US20070172164A1 - Rolling bearing system for vehicles - Google Patents

Rolling bearing system for vehicles Download PDF

Info

Publication number
US20070172164A1
US20070172164A1 US11/653,289 US65328907A US2007172164A1 US 20070172164 A1 US20070172164 A1 US 20070172164A1 US 65328907 A US65328907 A US 65328907A US 2007172164 A1 US2007172164 A1 US 2007172164A1
Authority
US
United States
Prior art keywords
rolling bearing
bearing device
cover
inner ring
demagnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/653,289
Other languages
English (en)
Inventor
Yoshito Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Assigned to JTEKT CORPORATION reassignment JTEKT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAKADA, YOSHITO
Publication of US20070172164A1 publication Critical patent/US20070172164A1/en
Priority to US12/832,842 priority Critical patent/US8539676B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing
    • Y10T29/49679Anti-friction bearing or component thereof

Definitions

  • the present invention relates to a rolling bearing device for vehicles used for, for example, an anti-lock brake system (ABS).
  • ABS anti-lock brake system
  • a rolling bearing device for vehicles in which a magnetic sensor is attached to a roller bearing rotatably supporting a driven wheel.
  • the rolling bearing device for vehicles is mounted with a cover to protect a ring-shaped magnetized element (magnetized pulsar ring) arranged so as to face to the magnetic sensor and to prevent muddy water from adhering to the magnetized pulsar ring.
  • a nonmagnetic material is used so that the magnetized pulsar ring can be protected and a change in magnetism of the magnetized pulsar ring can be detected with high accuracy (refer to Japanese Patent Laid-Open No. 2004-198378).
  • a problem with the conventional rolling bearing device for vehicles is that even if a nonmagnetic material is used as the cover, the cover is magnetized when being pressed, and the residual magnetism exerts an adverse influence on the output waveform of magnetic sensor with respect to the change in magnetism of the magnetized pulsar ring, resulting in the degradation in detection accuracy of magnetic sensor.
  • the present invention has been made in view of the above circumstances, and accordingly an object thereof is to provide a rolling bearing device for vehicles capable of detecting a change in magnetism with high accuracy.
  • the present invention provides a rolling bearing device for vehicles including a rolling bearing having an inner ring and an outer ring and rolling elements interposed between both of the races; a magnetized element disposed on one side in the axial direction of the inner ring; and a cover attached to the outer ring so as to cover the magnetized element, characterized in that the cover is formed by demagnetizing a nonmagnetic metallic material.
  • the residual magnetism after demagnetization of the cover is preferably not higher than 3 gausses, further preferably not higher than 1 gauss. In this case, the influence on the magnetic sensor is especially reduced, so that the change in magnetism can be detected with higher accuracy.
  • the cover is formed by demagnetizing a nonmagnetic material having been pressed, a rolling bearing device for vehicles capable of detecting a change in magnetism of the magnetized pulsar ring with high accuracy can be provided.
  • FIG. 1 is a sectional view of a rolling bearing device for vehicles in accordance with one embodiment of the present invention.
  • FIG. 1 is a sectional view of a rolling bearing device for vehicles in accordance with the present invention.
  • a rolling bearing device H for vehicles in accordance with this embodiment which is disposed on the driven wheel side of motor vehicle, includes a double-row angular ball bearing 13 serving as a rolling bearing having an inner ring 11 , which is a rotating ring, and an outer ring 12 , which is a fixed ring, and rolling elements 3 and 4 interposed between the races 11 and 12 , a ring-shaped magnetized element (magnetized pulsar ring) 14 disposed on one side in the axial direction of the inner ring 11 (the inboard side, the right-hand side in FIG. 1 ), a magnetic sensor 15 arranged so as to face to the magnetized element 14 , and a cover 16 attached to the outer ring 12 to seal the opposed portion between the magnetized element 14 and the magnetic sensor 15 .
  • a double-row angular ball bearing 13 serving as a rolling bearing having an inner ring 11 , which is a rotating ring, and an outer ring 12 , which is a fixed ring, and rolling elements 3 and 4 interposed
  • the double-row angular ball bearing 13 includes a first inner ring member 1 arranged on the other side in the axial direction (the outboard side, left-hand side in FIG. 1 ), a second inner ring member 2 arranged on one side in the axial direction (the inboard side) of the first inner ring member 1 , the outer ring 12 mounted on the outside of the first and second inner ring members 1 and 2 , the balls 3 and 4 serving as rolling elements that are interposed between the first and second inner ring members 1 and 2 and the outer ring 12 and arranged in two rows in the axial direction, crown-shaped cages 17 and 18 holding the balls 3 and 4 , and a seal member 19 for sealing a space formed by the first and second inner ring members 1 and 2 and the outer ring 12 .
  • the first inner ring member 1 has a flange portion 1 a provided so as to extend toward the outside in the radial direction on the other side in the axial direction (the outboard side) of the first inner ring member 1 and a column portion 1 b formed into a substantially columnar shape extending from the root portion of the flange portion 1 a toward one side in the axial direction (the inboard side), and further has a first raceway portion 1 c in the vicinity of the root portion of the flange portion 1 a and a small-diameter shank portion 1 d formed on one side in the axial direction (the inboard side) of the column portion 1 b .
  • a calking portion 1 f is formed in the end portion on one side in the axial direction of the small-diameter shank portion 1 d.
  • the second inner ring member 2 is attached in a state of being mounted on the outside of the small-diameter shank portion 1 d of the first inner ring member 1 .
  • the calking portion 1 f of the first inner ring member 1 is formed into a cylindrical shape having the same diameter as that of the small-diameter shank portion 1 d .
  • the end portion on one side in the axial direction of the cylindrical calking portion 1 f is bent outward in the radial direction, and is brought into contact with the end surface on one side in the axial direction of the second inner ring member 2 , by which the second inner ring member 2 is fixed so as not to move in the axial direction with respect to the first inner ring member 1 .
  • the second inner ring member 2 has a second raceway portion 2 a on the outer peripheral surface thereof.
  • a plurality of through holes (holes for fastening) 1 e are formed so that the rolling bearing device can be fastened to a wheel (not shown) by causing fastening members B such as bolts to pass through the through holes (holes for fastening) 1 e.
  • the outer ring 12 has a first raceway portion 12 b and a second-raceway portion 12 c on the inner peripheral surface thereof, and also has a flange portion 12 a provided so as to extend outward in the radial direction.
  • the flange portion 12 a is fastened to a steering knuckle (suspension system) of the vehicle body so that the outer ring 12 is a fixed ring.
  • a steering knuckle supension system
  • the double-row angular ball bearing 13 in which the balls 3 and 4 are arranged in two rows in the axial direction is used.
  • the present invention is not limited to this configuration, and it is a matter of course that another ball bearing or roller bearing may be used.
  • the magnetized pulsar ring 14 is affixedly attached to a support member 20 on one side in the axial direction (the inboard side) of the second inner ring member 2 , the support member 20 being formed by a metallic member having a substantially L-shaped cross section.
  • the support member 20 is located from the second raceway portion 2 a to the inboard side, and is attached to the outer peripheral surface of a shoulder portion formed in the end portion on one side of the inner ring member 2 .
  • the magnetized pulsar ring 14 is used to detect the number of revolutions of the inner ring 11 (the first inner ring member 1 and the second inner ring member 2 ), which is a rotating ring, and has a configuration such that unlike poles (N poles and S poles) are magnetized alternately in the circumferential direction by using magnets, rubber magnets in which magnetic particles are mixed with a magnet or elastomer, plastic magnets in which magnetic particles are mixed with a resin, and the like.
  • a change in magnetism can be detected by the magnetic sensor (for example, a magnetic sensor having a magneto resistive element) 15 facing to the magnetized pulsar ring 14 via the cover 16 , and therefore the number of revolutions of the inner ring 11 can be determined by the detection result.
  • the magnetic sensor for example, a magnetic sensor having a magneto resistive element
  • the cover 16 protects the magnetized pulsar ring 14 attached to the outer ring 12 , which is a fixed ring.
  • the cover 16 is integrally provided with an outer periphery cylindrical portion 16 a fixed to the outer peripheral edge portion by being press fitted on the inner peripheral surface of the outer ring 12 , a ring-shaped flat portion 16 b facing to the magnetized pulsar ring 14 , and a bottom surface portion 16 c covering the shank end portion of the small-diameter shank portion 1 d .
  • These portions 16 a to 16 c are formed by pressing one metal sheet.
  • the cover 16 is formed into a predetermined shape by pressing a nonmagnetic metallic material such as nonmagnetic stainless steel (for example SUS 304), aluminum, copper, or brass, and then is subjected to demagnetization (for example, the AC demagnetizing process or the thermal demagnetizing process) so that the residual magnetism is preferably not greater than 3 gausses.
  • the residual magnetism is preferably lower, especially 1 gauss or lower being preferable. That is to say, the magnetism acquired when the nonmagnetic material is pressed is removed by demagnetization so as not to exert an adverse influence on the change in magnetism of the magnetized pulsar ring 14 .
  • the residual magnetism can be measured by a gauss meter using a Hall element.
  • demagnetization is to remove magnetic force/properties from a magnetized object such as a magnet
  • demagnetizing processes there are two kinds of demagnetizing processes: the AC demagnetizing process and the thermal demagnetizing process.
  • both of the processes provide a certain demagnetization effect
  • in the AC demagnetizing process for a material having a high coercive force, magnetic energy remains though the quantity thereof is small. Therefore, if complete demagnetization is desired, the thermal demagnetizing process is effective.
  • the thermal demagnetizing process is a process in which a magnetized object is heated to a temperature not lower than the Curie point (temperature), and is restored again to the original condition.
  • the hysteresis loop due to demagnetization increases gradually, and when the peak is reached, it decreases gradually, finally the magnetic force becoming zero.
  • the thermal demagnetizing process achieves a higher demagnetization effect than the AC demagnetizing process
  • the cover 16 may be deformed by heating, so that a step for rectifying the deformation is required after the demagnetizing process. Therefore, the use of the AC demagnetizing process can raise the productivity.
  • the magnetic sensor 15 is provided to detect a change in magnetism caused by the magnetized pulsar ring 14 , and if the magnetized cover 16 is used, the magnetic sensor 15 also detects the magnetism of the cover 16 , which degrades the accuracy of detection of the change in magnetism of the magnetized pulsar ring 14 .
  • the cover 16 made of a nonmagnetic material is used. However, if the cover 16 is pressed in manufacturing, the cover 16 acquires magnetism. In the present invention, the residual magnetism is reduced by demagnetizing the cover 16 after pressing. Therefore, the rolling bearing device H for vehicles which is capable of detecting a change in magnetism of the magnetized pulsar ring 14 with high accuracy can be obtained.
  • the cover 16 in accordance with the present invention may be formed with a through hole (not shown) in the central portion of the bottom surface portion 16 c .
  • a driving shaft inserted through the through hole in the bottom surface portion 16 c is connected to the inner ring 11 to transmit the rotation, by which the rolling bearing device of the present invention can also be used for driving the wheel.
  • the present invention is not limited to the above-described embodiment, and it is a matter of course that an appropriate design change can be made.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Rolling Contact Bearings (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Sealing Of Bearings (AREA)
US11/653,289 2006-01-20 2007-01-16 Rolling bearing system for vehicles Abandoned US20070172164A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/832,842 US8539676B2 (en) 2006-01-20 2010-07-08 Rolling bearing system for vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006012185 2006-01-20
JP2006-012185 2006-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/832,842 Division US8539676B2 (en) 2006-01-20 2010-07-08 Rolling bearing system for vehicles

Publications (1)

Publication Number Publication Date
US20070172164A1 true US20070172164A1 (en) 2007-07-26

Family

ID=37913683

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/653,289 Abandoned US20070172164A1 (en) 2006-01-20 2007-01-16 Rolling bearing system for vehicles
US12/832,842 Active 2028-02-25 US8539676B2 (en) 2006-01-20 2010-07-08 Rolling bearing system for vehicles

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/832,842 Active 2028-02-25 US8539676B2 (en) 2006-01-20 2010-07-08 Rolling bearing system for vehicles

Country Status (5)

Country Link
US (2) US20070172164A1 (de)
EP (1) EP1810844B1 (de)
JP (1) JP2007218426A (de)
CN (1) CN101004193B (de)
DE (1) DE602007005174D1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8585298B2 (en) * 2010-03-18 2013-11-19 Ntn Corporation Wheel bearing apparatus incorporated with a rotation speed detecting apparatus
US9056523B2 (en) * 2010-11-16 2015-06-16 Ntn Corporation Wheel bearing apparatus provided with a rotational speed detecting apparatus
US9377055B2 (en) 2012-02-16 2016-06-28 Schaeffler Technologies AG & Co. KG Wheel bearing arrangement with encoder protection and centering device
US9895736B2 (en) 2012-04-27 2018-02-20 Uchiyama Manufacturing Corp. Cover manufacturing method and press die used in same
US11056255B2 (en) * 2017-04-28 2021-07-06 Nichia Corporation Composite component comprising ring-shaped bonded magnet and method of manufacturing the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110206312A1 (en) * 2008-10-30 2011-08-25 The Timken Company Endcap for wheel bearing assembly
JP5327077B2 (ja) * 2009-01-26 2013-10-30 日本精工株式会社 エンコーダ付車輪支持用転がり軸受ユニット
JP2010230593A (ja) * 2009-03-27 2010-10-14 Sumitomo Wiring Syst Ltd 車輪用回転センサ装置
DE102009027277A1 (de) * 2009-06-29 2010-12-30 Robert Bosch Gmbh Kappe zum Einbau auf ein Radlager, Radlagermodul mit einer solchen Kappe und Verfahren zur Herstellung einer Kappe zum Einbau auf ein Radlager
JP5333064B2 (ja) * 2009-08-28 2013-11-06 株式会社ジェイテクト 車輪用転がり軸受装置
WO2011034134A1 (ja) * 2009-09-17 2011-03-24 Ntn株式会社 回転速度検出装置付き車輪用軸受装置
CN105605095B (zh) * 2010-07-22 2018-04-13 日本精工株式会社 带编码装置的车轮支撑用滚动轴承单元
JP5884859B2 (ja) * 2014-07-17 2016-03-15 日本精工株式会社 エンコーダ付転がり軸受ユニット及びその製造方法
EP2995471A1 (de) * 2014-08-26 2016-03-16 Aktiebolaget SKF Wälzlager, insbesondere radnabe-wälzlager-anordnung, mit einem signalgeber und einer einen sensorträger aufweisenden dichtkappe
DE102017210536A1 (de) * 2016-07-21 2018-01-25 Aktiebolaget Skf Impulsring und Sensorlagereinheit mit einem derartigen Impulsring
JP2018044670A (ja) * 2016-09-13 2018-03-22 株式会社ジェイテクト ハブユニット

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2449946A (en) * 1944-09-18 1948-09-21 Gen Motors Corp Method and means for demagnetizing
US3119941A (en) * 1959-04-09 1964-01-28 Berex Establishment Step by step motor
US5670874A (en) * 1995-03-16 1997-09-23 Nsk Ltd. Rolling bearing unit with rotating speed sensor having peripherally facing annular tone wheel and sensor
US6692153B2 (en) * 2001-03-07 2004-02-17 Ntn Corporation Wheel support bearing assembly
US20040170345A1 (en) * 2002-12-20 2004-09-02 Koyo Seiko Co., Ltd. Rolling bearing apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060845A (en) * 1976-03-25 1977-11-29 The Arnold Engineering Company Portable demagnetizer
JP2000198304A (ja) * 1998-10-29 2000-07-18 Nsk Ltd 車輪用転がり軸受ユニット
JP4857485B2 (ja) * 2001-04-25 2012-01-18 日本精工株式会社 エンコーダ付車輪用回転支持装置
US6789948B2 (en) * 2001-09-25 2004-09-14 Ntn Corporation Magnetic encoder and wheel bearing assembly using the same
JP4372438B2 (ja) * 2003-03-11 2009-11-25 Ntn株式会社 車輪用軸受
JP2005016569A (ja) * 2003-06-24 2005-01-20 Nsk Ltd エンコーダ付転がり軸受ユニット及びその製造方法
JP4393827B2 (ja) * 2003-09-19 2010-01-06 横浜ゴム株式会社 脱磁装置及び脱磁方法
JP4260055B2 (ja) 2004-03-30 2009-04-30 Ntn株式会社 車輪用軸受装置
JP4821123B2 (ja) * 2005-02-04 2011-11-24 日本精工株式会社 磁気エンコーダ及び転がり軸受ユニット
JP4033201B2 (ja) 2005-04-13 2008-01-16 日本精工株式会社 回転速度検出装置付転がり軸受ユニット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2449946A (en) * 1944-09-18 1948-09-21 Gen Motors Corp Method and means for demagnetizing
US3119941A (en) * 1959-04-09 1964-01-28 Berex Establishment Step by step motor
US5670874A (en) * 1995-03-16 1997-09-23 Nsk Ltd. Rolling bearing unit with rotating speed sensor having peripherally facing annular tone wheel and sensor
US6692153B2 (en) * 2001-03-07 2004-02-17 Ntn Corporation Wheel support bearing assembly
US20040170345A1 (en) * 2002-12-20 2004-09-02 Koyo Seiko Co., Ltd. Rolling bearing apparatus
US6997615B2 (en) * 2002-12-20 2006-02-14 Koyo Seiko Co., Ltd. Rolling bearing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8585298B2 (en) * 2010-03-18 2013-11-19 Ntn Corporation Wheel bearing apparatus incorporated with a rotation speed detecting apparatus
US9056523B2 (en) * 2010-11-16 2015-06-16 Ntn Corporation Wheel bearing apparatus provided with a rotational speed detecting apparatus
US9377055B2 (en) 2012-02-16 2016-06-28 Schaeffler Technologies AG & Co. KG Wheel bearing arrangement with encoder protection and centering device
US9895736B2 (en) 2012-04-27 2018-02-20 Uchiyama Manufacturing Corp. Cover manufacturing method and press die used in same
US11056255B2 (en) * 2017-04-28 2021-07-06 Nichia Corporation Composite component comprising ring-shaped bonded magnet and method of manufacturing the same
US11646154B2 (en) 2017-04-28 2023-05-09 Nichia Corporation Composite component comprising ring-shaped bonded magnet and method of manufacturing the same

Also Published As

Publication number Publication date
US8539676B2 (en) 2013-09-24
EP1810844A1 (de) 2007-07-25
EP1810844B1 (de) 2010-03-10
CN101004193A (zh) 2007-07-25
US20100269347A1 (en) 2010-10-28
JP2007218426A (ja) 2007-08-30
DE602007005174D1 (de) 2010-04-22
CN101004193B (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
US8539676B2 (en) Rolling bearing system for vehicles
KR100752999B1 (ko) 센서 부착 구름 베어링 유닛
US9970485B2 (en) Bearing cap having sensor unit, and rolling bearing unit
US8210750B2 (en) Vehicle bearing assembly
JP4019537B2 (ja) 回転速度検出装置付き転がり軸受
WO2006080092A1 (en) A bearing apparatus for a wheel of vehicle
CN108713147B (zh) 车轮用轴承装置
US8147146B2 (en) Wheel bearing device with rotation sensor
JP3497351B2 (ja) エンコーダ付転がり軸受ユニット
US8054064B2 (en) Sensor holder with a wheel bearing apparatus incorporated with a wheel speed detecting apparatus including an annular fitting member in the sensor holder and a seal positioned between the annular fitting member and an outer circumference of an inner ring
EP1669620A1 (de) Rollenlager und herstellungsverfahren dafür
JP2004076752A (ja) 転がり軸受装置
JP5103704B2 (ja) パルサリングおよび回転検出装置
JP3427829B2 (ja) エンコーダ付転がり軸受ユニット
JP4492436B2 (ja) 磁気エンコーダ及びこれを用いた転がり軸受装置
JP3988702B2 (ja) センサ付きハブユニット
JP6394051B2 (ja) 回転速度検出装置付転がり軸受ユニット
JP2006090958A (ja) センサ装置およびセンサ付き転がり軸受ユニット
JP4026557B2 (ja) 回転検出用のパルサリングおよびシール装置
JP2006329660A (ja) 磁気エンコーダ及びこれを用いた転がり軸受装置
JP5240333B2 (ja) ハブユニット
JP4107094B2 (ja) センサ付き転がり軸受ユニット
JP2005048823A (ja) センサ付きハブユニット
EP1983306B1 (de) Rotor für einen drehcodierer und wälzlager für ein rad damit
JP2000105250A (ja) 車軸用軸受装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: JTEKT CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAKADA, YOSHITO;REEL/FRAME:018794/0333

Effective date: 20061218

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION