US20100230894A1 - Printing apparatus - Google Patents

Printing apparatus Download PDF

Info

Publication number
US20100230894A1
US20100230894A1 US12/712,237 US71223710A US2010230894A1 US 20100230894 A1 US20100230894 A1 US 20100230894A1 US 71223710 A US71223710 A US 71223710A US 2010230894 A1 US2010230894 A1 US 2010230894A1
Authority
US
United States
Prior art keywords
carrying
sheet
sheets
arc
rollers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/712,237
Other languages
English (en)
Inventor
Toshiharu Sekino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba TEC Corp filed Critical Toshiba TEC Corp
Assigned to TOSHIBA TEC KABUSHIKI KAISHA reassignment TOSHIBA TEC KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEKINO, TOSHIHARU
Publication of US20100230894A1 publication Critical patent/US20100230894A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/26Duplicate, alternate, selective, or coacting feeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/12Delivering or advancing articles from machines; Advancing articles to or into piles by means of the nip between two, or between two sets of, moving tapes or bands or rollers
    • B65H29/125Delivering or advancing articles from machines; Advancing articles to or into piles by means of the nip between two, or between two sets of, moving tapes or bands or rollers between two sets of rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/12Delivering or advancing articles from machines; Advancing articles to or into piles by means of the nip between two, or between two sets of, moving tapes or bands or rollers
    • B65H29/14Delivering or advancing articles from machines; Advancing articles to or into piles by means of the nip between two, or between two sets of, moving tapes or bands or rollers and introducing into a pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/58Article switches or diverters
    • B65H29/60Article switches or diverters diverting the stream into alternative paths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H31/00Pile receivers
    • B65H31/30Arrangements for removing completed piles
    • B65H31/3027Arrangements for removing completed piles by the nip between moving belts or rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H31/00Pile receivers
    • B65H31/34Apparatus for squaring-up piled articles
    • B65H31/36Auxiliary devices for contacting each article with a front stop as it is piled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/06Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers
    • B65H5/062Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers between rollers or balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/36Article guides or smoothers, e.g. movable in operation
    • B65H5/38Article guides or smoothers, e.g. movable in operation immovable in operation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F19/00Complete banking systems; Coded card-freed arrangements adapted for dispensing or receiving monies or the like and posting such transactions to existing accounts, e.g. automatic teller machines
    • G07F19/20Automatic teller machines [ATMs]
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F19/00Complete banking systems; Coded card-freed arrangements adapted for dispensing or receiving monies or the like and posting such transactions to existing accounts, e.g. automatic teller machines
    • G07F19/20Automatic teller machines [ATMs]
    • G07F19/201Accessories of ATMs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/30Orientation, displacement, position of the handled material
    • B65H2301/31Features of transport path
    • B65H2301/311Features of transport path for transport path in plane of handled material, e.g. geometry
    • B65H2301/31124U-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/30Orientation, displacement, position of the handled material
    • B65H2301/33Modifying, selecting, changing orientation
    • B65H2301/332Turning, overturning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/30Orientation, displacement, position of the handled material
    • B65H2301/33Modifying, selecting, changing orientation
    • B65H2301/333Inverting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/30Orientation, displacement, position of the handled material
    • B65H2301/34Modifying, selecting, changing direction of displacement
    • B65H2301/341Modifying, selecting, changing direction of displacement without change of plane of displacement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/42Piling, depiling, handling piles
    • B65H2301/421Forming a pile
    • B65H2301/4213Forming a pile of a limited number of articles, e.g. buffering, forming bundles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/42Piling, depiling, handling piles
    • B65H2301/422Handling piles, sets or stacks of articles
    • B65H2301/4226Delivering, advancing piles
    • B65H2301/42262Delivering, advancing piles by acting on surface of outermost articles of the pile, e.g. in nip between pair of belts or rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2403/00Power transmission; Driving means
    • B65H2403/50Driving mechanisms
    • B65H2403/51Cam mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2403/00Power transmission; Driving means
    • B65H2403/90Machine drive
    • B65H2403/94Other features of machine drive
    • B65H2403/942Bidirectional powered handling device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/14Roller pairs
    • B65H2404/141Roller pairs with particular shape of cross profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/14Roller pairs
    • B65H2404/144Roller pairs with relative movement of the rollers to / from each other
    • B65H2404/1441Roller pairs with relative movement of the rollers to / from each other involving controlled actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/60Other elements in face contact with handled material
    • B65H2404/61Longitudinally-extending strips, tubes, plates, or wires
    • B65H2404/611Longitudinally-extending strips, tubes, plates, or wires arranged to form a channel
    • B65H2404/6111Longitudinally-extending strips, tubes, plates, or wires arranged to form a channel and shaped for curvilinear transport path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/60Other elements in face contact with handled material
    • B65H2404/63Oscillating, pivoting around an axis parallel to face of material, e.g. diverting means
    • B65H2404/632Wedge member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/10Size; Dimensions
    • B65H2511/11Length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/20Location in space
    • B65H2511/21Angle
    • B65H2511/212Rotary position

Definitions

  • the present invention relates to a printing apparatus mounted in, for example, an automatic teller machine.
  • This type of printing apparatus carries a sheet to a printing unit along a carrying path and prints transaction information on the sheet.
  • the sheet is discharged to a discharge unit so as to be received by a client.
  • the plurality of the sheets are temporarily stored in a storage unit in an overlapped state. Then, the stored sheets are taken out of the storage unit at once to be discharged to the discharge unit (for example, refer to JP-A-2007-156406).
  • the printed sheets are dropped by their own weight to be stored in the storage unit in a vertical direction. Therefore, a vertical space having a length of at least the sheet is needed as the storage unit, so that there is a problem in that a greater height of the apparatus is needed.
  • an object of the invention is to provide a printing apparatus which enables a compact size and can properly carry and store sheets without jamming.
  • a printing apparatus including: a carrying device that continuously carries sheets along a main carrying path; a printing device that prints information on the sheets which are continuously carried along the main carrying path; a storage unit that is configured by a curved carrying route including first and second arc carrying routes which are sequentially connected to a carry-out side of the main carrying path along a sheet carrying direction; and a pair of carrying rollers that nip and carry the sheets that are introduced sequentially in the storage unit while curving the sheets along the first and second arc carrying routes so as to be stored in an overlapped state, wherein the first and second arc carrying routes are arranged on upper and lower sides of a line component extending along a sheet carrying surface in the printing device.
  • FIG. 1 is a diagram schematically illustrating a configuration of a printing apparatus according to an embodiment of the invention.
  • FIG. 2 is a diagram illustrating the configuration of the printing apparatus in a state where a stopper of FIG. 1 is moved to an upstream side of a second arc carrying route.
  • FIG. 3 is a perspective view illustrating third and fourth drive rollers and third and fourth pinch rollers of FIG. 1 .
  • FIG. 4 is a block diagram illustrating a drive control system of the printing apparatus of FIG. 1 .
  • FIG. 5 is a diagram illustrating a state where a roll paper printed in FIG. 1 is sent from a main carrying path along a curved carrying route and cut.
  • FIG. 6 is a diagram illustrating a state where the sheet cut in FIG. 5 is carried and stored in the curved carrying route.
  • FIG. 7 is a diagram illustrating a state where the sheet following the sheet stored in FIG. 6 is sent to the curved carrying route.
  • FIG. 8 is a diagram illustrating a state where the following sheet of FIG. 7 is stored in the curved carrying route.
  • FIG. 9 is a diagram illustrating a state where a plurality of the sheets stored in the curved carrying route of FIG. 8 is being discharged through a discharge opening.
  • FIG. 10 is a diagram illustrating the sheet which is discharged through the discharge opening and left as is of FIG. 9 .
  • FIG. 11 is a diagram illustrating a state where the sheet of FIG. 10 is sent toward a recovery unit.
  • FIG. 12 is a diagram illustrating a state where the sheet sent in FIG. 11 is recovered by the recovery unit.
  • FIG. 1 is a diagram illustrating a configuration of a printing apparatus mounted in an automatic teller machine according to an embodiment of the invention.
  • Reference numeral 1 in FIG. 1 denotes a roll paper loaded in a roll paper loading unit 2 .
  • a front end portion of the roll paper 1 is carried along a main carrying path 3 drawn from the roll paper loading unit 2 .
  • a sheet is not limited to the roll paper, and a fanfold sheet may be employed.
  • a carry-out end side of the main carrying path 3 is connected to a curved carrying route 28 as a storage unit that stores the sheet curved to be carried.
  • the curved carrying route 28 includes a first arc carrying route 26 connected to the carry-out end side of the main carrying path 3 and a second arc carrying route 27 connected to a carry-out end side of the first arc carrying route 26 .
  • first and second printing units 5 a and 5 b On the main carrying path 3 , along a sheet carrying direction, first and second printing units 5 a and 5 b , a cutter unit 6 , and first and second carrying roller units 7 and 8 as carrying devices are sequentially arranged.
  • the first and second printing units 5 a and 5 b include platens 11 a and 11 b opposed to each other with the main carrying path 3 interposed therebetween and thermal heads 13 a and 13 b .
  • the thermal heads 13 a and 13 b are elastically biased toward the platens 11 a and 11 b by a head spring (not shown).
  • the platens 11 a and 11 b are driven by a platen drive motor 14 so as to rotate.
  • the cutter unit 6 includes a cutter 17 and a cutter drive motor (not shown) that drives the cutter 17 .
  • the first carrying roller unit 7 that nips and carries the roll paper 1 includes a first drive roller 20 and a first pinch roller 21 which are opposed to each other with the main carrying path 3 interposed therebetween.
  • the pinch roller 21 is elastically biased toward the first drive roller 20 by a roller spring.
  • the second carrying roller unit 8 that nips and carries the roll paper 1 includes a second driver roller 23 and a second pinch roller 24 which are opposed to each other with the main carrying path 3 interposed therebetween.
  • the second pinch roller 24 is elastically biased toward the second drive roller 23 by a roller spring.
  • the first and second drive rollers 20 and 23 are driven by a first drive motor 51 so as to rotate.
  • a flapper 25 biased by its own weight or by a weak spring is provided on a downstream side of the second drive roller 23 .
  • One end side of the flapper 25 is rotatably supported by a spindle 25 a , so that the flapper 25 rotates in a vertical direction about the spindle 25 a to open or close the carrying path.
  • the first arc carrying route 26 is provided, and on the first arc carrying route 26 , a third drive roller 29 and a fourth drive roller 30 are arranged.
  • the third drive roller 29 and the fourth drive roller 30 are driven to rotate in normal and reverse directions by a second drive motor 52 .
  • the third and fourth drive rollers 29 and 30 are respectively opposed to third and fourth pinch rollers 33 and 34 .
  • the third and fourth pinch rollers 33 and 34 are pulled up by tension springs (not shown) so as to be separated from the third and fourth drive rollers 29 and 30 .
  • a cam 54 is provided near the third and fourth pinch rollers 33 and 34 so that the third and fourth pinch rollers 33 and 34 are pushed down by the rotation of the cam 54 via a plate spring (not shown). Accordingly, the third and fourth pinch rollers 33 and 34 respectively come in contact with the third and fourth drive rollers 29 and 30 .
  • the cam 54 is rotated by a cam drive motor 55 , and on the basis of a degree of the rotation of the cam 54 , the third and fourth pinch rollers 33 and 34 are weakly or strongly pressed against the third and fourth drive rollers 29 and 30 via a plate spring.
  • first and second detection sensors 22 and 35 that detect a front end portion of the carried sheet are respectively arranged.
  • the first and second detection sensors 22 and 35 detect the sheet and the cam 54 is rotated accordingly.
  • concave-convex portions 29 a and 30 a each of which has a double helical shape continuing along a circumferential direction are formed.
  • the concave-convex portions 29 a and 30 a come in contact with the sheet and apply stable carrying forces to the sheet even if the third and fourth pinch rollers 33 and 34 come in contact with the third and fourth drive rollers 29 and 30 with a weak force.
  • the flapper 36 is provided, and a lower end side of the flapper 36 is rotated via a spindle 36 a .
  • the flapper 36 is rotated in left and right directions by a flapper drive motor 37 . Accordingly, the carrying route is switched between the second arc carrying route 27 and a recovery carrying path 46 .
  • the above-mentioned second arc carrying route 27 is provided on a downstream side of the flapper 36 , and a stopper 39 which comes in contact with the front end portion of the sheet that is being carried so as to be stopped is provided on the second arc carrying route 27 .
  • the stopper 39 is supported by a lower end portion of a stopper arm 40 , and the stopper arm 40 is rotated in the normal and reverse directions by a stopper drive motor 41 depending on a length of the sheet.
  • the stopper 39 moves along the second arc carrying route 27 due to the rotation of the stopper arm 40 . That is, in a case of a long sheet, the sheet is moved toward a downstream side of the second arc carrying route 27 , and in a case of a short sheet, as illustrated in FIG. 2 , the sheet is moved toward an upstream side of the second arc carrying route 27 and is then stopped.
  • a rotation center 40 a of the stopper arm 40 is positioned to be closer to the second arc carrying route 27 than a radial center of the second arc carrying route 27 . Accordingly, it is possible to increase a radius of the second arc carrying route 27 and reduce a curvature of the sheet as much as possible, thereby preventing jamming of the sheet.
  • a fifth pinch roller 43 is provided on an inclined upper side of the second drive roller 23 provided on the main carrying path 3 , as illustrated in FIG. 1 .
  • the fifth pinch roller 43 is placed in contact with or separated from the second drive roller 23 by a third drive motor 53 .
  • a discharge opening (discharge portion) 44 that discharges the sheet is provided above the second drive roller 23 and the fifth pinch roller 43 , and the discharge opening 44 is opened and closed by a shutter 56 .
  • the shutter 56 is operated by the third drive motor 53 .
  • a discharge detection sensor 58 that detects the sheet that is being discharged is provided.
  • a recovery drive roller 48 and a pinch roller 49 that is biased by a spring so as to come in pressing contact with the recovery drive roller 48 are arranged.
  • a recovery unit 50 is provided below the recovery drive roller 48 and the pinch roller 49 .
  • the recovery drive roller 48 is driven by the second drive motor 52 to rotate.
  • FIG. 4 is a block diagram illustrating a drive control system of the printing apparatus.
  • the first and second detection sensors 22 and 35 and a discharge detection sensor 58 are connected to a control unit 60 via a detection signal circuit.
  • the platen drive motor 14 , the first to third drive motors 51 , 52 , and 53 , the cam drive motor 55 , the flapper drive motor 37 , and the stopper drive motor 41 are connected to the control unit 60 via a control circuit.
  • the control unit 60 operates to drive the platens 11 a and 11 b , the first to fourth drive rollers 20 , 23 , 29 , and 30 , the recovery drive roller 48 , the shutter 56 , the pinch roller 43 , the cam 54 , the flapper 36 , and the stopper 39 on the basis of detection signals of the first and second detection sensors 22 and 35 or the discharge detection sensor 58 .
  • the platen drive motor 14 is driven. As the platen drive motor 14 is driven, the roll paper 1 is nipped and carried by the platens 11 a and 11 b and the thermal heads 13 a and 13 b , and transaction information is printed on front and rear surfaces of the roll paper 1 by heat of the thermal heads 13 a and 13 b .
  • the printed roll paper 1 is nipped and carried by the first drive roller 20 and the first pinch roller 21 as illustrated in FIG. 5 , and is then nipped and carried by the second drive roller 23 and the second pinch roller 24 .
  • the front end portion of the carried roll paper 1 pushes up and passes through the flapper 25 and then passes through a gap between the third drive roller 29 and the third pinch roller 33 and a gap between the fourth drive roller 30 and the fourth pinch roller 34 .
  • the third and fourth pinch rollers 33 and 34 are separated from the third and fourth drive rollers 29 and 30 .
  • the cam drive motor 55 is operated to operate the cam 54 . Accordingly, the plate spring (not shown) is bent, so that the third and fourth pinch rollers 33 and 34 come in contact with the third and fourth drive rollers 29 and 30 by a weak pinch force so as to nip and carry the roll paper 1 .
  • the stopper drive motor 41 is operated such that the stopper 39 is moved along the second arc carrying route 27 depending on a length of the sheet P 1 via the stopper arm 40 .
  • the front end portion of the carried sheet P 1 comes in contact with the stopper 39 and stops as illustrated in FIG. 6 .
  • a rear end portion of the sheet P 1 is at a position that passes through the flapper 25 .
  • the following roll paper 1 is nipped and carried by the platens 11 a and 11 b and the thermal heads 13 a and 13 b , and transaction information is printed on front and rear surfaces of the roll paper 1 by heat of the thermal heads 13 a and 13 b .
  • the roll paper 1 is nipped and carried by the first drive roller 20 and the first pinch roller 21 , and is then nipped and carried by the second drive roller 23 and the second pinch roller 24 . Due to the carriage, as illustrated in FIG. 7 , a front end portion of the following roll paper 1 pushes up and passes through the flapper 25 and then passes through a gap between the third and fourth drive rollers 29 and 30 and the preceding sheet P 1 .
  • the third and fourth pinch rollers 33 and 34 are separated from the third and fourth drive rollers 29 and 30 by a tensile force of the tension spring.
  • the cam drive motor 55 is operated to operate the cam 54 and the plate spring (not shown) is bent, so that the third and fourth pinch rollers 33 and 34 come in contact with the third and fourth drive rollers 29 and 30 by a weak pinch force via the preceding sheet 21 and the following roll paper 1 , while the carrying of the roll paper 1 is continued.
  • the cutter 17 is operated to cut the sheet by the same length as that of the preceding sheet 21 so as to be carried as a sheet 22 .
  • the stopper 39 is in the stopped state as is, and as illustrated in FIG. 8 , a front end portion of the sheet P 2 comes in contact with the stopper 39 and stops. As the sheet P 2 stops, rear ends of the preceding sheet P 1 and the following sheet P 2 are justified. When there are three or more sheets, similarly, the carriage is repeated to print and store a predetermined number of sheets.
  • the third drive motor 53 is operated from the state illustrated in FIG. 8 to open the shutter 56 .
  • the cam drive motor 55 is operated to rotate the cam 54 so that a degree of bend of the plate spring (not shown) increases to allow the third and fourth pinch rollers 33 and 34 to come in pressing contact with the third and fourth drive rollers 29 and 30 so as to apply a strong pinch force.
  • the second drive roller 23 is rotated in the normal direction and the third and fourth drive rollers 29 and 30 are rotated in the reverse direction. Accordingly, the sheets P 1 and P 2 on the first and second arc carrying routes 26 and 27 are carried toward the discharge opening 44 as illustrated in FIG. 9 .
  • the third drive motor 53 is operated and the fifth pinch roller 43 comes in pressing contact with the second drive roller 23 .
  • the sheets 21 and 22 are nipped and carried by the pressing contact and stopped at a time point when the front end portions thereof in the carrying direction are carried out by a predetermined length from the discharging opening 44 .
  • the sheets 21 and 22 of which the front end sides are discharged through the discharge opening 44 are received by a user.
  • the third and fourth pinch rollers 33 and 34 are separated from the third and fourth drive rollers 29 and 30 to be in an opened state, so that only the fifth pinch roller 43 is in a pinched state.
  • the sheets 21 and 22 carried out from the discharge opening 44 by a predetermined length are detected by the discharge detection sensor 58 .
  • the detected state continues for a predetermined time or longer, it is determined that the user does not take out the sheets 21 and P 2 from the discharge opening 44 , so that the sheets 21 and 22 are recovered.
  • the third and fourth pinch rollers 33 and 34 come in pressing contact with the third and fourth drive rollers 29 and 30 so as to apply strong pinch forces, and as illustrated in FIG. 10 , the sheets P 1 and P 2 are additionally carried for a predetermined distance in a discharge direction and are stopped when their lower ends pass through the flapper 36 . Thereafter, by the operation of the flapper drive motor 37 , the flapper 36 is rotated in the left direction about the spindle 36 a so as to switch the carrying route to the recovery carrying path 46 . The second drive roller 23 is rotated in the reverse direction from this state, and the third and fourth drive rollers 29 and 30 and the recovery drive roller 48 are rotated in the normal direction. Accordingly, as illustrated in FIG. 11 , the sheets P 1 and P 2 are carried downwards and sent to the recovery carrying path 46 , and as illustrated in FIG. 12 , are sent to the recovery unit 50 so as to be recovered.
  • first and second arc carrying routes 26 and 27 constituting the arc carrying route 28 are arranged in the vertical direction on upper and lower sides of a line component 66 extending along a sheet carrying surface 65 in the first printing unit 5 a as illustrated in FIG. 1 .
  • an upper side from the line component 66 is used as an arrangement space of the first arc carrying route 26 and a lower side from the line component 66 is used as an arrangement space of the second arc carrying route 27 , so that the first and second arc carrying routes 26 and 27 can be arranged while being gently curved in the wide spaces.
  • the sheet is carried in the first and second arc carrying routes 26 and 27 while being gently curved, so that the sheets can be properly carried and stored without jamming.
  • both the first and second arc carrying routes 26 and 27 are arranged in, for example, the space lower than the line component 66 , the first and second arc carrying routes 26 and 27 have to be curved in the narrow space.
  • the first and second arc carrying routes 26 and 27 are significantly curved, and the sheets are also significantly curved and carried, so that proper carriage cannot be expected.
  • the storage unit is configured by the curved carrying route 28 including the first and second arc carrying routes 26 and 27 , and the sheets P 1 and P 2 are stored in the curved state, so that the vertical height of the sheet storage unit can be reduced, resulting in a compact size.
  • first and second arc carrying routes 26 and 27 are arranged on the upper and lower sides of the line component 66 extending along the sheet carrying surface 65 in the first printing unit 5 a , it is possible to arrange the first and second arc carrying routes 26 and 27 while being gently curved in the wide space. Therefore, the sheets can be carried in the gently curved state, so that it is possible to properly carry the sheets without jamming.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Separation, Sorting, Adjustment, Or Bending Of Sheets To Be Conveyed (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)
US12/712,237 2009-03-16 2010-02-25 Printing apparatus Abandoned US20100230894A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009063401A JP2010218161A (ja) 2009-03-16 2009-03-16 印刷装置
JP2009-063401 2009-03-16

Publications (1)

Publication Number Publication Date
US20100230894A1 true US20100230894A1 (en) 2010-09-16

Family

ID=42730035

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/712,237 Abandoned US20100230894A1 (en) 2009-03-16 2010-02-25 Printing apparatus

Country Status (2)

Country Link
US (1) US20100230894A1 (ja)
JP (1) JP2010218161A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140327205A1 (en) * 2012-01-19 2014-11-06 Fujitsu Component Limited Printer and method of controlling printer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082272A (en) * 1990-11-30 1992-01-21 Eastman Kodak Company High-speed sheet inverter and method for inverting sheets
US7613422B2 (en) * 2005-11-09 2009-11-03 Konica Minolta Business Technologies, Inc. Image forming apparatus and intermediate conveyance unit
US20100078869A1 (en) * 2008-09-29 2010-04-01 Toshiba Tec Kabushiki Kaisha Printer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262895A (en) * 1979-08-31 1981-04-21 Xerox Corporation Inverter with variable buckling control
JPH05286624A (ja) * 1992-04-08 1993-11-02 Ricoh Co Ltd 用紙反転搬送装置
JP2007156406A (ja) * 2005-11-09 2007-06-21 Konica Minolta Business Technologies Inc 画像形成装置、中間搬送ユニット、及び画像形成方法
JP2007197108A (ja) * 2006-01-24 2007-08-09 Kyocera Mita Corp 画像形成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082272A (en) * 1990-11-30 1992-01-21 Eastman Kodak Company High-speed sheet inverter and method for inverting sheets
US7613422B2 (en) * 2005-11-09 2009-11-03 Konica Minolta Business Technologies, Inc. Image forming apparatus and intermediate conveyance unit
US20100078869A1 (en) * 2008-09-29 2010-04-01 Toshiba Tec Kabushiki Kaisha Printer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140327205A1 (en) * 2012-01-19 2014-11-06 Fujitsu Component Limited Printer and method of controlling printer
US9387705B2 (en) * 2012-01-19 2016-07-12 Fujitsu Component Limited Printer and method of controlling printer
US9610786B2 (en) 2012-01-19 2017-04-04 Fujitsu Component Limited Printer and method of controlling printer

Also Published As

Publication number Publication date
JP2010218161A (ja) 2010-09-30

Similar Documents

Publication Publication Date Title
US8714541B2 (en) Image recording apparatus and control method thereof
JP4964978B2 (ja) 媒体検出方法、媒体検出装置、媒体排出装置、及び印刷装置
CN102218941B (zh) 记录装置及记录装置的控制方法
US7823872B2 (en) Medium delivery device, medium processing apparatus and check delivery device with dual pressing members
KR101035808B1 (ko) 매체 송출 장치 및 매체 처리 장치
US8066278B2 (en) Printer
JP5254932B2 (ja) 用紙排出装置
US8047544B2 (en) Printing apparatus
EP2648134B1 (en) Information recording device
JP3493336B2 (ja) 用紙排出装置およびプリンタ
US20100230894A1 (en) Printing apparatus
KR101668932B1 (ko) 프린터 장치 및 프린터 장치의 제어 방법
JP5101674B2 (ja) 印刷装置
KR101616218B1 (ko) 프린터 장치 및 프린터 장치의 제어 방법
JPH0796690A (ja) 媒体処理装置
JP2969790B2 (ja) ページ捲り機構
JP6456625B2 (ja) プリンタ装置
JP2010215349A (ja) 印刷装置
CN117842738A (zh) 打印设备和控制打印设备的方法
JP3530723B2 (ja) 記録装置
JP2000034048A (ja) 印字装置のシート回収装置
JP2006117333A (ja) 情報処理装置の制御方法
JPH05201173A (ja) 通帳閉じ機構
JP2001146079A (ja) 頁捲り装置及び冊子プリンタ
JPH0822629B2 (ja) 通帳改頁機構

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOSHIBA TEC KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEKINO, TOSHIHARU;REEL/FRAME:023988/0078

Effective date: 20100217

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION