US20080169033A1 - Fuel Tank With Low Profile Fuel Reservoir - Google Patents
Fuel Tank With Low Profile Fuel Reservoir Download PDFInfo
- Publication number
- US20080169033A1 US20080169033A1 US11/908,544 US90854406A US2008169033A1 US 20080169033 A1 US20080169033 A1 US 20080169033A1 US 90854406 A US90854406 A US 90854406A US 2008169033 A1 US2008169033 A1 US 2008169033A1
- Authority
- US
- United States
- Prior art keywords
- fuel
- reservoir
- fuel tank
- recess
- low profile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K15/00—Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
- B60K15/03—Fuel tanks
- B60K15/06—Fuel tanks characterised by fuel reserve systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K15/00—Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
- B60K15/03—Fuel tanks
- B60K15/077—Fuel tanks with means modifying or controlling distribution or motion of fuel, e.g. to prevent noise, surge, splash or fuel starvation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M37/00—Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
- F02M37/04—Feeding by means of driven pumps
- F02M37/08—Feeding by means of driven pumps electrically driven
- F02M37/10—Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir
- F02M37/103—Mounting pumps on fuel tanks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M37/00—Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
- F02M37/22—Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system
- F02M37/32—Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system characterised by filters or filter arrangements
- F02M37/50—Filters arranged in or on fuel tanks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M37/00—Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
- F02M37/04—Feeding by means of driven pumps
- F02M37/08—Feeding by means of driven pumps electrically driven
- F02M37/10—Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir
- F02M37/106—Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir the pump being installed in a sub-tank
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/85978—With pump
- Y10T137/86091—Resiliently mounted pump
Definitions
- the fuel delivery modules require a substantial reservoir capacity to provide enough reserve fuel for low fuel considerations.
- the fuel could be displaced to one side of the tank to such an extent that the inlet end of the dip tube, which forms part of the fuel-intake tubing, is at least temporarily no longer submerged in the fuel. Under such conditions, the dip tube sucks out air instead of fuel, thereby producing an interruption in the feed fuel flow that impedes the proper operation of the internal-combustion engine.
- a low profile fuel reservoir i.e. a flat reservoir or a reservoir having a height smaller than its length and width
- the present invention concerns a fuel tank having a reservoir and a fuel pump sucking fuel out of said reservoir, wherein said reservoir has a low profile and wherein the fuel pump is mounted horizontally or inclined into or onto said low profile reservoir.
- This low profile reservoir may be:
- “mounted into” means either that the fuel pump is entirely inside the volume of the reservoir, in which case it generally is mounted horizontally into it (see FIG. 1 ), or that it is partly within the reservoir, at least the fuel inlet port being inside the reservoir.
- the pump may be mounted inclined i.e. with its axis making an angle of less than 90°, (preferably less than 60° and even, less than 45°) with the tank bottom (see FIG. 3 ).
- the pump is plugged into or in a fixation point (like a recess of adequate shape for instance) on the reservoir's cover.
- the pump preferably is mounted horizontally in order to save height (see FIG. 2 ) which implies that the fixation means preferably are deformable so that the pump can be tilted (and put horizontally) after having been plugged in (since generally happens vertically).
- the fuel tank according to the invention is preferably made of plastic material (and most preferably, the reservoir as well).
- plastic denotes any material comprising at least one synthetic resin polymer. Particularly suitable plastics come from the thermoplastics category.
- thermoplastic denotes any thermoplastic polymer, including thermoplastic elastomers, as well as blends thereof.
- polyolefins, thermoplastic polyesters, polyketones, polyamides and copolymers thereof may be used.
- a blend of polymers or copolymers may also be used, as may a blend of polymer materials with inorganic, organic and/or natural fillers such as, for example, but non limitingly, carbon, salts and other inorganic derivatives, natural fibres or polymeric fibres. It is also possible to use multilayer structures consisting of stacked layers bonded together comprising at least one of the polymers or copolymers described above.
- One polymer that is often used is polyethylene. Excellent results have been obtained with high density polyethylene (HDPE).
- HDPE high density polyethylene
- the wall of the tank may be made up of a single layer of thermoplastic or of two layers.
- One or more other possible additional layers may, advantageously, consist of layers of a material that forms a barrier to the liquids and/or gases.
- the nature and thickness of the barrier layer are chosen in such a way as to limit as far as possible the permeability towards the liquids and gases in contact with the interior surface of the tank.
- this layer is based on a barrier resin, that is to say on a resin impermeable to the fuel such as EVOH for example (a copolymer of ethylene and partially hydrolysed vinyl acetate).
- the tank may be subjected to a surface treatment (fluoration or sulphonation) the purpose of which is to render it impermeable to the fuel.
- Typical reservoir systems for fuel tanks include
- the low profile reservoir lies on the bottom of the fuel tank i.e. its lower wall is flush with the tank's bottom (floor) and its volume extends inside the fuel tank volume.
- the pump is preferably mounted horizontally and completely inside said reservoir so that the fuel tank can remain flat.
- the reservoir is inserted into this flat fuel tank through a side wall thereof which is provided with an opening and a flange.
- the fuel filter is in line with the reservoir and in the case of a system with pressure regulator, said regulator is also preferably in line with the filter as well.
- the reservoir is fixed within or integrated to a recess in the bottom of the tank so that its volume extends outside the fuel tank volume.
- this recess has a depth such that the upper wall of the reservoir is flush with the tank bottom.
- the low profile reservoir is preferably a closed volume (i.e. is either provided with a cover or included in a closed housing) to reduce fuel slosh/escape during low fuel conditions.
- the low profile reservoir/filter module described in FIGS. 2 and 3 can be used to provide a much more simple system than the one of FIG. 1 since it is based on an adapted design of the fuel tank floor configuration to receive it. However, it implies that there should be enough space within the vehicle for which it is intended, to receive said recess which extends below the volume of the fuel tank.
- either the low profile reservoir is fixed in a recess of the fuel tank, or it may in fact be that recess itself. In any case, it preferably is provided with a cover.
- the above mentioned recess is preferably integrally molded with the fuel tank bottom.
- One way of performing this in practice is the use of a fixed cavity inside the mold, which has the shape of the recess.
- the reservoir is preferably not the recess itself unless it is provided with a separate cover in order to prevent fuel egression from the reservoir in the event of excessive movement.
- the filter element is then preferably directly enclosed into the integrally molded recess so that the recess plays the role both of the low profile reservoir and of a filter housing covers substantially the entire bottom of the reservoir.
- the filter element preferably covers the entire surface of the reservoir.
- the enclosure for the filter media enhances the surface tension of the fuel in and around the depth media.
- the surface tension of the filter depth media allows the pump to draw in fuel through the filter media without sucking air as long as the filter is in contact with fuel at any point along its perimeter.
- the capillary action of the depth media helps to wick fuel into the media. This also provides a barrier to air (surface tension) by wetting the entire depth if the media so that it becomes easier for the pump to suck fuel instead of air.
- cover is a separate part provided on the recess
- use of a perimeter seal between said cover and said recess can be made to enhance the fuel retention during extended “G” force events or long periods of inactivity. That design sealed around the perimeter of the recess in the tank floor and eliminates the need for a separate reservoir component.
- the simplicity also provides a low cost alternative with substantially reduced failure modes to improve reliability and durability.
- the reservoir according to the invention preferably is of adequate structural strength in order to mount and retain other components such as:
- the reservoir of the invention is in fact a flat, low profile module, said components should be mounted therein horizontally and in series, one after the other (as pictured in FIG. 1 , for the case of a flat module lying on the tank bottom).
- the structure could be designed for a no-tool-assembly on to the floor of the fuel tank to secure its optimum position and accuracy of the fuel level sender signal output.
- a kind of dove tail attachment can be used for instance, or a mounting flange like in FIG. 1 .
- FIGS. 1 to 3 which have already been referred to above (because showing some specific embodiments of the present invention).
- the systems pictured comprise the following elements
- FIG. 1 shows a complete module intended to lie on the bottom of a flat tank ( 1 ).
- FIG. 1 ′ and 1 ′′ are respectively a front view and a side view of the complete module illustrated in FIG. 1 . They show that its profile may be shaped to fit the tank opening ( 9 ), and for instance be circular.
- the way the pressure regulator ( 7 ) creates a side jet ( 8 ) to power the main jet pump ( 4 , the one filling the reservoir) is also detailed in FIG. 1 .
- FIG. 2 comprises an elevated view and a cut through a system according to another embodiment of the invention according to which the fuel tank ( 1 ) has a recess into which a prefabricated reservoir ( 2 ) fits.
- the pump ( 3 ) which is snapped in a fixation recess ( 11 ) molded with the reservoir's cover ( 2 ), is shown before tilting it for its final, horizontal position (shown in dotted lines).
- FIG. 3 pictures still another embodiment according to which a recess in the fuel tank bottom ( 1 ) plays the role of reservoir so that it is merely provided with a cover ( 2 ′) after having been molded in one piece with the reservoir.
- a fuel filter ( 6 ) is sandwiched in between the 2-piece reservoir.
- a fuel supply pump ( 3 ) is mounted inclined and partially inside the reservoir ( 2 ). It sucks fuel through the filter ( 6 ) which covers the entire surface of the tank recess ( 2 ).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/908,544 US20080169033A1 (en) | 2005-03-14 | 2006-03-13 | Fuel Tank With Low Profile Fuel Reservoir |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66140805P | 2005-03-14 | 2005-03-14 | |
PCT/EP2006/060669 WO2006097451A2 (en) | 2005-03-14 | 2006-03-13 | Fuel tank with low profile fuel reservoir |
US11/908,544 US20080169033A1 (en) | 2005-03-14 | 2006-03-13 | Fuel Tank With Low Profile Fuel Reservoir |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080169033A1 true US20080169033A1 (en) | 2008-07-17 |
Family
ID=36593332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/908,544 Abandoned US20080169033A1 (en) | 2005-03-14 | 2006-03-13 | Fuel Tank With Low Profile Fuel Reservoir |
Country Status (5)
Country | Link |
---|---|
US (1) | US20080169033A1 (es) |
EP (2) | EP1861614A2 (es) |
JP (2) | JP2008533378A (es) |
CN (2) | CN101166645B (es) |
WO (1) | WO2006097451A2 (es) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090277156A1 (en) * | 2008-05-07 | 2009-11-12 | Emitec Gesellschaft Fur Emissionstechnologie Mbh | Tank For A Reducing Agent, Motor Vehicle Having A Tank For A Reducing Agent And Method For Operating An SCR System Of A Motor Vehicle |
US20100206793A1 (en) * | 2009-02-16 | 2010-08-19 | Aisan Kogyo Kabushiki Kaisha | Suction filter and fuel supply device |
US20110132825A1 (en) * | 2009-12-04 | 2011-06-09 | Aisan Kogyo Kabushiki Kaisha | Filtering device |
US20110192477A1 (en) * | 2010-02-05 | 2011-08-11 | Ford Global Technologies, Llc | Passive-siphoning system and method |
US20120145132A1 (en) * | 2010-12-14 | 2012-06-14 | GM Global Technology Operations LLC | Low Fuel Engine Restarting |
DE102016009228A1 (de) * | 2016-07-28 | 2018-02-01 | Audi Ag | Kraftstofftank für ein Kraftfahrzeug und Kraftfahrzeug |
US11073118B2 (en) * | 2015-12-17 | 2021-07-27 | Denso Corporation | Fuel pump and fuel pump module |
US11291936B2 (en) * | 2019-09-25 | 2022-04-05 | Coavis | Strainer for fuel pump |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1911962A1 (en) | 2006-09-29 | 2008-04-16 | Inergy Automotive Systems Research (SA) | Single piece dual jet pump and fuel system using it |
JP5554055B2 (ja) * | 2009-12-09 | 2014-07-23 | 愛三工業株式会社 | 燃料供給装置 |
JP2019044733A (ja) * | 2017-09-06 | 2019-03-22 | 三菱電機株式会社 | 燃料供給装置 |
JP7271383B2 (ja) * | 2019-09-30 | 2023-05-11 | 愛三工業株式会社 | 燃料ポンプモジュール、燃料供給装置及び燃料ポンプモジュールの燃料タンクへの設置方法 |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3470907A (en) * | 1966-05-09 | 1969-10-07 | Kaiser Jeep Corp | One-piece plastic gas tank and fuel level sensing apparatus and method |
US4188969A (en) * | 1977-12-30 | 1980-02-19 | Gladys Mayden | Reserve fuel tank system |
US4397333A (en) * | 1981-09-04 | 1983-08-09 | Chrysler Corporation | Fuel collector assembly |
US4776315A (en) * | 1987-02-11 | 1988-10-11 | Robert Bosch Gmbh | Arrangement for feeding of fuel from a supply tank to an internal combustion engine, particularly of a power vehicle |
US4919103A (en) * | 1987-02-28 | 1990-04-24 | Nippondenso Co., Ltd. | Device for controlling evaporative emission from a fuel tank |
US5341842A (en) * | 1993-07-12 | 1994-08-30 | Ford Motor Company | Bottom mount fuel tank module for an automobile |
US5458373A (en) * | 1992-12-16 | 1995-10-17 | Mercedes-Benz Ag | Fuel tank assembly |
US5988213A (en) * | 1997-01-31 | 1999-11-23 | Mitsubishi Denki Kabushiki Kaisha | Vehicular fuel supplying apparatus |
US6000913A (en) * | 1998-08-24 | 1999-12-14 | Ford Motor Company | Low profile fuel delivery module |
US6065452A (en) * | 1997-11-19 | 2000-05-23 | Mitsubishi Denki Kabushiki Kaisha | Fuel feeder for vehicles |
US6253790B1 (en) * | 1998-08-26 | 2001-07-03 | Honda Giken Kogyo Kabushiki Kaisha | Fuel tank for motorcycle |
US6401750B2 (en) * | 2000-03-02 | 2002-06-11 | Suzuki Kabushiki Kaisha | Fuel tank unit of motorcycle |
US20030057212A1 (en) * | 2001-09-27 | 2003-03-27 | Fish Duane A. | Passthru device for internalized component fuel tanks |
US20030102033A1 (en) * | 2001-11-30 | 2003-06-05 | Dasilva Antonio J. | Fuel tank assembly |
US6843510B2 (en) * | 2001-06-26 | 2005-01-18 | Marwal Systems | System for coupling a fuel feed hose with the opening of equipment for filling a motor vehicle tank |
US20050045399A1 (en) * | 2003-07-29 | 2005-03-03 | Takashi Kudo | Structure of fuel pump installation area for two-wheeled vehicle |
US20050155583A1 (en) * | 2004-01-19 | 2005-07-21 | Mitsubishi Denki Kabushiki Kaisha | Fuel supply apparatus |
US20070095332A1 (en) * | 2005-11-01 | 2007-05-03 | Mitsubishi Denki Kabushiki Kaisha | Fuel supply device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE68903628T2 (de) * | 1988-12-07 | 1996-07-25 | Nifco Inc | Anordnung von Brennstoffpumpe und Staubehälter in einem Brennstoffbehälter eines Kraftfahrzeuges. |
JP2002098018A (ja) * | 1998-03-12 | 2002-04-05 | Toyo Roki Mfg Co Ltd | 燃料供給装置 |
JP2001082277A (ja) * | 1999-09-16 | 2001-03-27 | Keihin Corp | 燃料供給装置 |
JP4442997B2 (ja) * | 2000-05-29 | 2010-03-31 | 株式会社ミツバ | 燃料供給装置 |
JP2003049729A (ja) * | 2001-08-06 | 2003-02-21 | Mitsuba Corp | 燃料供給装置 |
US20030136507A1 (en) * | 2002-01-18 | 2003-07-24 | Thiel Steven A. | Thermoformed fuel tank fuel delivery system and assembly method |
-
2006
- 2006-03-13 CN CN2006800084119A patent/CN101166645B/zh not_active Expired - Fee Related
- 2006-03-13 WO PCT/EP2006/060669 patent/WO2006097451A2/en not_active Application Discontinuation
- 2006-03-13 EP EP20060725027 patent/EP1861614A2/en not_active Withdrawn
- 2006-03-13 US US11/908,544 patent/US20080169033A1/en not_active Abandoned
- 2006-03-13 JP JP2008501284A patent/JP2008533378A/ja active Pending
- 2006-03-13 CN CN201010202386A patent/CN101856969A/zh active Pending
- 2006-03-13 EP EP20100180394 patent/EP2279888A1/en not_active Withdrawn
-
2010
- 2010-10-19 JP JP2010234448A patent/JP2011047408A/ja active Pending
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3470907A (en) * | 1966-05-09 | 1969-10-07 | Kaiser Jeep Corp | One-piece plastic gas tank and fuel level sensing apparatus and method |
US4188969A (en) * | 1977-12-30 | 1980-02-19 | Gladys Mayden | Reserve fuel tank system |
US4397333A (en) * | 1981-09-04 | 1983-08-09 | Chrysler Corporation | Fuel collector assembly |
US4776315A (en) * | 1987-02-11 | 1988-10-11 | Robert Bosch Gmbh | Arrangement for feeding of fuel from a supply tank to an internal combustion engine, particularly of a power vehicle |
US4919103A (en) * | 1987-02-28 | 1990-04-24 | Nippondenso Co., Ltd. | Device for controlling evaporative emission from a fuel tank |
US5458373A (en) * | 1992-12-16 | 1995-10-17 | Mercedes-Benz Ag | Fuel tank assembly |
US5341842A (en) * | 1993-07-12 | 1994-08-30 | Ford Motor Company | Bottom mount fuel tank module for an automobile |
US5988213A (en) * | 1997-01-31 | 1999-11-23 | Mitsubishi Denki Kabushiki Kaisha | Vehicular fuel supplying apparatus |
US6065452A (en) * | 1997-11-19 | 2000-05-23 | Mitsubishi Denki Kabushiki Kaisha | Fuel feeder for vehicles |
US6000913A (en) * | 1998-08-24 | 1999-12-14 | Ford Motor Company | Low profile fuel delivery module |
US6253790B1 (en) * | 1998-08-26 | 2001-07-03 | Honda Giken Kogyo Kabushiki Kaisha | Fuel tank for motorcycle |
US6401750B2 (en) * | 2000-03-02 | 2002-06-11 | Suzuki Kabushiki Kaisha | Fuel tank unit of motorcycle |
US6843510B2 (en) * | 2001-06-26 | 2005-01-18 | Marwal Systems | System for coupling a fuel feed hose with the opening of equipment for filling a motor vehicle tank |
US20030057212A1 (en) * | 2001-09-27 | 2003-03-27 | Fish Duane A. | Passthru device for internalized component fuel tanks |
US20030102033A1 (en) * | 2001-11-30 | 2003-06-05 | Dasilva Antonio J. | Fuel tank assembly |
US20050045399A1 (en) * | 2003-07-29 | 2005-03-03 | Takashi Kudo | Structure of fuel pump installation area for two-wheeled vehicle |
US20050155583A1 (en) * | 2004-01-19 | 2005-07-21 | Mitsubishi Denki Kabushiki Kaisha | Fuel supply apparatus |
US20070095332A1 (en) * | 2005-11-01 | 2007-05-03 | Mitsubishi Denki Kabushiki Kaisha | Fuel supply device |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090277156A1 (en) * | 2008-05-07 | 2009-11-12 | Emitec Gesellschaft Fur Emissionstechnologie Mbh | Tank For A Reducing Agent, Motor Vehicle Having A Tank For A Reducing Agent And Method For Operating An SCR System Of A Motor Vehicle |
US20100206793A1 (en) * | 2009-02-16 | 2010-08-19 | Aisan Kogyo Kabushiki Kaisha | Suction filter and fuel supply device |
US8460542B2 (en) | 2009-02-16 | 2013-06-11 | Aisan Kogyo Kabushiki Kaisha | Suction filter and fuel supply device |
US9816470B2 (en) | 2009-12-04 | 2017-11-14 | Aisan Kogyo Kabushiki Kaisha | Filtering device |
US20110132825A1 (en) * | 2009-12-04 | 2011-06-09 | Aisan Kogyo Kabushiki Kaisha | Filtering device |
US10267276B2 (en) | 2009-12-04 | 2019-04-23 | Aisan Kogyo Kabushiki Kaisha | Filtering device |
US20110192477A1 (en) * | 2010-02-05 | 2011-08-11 | Ford Global Technologies, Llc | Passive-siphoning system and method |
US8561596B2 (en) * | 2010-12-14 | 2013-10-22 | GM Global Technology Operations LLC | Low fuel engine restarting |
US20120145132A1 (en) * | 2010-12-14 | 2012-06-14 | GM Global Technology Operations LLC | Low Fuel Engine Restarting |
US11073118B2 (en) * | 2015-12-17 | 2021-07-27 | Denso Corporation | Fuel pump and fuel pump module |
DE102016009228A1 (de) * | 2016-07-28 | 2018-02-01 | Audi Ag | Kraftstofftank für ein Kraftfahrzeug und Kraftfahrzeug |
DE102016009228B4 (de) * | 2016-07-28 | 2021-02-04 | Audi Ag | Kraftstofftank für ein Kraftfahrzeug und Kraftfahrzeug |
US11291936B2 (en) * | 2019-09-25 | 2022-04-05 | Coavis | Strainer for fuel pump |
Also Published As
Publication number | Publication date |
---|---|
EP2279888A1 (en) | 2011-02-02 |
JP2011047408A (ja) | 2011-03-10 |
CN101166645A (zh) | 2008-04-23 |
WO2006097451A3 (en) | 2007-09-27 |
CN101856969A (zh) | 2010-10-13 |
CN101166645B (zh) | 2010-07-28 |
WO2006097451A2 (en) | 2006-09-21 |
JP2008533378A (ja) | 2008-08-21 |
EP1861614A2 (en) | 2007-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080169033A1 (en) | Fuel Tank With Low Profile Fuel Reservoir | |
US6260543B1 (en) | Fuel delivery module with integrated filter | |
US8608954B2 (en) | Liquid tank and method for manufacturing it | |
EP1861613B1 (en) | Fuel system with direct connection between fuel pump, jet pump and fuel filter | |
US8899265B2 (en) | Plastic fuel tank with increased deformation stability | |
US8915233B2 (en) | Fuel supply equipment | |
JP5520957B2 (ja) | 気液分離器を装備した換気システムを含む燃料タンク | |
GB2376452A (en) | Fuel tank breathing system | |
US6089249A (en) | Venting circuit for a liquid tank | |
KR20180100662A (ko) | 연료 공급 장치 | |
JP5290223B2 (ja) | 燃料フィルタ装置 | |
US11215145B2 (en) | System and method for injecting an aqueous solution on-board a vehicle | |
JP4867885B2 (ja) | 車両用燃料供給装置 | |
JP4821678B2 (ja) | ポンプユニット | |
JP2008255872A (ja) | 燃料供給装置 | |
JP3669677B2 (ja) | 燃料タンク | |
US20030136507A1 (en) | Thermoformed fuel tank fuel delivery system and assembly method | |
KR20040030417A (ko) | 차량용 연료 공급 장치 | |
JP4923926B2 (ja) | 燃料ポンプモジュール | |
GB2271327A (en) | A fuel tank reservoir. | |
JP2001030773A (ja) | 燃料タンク | |
US11125196B2 (en) | Bottom mount fuel pump assembly | |
JP2008075592A (ja) | 燃料ポンプモジュール | |
JP2008248802A (ja) | ポンプユニット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INERGY AUTOMOTIVE SYSTEMS RESEARCH (SOCIETE ANONYM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TIPTON, LARRY;REUTHER, PAUL DANIEL;REEL/FRAME:019822/0366 Effective date: 20061009 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |