display Corporation Organic electroluminescent materials and devices
US10297762B2 (en) 2014-07-09 2019-05-21 Universal Display Corporation Organic electroluminescent materials and devices
US10566546B2 (en) 2014-07-14 2020-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US9929357B2 (en) 2014-07-22 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11108000B2 (en) 2014-08-07 2021-08-31 Unniversal Display Corporation Organic electroluminescent materials and devices
US10411200B2 (en) 2014-08-07 2019-09-10 Universal Display Corporation Electroluminescent (2-phenylpyridine)iridium complexes and devices
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
US10135007B2 (en) 2014-09-29 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices
US10749113B2 (en) 2014-09-29 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US10043987B2 (en) 2014-09-29 2018-08-07 Universal Display Corporation Organic electroluminescent materials and devices
US10361375B2 (en) 2014-10-06 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
US10854826B2 (en) 2014-10-08 2020-12-01 Universal Display Corporation Organic electroluminescent compounds, compositions and devices
US9397302B2 (en) 2014-10-08 2016-07-19 Universal Display Corporation Organic electroluminescent materials and devices
US10950803B2 (en) 2014-10-13 2021-03-16 Universal Display Corporation Compounds and uses in devices
US9484541B2 (en) 2014-10-20 2016-11-01 Universal Display Corporation Organic electroluminescent materials and devices
US10868261B2 (en) 2014-11-10 2020-12-15 Universal Display Corporation Organic electroluminescent materials and devices
US10038151B2 (en) 2014-11-12 2018-07-31 Universal Display Corporation Organic electroluminescent materials and devices
US10411201B2 (en) 2014-11-12 2019-09-10 Universal Display Corporation Organic electroluminescent materials and devices
US9871212B2 (en) 2014-11-14 2018-01-16 Universal Display Corporation Organic electroluminescent materials and devices
US9882151B2 (en) 2014-11-14 2018-01-30 Universal Display Corporation Organic electroluminescent materials and devices
US9761814B2 (en) 2014-11-18 2017-09-12 Universal Display Corporation Organic light-emitting materials and devices
US9444075B2 (en) 2014-11-26 2016-09-13 Universal Display Corporation Emissive display with photo-switchable polarization
US9450195B2 (en) 2014-12-17 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3241248A1 (en) 2014-12-30 2017-11-08 Merck Patent GmbH Formulations and electronic devices
US10636978B2 (en) 2014-12-30 2020-04-28 Universal Display Corporation Organic electroluminescent materials and devices
US10253252B2 (en) 2014-12-30 2019-04-09 Universal Display Corporation Organic electroluminescent materials and devices
US9312499B1 (en) 2015-01-05 2016-04-12 Universal Display Corporation Organic electroluminescent materials and devices
US9406892B2 (en) 2015-01-07 2016-08-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418569B2 (en) 2015-01-25 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US9711730B2 (en) 2015-01-25 2017-07-18 Universal Display Corporation Organic electroluminescent materials and devices
US10355222B2 (en) 2015-02-06 2019-07-16 Universal Display Corporation Organic electroluminescent materials and devices
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
US10418562B2 (en) 2015-02-06 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US10177316B2 (en) 2015-02-09 2019-01-08 Universal Display Corporation Organic electroluminescent materials and devices
US10144867B2 (en) 2015-02-13 2018-12-04 Universal Display Corporation Organic electroluminescent materials and devices
US10680183B2 (en) 2015-02-15 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US10600966B2 (en) 2015-02-27 2020-03-24 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
US10686143B2 (en) 2015-03-05 2020-06-16 Universal Display Corporation Organic electroluminescent materials and devices
KR102343572B1 (en) 2015-03-06 2021-12-28 삼성디스플레이 주식회사 Organic light emitting device
US10270046B2 (en) 2015-03-06 2019-04-23 Universal Display Corporation Organic electroluminescent materials and devices
US9780316B2 (en) 2015-03-16 2017-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US9911928B2 (en) 2015-03-19 2018-03-06 Universal Display Corporation Organic electroluminescent materials and devices
US9871214B2 (en) 2015-03-23 2018-01-16 Universal Display Corporation Organic electroluminescent materials and devices
US10529931B2 (en) 2015-03-24 2020-01-07 Universal Display Corporation Organic Electroluminescent materials and devices
US10297770B2 (en) 2015-03-27 2019-05-21 Universal Display Corporation Organic electroluminescent materials and devices
WO2016155866A1 (en) 2015-03-30 2016-10-06 Merck Patent Gmbh Formulation of an organic functional material comprising a siloxane solvent
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US10693082B2 (en) 2015-04-06 2020-06-23 Universal Display Corporation Organic electroluminescent materials and devices
US10777749B2 (en) 2015-05-07 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
US10403826B2 (en) 2015-05-07 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US9478758B1 (en) 2015-05-08 2016-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10256411B2 (en) 2015-05-21 2019-04-09 Universal Display Corporation Organic electroluminescent materials and devices
US10109799B2 (en) 2015-05-21 2018-10-23 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US10033004B2 (en) 2015-06-01 2018-07-24 Universal Display Corporation Organic electroluminescent materials and devices
US11925102B2 (en) 2015-06-04 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US10808170B2 (en) 2015-06-12 2020-10-20 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for OLED formulations
US10825997B2 (en) 2015-06-25 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10873036B2 (en) 2015-07-07 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US9978956B2 (en) 2015-07-15 2018-05-22 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US11018309B2 (en) 2015-08-03 2021-05-25 Universal Display Corporation Organic electroluminescent materials and devices
US11522140B2 (en) 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices
US10522769B2 (en) 2015-08-18 2019-12-31 Universal Display Corporation Organic electroluminescent materials and devices
US10181564B2 (en) 2015-08-26 2019-01-15 Universal Display Corporation Organic electroluminescent materials and devices
US11046884B2 (en) 2015-08-28 2021-06-29 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
US10361381B2 (en) 2015-09-03 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
US11706972B2 (en) 2015-09-08 2023-07-18 Universal Display Corporation Organic electroluminescent materials and devices
US11302872B2 (en) 2015-09-09 2022-04-12 Universal Display Corporation Organic electroluminescent materials and devices
US10770664B2 (en) 2015-09-21 2020-09-08 Universal Display Corporation Organic electroluminescent materials and devices
US20170092880A1 (en) 2015-09-25 2017-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US10593892B2 (en) 2015-10-01 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US10847728B2 (en) 2015-10-01 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10991895B2 (en) 2015-10-06 2021-04-27 Universal Display Corporation Organic electroluminescent materials and devices
US10388893B2 (en) 2015-10-29 2019-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US10388892B2 (en) 2015-10-29 2019-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US10177318B2 (en) 2015-10-29 2019-01-08 Universal Display Corporation Organic electroluminescent materials and devices
CN105385708A (en) * 2015-10-31 2016-03-09 丁玉琴 Synthesizing method for 1,3,5-tris(4-bromophenyl)naphthaline
US10998507B2 (en) 2015-11-23 2021-05-04 Universal Display Corporation Organic electroluminescent materials and devices
US10476010B2 (en) 2015-11-30 2019-11-12 Universal Display Corporation Organic electroluminescent materials and devices
KR20180090362A (en) 2015-12-10 2018-08-10 메르크 파텐트 게엠베하 Formulation comprising a ketone containing a non-aromatic cycle
KR20180095854A (en) 2015-12-15 2018-08-28 메르크 파텐트 게엠베하 Esters containing aromatic groups as solvents for organic electronic formulations
CN108431143A (en) 2015-12-16 2018-08-21 默克专利有限公司 Preparation containing solid solvent
KR20180095028A (en) 2015-12-16 2018-08-24 메르크 파텐트 게엠베하 A formulation containing a mixture of two or more different solvents
US11024808B2 (en) 2015-12-29 2021-06-01 Universal Display Corporation Organic electroluminescent materials and devices
US10957861B2 (en) 2015-12-29 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
US10135006B2 (en) 2016-01-04 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices
US10707427B2 (en) 2016-02-09 2020-07-07 Universal Display Corporation Organic electroluminescent materials and devices
US10457864B2 (en) 2016-02-09 2019-10-29 Universal Display Corporation Organic electroluminescent materials and devices
EP3417033B1 (en) 2016-02-17 2021-02-24 Merck Patent GmbH Formulation of an organic functional material
US10600967B2 (en) 2016-02-18 2020-03-24 Universal Display Corporation Organic electroluminescent materials and devices
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
US11094891B2 (en) 2016-03-16 2021-08-17 Universal Display Corporation Organic electroluminescent materials and devices
US10276809B2 (en) 2016-04-05 2019-04-30 Universal Display Corporation Organic electroluminescent materials and devices
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10566552B2 (en) 2016-04-13 2020-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US11228003B2 (en) 2016-04-22 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11228002B2 (en) 2016-04-22 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11081647B2 (en) 2016-04-22 2021-08-03 Universal Display Corporation Organic electroluminescent materials and devices
US10840458B2 (en) 2016-05-25 2020-11-17 Universal Display Corporation Organic electroluminescent materials and devices
US10468609B2 (en) 2016-06-02 2019-11-05 Universal Display Corporation Organic electroluminescent materials and devices
KR20190019138A (en) 2016-06-16 2019-02-26 메르크 파텐트 게엠베하 Formulation of organic functional material
JP2019523998A (en) 2016-06-17 2019-08-29 メルク パテント ゲーエムベーハー Formulation of organic functional materials
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10686140B2 (en) 2016-06-20 2020-06-16 Universal Display Corporation Organic electroluminescent materials and devices
US10651403B2 (en) 2016-06-20 2020-05-12 Universal Display Corporation Organic electroluminescent materials and devices
US10727423B2 (en) 2016-06-20 2020-07-28 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
TW201815998A (en) 2016-06-28 2018-05-01 德商麥克專利有限公司 Formulation of an organic functional material
US10957866B2 (en) 2016-06-30 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
US9929360B2 (en) 2016-07-08 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US10680184B2 (en) 2016-07-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US10720587B2 (en) 2016-07-19 2020-07-21 Universal Display Corporation Organic electroluminescent materials and devices
US10153443B2 (en) 2016-07-19 2018-12-11 Universal Display Corporation Organic electroluminescent materials and devices
CN109563402B (en) 2016-08-04 2022-07-15 默克专利有限公司 Preparation of organic functional materials
US10205105B2 (en) 2016-08-15 2019-02-12 Universal Display Corporation Organic electroluminescent materials and devices
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10505127B2 (en) 2016-09-19 2019-12-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11127906B2 (en) 2016-10-03 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US11081658B2 (en) 2016-10-03 2021-08-03 Universal Display Corporation Organic electroluminescent materials and devices
US11183642B2 (en) 2016-10-03 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11189804B2 (en) 2016-10-03 2021-11-30 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US11239432B2 (en) 2016-10-14 2022-02-01 Universal Display Corporation Organic electroluminescent materials and devices
US10608185B2 (en) 2016-10-17 2020-03-31 Univeral Display Corporation Organic electroluminescent materials and devices
US10236458B2 (en) 2016-10-24 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
EP3532565B1 (en) 2016-10-31 2021-04-21 Merck Patent GmbH Formulation of an organic functional material
US10340464B2 (en) 2016-11-10 2019-07-02 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US10897016B2 (en) 2016-11-14 2021-01-19 Universal Display Corporation Organic electroluminescent materials and devices
US10662196B2 (en) 2016-11-17 2020-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US10964893B2 (en) 2016-11-17 2021-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US10153445B2 (en) 2016-11-21 2018-12-11 Universal Display Corporation Organic electroluminescent materials and devices
US10833276B2 (en) 2016-11-21 2020-11-10 Universal Display Corporation Organic electroluminescent materials and devices
US11555048B2 (en) 2016-12-01 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
WO2018104202A1 (en) 2016-12-06 2018-06-14 Merck Patent Gmbh Preparation process for an electronic device
WO2018108760A1 (en) 2016-12-13 2018-06-21 Merck Patent Gmbh Formulation of an organic functional material
US11545636B2 (en) 2016-12-15 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US10490753B2 (en) 2016-12-15 2019-11-26 Universal Display Corporation Organic electroluminescent materials and devices
US11548905B2 (en) 2016-12-15 2023-01-10 Universal Display Corporation Organic electroluminescent materials and devices
US10811618B2 (en) 2016-12-19 2020-10-20 Universal Display Corporation Organic electroluminescent materials and devices
CN110088925A (en) 2016-12-22 2019-08-02 默克专利有限公司 Mixture comprising at least two organic functions chemical combination objects
US11152579B2 (en) 2016-12-28 2021-10-19 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US11201298B2 (en) 2017-01-09 2021-12-14 Universal Display Corporation Organic electroluminescent materials and devices
US10804475B2 (en) 2017-01-11 2020-10-13 Universal Display Corporation Organic electroluminescent materials and devices
US11545637B2 (en) 2017-01-13 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US10629820B2 (en) 2017-01-18 2020-04-21 Universal Display Corporation Organic electroluminescent materials and devices
US10964904B2 (en) 2017-01-20 2021-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US11053268B2 (en) 2017-01-20 2021-07-06 Universal Display Corporation Organic electroluminescent materials and devices
US11765968B2 (en) 2017-01-23 2023-09-19 Universal Display Corporation Organic electroluminescent materials and devices
US11050028B2 (en) 2017-01-24 2021-06-29 Universal Display Corporation Organic electroluminescent materials and devices
TWI763772B (en) 2017-01-30 2022-05-11 德商麥克專利有限公司 Method for forming an organic element of an electronic device
TWI791481B (en) 2017-01-30 2023-02-11 德商麥克專利有限公司 Method for forming an organic electroluminescence (el) element
US10978647B2 (en) 2017-02-15 2021-04-13 Universal Display Corporation Organic electroluminescent materials and devices
US10844084B2 (en) 2017-02-22 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10745431B2 (en) 2017-03-08 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US10741780B2 (en) 2017-03-10 2020-08-11 Universal Display Corporation Organic electroluminescent materials and devices
US10672998B2 (en) 2017-03-23 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10873037B2 (en) 2017-03-28 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US10910577B2 (en) 2017-03-28 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US11158820B2 (en) 2017-03-29 2021-10-26 Universal Display Corporation Organic electroluminescent materials and devices
US11056658B2 (en) 2017-03-29 2021-07-06 Universal Display Corporation Organic electroluminescent materials and devices
US10862046B2 (en) 2017-03-30 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US11276829B2 (en) 2017-03-31 2022-03-15 Universal Display Corporation Organic electroluminescent materials and devices
US11139443B2 (en) 2017-03-31 2021-10-05 Universal Display Corporation Organic electroluminescent materials and devices
WO2018178136A1 (en) 2017-03-31 2018-10-04 Merck Patent Gmbh Printing method for an organic light emitting diode (oled)
KR102632027B1 (en) 2017-04-10 2024-01-31 메르크 파텐트 게엠베하 Formulation of organic functional materials
US11038117B2 (en) 2017-04-11 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
US10777754B2 (en) 2017-04-11 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
US10975113B2 (en) 2017-04-21 2021-04-13 Universal Display Corporation Organic electroluminescent materials and devices
US11084838B2 (en) 2017-04-21 2021-08-10 Universal Display Corporation Organic electroluminescent materials and device
US11101434B2 (en) 2017-04-21 2021-08-24 Universal Display Corporation Organic electroluminescent materials and devices
CN110785867B (en) 2017-04-26 2023-05-02 Oti照明公司 Method for patterning a surface coating and apparatus comprising a patterned coating
US10910570B2 (en) 2017-04-28 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US11038137B2 (en) 2017-04-28 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
US11117897B2 (en) 2017-05-01 2021-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US10941170B2 (en) 2017-05-03 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
JP7330898B2 (en) 2017-05-03 2023-08-22 メルク パテント ゲーエムベーハー Formulation of organic functional material
US11201299B2 (en) 2017-05-04 2021-12-14 Universal Display Corporation Organic electroluminescent materials and devices
US10862055B2 (en) 2017-05-05 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10870668B2 (en) 2017-05-05 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US10930864B2 (en) 2017-05-10 2021-02-23 Universal Display Corporation Organic electroluminescent materials and devices
US10822362B2 (en) 2017-05-11 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US11038115B2 (en) 2017-05-18 2021-06-15 Universal Display Corporation Organic electroluminescent materials and device
US10790455B2 (en) 2017-05-18 2020-09-29 Universal Display Corporation Organic electroluminescent materials and devices
US10840459B2 (en) 2017-05-18 2020-11-17 Universal Display Corporation Organic electroluminescent materials and devices
US10934293B2 (en) 2017-05-18 2021-03-02 Universal Display Corporation Organic electroluminescent materials and devices
US10944062B2 (en) 2017-05-18 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US10930862B2 (en) 2017-06-01 2021-02-23 Universal Display Corporation Organic electroluminescent materials and devices
US11608321B2 (en) 2017-06-23 2023-03-21 Universal Display Corporation Organic electroluminescent materials and devices
US11552261B2 (en) 2017-06-23 2023-01-10 Universal Display Corporation Organic electroluminescent materials and devices
US11832510B2 (en) 2017-06-23 2023-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US11725022B2 (en) 2017-06-23 2023-08-15 Universal Display Corporation Organic electroluminescent materials and devices
US10968226B2 (en) 2017-06-23 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11802136B2 (en) 2017-06-23 2023-10-31 Universal Display Corporation Organic electroluminescent materials and devices
US11495757B2 (en) 2017-06-23 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11678565B2 (en) 2017-06-23 2023-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US11758804B2 (en) 2017-06-23 2023-09-12 Universal Display Corporation Organic electroluminescent materials and devices
US11814403B2 (en) 2017-06-23 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11174259B2 (en) 2017-06-23 2021-11-16 Universal Display Corporation Organic electroluminescent materials and devices
US11469382B2 (en) 2017-07-12 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
US11228010B2 (en) 2017-07-26 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11322691B2 (en) 2017-07-26 2022-05-03 Universal Display Corporation Organic electroluminescent materials and devices
US11765970B2 (en) 2017-07-26 2023-09-19 Universal Display Corporation Organic electroluminescent materials and devices
US11968883B2 (en) 2017-07-26 2024-04-23 Universal Display Corporation Organic electroluminescent materials and devices
US11917843B2 (en) 2017-07-26 2024-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US11239433B2 (en) 2017-07-26 2022-02-01 Universal Display Corporation Organic electroluminescent materials and devices
US11744141B2 (en) 2017-08-09 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US11508913B2 (en) 2017-08-10 2022-11-22 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US11349083B2 (en) 2017-08-10 2022-05-31 Universal Display Corporation Organic electroluminescent materials and devices
US11910699B2 (en) 2017-08-10 2024-02-20 Universal Display Corporation Organic electroluminescent materials and devices
US11462697B2 (en) 2017-08-22 2022-10-04 Universal Display Corporation Organic electroluminescent materials and devices
US11723269B2 (en) 2017-08-22 2023-08-08 Universal Display Corporation Organic electroluminescent materials and devices
US11437591B2 (en) 2017-08-24 2022-09-06 Universal Display Corporation Organic electroluminescent materials and devices
US11605791B2 (en) 2017-09-01 2023-03-14 Universal Display Corporation Organic electroluminescent materials and devices
US11696492B2 (en) 2017-09-07 2023-07-04 Universal Display Corporation Organic electroluminescent materials and devices
US11444249B2 (en) 2017-09-07 2022-09-13 Universal Display Corporation Organic electroluminescent materials and devices
US11424420B2 (en) 2017-09-07 2022-08-23 Universal Display Corporation Organic electroluminescent materials and devices
US10608188B2 (en) 2017-09-11 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US11778897B2 (en) 2017-09-20 2023-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US11214587B2 (en) 2017-11-07 2022-01-04 Universal Display Corporation Organic electroluminescent materials and devices
US11183646B2 (en) 2017-11-07 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11910702B2 (en) 2017-11-07 2024-02-20 Universal Display Corporation Organic electroluminescent devices
US11168103B2 (en) 2017-11-17 2021-11-09 Universal Display Corporation Organic electroluminescent materials and devices
US11825735B2 (en) 2017-11-28 2023-11-21 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11233204B2 (en) 2017-12-14 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US10971687B2 (en) 2017-12-14 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11233205B2 (en) 2017-12-14 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
US11700765B2 (en) 2018-01-10 2023-07-11 Universal Display Corporation Organic electroluminescent materials and devices
US11081659B2 (en) 2018-01-10 2021-08-03 Universal Display Corporation Organic electroluminescent materials and devices
US11271177B2 (en) 2018-01-11 2022-03-08 Universal Display Corporation Organic electroluminescent materials and devices
US11515493B2 (en) 2018-01-11 2022-11-29 Universal Display Corporation Organic electroluminescent materials and devices
US11845764B2 (en) 2018-01-26 2023-12-19 Universal Display Corporation Organic electroluminescent materials and devices
US11542289B2 (en) 2018-01-26 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US11367840B2 (en) 2018-01-26 2022-06-21 Universal Display Corporation Organic electroluminescent materials and devices
US12029055B2 (en) 2018-01-30 2024-07-02 The University Of Southern California OLED with hybrid emissive layer
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11957050B2 (en) 2018-02-09 2024-04-09 Universal Display Corporation Organic electroluminescent materials and devices
US11239434B2 (en) 2018-02-09 2022-02-01 Universal Display Corporation Organic electroluminescent materials and devices
US11180519B2 (en) 2018-02-09 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11342509B2 (en) 2018-02-09 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
JP7247231B2 (en) 2018-02-26 2023-03-28 メルク パテント ゲーエムベーハー Formulation of organic functional material
US11142538B2 (en) 2018-03-12 2021-10-12 Universal Display Corporation Organic electroluminescent materials and devices
US11279722B2 (en) 2018-03-12 2022-03-22 Universal Display Corporation Organic electroluminescent materials and devices
US11217757B2 (en) 2018-03-12 2022-01-04 Universal Display Corporation Host materials for electroluminescent devices
US11557733B2 (en) 2018-03-12 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11165028B2 (en) 2018-03-12 2021-11-02 Universal Display Corporation Organic electroluminescent materials and devices
US11390639B2 (en) 2018-04-13 2022-07-19 Universal Display Corporation Organic electroluminescent materials and devices
US11882759B2 (en) 2018-04-13 2024-01-23 Universal Display Corporation Organic electroluminescent materials and devices
US11616203B2 (en) 2018-04-17 2023-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US11342513B2 (en) 2018-05-04 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US11753427B2 (en) 2018-05-04 2023-09-12 Universal Display Corporation Organic electroluminescent materials and devices
US11515494B2 (en) 2018-05-04 2022-11-29 Universal Display Corporation Organic electroluminescent materials and devices
US11793073B2 (en) 2018-05-06 2023-10-17 Universal Display Corporation Host materials for electroluminescent devices
US11459349B2 (en) 2018-05-25 2022-10-04 Universal Display Corporation Organic electroluminescent materials and devices
US11450822B2 (en) 2018-05-25 2022-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US11716900B2 (en) 2018-05-30 2023-08-01 Universal Display Corporation Host materials for electroluminescent devices
US11404653B2 (en) 2018-06-04 2022-08-02 Universal Display Corporation Organic electroluminescent materials and devices
US11925103B2 (en) 2018-06-05 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US11339182B2 (en) 2018-06-07 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
EP3807367B1 (en) 2018-06-15 2023-07-19 Merck Patent GmbH Formulation of an organic functional material
US11228004B2 (en) 2018-06-22 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11261207B2 (en) 2018-06-25 2022-03-01 Universal Display Corporation Organic electroluminescent materials and devices
US11753425B2 (en) 2018-07-11 2023-09-12 Universal Display Corporation Organic electroluminescent materials and devices
US11233203B2 (en) 2018-09-06 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US11485706B2 (en) 2018-09-11 2022-11-01 Universal Display Corporation Organic electroluminescent materials and devices
US11718634B2 (en) 2018-09-14 2023-08-08 Universal Display Corporation Organic electroluminescent materials and devices
US11903305B2 (en) 2018-09-24 2024-02-13 Universal Display Corporation Organic electroluminescent materials and devices
KR20210056432A (en) 2018-09-24 2021-05-18 메르크 파텐트 게엠베하 Method of manufacturing granular material
US11469383B2 (en) 2018-10-08 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
US11495752B2 (en) 2018-10-08 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11476430B2 (en) 2018-10-15 2022-10-18 Universal Display Corporation Organic electroluminescent materials and devices
US11515482B2 (en) 2018-10-23 2022-11-29 Universal Display Corporation Deep HOMO (highest occupied molecular orbital) emitter device structures
US11469384B2 (en) 2018-11-02 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
CN112930606A (en) 2018-11-06 2021-06-08 默克专利有限公司 Method for forming organic element of electronic device
US11825736B2 (en) 2018-11-19 2023-11-21 Universal Display Corporation Organic electroluminescent materials and devices
US11963441B2 (en) 2018-11-26 2024-04-16 Universal Display Corporation Organic electroluminescent materials and devices
US11690285B2 (en) 2018-11-28 2023-06-27 Universal Display Corporation Electroluminescent devices
US11716899B2 (en) 2018-11-28 2023-08-01 Universal Display Corporation Organic electroluminescent materials and devices
US11889708B2 (en) 2019-11-14 2024-01-30 Universal Display Corporation Organic electroluminescent materials and devices
US11706980B2 (en) 2018-11-28 2023-07-18 Universal Display Corporation Host materials for electroluminescent devices
US11672165B2 (en) 2018-11-28 2023-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US11672176B2 (en) 2018-11-28 2023-06-06 Universal Display Corporation Host materials for electroluminescent devices
US11623936B2 (en) 2018-12-11 2023-04-11 Universal Display Corporation Organic electroluminescent materials and devices
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices
US11737349B2 (en) 2018-12-12 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
US11812624B2 (en) 2019-01-30 2023-11-07 The University Of Southern California Organic electroluminescent materials and devices
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US11325932B2 (en) 2019-02-08 2022-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US11370809B2 (en) 2019-02-08 2022-06-28 Universal Display Corporation Organic electroluminescent materials and devices
US11773320B2 (en) 2019-02-21 2023-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US11557738B2 (en) 2019-02-22 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11871653B2 (en) 2019-02-22 2024-01-09 Universal Display Corporation Organic electroluminescent materials and devices
US11512093B2 (en) 2019-03-04 2022-11-29 Universal Display Corporation Compound used for organic light emitting device (OLED), consumer product and formulation
JP7390739B2 (en) 2019-03-07 2023-12-04 オーティーアイ ルミオニクス インコーポレーテッド Materials for forming nucleation-inhibiting coatings and devices incorporating the same
US11739081B2 (en) 2019-03-11 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US11569480B2 (en) 2019-03-12 2023-01-31 Universal Display Corporation Plasmonic OLEDs and vertical dipole emitters
US11637261B2 (en) 2019-03-12 2023-04-25 Universal Display Corporation Nanopatch antenna outcoupling structure for use in OLEDs
US11963438B2 (en) 2019-03-26 2024-04-16 The University Of Southern California Organic electroluminescent materials and devices
US11639363B2 (en) 2019-04-22 2023-05-02 Universal Display Corporation Organic electroluminescent materials and devices
US11613550B2 (en) 2019-04-30 2023-03-28 Universal Display Corporation Organic electroluminescent materials and devices comprising benzimidazole-containing metal complexes
US11560398B2 (en) 2019-05-07 2023-01-24 Universal Display Corporation Organic electroluminescent materials and devices
US11495756B2 (en) 2019-05-07 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11827651B2 (en) 2019-05-13 2023-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US11634445B2 (en) 2019-05-21 2023-04-25 Universal Display Corporation Organic electroluminescent materials and devices
US12010859B2 (en) 2019-05-24 2024-06-11 Universal Display Corporation Organic electroluminescent materials and devices
US11647667B2 (en) 2019-06-14 2023-05-09 Universal Display Corporation Organic electroluminescent compounds and organic light emitting devices using the same
US11920070B2 (en) 2019-07-12 2024-03-05 The University Of Southern California Luminescent janus-type, two-coordinated metal complexes
US11926638B2 (en) 2019-07-22 2024-03-12 Universal Display Corporation Organic electroluminescent materials and devices
WO2021016256A2 (en) * 2019-07-22 2021-01-28 Angion Biomedica Corp. Ethynylheterocycles as rho-associated coiled-coil kinase (rock) inhibitors
US11685754B2 (en) 2019-07-22 2023-06-27 Universal Display Corporation Heteroleptic organic electroluminescent materials
US11708355B2 (en) 2019-08-01 2023-07-25 Universal Display Corporation Organic electroluminescent materials and devices
US11985888B2 (en) 2019-08-12 2024-05-14 The Regents Of The University Of Michigan Organic electroluminescent device
US11374181B2 (en) 2019-08-14 2022-06-28 Universal Display Corporation Organic electroluminescent materials and devices
US11930699B2 (en) 2019-08-15 2024-03-12 Universal Display Corporation Organic electroluminescent materials and devices
US11925105B2 (en) 2019-08-26 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US11937494B2 (en) 2019-08-28 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11600787B2 (en) 2019-08-30 2023-03-07 Universal Display Corporation Organic electroluminescent materials and devices
US11820783B2 (en) 2019-09-06 2023-11-21 Universal Display Corporation Organic electroluminescent materials and devices
US11999886B2 (en) 2019-09-26 2024-06-04 Universal Display Corporation Organic electroluminescent materials and devices
US11864458B2 (en) 2019-10-08 2024-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US11950493B2 (en) 2019-10-15 2024-04-02 Universal Display Corporation Organic electroluminescent materials and devices
US11697653B2 (en) 2019-10-21 2023-07-11 Universal Display Corporation Organic electroluminescent materials and devices
US11919914B2 (en) 2019-10-25 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US11765965B2 (en) 2019-10-30 2023-09-19 Universal Display Corporation Organic electroluminescent materials and devices
US11778895B2 (en) 2020-01-13 2023-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US11917900B2 (en) 2020-01-28 2024-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US11932660B2 (en) 2020-01-29 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US12018035B2 (en) 2020-03-23 2024-06-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4139408A1 (en) 2020-04-21 2023-03-01 Merck Patent GmbH Formulation of an organic functional material
US11970508B2 (en) 2020-04-22 2024-04-30 Universal Display Corporation Organic electroluminescent materials and devices
CN115867426A (en) 2020-06-23 2023-03-28 默克专利有限公司 Method for producing a mixture
US11985841B2 (en) 2020-12-07 2024-05-14 Oti Lumionics Inc. Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating
CN116635491A (en) 2020-12-08 2023-08-22 默克专利有限公司 Ink system and method for inkjet printing
KR20240000559A (en) 2021-04-23 2024-01-02 메르크 파텐트 게엠베하 Formulation of organic functional materials
CN117355364A (en) 2021-05-21 2024-01-05 默克专利有限公司 Method for continuously purifying at least one functional material and device for continuously purifying at least one functional material
TW202349760A (en) 2021-10-05 2023-12-16 德商麥克專利有限公司 Method for forming an organic element of an electronic device
WO2024126635A1 (en) 2022-12-16 2024-06-20 Merck Patent Gmbh Formulation of an organic functional material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US352940A (en) * 1886-11-23 Moses g
US365472A (en) * 1887-06-28 Henry j
US20020127427A1 (en) * 2001-01-02 2002-09-12 Eastman Kodak Company Organic light emitting diode devices with improved luminance efficiency
US20020182441A1 (en) * 2000-08-11 2002-12-05 Trustee Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
US20060134456A1 (en) * 2002-08-12 2006-06-22 Idemitsu Kosan Co., Ltd Oligoarylene derivatives and organic electroluminescent devices made by using the same
US20060228580A1 (en) * 2004-07-29 2006-10-12 Hye-In Jeong Organic electroluminescent device
US20070152209A1 (en) * 2005-12-19 2007-07-05 Uckert Frank P Devices using polymers based on 3,6- and 2,7-conjugated poly(phenanthrene)
US20080074038A1 (en) * 2006-09-26 2008-03-27 Hee-Kyung Kim Organic light emitting display (OLED) and its method of manufacture
US20090009066A1 (en) * 2007-07-07 2009-01-08 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US20100327230A1 (en) * 2007-07-07 2010-12-30 Idemitsu Kosan Co., Ltd. Phenanthrene derivative, and material for organic el element
US20110068683A1 (en) * 2008-03-19 2011-03-24 Idemtsu Kosan Co., Ltd Anthracene derivatives, luminescent materials and organic electroluminescent devices
US20120007059A1 (en) * 2008-12-26 2012-01-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and compound

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118683A (en) * 1999-08-12 2001-04-27 Toray Ind Inc Luminescent element
JP2001332384A (en) 2000-05-19 2001-11-30 Toray Ind Inc Light emitting element
EP1365633B1 (en) * 2000-12-25 2011-07-06 Samsung Mobile Display Co., Ltd. Organic electroluminescence element
JP3873720B2 (en) 2001-08-24 2007-01-24 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT AND DISPLAY DEVICE USING THE SAME
JP4060648B2 (en) 2002-06-20 2008-03-12 日本放送協会 COMPOUND AND OPTICAL DEVICE, ELECTRONIC DEVICE, ELECTROLUMINESCENT ELEMENT, TRANSISTOR, DISPLAY DEVICE, AND DISPLAY DEVICE USING THE COMPOUND
US7651788B2 (en) * 2003-03-05 2010-01-26 Lg Display Co., Ltd. Organic electroluminescent device
JP2005008588A (en) 2003-06-20 2005-01-13 Sony Corp Quarter naphthyl and method for producing the same
JP2005019219A (en) 2003-06-26 2005-01-20 Sony Corp Organic el light emitting element
KR100577262B1 (en) 2004-01-06 2006-05-10 엘지전자 주식회사 organic electroluminescence device
JPWO2005112519A1 (en) 2004-05-14 2008-03-27 出光興産株式会社 Organic electroluminescence device
EP1645610A1 (en) 2004-10-11 2006-04-12 Covion Organic Semiconductors GmbH Phenanthrene derivatives
JP4974509B2 (en) 2004-10-29 2012-07-11 株式会社半導体エネルギー研究所 Light emitting element and light emitting device
WO2006103916A1 (en) * 2005-03-25 2006-10-05 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP5157442B2 (en) 2005-04-18 2013-03-06 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
JP2007084485A (en) * 2005-09-22 2007-04-05 Kyoto Univ Naphthalene derivative, organic semiconductor material, and light-emitting transistor element and organic electroluminescent element using the semiconductor material
US8674138B2 (en) 2005-10-21 2014-03-18 Lg Chem. Ltd. Binaphthalene derivatives, preparation method thereof and organic electronic device using the same
JP5715336B2 (en) * 2007-06-20 2015-05-07 出光興産株式会社 Polycyclic ring assembly compound and organic electroluminescence device using the same
KR100901887B1 (en) * 2008-03-14 2009-06-09 (주)그라쎌 Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR20090111915A (en) * 2008-04-23 2009-10-28 (주)그라쎌 Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR101551207B1 (en) * 2008-09-04 2015-09-08 롬엔드하스전자재료코리아유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US352940A (en) * 1886-11-23 Moses g
US365472A (en) * 1887-06-28 Henry j
US20020182441A1 (en) * 2000-08-11 2002-12-05 Trustee Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
US20020127427A1 (en) * 2001-01-02 2002-09-12 Eastman Kodak Company Organic light emitting diode devices with improved luminance efficiency
US20060134456A1 (en) * 2002-08-12 2006-06-22 Idemitsu Kosan Co., Ltd Oligoarylene derivatives and organic electroluminescent devices made by using the same
US20060228580A1 (en) * 2004-07-29 2006-10-12 Hye-In Jeong Organic electroluminescent device
US20070152209A1 (en) * 2005-12-19 2007-07-05 Uckert Frank P Devices using polymers based on 3,6- and 2,7-conjugated poly(phenanthrene)
US20080074038A1 (en) * 2006-09-26 2008-03-27 Hee-Kyung Kim Organic light emitting display (OLED) and its method of manufacture
US20090009066A1 (en) * 2007-07-07 2009-01-08 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US20100327230A1 (en) * 2007-07-07 2010-12-30 Idemitsu Kosan Co., Ltd. Phenanthrene derivative, and material for organic el element
US20110068683A1 (en) * 2008-03-19 2011-03-24 Idemtsu Kosan Co., Ltd Anthracene derivatives, luminescent materials and organic electroluminescent devices
US20120007059A1 (en) * 2008-12-26 2012-01-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine-generated translation for JP 2001-332384 (publication date: 11/2001) *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568903B2 (en) * 2007-07-07 2013-10-29 Idemitsu Kosan Co., Ltd. Phenanthrene derivative, and material for organic EL element
US20100327230A1 (en) * 2007-07-07 2010-12-30 Idemitsu Kosan Co., Ltd. Phenanthrene derivative, and material for organic el element
US9660195B2 (en) 2008-03-19 2017-05-23 Idemitsu Kosan Co., Ltd. Anthracene derivative having a phenanthryl group
US11456421B2 (en) 2008-03-19 2022-09-27 Idemitsu Kosan Co., Ltd. Anthracene derivatives, luminescent materials and organic electroluminescent devices
US10461257B2 (en) 2008-03-19 2019-10-29 Idemitsu Kosan Co., Ltd. Anthracene derivatives, luminescent materials and organic electroluminescent devices
US9006503B2 (en) 2009-01-23 2015-04-14 Merck Patent Gmbh Organic electroluminescence devices containing substituted benzo[C]phenanthrenes
US10756287B2 (en) 2009-12-01 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US20120319091A1 (en) * 2010-01-21 2012-12-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising same
US10497880B2 (en) 2010-09-27 2019-12-03 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US9614164B2 (en) 2010-09-27 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US20170162798A1 (en) 2010-09-27 2017-06-08 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US9040720B2 (en) 2010-09-27 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US10263195B2 (en) 2010-09-27 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US20120104364A1 (en) * 2010-10-29 2012-05-03 Chien-Hong Cheng 9,10-bisphenylphenanthrene derivative and organic light emitting diode using the same
US8426039B2 (en) * 2010-10-29 2013-04-23 National Tsing Hua University 9,10-bisphenylphenanthrene derivative and organic light emitting diode using the same
US11997860B2 (en) 2012-02-09 2024-05-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US11495763B2 (en) 2012-02-09 2022-11-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10062867B2 (en) 2012-03-14 2018-08-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9590208B2 (en) 2012-03-14 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11937439B2 (en) 2012-08-03 2024-03-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
US10361389B2 (en) 2012-08-03 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
US11322709B2 (en) 2012-08-03 2022-05-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
US10862059B2 (en) 2012-08-03 2020-12-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
US11690239B2 (en) 2012-08-10 2023-06-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US12029059B2 (en) 2012-08-10 2024-07-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US11018313B2 (en) 2012-08-10 2021-05-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US9960370B2 (en) * 2012-12-27 2018-05-01 Canon Kabushiki Kaisha Organic light-emitting device and display apparatus
US20150303386A1 (en) * 2012-12-27 2015-10-22 Canon Kabushiki Kaisha Organic light-emitting device and display apparatus
US11825718B2 (en) 2013-08-26 2023-11-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US10439005B2 (en) 2013-08-26 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US11049908B2 (en) 2013-08-26 2021-06-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US11864403B2 (en) 2014-05-13 2024-01-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device comprising first to third light-emitting layers
US10686153B2 (en) 2014-05-13 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Exciplex light-emitting device
US11158832B2 (en) 2014-05-13 2021-10-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with exciplex light-emitting layers
US11832465B2 (en) 2014-05-30 2023-11-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11387422B2 (en) 2014-05-30 2022-07-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10903440B2 (en) 2015-02-24 2021-01-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device

Also Published As

Publication number Publication date
US20100327230A1 (en) 2010-12-30
TW200909557A (en) 2009-03-01
JPWO2009008341A1 (en) 2010-09-09
WO2009008341A1 (en) 2009-01-15
JPWO2009008198A1 (en) 2010-09-02
WO2009008355A1 (en) 2009-01-15
WO2009008198A1 (en) 2009-01-15
US8021574B2 (en) 2011-09-20
WO2009008201A8 (en) 2009-04-09
US8025815B2 (en) 2011-09-27
US20090008605A1 (en) 2009-01-08
TW200909559A (en) 2009-03-01
JPWO2009008201A1 (en) 2010-09-02
WO2009008201A1 (en) 2009-01-15
KR20100042273A (en) 2010-04-23
KR20100042271A (en) 2010-04-23
TW200922904A (en) 2009-06-01
US20090039317A1 (en) 2009-02-12
TW200909558A (en) 2009-03-01
JPWO2009008355A1 (en) 2010-09-09
US20090008607A1 (en) 2009-01-08
TW200911730A (en) 2009-03-16
KR20100044200A (en) 2010-04-29
TW200922905A (en) 2009-06-01
WO2009008199A1 (en) 2009-01-15
US8568903B2 (en) 2013-10-29
WO2009008200A1 (en) 2009-01-15
KR20100029845A (en) 2010-03-17
JP5295957B2 (en) 2013-09-18
US8034256B2 (en) 2011-10-11
KR20100040886A (en) 2010-04-21
US20090008606A1 (en) 2009-01-08
JPWO2009008199A1 (en) 2010-09-02
US8029697B2 (en) 2011-10-04

Similar Documents

Publication Publication Date Title
US8568903B2 (en) Phenanthrene derivative, and material for organic EL element
US8779655B2 (en) Organic electroluminescence device and material for organic electroluminescence device
US8587192B2 (en) Organic electroluminescence device and material for organic electroluminescence device
US8211552B2 (en) Organic electroluminescence device
JP5290581B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
EP2166587A1 (en) Organic electroluminescent device and material for organic electroluminescent device
US20090045731A1 (en) Organic electroluminescence device and material for organic electroluminescence device
US20060061265A1 (en) Aromatic amine derivative and organic electroluminescent element employing the same
US9126887B2 (en) Organic electroluminescent element material and organic electroluminescent element comprising same
JPWO2012105629A1 (en) Nitrogen-containing heterocyclic derivative, electron transport material for organic electroluminescence device, and organic electroluminescence device using the same
US20130092905A1 (en) Material for organic electroluminescence element, and organic electroluminescence element using same
EP2418707B1 (en) Organic electroluminescent element and material for organic electroluminescent element
US8039129B2 (en) Organic electroluminescence device and material for organic electroluminescence device
EP2372804B1 (en) Organic electroluminescence element and compound

Legal Events

Date Code Title Description
AS Assignment

Owner name: IDEMITSU KOSAN CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAWAMURA, MASAHIRO;NISHIMURA, KAZUKI;TAKASHIMA, YORIYUKI;AND OTHERS;REEL/FRAME:023767/0724

Effective date: 20091215

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION