US20070261604A1 - Yellow iron oxide pigments - Google Patents
Yellow iron oxide pigments Download PDFInfo
- Publication number
- US20070261604A1 US20070261604A1 US11/800,404 US80040407A US2007261604A1 US 20070261604 A1 US20070261604 A1 US 20070261604A1 US 80040407 A US80040407 A US 80040407A US 2007261604 A1 US2007261604 A1 US 2007261604A1
- Authority
- US
- United States
- Prior art keywords
- iron oxide
- yellow iron
- oxide pigment
- din
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000001034 iron oxide pigment Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 claims description 30
- 238000010521 absorption reaction Methods 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000003973 paint Substances 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 239000004566 building material Substances 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims description 2
- 235000013305 food Nutrition 0.000 claims description 2
- 239000000976 ink Substances 0.000 claims description 2
- 239000000123 paper Substances 0.000 claims description 2
- 239000000049 pigment Substances 0.000 description 29
- 238000006243 chemical reaction Methods 0.000 description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000003921 oil Substances 0.000 description 11
- 235000019198 oils Nutrition 0.000 description 11
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 238000001035 drying Methods 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229910002588 FeOOH Inorganic materials 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 6
- 238000000227 grinding Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910021653 sulphate ion Inorganic materials 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000005569 Iron sulphate Substances 0.000 description 2
- 238000004737 colorimetric analysis Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000001117 sulphuric acid Substances 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910006540 α-FeOOH Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical class [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000006254 rheological additive Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/22—Compounds of iron
- C09C1/24—Oxides of iron
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/30—Oxides other than silica
- C04B14/308—Iron oxide
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
- C01P2006/63—Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
- C01P2006/64—Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
Definitions
- the present invention relates to improved yellow iron oxide pigments and to their use.
- the precipitation process and also the Penniman-Zoph process of producing yellow iron oxide pigments have been known for a long time.
- the typical course of these processes is described by way of example in Ullmann's Encyclopaedia of Industrial Chemistry, 5th Ed., Vol. A20, p. 297 ff., or in U.S. Pat. No. 1,327,061 A1 and U.S. Pat. No. 1,368,748 A1 and DE 3907910 A1.
- the raw material and electrolyte catalyst used is commonly iron(II) sulphate, which is obtained in the pickling of steel sheets or in the production of titanium dioxide by the sulphate process.
- a further possibility is the use of iron(II) sulphate from the production of low-alloy steel residues in the form of sheets, wire rolls, Fe powder with sulphuric acid.
- ⁇ -FeOOH yellow iron oxide
- ⁇ -FeOOH yellow iron oxide
- the precipitation process DE 2 455 158 A1
- the Penniman process U.S. Pat. No. 1,368,748 A1, U.S. Pat. No. 1,327,061 A1
- a nucleus is produced first of all, onto which then, in a further step, relatively slowly, additional ⁇ -FeOOH is caused to grow.
- the yellow iron oxide pigments produced by these processes are notable for a bright, yellow colour, but have an oil absorption value the end user finds unfavourable.
- the oil absorption value is determined in accordance with DIN 53199, which dates from 1973. With the aid of the oil absorption value the practitioner is able to estimate the binder demand of a pigment. The higher the oil absorption value, the higher, too, the binder demand. The oil absorption value also, moreover, permits conclusions concerning the level of the pigment-volume concentration to be expected.
- a pigment with a lower oil absorption value can be processed in a more eco-friendly manner, thereby simplifying the process and lowering the energy consumption for the end user.
- Low oil absorption in oxides allows the user, especially in the paint industry, to use a composition having a greater amount of oxide and a lower level of additives in order to achieve the desired quality for the product.
- the higher pigment-volume concentration permits a greater colour density in paste production, which in turn is beneficial to the specific transport costs of the pigment pastes.
- a high colour strength additionally boosts the desired effects for the end user.
- the yellow iron oxide pigment has, for example, a dispersibility to EN 21524/DIN ISO 1524 (2002) in the extended “3-box method” form of better than 30-50-70.
- the yellow iron oxide pigment has, for example, a water absorption value ⁇ 50.
- the yellow iron oxide pigment has, for example, a BET >14.
- the yellow iron oxide pigment has, for example, a bulk density >0.4.
- the yellow iron oxide pigment has, for example, a tamped density >0.7.
- the high bulk density and tamped density not only makes it easier to produce the formula but also has consequences for the transport costs and storage costs.
- the yellow iron oxide pigment has, for example, a viscosity in MAP ⁇ 25 against Bayferrox® 3910.
- the process of producing the yellow iron oxide pigments is divided into two parts: nucleus preparation and pigment preparation.
- the iron oxide nucleus is prepared from an iron sulphate solution by addition of aqueous sodium hydroxide solution with air oxidation. This gives FeOOH in the form of microcrystals (nucleus).
- the nucleus prepared in the first process step is built up to a crystal by addition of iron scrap, with oxidation by atmospheric oxygen.
- the product is washed salt-free, so that the conductivity of the washing water which runs off is no more than 2 mS/cm.
- the conductivity of the washing water which runs off is no more than 2 mS/cm.
- an iron oxide paste having a moisture content of 50%. After that the product is dried and ground.
- the invention also embraces the use of the yellow iron oxide pigment for colouring organic or inorganic dispersions, products of the ink, paint, coating, building-material, plastics and paper industry, in foods, and in products of the pharmaceutical industry such as tablets.
- the pigment was prepared using the Muller in a non-drying test binder.
- the test binder (paste) is composed of two components for the white reduction; for the full shade only component 1 is used:
- SACOLYD® L640 (Krems Chemie AG, AU, alkyd resin binder based on linseed oil and phthalic anhydride) (formerly ALKYDAL® L64 (Bayer AG, DE)). It corresponds to the specifications given in standards DIN EN ISO 787-24 (October 1995), ISO 787-25: 1993 and DIN 55983 (December 1983) as requirements of a test binder for colour pigments.
- LUVOTHIX® HT Lehmann & Voss & Co., DE, pulverulent, modified, hydrogenated castor oil
- LUVOTHIX® HT Lehmann & Voss & Co., DE, pulverulent, modified, hydrogenated castor oil
- Component 2 was dissolved in component 1 at 75-95° C.
- the cooled, compact material was passed once through a triple-roll mill. With this step the L64 paste was complete.
- a plate type paint dispersing machine (muller) was used, of the kind described in DIN EN ISO 8780-5 (April 1995).
- the apparatus employed was an Engelsmann Jel 25/53 muller with an effective plate diameter of 24 cm.
- the speed of the bottom plate was approximately 75 min ⁇ 1 .
- the force between the plates was set at about 0.5 kN by insertion of a 2.5 kg loading weight suspended from the loading bracket.
- the reductant used was a commercially customary titanium dioxide pigment, TRONOX® R-KB-2, Kerr-McGee Corp., US) (formerly BAYERTITAN® R-KB-2 (Bayer AG, DE)).
- R-KB-2 corresponds in its composition to type R 2 in ISO 591-1977.
- 0.4 g of test pigment, 2.0 g of TRONOX® R-KB-2 and 3.0 g of paste were dispersed in five stages of 25 revolutions each by the method described in DIN EN ISO 8780-5 (April 1995) section 8.1.
- 1 g of test pigment is dispersed in 3 g of component 1 in five stages each of 25 revolutions in accordance with the method described in DIN EN ISO 8780-5 (April 1995) section 8.1.
- the pigment paste mixture was subsequently spread into a paste plate corresponding in its function to the paste plate in DIN 55983 (December 1983).
- the doctor blade associated with the paste plate is drawn over the indentation in the plate that is filled with the pigment paste mixture, to produce a smooth surface.
- the doctor blade is moved in one direction with a speed of about 3-7 cm/s.
- the smooth surface is measured within a few minutes.
- a spectrophotometer (“calorimeter”) having the d/8 measuring geometry without a gloss trap was used. This measuring geometry is described in ISO 7724/2-1984 (E), section 4.1.1, in DIN 5033 part 7 (July 1983), section 3.2.4 and in DIN 53236 (January 1983), section 7.1.1.
- a DATAFLASH® 2000 measuring instrument (Datacolor International Corp., USA) was employed.
- the calorimeter was calibrated against a white ceramic working standard, as described in ISO 7724/2-1984 (E) section 8.3.
- the reflection data of the working standard against an ideally matt-white body are deposited in the colorimeter so that, after calibration with the white working standard, all coloured measurements are related to the ideally matt-white body.
- the black-point calibration was carried out using a hollow black body from the colorimeter manufacturer.
- the result of the colorimetry is a reflection spectrum.
- the illuminant used to take the measurement is unimportant (except in the case of fluorescent samples).
- From the reflection spectrum it is possible to calculate any desired calorimetric parameter.
- the calorimetric parameters used in this case are calculated in accordance with DIN 6174 (CIELAB values).
- the temperature of colorimeter and test specimen was approximately 25° C. ⁇ 5° C.
- the colour coordinates are stated in accordance with the measurement described above to DIN 6174 (CIELAB values).
- the measurement in the white reduction also results in the colour strength of the colour pigment measured (see Table 1).
- the so-called “reduction ratio” was calculated.
- the reduction ratio was determined in accordance with DIN standard 53235 part 1 and part 2 from 1974 for the standard depth of shade B 1/9.
- the reduction ratio indicates the ratio of a colour-imparting substance to a mixing component (in the present case: TiO 2 ) with which a defined depth of shade (depth of colouring) in accordance with DIN standard 53235 part 1 and part 2 from 1974 is achieved.
- a high reduction ratio means that the same depth of colouring can be achieved with less pigment. Such a pigment is therefore more strongly coloured in practical application.
- the “3-box” method employed for testing the pigments is an extended form of reading off, in which three values are reported as the result.
- the main region in the form of a close coherent array of bits; above it a region with a moderately high concentration of bits; and finally, over that, a region with a very low concentration of bits (individual bits, virtually, but appearing reproducibly) ( FIG. 2 ). Therefore of a trio of values is recorded that characterizes the upper limits of the three regions indicated.
- a grindometer spread according to FIG. 2 is assessed, accordingly, as follows: ⁇ 10/25/35 ⁇ m.
- the water absorption value was determined in accordance with DIN 55608 (June 2000).
- the bulk density was determined for the finished material without further treatment of the product, from the ratio of mass to volume.
- the tamped density was determined in accordance with ISO 787 part 11 (1995).
- the stirring shaft and inner wall of the beaker are cleaned to remove particles of pigment that have not been wetted.
- the stirrer is switched off briefly and lifted from the sample beaker.
- the walls of the beaker are cleaned with a spatula. Then the stirrer is lowered again and restarted.
- the distance of the toothed disc from the base is approximately 10 mm.
- the speed is increased to 3000 ⁇ 100 min ⁇ 1 .
- the time of dispersing at this speed is 15 minutes.
- the paste is adjusted to a pH of 8.5 ⁇ 0.5 by addition of 10% strength sodium hydroxide solution (quantity approximately 3-6 ml); the pH must in no case fall below 7.5. It is necessary to check the pH a number of times within the dispersing time, since the pH value is subject to creeping variation.
- the poly beaker is sealed with a lid and cooled in a water bath at 20° C. for 30 minutes.
- the viscosity standard must in each case be prepared in parallel.
- the paste should be stirred briefly with a spatula prior to measurement.
- the paddle stirrer of a commercially available standard Krebs-Stormer viscosimeter should be introduced to the point where the marking on the shaft can still just be seen. The result reported is the value which no longer shows any change over about 1 minute. The paddle stirrer is cleaned after each measurement.
- Equipment open stirring kettle with a capacity of 65 m 3 , nozzle introduction of air, circulation pump and a mechanical stirrer.
- the reactor is charged with 27.0 m 3 of plant water and 0.47 t (11.7 m 3 ) of iron sulphate heptahydrate (FeSO 4 .7H 2 O). After the circulation pump and stirrer have been switched on, 667 kg (9.532 l) of dissolved sodium hydroxide (NaOH+H 2 O) are added. Thereafter the air feed is commenced. The air feed takes place, for example, with a throughput of 250 ⁇ 200 m 3 /h or, for example at 170 ⁇ 85 m 3 /h. The volume is made up with industrial water.
- the monitored parameters are as follows:
- the nucleus was pumped into the reactor and the volume was made up to 110 m 3 with water.
- the iron sulphate heptahydrate (FeSO 4 .7H 2 O) concentration was adjusted to a concentration of 45 g/l.
- the reaction was at an end when the desired colour coordinates had been reached. Steam and air were shut off after the reaction and the product passes through operations of removal of coarse solids and of washing, before being filtered.
- the product washed salt-free so that the conductivity of the wash water running off was approximately not more than 2 mS/cm.
- the drier used was a “continuous drier with a dual drying stage”, known to the skilled worker as a rotary tube drier.
- the product was dried to a final residual moisture content of ⁇ 10%. After that it was conveyed to the grinding stage.
- a mill known to the skilled worker a horizontal classifier mill or a vertical mill (turbine type) without classifier.
- the grinding parameters set were as follows:
- FIGS. 1 to 6 show the results of the “3-box” method employed for testing the pigments. A trio of values is thereby recorded, which characterizes the upper limits of the three regions indicated.
- FIG. 1 shows a 3-box method spread of ⁇ 25/--/-- ⁇ m.
- FIG. 2 shows a 3-box method spread of ⁇ 10/25/35 ⁇ m.
- FIG. 3 shows a 3-box method spread of 15/-/- ⁇ m.
- FIG. 4 shows a 3-box method spread of 10/25/- ⁇ m.
- FIG. 5 shows a 3-box method spread ⁇ 10/-/30 ⁇ m.
- FIG. 6 shows a 3-box method spread of ⁇ 10/ 25 /35 ⁇ m.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Paints Or Removers (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Compounds Of Iron (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/194,580 US7799125B2 (en) | 2006-05-13 | 2008-08-20 | Yellow iron oxide pigments |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006022449A DE102006022449A1 (de) | 2006-05-13 | 2006-05-13 | Verbesserte Eisenoxidgelbpigmente |
DE102006022449.3 | 2006-05-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/194,580 Continuation US7799125B2 (en) | 2006-05-13 | 2008-08-20 | Yellow iron oxide pigments |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070261604A1 true US20070261604A1 (en) | 2007-11-15 |
Family
ID=38226482
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/800,404 Abandoned US20070261604A1 (en) | 2006-05-13 | 2007-05-04 | Yellow iron oxide pigments |
US12/194,580 Active US7799125B2 (en) | 2006-05-13 | 2008-08-20 | Yellow iron oxide pigments |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/194,580 Active US7799125B2 (en) | 2006-05-13 | 2008-08-20 | Yellow iron oxide pigments |
Country Status (9)
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102604436A (zh) * | 2012-02-21 | 2012-07-25 | 升华集团德清华源颜料有限公司 | 一种低吸油量氧化铁黄的制备方法 |
CN102604438A (zh) * | 2012-02-21 | 2012-07-25 | 升华集团德清华源颜料有限公司 | 低吸油量氧化铁黄颜料 |
CN103305032A (zh) * | 2013-07-04 | 2013-09-18 | 南通宝聚颜料有限公司 | 一种降低氧化铁黄粘度的方法 |
US20130244869A1 (en) * | 2010-10-22 | 2013-09-19 | Sachtleben Pigment Gmbh | Supported Catalyst of Digestion Residues of Titanyl Sulphate-Containing Black Solution |
CN117361637A (zh) * | 2023-10-08 | 2024-01-09 | 江苏宇星科技有限公司 | 一种高着色力低吸油量重质氧化铁黄颜料的制备方法 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1327061A (en) * | 1917-06-20 | 1920-01-06 | West Coast Kalsomine Company | Process of manufacturing iron compounds |
US1368748A (en) * | 1920-01-05 | 1921-02-15 | Nat Ferrite Company | Process of manufacturing iron compounds and product |
US4256508A (en) * | 1979-06-29 | 1981-03-17 | Basf Wyandotte Corporation | Iron oxide pigments with improved color strength |
US4291010A (en) * | 1979-09-05 | 1981-09-22 | Titan Kogyo Kabushiki Kaisha | Heat stable yellow iron oxides |
US4374677A (en) * | 1979-05-20 | 1983-02-22 | Titan Kogyo K.K. Japan | Preparation of improved heat stable yellow iron oxide pigments |
US4376656A (en) * | 1979-05-30 | 1983-03-15 | Titan Kogyo K.K. | Heat resistant yellow iron oxide pigment |
US4459276A (en) * | 1981-09-17 | 1984-07-10 | Agency Of Industrial Science & Technology | Yellow iron oxide pigment and method for manufacture thereof |
US5076848A (en) * | 1989-03-11 | 1991-12-31 | Bayer Aktiengesellschaft | Process for the preparation of iron yellow pigments |
US5451253A (en) * | 1993-04-02 | 1995-09-19 | Basf Aktiengesellschaft | Preparation of transparent yellow iron oxide pigments |
US5879441A (en) * | 1994-09-30 | 1999-03-09 | Bayer Ag | Very highly transparent yellow iron oxide pigments, a process for their production and their use |
US5885545A (en) * | 1994-09-30 | 1999-03-23 | Bayer Ag | Highly transparent, yellow iron oxide pigments, process for the production thereof and use thereof |
US5916360A (en) * | 1996-12-19 | 1999-06-29 | Bayer Ag | Process for the preparation of iron oxide yellow pigments and the use thereof |
US6053972A (en) * | 1997-11-19 | 2000-04-25 | Bayer Ag | Non-silking iron oxide yellow pigments with high color density |
US6117228A (en) * | 1997-11-19 | 2000-09-12 | Bayer Ag | Heat-stable iron oxide yellow pigments |
US6689206B2 (en) * | 2000-09-08 | 2004-02-10 | Bayer Aktiengesellschaft | Process for producing yellow iron oxide pigments |
US20060106268A1 (en) * | 2004-11-18 | 2006-05-18 | Shell Oil Company | High activity and high stability iron oxide based dehydrogenation catalyst having a low concentration of titanium and the manufacture and use thereof |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5652856B2 (enrdf_load_stackoverflow) * | 1973-11-21 | 1981-12-15 | ||
JPS57166323A (en) * | 1981-04-08 | 1982-10-13 | Toyo Soda Mfg Co Ltd | Preparation of yellow iron oxide |
JPS6013975B2 (ja) * | 1981-09-17 | 1985-04-10 | 工業技術院長 | 黄色酸化鉄顔料 |
JPS6246430Y2 (enrdf_load_stackoverflow) * | 1984-12-17 | 1987-12-15 | ||
DE3918894A1 (de) * | 1989-06-09 | 1990-12-13 | Bayer Ag | Verfahren zur herstellung von eisenoxidgelbpigmenten |
JPH03195779A (ja) * | 1989-12-25 | 1991-08-27 | Sumitomo Chem Co Ltd | 黄色含水酸化鉄顔料およびその製造方法 |
JPH0446019A (ja) * | 1990-06-11 | 1992-02-17 | Sumitomo Chem Co Ltd | 黄色含水酸化鉄顔料の製造方法 |
DE4235945A1 (de) * | 1992-10-23 | 1994-04-28 | Bayer Ag | Transparente Eisenoxidpigmente, Verfahren zu ihrer Herstellung sowie deren Verwendung |
DE4434972A1 (de) * | 1994-09-30 | 1996-04-04 | Bayer Ag | Hochtransparente, gelbe Eisenoxidpigmente, Verfahren zu ihrer Herstellung sowie deren Verwendung |
JP3417436B2 (ja) * | 1995-03-17 | 2003-06-16 | 戸田工業株式会社 | 鉄系酸化物粉末の製造法 |
DE19746263A1 (de) * | 1997-10-20 | 1999-04-22 | Bayer Ag | Eisenoxidgelbpigmente, Verfahren zur Herstellung von Eisenoxidgelbpigmenten und deren Verwendung |
JP4161281B2 (ja) * | 1998-03-31 | 2008-10-08 | ターボ工業株式会社 | 微粉砕機 |
JP4208373B2 (ja) * | 2000-02-25 | 2009-01-14 | キヤノン株式会社 | トナーの製造方法 |
JP2001321684A (ja) * | 2000-05-18 | 2001-11-20 | Michiro Nonaka | 機械気流式粉砕機およびその粉砕機を用いた固体原料の機械気流式粉砕方法 |
US6627212B2 (en) * | 2001-06-26 | 2003-09-30 | Engelhard Corporation | Use of effect pigments in ingested drugs |
DK1512726T3 (en) * | 2003-09-03 | 2016-01-18 | Lanxess Deutschland Gmbh | PROCEDURE FOR THE MANUFACTURE OF IRON OXID YELLOW PIGMENTS WITH CACO3 AS A PREPARING AGENT |
-
2006
- 2006-05-13 DE DE102006022449A patent/DE102006022449A1/de not_active Withdrawn
-
2007
- 2007-04-30 EP EP07008767A patent/EP1854849A3/de not_active Withdrawn
- 2007-05-04 US US11/800,404 patent/US20070261604A1/en not_active Abandoned
- 2007-05-04 AU AU2007201990A patent/AU2007201990A1/en not_active Abandoned
- 2007-05-11 CN CN2007100973650A patent/CN101074327B/zh active Active
- 2007-05-11 CA CA2588982A patent/CA2588982C/en active Active
- 2007-05-11 JP JP2007127351A patent/JP2007302894A/ja not_active Withdrawn
- 2007-05-11 MX MX2007005746A patent/MX2007005746A/es active IP Right Grant
- 2007-05-14 BR BRPI0702535A patent/BRPI0702535B8/pt active IP Right Grant
-
2008
- 2008-08-20 US US12/194,580 patent/US7799125B2/en active Active
-
2014
- 2014-01-24 JP JP2014011358A patent/JP2014111776A/ja not_active Withdrawn
-
2016
- 2016-04-07 JP JP2016077180A patent/JP2016166127A/ja active Pending
-
2017
- 2017-08-04 JP JP2017151401A patent/JP2017201039A/ja active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1327061A (en) * | 1917-06-20 | 1920-01-06 | West Coast Kalsomine Company | Process of manufacturing iron compounds |
US1368748A (en) * | 1920-01-05 | 1921-02-15 | Nat Ferrite Company | Process of manufacturing iron compounds and product |
US4374677A (en) * | 1979-05-20 | 1983-02-22 | Titan Kogyo K.K. Japan | Preparation of improved heat stable yellow iron oxide pigments |
US4376656A (en) * | 1979-05-30 | 1983-03-15 | Titan Kogyo K.K. | Heat resistant yellow iron oxide pigment |
US4256508A (en) * | 1979-06-29 | 1981-03-17 | Basf Wyandotte Corporation | Iron oxide pigments with improved color strength |
US4291010A (en) * | 1979-09-05 | 1981-09-22 | Titan Kogyo Kabushiki Kaisha | Heat stable yellow iron oxides |
US4459276A (en) * | 1981-09-17 | 1984-07-10 | Agency Of Industrial Science & Technology | Yellow iron oxide pigment and method for manufacture thereof |
US5076848A (en) * | 1989-03-11 | 1991-12-31 | Bayer Aktiengesellschaft | Process for the preparation of iron yellow pigments |
US5451253A (en) * | 1993-04-02 | 1995-09-19 | Basf Aktiengesellschaft | Preparation of transparent yellow iron oxide pigments |
US5879441A (en) * | 1994-09-30 | 1999-03-09 | Bayer Ag | Very highly transparent yellow iron oxide pigments, a process for their production and their use |
US5885545A (en) * | 1994-09-30 | 1999-03-23 | Bayer Ag | Highly transparent, yellow iron oxide pigments, process for the production thereof and use thereof |
US5916360A (en) * | 1996-12-19 | 1999-06-29 | Bayer Ag | Process for the preparation of iron oxide yellow pigments and the use thereof |
US6053972A (en) * | 1997-11-19 | 2000-04-25 | Bayer Ag | Non-silking iron oxide yellow pigments with high color density |
US6117228A (en) * | 1997-11-19 | 2000-09-12 | Bayer Ag | Heat-stable iron oxide yellow pigments |
US6689206B2 (en) * | 2000-09-08 | 2004-02-10 | Bayer Aktiengesellschaft | Process for producing yellow iron oxide pigments |
US20060106268A1 (en) * | 2004-11-18 | 2006-05-18 | Shell Oil Company | High activity and high stability iron oxide based dehydrogenation catalyst having a low concentration of titanium and the manufacture and use thereof |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130244869A1 (en) * | 2010-10-22 | 2013-09-19 | Sachtleben Pigment Gmbh | Supported Catalyst of Digestion Residues of Titanyl Sulphate-Containing Black Solution |
US9211526B2 (en) * | 2010-10-22 | 2015-12-15 | Sachtleben Pigment Gmbh | Supported catalyst of digestion residues of titanyl sulphate-containing black solution |
CN102604436A (zh) * | 2012-02-21 | 2012-07-25 | 升华集团德清华源颜料有限公司 | 一种低吸油量氧化铁黄的制备方法 |
CN102604438A (zh) * | 2012-02-21 | 2012-07-25 | 升华集团德清华源颜料有限公司 | 低吸油量氧化铁黄颜料 |
CN102604438B (zh) * | 2012-02-21 | 2014-09-24 | 升华集团德清华源颜料有限公司 | 低吸油量氧化铁黄颜料 |
CN103305032A (zh) * | 2013-07-04 | 2013-09-18 | 南通宝聚颜料有限公司 | 一种降低氧化铁黄粘度的方法 |
CN117361637A (zh) * | 2023-10-08 | 2024-01-09 | 江苏宇星科技有限公司 | 一种高着色力低吸油量重质氧化铁黄颜料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US7799125B2 (en) | 2010-09-21 |
MX2007005746A (es) | 2009-02-16 |
BRPI0702535B8 (pt) | 2021-07-27 |
BRPI0702535B1 (pt) | 2017-08-29 |
CA2588982C (en) | 2015-03-24 |
CN101074327B (zh) | 2012-10-24 |
DE102006022449A1 (de) | 2007-11-15 |
US20090199737A1 (en) | 2009-08-13 |
EP1854849A2 (de) | 2007-11-14 |
BRPI0702535A (pt) | 2008-01-15 |
JP2007302894A (ja) | 2007-11-22 |
CN101074327A (zh) | 2007-11-21 |
EP1854849A3 (de) | 2009-09-02 |
JP2017201039A (ja) | 2017-11-09 |
JP2016166127A (ja) | 2016-09-15 |
AU2007201990A1 (en) | 2007-11-29 |
JP2014111776A (ja) | 2014-06-19 |
CA2588982A1 (en) | 2007-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6179908B1 (en) | Iron oxide red pigments, process for the production of iron oxide red pigments and use thereof | |
JP6440830B2 (ja) | 改良された色値を有する赤色酸化鉄顔料 | |
US7799125B2 (en) | Yellow iron oxide pigments | |
US4631089A (en) | Color-intensive iron oxide black pigments and process for their production | |
US7294191B2 (en) | Pure-coloured, readily dispersible iron oxide red pigments with high grinding stability | |
KR20010087331A (ko) | 산화철의 제조 방법 및 그의 용도 | |
US11634342B2 (en) | Iron oxide pigments containing Al | |
CN108779341A (zh) | 红色氧化铁颜料在水性制剂中的用途 | |
AU2015202399A1 (en) | Improved yellow iron oxide pigments | |
AU2013216575A1 (en) | Improved yellow iron oxide pigments | |
EP3743383B1 (en) | Process for the manufacturing of goethite pigments | |
JP7536108B2 (ja) | 強く着色されたマンガンフェライト着色顔料 | |
US20250066612A1 (en) | Method for producing iron oxide pigments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LANXESS DEUTSCHLAND GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROSENHAHN, CARSTEN;REEL/FRAME:019339/0542 Effective date: 20070515 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |