US20100137171A1 - microporous layer for lowering friction in metal-forming processes - Google Patents

microporous layer for lowering friction in metal-forming processes Download PDF

Info

Publication number
US20100137171A1
US20100137171A1 US12/452,118 US45211808A US2010137171A1 US 20100137171 A1 US20100137171 A1 US 20100137171A1 US 45211808 A US45211808 A US 45211808A US 2010137171 A1 US2010137171 A1 US 2010137171A1
Authority
US
United States
Prior art keywords
layer
microporous layer
process according
friction
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/452,118
Other languages
English (en)
Inventor
Peter Torben Tang
Mogens Arentoft
Niels Bay
Morten Jerne Borrild
Io Mizushima
Jørgen Dai Jensen
Nikolas Aulin Paldan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danmarks Tekniskie Universitet
Sysmex Corp
Original Assignee
Danmarks Tekniskie Universitet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danmarks Tekniskie Universitet filed Critical Danmarks Tekniskie Universitet
Priority to US12/452,118 priority Critical patent/US20100137171A1/en
Assigned to SYSMEX CORPORATION reassignment SYSMEX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OKUBO, KOICHI, KOSAKA, TOKIHIRO
Assigned to DANMARKS TEKNISKE UNIVERSITET reassignment DANMARKS TEKNISKE UNIVERSITET ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIZUSHIMA, IO, TANG, PETER TORBEN, ARENTOFT, MOGENS, PALDAN, NIKOLAS AULIN, BORRILD, MORTEN JERNE, JENSEN, JORGEN DAI
Publication of US20100137171A1 publication Critical patent/US20100137171A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/30Acidic compositions for etching other metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/10Bearings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin

Definitions

  • the present invention relates to a microporous layer to be used in low friction metal forming.
  • the invention further relates to a process for producing said microporous layer and the use of the layer as a lubrication carrier for cold forming of metals, particularly for micro-scale components.
  • the main objectives of lubrication are to reduce friction and to avoid galling, the latter resulting from i.a. breakdown of the lubricant film, metal-to-metal contact between tool and workpiece and pick-up of workpiece material on the tool surface.
  • a thorough lubrication is essential in metal forming in order to obtain products of satisfactory quality.
  • tribological conditions in cold forming of metals range from difficult to extremely severe due to large surface expansion and normal pressure in the tool/workpiece interface combined with elevated tool temperatures.
  • a successful production therefore requires the use of advanced lubrication systems to reduce friction and avoid galling.
  • Such lubrication systems can be based on microporous coatings, cf. the co-pending application No. xxx.
  • a conversion coating is typically used in order to lower friction and avoid metal-to-metal contact and subsequent galling.
  • the function of the conversion coating is dual, i.e. a mechanical function and a chemical function. Due to its topographic nature—with crystal grains of varying orientation and tilt angle—a large surface area is created, said surface area with pockets being suitable for entrapment of lubricant.
  • the conversion coating normally breaks up into separate islands due to surface expansion during the forming operation, and excess lubricant flows into the cracks between these islands, thus preventing metal-to-metal contact between the tool and workpiece surfaces.
  • many of the lubricants are chosen so as to ensure a chemical reaction with the conversion coating, thus establishing a chemical bonding of the lubricant film to the workpiece surface.
  • the operational sequence for phosphate coating and soap lubrication is cleaning of the workpiece (comprising mechanical cleaning, degreasing, rinsing with cold water, pickling, further rinsing with cold water and subsequent rinsing with warm water containing activators), phosphating, rinsing with cold water, neutralizing, lubrication with soap, MoS 2 etc. and finally drying.
  • This crystalline deposit must subsequently be removed from the surface.
  • the conversion coatings are conventionally selected among zinc phosphate, calcium aluminate and aluminium fluoride coatings.
  • the lubricants are selected among sodium stearate, zinc stearate and MoS 2 .
  • the choice of lubricant system for cold forging of aluminium alloys depends on the hardness and the surface expansion of the aluminium alloy.
  • a process for producing a solid lubricant co-deposited metal film of a self-supplying type is described in U.S. Pat. No. 3,787,294.
  • a metallic layer which is deposited by electroplating, is used to reduce friction.
  • particles of graphite fluoride are trapped in the layer. The presence of these particles will reduce friction.
  • the invention provides lower friction and improved resistance against galling. This fact allows for several benefits such as increased production speed, reduced pick-up and reduced wear on tools implying fewer production stops. Furthermore, the invention allows for products with closer tolerances. All these benefits will reduce costs and/or increase the quality of the products.
  • the invention ensures a lubricant film thickness of significantly smaller size than those normally applied, thereby allowing forming of a wide variety of products ranging from micro-scale products to much larger products with closer tolerances.
  • the aspect of the invention is a novel type of layer in the form of a thin, porous metallic film, which is electrochemically deposited on the workpiece surface.
  • the alloying elements in the film are carefully selected to ensure that a deposit is formed, which consists of fine grains of (two or more) pure metals rather than a solid solution.
  • one of the metals is selectively removed by chemical or electrochemical etching, thereby leaving a micro- or even nanoporous layer on the surface of the workpiece.
  • a lubricating film subsequently is applied to said surface, the lubricant will be trapped in the pores, whereby an ideal surface for lowering friction by enhancing lubricant entrapment during one or more subsequent metal forming process steps is created.
  • the invention concerns a microporous layer for metal forming, said layer being (a) a thin metallic film, which has been electrochemically deposited on the surface of a metal substrate, and (b) due to subsequent etching, whereby micro- or nanopores are created in the layer, being capable of capturing a lubricant in these pores, thereby providing an ideal surface for lowering friction in metal forming processes.
  • FIG. 1 is an illustration of the set-up for electroplating as described in Example 2,
  • FIG. 2 shows Scanning Electron Micrographs of the deposited layer (copper substrate) after etching.
  • FIGS. 3 and 4 show the surface of the porous coating deposited on an aluminium rod ( FIG. 4 is a cross section), after etching,
  • FIG. 5 is a schematic drawing of a system for sample preparation (deposition of SnZn alloys with well defined agitation) as described in Example 3, and
  • FIG. 6 illustrates the friction measurement as described in Example 4.
  • the invention concerns a layer in the form of a thin, porous metallic film, which is electrochemically deposited on a workpiece surface. Further, the invention concerns a process for producing a microporous layer for lowering friction in metal forming processes on such a metal substrate, wherein the following steps are carried out:
  • alloys each consisting of two or more phases capable of providing a thin metallic film consisting of a mixture of fine grains rather than a solid solution, (2) electrochemically depositing the alloy(s) on the metallic substrate and (3) selectively removing one of the metals or phases by chemical or electrochemical etching, leaving a microporous layer on the substrate surface.
  • the electrochemically deposited alloy is selected among FeIn, SnZn, AgCo, AgBi, AgFe, AgNi, InZn, BiCo, BiCu, BiSn, BiZn, PdCu, PdCo, CoCu, AgCu, AuCu and AuCo based-alloys.
  • the electrochemically deposited alloy is a SnZn based-alloy.
  • the chemical or electrochemical etching is carried out by means of a solution dissolving a selected metallic phase, said solution being a concentrated or diluted inorganic acid, organic acid, inorganic base, organic base or mixtures thereof.
  • the etching is carried out with diluted hydrochloric acid, especially when the electrochemically deposited alloy is SnZn.
  • the etching time may be accelerated by increasing the acid concentration, by using electrochemical etching, by increasing the temperature, by applying ultrasonic agitation (or other types of agitation) or by combinations of these accelerating measures.
  • FIG. 2 shows the surface of a copper ring electroplated with SnZn and subsequently etched (various compositions and etching times) with diluted HCl
  • FIG. 3 shows the surface of an aluminium rod electroplated with SnZn and subsequently etched with diluted HCl
  • FIG. 4 is a cross section of the aluminium rod, the surface of which is shown in FIG. 3 .
  • the invention may be used not only for the treatment of workpieces in macro-scale, but also as a lubrication carrier for cold forming of micro-scale components, such as potentiometer axles for hearing aids.
  • the conventional solid film lubrication with phosphate coating and soap lubrication often is inappropriate due to (a) packing of dies with excess lubricant and (b) inability to obtain close tolerances, as film thickness of lubricant is of the same order of magnitude as component detailed being formed.
  • Liquid lubricants are preferred, but because galling problems can be expected, a combination of an ultra-thin, porous metallic film and a liquid lubricant is used to overcome these problems.
  • This example describes the electroplating and etching of a copper substrate.
  • the copper substrate (a Cu-plate) was degreased cathodically in an alkaline solution and activated (pickled) in a commercial acidic solution. Then the SnZn alloy was electrodeposited on the copper plate at an applied current density of 1 A/dm 2 at a bath temperature of 40° C. with magnetic stirring (up to 500 rpm) in a commercial electrolyte for 12 minutes.
  • the commercial electrolyte had the following composition: 0.6 l/l SLOTOLOY ZSN 21; 0.013 l/l FS 20; 0.04 l/l SLOTOLOY ZSN 22; 0.0015 l/l SLOTOLOY ZSN 23; 70 g/l ZnCl 2 ; 45 g/l KCl, and 30 g/l H 3 BO 3 .
  • the thickness of the electrodeposit was 5 ⁇ m, and the Zn content in the deposit may vary from 10 to 40 at. % depending on the agitation.
  • a selective etching of the zinc in the SnZn alloy deposit was carried out at room temperature with diluted HCl (1 part concentrated 37% hydro chloric acid and 9 parts distilled water) for 0.5; 1; 4 and 24 hours, respectively.
  • the geometry of the porous coating of the etched SnZn alloy depends on the composition and the etching conditions.
  • the number and size of holes in the etched SnZn alloy increases with the Zn content.
  • a Zn content of about 10 at. % in the alloy deposit is too low for fabricating a porous coating.
  • This example presents results obtained by using a friction test known as the ring compression test.
  • the Zn content decreases with increasing agitation speed in the cell, as shown in the table 2 below.
  • the composition varies depending on the position of the sample. Also the geometry of the sample may give rise to this problem.
  • a 1 l beaker was used as electrochemical cell as shown in FIG. 1 .
  • Providing the test specimens, i.e. the copper rings, with said coating has significant impact on the friction between anvils and plane surfaces of test specimens, as it appears from Table 3.
  • the copper ring was located in the centre between two tin anodes. Agitation was conducted by means of a magnetic stirrer.
  • Table 3 shows the combinations and a qualification of friction between anvils and plane sides of test specimens, ranked with lower friction being preferable.
  • the problem of heterogeneous composition could be improved with this system compared to conventional systems.
  • the Zn contents of the deposits appeared to be much lower (from 1.6 ⁇ 0.2 to 3.7 ⁇ 0.8 at. %), regardless of the agitation speed.
  • the amount of tin concentrate FS 20 was decreased, while the amount of ZnCl 2 was increased.
  • the electrolyte had the following composition: 0.6 l/l SLOTOLOY ZSN 21; 0.009 l/l FS 20; 0.04 l/l SLOTOLOY ZSN 22; 0.0015 l/l SLOTOLOY ZSN 23; 98 g/l ZnCl 2 ; 45 g/l KCl, and 30 g/l H 3 BO 3 .
  • the current density was 1 A/dm 2 and the temperature 40° C.
  • compositions of the deposits for the modified electrolyte were analyzed, both at the top and at the bottom of the samples.
  • the composition distribution was homogeneous.
  • the geometry of the porous coating of the etched SnZn alloy is clearly different (see FIG. 3 ) from one deposited from the previous system: It is more like a three-dimensional network (and may affect the friction).
  • This example presents results obtained by using a friction test known as the double cup extrusion test, see FIG. 6 .
  • the cylindrical slug is inserted in a container with the same nominal diameter.
  • the upper punch is moving downwards while the container and the lower punch are kept stationary, see FIG. 6 .
  • the shape of punch nose was chosen according to the recommendations of ICFG.
  • the test principle is illustrated in FIG. 6 .
  • porous surface geometry of an etched SnZn alloy deposit is determined by the composition of the alloy. About 40 at. % Zn appears to be reasonable. Further, it is possible to control the composition by changing the agitation in the cell (but it is difficult to obtain identical and reproducible compositions). The friction is improved with a porous coating of etched SnZn alloy with 40 at. % Zn.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Forging (AREA)
  • ing And Chemical Polishing (AREA)
US12/452,118 2007-06-21 2008-06-20 microporous layer for lowering friction in metal-forming processes Abandoned US20100137171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/452,118 US20100137171A1 (en) 2007-06-21 2008-06-20 microporous layer for lowering friction in metal-forming processes

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US92929907P 2007-06-21 2007-06-21
EP07388045.2 2007-06-22
EP07388045A EP2006420A1 (fr) 2007-06-22 2007-06-22 Couche microporeuse pour diminuer la friction dans un procédé de formage de métaux
US12/452,118 US20100137171A1 (en) 2007-06-21 2008-06-20 microporous layer for lowering friction in metal-forming processes
PCT/DK2008/000233 WO2008154925A1 (fr) 2007-06-21 2008-06-20 Couche microporeuse pour abaisser le frottement dans des procédés de formage de métal

Publications (1)

Publication Number Publication Date
US20100137171A1 true US20100137171A1 (en) 2010-06-03

Family

ID=38754477

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/452,118 Abandoned US20100137171A1 (en) 2007-06-21 2008-06-20 microporous layer for lowering friction in metal-forming processes

Country Status (5)

Country Link
US (1) US20100137171A1 (fr)
EP (2) EP2006420A1 (fr)
JP (1) JP5602013B2 (fr)
DK (1) DK2176447T3 (fr)
WO (1) WO2008154925A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014005941A1 (de) * 2014-04-24 2015-11-12 Te Connectivity Germany Gmbh Verfahren zum Herstellen eines elektrischen Kontaktelements zur Vermeidung von Zinnwhiskerbildung, und Kontaktelement
CN109988932B (zh) * 2017-12-29 2021-01-26 清华大学 纳米多孔铜的制备方法
JP7053411B2 (ja) * 2018-08-31 2022-04-12 株式会社アイシン 金属部品の製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2447980A (en) * 1945-01-29 1948-08-24 Mallory & Co Inc P R Method of making porous bearing surfaces
US2450339A (en) * 1943-09-17 1948-09-28 Mallory & Co Inc P R Method of making porous metal filters
US3438789A (en) * 1964-02-27 1969-04-15 Schmidt Gmbh Karl Lubricant coating for friction surfaces and process for producing same
US3787294A (en) * 1971-12-07 1974-01-22 S Kurosaki Process for producing a solid lubricant self-supplying-type co-deposited metal film
US4065365A (en) * 1975-03-18 1977-12-27 Aplicaciones Industriales De Cromo Duro, S.A. Method for improving frictional surface in cylinders or sleeves of internal combustion engines
JPS5913073A (ja) * 1982-07-14 1984-01-23 Usui Internatl Ind Co Ltd セラミツク被覆金属構造体
CN1031866A (zh) * 1988-04-16 1989-03-22 华东师范大学 多孔镍活性阴极及其制备方法
JPH102429A (ja) * 1996-06-14 1998-01-06 Hitachi Metals Ltd ガスコック
US20040148015A1 (en) * 2002-11-13 2004-07-29 Setagon, Inc. Medical devices having porous layers and methods for making same
US20040168927A1 (en) * 2001-07-24 2004-09-02 Atsushi Matsushita Electroconductive structure and electroplating method using the structure
US6805972B2 (en) * 2002-08-27 2004-10-19 Johns Hopkins University Method of forming nanoporous membranes
US20060204741A1 (en) * 2003-06-13 2006-09-14 Peter Rehbein Contact surfaces for electrical contacts and method for producing the same
US20100282613A1 (en) * 2006-11-15 2010-11-11 Massachusetts Institute Of Technology Methods for tailoring the surface topography of a nanocrystalline or amorphous metal or alloy and articles formed by such methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558588B2 (fr) * 1972-02-10 1980-03-05
GB1558683A (en) * 1977-10-26 1980-01-09 Tools For Bending Inc Surface or a chromium-containing composition
JPS575893A (en) * 1980-06-16 1982-01-12 Fujikura Ltd Surface treating method for porous metallic article
JPS57109242A (en) * 1980-12-26 1982-07-07 Seiko Epson Corp Porous thin film

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2450339A (en) * 1943-09-17 1948-09-28 Mallory & Co Inc P R Method of making porous metal filters
US2447980A (en) * 1945-01-29 1948-08-24 Mallory & Co Inc P R Method of making porous bearing surfaces
US3438789A (en) * 1964-02-27 1969-04-15 Schmidt Gmbh Karl Lubricant coating for friction surfaces and process for producing same
US3787294A (en) * 1971-12-07 1974-01-22 S Kurosaki Process for producing a solid lubricant self-supplying-type co-deposited metal film
US4065365A (en) * 1975-03-18 1977-12-27 Aplicaciones Industriales De Cromo Duro, S.A. Method for improving frictional surface in cylinders or sleeves of internal combustion engines
JPS5913073A (ja) * 1982-07-14 1984-01-23 Usui Internatl Ind Co Ltd セラミツク被覆金属構造体
CN1031866A (zh) * 1988-04-16 1989-03-22 华东师范大学 多孔镍活性阴极及其制备方法
JPH102429A (ja) * 1996-06-14 1998-01-06 Hitachi Metals Ltd ガスコック
US20040168927A1 (en) * 2001-07-24 2004-09-02 Atsushi Matsushita Electroconductive structure and electroplating method using the structure
US6805972B2 (en) * 2002-08-27 2004-10-19 Johns Hopkins University Method of forming nanoporous membranes
US20040148015A1 (en) * 2002-11-13 2004-07-29 Setagon, Inc. Medical devices having porous layers and methods for making same
US20060204741A1 (en) * 2003-06-13 2006-09-14 Peter Rehbein Contact surfaces for electrical contacts and method for producing the same
US20100282613A1 (en) * 2006-11-15 2010-11-11 Massachusetts Institute Of Technology Methods for tailoring the surface topography of a nanocrystalline or amorphous metal or alloy and articles formed by such methods

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Evolution of Nanoporosity in Dealloying" by Erlebacher et al., Nature 410, pages 450-453 (2001) *
"Nanoporous Metal (Cu, Ag, Au) Films with High Surface Area: General Fabrication and Preliminary Electrochemical Performance" by Jia et al., J. Phys. Chem. C 111, pages 8424-8431 (2007) *
English Abstract of JP59013073A *
Machine Translation of CN1031866A *

Also Published As

Publication number Publication date
EP2176447B1 (fr) 2013-12-25
JP2010530475A (ja) 2010-09-09
DK2176447T3 (en) 2014-03-24
EP2006420A1 (fr) 2008-12-24
EP2176447A1 (fr) 2010-04-21
WO2008154925A1 (fr) 2008-12-24
JP5602013B2 (ja) 2014-10-08

Similar Documents

Publication Publication Date Title
Zhang Tin and tin alloys for lead-free solder
US20090321268A1 (en) Electrodeposited film having sliding function and coated article therewith
KR101022683B1 (ko) 히드록시설페이트 표면 처리
CN101104946B (zh) 电解磷化处理方法和温锻或热锻方法
EP3150743B1 (fr) Bains d'électrodéposition de bismuth et procédés d'électrodéposition de bismuth sur un substrat
EP2176447B1 (fr) Couche microporeuse pour abaisser le frottement dans des procédés de formage de métal
JP5692799B2 (ja) Snめっき材およびその製造方法
US3982314A (en) Method of producing tin coated steel sheet used for seamless steel container
EP3816326B1 (fr) Compositions et procédé d'électroplaquage d'alliage binaire argent-bismuth aqueux acidique
US5849423A (en) Zinciferous plated steel sheet and method for manufacturing same
KR20170120547A (ko) 전자 부품용 Sn 도금재
JP6682691B1 (ja) 表面処理された亜鉛系めっき鋼板およびその製造方法
US4061430A (en) Socket structure for the ball of a ball point pen refill
US4139424A (en) Socket structure for the ball of a ball point pen refill
US4566953A (en) Pulse plating of nickel-antimony films
CN111705340A (zh) 复合镀覆制品及其制造方法
Gamburg et al. Technologies for the electrodeposition of metals and alloys: electrolytes and processes
EP0510224A1 (fr) Tôle d'acier avec un revêtement a deux couches, ayant une excellente propriété antifriction, une résistance à la corrosion et une aptitude à la peinture
JPH08120431A (ja) プレス成形性に優れた合金化溶融亜鉛メッキ鋼板およびその製造方法
JP7270092B2 (ja) 銀電気めっき組成物、及び低い摩擦係数を有する銀を電気めっきする方法
WO2021065026A1 (fr) Tôle d'acier galvanise traitee en surface et procede de fabrication de celle-ci
Dennis et al. Properties of cobalt-molybdenum and cobalt-tungsten electrodeposits
Morais Electroplated Ni-Al2O3 Nanocomposite Coatings On Aluminium Alloys
Sankara Narayanan et al. Electro-and electroless plated coatings for corrosion protection
JPH0617296A (ja) 成形性に優れた複合めっきAl板の製造方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYSMEX CORPORATION,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOSAKA, TOKIHIRO;OKUBO, KOICHI;SIGNING DATES FROM 20090717 TO 20090721;REEL/FRAME:023068/0284

AS Assignment

Owner name: DANMARKS TEKNISKE UNIVERSITET,DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANG, PETER TORBEN;ARENTOFT, MOGENS;PALDAN, NIKOLAS AULIN;AND OTHERS;SIGNING DATES FROM 20091203 TO 20091208;REEL/FRAME:023702/0742

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE