US20080216991A1 - Cooling device for information equipment - Google Patents

Cooling device for information equipment Download PDF

Info

Publication number
US20080216991A1
US20080216991A1 US12/039,962 US3996208A US2008216991A1 US 20080216991 A1 US20080216991 A1 US 20080216991A1 US 3996208 A US3996208 A US 3996208A US 2008216991 A1 US2008216991 A1 US 2008216991A1
Authority
US
United States
Prior art keywords
fins
coolant
cooling device
heat
base member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/039,962
Other languages
English (en)
Inventor
Hironori Oikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to HITACHI, LTD. reassignment HITACHI, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OIKAWA, HIRONORI
Publication of US20080216991A1 publication Critical patent/US20080216991A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an information equipment such as a personal computer mounted therein with a semiconductor integrated circuit, and in particular, to a heat-exchange technology of cooling devices for efficiently cooling heat generated by a semiconductor integrated circuit in order to enhance the performance and the reliability of an information equipment.
  • a cooling device for a semiconductor integrated circuit in a information equipment must be small-sized and have a high performance, which cannot be solved in a cooling device of an air-cooling type, as well as the noise problem.
  • a liquid-cooling system in which heat-transfer is made though a liquid coolant is highlighted in order to enhance the cooling performance.
  • JP-A-48-57242 discloses, as a method of forming fins, a skiving process in which an outer surface of a substrate is carved at fine pitches so as to turn up fins having a small thickness by a cutting tool in order to form a plurality of thin fins integrally incorporated with the substrate.
  • JP-A-2001-326308 discloses a technology for enhancing the effect of heat radiation of fins by the skiving process.
  • JP-A-2005-338715 discloses a technology in which coolant passages in a heat receiving member are defined by micro fins of micro-fabrication.
  • JP-A-2003-243590 discloses such a technology that a substrate of a semiconductor device is formed therein with micro channels by an etching process or the like so as to enhance the heat receiving efficiency, and liquid coolant is evaporated at a heat receiving member so as to simplify a liquid coolant circulation type cooling device with the use of the heat receiving member although this cooling system is specifically used for cooling a semiconductor device.
  • a heat-exchanger in a liquid cooling system has a technical problem in the above-mentioned conventional technologies, which should be solved in order to materialize a high performance heat receiving member which is small-sized and inexpensive.
  • the heat radiation member disclosed in the JP-A-2001-326308 is a heat sink which is integrally incorporated with heat radiation fins by a skiving process similar to that disclosed in JP-A-48-57242, and a method is disclosed for improving a strength problem in such a case that the heat sink is made of a copper group material having a high heat conductivity so as to cool a heat generating element having a high heating value, such as a CPU.
  • this document only discloses a technology relating to a material of which skived heat radiation fins are made, but does never disclose, similar to the JP-A-48-57242, the technology relating to the configuration and structure of fins used as passages of a heat receiving member in a liquid cooling system in order to enhance the heat-exchanging performance.
  • the cooling device disclosed in the JP-A-2003-243590 is adapted to enhance the reliability of thermal connection between a semiconductor device and a heat receiving member by forming micro channels in the substrate of the semiconductor device through an etching process.
  • etching process there are caused such problems that it is difficult to increase the height of the fins for enlarging the contact area with respect to the coolant which flows through a liquid cooling type cooling device, and that the etching process therefor is more expensive.
  • the present invention is devised in view of the problems of the heat receiving member inherent to the above-mentioned conventional cooling devices, and accordingly, an object of the present invention is to provide a cooing device for information equipments, which has a high performance and which can aim at enlarging the scope of element to be cooled by forming a liquid cooling type heat receiving member that can be formed with fine fins at low costs and that can enhance the heat-exchanging efficiency.
  • a cooling device for cooling a heat generating element mounted in a information equipment with the use of heat-transfer through a coolant.
  • the cooling device comprises a heat receiving member for receiving a heat from the heat generating element through the coolant, a heat radiation member for radiating the heat received through the coolant, and a piping member arranged between the heat receiving member and the heat radiation member, for circulating the coolant therebetween.
  • the heat receiving member is formed therein a closed space capable of passing the coolant therethrough, which is defined by a base member thermally connected to the heat generating element and a casing member, and has fins which define passages for introducing the coolant into the closes space and are integrally incorporated with a surface of the base member on the side opposite to the surface which is thermally connected to the heat generating element, in a predetermined place, the thickness of the base member in a zone where the fins are formed being set to be smaller than the thickness of the base member in the other zone where no fins are formed.
  • the fins formed on the base member are turned up by a skiving process at concaved positions where the base member is carved.
  • the base member is formed with inclined surfaces at opposite end parts of the flow passages defined between the fins formed in the base member, each inclined surface being extended from the height position of the thin wall part of the base member formed thereinwith the fins, to the height position of the thick wall part thereof.
  • the heat receiving member is formed so as to have a structure which is excellent in productivity, thereby it is possible to provide a cooling device for a information equipment, which is capable of efficiently cooling a heat generating element with an increased heating value.
  • FIG. 1A is a plane view illustrating a heat receiving member in a cooling device according to the present invention
  • FIG. 1B is a section view taken along a IB-IB line in FIG. 1A ;
  • FIG. 3 is a perspective view illustrating a configuration of a pressing member in a case that a port is laid sidelong;
  • FIG. 4 is a schematic block diagram illustrating a information equipment mounted therein with a cooling device according to the present invention
  • the information equipment 1 is mounted with a circuit board 2 , a power source 10 , an HDD 11 and the like.
  • the circuit board 2 has a heat generating element 3 such as a semiconductor device.
  • the cooling device 4 is compose of the following components: a heat receiving member 5 which is thermally connected to the heat generating element 3 so as to make a coolant flowing in the heat receiving member absorb heat through heat transfer; a heat radiation member 6 in which cooling air is blown through a heat radiation pipe or the like so as to radiate the heat absorbed in the coolant, outside of the information equipment, through the heat transfer; a tank 7 which reserves the coolant for the cooling device 1 ; a pump 8 for circulating the coolant between the heat receiving member 5 and the heat radiation member 6 ; and a pipeline 9 connecting the heat receiving member 5 , the heat radiation member 6 , the tank 7 and the pump 8 together, for circulating the coolant thereamong.
  • FIG. 1A is a schematic plane view illustrating the heat receiving member in the cooling device according to the present invention
  • FIG. 1B is a sectional view taken along a IB-IB line in FIG. 1A
  • FIG. 2 is a perspective view which shows configurations of fins defining flow passages and a pressing member.
  • the heat receiving member 5 has such a structure that two members, that is, a base member 51 and a casing member 52 are combined and joined together so as to define therebetween a closed space for introducing the coolant.
  • the base member 51 is made of an aluminum base material which is excellent in view of workability and cost performance.
  • a copper material or the like which is excellent in heat conductivity may also be used in order to enhance the heat-exchanging efficiency.
  • the base member 51 which serves as a functional component, is composed of a base 511 and fins 512 which are integrally incorporated with each other.
  • the base 511 of the base member 51 has a thermal contact surface 513 thermally connected to the heat generating element 3 . That is, the heat receiving member 5 is thermally connected with the heat generating element 3 at the thermal contact surface 513 , and coupled to and held in the information equipment 1 by means of screws (which are not shown) fitted in a plurality of screw holes 515 or the like formed in a flange part 514 .
  • the fins 512 are formed being turned up through a skiving process at fine pitches on the center zone 516 a of the opposite surface 516 of the base member 51 on the side remote from the thermal contact surface 513 , having a predetermined height (H). Further, a peripheral part 516 b around the fins 512 formed on the base member 51 is flush with the flange part 514 for convenience of the fabrication.
  • the zone where the fins 512 are formed has a wall thickness (t) from the thermal contact surface 513 , as will be detailed later, and is smaller than the wall thickness (T) of the outer peripheral part of the base 511 .
  • the fins 512 formed by machining are formed, being arranged in a row at pitches in a range from about 0.1 to 1.0 mm by carving and turning up the opposite surface 516 a of the base 511 , passages for the coolant being defined between the wall surfaces of the adjacent parallel fins 512 .
  • the casing member 52 which is joined to the base member 51 so as to define the passages for the coolant, between the fins 512 carved and turned up.
  • the casing member 52 has a cylindrical structure, being composed of a planar part 521 and a side wall part 522 .
  • the end surface of the side wall part 522 is connected to the outer peripheral part 516 b of the opposite surface 516 of the base 511 through the intermediary of a shield ring for preventing leakage, by a coupling process (which is not shown) such as joining or bonding (not shown).
  • the casing member 52 is provided with a pressing member 525 which is integrally incorporated with the base member 52 or which is formed separate from the base member 52 , and is then joined to the base member 52 ( FIG. 2 ), being opposed to the fins 512 , and accordingly, the top parts of the fins 512 are covered with the pressing member 525 so as to define passages between the fins 512 . Since the fins 512 are formed by the skiving process as they are, the height (H) of the fins 512 is uneven more or less.
  • the pressing member 525 presses the top parts of the fins 512 so as to clamp the fins 512 with a height (h) which is reduced from the height (H) so as to define the passages so that no leakage of the coolant is caused from the top parts thereof.
  • planar shape of the pressing member 525 has a size (W+) which is set to be larger than the length (W) of the row of the fins 512 in order to define the passages by all fins 512 , but smaller (L ⁇ ) than the width (L) of the fins 512 in order to make the flow of the coolant smoother, as will be detailed later.
  • planar part 521 of the casing member 52 is formed therein with a coolant inlet port 523 in the center part thereof above the fins 512 , and a coolant outlet port 524 on one side of the fins 512 thereabove.
  • the outlet port 524 may be formed in the side wall part 522 of the casing member 52 , in addition to the planar part 521 thereof.
  • the inlet port 523 may be formed sidelong as shown in FIG. 3 whenever it is necessary.
  • the pressing member 525 incorporated in the casing member 52 has a header 526 for spreading the coolant flowing from the inlet port 523 with a length substantially equal to the length (W) of the row of the fins 512 so as to effectively use the length of the row of the fins 512 for the coolant passages in its entirety in the direction orthogonal to the passages between the fins 512 .
  • the opening of the header 526 is formed in the extent of the fins 512 which are desired to be used.
  • the pressing member 525 may have a size which is the extent of the fins 512 desired to be used by a value + ⁇ .
  • the header 526 basically define therein a rectangular parallelepiped space, which may have such a sectional shape that a wedge-like shape is defined from the center to the periphery of the space so as to increase the flow rate of the coolant flowing toward a part of the heat generating element 3 in which the heating value is large in view of a heat transfer from the heat generating element to the fins 512 .
  • an inclined surface which is extended between the surface 516 a at the height position of the thin wall part of the base member on which the fins 512 are formed, and the surface 516 b at the height position of the thick wall part of the base member.
  • the circulated coolant flows into the heat receiving member 5 , after flowing down from the coolant inlet port 523 in a substantially center part of the fins in view of the width of the fins and the length of the row of the fins.
  • the coolant flows through the header 526 which is arranged above the fins 512 within the heat receiving member 5 , and into the passages between the fins 512 so as to be distributed left and right in the drawing.
  • the heat from the heat generating element 3 is transmitted to the fins 512 through the thermal contact surface 513 thermally connected thereto, and accordingly, the transmitted heat is received by the coolant through heat transfer.
  • the base member is preferably thin.
  • the base member is carved in the zone where the fins 512 are formed so as to have a thin wall thickness (t), while the peripheral part of the base member has a thick wall thickness (T) for ensuring a sufficient strength.
  • the fins 512 have such a configuration that they are carved and turned up in the part of the base 513 having a thin wall thickness (t), and accordingly, this configuration has a role of reinforcing the base 513 .
  • the thickness and gaps of the fins also relate to the structure reinforcement of the base 513 , and accordingly, the fins 512 preferably have a thickness which is not less than 0.5 times as large as the gaps of the fins.
  • the fins are formed at fine pitches by the skiving process so as to aim at increasing their surface areas exposed to the coolant.
  • the height of the coolant passages is the sum of the height (h) of the fins and the carved depth (T ⁇ t), whereas the terminal parts of the coolant passages between the fins 512 are decreased to the passage height (h) between the pressing member 525 and the thick wall part 516 b of the base 51 , and accordingly, the coolant is hindered from smoothly flowing.
  • the inclined surface is formed by extending from the surface 512 a at the roots of the fins 512 to the thick wall part 516 b of the base 511 , and the length of the pressing member 525 in the passage direction is set to be smaller than the widthwise length (L) of the passages between the fins. Accordingly, the coolant can flow out even from the upper parts of the fins 512 , thereby it is possible to aim at allowing the coolant to smoothly flow. It is noted that if the fins can have a sufficient height, or L ⁇ can be set to be sufficiently small in comparison with L, the necessity of the above-mentioned inclined surface can be eliminated.
  • the coolant having flown through the fins 512 turns around in the space defined between the fins 512 and the casing member 522 , and flows out from the outlet port 524 formed in the casing member 522 , and accordingly, the conducted heat is radiated from the heat radiation member 6 which is connected to the heat receiving member 5 through the intermediary of the pipe line 9 and to which the heat is transmitted from the coolant. It is noted that the heat transfer performance can be enhanced between the fins 512 and the coolant since the coolant flows down from the center part of the heat receiving member 5 above the passages therein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
US12/039,962 2007-03-02 2008-02-29 Cooling device for information equipment Abandoned US20080216991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007052169A JP4876975B2 (ja) 2007-03-02 2007-03-02 電子機器用の冷却装置および受熱部材
JP2007-052169 2007-03-02

Publications (1)

Publication Number Publication Date
US20080216991A1 true US20080216991A1 (en) 2008-09-11

Family

ID=39740475

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/039,962 Abandoned US20080216991A1 (en) 2007-03-02 2008-02-29 Cooling device for information equipment

Country Status (3)

Country Link
US (1) US20080216991A1 (enExample)
JP (1) JP4876975B2 (enExample)
CN (1) CN101257784B (enExample)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013131097A1 (en) * 2012-03-02 2013-09-06 Logos Technologies, Inc. Systems and methods for cooling disk lasers
US9064846B2 (en) 2013-09-05 2015-06-23 Mitsubishi Electric Corporation Semiconductor device
CN105025691A (zh) * 2015-08-10 2015-11-04 苏州大景能源科技有限公司 一种利用液冷散热的电子装置、散热装置及其冷却方法
US20170045307A1 (en) * 2015-08-11 2017-02-16 Cooler Master Co., Ltd. Liquid cooling block with shunt design and heat dissipating structure thereof
US20170272712A1 (en) * 2015-11-24 2017-09-21 Cooler Master Co., Ltd. Liquid Cooling Apparatus
US9778709B2 (en) 2014-11-04 2017-10-03 Fujitsu Limited Evaporator, cooling device, and electronic apparatus
US20190225054A1 (en) * 2018-01-23 2019-07-25 Borgwarner Ludwigsburg Gmbh Heating device and method for producing a heating rod
US10499542B2 (en) 2017-11-30 2019-12-03 Fujitsu Limited Cooling jacket and electronic apparatus
US10962299B2 (en) * 2018-11-09 2021-03-30 Ldc Precision Engineering Co., Ltd. Evaporator structure with improved layout of cooling fluid channels
US11160191B2 (en) * 2019-05-10 2021-10-26 Cooler Master Co., Ltd. Flow-rate adjustment component and liquid cooling device
US20220142001A1 (en) * 2020-11-05 2022-05-05 Deeia Inc. Loop thermosyphon devices and systems, and related methods
US20220316817A1 (en) * 2021-03-30 2022-10-06 Asia Vital Components Co., Ltd. Liquid-cooling heat dissipation structure
US12423158B2 (en) 2016-03-31 2025-09-23 SolidRun Ltd. System and method for provisioning of artificial intelligence accelerator (AIA) resources
US12453042B2 (en) 2022-06-21 2025-10-21 Deeia Inc. Metallic thermal interface materials and associated devices, systems, and methods

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117287B2 (ja) * 2008-06-06 2013-01-16 株式会社日立製作所 電子機器の冷却装置
JP5994103B2 (ja) * 2011-09-22 2016-09-21 パナソニックIpマネジメント株式会社 冷却装置およびこれを搭載した電気自動車および電子機器
JP5957686B2 (ja) * 2012-01-13 2016-07-27 パナソニックIpマネジメント株式会社 冷却装置およびこれを搭載した電子機器および電気自動車
JP6238800B2 (ja) * 2014-03-17 2017-11-29 株式会社フジクラ 冷却構造
JP2023166889A (ja) * 2022-05-10 2023-11-22 パナソニックIpマネジメント株式会社 冷却装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746086A (en) * 1971-08-27 1973-07-17 Peerless Of America Heat exchangers
US4909315A (en) * 1988-09-30 1990-03-20 Microelectronics And Computer Technology Corporation Fluid heat exchanger for an electronic component
US20020185260A1 (en) * 2000-11-21 2002-12-12 Calaman Douglas P. Liquid cooled heat exchanger with enhanced flow
US20050167088A1 (en) * 2002-06-28 2005-08-04 Roger Paulman Fin array for heat transfer assemblies and method of making same
US20060002088A1 (en) * 2004-07-01 2006-01-05 Bezama Raschid J Apparatus and methods for microchannel cooling of semiconductor integrated circuit packages
US7000684B2 (en) * 2002-11-01 2006-02-21 Cooligy, Inc. Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device
US7017654B2 (en) * 2003-03-17 2006-03-28 Cooligy, Inc. Apparatus and method of forming channels in a heat-exchanging device
US20060171801A1 (en) * 2004-12-27 2006-08-03 Matsushita Electric Industrial Co., Ltd. Heatsink apparatus
US20070025082A1 (en) * 2004-03-30 2007-02-01 Purdue Research Foundation Microchannel heat sink
US20070221364A1 (en) * 2006-03-23 2007-09-27 Cheng-Tien Lai Liquid-cooling heat sink
US20090316360A1 (en) * 2008-06-20 2009-12-24 International Business Machines Corporation Cooling apparatus and method of fabrication thereof with a cold plate formed in situ on a surface to be cooled
US7900692B2 (en) * 2005-10-28 2011-03-08 Nakamura Seisakusho Kabushikigaisha Component package having heat exchanger

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311759A (ja) * 1989-06-09 1991-01-21 Hitachi Ltd 半導体装置の冷却装置
JP3260584B2 (ja) * 1995-04-07 2002-02-25 株式会社日立製作所 マルチチップモジュールの冷却機構
JP4493117B2 (ja) * 1999-03-25 2010-06-30 レノボ シンガポール プライヴェート リミテッド ノートブック型パーソナルコンピューターの冷却方法及び冷却装置
JP2005079483A (ja) * 2003-09-03 2005-03-24 Hitachi Ltd 電子機器装置
JP4222171B2 (ja) * 2003-09-24 2009-02-12 株式会社デンソー 対向振動流型熱輸送装置
KR20060083430A (ko) * 2003-10-30 2006-07-20 후지쯔 가부시끼가이샤 냉각 장치 및 전자 장치
JP2005229047A (ja) * 2004-02-16 2005-08-25 Hitachi Ltd 電子機器の冷却システム、及び、それを使用した電子機器
JP4551261B2 (ja) * 2005-04-01 2010-09-22 株式会社日立製作所 冷却ジャケット
JP4687541B2 (ja) * 2005-04-21 2011-05-25 日本軽金属株式会社 液冷ジャケット
JP2007003164A (ja) * 2005-06-27 2007-01-11 Nakamura Mfg Co Ltd 平板状ヒートパイプまたはベーパーチャンバー、および、その形成方法
JP4962836B2 (ja) * 2006-01-10 2012-06-27 中村製作所株式会社 冷却部を備えた電子部品用パッケージ、およびその形成方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746086A (en) * 1971-08-27 1973-07-17 Peerless Of America Heat exchangers
US4909315A (en) * 1988-09-30 1990-03-20 Microelectronics And Computer Technology Corporation Fluid heat exchanger for an electronic component
US20020185260A1 (en) * 2000-11-21 2002-12-12 Calaman Douglas P. Liquid cooled heat exchanger with enhanced flow
US20050167088A1 (en) * 2002-06-28 2005-08-04 Roger Paulman Fin array for heat transfer assemblies and method of making same
US7000684B2 (en) * 2002-11-01 2006-02-21 Cooligy, Inc. Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device
US7017654B2 (en) * 2003-03-17 2006-03-28 Cooligy, Inc. Apparatus and method of forming channels in a heat-exchanging device
US20070025082A1 (en) * 2004-03-30 2007-02-01 Purdue Research Foundation Microchannel heat sink
US20060002088A1 (en) * 2004-07-01 2006-01-05 Bezama Raschid J Apparatus and methods for microchannel cooling of semiconductor integrated circuit packages
US20060171801A1 (en) * 2004-12-27 2006-08-03 Matsushita Electric Industrial Co., Ltd. Heatsink apparatus
US7900692B2 (en) * 2005-10-28 2011-03-08 Nakamura Seisakusho Kabushikigaisha Component package having heat exchanger
US20070221364A1 (en) * 2006-03-23 2007-09-27 Cheng-Tien Lai Liquid-cooling heat sink
US20090316360A1 (en) * 2008-06-20 2009-12-24 International Business Machines Corporation Cooling apparatus and method of fabrication thereof with a cold plate formed in situ on a surface to be cooled

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013131097A1 (en) * 2012-03-02 2013-09-06 Logos Technologies, Inc. Systems and methods for cooling disk lasers
US9064846B2 (en) 2013-09-05 2015-06-23 Mitsubishi Electric Corporation Semiconductor device
US9778709B2 (en) 2014-11-04 2017-10-03 Fujitsu Limited Evaporator, cooling device, and electronic apparatus
CN105025691A (zh) * 2015-08-10 2015-11-04 苏州大景能源科技有限公司 一种利用液冷散热的电子装置、散热装置及其冷却方法
US10571203B2 (en) * 2015-08-11 2020-02-25 Cooler Master Co., Ltd. Liquid cooling block with shunt design and heat dissipating structure thereof
US20170045307A1 (en) * 2015-08-11 2017-02-16 Cooler Master Co., Ltd. Liquid cooling block with shunt design and heat dissipating structure thereof
US20170272712A1 (en) * 2015-11-24 2017-09-21 Cooler Master Co., Ltd. Liquid Cooling Apparatus
US10171778B2 (en) * 2015-11-24 2019-01-01 Cooler Master Co., Ltd. Liquid cooling apparatus
US12423158B2 (en) 2016-03-31 2025-09-23 SolidRun Ltd. System and method for provisioning of artificial intelligence accelerator (AIA) resources
US10499542B2 (en) 2017-11-30 2019-12-03 Fujitsu Limited Cooling jacket and electronic apparatus
US20190225054A1 (en) * 2018-01-23 2019-07-25 Borgwarner Ludwigsburg Gmbh Heating device and method for producing a heating rod
US10962299B2 (en) * 2018-11-09 2021-03-30 Ldc Precision Engineering Co., Ltd. Evaporator structure with improved layout of cooling fluid channels
US11160191B2 (en) * 2019-05-10 2021-10-26 Cooler Master Co., Ltd. Flow-rate adjustment component and liquid cooling device
US11627686B2 (en) 2019-05-10 2023-04-11 Cooler Master Co., Ltd. Liquid cooling device
US20220142001A1 (en) * 2020-11-05 2022-05-05 Deeia Inc. Loop thermosyphon devices and systems, and related methods
US11744044B2 (en) * 2020-11-05 2023-08-29 Deeia, Inc. Loop thermosyphon devices and systems, and related methods
US20220316817A1 (en) * 2021-03-30 2022-10-06 Asia Vital Components Co., Ltd. Liquid-cooling heat dissipation structure
US12453042B2 (en) 2022-06-21 2025-10-21 Deeia Inc. Metallic thermal interface materials and associated devices, systems, and methods

Also Published As

Publication number Publication date
CN101257784A (zh) 2008-09-03
JP2008218589A (ja) 2008-09-18
CN101257784B (zh) 2010-12-15
JP4876975B2 (ja) 2012-02-15

Similar Documents

Publication Publication Date Title
US20080216991A1 (en) Cooling device for information equipment
US7516777B2 (en) Cooling jacket
US10747276B2 (en) Cooling system and water cooling radiator
CN100385653C (zh) 液冷罩
US7537047B2 (en) Liquid-cooling heat sink
JP6561846B2 (ja) 冷却装置及び電子装置
US20050007730A1 (en) Electronic apparatus
EP1564809A1 (en) Liquid cooling system and electronic apparatus comprising that system
US20080314559A1 (en) Heat exchange structure and heat dissipating apparatus having the same
US20080006037A1 (en) Computer cooling apparatus
US20060021737A1 (en) Liquid cooling device
US20080023176A1 (en) Heat dissipation device
US20020186538A1 (en) Cooling module and the system using the same
TWM609021U (zh) 液冷散熱裝置及具有該液冷散熱裝置的液冷散熱系統
JP4682859B2 (ja) 電子機器用の冷却システム
US11625079B2 (en) Staggered arrangement graphite heat sink for liquid cooling cold plate
TWM586876U (zh) 複合水冷排結構
JP6563161B1 (ja) 冷却器、電力変換装置ユニット及び冷却システム
CN117170477B (zh) 一种散热模组及电子装置
TWI687642B (zh) 循環散熱模組
TWI839974B (zh) 一種利用兩相流循環蒸氣腔與冷液態流體進行熱交換之散熱模組
JP4737117B2 (ja) 電子機器用冷却装置および受熱部材
US20050189089A1 (en) Fluidic apparatus and method for cooling a non-uniformly heated power device
JP4682858B2 (ja) 電子機器用の冷却装置
JP2011223019A (ja) 電子機器用の冷却装置および冷却デバイス

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OIKAWA, HIRONORI;REEL/FRAME:020959/0597

Effective date: 20080428

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION