US20090253820A1 - Foaming agents and compositions containing fluorine sustituted olefins and methods of foaming - Google Patents
Foaming agents and compositions containing fluorine sustituted olefins and methods of foaming Download PDFInfo
- Publication number
- US20090253820A1 US20090253820A1 US12/276,137 US27613708A US2009253820A1 US 20090253820 A1 US20090253820 A1 US 20090253820A1 US 27613708 A US27613708 A US 27613708A US 2009253820 A1 US2009253820 A1 US 2009253820A1
- Authority
- US
- United States
- Prior art keywords
- hfc
- blowing agent
- foam
- hfo
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 *C(*)=C(*)C Chemical compound *C(*)=C(*)C 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/06—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/127—Mixtures of organic and inorganic blowing agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F112/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F112/02—Monomers containing only one unsaturated aliphatic radical
- C08F112/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F112/06—Hydrocarbons
- C08F112/08—Styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
- C08J9/144—Halogen containing compounds containing carbon, halogen and hydrogen only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
- C08J9/144—Halogen containing compounds containing carbon, halogen and hydrogen only
- C08J9/146—Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
- C08J9/147—Halogen containing compounds containing carbon and halogen atoms only
- C08J9/148—Halogen containing compounds containing carbon and halogen atoms only perfluorinated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/149—Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K23/00—Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K3/1006—Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
- C09K3/1009—Fluorinated polymers, e.g. PTFE
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/06—CO2, N2 or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/12—Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/14—Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/16—Unsaturated hydrocarbons
- C08J2203/162—Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2207/00—Foams characterised by their intended use
- C08J2207/04—Aerosol, e.g. polyurethane foam spray
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
- C08J2325/04—Homopolymers or copolymers of styrene
- C08J2325/06—Polystyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/122—Hydrogen, oxygen, CO2, nitrogen or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
- C08J9/144—Halogen containing compounds containing carbon, halogen and hydrogen only
- C08J9/145—Halogen containing compounds containing carbon, halogen and hydrogen only only chlorine as halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/02—Halogenated hydrocarbons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249987—With nonvoid component of specified composition
- Y10T428/249988—Of about the same composition as, and adjacent to, the void-containing component
- Y10T428/249989—Integrally formed skin
Definitions
- compositions, methods and systems having utility in numerous applications, including particularly in blowing agents, foamable compositions, foams and articles made with or from foams.
- the present invention is directed to such compositions which comprise at least one multi-fluorinated olefin and at least one additional component which is either another multi-fluorinated olefin or another compound which is not a multi-fluorinated olefin.
- Fluorocarbon based fluids have found widespread use in many commercial and industrial applications, including as aerosol propellants and as blowing agents. Because of certain suspected environmental problems, including the relatively high global warming potentials, associated with the use of some of the compositions that have heretofore been used in these applications, it has become increasingly desirable to use fluids having low or even zero ozone depletion potential, such as hydrofluorocarbons (“HFCs”). Thus, the use of fluids that do not contain substantial amounts of chlorofluorocarbons (“CFCs”) or hydrochlorofluorocarbons (“HCFCs”) is desirable. Furthermore, some HFC fluids may have relatively high global warming potentials associated therewith, and it is desirable to use hydrofluorocarbon or other fluorinated fluids having as low global warming potentials as possible while maintaining the desired performance in use properties.
- HFCs hydrofluorocarbons
- CFC blowing agent substitutes to be effective without major engineering changes to conventional foam generating systems.
- blowing agents have included, for example, azo compounds, various volatile organic compounds (VOCs) and chlorofluorocarbons (CFCs).
- VOCs volatile organic compounds
- CFCs chlorofluorocarbons
- the chemical blowing agents typically undergo some form of chemical change, including chemical reaction with the material that forms the polymer matrix (usually at a predetermined temperature/pressure) that causes the release of a gas, such as nitrogen, carbon dioxide, or carbon monoxide.
- a gas such as nitrogen, carbon dioxide, or carbon monoxide.
- One of the most frequently used chemical blowing agents is water.
- the physical blowing agents typically are dissolved in the polymer or polymer precursor material and then expand volumetrically (again at a predetermined temperature/pressure) to contribute to the formation of the foamed structure.
- Physical blowing agents are frequently used in connection with thermoplastic foams, although chemical blowing agents can be used in place of or in addition to physical blowing agents in connection with thermoplastic foam.
- chemical blowing agents in connection with the formation of polyvinylchloride-based foams.
- CFC-11 CCl 3 F
- HCFCs hydrogen-containing chlorofluoroalkanes
- CHCl 2 CF 3 HCFC-123
- CH 2 ClCHClF HCFC-141b
- ODP Ozone Depletion Potential
- HFCs non-chlorinated, partially hydrogenated fluorocarbons
- HFC-245fa foams made with certain of the more modern HFC blowing agents, such as CF 3 CH 2 CF 2 H (“HFC-245fa”) offer improved thermal insulation, due in part to the low thermal conductivity of HFC-245fa vapor, and due in part to the fine cell structure HFC-245fa imparts to the foams.
- HFC-245fa has been widely used in insulation applications, particularly refrigerator, freezer, refrigerator/freezer and spray foam applications.
- HFC fluids share the disadvantage of having relatively high global warming potentials, and it is desirable to use hydrofluorocarbon or other fluorinated fluids having as low global warming potentials as possible while maintaining the desired performance in use properties.
- hydrofluorocarbon or other fluorinated fluids having as low global warming potentials as possible while maintaining the desired performance in use properties.
- HFCs as blowing agents in foam insulation, particularly rigid foam insulation, has resulted in HFCs being less desirable candidates for blowing agents in commercial foam insulation.
- Hydrocarbon blowing agents are also known.
- U.S. Pat. No. 5,182,309 to Hutzen teaches the use of iso- and normal-pentane in various emulsion mixtures.
- Another example of hydrocarbon blowing agents is cyclopentane, as taught by U.S. Pat. No. 5,096,933—Volkert.
- many hydrocarbon blowing agents, such as cyclopentane, and isomers of pentane are zero ozone depleting agents and exhibit very low global warming potential, such material are less than fully desirable because foams produced from these blowing agents lack the same degree of thermal insulation efficiency as foams made with, for example, HFC-245fa blowing agent.
- hydrocarbon blowing agents are extremely flammable, which is undesirable. Also, certain hydrocarbon blowing agents have inadequate miscibility in certain situations with material from which the foam is formed, such as many of the polyester polyols commonly used in polyisocyanurate modified polyurethane foam. The use of these alkanes frequently requires a chemical surfactant to obtain a suitable mixture.
- nonflammable refers to compounds or compositions which are determined to be nonflammable as determined in accordance with ASTM standard E-681, dated 2002, which is incorporated herein by reference. Unfortunately, many HFC's which might otherwise be desirable for used in foam blowing agent compositions are not nonflammable.
- fluoroalkane difluoroethane HFC-152a
- fluoroalkene 1,1,1-trifluorpropene HFO-1243zf
- HFE-254pc fluorinated ether 1,1,22-tetrafluoroethyl methyl ether
- HFE-254cb fluorinated ether 1,1,22-tetrafluoroethyl methyl ether
- bromine-containing halocarbon additives to decrease flammability of certain materials, including foam blowing agents, in U.S. Pat. No. 5,900,185—Tapscott.
- the additives in this patent are said to be characterized by high efficiency and short atmospheric lifetimes, that is, low ozone depletion potential (ODP) and a low global warming potential (GWP).
- ODP ozone depletion potential
- GWP global warming potential
- blowing agent substitutes it is generally considered desirable for blowing agent substitutes to be effective without major engineering changes to conventional equipment and systems used in foam preparation and formation.
- compositions and particularly blowing agents, foamable compositons, foamed articles and methods and systems for forming foam, which provide beneficial properties and/or avoid one or more of the disadvantages noted above.
- This invention relates to compositions, methods and systems having utility in numerous applications, including particularly in connection with compositions, methods, systems and agents relating to polymeric foams.
- blowing agent compositions comprising one or more C2 to C6 fluoroalkenes, more preferably one or more C3 to C5 fluoroalkenes, and even more preferably one or more compounds having Formula I as follows:
- X is a C 1 , C 2 , C 3 , C 4 , or C 5 unsaturated, substituted or unsubstituted radical
- each R is independently Cl, F, Br, I or H
- z is 1 to 3, it generally being preferred that the fluoroalkene of the present invention has at least four (4) halogen substituents, at least three of which are F and even more preferably none of which are Br.
- the compound includes no hydrogen.
- the Br substituent is on an unsaturated carbon, and even more preferably the Br substituent is on a non-terminal unsaturated carbon.
- One particularly preferred compound in this class is CF 3 CBr ⁇ CF 2 , including all of its isomers
- the compounds of Formula I are propenes, butenes, pentenes and hexenes having from 3 to 5 fluorine substituents, with other substituents being either present or not present.
- no R is Br
- the unsaturated radical contains no Br substituents.
- tetrafluoropropenes (HFO-1234) and fluorochloroporpenes (such as trifluoro, monochloropropenes (HFCO-1233)) are especially preferred in certain embodiments.
- pentafluoropropenes are preferred, including particularly those pentafluoropropenes in which there is a hydrogen substituent on the terminal unsaturated carbon, such as CF 3 CF ⁇ CFH (HFO-1225yez), particularly since applicants have discovered that such compounds have a relatively low degree of toxicity in comparison to at least the compound CF 3 CH ⁇ CF 2 (HFO-1225zc).
- CF 3 CF ⁇ CFH HFO-1225yez
- fluorochlorobutenes are especially preferred in certain embodiments.
- HFO-1234 is used herein to refer to all tetrafluoropropenes. Among the tetrafluoropropenes are included 1,1,1,2-tetrafluoropropene (HFO-1234yf) and both cis- and trans-1,1,1,3-tetrafluoropropene (HFO-1234ze).
- HFO-1234ze is used herein generically to refer to 1,1,1,3-tetrafluoropropene, independent of whether it is the cis- or trans-form.
- cisHFO-1234ze and “transHFO-1234ze” are used herein to describe the cis- and trans-forms of 1,1,1,3-tetrafluoropropene respectively.
- HFO-1234ze therefore includes within its scope cisHFO-1234ze, transHFO-1234ze, and all combinations and mixtures of these.
- HFO-1233 is used herein to refer to all trifluoro, monochloropropenes. Among the trifluoro,monochloropropenes are included 1,1,1,trifluoro-2,chloro-propene (HFCO-1233xf) and both cis- and trans-1,1,1-trifluo-3,chlororopropene (HFCO-1233zd).
- HFCO-1233zd is used herein generically to refer to 1,1,1-trifluo-3,chloro-propene, independent of whether it is the cis- or trans-form.
- cisHFCO-1233zd and “transHFCO-1233zd” are used herein to describe the cis- and trans-forms of 1,1,1-trifluo,3-chlororopropene, respectively.
- HFCO-1233zd therefore includes within its scope cisHFCO-1233zd, transHFCO-1233zd, and all combinations and mixtures of these.
- HFO-1225 is used herein to refer to all pentafluoropropenes. Among such molecules are included 1,1,1,2,3 pentafluoropropene (HFO-1225yez), both cis- and trans-forms thereof.
- HFO-1225yez is thus used herein generically to refer to 1,1,1,2,3 pentafluoropropene, independent of whether it is the cis- or trans-form.
- HFO-1225yez therefore includes within its scope cisHFO-1225yez, transHFO-1225yez, and all combinations and mixtures of these.
- the present invention provides blowing agent compositions, foamable compositions, foams and/or foamed articles comprising one or more C2 to C6 fluorinated alkenes, and more preferably C3 to C4 fluorinated alkenes, including any one or more of the preferred groups and/or preferred individual fluorinated alkene compounds mentioned herein, and one or more additional compounds selected from the group consisting of hydrocarbons, hydrofluorocarbons (HFCs), ethers, alcohols, aldehydes, ketones, methyl formate, formic acid, water, trans-1,2-dichloroethylene, carbon dioxide and combinations of any two or more of these.
- HFCs hydrofluorocarbons
- ethers it is preferred in certain embodiments to use ethers having from one to six carbon atoms.
- alcohols it is preferred in certain embodiments to use alcohols having from one to four carbon atoms.
- aldehydes it is preferred in certain embodiments to use aldehydes having from one to four carbon atoms.
- ketones it is preferred in certain embodiments to use ketones, having from one to four carbon atoms.
- the present invention provides also methods and systems which utilize the compositions of the present invention, including methods and systems for foam blowing.
- the present compositions can generally be in the form of blowing agent compositions or foamable compositions.
- the present invention requires at least one fluoroalkene compound as described herein and optionally but preferably one or more additional components, as described generally above and in more detail below.
- the preferred embodiments of the present invention are directed to compositions comprising at least one fluoroalkene containing from 2 to 6, preferably 3 to 5 carbon atoms, more preferably 3 to 4 carbon atoms, and in certain embodiments most preferably three carbon atoms, and at least one carbon-carbon double bond.
- the fluoroalkene compounds of the present invention are sometimes referred to herein for the purpose of convenience as hydrofluoro-olefins or “HFOs” if they contain at least one hydrogen. Although it is contemplated that the HFOs of the present invention may contain two carbon—carbon double bonds, such compounds at the present time are not considered to be preferred.
- HFOs which also contain at least one chlorine atom, the designation HFCO is sometimes used herein
- compositions comprise one or more compounds in accordance with Formula I.
- compositions include one or more compounds of Formula II below:
- each R is independently Cl, F, Br, I or H
- R′ is (CR 2 ) n Y
- n is 0, 1, 2 or 3, preferably 0 or 1, it being generally preferred however that either Br is not present in the compound or when Br is present in the compound there is no hydrogen in the compound.
- Y is CF 3
- n is 0 or 1 (most preferably 0) and at least one of the remaining Rs is F, and preferably no R is Br, or when Br is present there is no hydrogen in the compound. It is preferred in certain cases that no R in Formula II is Br.
- the compound of the present invention comprises a C 3 or C 4 HFO or HFCO, preferably in certain embodiments a C 3 HFO, and more preferably a compound in accordance with Formula I in which X is a halogen substituted C 3 alkylene and z is 3.
- X is fluorine and/or chlorine substituted C 3 alkylene, with the following C 3 alkylene radicals being preferred in certain embodiments:
- Such embodiments therefore comprise the following preferred compounds: CF 3 —CH ⁇ CF—CH 3 ; CF 3 —CF ⁇ CH—CH 3 ; CF 3 —CH 2 —CF ⁇ CH 2 ; CF 3 —CH 2 —CH ⁇ CFH; and combinations of these with one another and/or with other compounds in accordance with Formula I or Formula II.
- the compound of the present invention comprises a C3 or C4 HFCO, preferably a C3 HFCO, and more preferably a compound in accordance with Formula II in which Y is CF 3 , n is 0, at least one R on the unsaturated terminal carbon is H, and at least one of the remaining Rs is Cl.
- HFCO-1233 is an example of such a preferred compound.
- compositions of the present invention comprise one or more tetrafluoropropenes, including HFO-1234yf, (cis)HFO-1234ze and (trans)HFO-1234ze, with HFO-1234ze being generally preferred and trans HFO-1234ze being highly preferred in certain embodiments.
- HFO-1234ze being generally preferred
- trans HFO-1234ze being highly preferred in certain embodiments.
- (trans)HFO-1234ze may be preferred for use in certain systems because of its relatively low boiling point ( ⁇ 19° C.), while (cis)HFO-1234ze, with a boiling point of +9° C., may be preferred in other applications.
- (cis)HFO-1234ze with a boiling point of +9° C.
- combinations of the cis- and trans-isomers will be acceptable and/or preferred in many embodiments.
- the terms “HFO-1234ze” and 1,3,3,3-tetrafluoropropene refer to both stereo isomers, and the use of this term is intended to indicate that each of the cis-and trans-forms applies and/or is useful for the stated purpose unless otherwise indicated.
- HFO-1234 compounds are known materials and are listed in Chemical Abstracts databases.
- fluoropropenes such as CF 3 CH ⁇ CH 2 by catalytic vapor phase fluorination of various saturated and unsaturated halogen-containing C 3 compounds is described in U.S. Pat. Nos. 2,889,379; 4,798,818 and 4,465,786, each of which is incorporated herein by reference.
- EP 974,571 discloses the preparation of 1,1,1,3-tetrafluoropropene by contacting 1,1,1,3,3-pentafluoropropane (HFC-245fa) in the vapor phase with a chromium-based catalyst at elevated temperature, or in the liquid phase with an alcoholic solution of KOH, NaOH, Ca(OH) 2 or Mg(OH) 2 .
- HFC-245fa 1,1,1,3,3-pentafluoropropane
- compositions may comprise combinations of any two or more compounds within the broad scope of the invention or within any preferred scope of the invention.
- the present compositions are believed to possess properties that are advantageous for a number of important reasons. For example, applicants believe, based at least in part on mathematical modeling, that the fluoroolefins of the present invention will not have a substantial negative affect on atmospheric chemistry, being negligible contributors to ozone depletion in comparison to some other halogenated species.
- the preferred compositions of the present invention thus have the advantage of not contributing substantially to ozone depletion.
- the preferred compositions also do not contribute substantially to global warming compared to many of the hydrofluoroalkanes presently in use.
- compositions of the present invention have a Global Warming Potential (GWP) of not greater than about 1000, more preferably not greater than about 500, and even more preferably not greater than about 150.
- GWP of the present compositions is not greater than about 100 and even more preferably not greater than about 75.
- GWP is measured relative to that of carbon dioxide and over a 100 year time horizon, as defined in “The Scientific Assessment of Ozone Depletion, 2002, a report of the World Meteorological Association's Global Ozone Research and Monitoring Project,” which is incorporated herein by reference.
- the present compositions also preferably have an Ozone Depletion Potential (ODP) of not greater than 0.05, more preferably not greater than 0.02 and even more preferably about zero.
- ODP Ozone Depletion Potential
- “ODP” is as defined in “The Scientific Assessment of Ozone Depletion, 2002, A report of the World Meteorological Association's Global Ozone Research and Monitoring Project,” which is incorporated herein by reference.
- the amount of the Formula I compounds, particularly HFO-1234 and even more preferably HFO-1234ze, contained in the present compositions can vary widely, depending the particular application, and compositions containing more than trace amounts and less than 100% of the compound are within broad the scope of the present invention.
- the compositions of the present invention can be azeotropic, azeotrope-like or non-azeotropic.
- the present compositions, particularly blowing agent compositions comprise Formula I and/or Formula II compounds, preferably HFO-1234 and more preferably HFO-1234ze and/or HFO-1234yf, in amounts from about 1% by weight to about 99% by weight, more preferably from about 5% to about 95% by weight, and even more preferably from 40% to about 90% by weight.
- blowing agent compositions consist of or consist essentially of one or more compounds in accordance with Formula I hereof.
- the present invention includes methods and systems which include using one or more of the compounds of the present invention as a blowing agent without the presence of any substantial amount of additional components.
- one or more compounds or components that are not within the scope of Formula I or Formula II are optionally, but preferably, included in the blowing agent compositions of the present invention.
- Such optional additional compounds include, but are not limited to, other compounds which also act as blowing agents (hereinafter referred to for convenience but not by way of limitation as co-blowing agents), surfactants, polymer modifiers, toughening agents, colorants, dyes, solubility enhancers, rheology modifiers, plasticizing agents, flammability suppressants, antibacterial agents, viscosity reduction modifiers, fillers, vapor pressure modifiers, nucleating agents, catalysts and the like.
- dispersing agents, cell stabilizers, surfactants and other additives may also be incorporated into the blowing agent compositions of the present invention.
- Certain surfactants are optionally but preferably added to serve as cell stabilizers.
- DC-193, B-8404, and L-5340 are, generally, polysiloxane polyoxyalkylene block co-polymers such as those disclosed in U.S. Pat. Nos. 2,834,748, 2,917,480, and 2,846,458, each of which is incorporated herein by reference.
- blowing agent mixture may include flame retardants such as tri(2-chloroethyl)phosphate, tri(2-chloropropyl)phosphate, tri(2,3-dibromopropyl)-phosphate, tri(1,3-dichloropropyl) phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminum trihydrate, polyvinyl chloride, and the like.
- flame retardants such as tri(2-chloroethyl)phosphate, tri(2-chloropropyl)phosphate, tri(2,3-dibromopropyl)-phosphate, tri(1,3-dichloropropyl) phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminum trihydrate, polyvinyl chloride, and the like.
- nucleating agents all known compounds and materials having nucleating functionality are available for use in the present invention, including particularly talc.
- compositions that modulate a particular property of the compositions (such as cost for example) may also be included in the present compositions, and the presence of all such compounds and components is within the broad scope of the invention.
- the preferred embodiments of the present compositions include, in addition to the compounds of Formula I (including particularly HFO-1234ze and/or HFO-1234yf), one or more co-blowing agents.
- the co-blowing agent in accordance with the present invention can comprise a physical blowing agent, a chemical blowing agent (which preferably in certain embodiments comprises water) or a blowing agent having a combination of physical and chemical blowing agent properties.
- the blowing agents included in the present compositions, including the compounds of Formula I as well as the co-blowing agent may exhibit properties in addition to those required to be characterized as a blowing agent.
- blowing agent compositions of the present invention may include components, including the compounds or Formula I described above, which also impart some beneficial property to the blowing agent composition or to the foamable composition to which it is added.
- the compound of Formula I or for the co-blowing agent may also act as a polymer modifier or as a viscosity reduction modifier.
- present compositions include at least one ether, preferably which functions as a co-blowing agent in the composition.
- the ether(s) used in accordance with this aspect of the invention comprise fluorinated ethers (FEs), more preferably one or more hydro-fluorinated ethers (HFEs)), and even more preferably one or more C3 to C5 hydro-fluorinated ethers in accordance with Formula (III) below:
- a 1-6, more preferably 2-5, and even more preferably 3-5,
- b 1-12, more preferably 1-6, and even more preferably 3-6,
- c 1-12, more preferably 1-6, and even more preferably 2-6,
- e 0-5, more preferably 1-3
- f 0-5, more preferably 0-2,
- compositions comprising at least one fluoroalkene as described herein and at least one fluoro-ether, more preferably at least one hydro-fluoroether, containing from 2 to 8, preferably 2 to 7, and even more preferably 2 to 6 carbon atoms, and in certain embodiments most preferably three carbon atoms.
- the hydro-fluoroether compounds of the present invention are sometimes referred to herein for the purpose of convenience as hydrofluoro-ethers or “HFEs” if they contain at least one hydrogen.
- the fluoroethers in accordance with the present disclosure and in particular in accordance with above identified Formula (III) are generally effective and exhibit utility in combination with the fluoroalkene compounds in accordance with the teachings contained herein.
- the fluroethers it is preferred to use in certain embodiments, especially embodiments relating to blowing agent compositions and foam and foaming methods, to utilize hydrofluorethers that are at least difluorinated, more preferbably at least trifluorinated, and even more preferably at least tetra-fluorinated.
- tetrafluorinated fluorethers having from 3 to 5 carbon atoms, more preferably 3 to 4 carbon atoms, and even more preferably 3 carbon atoms.
- the compound of the present invention comprises a 1,1,2,2-tetrafluoroethylmethylether (which is sometimes referred to herein as HFE-245pc or HFE-245cb2), including any and all isomeric forms thereof.
- HFE-245pc 1,1,2,2-tetrafluoroethylmethylether
- the amount of the Formula III compounds, particularly 1,1,2,2-tetrafluoroethylmethylether contained in the present compositions can vary widely, depending the particular application, and compositions containing more than trace amounts and less than 100% of the compound are within broad the scope of the present invention.
- the present compositions, particularly blowing agent compositions comprise Formula III compounds, including preferred groups of compounds, in amounts from about 1% by weight to about 99% by weight, more preferably from about 5% to about 95% by weight, and even more preferably from 40% to about 90% by weight.
- HFE-7100 a material sold under the trade name HFE-7100 by 3M, which is understood to be a mixture of from about 20% to about 80% of methyl nonafluoroisobutyl ether and from about 20% to about 80% methyl nonafluorobutyl ether, may be used to advantage in accordance with certain preferred embodiments of the present invention.
- a material sold under the trade name HFE-7200 by 3M which is understood to be a mixture of from about 20% to about 80% of ethyl nonafluoroisobutyl ether and from about 20% to about 80% ethyl nonafluorobutyl ether, may be used to advantage in accordance with certain preferred embodiments of the present invention.
- any one or more of the above-listed HFEs may be used in combination with other compounds as well, including other HFEs not specifically listed herein and/or other compounds with which the designated fluoroether is known to form an azeotrope.
- each of the following compounds is known to form an azeotrope with trans-dichloroethylene, and it is contemplated that for the purposes of the present invention the use of such azeotropes should be considered to be within the broad scope of the invention:
- the blowing agent compositions of the present invention include one or more HFCs as co-blowing agents, more preferably one or more C1-C4 HFCs.
- the present blowing agent compositions may include one or more of difluoromethane (HFC-32), fluoroethane (HFC-161), difluoroethane (HFC-152), trifluoroethane (HFC-143), tetrafluoroethane (HFC-134), pentafluoroethane (HFC-125), pentafluoropropane (HFC-245), hexafluoropropane (HFC-236), heptafluoropropane (HFC-227ea), pentafluorobutane (HFC-365), hexafluorobutane (HFC-356) and all isomers of all such HFC's.
- HFC isomers are preferred for use as co-blowing agents in the compositions of the present invention:
- the blowing agent compositions of the present invention include one or more hydrocarbons, more preferably C3-C6 hydrocarbons.
- the present blowing agent compositions may include in certain preferred embodiments, for example: propane; iso- and normal-butane (each of such butanes being preferred for use as a blowing agent for for thermoplastic foams); iso-, normal-, neo- and/or cyclo-pentane (each of such pentanes being preferable for use as a blowing agent for thermoset foams); iso- and normal-hexane; and heptanes.
- the blowing agent compositions of the present invention include one or more alcohols, preferably one or more C1-C4 alcohols.
- the present blowing agent compositions may include one or more of methanol, ethanol, propanol, isopropanol, butanol, iosbutanol, t-butanol.
- blowing agent compositions of the present invention include one or more aldehydes, particularly Cl-C4 aldehydes, including formaldehyde, acetaldehyde, propanal, butanal and isobutanal.
- the blowing agent compositions of the present invention include one or more ketones, preferably Cl-C4 ketones.
- the present blowing agent compositions may include one or more of acetone, methylethylketone, and methylisobutylketone.
- the relative amount of any of the above noted additional, compounds, which are contemplated for use in certain embodiments as co-blowing agents, as well as any additional components which may be included in present compositions can vary widely within the general broad scope of the present invention according to the particular application for the composition, and all such relative amounts are considered to be within the scope hereof.
- one particular advantage of at least certain of the compounds of Formula I in accordance with the present invention for example HFO-1234ze, is the relatively low flammability of such compounds.
- the blowing agent composition of the present invention comprise at least one co-blowing agent and an amount of compound(s) in accordance with Formula I sufficient to produce a blowing agent composition which is overall nonflammable.
- the relative amounts of the co-blowing agent in comparison to the compound of Formula I will depend, at least in part, upon the flammability of the co-blowing agent.
- the blowing agent compositions of the present invention may include the compounds of the present invention in widely ranging amounts. It is generally preferred, however, that for preferred compositions for use as blowing agents in accordance with the present invention, compound(s) in accordance with Formula I, and even more preferably Formula II, are present in an amount that is at least about 1% by weight, more preferably at least about 5% by weight, and even more preferably at least about 15% by weight, of the composition.
- the blowing agent comprises at least about 50% by weight of the present blowing agent compound(s), and in certain embodiments the blowing agent consists essentially of compounds in accordance with the present invention.
- the use of one or more co-blowing agents is consistent with the novel and basic features of the present invention. For example, it is contemplated that water will be used as either a co-blowing or in combination with other co-blowing agents (such as, for example, pentane, particularly cyclopentane) in a large number of embodiments.
- the blowing agent compositions of the present invention may comprise, preferably in amounts of at least about 15% by weight of the composition, HFO-1234yf, cisHFO-1234ze, transHFO1234ze or combinations of two or more of these.
- a co-blowing agent comprising water is included in the compositions, most preferably in compositions directed to the use of thermosetting foams.
- the blowing agent compositions of the present invention comprise a combination of cisHFO-1234ze and transHFO1234ze in a cis:trans weight ratio of from about 1:99 to about 50:50, more preferably from about 10:90 to about 30:70.
- a combination of cisHFO-1234ze and transHFO1234ze in a cis:trans weight ratio of from about 1:99 to about 10:90, and preferably from about 1:99 to about 5:95.
- cisHFO-1234ze and transHFO1234ze in a cis:trans weight ratio of from about 1:99 to about 10:90, and preferably from about 1:99 to about 5:95.
- the blowing agent composition comprises from about 30% to about 95% by weight, more preferably from about 30% to about 96%, more preferably from about 30% to about 97%, and even more preferably from about 30% to about 98% by weight, and even more preferably from about 30% to about 99% by weight of a compound of Formula I, more preferably a compound of Formula II, and even more preferably one or more HFO-1234 compounds, and from about 5% to about 90% by weight, more preferably from about 5% to about 65% by weight of co-blowing agent, including one or more fluoroethers.
- the co-blowing agent comprises, and preferably consists essentially of a compound selected from the group consisting of, H 2 O, HFCs, HFEs, hydrocarbons, alcohols (preferably C2, C3 and/or C4 alcohols), CO 2 , and combinations of any two or more of these.
- foamable compositions generally include one or more components capable of forming foam.
- foam foaming agent is used to refer to a component, or a combination on components, which are capable of forming a foam structure, preferably a generally cellular foam structure.
- the foamable compositions of the present invention include such component(s) and a blowing agent compound, preferably a compound of Formula I, in accordance with the present invention.
- the one or more components capable of forming foam comprise a thermosetting composition capable of forming foam and/or foamable compositions. Examples of thermosetting compositions include isocyanate-based compositions and phenolic-based compositions.
- polyurethane compositions preferred are polyurethane compositions, polyisocyanurate, and polyurethane/polyisocyanurate.
- foam types particularly polyurethane foam compositions
- the present invention provides rigid foam (both closed cell, open cell and any combination thereof), flexible foam, and semiflexible foam, including integral skin foams.
- reaction and foaming process may be enhanced through the use of various additives such as catalysts and surfactant materials that serve to control and adjust cell size and to stabilize the foam structure during formation.
- any one or more of the additional components described above with respect to the blowing agent compositions of the present invention could be incorporated into the foamable composition of the present invention.
- one or more of the present compositions are included as or part of a blowing agent in a foamable composition, or as a part of a two or more part foamable composition, which preferably includes one or more of the components capable of reacting and/or foaming under the proper conditions to form a foam or cellular structure.
- the one or more components capable of foaming comprise thermoplastic materials, particularly thermoplastic polymers and/or resins.
- thermoplastic foam components include polyolefins, such as for example monovinyl aromatic compounds of the formula Ar-CHCH2 wherein Ar is an aromatic hydrocarbon radical of the benzene series such as polystyrene (PS).
- PS polystyrene
- suitable polyolefin resins in accordance with the invention include the various ethylene resins including the ethylene homopolymers such as polyethylene and ethylene copolymers, polypropylene (PP) and polyethyleneterepthalate (PET).
- the thermoplastic foamable composition is an extrudable composition.
- transHFO-1234ze trans-1,1,1,3-tetrafluoropropene
- additional compound the amount of the transHFO-1234ze may vary widely, including in all cases constituting the balance of the composition after all other components in composition are accounted for.
- the amount of the transHFO-1234ze in the composition can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to
- compositions which include as an essential component cis-1,1,1,3-tetrafluoropropene (cisHFO-1234ze) and at least one additional compound.
- cisHFO-1234ze an essential component cis-1,1,1,3-tetrafluoropropene
- the amount of the cisHFO-1234ze may vary widely, including in all cases constituting the balance of the composition after all other components in composition are accounted for.
- the amount of the cisHFO-1234ze in the composition can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about
- compositions which include as an essential component 1,1,1,2,3-pentafluoropropene (HFO-1225ye) and at least one additional compound.
- HFO-1225ye 1,1,1,2,3-pentafluoropropene
- the amount of the transHFO-1225ye may vary widely, including in all cases constituting the balance of the composition after all other components in composition are accounted for.
- the amount of the HFO-1225ye in the composition can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to
- compositions which include as an essential component CF 3 CH ⁇ CHCl (HFO-1233zd) and at least one additional compound.
- HFO-1233zd CF 3 CH ⁇ CHCl
- the amount of the HFO-1233zd may vary widely, including in all cases constituting the balance of the composition after all other components in composition are accounted for.
- the amount of the HFO-1233zd in the composition can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to
- the composition comprises H 2 O in an amount of from about 5% by weight to about 50% by weight of the total blowing agent composition, more preferably from about 10% by weight to about 40% by weight, and even more preferably of from about 10% to about 20% by weight of the total blowing agent.
- the composition comprises CO 2 in an amount of from about 5% by weight to about 60% by weight of the total blowing agent composition, more preferably from about 20% by weight to about 50% by weight, and even more preferably of from about 40% to about 50% by weight of the total blowing agent.
- the co-blowing agent comprises alcohols, (preferably C2, C3 and/or C4 alcohols)
- the composition comprises alcohol in an amount of from about 5% by weight to about 40% by weight of the total blowing agent composition, more preferably from about 10% by weight to about 40% by weight, and even more preferably of from about 15% to about 25% by weight of the total blowing agent.
- the HFC co-blowing agent preferably C2, C3, C4 and/or C5 HFC
- HFC-152a difluoromethane
- HFC-245 HFC pentafluoropropane
- the HFC is preferably C2 - C4 HFC, and even more preferably C3 HFC, with penta-fluorinated C3 HFC, such as HFC-245fa, being highly preferred in certain embodiments.
- the HFE co-blowing agent preferably C2, C3, C4 and/or C5 HFE
- HFE-254 is preferably present in the composition in amounts of from of from about 5% by weight to about 80% by weight of the total blowing agent composition, more preferably from about 10% by weight to about 75% by weight, and even more preferably of from about 25% to about 75% by weight of the total blowing agent.
- the HFE is preferably C2-C4 HFE, and even more preferably a C3 HFC, with tetra-fluorinated C3 HFE being highly preferred in certain embodiments.
- the HC co-blowing agent (preferably C3, C4 and/or C5 HC) is preferably present in the composition in amounts of from of from about 5% by weight to about 80% by weight of the total blowing agent composition, and even more preferably from about 20% by weight to about 60% by weight of the total blowing agent.
- the methods of the present invention generally require incorporating a blowing agent in accordance with the present invention into a foamable or foam forming composition and then foaming the composition, preferably by a step or series of steps which include causing volumetric expansion of the blowing agent in accordance with the present invention.
- the presently used systems and devices for incorporation of blowing agent and for foaming are readily adaptable for use in accordance with the present invention.
- one advantage of the present invention is the provision of an improved blowing agent which is generally compatible with existing foaming methods and systems.
- the present invention comprises methods and systems for foaming all types of foams, including thermosetting foams, thermoplastic foams and formed-in-place foams.
- one aspect of the present invention is the use of the present blowing agents in connection conventional foaming equipment, such as polyurethane foaming equipment, at conventional processing conditions.
- the present methods therefore include masterbatch type operations, blending type operations, third stream blowing agent addition, and blowing agent addition at the foam head.
- the preferred methods generally comprise introducing a blowing agent in accordance with the present invention into a thermoplastic material, preferably thermoplastic polymer such as polyolefin, and then subjecting the thermoplastic material to conditions effective to cause foaming.
- a blowing agent in accordance with the present invention into a thermoplastic material, preferably thermoplastic polymer such as polyolefin
- the step of introducing the blowing agent into the thermoplastic material may comprise introducing the blowing agent into a screw extruder containing the thermoplastic
- the step of causing foaming may comprise lowering the pressure on the thermoplastic material and thereby causing expansion of the blowing agent and contributing to the foaming of the material.
- blowing agent of the present invention does not generally affect the operability of the present invention.
- the various components of the blowing agent, and even the components of the foamable composition be not be mixed in advance of introduction to the extrusion equipment, or even that the components are not added to the same location in the extrusion equipment.
- the blowing agent can be introduced either directly or as part of a premix, which is then further added to other parts of the foamable composition.
- one or more components of the blowing agent at first location in the extruder, which is upstream of the place of addition of one or more other components of the blowing agent, with the expectation that the components will come together in the extruder and/or operate more effectively in this manner.
- two or more components of the blowing agent are combined in advance and introduced together into the foamable composition, either directly or as part of premix which is then further added to other parts of the foamable composition.
- One embodiment of the present invention relates to methods of forming foams, and preferably polyurethane and polyisocyanurate foams.
- the methods generally comprise providing a blowing agent composition of the present inventions, adding (directly or indirectly) the blowing agent composition to a foamable composition, and reacting the foamable composition under the conditions effective to form a foam or cellular structure, as is well known in the art. Any of the methods well known in the art, such as those described in “Polyurethanes Chemistry and Technology,” Volumes I and II, Saunders and Frisch, 1962, John Wiley and Sons, New York, N.Y., which is incorporated herein by reference, may be used or adapted for use in accordance with the foam embodiments of the present invention.
- such preferred methods comprise preparing polyurethane or polyisocyanurate foams by combining an isocyanate, a polyol or mixture of polyols, a blowing agent or mixture of blowing agents comprising one or more of the present compositions, and other materials such as catalysts, surfactants, and optionally, flame retardants, colorants, or other additives.
- the foam formulation is pre-blended into two components.
- the isocyanate and optionally certain surfactants and blowing agents comprise the first component, commonly referred to as the “A” component.
- the polyol or polyol mixture, surfactant, catalysts, blowing agents, flame retardant, and other isocyanate reactive components comprise the second component, commonly referred to as the “B” component.
- the present methods and systems also include forming a one component foam, preferably polyurethane foam, containing a blowing agent in accordance with the present invention.
- a portion of the the blowing agent is contained in the foam forming agent, preferably by being dissolved in a foam forming agent which is liquid at the pressure within the container, a second portion of the blowing agent is present as a separate gas phase.
- the contained/dissolved blowing agent performs, in large part, to cause the expansion of the foam, and the separate gas phase operates to impart propulsive force to the foam forming agent.
- Such one component systems are typically and preferably packaged in a container, such as an aerosol type can, and the blowing agent of the present invention thus preferably provides for expansion of the foam and/or the energy to transport the foam/foamable material from the package, and preferably both.
- such systems and methods comprise charging the package with a fully formulated system (preferably isocyanate/polyol system) and incorporating a gaseous blowing agent in accordance with the present invention into the package, preferably an aerosol type can.
- the invention also relates to all foams, (incuding but not limited to closed cell foam, open cell foam, rigid foam, flexible foam, integeral skin and the like) prepared from a polymer foam formulation containing a blowing agent comprising the compositions of the invention.
- foams and particularly thermoset foams such as polyurethane foams, in accordance with the present invention is the ability to achieve, preferably in connection with thermoset foam embodiments, exceptional thermal performance, such as can be measured by the K-factor or lambda, particularly and preferably under low temperature conditions.
- thermoset foams of the present invention may be used in a wide variety of applications, in certain preferred embodiments the present invention comprises appliance foams in accordance with the present invention, including refrigerator foams, freezer foams, refrigerator/freezer foams, panel foams, and other cold or cryogenic manufacturing applications.
- the foams in accordance with the present invention provide one or more exceptional features, characteristics and/or properties, including: thermal insulation efficiency (particularly for thermoset foams), dimensional stability, compressive strength, aging of thermal insulation properties, all in addition to the low ozone depletion potential and low global warming potential associated with many of the preferred blowing agents of the present invention.
- the present invention provides thermoset foam, including such foam formed into foam articles, which exhibit improved thermal conductivity relative to foams made using the same blowing agent (or a commonly used blowing agent HFC-245fa) in the same amount but without the compound of Formula I in accordance with the present invention.
- the thermoset foams, and preferably polyurethane foams, of the present invention exhibit a K-factor (BTU in/hr ft 2 ° F.) at 40° F. of not greater than about 0.14, more preferably not greater than 0.135, and even more preferably not greater than 0.13. Furthermore, in certain embodiments, it is preferred that the thermoset foams, and preferably the polyurethane foams of the present invention exhibit a K-factor (BTU in/hr ft 2 ° F.) at 75° F. of not greater than about 0.16, more preferably not greater than 0.15, and even more preferably not greater than 0.145.
- the present foams exhibit improved mechanical properties relative to foams produced with blowing agents outside the scope of the present invention.
- certain preferred embodiments of the present invention provide foams and foam articles having a compressive strength which is superior to, and preferably at least about 10 relative percent, and even more preferably at least about 15 relative percent greater than a foam produced under substantially identical conditions by utilizing a blowing agent consisting of cyclopentane.
- the foams produced in accordance with the present invention have compressive strengths that are on a commercial basis comparable to the compressive strength produced by making a foam under substantially the same conditions except wherein the blowing agent consists of HFC-245fa.
- the foams of the present invention exhibit a compressive strength of at least about 12.5% yield (in the parallel and perpendicular directions), and even more preferably at least about 13% yield in each of said directions.
- This example illustrates the use of blowing agent in accordance with two preferred embodiments of the present invention, namely the use of HFO-1234ze and HFO-1234yf, and the production of polystyrene foam.
- a testing apparatus and protocol has been established as an aid to determining whether a specific blowing agent and polymer are capable of producing a foam and the quality of the foam.
- Ground polymer (Dow Polystyrene 685D) and blowing agent consisting essentially of HFO-1234ze are combined in a vessel.
- the vessel volume is 200 cm 3 and it is made from two pipe flanges and a section of 2-inch diameter schedule 40 stainless steel pipe 4 inches long.
- the vessel is placed in an oven, with temperature set at from about 190° F. to about 285° F., preferably for polystyrene at 265° F., and remains there until temperature equilibrium is reached.
- the pressure in the vessel is then released, quickly producing a foamed polymer.
- the blowing agent plasticizes the polymer as it dissolves into it.
- the resulting density of the two foams thus produced using this method are given in Table 1 as the density of the foams produced using trans-HFO-1234ze and HFO-1234yf.
- the data show that foam polystyrene is obtainable in accordance with the present invention. In this regard it is noted that the bulk density of polystyrene is 1050 kg/m 3 or 65.625 lb/ft 3 at about room temperature.
- This example demonstrates the performance of HFO-1234ze alone as a blowing agent for polystyrene foam formed in a twin screw type extruder.
- the apparatus employed in this example is a Leistritz twin screw extruder having the following characteristics:
- the extruder is divided into 10 sections, each representing a L:D of 4:1.
- the polystyrene resin was introduced into the first section, the blowing agent was introduced into the sixth section, with the extrudate exiting the tenth section.
- the extruder operated primarily as a melt/mixing extruder.
- a subsequent cooling extruder is connected in tandem, for which the design characteristics were:
- Polystyrene resin namely Nova Chemical—general extrusion grade polystyrene, identified as Nova 1600, is feed to the extruder under the conditions indicated above.
- the resin has a recommended melt temperature of 375° F.—525° F.
- the pressure of the extruder at the die is about 1320 pounds per square inch (psi), and the temperature at the die is about 115° C.
- a blowing agent consisting essentially of transHFO-1234ze is added to the extruder at the location indicated above, with about 0.5% by weight of talc being included, on the basis of the total blowing agent, as a nucleating agent.
- Foam is produced using the blowing agent at concentrations of 10% by weight, 12% by weight, and 14% by weight, in accordance with the present invention.
- the density of the foam produced is in the range of about 0.1 grams per cubic centimeter to 0.07 grams per cubic centimeter, with a cell size of about 49 to about 68 microns.
- the foams, of approximately 30 millimeters diameter are visually of very good quality, very fine cell size, with no visible or apparent blow holes or voids.
- Example 1B This procedure of Example 1B is repeated except that the foaming agent comprises about 50% by weight transHFO-1234ze and 50% by weight of HFC-245fa and nucleating agent in the concentration indicated in Example 1B.
- Foamed polystyrene is prepared at blowing agent concentrations of approximately 10% and 12%.
- the density of the foam produced is about 0.09 grams per cubic centimeter, with a cell size of about 200 microns.
- the foams, of approximately 30 millimeters diameter, are visually of very good quality, fine cell structure, with no visible or apparent voids.
- Example 1B This procedure of Example 1B is repeated except that the foaming agent comprises about 80% by weight HFO-1234ze and 20% by weight of HFC-245fa and nucleating agent in the concentration indicated in Example 1B.
- Foamed polystyrene is prepared at blowing agent concentrations of approximately 10% and 12%.
- the density of the foam produced is about 0.08 grams per cubic centimeter, with a cell size of about 120 microns.
- the foams, of approximately 30 millimeters diameter, are visually of very good quality, fine cell structure, with no visible or apparent voids.
- Example 1B This procedure of Example 1B is repeated except that the foaming agent comprises about 80% by weight HFO-124ze and 20% by weight of HFC-245fa and nucleating agent in the concentration indicated in Example 1B.
- Foamed polystyrene is prepared at blowing agent concentrations of approximately 10% and 12%.
- the foams' density was in the range of 0.1 grams per cubic centimeter, and .
- the foams, of approximately 30 millimeters diameter, are visually of very good quality, fine cell structure, with no visible or apparent voids.
- Example 1E This procedure of Example 1E is repeated except that the nucleating agent is omitted.
- the foams' density was in the range of 0.1 grams per cubic centimeter, and the cell size diameter is about 400.
- the foams of approximately 30 millimeters diameter, are visually of very good quality, fine cell structure, with no visible or apparent voids.
- This example demonstrates the performance of HFO-1234ze, and isomers thereof, used in combination with hydrocarbon co-blowing agents, and in particular the utility of compositions comprising HFO-1234ze and cyclopentane co-blowing agents in compressive strength performance of polyurethane foams.
- a commercially available, refrigeration appliance-type polyurethane foam formulation (foam forming agent) is provided.
- the polyol blend consisted of commercial polyol(s), catalyst(s), and surfactant(s). This formulation is adapted for use in connection with a gaseous blowing agent. Standard commercial polyurethane processing equipment is used for the foam forming process.
- a gaseous blowing agent combination was formed comprising HFO-1234ze (including isomers thereof) in a concentration of approximately 60 mole percent, and cyclopentane in a concentration of approximately 40 mole percent of the total blowing agent.
- HFO-1234ze including isomers thereof
- cyclopentane in a concentration of approximately 40 mole percent of the total blowing agent.
- Table 2 reports the compressive strength of similar machine-made polyurethane foams using a blowing agent of the present invention in comparison to foams made using a blowing agent consisting of HFC-245fa and a blowing agent consisting of cyclopentane.
- a polyurethane foam is prepared and is adapted for use as a commercial “appliance type” polyurethane formulation.
- the same foam formulation described in Example 2 is used in connection with the same standard commercial polyurethane processing equipment is used in the foam forming process.
- Several systems are prepared, with each system using identical components, systems, and equipment, with the exception of the blowing agent.
- HFC-134a, HFC-245fa, and cyclopentane are each also tested as the blowing agent.
- the blowing agent is added in substantially the same molar concentration into the polyol blend.
- the polyol blend consists of commercial polyol(s), catalyst(s), and surfactant(s).
- the foams are prepared in accordance with standard commercial manufacturing operations, for example a commercial operation for making foam for refrigeration applications.
- the prepared foams were evaluated for k-factor, and this information is reported below in Table 3.
- foams were prepared with HFC-134a, for which commercial data can be referenced.
- the k-factor data for these foams are shown in Table 3.
- HFO-1234ze This example demonstrates the k-factor performance of HFO-1234ze, and isomers thereof, when HFO-1234ze blowing agent is substituted into the polyurethane formulation.
- HFO-1234ze was substituted in an equal molar concentration to that of the benchmark foams.
- Table 3 data illustrates that HFO-1234ze foams k-factors are considerably better than HFC-134a or cyclopentane foams.
- blowing agents comprising HFO-1234ze (including isomers thereof) in combination with various HFC co-blowing agents used in connection with the preparation of polyurethane foams.
- a blowing agent is prepared comprising HFO-1234ze (including isomers thereof) in a concentration of approximately 80 weight percent of the total blowing agent, and HFC-245fa in a concentration of approximately 20 weight percent of the total blowing agent.
- HFC-134a and cyclopentane were each also tested as the blowing agent.
- blowing agent was added in substantially the same molar concentration into the polyol blend. Foams are then formed using this blowing agent and the k-factors of the foam are measured. Table 4 below illustrates the k-factor performance of combinations of HFO-1234ze (including isomers thereof) when used in combination with HFC co-blowing agents.
- Example 5 A further experiment was performed using the same polyol formulation and isocyanate as in Example 5.
- the foam is prepared by hand mix,
- the blowing agents consist of a compound in accordance with Formula II, namely, HFCO-1233zd (CF3CH ⁇ CHCI)*in about the same mole percentage of the foamable composition as the blowing agent in Example 5.
- K-factors are found to be as indicated in Table 6 below.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Polyurethanes Or Polyureas (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Priority Applications (34)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/276,137 US20090253820A1 (en) | 2006-03-21 | 2008-11-21 | Foaming agents and compositions containing fluorine sustituted olefins and methods of foaming |
CN201510437927.6A CN105111492A (zh) | 2007-11-25 | 2008-11-24 | 含有氟取代的烯烃的发泡剂和组合物以及发泡的方法 |
MX2010005669A MX2010005669A (es) | 2007-11-25 | 2008-11-24 | Agentes espumantes y composiciones que contienen olefinas sustituidas con fluor y metodos para la formacion de la espuma. |
CN2008801257097A CN101925644A (zh) | 2007-11-25 | 2008-11-24 | 含有氟取代的烯烃的发泡剂和组合物以及发泡的方法 |
KR1020147023257A KR20140119134A (ko) | 2007-11-25 | 2008-11-24 | 플루오로 치환된 올레핀을 포함하는 발포제 및 조성물 및 발포 방법 |
CA2706774A CA2706774C (en) | 2007-11-25 | 2008-11-24 | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
EP08851933A EP2215152A4 (en) | 2007-11-25 | 2008-11-24 | FOAM COMPOSITES AND COMPOSITIONS WITH FLUORINATED OLEFINES AND FOAM PROCESSING |
KR1020177021108A KR20170091757A (ko) | 2007-11-25 | 2008-11-24 | 플루오로 치환된 올레핀을 포함하는 발포제 및 조성물 및 발포 방법 |
CN201510436991.2A CN105111491A (zh) | 2007-11-25 | 2008-11-24 | 含有氟取代的烯烃的发泡剂和组合物以及发泡的方法 |
CA2997980A CA2997980A1 (en) | 2007-11-25 | 2008-11-24 | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
JP2010535113A JP2011504538A (ja) | 2007-11-25 | 2008-11-24 | フッ素置換オレフィンを含有する発泡剤及び組成物ならびに発泡方法 |
KR1020167023520A KR20160104745A (ko) | 2007-11-25 | 2008-11-24 | 플루오로 치환된 올레핀을 포함하는 발포제 및 조성물 및 발포 방법 |
KR20157005312A KR20150038512A (ko) | 2007-11-25 | 2008-11-24 | 플루오로 치환된 올레핀을 포함하는 발포제 및 조성물 및 발포 방법 |
KR1020197000987A KR20190007105A (ko) | 2007-11-25 | 2008-11-24 | 플루오로 치환된 올레핀을 포함하는 발포제 및 조성물 및 발포 방법 |
PCT/US2008/084512 WO2009067720A2 (en) | 2007-11-25 | 2008-11-24 | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
KR1020107014118A KR20100112562A (ko) | 2007-11-25 | 2008-11-24 | 플루오로 치환된 올레핀을 포함하는 발포제 및 조성물 및 발포 방법 |
TW97145587A TW200932807A (en) | 2007-11-25 | 2008-11-25 | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
TW104134781A TWI612085B (zh) | 2007-11-25 | 2008-11-25 | 熱固性發泡體、包含其之澆注面板、提供該發泡體之方法及可發泡組合物 |
US12/351,807 US9499729B2 (en) | 2006-06-26 | 2009-01-09 | Compositions and methods containing fluorine substituted olefins |
US13/394,289 US8962707B2 (en) | 2003-10-27 | 2010-09-08 | Monochlorotrifluoropropene compounds and compositions and methods using same |
US12/890,143 US20110037016A1 (en) | 2003-10-27 | 2010-09-24 | Fluoropropene compounds and compositions and methods using same |
US13/191,070 US9000061B2 (en) | 2006-03-21 | 2011-07-26 | Foams and articles made from foams containing 1-chloro-3,3,3-trifluoropropene (HFCO-1233zd) |
US13/191,141 US9181410B2 (en) | 2002-10-25 | 2011-07-26 | Systems for efficient heating and/or cooling and having low climate change impact |
US13/298,452 US9175200B2 (en) | 2008-10-28 | 2011-11-17 | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US13/585,755 US8729145B2 (en) | 2006-03-21 | 2012-08-14 | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
US14/282,909 US20140336292A1 (en) | 2006-03-21 | 2014-05-20 | Foaming Agents And Compositions Containing Fluorine Substituted Olefins And Methods Of Foaming |
JP2014191142A JP2015017268A (ja) | 2007-11-25 | 2014-09-19 | フッ素置換オレフィンを含有する発泡剤及び組成物ならびに発泡方法 |
US14/630,166 US20150231527A1 (en) | 2003-10-27 | 2015-02-24 | Monochlorotrifluoropropene compounds and compositions and methods using same |
US14/679,802 US9701782B2 (en) | 2006-03-21 | 2015-04-06 | Foams and articles made from foams containing 1-chloro-3,3,3-trifluoropropene (HFCO-1233zd) |
US14/936,214 US20160186917A1 (en) | 2003-10-27 | 2015-11-09 | Systems For Efficient Heating And/Or Cooling And Having Low Climate Change Impact |
US15/200,268 US20160310922A1 (en) | 2003-10-27 | 2016-07-01 | Fluoropropene compounds and compositions and methods using same |
JP2016132325A JP6307116B2 (ja) | 2007-11-25 | 2016-07-04 | フッ素置換オレフィンを含有する発泡剤及び組成物ならびに発泡方法 |
US15/439,840 US20170158834A1 (en) | 2006-06-26 | 2017-02-22 | Foams and articles made from foams containing hcfo or hfo blowing agents |
JP2018040959A JP2018127628A (ja) | 2007-11-25 | 2018-03-07 | フッ素置換オレフィンを含有する発泡剤及び組成物ならびに発泡方法 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78473106P | 2006-03-21 | 2006-03-21 | |
US11/474,887 US9796848B2 (en) | 2002-10-25 | 2006-06-26 | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
PCT/US2007/064570 WO2007109748A2 (en) | 2006-03-21 | 2007-03-21 | Foaming agents containing fluorine substituted unsaturated olefins |
US98997707P | 2007-11-25 | 2007-11-25 | |
US12/276,137 US20090253820A1 (en) | 2006-03-21 | 2008-11-21 | Foaming agents and compositions containing fluorine sustituted olefins and methods of foaming |
Related Parent Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/474,887 Continuation-In-Part US9796848B2 (en) | 2002-10-25 | 2006-06-26 | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
US11/475,605 Continuation-In-Part US9005467B2 (en) | 2002-10-25 | 2006-06-26 | Methods of replacing heat transfer fluids |
PCT/US2007/064570 Continuation WO2007109748A2 (en) | 2002-10-25 | 2007-03-21 | Foaming agents containing fluorine substituted unsaturated olefins |
US12/426,948 Continuation-In-Part US8033120B2 (en) | 2002-10-25 | 2009-04-20 | Compositions and methods containing fluorine substituted olefins |
Related Child Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/837,525 Continuation-In-Part US7279451B2 (en) | 2002-10-25 | 2004-04-29 | Compositions containing fluorine substituted olefins |
US11/475,605 Continuation-In-Part US9005467B2 (en) | 2002-10-25 | 2006-06-26 | Methods of replacing heat transfer fluids |
US12/259,694 Continuation-In-Part US7935268B2 (en) | 2008-10-28 | 2008-10-28 | Azeotrope-like compositions comprising trans-1-chloro-3,3,3-trifluoropropene |
US12/351,807 Continuation US9499729B2 (en) | 2003-10-27 | 2009-01-09 | Compositions and methods containing fluorine substituted olefins |
US13/191,141 Continuation-In-Part US9181410B2 (en) | 2002-10-25 | 2011-07-26 | Systems for efficient heating and/or cooling and having low climate change impact |
US13/191,070 Continuation-In-Part US9000061B2 (en) | 2006-03-21 | 2011-07-26 | Foams and articles made from foams containing 1-chloro-3,3,3-trifluoropropene (HFCO-1233zd) |
US13/298,452 Continuation-In-Part US9175200B2 (en) | 2008-10-28 | 2011-11-17 | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US13/585,755 Continuation US8729145B2 (en) | 2006-03-21 | 2012-08-14 | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090253820A1 true US20090253820A1 (en) | 2009-10-08 |
Family
ID=40668105
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/276,137 Abandoned US20090253820A1 (en) | 2002-10-25 | 2008-11-21 | Foaming agents and compositions containing fluorine sustituted olefins and methods of foaming |
US13/585,755 Active US8729145B2 (en) | 2006-03-21 | 2012-08-14 | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/585,755 Active US8729145B2 (en) | 2006-03-21 | 2012-08-14 | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
Country Status (9)
Country | Link |
---|---|
US (2) | US20090253820A1 (ko) |
EP (1) | EP2215152A4 (ko) |
JP (4) | JP2011504538A (ko) |
KR (6) | KR20150038512A (ko) |
CN (3) | CN105111492A (ko) |
CA (2) | CA2997980A1 (ko) |
MX (1) | MX2010005669A (ko) |
TW (2) | TWI612085B (ko) |
WO (1) | WO2009067720A2 (ko) |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090305876A1 (en) * | 2006-06-26 | 2009-12-10 | Honeywell International, Inc. | Compositions and Methods Containing Fluorine Substituted Olefins |
US20100102272A1 (en) * | 2008-10-28 | 2010-04-29 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US20100102273A1 (en) * | 2008-10-28 | 2010-04-29 | Honeywell International Inc. | Azeotrope-like compositions comprising trans-1-chloro-3,3,3-trifluoropropene |
US20100154444A1 (en) * | 2005-06-24 | 2010-06-24 | Honeywell International Inc. | Trans-Chloro-3,3,3-Trifluoropropene For Use In Chiller Applications |
US20100216904A1 (en) * | 2009-02-24 | 2010-08-26 | E. I. Du Pont De Nemours And Company | Foam-forming compositions containing mixtures of 2-chloro-3,3,3-trifluoropropene and at least one hydrofluoroolefin and their uses in the preparation of polyisocyanate-based foams |
US20110023507A1 (en) * | 2009-07-29 | 2011-02-03 | Honeywell International Inc. | Compositions and methods for refrigeration |
US20110084228A1 (en) * | 2008-06-11 | 2011-04-14 | Arkema France | Hydrofluoroolefin compositions |
US20110095224A1 (en) * | 2008-06-11 | 2011-04-28 | Wissam Rached | Hydrofluoroolefin compositions |
US20110162410A1 (en) * | 2007-10-12 | 2011-07-07 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US20110195890A1 (en) * | 2008-10-15 | 2011-08-11 | Laurent Abbas | Cleaning compositions |
GB2477835A (en) * | 2010-02-16 | 2011-08-17 | Ineos Fluor Holdings Ltd | Heat transfer compositions |
CN102250586A (zh) * | 2010-05-20 | 2011-11-23 | 墨西哥化学阿玛科股份有限公司 | 传热组合物 |
US20110309288A1 (en) * | 2009-01-22 | 2011-12-22 | Arkema Inc. | Azeotrope and azeotrope-like compositions of e-1-chloro-3,3,3-trifluoropropene and isopropanol |
WO2011144906A3 (en) * | 2010-05-20 | 2012-03-01 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US20120119136A1 (en) * | 2010-11-12 | 2012-05-17 | Honeywell International Inc. | Low gwp heat transfer compositions |
US20120128964A1 (en) * | 2010-11-19 | 2012-05-24 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US20120240477A1 (en) * | 2009-12-22 | 2012-09-27 | Ei Du Pont De Nemours And Company | Compositions comprising 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetra-chloropropene, 2-chloro-3,3,3-trifluoropropene, or 2-chloro-1,1,1,2-tetrafluoropropane |
US8333901B2 (en) | 2007-10-12 | 2012-12-18 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US20120329893A1 (en) * | 2010-03-09 | 2012-12-27 | Arkema France | Hydrochlorofluoroolefin blowing agent compositions |
US20130149452A1 (en) * | 2011-12-09 | 2013-06-13 | Honeywell International, Inc. | Foams and articles made from foams containing 1-chloro-3,3,3-trifluoropropene (1233zd) |
US20130197115A1 (en) * | 2011-08-01 | 2013-08-01 | Basf Se | Hfo/water-blown rigid foam systems |
US8512591B2 (en) | 2007-10-12 | 2013-08-20 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US8522606B2 (en) | 2010-12-22 | 2013-09-03 | Nuovo Pignone S.P.A. | Similitude testing of compressor performance |
US8580137B2 (en) * | 2009-01-22 | 2013-11-12 | Arkema Inc. | Trans-1,2-dichloroethylene with flash point elevated by 1-chloro-3,3,3-trifluoropropene |
US8703006B2 (en) | 2008-10-28 | 2014-04-22 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US8808569B2 (en) | 2009-09-11 | 2014-08-19 | Arkema France | Use of ternary compositions |
WO2014164587A1 (en) * | 2013-03-13 | 2014-10-09 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US8912369B2 (en) | 2012-06-29 | 2014-12-16 | Central Glass Company, Limited | Method for production of 1-chloro-3,3,3-trifluoropropene |
US20140378559A1 (en) * | 2011-12-19 | 2014-12-25 | Honeywell International Inc. | Compositions of 1,1,1,3,3-pentafluoropropane and cyclopentane |
US8962707B2 (en) | 2003-10-27 | 2015-02-24 | Honeywell International Inc. | Monochlorotrifluoropropene compounds and compositions and methods using same |
US9000061B2 (en) | 2006-03-21 | 2015-04-07 | Honeywell International Inc. | Foams and articles made from foams containing 1-chloro-3,3,3-trifluoropropene (HFCO-1233zd) |
US9011711B2 (en) | 2009-09-11 | 2015-04-21 | Arkema France | Heat transfer fluid replacing R-410A |
AU2013204022B2 (en) * | 2010-05-20 | 2015-05-14 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
AU2014203085B2 (en) * | 2010-05-20 | 2015-08-20 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US9150768B2 (en) | 2008-10-28 | 2015-10-06 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US9175203B2 (en) | 2009-09-11 | 2015-11-03 | Arkema France | Ternary compositions for low-capacity refrigeration |
US9175202B2 (en) | 2010-02-16 | 2015-11-03 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US9174897B2 (en) | 2012-06-28 | 2015-11-03 | Central Glass Company, Limited | Method for purifying trans-1,3,3,3-tetrafluoropropene |
US9267064B2 (en) | 2009-09-11 | 2016-02-23 | Arkema France | Ternary compositions for high-capacity refrigeration |
US9353302B2 (en) | 2010-08-13 | 2016-05-31 | Carrier Corporation | Fluorinated hydrocarbon composition |
US20160169575A1 (en) * | 2014-12-12 | 2016-06-16 | Honeywell International Inc. | Abs liners and cooling cabinets containing same |
US9683157B2 (en) | 2009-09-11 | 2017-06-20 | Arkema France | Heat transfer method |
US9816057B2 (en) | 2014-10-24 | 2017-11-14 | Edo Shellef | Nonflammable composition containing 1,2-dichloroethylene |
US9926244B2 (en) | 2008-10-28 | 2018-03-27 | Honeywell International Inc. | Process for drying HCFO-1233zd |
US10035938B2 (en) | 2009-09-11 | 2018-07-31 | Arkema France | Heat transfer fluid replacing R-134a |
US10077221B2 (en) | 2013-03-20 | 2018-09-18 | Arkema France | Composition comprising HF and E-3,3,3-trifluoro-1-chloropropene |
US10266736B2 (en) | 2010-06-25 | 2019-04-23 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US10330364B2 (en) | 2014-06-26 | 2019-06-25 | Hudson Technologies, Inc. | System and method for retrofitting a refrigeration system from HCFC to HFC refrigerant |
US10335623B2 (en) | 2011-05-19 | 2019-07-02 | Arkema Inc. | Non-flammable compositions of chloro-trifluoropropene |
US10669465B2 (en) | 2016-09-19 | 2020-06-02 | Arkema France | Composition comprising 1-chloro-3,3,3-trifluoropropene |
US10858561B2 (en) | 2008-10-16 | 2020-12-08 | Arkema France | Heat transfer method |
US11104833B2 (en) * | 2016-12-26 | 2021-08-31 | Zhejiang Quhua Fluor-Chemistry Co Ltd | Hydrofluoroolefins-containing refrigerant composition |
US11130893B2 (en) | 2008-10-08 | 2021-09-28 | Arkema France | Heat transfer fluid |
US20220163162A1 (en) * | 2019-04-02 | 2022-05-26 | Basf Se | Insulated pipe containing polyurethane foam which is foamed by an environmentally friendly foaming agent and has a low degree of brittleness |
WO2022213067A1 (en) * | 2021-03-30 | 2022-10-06 | Honeywell International Inc. | Blowing agents comprising z-1-chloro-2,3,3,3-tetrafluoropentene (hcfo-1224yd(z)) |
US11753516B2 (en) | 2021-10-08 | 2023-09-12 | Covestro Llc | HFO-containing compositions and methods of producing foams |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090253820A1 (en) * | 2006-03-21 | 2009-10-08 | Honeywell International Inc. | Foaming agents and compositions containing fluorine sustituted olefins and methods of foaming |
US20110037016A1 (en) * | 2003-10-27 | 2011-02-17 | Honeywell International Inc. | Fluoropropene compounds and compositions and methods using same |
JP5416087B2 (ja) | 2007-03-29 | 2014-02-12 | アーケマ・インコーポレイテッド | ヒドロフルオロプロペンおよびヒドロクロロフルオロオレフィンの発泡剤組成物 |
EP3473691A1 (en) | 2008-07-30 | 2019-04-24 | Honeywell International Inc. | Compositions containing difluoromethane and fluorine substituted olefins |
CN102177118A (zh) | 2008-10-10 | 2011-09-07 | 纳幕尔杜邦公司 | 包含2,3,3,3-四氟丙烯、2-氯-2,3,3,3-四氟丙醇、乙酸2-氯-2,3,3,3-四氟丙酯或(2-氯-2,3,3,3-四氟丙氧基)氯化锌的组合物 |
DE102009028061A1 (de) | 2009-07-29 | 2011-02-10 | Evonik Goldschmidt Gmbh | Verfahren zur Herstellung von Polyurethanschaum |
CN102574756B (zh) * | 2009-08-17 | 2014-09-17 | 阿科玛股份有限公司 | 1-氯-3,3,3-三氟丙烯和HFC-245eb的共沸混合物以及类共沸混合物的组合物 |
CA2778518C (en) * | 2009-10-23 | 2017-11-28 | Arkema Inc. | Tetrafluorobutene blowing agent compositions for polyurethane foams |
FR2955590B1 (fr) * | 2010-01-22 | 2012-03-23 | Arkema France | Compositions de nettoyage a base d'hydrochlorofluoroolefine |
GB201002619D0 (en) * | 2010-02-16 | 2010-03-31 | Ineos Fluor Holdings Ltd | Heat transfer compositions |
CN107090090B (zh) * | 2010-04-28 | 2022-05-17 | 阿科玛股份有限公司 | 改善含有卤化烯烃发泡剂的聚氨酯多元醇共混物的稳定性的方法 |
US8747691B2 (en) * | 2010-05-06 | 2014-06-10 | Honeywell International Inc. | Azeotrope-like compositions of tetrafluoropropene and water |
US20120046372A1 (en) * | 2010-08-18 | 2012-02-23 | Honeywell International Inc. | Blowing agents, foamable compositions and foams |
MX354274B (es) | 2011-08-01 | 2018-02-21 | Basf Se | Sistemas de espuma rígida soplados con hidrofluoroolefina/agua. |
JP5937386B2 (ja) * | 2012-03-16 | 2016-06-22 | 株式会社ジェイエスピー | ポリスチレン系樹脂押出発泡断熱板の製造方法 |
CN104540888A (zh) | 2012-08-15 | 2015-04-22 | 纳幕尔杜邦公司 | 2,3,3,4,4,4-六氟-1-丁烯和1,1,1,2,3,3-六氟丙烷的共沸和类共沸组合物及其用途 |
KR20180039771A (ko) | 2014-01-24 | 2018-04-18 | 아사히 가세이 겐자이 가부시키가이샤 | 페놀 수지 발포체 및 그 제조 방법 |
KR101991603B1 (ko) * | 2015-03-24 | 2019-06-20 | 아사히 가세이 겐자이 가부시키가이샤 | 페놀 수지 발포체 및 그 제조 방법 |
WO2016152988A1 (ja) * | 2015-03-24 | 2016-09-29 | 積水化学工業株式会社 | フェノール樹脂発泡体及びフェノール樹脂発泡体の製造方法 |
US20180044494A1 (en) | 2015-03-24 | 2018-02-15 | Asahi Kasei Construction Materials Corporation | Phenolic resin foam and method of producing same |
FR3037964B1 (fr) * | 2015-06-24 | 2019-12-20 | Saint-Gobain Isover | Mousses polyester thermodurcies et procede de fabrication |
CN105017553A (zh) * | 2015-07-14 | 2015-11-04 | 关志强 | 一种保温聚氨酯塑料的发泡剂 |
JP6512580B2 (ja) * | 2015-10-30 | 2019-05-15 | 株式会社ジェイエスピー | ポリスチレン系樹脂発泡板の製造方法 |
JP6541555B2 (ja) * | 2015-11-25 | 2019-07-10 | 株式会社ジェイエスピー | ポリスチレン系樹脂発泡板の製造方法 |
JP6921106B2 (ja) * | 2016-03-24 | 2021-08-18 | ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー | Z−1233zdの共沸及び共沸様組成物 |
JP6250094B2 (ja) * | 2016-05-12 | 2017-12-20 | 株式会社ジェイエスピー | ポリスチレン系樹脂押出発泡断熱板の製造方法 |
CN106750488B (zh) * | 2016-12-26 | 2019-05-17 | 浙江衢化氟化学有限公司 | 一种低碳环保型发泡剂组合物 |
JP6485493B2 (ja) * | 2017-06-16 | 2019-03-20 | ダイキン工業株式会社 | ペンタフルオロプロパンと水とを含む共沸又は共沸様組成物、並びにペンタフルオロプロパンの製造方法 |
CN108384515A (zh) * | 2018-02-27 | 2018-08-10 | 湖北绿冷高科节能技术有限公司 | 一种替代r22的制冷剂 |
WO2019232038A1 (en) * | 2018-05-29 | 2019-12-05 | Owens Corning Intellectual Capital, Llc | Blowing agent compositions for insulating foams |
WO2020132309A1 (en) * | 2018-12-21 | 2020-06-25 | Honeywell International Inc. | Solvent compositions containing 1,2,2-trifluoro-1-trifluoromethylcyclobutane (tfmcb) |
EP3935122B1 (en) * | 2019-03-04 | 2024-05-08 | The Chemours Company FC, LLC | Heat transfer compositions comprising r-1225ye(e) |
CN110105520B (zh) * | 2019-05-05 | 2021-09-21 | 深圳市盈石科技有限公司 | 一种保温硬质聚氨酯泡沫及其制备方法 |
WO2023204283A1 (ja) * | 2022-04-22 | 2023-10-26 | 旭化成建材株式会社 | フェノール樹脂発泡体およびその積層板 |
CN114940738B (zh) * | 2022-06-02 | 2024-02-27 | 万华化学(宁波)容威聚氨酯有限公司 | 一种聚氨酯组合物、聚氨酯泡沫及其制备方法与应用 |
Citations (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2834748A (en) * | 1954-03-22 | 1958-05-13 | Union Carbide Corp | Siloxane-oxyalkylene block copolymers |
US2846458A (en) * | 1956-05-23 | 1958-08-05 | Dow Corning | Organosiloxane ethers |
US2889379A (en) * | 1957-02-06 | 1959-06-02 | Dow Chemical Co | Preparation of 3, 3, 3-trifluoropropene |
US2917480A (en) * | 1954-06-10 | 1959-12-15 | Union Carbide Corp | Siloxane oxyalkylene block copolymers |
US2931840A (en) * | 1958-11-25 | 1960-04-05 | Du Pont | Process for preparing 2, 3, 3, 3-tetrafluoropropene |
US2996555A (en) * | 1959-06-25 | 1961-08-15 | Dow Chemical Co | Preparation of 2, 3, 3, 3-tetrafluoropropene |
US3085918A (en) * | 1959-05-22 | 1963-04-16 | Ici Ltd | Cleaning process |
US3723318A (en) * | 1971-11-26 | 1973-03-27 | Dow Corning | Propellants and refrigerants based on trifluoropropene |
US3884828A (en) * | 1970-10-15 | 1975-05-20 | Dow Corning | Propellants and refrigerants based on trifluoropropene |
US4465786A (en) * | 1982-09-27 | 1984-08-14 | General Electric Company | Catalyst composition for the preparation of 3,3,3-trifluoropropene |
US4788352A (en) * | 1986-07-21 | 1988-11-29 | Shell Oil Company | Trifluoroalkenes and a method for their preparation |
US4798818A (en) * | 1987-11-27 | 1989-01-17 | Dow Corning Corporation | Catalyst composition and process for its preparation |
US4945119A (en) * | 1989-05-10 | 1990-07-31 | The Dow Chemical Company | Foaming system for rigid urethane and isocyanurate foams |
US4944890A (en) * | 1989-05-23 | 1990-07-31 | E. I. Du Pont De Nemours And Company | Compositions and process of using in refrigeration |
US5137932A (en) * | 1989-12-07 | 1992-08-11 | Hoechst Aktiengesellschaft | Process for producing foams |
US5250208A (en) * | 1992-04-02 | 1993-10-05 | E. I. Du Pont De Nemours And Company | Ternary azeotropic compositions |
US5532419A (en) * | 1994-05-16 | 1996-07-02 | Alliedsignal Inc. | Processes for the preparation of fluorinated olefins and hydrofluorocarbons using fluorinated olefin |
US5574192A (en) * | 1994-07-11 | 1996-11-12 | Alliedsignal Inc. | Process for the manufacture of 1,1,1,3,3-pentafluoropropane |
US5578137A (en) * | 1993-08-31 | 1996-11-26 | E. I. Du Pont De Nemours And Company | Azeotropic or azeotrope-like compositions including 1,1,1,2,3,4,4,5,5,5-decafluoropentane |
US5616275A (en) * | 1993-03-29 | 1997-04-01 | E. I. Du Pont De Nemours And Company | Azeotrope(like) mixtures of two hexafluoropropane stereoisomers |
US5674451A (en) * | 1993-03-05 | 1997-10-07 | Ikon Corporation | Methods and compositions for sterilization of articles |
US5679875A (en) * | 1992-06-05 | 1997-10-21 | Daikin Industries, Ltd. | Method for manufacturing 1,1,1,2,3-pentafluoropropene 1,1,1,2,3-pentafluoropropane |
US5714083A (en) * | 1995-01-30 | 1998-02-03 | Turner; Donald E. | A non-flammable refrigerant fluid containing hexa fluoropropane and hydrocarbons |
US5736063A (en) * | 1991-03-18 | 1998-04-07 | Alliedsignal Inc. | Non-azeotropic refrigerant compositions containing carbon dioxide |
US5744052A (en) * | 1994-07-14 | 1998-04-28 | E. I. Du Pont De Nemours And Company | Azeotrope-like compositions containing difluoromethane, pentafluoroethane, and carbon dioxide |
US5788886A (en) * | 1997-05-05 | 1998-08-04 | E. I. Du Pont De Nemours And Company | Pentafluoropropane compositions |
US5900185A (en) * | 1996-09-27 | 1999-05-04 | University Of New Mexico | Tropodegradable bromine-containing halocarbon additives to decrease flammability of refrigerants, foam blowing agents, solvents, aerosol propellants, and sterilants |
US6041621A (en) * | 1998-12-30 | 2000-03-28 | Praxair Technology, Inc. | Single circuit cryogenic liquefaction of industrial gas |
US6111150A (en) * | 1996-06-20 | 2000-08-29 | Central Glass Company, Limited | Method for producing 1,1,1,3,3,-pentafluoropropane |
US6124510A (en) * | 1998-07-21 | 2000-09-26 | Elf Atochem North America, Inc. | 1234ze preparation |
US6258292B1 (en) * | 1996-08-08 | 2001-07-10 | Donald E. Turner | Alternative refrigerant including hexafluoropropylene |
US6274779B1 (en) * | 1998-03-03 | 2001-08-14 | Daniel Christopher Merkel | Purified 1,1,1,3,3,3-hexafluoropropane and method for making same |
US6300378B1 (en) * | 1996-09-27 | 2001-10-09 | University Of New Mexico | Tropodegradable bromine-containing halocarbon additives to decrease flammability of refrigerants foam blowing agents solvents aerosol propellants and sterilants |
US6327866B1 (en) * | 1998-12-30 | 2001-12-11 | Praxair Technology, Inc. | Food freezing method using a multicomponent refrigerant |
US6516837B2 (en) * | 2000-09-27 | 2003-02-11 | Honeywell International Inc. | Method of introducing refrigerants into refrigeration systems |
US20030127115A1 (en) * | 1999-10-29 | 2003-07-10 | Thomas Raymond Hilton Percival | Cleaning processes using hydrofluorocarbon and/or hydrochlorofluorocarbon compounds |
US20040256594A1 (en) * | 2002-10-25 | 2004-12-23 | Honeywell International, Inc. | Compositions containing fluorine substituted olefins |
US6858571B2 (en) * | 2002-10-25 | 2005-02-22 | Honeywell International Inc. | Pentafluoropropene-based compositions |
US20050054741A1 (en) * | 2002-01-30 | 2005-03-10 | Solvay Fluor Und Derivate Gmbh | Mixtures containing 1,1,1,3,3-pentafluorobutane and 1,1,1,2,3,3,3-heptafluoropropane |
US20050233934A1 (en) * | 2004-04-16 | 2005-10-20 | Honeywell International, Inc. | Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane |
US6972271B2 (en) * | 2000-07-17 | 2005-12-06 | Honeywell International Inc. | Supported catalyst systems |
US20060022166A1 (en) * | 2004-04-16 | 2006-02-02 | Honeywell International Inc. | Azeotrope-like compositions of tetrafluoropropene and pentafluoropropene |
US20060043331A1 (en) * | 2004-04-29 | 2006-03-02 | Honeywell International, Inc. | Compositions comprising tetrafluoeopropene & carbon dioxide |
US20060142173A1 (en) * | 2003-11-04 | 2006-06-29 | Honeywell International Inc. | Solvent compositions containing chlorofluoroolefins or fluoroolefins |
US20060243944A1 (en) * | 2005-03-04 | 2006-11-02 | Minor Barbara H | Compositions comprising a fluoroolefin |
US20070007488A1 (en) * | 2003-10-27 | 2007-01-11 | Honeywell International, Inc. | Compositions containing fluorine substituted olefins |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0760387B2 (ja) * | 1987-11-12 | 1995-06-28 | 松下電器産業株式会社 | 情報処理装置 |
JPH05179043A (ja) * | 1991-11-18 | 1993-07-20 | Daikin Ind Ltd | フルオロブテンからなる発泡剤およびプラスチック発泡体の製造方法 |
US20060234944A1 (en) * | 2001-10-23 | 2006-10-19 | Oklahoma Medical Reseach Foundation | Beta-secretase inhibitors and methods of use |
US9796848B2 (en) * | 2002-10-25 | 2017-10-24 | Honeywell International Inc. | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
US20090253820A1 (en) * | 2006-03-21 | 2009-10-08 | Honeywell International Inc. | Foaming agents and compositions containing fluorine sustituted olefins and methods of foaming |
DE10341394A1 (de) * | 2003-09-05 | 2005-04-28 | Pierburg Gmbh | Stellvorrichtung |
US7524805B2 (en) * | 2004-04-29 | 2009-04-28 | Honeywell International Inc. | Azeotrope-like compositions of tetrafluoropropene and hydrofluorocarbons |
EP1740521B1 (en) * | 2004-04-29 | 2015-05-20 | Honeywell International Inc. | Processes for synthesis of 1,3,3,3-tetrafluoropropene |
US20060143944A1 (en) * | 2005-01-06 | 2006-07-06 | Collins Matthew K | Surfing footwear with leash anchor |
TW201815923A (zh) * | 2005-06-24 | 2018-05-01 | 美商哈尼威爾國際公司 | 含有經氟取代之烯烴之發泡劑及組合物,及發泡方法 |
CA2646990C (en) * | 2006-03-21 | 2018-02-20 | Honeywell International Inc. | Foaming agents containing fluorine substituted unsaturated olefins |
FR2899234B1 (fr) * | 2006-03-31 | 2017-02-17 | Arkema | Composition d'agent d'expansion |
JP5416087B2 (ja) * | 2007-03-29 | 2014-02-12 | アーケマ・インコーポレイテッド | ヒドロフルオロプロペンおよびヒドロクロロフルオロオレフィンの発泡剤組成物 |
ES2376290T5 (es) * | 2007-03-29 | 2020-03-19 | Arkema Inc | Uso de composiciones de agente expansionante a base de hidrofluorolefinas e hidroclorofluorolefinas para el espumado de material termoplástico |
-
2008
- 2008-11-21 US US12/276,137 patent/US20090253820A1/en not_active Abandoned
- 2008-11-24 CA CA2997980A patent/CA2997980A1/en not_active Abandoned
- 2008-11-24 WO PCT/US2008/084512 patent/WO2009067720A2/en active Application Filing
- 2008-11-24 JP JP2010535113A patent/JP2011504538A/ja active Pending
- 2008-11-24 EP EP08851933A patent/EP2215152A4/en not_active Withdrawn
- 2008-11-24 KR KR20157005312A patent/KR20150038512A/ko not_active Application Discontinuation
- 2008-11-24 KR KR1020177021108A patent/KR20170091757A/ko not_active Application Discontinuation
- 2008-11-24 KR KR1020147023257A patent/KR20140119134A/ko not_active Application Discontinuation
- 2008-11-24 CN CN201510437927.6A patent/CN105111492A/zh active Pending
- 2008-11-24 MX MX2010005669A patent/MX2010005669A/es unknown
- 2008-11-24 KR KR1020167023520A patent/KR20160104745A/ko not_active Application Discontinuation
- 2008-11-24 KR KR1020107014118A patent/KR20100112562A/ko active IP Right Grant
- 2008-11-24 CN CN201510436991.2A patent/CN105111491A/zh active Pending
- 2008-11-24 KR KR1020197000987A patent/KR20190007105A/ko active IP Right Grant
- 2008-11-24 CA CA2706774A patent/CA2706774C/en active Active
- 2008-11-24 CN CN2008801257097A patent/CN101925644A/zh active Pending
- 2008-11-25 TW TW104134781A patent/TWI612085B/zh active
- 2008-11-25 TW TW97145587A patent/TW200932807A/zh unknown
-
2012
- 2012-08-14 US US13/585,755 patent/US8729145B2/en active Active
-
2014
- 2014-09-19 JP JP2014191142A patent/JP2015017268A/ja not_active Withdrawn
-
2016
- 2016-07-04 JP JP2016132325A patent/JP6307116B2/ja active Active
-
2018
- 2018-03-07 JP JP2018040959A patent/JP2018127628A/ja not_active Ceased
Patent Citations (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2834748A (en) * | 1954-03-22 | 1958-05-13 | Union Carbide Corp | Siloxane-oxyalkylene block copolymers |
US2917480A (en) * | 1954-06-10 | 1959-12-15 | Union Carbide Corp | Siloxane oxyalkylene block copolymers |
US2846458A (en) * | 1956-05-23 | 1958-08-05 | Dow Corning | Organosiloxane ethers |
US2889379A (en) * | 1957-02-06 | 1959-06-02 | Dow Chemical Co | Preparation of 3, 3, 3-trifluoropropene |
US2931840A (en) * | 1958-11-25 | 1960-04-05 | Du Pont | Process for preparing 2, 3, 3, 3-tetrafluoropropene |
US3085918A (en) * | 1959-05-22 | 1963-04-16 | Ici Ltd | Cleaning process |
US2996555A (en) * | 1959-06-25 | 1961-08-15 | Dow Chemical Co | Preparation of 2, 3, 3, 3-tetrafluoropropene |
US3884828A (en) * | 1970-10-15 | 1975-05-20 | Dow Corning | Propellants and refrigerants based on trifluoropropene |
US3723318A (en) * | 1971-11-26 | 1973-03-27 | Dow Corning | Propellants and refrigerants based on trifluoropropene |
US4465786A (en) * | 1982-09-27 | 1984-08-14 | General Electric Company | Catalyst composition for the preparation of 3,3,3-trifluoropropene |
US4788352A (en) * | 1986-07-21 | 1988-11-29 | Shell Oil Company | Trifluoroalkenes and a method for their preparation |
US4798818A (en) * | 1987-11-27 | 1989-01-17 | Dow Corning Corporation | Catalyst composition and process for its preparation |
US4945119A (en) * | 1989-05-10 | 1990-07-31 | The Dow Chemical Company | Foaming system for rigid urethane and isocyanurate foams |
US4944890A (en) * | 1989-05-23 | 1990-07-31 | E. I. Du Pont De Nemours And Company | Compositions and process of using in refrigeration |
US5137932A (en) * | 1989-12-07 | 1992-08-11 | Hoechst Aktiengesellschaft | Process for producing foams |
US5736063A (en) * | 1991-03-18 | 1998-04-07 | Alliedsignal Inc. | Non-azeotropic refrigerant compositions containing carbon dioxide |
US5250208A (en) * | 1992-04-02 | 1993-10-05 | E. I. Du Pont De Nemours And Company | Ternary azeotropic compositions |
US5679875A (en) * | 1992-06-05 | 1997-10-21 | Daikin Industries, Ltd. | Method for manufacturing 1,1,1,2,3-pentafluoropropene 1,1,1,2,3-pentafluoropropane |
US5674451A (en) * | 1993-03-05 | 1997-10-07 | Ikon Corporation | Methods and compositions for sterilization of articles |
US5616275A (en) * | 1993-03-29 | 1997-04-01 | E. I. Du Pont De Nemours And Company | Azeotrope(like) mixtures of two hexafluoropropane stereoisomers |
US5578137A (en) * | 1993-08-31 | 1996-11-26 | E. I. Du Pont De Nemours And Company | Azeotropic or azeotrope-like compositions including 1,1,1,2,3,4,4,5,5,5-decafluoropentane |
US5532419A (en) * | 1994-05-16 | 1996-07-02 | Alliedsignal Inc. | Processes for the preparation of fluorinated olefins and hydrofluorocarbons using fluorinated olefin |
US5574192A (en) * | 1994-07-11 | 1996-11-12 | Alliedsignal Inc. | Process for the manufacture of 1,1,1,3,3-pentafluoropropane |
US5744052A (en) * | 1994-07-14 | 1998-04-28 | E. I. Du Pont De Nemours And Company | Azeotrope-like compositions containing difluoromethane, pentafluoroethane, and carbon dioxide |
US5714083A (en) * | 1995-01-30 | 1998-02-03 | Turner; Donald E. | A non-flammable refrigerant fluid containing hexa fluoropropane and hydrocarbons |
US6111150A (en) * | 1996-06-20 | 2000-08-29 | Central Glass Company, Limited | Method for producing 1,1,1,3,3,-pentafluoropropane |
US6258292B1 (en) * | 1996-08-08 | 2001-07-10 | Donald E. Turner | Alternative refrigerant including hexafluoropropylene |
US5900185A (en) * | 1996-09-27 | 1999-05-04 | University Of New Mexico | Tropodegradable bromine-containing halocarbon additives to decrease flammability of refrigerants, foam blowing agents, solvents, aerosol propellants, and sterilants |
US6300378B1 (en) * | 1996-09-27 | 2001-10-09 | University Of New Mexico | Tropodegradable bromine-containing halocarbon additives to decrease flammability of refrigerants foam blowing agents solvents aerosol propellants and sterilants |
US5788886A (en) * | 1997-05-05 | 1998-08-04 | E. I. Du Pont De Nemours And Company | Pentafluoropropane compositions |
US6274779B1 (en) * | 1998-03-03 | 2001-08-14 | Daniel Christopher Merkel | Purified 1,1,1,3,3,3-hexafluoropropane and method for making same |
US6124510A (en) * | 1998-07-21 | 2000-09-26 | Elf Atochem North America, Inc. | 1234ze preparation |
US6041621A (en) * | 1998-12-30 | 2000-03-28 | Praxair Technology, Inc. | Single circuit cryogenic liquefaction of industrial gas |
US6327866B1 (en) * | 1998-12-30 | 2001-12-11 | Praxair Technology, Inc. | Food freezing method using a multicomponent refrigerant |
US20030127115A1 (en) * | 1999-10-29 | 2003-07-10 | Thomas Raymond Hilton Percival | Cleaning processes using hydrofluorocarbon and/or hydrochlorofluorocarbon compounds |
US6972271B2 (en) * | 2000-07-17 | 2005-12-06 | Honeywell International Inc. | Supported catalyst systems |
US6516837B2 (en) * | 2000-09-27 | 2003-02-11 | Honeywell International Inc. | Method of introducing refrigerants into refrigeration systems |
US20050054741A1 (en) * | 2002-01-30 | 2005-03-10 | Solvay Fluor Und Derivate Gmbh | Mixtures containing 1,1,1,3,3-pentafluorobutane and 1,1,1,2,3,3,3-heptafluoropropane |
US20040256594A1 (en) * | 2002-10-25 | 2004-12-23 | Honeywell International, Inc. | Compositions containing fluorine substituted olefins |
US6858571B2 (en) * | 2002-10-25 | 2005-02-22 | Honeywell International Inc. | Pentafluoropropene-based compositions |
US7279451B2 (en) * | 2002-10-25 | 2007-10-09 | Honeywell International Inc. | Compositions containing fluorine substituted olefins |
US20070007488A1 (en) * | 2003-10-27 | 2007-01-11 | Honeywell International, Inc. | Compositions containing fluorine substituted olefins |
US20060142173A1 (en) * | 2003-11-04 | 2006-06-29 | Honeywell International Inc. | Solvent compositions containing chlorofluoroolefins or fluoroolefins |
US20050233934A1 (en) * | 2004-04-16 | 2005-10-20 | Honeywell International, Inc. | Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane |
US20060022166A1 (en) * | 2004-04-16 | 2006-02-02 | Honeywell International Inc. | Azeotrope-like compositions of tetrafluoropropene and pentafluoropropene |
US20060043331A1 (en) * | 2004-04-29 | 2006-03-02 | Honeywell International, Inc. | Compositions comprising tetrafluoeopropene & carbon dioxide |
US20060243944A1 (en) * | 2005-03-04 | 2006-11-02 | Minor Barbara H | Compositions comprising a fluoroolefin |
Cited By (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8962707B2 (en) | 2003-10-27 | 2015-02-24 | Honeywell International Inc. | Monochlorotrifluoropropene compounds and compositions and methods using same |
US9347695B2 (en) * | 2005-06-24 | 2016-05-24 | Honeywell International Inc. | Trans-chloro-3,3,3-trifluoropropene for use in chiller applications |
US20100154444A1 (en) * | 2005-06-24 | 2010-06-24 | Honeywell International Inc. | Trans-Chloro-3,3,3-Trifluoropropene For Use In Chiller Applications |
US20140069129A1 (en) * | 2005-06-24 | 2014-03-13 | Honeywell International Inc. | Trans-chloro-3,3,3-trifluoropropene for use in chiller applications |
US8574451B2 (en) | 2005-06-24 | 2013-11-05 | Honeywell International Inc. | Trans-chloro-3,3,3-trifluoropropene for use in chiller applications |
US9000061B2 (en) | 2006-03-21 | 2015-04-07 | Honeywell International Inc. | Foams and articles made from foams containing 1-chloro-3,3,3-trifluoropropene (HFCO-1233zd) |
US9499729B2 (en) * | 2006-06-26 | 2016-11-22 | Honeywell International Inc. | Compositions and methods containing fluorine substituted olefins |
US20090305876A1 (en) * | 2006-06-26 | 2009-12-10 | Honeywell International, Inc. | Compositions and Methods Containing Fluorine Substituted Olefins |
US8333901B2 (en) | 2007-10-12 | 2012-12-18 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US20110162410A1 (en) * | 2007-10-12 | 2011-07-07 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US8512591B2 (en) | 2007-10-12 | 2013-08-20 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US8999190B2 (en) | 2007-10-12 | 2015-04-07 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US8628681B2 (en) * | 2007-10-12 | 2014-01-14 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US8070977B2 (en) * | 2008-06-11 | 2011-12-06 | Arkema France | Hydrofluoroolefin compositions |
US8246850B2 (en) | 2008-06-11 | 2012-08-21 | Arkema France | Hydrofluoroolefin compositions |
US8075798B2 (en) * | 2008-06-11 | 2011-12-13 | Arkema France | Hydrofluoroolefin compositions |
US20110095224A1 (en) * | 2008-06-11 | 2011-04-28 | Wissam Rached | Hydrofluoroolefin compositions |
US20110084228A1 (en) * | 2008-06-11 | 2011-04-14 | Arkema France | Hydrofluoroolefin compositions |
US8252198B2 (en) | 2008-06-11 | 2012-08-28 | Arkema France | Hydrofluoroolefin compositions |
US11130893B2 (en) | 2008-10-08 | 2021-09-28 | Arkema France | Heat transfer fluid |
US8053403B2 (en) * | 2008-10-15 | 2011-11-08 | Arkema France | Cleaning compositions |
US20110195890A1 (en) * | 2008-10-15 | 2011-08-11 | Laurent Abbas | Cleaning compositions |
US10858561B2 (en) | 2008-10-16 | 2020-12-08 | Arkema France | Heat transfer method |
US9150768B2 (en) | 2008-10-28 | 2015-10-06 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US8946312B2 (en) | 2008-10-28 | 2015-02-03 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US7935268B2 (en) * | 2008-10-28 | 2011-05-03 | Honeywell International Inc. | Azeotrope-like compositions comprising trans-1-chloro-3,3,3-trifluoropropene |
US20100102272A1 (en) * | 2008-10-28 | 2010-04-29 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US9175200B2 (en) | 2008-10-28 | 2015-11-03 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US8703006B2 (en) | 2008-10-28 | 2014-04-22 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US9926244B2 (en) | 2008-10-28 | 2018-03-27 | Honeywell International Inc. | Process for drying HCFO-1233zd |
US20100102273A1 (en) * | 2008-10-28 | 2010-04-29 | Honeywell International Inc. | Azeotrope-like compositions comprising trans-1-chloro-3,3,3-trifluoropropene |
US8163196B2 (en) * | 2008-10-28 | 2012-04-24 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US8580137B2 (en) * | 2009-01-22 | 2013-11-12 | Arkema Inc. | Trans-1,2-dichloroethylene with flash point elevated by 1-chloro-3,3,3-trifluoropropene |
US20110309288A1 (en) * | 2009-01-22 | 2011-12-22 | Arkema Inc. | Azeotrope and azeotrope-like compositions of e-1-chloro-3,3,3-trifluoropropene and isopropanol |
US20100216904A1 (en) * | 2009-02-24 | 2010-08-26 | E. I. Du Pont De Nemours And Company | Foam-forming compositions containing mixtures of 2-chloro-3,3,3-trifluoropropene and at least one hydrofluoroolefin and their uses in the preparation of polyisocyanate-based foams |
US20110023507A1 (en) * | 2009-07-29 | 2011-02-03 | Honeywell International Inc. | Compositions and methods for refrigeration |
US8974688B2 (en) * | 2009-07-29 | 2015-03-10 | Honeywell International Inc. | Compositions and methods for refrigeration |
US8808569B2 (en) | 2009-09-11 | 2014-08-19 | Arkema France | Use of ternary compositions |
US9683157B2 (en) | 2009-09-11 | 2017-06-20 | Arkema France | Heat transfer method |
US9505968B2 (en) | 2009-09-11 | 2016-11-29 | Arkema France | Ternary compositions for low-capacity refrigeration |
US9175203B2 (en) | 2009-09-11 | 2015-11-03 | Arkema France | Ternary compositions for low-capacity refrigeration |
US9127191B2 (en) | 2009-09-11 | 2015-09-08 | Arkema France | Use of ternary compositions |
US10035938B2 (en) | 2009-09-11 | 2018-07-31 | Arkema France | Heat transfer fluid replacing R-134a |
US9267064B2 (en) | 2009-09-11 | 2016-02-23 | Arkema France | Ternary compositions for high-capacity refrigeration |
US9663697B2 (en) | 2009-09-11 | 2017-05-30 | Arkema France | Use of ternary compositions |
US9399726B2 (en) | 2009-09-11 | 2016-07-26 | Arkema France | Use of ternary compositions |
US9011711B2 (en) | 2009-09-11 | 2015-04-21 | Arkema France | Heat transfer fluid replacing R-410A |
US9308408B2 (en) | 2009-12-22 | 2016-04-12 | The Chemours Company Fc, Llc | Compositions comprising 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetra-chloropropene, 2-chloro-3,3,3-trifluoropropene, or 2-chloro-1,1,1,2-tetrafluoropropane |
US9051500B2 (en) * | 2009-12-22 | 2015-06-09 | E I Du Pont De Nemours And Company | Compositions comprising 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetra-chloropropene, 2-chloro-3,3,3-trifluoropropene, or 2-chloro-1,1,1,2-tetrafluoropropane |
US10688329B2 (en) | 2009-12-22 | 2020-06-23 | The Chemours Company Fc, Llc | Compositions comprising 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetra-chloropropene, 2-chloro-3,3,3-trifluoropropene, or 2-chloro-1,1,1,2-tetrafluoropropane |
US9943717B2 (en) | 2009-12-22 | 2018-04-17 | The Chemours Company Fc, Llc | Compositions comprising 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetra-chloropropene, 2-chloro-3,3,3-trifluoropropene, or 2-chloro-1,1,1,2-tetrafluoropropane |
US12023536B2 (en) | 2009-12-22 | 2024-07-02 | The Chemours Company Fc, Llc | Compositions comprising 2,3,3,3-tetrafluoropropene, 1,1,2,3 tetrachloropropene, 2-chloro-3,3,3-trifluoropropene, or 2-chloro-1,1,1,2-tetrafluoropropane |
US11331525B2 (en) | 2009-12-22 | 2022-05-17 | The Chemours Company Fc, Llc | Compositions comprising 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetra-chloropropene, 2-chloro-3,3,3-trifluoropropene, or 2-chloro-1,1,1,2-tetrafluoropropane |
US20120240477A1 (en) * | 2009-12-22 | 2012-09-27 | Ei Du Pont De Nemours And Company | Compositions comprising 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetra-chloropropene, 2-chloro-3,3,3-trifluoropropene, or 2-chloro-1,1,1,2-tetrafluoropropane |
US11596824B2 (en) | 2009-12-22 | 2023-03-07 | The Chemours Company Fc, Llc | Compositions comprising 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetra-chloropropene, 2-chloro-3,3,3-trifluoropropene, or 2-chloro-1,1,1,2-tetrafluoropropane |
GB2477835A (en) * | 2010-02-16 | 2011-08-17 | Ineos Fluor Holdings Ltd | Heat transfer compositions |
CN104277766A (zh) * | 2010-02-16 | 2015-01-14 | 墨西哥化学阿玛科股份有限公司 | 传热组合物 |
US9175202B2 (en) | 2010-02-16 | 2015-11-03 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
GB2477835B (en) * | 2010-02-16 | 2012-01-04 | Mexichem Amanco Holding Sa | Heat transfer compositions |
US8926856B2 (en) | 2010-02-16 | 2015-01-06 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US20120329893A1 (en) * | 2010-03-09 | 2012-12-27 | Arkema France | Hydrochlorofluoroolefin blowing agent compositions |
CN102939351A (zh) * | 2010-05-20 | 2013-02-20 | 墨西哥化学阿玛科股份有限公司 | 传热组合物 |
WO2011144907A3 (en) * | 2010-05-20 | 2012-03-08 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US8808570B2 (en) | 2010-05-20 | 2014-08-19 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
WO2011144905A3 (en) * | 2010-05-20 | 2012-03-08 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
CN102250586A (zh) * | 2010-05-20 | 2011-11-23 | 墨西哥化学阿玛科股份有限公司 | 传热组合物 |
AU2011254381B2 (en) * | 2010-05-20 | 2014-03-06 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
AU2011254380B2 (en) * | 2010-05-20 | 2014-02-20 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
AU2013204022B2 (en) * | 2010-05-20 | 2015-05-14 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
WO2011144885A1 (en) * | 2010-05-20 | 2011-11-24 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
AU2014203085B2 (en) * | 2010-05-20 | 2015-08-20 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
AU2011254381C1 (en) * | 2010-05-20 | 2014-09-18 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
AU2010353438B2 (en) * | 2010-05-20 | 2013-08-22 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
WO2011144906A3 (en) * | 2010-05-20 | 2012-03-01 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
WO2011144909A3 (en) * | 2010-05-20 | 2012-03-01 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
WO2011144908A3 (en) * | 2010-05-20 | 2012-03-01 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
CN102947408A (zh) * | 2010-05-20 | 2013-02-27 | 墨西哥化学阿玛科股份有限公司 | 传热组合物 |
AU2014203085C1 (en) * | 2010-05-20 | 2016-01-07 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
CN102947409A (zh) * | 2010-05-20 | 2013-02-27 | 墨西哥化学阿玛科股份有限公司 | 传热组合物 |
US9309450B2 (en) | 2010-05-20 | 2016-04-12 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US8808571B2 (en) | 2010-05-20 | 2014-08-19 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
CN102939350A (zh) * | 2010-05-20 | 2013-02-20 | 墨西哥化学阿玛科股份有限公司 | 传热组合物 |
US8911641B2 (en) | 2010-05-20 | 2014-12-16 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US10266736B2 (en) | 2010-06-25 | 2019-04-23 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US11760911B2 (en) | 2010-06-25 | 2023-09-19 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US10844260B2 (en) | 2010-06-25 | 2020-11-24 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US9353302B2 (en) | 2010-08-13 | 2016-05-31 | Carrier Corporation | Fluorinated hydrocarbon composition |
US20120119136A1 (en) * | 2010-11-12 | 2012-05-17 | Honeywell International Inc. | Low gwp heat transfer compositions |
US20140264148A1 (en) * | 2010-11-19 | 2014-09-18 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US8734671B2 (en) * | 2010-11-19 | 2014-05-27 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
CN107033848A (zh) * | 2010-11-19 | 2017-08-11 | 霍尼韦尔国际公司 | 包含1‑氯‑3,3,3‑三氟丙烯的类共沸物组合物 |
US20120128964A1 (en) * | 2010-11-19 | 2012-05-24 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US9410024B2 (en) * | 2010-11-19 | 2016-08-09 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
KR20130116293A (ko) * | 2010-11-19 | 2013-10-23 | 허니웰 인터내셔널 인코포레이티드 | 1-클로로-3,3,3-트리플루오로프로펜을 포함하는 유사-공비 조성물 |
JP2013543050A (ja) * | 2010-11-19 | 2013-11-28 | ハネウェル・インターナショナル・インコーポレーテッド | 1−クロロ−3,3,3−トリフルオロプロペンを含む共沸混合物様の組成物 |
US8522606B2 (en) | 2010-12-22 | 2013-09-03 | Nuovo Pignone S.P.A. | Similitude testing of compressor performance |
US10335623B2 (en) | 2011-05-19 | 2019-07-02 | Arkema Inc. | Non-flammable compositions of chloro-trifluoropropene |
US9896558B2 (en) * | 2011-08-01 | 2018-02-20 | Basf Se | HFO/water-blown rigid foam systems |
US20130197115A1 (en) * | 2011-08-01 | 2013-08-01 | Basf Se | Hfo/water-blown rigid foam systems |
US20130149452A1 (en) * | 2011-12-09 | 2013-06-13 | Honeywell International, Inc. | Foams and articles made from foams containing 1-chloro-3,3,3-trifluoropropene (1233zd) |
US20140378559A1 (en) * | 2011-12-19 | 2014-12-25 | Honeywell International Inc. | Compositions of 1,1,1,3,3-pentafluoropropane and cyclopentane |
US9174897B2 (en) | 2012-06-28 | 2015-11-03 | Central Glass Company, Limited | Method for purifying trans-1,3,3,3-tetrafluoropropene |
US8912369B2 (en) | 2012-06-29 | 2014-12-16 | Central Glass Company, Limited | Method for production of 1-chloro-3,3,3-trifluoropropene |
WO2014164587A1 (en) * | 2013-03-13 | 2014-10-09 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US10077221B2 (en) | 2013-03-20 | 2018-09-18 | Arkema France | Composition comprising HF and E-3,3,3-trifluoro-1-chloropropene |
US10343963B2 (en) | 2013-03-20 | 2019-07-09 | Arkema France | Composition comprising HF and E-3,3,3-trifluoro-1-chloropropene |
US10330364B2 (en) | 2014-06-26 | 2019-06-25 | Hudson Technologies, Inc. | System and method for retrofitting a refrigeration system from HCFC to HFC refrigerant |
US9816057B2 (en) | 2014-10-24 | 2017-11-14 | Edo Shellef | Nonflammable composition containing 1,2-dichloroethylene |
US20160169575A1 (en) * | 2014-12-12 | 2016-06-16 | Honeywell International Inc. | Abs liners and cooling cabinets containing same |
US10669465B2 (en) | 2016-09-19 | 2020-06-02 | Arkema France | Composition comprising 1-chloro-3,3,3-trifluoropropene |
US11104833B2 (en) * | 2016-12-26 | 2021-08-31 | Zhejiang Quhua Fluor-Chemistry Co Ltd | Hydrofluoroolefins-containing refrigerant composition |
US20220163162A1 (en) * | 2019-04-02 | 2022-05-26 | Basf Se | Insulated pipe containing polyurethane foam which is foamed by an environmentally friendly foaming agent and has a low degree of brittleness |
US11982395B2 (en) * | 2019-04-02 | 2024-05-14 | Basf Se | Insulated pipe containing polyurethane foam which is foamed by an environmentally friendly foaming agent and has a low degree of brittleness |
WO2022213067A1 (en) * | 2021-03-30 | 2022-10-06 | Honeywell International Inc. | Blowing agents comprising z-1-chloro-2,3,3,3-tetrafluoropentene (hcfo-1224yd(z)) |
US11753516B2 (en) | 2021-10-08 | 2023-09-12 | Covestro Llc | HFO-containing compositions and methods of producing foams |
Also Published As
Publication number | Publication date |
---|---|
WO2009067720A3 (en) | 2009-08-27 |
JP2016199761A (ja) | 2016-12-01 |
EP2215152A4 (en) | 2012-08-01 |
MX2010005669A (es) | 2010-07-02 |
KR20140119134A (ko) | 2014-10-08 |
EP2215152A2 (en) | 2010-08-11 |
KR20160104745A (ko) | 2016-09-05 |
KR20170091757A (ko) | 2017-08-09 |
KR20190007105A (ko) | 2019-01-21 |
CA2997980A1 (en) | 2009-05-28 |
TW200932807A (en) | 2009-08-01 |
CA2706774A1 (en) | 2009-05-28 |
CN101925644A (zh) | 2010-12-22 |
TWI612085B (zh) | 2018-01-21 |
WO2009067720A2 (en) | 2009-05-28 |
US20130065044A1 (en) | 2013-03-14 |
TW201609893A (zh) | 2016-03-16 |
CN105111491A (zh) | 2015-12-02 |
US8729145B2 (en) | 2014-05-20 |
JP6307116B2 (ja) | 2018-04-04 |
JP2015017268A (ja) | 2015-01-29 |
KR20100112562A (ko) | 2010-10-19 |
CN105111492A (zh) | 2015-12-02 |
CA2706774C (en) | 2018-03-13 |
JP2018127628A (ja) | 2018-08-16 |
KR20150038512A (ko) | 2015-04-08 |
JP2011504538A (ja) | 2011-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8729145B2 (en) | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming | |
CA2613090C (en) | Foaming agents and compositions containing fluorine substituted olefins, and methods of foaming | |
CA2646990C (en) | Foaming agents containing fluorine substituted unsaturated olefins | |
US9796848B2 (en) | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming | |
US8420706B2 (en) | Foaming agents, foamable compositions, foams and articles containing halogen substituted olefins, and methods of making same | |
EP2660282A2 (en) | Foaming agents and compositions containing fluorine substituted olefins, and methods of foaming | |
US20190144630A1 (en) | Foaming agents and compositions containing fluorine substituted olefins, and methods of foaming | |
US20190112443A1 (en) | Foaming Agents And Compositions Containing Fluorine Substituted Olefins And Methods Of Foaming | |
US20180291171A1 (en) | Foaming agents, foamable compositions, foams and articles containing fluorine substituted olefins, and methods of making same | |
US20210007784A1 (en) | Foaming agents and compositions containing fluorine substituted olefins, and methods of foaming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HONEYWELL INTERNATIONAL INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOWMAN, JAMES M.;WILLIAMS, DAVID J.;REEL/FRAME:022204/0924;SIGNING DATES FROM 20090112 TO 20090121 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |