US20070162132A1 - Flexible elongated chain implant and method of supporting body tissue with same - Google Patents
Flexible elongated chain implant and method of supporting body tissue with same Download PDFInfo
- Publication number
- US20070162132A1 US20070162132A1 US11/633,131 US63313106A US2007162132A1 US 20070162132 A1 US20070162132 A1 US 20070162132A1 US 63313106 A US63313106 A US 63313106A US 2007162132 A1 US2007162132 A1 US 2007162132A1
- Authority
- US
- United States
- Prior art keywords
- bone
- bodies
- elongated member
- links
- chain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/441—Joints for the spine, e.g. vertebrae, spinal discs made of inflatable pockets or chambers filled with fluid, e.g. with hydrogel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7094—Solid vertebral fillers; devices for inserting such fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/88—Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/4455—Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/4455—Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
- A61F2/4465—Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages having a circular or kidney shaped cross-section substantially perpendicular to the axis of the spine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/4455—Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
- A61F2/447—Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages substantially parallelepipedal, e.g. having a rectangular or trapezoidal cross-section
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00004—(bio)absorbable, (bio)resorbable or resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00526—Methods of manufacturing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/36—Femoral heads ; Femoral endoprostheses
- A61F2/3609—Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30593—Special structural features of bone or joint prostheses not otherwise provided for hollow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2002/4415—Joints for the spine, e.g. vertebrae, spinal discs elements of the prosthesis being arranged in a chain like manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0003—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having an inflatable pocket filled with fluid, e.g. liquid or gas
Definitions
- the invention relates to implants, and more particularly to flexible chain implants for augmenting or supporting bones or other structures, such as, for example vertebral discs.
- Vertebral compression fractures represent a generally common spinal injury and may result in prolonged disability. These fractures involve collapsing of one or more vertebral bodies 12 in the spine 10 . Compression fractures of the spine usually occur in the lower vertebrae of the thoracic spine or the upper vertebra of the lumbar spine. They generally involve fracture of the anterior portion 18 of the affected vertebra 12 (as opposed to the posterior side 16 ). Spinal compression fractures can result in deformation of the normal alignment or curvature, e.g., lordosis, of vertebral bodies in the affected area of the spine.
- Spinal compression fractures and/or related spinal deformities can result, for example, from metastatic diseases of the spine, from trauma or can be associated with osteoporosis. Until recently, doctors were limited in how they could treat such compression fractures and related deformities. Pain medications, bed rest, bracing or invasive spinal surgery were the only options available.
- vertebral compression fractures More recently, minimally invasive surgical procedures for treating vertebral compression fractures have been developed. These procedures generally involve the use of a cannula or other access tool inserted into the posterior of the effected vertebral body, usually through the pedicles. The most basic of these procedures is vertebroplasty, which literally means fixing the vertebral body, and may be done without first repositioning the bone.
- a cannula or special bone needle is passed slowly through the soft tissues of the back.
- Image guided x-ray, along with a small amount of x-ray dye, allows the position of the needle to be seen at all times.
- a small amount of polymethylmethacrylate (PMMA) or other orthopedic cement is pushed through the needle into the vertebral body.
- PMMA is a medical grade substance that has been used for many years in a variety of orthopedic procedures.
- the cement is mixed with an antibiotic to reduce the risk of infection, and a powder containing barium or tantalum, which allows it to be seen on the X-ray.
- Vertebroplasty can be effective in the reduction or elimination of fracture pain, prevention of further collapse, and a return to mobility in patients.
- this procedure may not reposition the fractured bone and therefore may not address the problem of spinal deformity due to the fracture. It generally is not performed except in situations where the kyphosis between adjacent vertebral bodies in the effected area is less than 10 percent.
- this procedure requires high-pressure cement injection using low-viscosity cement, and may lead to cement leaks in 30-80% of procedures, according to recent studies. In most cases, the cement leakage does no harm. In rare cases, however, polymethymethacrylate or other cement leaks into the spinal canal or the perivertebral venous system and causes pulmonary embolism, resulting in death of the patient.
- More advanced treatments for vertebral compression fractures generally involve two phases: (1) reposition, or restoration of the original height of the vertebral body and consequent lordotic correction of the spinal curvature; and (2) augmentation, or addition of material to support or strengthen the fractured or collapsed bone.
- balloon kyphoplasty (Kyphon, Inc.), is disclosed in U.S. Pat. Nos. 6,423,083, 6,248,110, and 6,235,043 to Riley et al., each of which is incorporated by reference herein in its entirety.
- a catheter having an expandable balloon tip is inserted through a cannula, sheath or other introducer into a central portion of a fractured vertebral body comprising relatively soft cancellous bone surrounded by fractured cortical bone.
- Kyphoplasty then achieves the reconstruction of the lordosis, or normal curvature, by inflating the balloon, which expands within the vertebral body restoring it to its original height.
- the balloon is removed, leaving a void within the vertebral body, and PMMA or other filler material is then injected through the cannula into the void as described above with respect to vertebroplasty.
- the cannula is removed and the cement cures to augment, fill or fix the bone.
- Disadvantages of this procedure include the high cost, the repositioning of the endplates of the vertebral body may be lost after the removal of the balloon catheter, and the possible perforation of the vertebral endplates during the procedure.
- a neurologic deficit may occur through leakage of bone cement into the spinal canal.
- Such a cement leak may occur through the low resistance veins of the vertebral body or through a crack in the bone which was not appreciated previously.
- Other complications include additional adjacent level vertebral fractures, infection and cement embolization.
- Cement embolization occurs by a similar mechanism to a cement leak. The cement may be forced into the low resistance venous system and travel to the lungs or brain resulting in a pulmonary embolism or stroke.
- Still another procedure used in the treatment of vertebral compression fractures is an inflatable polymer augmentation mass known as a SKy Bone Expander.
- This device can be expanded up to a pre-designed size and (Cubic or Trapezoid) configuration in a controlled manner.
- the SKy Bone Expander is removed and PMMA cement or other filler is injected into the void. This procedure therefore entails many of the same drawbacks and deficiencies described above with respect to kyphoplasty.
- bone grafts are used to repair or otherwise treat the damaged area.
- bone grafting procedures In the United States alone, approximately half a million bone grafting procedures are performed annually, directed to a diverse array of medical interventions for complications such as fractures involving bone loss, injuries or other conditions necessitating immobilization by fusion (such as for the spine or joints), and other bone defects that may be present due to trauma, infection, or disease.
- Bone grafting involves the surgical transplantation of pieces of bone within the body, and generally is effectuated through the use of graft material acquired from a human source. This is primarily due to the limited applicability of xenografts, transplants from another species.
- Orthopedic autografts or autogenous grafts involve source bone acquired from the same individual that will receive the transplantation.
- this type of transplant moves bony material from one location in a body to another location in the same body, and has the advantage of producing minimal immunological complications.
- the acquisition of bone material from the body of a patient typically requires a separate operation from the implantation procedure.
- the removal of material oftentimes involving the use of healthy material from the pelvic area or ribs, has the tendency to result in additional patient discomfort during rehabilitation, particularly at the location of the material removal.
- Grafts formed from synthetic material have also been developed, but the difficulty in mimicking the properties of bone limits the efficacy of these implants.
- allografts are bone grafts from other human sources (normally cadavers).
- the bone grafts are placed in a host bone and serve as the substructure for supporting new bone tissue growth from the host bone.
- the grafts are sculpted to assume a shape that is appropriate for insertion at the fracture or defect area, and often require fixation to that area for example by screws, pins, cement, cages, membranes, etc. Due to the availability of allograft source material, and the widespread acceptance of this material in the medical community, the use of allograft tissues is likely to expand in the field of musculoskeletal surgery.
- the various bones of the body such as the femur (thigh), tibia and fibula (leg), humerus (upper arm), radius and ulna (lower arm) have geometries that vary considerably.
- the lengths of these bones vary; for example, in an adult the lengths may vary from 47 centimeters (femur) to 26 centimeters (radius).
- the shape of the cross section of each type of bone varies considerably, as does the shape of any given bone over its length. While a femur has a generally rounded outer shape, a tibia has a generally triangular outer shape.
- the wall thickness varies in different areas of the cross-section of each bone.
- the use of any given bone to produce an implant component may be a function of the bone's dimensions and geometry. Machining of bones, however, may permit the production of implant components with standardized or custom dimensions.
- bone As a collagen-rich and mineralized tissue, bone is composed of about forty percent organic material (mainly collagen), with the remainder being inorganic material (mainly a near-hydroxyapatite composition resembling 3Ca 3 (PO 4 ) 2 Ca(OH) 2 ). Structurally, the collagen assumes a fibril formation, with hydroxyapatite crystals disposed along the length of the fibril, and the individual fibrils are disposed parallel to each other forming fibers. Depending on the type of bone, the fibrils are either interwoven, or arranged in lamellae that are disposed perpendicular to each other.
- organic material mainly collagen
- inorganic material mainly a near-hydroxyapatite composition resembling 3Ca 3 (PO 4 ) 2 Ca(OH) 2 .
- the collagen assumes a fibril formation, with hydroxyapatite crystals disposed along the length of the fibril, and the individual fibrils are disposed parallel to each other forming fibers.
- the fibrils
- Bone tissues have a complex design, and there are substantial variations in the properties of bone tissues depending upon the type of bone (i.e., leg, arm, vertebra) as well as the overall structure.
- leg and arm bones when tested in the longitudinal direction, leg and arm bones have a modulus of elasticity of about 17 to 19 GPa, while vertebra tissue has a modulus of elasticity of less than 1 GPa.
- the tensile strength of leg and arm bones varies between about 120 MPa and about 150 MPa, while vertebra have a tensile strength of less than 4 MPa.
- the compressive strength of bone varies, with the femur and humerus each having a maximum compressive strength of about 167 MPa and 132 MPa respectively.
- the vertebra have a far lower compressive strength usually of no more than about 10 MPa.
- a long bone such as the femur has both compact bone and spongy bone.
- Cortical bone the compact and dense bone that surrounds the marrow cavity, is generally solid and thus carries the majority of the load in major bones.
- Cancellous bone, the spongy inner bone is generally porous and ductile, and when compared to cortical bone is only about one-third to one-quarter as dense, one-tenth to one-twentieth as stiff, but five times as ductile.
- cancellous bone has a tensile strength of about 10-20 MPa and a density of about 0.7 g/cm 3
- cortical bone has a tensile strength of about 100-200 MPa and a density of about 2 g/cm 3
- the strain to failure of cancellous bone is about 5-7%
- cortical bone can only withstand 1-3% strain before failure. It should also be noted that these mechanical characteristics may degrade as a result of numerous factors such as any chemical treatment applied to the bone material, and the manner of storage after removal but prior to implantation (i.e. drying of the bone).
- cancellous bone incorporate more readily with the surrounding host bone, due to the superior osteoconductive nature of cancellous bone as compared to cortical bone.
- cancellous bone from different regions of the body is known to have a range of porosities.
- cancellous bone in the iliac crest has a different porosity than cancellous bone in a femoral head.
- the design of an implant using cancellous bone may be tailored to specifically incorporate material of a desired porosity.
- a flexible chain comprises a series or other plurality of preferably solid, substantially non-flexible body portions (also referred to as bodies or beads) and a series of flexible link portions (also referred to as links or struts).
- the preferably solid, substantially non-flexible body portions preferably are capable of withstanding loads that are applied in any direction
- the flexible link portions of the implant preferably are disposed between the substantially non-flexible body portions and preferably are flexible in any direction, although they may be flexible in only selected or desired directions.
- the bodies may be substantially solid, semi-solid or hollow and preferable of sufficient strength to support the loads typical for the body location in which they are implanted.
- the link portions may be solid, semi-solid, or hollow and preferably of sufficient flexibility to allow the adjacent bodies to touch one another upon bending of the elongate member or chain.
- the material of both portions, the flexible link and non-flexible body portions, preferably is the same and form one single, flexible monolithic chain (FMC).
- an apparatus for augmentation of body tissue for example bone, comprises a flexible elongated member, or chain, having a longitudinal length substantially larger than its height or its width.
- the flexible elongated member comprises a plurality of substantially non-flexible bodies and a plurality of substantially flexible links interconnecting the bodies.
- the bodies and links are connected end-to-end to form the elongated member, wherein the elongated member is formed of a biocompatible material.
- the bodies may be different sizes and shapes than the links or they may be the same shape, same size, or both.
- each body and link may be a different size and shape than other bodies or links.
- the beads can be shaped so that they can fit together to minimize interstial spaces.
- the beads may be shaped as cubes or other polyhedrals that can be stacked together in such a way that there is little space between beads, or a predetermined percentage range of interstial space.
- the elongated member may be formed as an integral monolithic chain, which may be formed of bone, such as, for example, allograft bone.
- the flexible links may be formed of bone that has been demineralized to a greater extent than the bodies.
- a coating may be applied to at least a portion of the elongated member, e.g. a coating comprising a therapeutic agent, a bone cement, an antibiotic, a bone growth stimulating substance, bone morphogenic protein (BMP) or any combination thereof.
- Therapeutic agents, or drug agents (e.g., antibodies), or biologics (e.g., one or more BMPs) can be coated, or attached via peptides, adsorbed, sorbed or in some other way perfused onto or into the elongated member; either the bodies, the links or both.
- the coating may comprise a bone cement that may be activated upon insertion into the bone.
- at least a portion of the bodies comprise an outer surface configured to promote bone in-growth.
- a flexible chain implant may be impacted or inserted into a cavity, void or hollow space, e.g., through a small narrow opening.
- cavities may be, for example, voids in long bones, intervertebral disc spaces or vertebral bodies. Such voids may have occurred due to infections, disease, trauma fractures, degenerative disc disease process, tumors or osteotomies.
- a void may be created by using a tool to compact or remove cancellous or cortical bone or other tissue prior to implantation. The chain may thereafter be implanted to fill the created void.
- the device will fill and/or support the tissue structure, preferably bone structure to a restored size and/or height.
- no void or cavity may be present, and even if a void or cavity is present the chain implant or elongated member may be inserted and/or implanted in a manner to compact the material and bone cells within the bone and to further fill the bone in a manner that it can better support a load and preferably fill the bone in a manner to restore its original and/or treated size and height.
- one or more flexible monolithic chains may be implanted into diseased, damaged or otherwise abnormal bones to treat, for example, long bone infections, comminuted complex fractures, tumor resections and osteotomies.
- An FMC device may also be used to treat disease or abnormal pathology conditions in spinal applications, including, for example, degenerative disc disease, collapsed intervertebral discs, vertebral body tumor or fractures, and vertebral body resections.
- the elongated member or chain device can be used as a preventive measure to augment a bone, spinal disc or an implant, e.g., and intervertebral body implant to promote fusion.
- the elongated member may be used within a vertebra or between two vertebra.
- the elongated member or chain also may be used for example in an intervertebral body fusion procedure, for example, as an implant inserted into the disc space between two vertebra, as an implant inserted into and retained by the disc annulus, or in combination with an additional implant inserted in the disc space between two vertebra.
- kits comprises various combinations of assemblies and components according to the present invention.
- a kit may include, for example, a package or container comprising an elongated member, for example an FMC device, and a cannula or other introducer or device for implanting the elongated member.
- a kit may comprise instruments to create a cavity (e.g., balloon catheter), an FMC device and a cement or other filler material and/or a syringe or other apparatus for injecting a FMC device and/or such filler material into a vertebral body.
- FIG. 1 is a side view of a portion of a spine with a vertebral compression fracture.
- FIG. 2A is a side view of a flexible monolithic chain according to an embodiment of the present invention.
- FIG. 2B is a close-up cross-sectional side view of the flexible monolithic chain of FIG. 2A taken through line B-B.
- FIGS. 3 A-D is an illustration depicting a method of fabricating a flexible monolithic chain.
- FIGS. 4 A-C are perspective views of other embodiments of a flexible monolithic chain having flexible portions and non-flexible portions with substantially uniform dimensions.
- FIG. 5 is a perspective, cross-sectional view of another embodiment of a flexible monolithic chain.
- FIGS. 6A and B are side cross-sectional views of a flexible monolithic chain being implanted within a fractured vertebral body.
- FIG. 7 is a cross-sectional top view of a flexible monolithic chain implanted within a vertebral body.
- FIG. 8A is a cross-sectional side view of a vertebra having a flexible monolithic chain implanted within a vertebral body.
- FIG. 8B is a cross-sectional side view of a vertebra having an implanted flexible monolithic chain as in FIG. 8A , showing an end of the chain extending from the vertebra.
- FIG. 8C is a cross-sectional side view of a vertebra having an implanted flexible monolithic chain as in FIG. 8A , and further including a pedicle screw implant.
- FIGS. 9 A-D are top views depicting a minimally invasive method for implanting a flexible monolithic chain within a vertebral body.
- FIG. 10A is a cross-sectional top view of another method of implanting a flexible monolithic chain within a vertebral body.
- FIG. 10B is a top view of a flexible monolithic chain that may be used in the method of FIG. 10A .
- FIG. 10C is a side view of another embodiment of a flexible monolithic chain that may be used in the method of FIG. 10A .
- FIG. 11A is a side view of a screw device for driving a chain implant through an introducer.
- FIG. 11B is an end view of a screw device for driving a chain implant through an introducer.
- FIG. 12 is a side view of a plunger device for driving a chain implant through an introducer.
- FIG. 13 is a side view of a sprocket device for driving a chain implant through an introducer.
- FIGS. 14A and B are cross-sectional side views of a flexible monolithic chain implanted into the head of a femur.
- FIG. 15 is a cross-sectional view of a chain implant inserted through a cannula into the head of a femur.
- a chain 200 (sometimes referred to as an elongated member) comprises one or more bodies 210 (sometimes referred to as beads).
- Chain 200 is preferably a monolithic chain, e.g., formed from a single, common material or type of material forming an integral structure.
- Bodies 210 are preferably substantially non-flexible, and may be solid, semi-solid, porous, non-porous, hollow, or any combination thereof.
- Chain 200 may also comprise one or more linking portions 220 , also sometimes referred to as struts or links 220 .
- Struts 220 may be disposed between each pair of adjacent bodies 210 .
- Struts 220 are preferably substantially flexible or semiflexible, e.g. to allow for bending of the chain 200 between bodies 210 .
- Bodies 210 of chain 200 are preferably formed of bone, e.g., cortical bone, cancellous bone or both, but preferably cortical bone.
- chain 200 may be comprised of any biocompatible material having desired characteristics, for example a biocompatible polymer, metal, ceramic, composite or any combination thereof.
- Bodies 210 may be absorbable or resorbable by the body.
- the bodies 210 preferably have osteoinductive properties or are made at least partly from osteoinductive materials.
- the outer circumferential shape of the body may be the same as adjacent links. Alternatively or in addition, the outer circumferential shape of the body may be the same size as adjacent links.
- Bodies 210 may be of uniform or non-uniform size, shape and/or materials, and may be linked in series, for example by one or more flexible or semi-flexible linking portions 220 , which can form struts of any desired length between bodies 210 .
- Linking portions are preferably, although not necessarily, formed of the same material as bodies 210 .
- a chain 200 may have any desired number of linked bodies 210 , and may have a first end 202 and a second end 204 .
- chain 200 may be formed in a loop, ring, or other configuration having no ends, or may be configured to have multiple extensions and/or multiple ends, for example like branches of a tree.
- the one or more linking portions 220 may be comprised of any biocompatible material having desired characteristics of flexibility, strength, and the like.
- linking portions 220 may be formed, at least in part, of substantially the same material as bodies 210 .
- chain 200 including bodies 210 and/or linking portions 220 , may be resorbable.
- the bodies 210 may be of uniform or non-uniform size, and may be spaced by linking portions 220 at uniform or non-uniform increments.
- FIG. 2B is a close up cross-sectional view of chain 200 , taken at line B-B in FIG. 2A .
- chain 200 is a monolithic chain, with bodies 210 and flexible portions 220 formed from a uniform material, e.g., bone.
- bodies 210 are shown as substantially spherical, and linking portions 220 are shown as substantially cylindrical, numerous other shapes are contemplated.
- chains 200 including body 210 and/or linking portion 220 , may be of any desired shape, such as for example, cylindrical, elliptical, spherical, rectangular, etc.
- Body 210 and/or linking portion 220 may also be of any particular cross sectional shape such as round hexagonal, square, etc.
- Bodies 210 and linking portions 220 may have the same or different shapes.
- the configurations of bodies 210 may vary within a chain 200 , for example as described herein with respect to FIGS. 5 and 10 .
- the configuration of links 220 may vary within a chain.
- the bodies can be shaped so that they fit together to minimize interstitial spacing or provide a predetermined range of interstitial spacing.
- the diameter 230 of bodies 210 may be between about 1 mm and about 15 mm, preferably between about 2 mm and about 8 mm, or more preferably between about 4 mm and about 6 mm.
- the non-flexible bodies 210 are larger in shape and size than the flexible struts 220 .
- height 232 of struts 220 may be between about 0.5 mm and about 8 mm, preferably between about 0.8 mm and about 4 mm, and may depend in part upon the size of bodies 210 .
- Struts 220 may have any desired length 238 , e.g., between about 0.5 mm and about 5.0 mm, preferably between about 1.5 mm and 3.5 mm, or greater than 5 mm.
- distance 234 between bodies 210 may be any desired distance, e.g., depending upon the size of bodies 210 and/or length 238 struts 220 . In some embodiments, for example, distance 234 may be between about 4 mm and about 15 mm, or between about 6 mm and about 10 mm.
- the junctions between bodies 210 and struts 220 may have a radius 236 of any desired dimension, e.g., less than 1.0 mm, between about 1.0 mm and about 2.0 mm, or greater than about 2.0 mm.
- each of the bodies 210 and struts 220 of a chain may be of the same configuration and/or dimensions as other bodies 210 and struts within the chain 200 .
- bodies 210 and/or struts 220 within a chain may have different configurations or dimensions.
- the non-flexible bodies 210 and flexible portions 220 may be of the same shape and size to form a relatively uniform structure, for example as shown in FIG. 4 .
- a chain 200 may be made as long as practical for a particular application.
- an exemplary chain 200 for implantation into a bone may be about 100 mm in length.
- chain 200 may be of other lengths, for example less than about 1 mm, between about 1 mm and about 100 mm, or greater than 100 mm.
- two or more chains 200 and/or other implants may be used in combination with each other.
- Chain 200 may be connected end to end to form larger chains.
- the present invention is preferably directed to the creation of implants from allograft material
- the present invention may also be applied to implants that utilize other materials, including but not limited to the following: xenograft, autograft, metals, alloys, ceramics, polymers, composites, and encapsulated fluids or gels.
- the implants described herein may be formed of materials with varying levels of porosity, such as by combined bone sections from different bones or different types of tissues and/or materials having varying levels of porosity.
- the implants described herein may be formed of bone materials with varying mineral content.
- cancellous or cortical bone may be provided in natural, partially demineralized, or demineralized states.
- Demineralization is typically achieved with a variety of chemical processing techniques, including the use of an acid such as hydrochloric acid, chelating agents, electrolysis or other treatments.
- the demineralization treatment removes the minerals contained in the natural bone, leaving collagen fibers with bone growth factors including bone morphogenic protein (BMP). Variation in the mechanical properties of bone sections is obtainable through various amounts of demineralization.
- BMP bone morphogenic protein
- a demineralizing agent on bone transforms the properties of the bone from a stiff structure to a relatively pliable structure.
- the flexibility or pliability of demineralized bone may be enhanced when the bone is hydrated.
- Any desired portions of bone components, e.g., link portions 220 or any other desired portion may be demineralized or partially demineralized in order to achieve a desired amount of malleability, elasticity, pliability or flexibility, generally referred to herein as “flexibility”.
- the amount of flexibility can be varied by varying in part the amount of demineralization.
- bone components initially may be provided with moisture content as follows: (a) bone in the natural state fresh out of the donor without freezing, (b) bone in the frozen state, typically at ⁇ 40° C., with moisture content intact, (c) bone with moisture removed such as freeze-dried bone, and (d) bone in the hydrated state, such as when submersed in water.
- moisture content as follows: (a) bone in the natural state fresh out of the donor without freezing, (b) bone in the frozen state, typically at ⁇ 40° C., with moisture content intact, (c) bone with moisture removed such as freeze-dried bone, and (d) bone in the hydrated state, such as when submersed in water.
- the implants may be formed entirely from cortical bone, entirely from cancellous bone, or from a combination of cortical and cancellous bone. While the implants may be created entirely from all bone material, it is also anticipated that one or more components or materials may be formed of non-bone material, including synthetics or other materials. Thus, while the implants disclosed herein are typically described as being formed primarily from bone, the implants alternatively may be formed in whole or in part from other materials such as stainless steel, titanium or other metal, an alloy, hydroxyapatite, resorbable material, polymer, or ceramic, and may additionally incorporate bone chips, bone particulate, bone fibers, bone growth materials, and bone cement.
- the structure optionally may include perforations or through bores extending from one outer surface to another outer surface, or recesses formed in outer surfaces that do not extend through inner surfaces (surface porosity), or recesses formed internally.
- Surface texture such as depressions and/or dimples may be formed on the outer surface.
- the depressions and/or dimples may be circular, diamond, rectangular, irregular or have other shapes.
- the flexible monolithic chain devices described herein may be used to treat disease and pathological conditions in general orthopedic applications such as long bone infections, comminuted complex fractures, tumor resections and osteotomies. Additionally the device can be used to treat disease and pathological conditions in spinal applications, such as, for example, degenerative disc disease, collapsed intervertebral discs, vertebral body tumor or fractures, vertebral body resections or generally unstable vertebral bodies. In other embodiments, a flexible monolithic chain device may be used in maxillofacial applications or in non-fusion nucleus replacement procedures.
- FIG. 3 shows an example of a method 300 for fabricating a monolithic chain device 200 out of bone material 310 .
- allograft femoral bone 310 is used as a base material, preferably, cortical allograft bone.
- Other bones may be used for forming implants, for example, radius, humerous, tibia, femur, fibula, ulna, ribs, pelvic, vertebrae or other bones.
- an initial step comprises machining a rough monolithic chain 200 ′, having a desired general shape, out of the raw material 310 , preferably bone.
- a desired general shape for example, conventional milling and/or other fabrication techniques may be used.
- Device 200 may have any desired shape, for example including generally elliptical or spherical bodies 210 separated by cylindrical linking portions 220 as shown.
- chain 200 may be formed of a substantially uniform shape as shown, for example, in FIG. 4 .
- the rough monolithic device 200 ′ may then be removed from the raw material 310 , as shown for example in step B.
- an upper side 312 of the rough device 200 ′ has been fabricated to have a desired general shape as described above.
- An opposite side 314 may include excess material that was not removed in step A.
- opposite side 314 is machined to remove excess material, for example using conventional milling methods.
- Side 312 may also be further machined or shaped as desired, in order to form a monolithic chain device 200 having the desired shapes and configurations of bodies 210 and linking portions 220 .
- the shaped chain 200 may be demineralized, e.g., in container 320 containing a demineralizing solution 322 (e.g., hydrochloric acid) or using another method.
- Demineralization may be allowed to occur for a specified amount of time, for example to allow the smaller, lower volume portions 220 of the device 200 to become more flexible or elastic, while the larger bodies 210 of the device remain structurally intact and substantially rigid.
- the amount of time and/or the concentration or composition of the demineralizing solution may be varied to provide the desired amount of flexibility or elasticity.
- this secondary process of demineralization can be applied to specific portions of the device 200 , e.g., by masking or shielding the portions that do not or should not be treated.
- the flexible portions 220 can be partially or entirely demineralized, and the non-flexible portions 210 may retain their original mineralized state prior to the masking.
- an allograft device may be submerged entirely into demineralization acid without masking any portions of the device.
- the flexible portions 220 may demineralize entirely, or at least substantially more than the larger portions 210 , which may undergo only surface demineralization. Therefore, the smaller portions 220 may become flexible and elastic while the larger portions 210 may remain relatively stiff and substantially non-flexible.
- FIG. 2B shows regions 240 that are substantially demineralized and regions 242 that have substantially their natural or original composition and mineralization content.
- Table 1 provides examples of demineralization times of four monolithic chains having different strut configurations.
- Each of the chains were formed of cortical allograft bone and had body portions 210 that were approximately 5 mm in diameter.
- Configurations and dimensions of the struts 220 differed between the samples.
- the struts were fully demineralized between about 31 ⁇ 2 and 4 hours, while the beads were demineralized to an extent, but were not fully demineralized across their entire thickness.
- Strut dimensions correspond to distance 238 in FIG. 2B
- strut radius corresponds to radius 236 in FIG. 2B .
- Full flexibility is considered to be the condition when the chain can be bent until two adjacent beads contact each other without the chain cracking or breaking.
- Table 2 below provides an example of approximate incremental changes in flexibility of strut portions 220 of a sample, e.g., Sample 1 of Table 1, as a function of duration of exposure to the hydrochloric acid bath. TABLE 2 Incremental changes in flexibility of struts with exposure to acid bath. Exposure Time Flexibility (min) (% of maximum) 0-5 0 5-10 0 10-15 10 15-20 15 20-30 25 30-45 35 45-90 50 90-140 70 140-200 85 200-240 100
- Various other configurations and methods for manufacturing monolithic or other chain implants may be used. The choice of methods may depend, at least in part, on the material or materials to be used in the particular chain device 200 . If the device is made of a biocompatible polymeric material, the device can be manufactured by using conventional manufacturing methods such as but not limited to milling and turning. Alternatively, if the chain device 200 is made out of a biocompatible polymeric material, the entire device can also be injection molded.
- the chain 200 is made of a metallic material, it can be manufactured by using conventional manufacturing methods such as but not limited to milling and turning.
- the flexible components may undergo secondary processes such as annealing.
- the secondary process can be limited to the flexible portions of the device only, for example by masking or shielding the non-flexible portions.
- a chain implant 200 can be formed of any type of biocompatible material that will allow for sufficient flexibility in areas of reduced material sections (e.g., relatively narrow and flexible portions 220 ), while having larger sections (e.g., bodies 210 ) that are substantially rigid and allow for load bearing characteristics.
- the reduced material portions 220 may be flexible, pliable, or have elastic properties in all directions preferably without fracturing or breaking.
- the reduced material portions 210 may allow for fracture during device 200 insertion, or at another stage in a method, to allow for proper void filling.
- Materials may be metallic and include but are not limited to titanium and steels. Polymeric and alternatively allograft tissue materials can be used.
- bone device 200 may comprise one or more other materials, e.g., a metal (titanium, a steel, or other metal), an alloy, or a polymer.
- the material of the device 200 may have osteoconductive, osteoinductive, and/or osteogenic properties.
- the implant device 200 may be made out of non-monolithic materials.
- a chain 200 may have any desired geometric configuration.
- rigid portions 210 and flexible portions 220 may have the same or different shapes, such as cubes, cylinders, any polyhedral shapes, balls, banana or kidney shaped, or any combination thereof.
- Portions 210 and/or 220 may have any desired cross-sectional shape, such as for example rectangular, circular, elliptical, pentagonal, hexagonal, etc.
- the flexible 220 and non-flexible 210 portions may be of the same shape to form relatively uniform shaped structures as shown in FIGS. 4 A-C.
- one or more bodies 210 may have cavities 510 or central holes 512 .
- Such holes 512 or cavities 510 may be empty or may be filled, for example with a cement, bone filler, adhesive, graft material, therapeutic agent, or any other desired materials.
- the filling material may incorporate radiopaque agents so that the chain, or bodies can be visualized during and after a procedure.
- an implant device 200 may be coated with different substances that will support and promote bone healing, reduce infections and/or deliver therapeutic agents to the treated site.
- the device 200 or portions thereof may be coated with antibiotics, BMP, bone growth enhancing agents, porous or non-porous bone ingrowth agents, therapeutic agents, etc.
- the implant may be coated with a material that may incorporate a radiopaque agent so that the implant may be visualized during or after implantation.
- therapeutic agents, drug agents, BMPs, tissue growth enhancing agents, osteoinductive agents may be absorbed, sorbed or other wise perfused onto or into some portion of the chain implant.
- the solid, non-flexible portions 210 may have cavities, axial or side holes or a combination thereof that can be filled with different substances or agents.
- a minimally invasive method 600 of augmenting a damaged vertebral body 12 may comprise implanting one or more chains 200 into an inner portion 612 of a vertebral body 12 between endplates 614 and 616 .
- one or more chains 200 may be implanted as a preventive measure to augment a vertebra before compression or a compression fracture.
- a hole may be formed in the outer coritcal shell of vertebral body 12 by a trocar, drill or other instrument. Chain 200 may then be implanted, for example, through a cannula 602 or other introducer inserted into vertebral body 12 .
- Suitable procedures and materials for inserting a cannula through which chain 200 may be introduced are known in the art, and may be similar to those described above for kyphoplasty and other procedures.
- cannula 602 may be introduced through the posterior portion 16 of vertebral body 12 , e.g., through pedicle 14 (e.g., transpedicular approach).
- a chain 200 may be inserted and may compact the cancellous and osteoporotic bone inside the vertebral body.
- a passageway may be formed into the interior of the vertebral body, for example using a drill or other instrument.
- the chain 200 may then be inserted through the passageway, and may compact or compress the bone material inside the vertebral body.
- instruments such as, for example, currettes or balloon catheter may be used to compress and compact the bone inside the vertebral body to create a cavity.
- the instruments may then be removed.
- the balloon portion of the catheter may remain within the vertebral body or may form a container for the implant.
- the cavity in the vertebral body also may be formed by removing bone material as opposed to compacting the bone.
- a reamer or other apparatus could be used to remove bone material from the inside of the vertebral body.
- a cavity is first formed in the bone structure or the chain(s) are inserted without first creating a cavity
- they may fill central portion 612 and provide structural support to stabilize a vertebral body.
- the implant, and particularly the linked bodies 210 can push against the interior or inner sides of endplates 614 and 616 , thereby tending to restore vertebral body 12 from a collapsed height h 1 to its original or desired treated height h 2 and provide structural support to stabilize vertebral body 12 .
- an instrument can be inserted through the passageway to restore the height of the vertebra and plates.
- a balloon catheter can be inserted to restore vertebra end plates, or an elongated instrument that contacts the inside of the end plates and pushes on them may be utilized.
- the flexibility of one or more portions 220 between bodies 210 may allow bending of chain within space 612 , e.g., in a uniform pattern or in a non-uniform or tortuous configuration, to aid in ensuring a thorough integration of the implant 200 within the bone 12 .
- the configuration of bodies 210 attached by flexible portions also may permit bending to substantially fill the cavity and/or vertebral bone so no large pockets or voids are created or remain which may result in weak spots or a weakened bone structure.
- the flexible links may also allow the chain to collapse and possibly become entangled so that it becomes larger than its insertion hole so that it cannon be easily ejected.
- chain 200 may be inserted into a bone such as a vertebral body 12 , e.g., through the lumen 604 of a cannula 602 or other sheath, and such sheath may be removed after implantation within the bone 12 .
- chain 200 or a portion thereof, may remain in vertebral body 12 , for example, to continue augmenting the vertebra and maintain proper lordosis.
- PMMA or another bone cement or filler for example bone chips
- bodies 210 may be inserted sequentially or simultaneously into vertebral body 12 , e.g., through shaft and/or a cannula 602 , along with bodies 210 to further enhance fixation or repair of the damaged region.
- a plug of bone cement may be inserted into the hole that was initially formed to insert chains 200 (e.g., plug 812 of FIG. 8A ).
- the plug may cover the insertion hole to prevent the implant (chains) from being removed or ejected.
- some or all of bodies 210 of chain 200 may be removed after repositioning the bone, and PMMA or another bone cement or filler may be injected into a void created by chain 200 .
- a bone growth promoting filler may be inserted into vertebral body 12 and a plug of bone cement utilized to hold the linked bodies and filler material in the vertebrae.
- flexible chain 200 may be coated with an adhesive, such that chain 200 may be inserted into vertebral body 12 in a flexible state and may become tangled and/or convoluted during or after insertion. After insertion, bodies 210 may become attached together by the adhesive so that the flexible chain becomes a mass that may be locked into the vertebral body, or otherwise secured such that chain 200 may not be easily removed through the insertion opening.
- linked bodies 210 may be coated with an adhesive and chain may be inserted, with or without becoming tangled or convoluted, into a vertebral body.
- a portion of chain 200 may be exposed to an energy source (e.g., an ultraviolet light, ultrasonic radiation, radio waves, heat, electric filed, magnetic field), for example to activate the adhesive, such that the exposed portion of chain 200 becomes joined to form a mass, or becomes rigid, or both, thereby further augmenting the vertebral body 12 and/or preventing removal or ejection of chain 200 through the insertion opening.
- an energy source e.g., an ultraviolet light, ultrasonic radiation, radio waves, heat, electric filed, magnetic field
- FIG. 7 is a top cross-sectional view illustration of a vertebral body 12 having one or more chains 200 implanted within portion 612 of vertebral body 12 .
- the one or more chains 200 may comprise a plurality of bodies 210 , which may be joined in series by one or more linking portions as described above.
- One or more cannulae 602 each for example having a lumen 604 of sufficient size for passing linked bodies 210 , can be used to implant chain 200 into vertebral body.
- the one or more cannulae 602 may be inserted into vertebral body 12 , preferably through pedicles 14 .
- the one or more cannulae 602 may be left within vertebral body 12 , and remain extending from pedicles 14 , for example held in place by sutures (not shown).
- chains 200 may be implanted completely within vertebral body 12 as shown in FIG. 8A , and the cannulae or other introducer may be removed. The chains may remain entirely within the interior of the bone.
- a passageway 810 through which chains 200 were inserted may be filled with a plug 812 , e.g., a bone cement plug.
- a plug 812 e.g., a bone cement plug.
- a bone screw 800 may be inserted into vertebral body 12 in conjunction with chain implant 200 to further augment vertebral body 12 .
- the extended end 204 or additional implant 800 may be used, for example, as an anchoring element for imparting an eternal force on vertebra to reposition the vertebra 12 .
- Screw 800 may be inserted into the opening used to insert the chains, and may further serve as a plug to prevent removal or ejection of the chains.
- Screw 800 may be hollow or solid, and may be comprised of stainless steel, a metal alloy, a ceramic, polymer, composite or any other desired material.
- screw 800 may be hollow, e.g., including a lumen such as lumen 604 of cannula 602 , and used as an introducer to create a passage for passing chain 200 into vertebral body 12 .
- a bone cement or other material may be injected into vertebral body 12 to further secure implants 200 and/or 800 and augment vertebral body 12 .
- the bone cement or other material may be inserted through the cannulation of the screw.
- FIGS. 9 A-D show another example of a flexible monolithic chain device being implanted into vertebral body.
- a chain device 200 may be placed into an introducer or delivery device 910 that aids in insertion and/or impaction of the chain 200 to a desired cavity, void, space or interior of a bone.
- delivery device 910 has an elongated cannula-like shaft 912 having a lumen through which chain 200 may pass.
- Device may have a funnel 914 or other structure to facilitate loading of the chain 200 and/or for holding a portion of the chain 200 prior to implantation.
- An insertion end 916 of the insertion device 910 may have a tip 918 , which may be blunt, pointed, tapered or otherwise configured as desired to facilitate insertion of end 916 into a bone or other structure.
- FIG. 9B shows end 916 of insertion device 910 being inserted through pedicle 14 of vertebra 12 , such that tip 918 enters interior portion 612 of the vertebral body.
- An access hole may be formed in the outer cortical shell of the vertebral body by a trocar, drill or other instrument to provide a passage through which introducer 910 device may be inserted.
- chain 200 After insertion of end 916 of delivery device 910 into the desired region, e.g., into a vertebral body 12 , preferably through a pedicle, chain 200 may be inserted.
- FIG. 9C shows first end 202 of a chain 200 being inserted through the introducer 910 into space 612 of vertebral body 12 .
- Chain 200 may be forced into vertebral body 12 , for example by manually applying an axial force from opposite end 204 of chain 200 to drive chain 200 through introducer 910 .
- a displacement member, sprocket, screw mechanism, or other device is used to apply an axial force for implanting chain 200 , for example as described below with respect to FIGS. 11-13 .
- one long flexible monolithic device 200 may be inserted and impacted into the surgical site.
- multiple shorter or different chain devices 200 and/or other implants can be impacted or otherwise inserted into the desired cavity, void or space.
- the multiple shorter chain devices may be attached to each other sequentially end to end as they are inserted. In this manner as one chain is almost inserted, and with an end extending out of the patient, the leading end of the next chain is attached to the chain that is partially inserted.
- FIG. 9D shows the one or more chains 200 completely inserted into the central portion 612 of vertebral body 12 .
- a chain or other implant 200 may compact the cancellous and/or osteoporotic bone inside a collapsed vertebral body during insertion into the vertebral body.
- a tool such as, for example, currettes or balloon catheter may be used to compress and compact the bone inside the vertebral body to create a cavity.
- the cavity in the vertebral body also may be formed by removing bone material as opposed to compacting the bone.
- a reamer or other apparatus could be used to remove bone material from the inside of the vertebral body.
- PMMA or another bone cement or filler may be inserted into vertebral body 12 , e.g., through the introducer 910 or another cannula, sheath, syringe or other introducer, simultaneously with implant 200 to further enhance fixation or repair of a damaged region.
- the PMMA, bone cement or filler may be inserted into the interior of the bone after the chains (or portions thereof) have been inserted into the interior of the bone.
- a bone growth promoting filler may be inserted into the vertebral body, and a plug of bone cement may be utilized to hold the implant 200 and filler material in the vertebrae 12 . In this manner, the plug of cement is not inserted into the interior of the bone, but covers the opening created in the bone to insert the implant.
- FIGS. 10 A-C A minimally invasive system for fusion or non-fusion implants and insertion instruments is shown in FIGS. 10 A-C.
- a flexible monolithic chain device 1000 device may be inserted into a vertebral body 12 , e.g., through a cannula 1030 or other introducer inserted through a pedicle 14 as shown in FIG. 10A .
- a guide or other tool 1032 having a curved or otherwise configured tip 1034 may also be inserted through the cannula 1030 and serve to distract the end plates of the vertebral body 12 and/or guide the bodies 1010 of chain 1000 in a desired direction.
- flexible portions 1020 of chain 1000 may bend or flex to allow chain 1000 to curve or otherwise convolute in a desired fashion to fill the central portion 612 .
- the flexible portions allow the implant to fold and collapse upon itself to substantially fill the interior of the bone preferably with minimal porosity or open spaces.
- chain 1000 may have flexible portions, or struts, 1020 and non-flexible portions 1010 of different shapes.
- flexible joints 1010 may be narrower than the non-flexible portions 1020 , which may be kidney shaped, rectangular, or any other shape.
- Some of the non-flexible bodies may be a different size or shape than others, for example they may increase in size from a first non-flexible body 1010 - 1 having a width Y 1 to a last non-flexible body 1010 - 5 having a width Y 2 that is larger than width Y 1 .
- FIG. 10 in the exemplary embodiment of FIG.
- width Y 1 may be between about 5 mm and about 2 mm or less, and width Y 2 may be between about 6 mm and about 8 mm or less.
- body 1010 - 1 may have a length X 1 that is substantially shorter than the length X 2 of body 1010 - 5 .
- length X 1 may be between about 2 mm and about 6 mm
- length X 2 may be between about 6 mm and about 14 mm.
- Overall length of chain 1000 may vary depending upon the desired application, for example from about 10 mm to about 150 mm, more preferably from about 40 mm to about 100 mm. Of course various other sizes and relative differences in size or configuration of width, circumference, shape, curvature, or other dimensions of bodies 1010 and/or flexible portions 1020 may be employed without departing from the scope of the present invention.
- one or more of the bodies 1010 may have one or more openings or cavities 1012 or 1014 .
- Such openings or cavities 1012 , 1014 may be empty or may be filled, for example with a cement, bone filler, adhesive, graft material, therapeutic agent, or any other desired materials.
- an implant device 1000 may be coated with different substances that will support and promote bone healing, reduce infections and/or deliver therapeutic agents to the treated site.
- the non-flexible or flexible portions may also have porous surfaces 1016 , for example to facilitate in growth of bone or other tissues.
- FIG. 10C shows another embodiment of a chain 1050 having substantially rectangular or cylindrical bodies 1010 - 1 , 1010 - 2 , 1010 - 3 , 1010 - 4 and 1010 - 5 , which may be separated by flexible link portions 1020 , and may have the same or different dimensions as each other.
- all of the bodies 1010 - 1 , 1010 - 2 , 1010 - 3 , 1010 - 4 and 1010 - 5 have the same height h but different lengths.
- the struts 1020 in FIG. 10C have a different smaller height than the bodies 1010 .
- FIG. 11 is a side view illustration of an insertion device 1100 for implanting a chain 200 into a bone or other desired structure.
- insertion device 110 may include an insertion tube or cannula 1120 having a wall 1122 and a lumen 1223 .
- a rotatable screw mechanism 1110 Disposed within and extending through at least a portion of lumen 1223 is a rotatable screw mechanism 1110 having spiral threads 1114 surrounding an axial shaft 1112 .
- Threads 1114 preferably extend from shaft and are dimensioned and spaced to engage chain 200 , e.g., between bodies 210 .
- Such an insertion device may allow for enhanced insertion force of an implant, for example in order to move vertebral endplates to restore the height of the end plates of a vertebra, to compress cancellous bone in a region of the implant, or to otherwise force the implant into a desired area.
- FIGS. 12 and 13 show other mechanisms for forcing a chain 200 through an introducer and into a desired region.
- FIG. 12 shows a plunger, pusher or other displacement member 1200 inserted within cannula 1102 .
- Displacement member 1200 may be used to displace or push bodies 210 of chain through cannula 1102 and into vertebral body 12 .
- Displacement member 1200 may be driven, for example, by pressure, e.g., from a syringe, rod, or other apparatus that forces displacement member 1200 into cannula 1102 and towards vertebral body 12 .
- pressure e.g., from a syringe, rod, or other apparatus that forces displacement member 1200 into cannula 1102 and towards vertebral body 12 .
- FIG. 12 shows a plunger, pusher or other displacement member 1200 inserted within cannula 1102 .
- Displacement member 1200 may be used to displace or push bodies 210 of chain through cannula
- a sprocket 1300 or apparatus that may be wheel-like and have teeth, gears or other extensions 1302 may be configured to engage bodies 210 of chain 200 .
- Sprocket 1300 rotates about a central axis 1304 , for example in a direction shown by arrow 1306 , teeth 1302 may engage bodies 210 and force chain 200 through cannula 1102 and into portion 612 of vertebral body 12 .
- sprocket 1300 may be rotated in an opposite direction to remove some or all of chain 200 , for example after restoring a height of vertebral body 12 .
- the flexible monolithic chain devices and/or methods described herein may be used in conjunction with or instead of other methods or devices for augmenting vertebral bodies or other bones, such as, for example are described in U.S. Provisional Patent Application No. 60/722,064, filed Sep. 28, 2005 entitled “Apparatus and Methods for Vertebral Augmentation using Linked Bodies”, which is incorporated by reference herein in its entirety.
- an implantable monolithic chain 200 may be used to augment vertebrae where a compression or a compression fracture has not yet occurred and thus can be preventative in nature.
- the chain can be used in-between two vertebra.
- the chain implant can be inserted in the annulus of a spinal disc, or the disc can be removed and the chain implant inserted in-between adjacent vertebra to promote fusion of adjacent vertebrae.
- the chain implant in some embodiments may be insertable in an additional implant, such as a cage implanted in-between adjacent vertebrae.
- the chain implant may also be used to reposition and/or augment other damaged bone regions such as a fractured or weakened proximal femur 1400 as shown in FIG. 14 .
- one or more chains 200 may be inserted into a head 1410 of femur 1400 , e.g., through a cannula 1102 or other introducer as show in FIG. 15 . Once inserted, chain 200 may compact material within head 1410 and provide solid support to augment the head 1410 . A bone cement or other filler may also be used to aid augmentation.
- another implant 1420 may be inserted in addition to or instead of one or more chains 200 .
- the implants and methods described herein may be used in conjunction with other apparatus and methods to restore lordosis and augment the vertebral body.
- one or more chains 200 may be used in conjunction with known procedures, e.g., a balloon kyphoplasty, that may be used to begin repositioning of a vertebral body and/or create a space within the body for chain 200 .
- one or more chains 200 may be used in conjunction with other tools or external fixation apparatus for helping to manipulate or fix the vertebrae or other bones in a desired position.
- kits comprises various combinations of assemblies and components.
- a kit may include, for example, a cannula or other introducer and one or more flexible monolithic chains 200 .
- the one or more chains 200 may be provided in different sizes, e.g., different lengths and/or diameters.
- a kit may include an introducer, one or more chains, and a syringe or other apparatus for injecting a cement or other filler into a vertebral body or other space.
- a kit may comprise one or more balloon catheters, curettes, and other instruments and may additionally include anchoring elements, tensioning members, fixation members, or any combination thereof, for example as described in U.S. Provisional Patent Application No.
- various minimally invasive implants and methods for alleviating discomfort associated with the spinal column may employ anchors and other implants described herein.
- a monolithic chain implant within an expandable container may be implanted between spinous processes of adjacent vertebrae to distract the processes and alleviate pain and other problems caused for example by spinal stenosis, facet arthropathy, and the like.
- augmentation systems described herein may be used instead of or in addition to expandable interspinous process apparatus and methods described in U.S. Patent Publication number 2004/018128 and U.S. Pat. No. 6,419,676 to Zucherman et al.
- a cannula may be inserted laterally between adjacent spinous processes to insert a container that may be filled with the flexible chains and expand the container and thus keep the adjacent spinous processes at the desired distance.
- a balloon container, with a deflatable balloon portion can be inserted laterally through adjacent spinous processes and filled with the flexible chains to expand the balloon to a desired size to hold adjacent spinous processes at a desired distances. The balloon can thereafter be sealed and detached from the catheter.
- Other materials may be inserted within the balloon volume to supplement flexible bodies.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Neurology (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Vascular Medicine (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
- Surgical Instruments (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/633,131 US20070162132A1 (en) | 2005-12-23 | 2006-12-01 | Flexible elongated chain implant and method of supporting body tissue with same |
| US13/558,662 US9289240B2 (en) | 2005-12-23 | 2012-07-26 | Flexible elongated chain implant and method of supporting body tissue with same |
| US15/040,217 US10881520B2 (en) | 2005-12-23 | 2016-02-10 | Flexible elongated chain implant and method of supporting body tissue with same |
| US15/259,817 US20160374818A1 (en) | 2005-12-23 | 2016-09-08 | Flexible elongated chain implant and method of supporting body tissue with same |
| US15/333,275 US9956085B2 (en) | 2005-12-23 | 2016-10-25 | Flexible elongated chain implant and method of supporting body tissue with same |
| US15/801,335 US11406508B2 (en) | 2005-12-23 | 2017-11-02 | Flexible elongated chain implant and method of supporting body tissue with same |
| US17/115,777 US11701233B2 (en) | 2005-12-23 | 2020-12-08 | Flexible elongated chain implant and method of supporting body tissue with same |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US75378205P | 2005-12-23 | 2005-12-23 | |
| US81045306P | 2006-06-02 | 2006-06-02 | |
| US11/633,131 US20070162132A1 (en) | 2005-12-23 | 2006-12-01 | Flexible elongated chain implant and method of supporting body tissue with same |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/558,662 Continuation US9289240B2 (en) | 2005-12-23 | 2012-07-26 | Flexible elongated chain implant and method of supporting body tissue with same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070162132A1 true US20070162132A1 (en) | 2007-07-12 |
Family
ID=38147568
Family Applications (7)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/633,131 Abandoned US20070162132A1 (en) | 2005-12-23 | 2006-12-01 | Flexible elongated chain implant and method of supporting body tissue with same |
| US13/558,662 Active 2027-05-14 US9289240B2 (en) | 2005-12-23 | 2012-07-26 | Flexible elongated chain implant and method of supporting body tissue with same |
| US15/040,217 Active 2029-05-02 US10881520B2 (en) | 2005-12-23 | 2016-02-10 | Flexible elongated chain implant and method of supporting body tissue with same |
| US15/259,817 Abandoned US20160374818A1 (en) | 2005-12-23 | 2016-09-08 | Flexible elongated chain implant and method of supporting body tissue with same |
| US15/333,275 Active US9956085B2 (en) | 2005-12-23 | 2016-10-25 | Flexible elongated chain implant and method of supporting body tissue with same |
| US15/801,335 Active US11406508B2 (en) | 2005-12-23 | 2017-11-02 | Flexible elongated chain implant and method of supporting body tissue with same |
| US17/115,777 Active 2027-07-27 US11701233B2 (en) | 2005-12-23 | 2020-12-08 | Flexible elongated chain implant and method of supporting body tissue with same |
Family Applications After (6)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/558,662 Active 2027-05-14 US9289240B2 (en) | 2005-12-23 | 2012-07-26 | Flexible elongated chain implant and method of supporting body tissue with same |
| US15/040,217 Active 2029-05-02 US10881520B2 (en) | 2005-12-23 | 2016-02-10 | Flexible elongated chain implant and method of supporting body tissue with same |
| US15/259,817 Abandoned US20160374818A1 (en) | 2005-12-23 | 2016-09-08 | Flexible elongated chain implant and method of supporting body tissue with same |
| US15/333,275 Active US9956085B2 (en) | 2005-12-23 | 2016-10-25 | Flexible elongated chain implant and method of supporting body tissue with same |
| US15/801,335 Active US11406508B2 (en) | 2005-12-23 | 2017-11-02 | Flexible elongated chain implant and method of supporting body tissue with same |
| US17/115,777 Active 2027-07-27 US11701233B2 (en) | 2005-12-23 | 2020-12-08 | Flexible elongated chain implant and method of supporting body tissue with same |
Country Status (12)
| Country | Link |
|---|---|
| US (7) | US20070162132A1 (enExample) |
| EP (1) | EP1962705B1 (enExample) |
| JP (1) | JP4990293B2 (enExample) |
| KR (1) | KR20080085058A (enExample) |
| AT (1) | ATE466532T1 (enExample) |
| AU (1) | AU2006330939A1 (enExample) |
| BR (1) | BRPI0620452A2 (enExample) |
| CA (1) | CA2634762C (enExample) |
| DE (1) | DE602006014202D1 (enExample) |
| ES (1) | ES2342117T3 (enExample) |
| PL (1) | PL1962705T3 (enExample) |
| WO (1) | WO2007076049A2 (enExample) |
Cited By (90)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040097930A1 (en) * | 2002-08-27 | 2004-05-20 | Justis Jeff R. | Systems and methods for intravertebral reduction |
| US20060106461A1 (en) * | 2004-11-12 | 2006-05-18 | Embry Jill M | Implantable vertebral lift |
| US20070043440A1 (en) * | 2003-09-19 | 2007-02-22 | William Michael S | Method and apparatus for treating diseased or fractured bone |
| US20070154563A1 (en) * | 2003-12-31 | 2007-07-05 | Keyvan Behnam | Bone matrix compositions and methods |
| US20070233250A1 (en) * | 2006-02-07 | 2007-10-04 | Shadduck John H | Systems for treating bone |
| US20070233146A1 (en) * | 2006-01-27 | 2007-10-04 | Stryker Corporation | Low pressure delivery system and method for delivering a solid and liquid mixture into a target site for medical treatment |
| US20080009944A1 (en) * | 2001-10-02 | 2008-01-10 | Rex Medical | Spinal implant and method of use |
| US20080065083A1 (en) * | 2006-09-07 | 2008-03-13 | Csaba Truckai | Bone treatment systems and methods |
| US20080133012A1 (en) * | 2006-11-16 | 2008-06-05 | Mcguckin James F | Spinal implant and method of use |
| US20080172128A1 (en) * | 2007-01-16 | 2008-07-17 | Mi4Spine, Llc | Minimally Invasive Interbody Device Assembly |
| US20080177294A1 (en) * | 2006-10-16 | 2008-07-24 | Depuy Spine, Inc. | Expandable intervertebral tool system and method |
| US20080288006A1 (en) * | 2001-09-19 | 2008-11-20 | Brannon James K | Endoscopic Bone Debridement |
| US20090130173A1 (en) * | 2007-06-15 | 2009-05-21 | Keyvan Behnam | Bone matrix compositions and methods |
| US20090226523A1 (en) * | 2007-10-19 | 2009-09-10 | Keyvan Behnam | Demineralized bone matrix compositions and methods |
| US20100137986A1 (en) * | 2004-06-07 | 2010-06-03 | Dfine, Inc. | Implants and methods for treating bone |
| US20100185290A1 (en) * | 2007-06-29 | 2010-07-22 | Curtis Compton | Flexible chain implants and instrumentation |
| US20100203155A1 (en) * | 2009-02-12 | 2010-08-12 | Guobao Wei | Segmented delivery system |
| US20100318023A1 (en) * | 2009-06-15 | 2010-12-16 | Heraeus Medical Gmbh | Medical system, pulling device and method for pulling an active substance chain |
| US20110125271A1 (en) * | 1999-08-18 | 2011-05-26 | Intrinsic Therapeutics, Inc. | Method of performing an anchor implantation procedure within a disc |
| US20110144757A1 (en) * | 2007-09-17 | 2011-06-16 | Linares Medical Devices, Llc | Artificial joint support between first and second bones |
| US20110196492A1 (en) * | 2007-09-07 | 2011-08-11 | Intrinsic Therapeutics, Inc. | Bone anchoring systems |
| US8114082B2 (en) | 2005-12-28 | 2012-02-14 | Intrinsic Therapeutics, Inc. | Anchoring system for disc repair |
| WO2012061024A1 (en) * | 2010-10-25 | 2012-05-10 | Musculoskeletal Transplant Foundation | Demineralized cortical bone implants |
| US8231678B2 (en) | 1999-08-18 | 2012-07-31 | Intrinsic Therapeutics, Inc. | Method of treating a herniated disc |
| US8257437B2 (en) * | 1999-08-18 | 2012-09-04 | Intrinsic Therapeutics, Inc. | Methods of intervertebral disc augmentation |
| US8323341B2 (en) | 2007-09-07 | 2012-12-04 | Intrinsic Therapeutics, Inc. | Impaction grafting for vertebral fusion |
| US20130018467A1 (en) * | 2011-07-15 | 2013-01-17 | Sean Suh | Systems and Methods For Vertebral Body and Disc Height Restoration |
| US8512408B2 (en) | 2010-12-17 | 2013-08-20 | Warsaw Orthopedic, Inc. | Flexiable spinal implant |
| WO2013133729A1 (en) | 2012-03-06 | 2013-09-12 | Lfc Spolka Z O.O. | Distance interbody device for introducing a biomaterial to a vertebral body and a method of its use |
| US8642061B2 (en) | 2007-06-15 | 2014-02-04 | Warsaw Orthopedic, Inc. | Method of treating bone tissue |
| US8734525B2 (en) | 2003-12-31 | 2014-05-27 | Warsaw Orthopedic, Inc. | Osteoinductive demineralized cancellous bone |
| US8795369B1 (en) | 2010-07-16 | 2014-08-05 | Nuvasive, Inc. | Fracture reduction device and methods |
| EP2777628A1 (en) * | 2013-03-15 | 2014-09-17 | Neos Surgery, S.L. | Device for repairing an intervertebral disc |
| US8840677B2 (en) | 2008-06-19 | 2014-09-23 | DePuy Synthes Products, LLC | Allograft bone plugs, systems and techniques |
| US8845733B2 (en) | 2010-06-24 | 2014-09-30 | DePuy Synthes Products, LLC | Lateral spondylolisthesis reduction cage |
| US20140350608A1 (en) * | 2012-01-31 | 2014-11-27 | The University Of Toledo | Bioactive Fusion Device |
| US20140364954A1 (en) * | 2013-06-07 | 2014-12-11 | Gregory Merrell | Elbow antibiotic spacer implant |
| US8911759B2 (en) | 2005-11-01 | 2014-12-16 | Warsaw Orthopedic, Inc. | Bone matrix compositions and methods |
| US9220554B2 (en) | 2010-02-18 | 2015-12-29 | Globus Medical, Inc. | Methods and apparatus for treating vertebral fractures |
| US9226764B2 (en) | 2012-03-06 | 2016-01-05 | DePuy Synthes Products, Inc. | Conformable soft tissue removal instruments |
| US9289240B2 (en) | 2005-12-23 | 2016-03-22 | DePuy Synthes Products, Inc. | Flexible elongated chain implant and method of supporting body tissue with same |
| US9333082B2 (en) | 2007-07-10 | 2016-05-10 | Warsaw Orthopedic, Inc. | Delivery system attachment |
| GB2535487A (en) * | 2015-02-17 | 2016-08-24 | Biocomposites Ltd | Device to fill a bone void whilst minimising pressurisation |
| US20160302929A1 (en) * | 2015-04-15 | 2016-10-20 | FreeseTEC Corporation | Spinal fusion containment system |
| US20160374829A1 (en) * | 2015-06-25 | 2016-12-29 | Heraeus Medical Gmbh | Kit for building a cage for spondylodesis and method therefor |
| US9554920B2 (en) | 2007-06-15 | 2017-01-31 | Warsaw Orthopedic, Inc. | Bone matrix compositions having nanoscale textured surfaces |
| US9585764B2 (en) * | 2012-07-26 | 2017-03-07 | Warsaw Orthopedic, Inc. | Bone implant device |
| TWI576085B (zh) * | 2016-02-01 | 2017-04-01 | 愛派司生技股份有限公司 | 一種長骨固定裝置 |
| US9839435B2 (en) | 2011-11-14 | 2017-12-12 | The University Of British Columbia | Intramedullary fixation system for management of pelvic and acetabular fractures |
| US9931224B2 (en) | 2009-11-05 | 2018-04-03 | DePuy Synthes Products, Inc. | Self-pivoting spinal implant and associated instrumentation |
| US9974655B1 (en) * | 2016-12-19 | 2018-05-22 | Perumala Corporation | Disc and vertebral defect packing tape |
| US10022245B2 (en) | 2012-12-17 | 2018-07-17 | DePuy Synthes Products, Inc. | Polyaxial articulating instrument |
| US10258394B2 (en) | 2014-10-14 | 2019-04-16 | The University Of British Columbia | Systems and methods for intermedullary bone fixation |
| US10307188B2 (en) | 2014-03-06 | 2019-06-04 | The University Of British Columbia | Shape adaptable intramedullary fixation device |
| US10342663B2 (en) | 2016-12-19 | 2019-07-09 | Perumala Corporation | Disc and vertebral defect packing tape |
| US10376648B1 (en) * | 2014-08-11 | 2019-08-13 | H & M Innovations, Llc | Bone delivery apparatus and methods |
| US10617530B2 (en) | 2011-07-14 | 2020-04-14 | Seaspine, Inc. | Laterally deflectable implant |
| US20200146737A1 (en) * | 2017-06-14 | 2020-05-14 | Osteoagra Llc | Method, composition, and apparatus for stabilization of vertebral bodies |
| US10905801B2 (en) | 2002-06-26 | 2021-02-02 | Lifenet Health | Device and process for producing fiber products and fiber products produced thereby |
| US10932839B2 (en) | 2017-12-19 | 2021-03-02 | Stryker Corporation | Systems and methods for delivering elements within a fluent material to an off-axis target site within a bone structure |
| US10932464B2 (en) * | 2013-02-22 | 2021-03-02 | Lifenet Health | Packaging assembly for storing tissue and cellular material |
| US10966843B2 (en) | 2017-07-18 | 2021-04-06 | DePuy Synthes Products, Inc. | Implant inserters and related methods |
| US11045331B2 (en) | 2017-08-14 | 2021-06-29 | DePuy Synthes Products, Inc. | Intervertebral implant inserters and related methods |
| US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
| US11365395B2 (en) | 2003-05-01 | 2022-06-21 | Lifenet Health | In vitro growth of tissues suitable to the formation of bone and bone forming tissue formed thereby |
| US11369490B2 (en) | 2011-03-22 | 2022-06-28 | DePuy Synthes Products, Inc. | Universal trial for lateral cages |
| US11419645B2 (en) | 2016-10-05 | 2022-08-23 | University Of British Columbia | Intramedullary fixation device with shape locking interface |
| US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
| US11432942B2 (en) | 2006-12-07 | 2022-09-06 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
| US11446155B2 (en) | 2017-05-08 | 2022-09-20 | Medos International Sarl | Expandable cage |
| US11452607B2 (en) | 2010-10-11 | 2022-09-27 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
| US11497619B2 (en) | 2013-03-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11510788B2 (en) | 2016-06-28 | 2022-11-29 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
| US20220409387A1 (en) * | 2021-06-23 | 2022-12-29 | Oluwatodimu Richard Raji | Methods and systems for facilitating treatment of lumbar degenerative disc disease based on total nucleus replacement using magnetic spherical beads |
| US11596522B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable intervertebral cages with articulating joint |
| US11602438B2 (en) | 2008-04-05 | 2023-03-14 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US11607321B2 (en) | 2009-12-10 | 2023-03-21 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
| US11612491B2 (en) | 2009-03-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
| US11622868B2 (en) | 2007-06-26 | 2023-04-11 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
| US11654033B2 (en) | 2010-06-29 | 2023-05-23 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
| US11737881B2 (en) | 2008-01-17 | 2023-08-29 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
| US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
| US11806245B2 (en) | 2020-03-06 | 2023-11-07 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
| US11832856B2 (en) | 2018-10-17 | 2023-12-05 | The University Of British Columbia | Bone-fixation device and system |
| US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
| US11872139B2 (en) | 2010-06-24 | 2024-01-16 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
| USRE49973E1 (en) | 2013-02-28 | 2024-05-21 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
| US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
| USD1106456S1 (en) * | 2022-03-30 | 2025-12-16 | Lenoss Medical LLC | Flexible implant |
Families Citing this family (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10154163A1 (de) * | 2001-11-03 | 2003-05-22 | Advanced Med Tech | Vorrichtung zum Aufrichten und Stabilisieren der Wirbelsäule |
| ATE524121T1 (de) | 2004-11-24 | 2011-09-15 | Abdou Samy | Vorrichtungen zur platzierung eines orthopädischen intervertebralen implantats |
| WO2008034276A2 (en) * | 2006-09-20 | 2008-03-27 | Woodwelding Ag | Device to be implanted in human or animal tissue and method for implanting and assembling the device |
| KR20100036275A (ko) * | 2007-06-29 | 2010-04-07 | 신세스 게엠바하 | 정밀 뼈 재건 수단에 사용하기 위한 개선된 정형외과용 임플란트 |
| EP2190360B1 (en) * | 2007-09-11 | 2015-07-29 | Joy Medical Devices Corporation | Bone cavity creation system with magnetic force retrievable beads |
| US8764806B2 (en) | 2009-12-07 | 2014-07-01 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
| US8845728B1 (en) | 2011-09-23 | 2014-09-30 | Samy Abdou | Spinal fixation devices and methods of use |
| US20130226240A1 (en) | 2012-02-22 | 2013-08-29 | Samy Abdou | Spinous process fixation devices and methods of use |
| US9198767B2 (en) | 2012-08-28 | 2015-12-01 | Samy Abdou | Devices and methods for spinal stabilization and instrumentation |
| US9320617B2 (en) | 2012-10-22 | 2016-04-26 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
| US9358120B2 (en) | 2013-03-14 | 2016-06-07 | DePuy Synthes Products, Inc. | Expandable coil spinal implant |
| US9585761B2 (en) | 2013-03-14 | 2017-03-07 | DePuy Synthes Products, Inc. | Angulated rings and bonded foils for use with balloons for fusion and dynamic stabilization |
| US9572676B2 (en) | 2013-03-14 | 2017-02-21 | DePuy Synthes Products, Inc. | Adjustable multi-volume balloon for spinal interventions |
| US9937052B2 (en) | 2013-03-15 | 2018-04-10 | Cogent Spine Llc | Methods and apparatus for implanting an interbody device |
| CN104207829A (zh) * | 2014-09-03 | 2014-12-17 | 吉林大学 | 一种抗生素骨水泥链珠制造器及方法 |
| US10485664B2 (en) * | 2015-01-09 | 2019-11-26 | Formae, Inc. | Rigid segmented flexible anchors |
| US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
| US10744000B1 (en) | 2016-10-25 | 2020-08-18 | Samy Abdou | Devices and methods for vertebral bone realignment |
| US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
| AR108432A1 (es) * | 2017-05-10 | 2018-08-22 | Jorge Alberto Vanetta | Dispositivo para fijación de huesos y de relleno óseo; herramienta auxiliar y métodos de colocación y de relleno |
| US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
| US12245950B2 (en) * | 2022-05-04 | 2025-03-11 | NovApproach Spine, LLC | Interbody cage device and method for performing spinal surgical procedures |
| WO2024162260A1 (ja) * | 2023-01-30 | 2024-08-08 | 国立大学法人九州大学 | 医用可変性骨補填材及びその製造方法 |
| WO2025034664A1 (en) * | 2023-08-04 | 2025-02-13 | Lenoss Medical, Inc. | Flexible spinal implant for supporting vertebral structures |
| CN116807695B (zh) * | 2023-08-29 | 2023-12-19 | 北京爱康宜诚医疗器材有限公司 | 髋关节假体 |
| CN117752396B (zh) * | 2023-12-15 | 2024-06-21 | 中国人民解放军总医院第四医学中心 | 一种骨盆骨折微创弹性髓内固定装置 |
| CN118512250A (zh) * | 2024-03-25 | 2024-08-20 | 中国人民解放军总医院第四医学中心 | 一种加强型股骨近端螺钉 |
Citations (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4839215A (en) * | 1986-06-09 | 1989-06-13 | Ceramed Corporation | Biocompatible particles and cloth-like article made therefrom |
| US5755797A (en) * | 1993-04-21 | 1998-05-26 | Sulzer Medizinaltechnik Ag | Intervertebral prosthesis and a process for implanting such a prosthesis |
| US5961554A (en) * | 1996-12-31 | 1999-10-05 | Janson; Frank S | Intervertebral spacer |
| US6206923B1 (en) * | 1999-01-08 | 2001-03-27 | Sdgi Holdings, Inc. | Flexible implant using partially demineralized bone |
| US6387130B1 (en) * | 1999-04-16 | 2002-05-14 | Nuvasive, Inc. | Segmented linked intervertebral implant systems |
| US6632235B2 (en) * | 2001-04-19 | 2003-10-14 | Synthes (U.S.A.) | Inflatable device and method for reducing fractures in bone and in treating the spine |
| US6652593B2 (en) * | 2001-02-28 | 2003-11-25 | Synthes (Usa) | Demineralized bone implants |
| US20040097930A1 (en) * | 2002-08-27 | 2004-05-20 | Justis Jeff R. | Systems and methods for intravertebral reduction |
| US20040249464A1 (en) * | 2003-06-05 | 2004-12-09 | Bindseil James J. | Bone implants and methods of making same |
| US20050113855A1 (en) * | 2003-08-11 | 2005-05-26 | Kennedy Kenneth C.Ii | Surgical implant |
| US20050209629A1 (en) * | 2001-04-19 | 2005-09-22 | Kerr Sean H | Resorbable containment device and process for making and using same |
| US20050278023A1 (en) * | 2004-06-10 | 2005-12-15 | Zwirkoski Paul A | Method and apparatus for filling a cavity |
| US20060052874A1 (en) * | 2004-09-09 | 2006-03-09 | Johnson Wesley M | Prostheses for spine discs having fusion capability |
| US20060089715A1 (en) * | 2004-06-07 | 2006-04-27 | Csaba Truckai | Implants and methods for treating bone |
| US20060100304A1 (en) * | 2004-05-21 | 2006-05-11 | Synthes Inc. | Replacement or supplementation of a nucleus pulposus using a hydrogel |
| US20060265077A1 (en) * | 2005-02-23 | 2006-11-23 | Zwirkoski Paul A | Spinal repair |
| US20070055274A1 (en) * | 2005-06-20 | 2007-03-08 | Andreas Appenzeller | Apparatus and methods for treating bone |
| US20070093899A1 (en) * | 2005-09-28 | 2007-04-26 | Christof Dutoit | Apparatus and methods for treating bone |
| US20070093846A1 (en) * | 2005-10-12 | 2007-04-26 | Robert Frigg | Apparatus and methods for vertebral augmentation |
| US20070093822A1 (en) * | 2005-09-28 | 2007-04-26 | Christof Dutoit | Apparatus and methods for vertebral augmentation using linked expandable bodies |
| US20070093912A1 (en) * | 2005-10-25 | 2007-04-26 | Mark Borden | Porous and nonporous materials for tissue grafting and repair |
| US20070123986A1 (en) * | 2005-08-16 | 2007-05-31 | Laurent Schaller | Methods of Distracting Tissue Layers of the Human Spine |
| US20070270955A1 (en) * | 2006-04-10 | 2007-11-22 | Chow James C | Arthoscopic arthroplasty procedure for the repair or reconstruction of arthritic joints |
| US20080133012A1 (en) * | 2006-11-16 | 2008-06-05 | Mcguckin James F | Spinal implant and method of use |
| US20080306595A1 (en) * | 2004-03-26 | 2008-12-11 | Pearsalls Limited | Porous Implant For Spinal Disc Nucleus Replacement |
Family Cites Families (217)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2381050A (en) | 1943-12-04 | 1945-08-07 | Mervyn G Hardinge | Fracture reducing device |
| US3034110A (en) | 1958-06-30 | 1962-05-08 | Ibm | Support device |
| US3007535A (en) | 1960-10-31 | 1961-11-07 | Deere & Co | Implement attaching means |
| FR2287894A1 (fr) | 1974-10-15 | 1976-05-14 | Roussel Uclaf | Dispositif implanteur |
| US4611581A (en) | 1983-12-16 | 1986-09-16 | Acromed Corporation | Apparatus for straightening spinal columns |
| US5522894A (en) | 1984-12-14 | 1996-06-04 | Draenert; Klaus | Bone replacement material made of absorbable beads |
| US5053049A (en) | 1985-05-29 | 1991-10-01 | Baxter International | Flexible prostheses of predetermined shapes and process for making same |
| US4776330A (en) | 1986-06-23 | 1988-10-11 | Pfizer Hospital Products Group, Inc. | Modular femoral fixation system |
| GB8620937D0 (en) | 1986-08-29 | 1986-10-08 | Shepperd J A N | Spinal implant |
| US4820349A (en) | 1987-08-21 | 1989-04-11 | C. R. Bard, Inc. | Dilatation catheter with collapsible outer diameter |
| US5484437A (en) | 1988-06-13 | 1996-01-16 | Michelson; Gary K. | Apparatus and method of inserting spinal implants |
| CA1333209C (en) | 1988-06-28 | 1994-11-29 | Gary Karlin Michelson | Artificial spinal fusion implants |
| US4969888A (en) | 1989-02-09 | 1990-11-13 | Arie Scholten | Surgical protocol for fixation of osteoporotic bone using inflatable device |
| US5759191A (en) | 1989-06-27 | 1998-06-02 | C. R. Bard, Inc. | Coaxial PTCA catheter with anchor joint |
| US6179856B1 (en) | 1989-07-05 | 2001-01-30 | Medtronic Ave, Inc. | Coaxial PTCA catheter with anchor joint |
| US5290558A (en) | 1989-09-21 | 1994-03-01 | Osteotech, Inc. | Flowable demineralized bone powder composition and its use in bone repair |
| US5059193A (en) | 1989-11-20 | 1991-10-22 | Spine-Tech, Inc. | Expandable spinal implant and surgical method |
| IT1244249B (it) | 1990-08-03 | 1994-07-08 | Ascanio Campopiano | Manipolatore per l'esecuzione di manovre riduttive in uso in medicina traumatologica ed ortopedica applicabile a fissatori esterni. |
| US5372146A (en) | 1990-11-06 | 1994-12-13 | Branch; Thomas P. | Method and apparatus for re-approximating tissue |
| CS277533B6 (en) | 1990-12-29 | 1993-03-17 | Krajicek Milan | Fixed osteaosynthesis appliance |
| US5123926A (en) | 1991-02-22 | 1992-06-23 | Madhavan Pisharodi | Artificial spinal prosthesis |
| CA2104391C (en) | 1991-02-22 | 2006-01-24 | Madhavan Pisharodi | Middle expandable intervertebral disk implant and method |
| NL9101197A (nl) | 1991-07-08 | 1993-02-01 | Texas Instruments Holland | Injector. |
| DE4200905A1 (de) | 1992-01-16 | 1993-07-22 | Heinrich Ulrich | Implantat zur ausrichtung und fixierung zweier knochen oder knochenteile zueinander, insbesondere spondylodese-implantat |
| NL9200288A (nl) | 1992-02-17 | 1993-09-16 | Acromed Bv | Inrichting ter fixatie van ten minste een gedeelte van de cervicale en/of thoracale wervelkolom van de mens. |
| DE59305375D1 (de) | 1992-08-12 | 1997-03-20 | Synthes Ag | Wirbelsäulenfixationselement |
| US5534023A (en) | 1992-12-29 | 1996-07-09 | Henley; Julian L. | Fluid filled prosthesis excluding gas-filled beads |
| US6241734B1 (en) | 1998-08-14 | 2001-06-05 | Kyphon, Inc. | Systems and methods for placing materials into bone |
| US7044954B2 (en) | 1994-01-26 | 2006-05-16 | Kyphon Inc. | Method for treating a vertebral body |
| JP3333211B2 (ja) | 1994-01-26 | 2002-10-15 | レイリー,マーク・エイ | 骨の治療に関する外科的方法で使用される、改良に係る拡張可能な装置 |
| US20030032963A1 (en) | 2001-10-24 | 2003-02-13 | Kyphon Inc. | Devices and methods using an expandable body with internal restraint for compressing cancellous bone |
| EP1498079A1 (en) | 1994-01-26 | 2005-01-19 | Kyphon Inc. | Improved device for use in surgical protocol relating to fixation of bone |
| US7166121B2 (en) | 1994-01-26 | 2007-01-23 | Kyphon Inc. | Systems and methods using expandable bodies to push apart cortical bone surfaces |
| US6248110B1 (en) | 1994-01-26 | 2001-06-19 | Kyphon, Inc. | Systems and methods for treating fractured or diseased bone using expandable bodies |
| US5697977A (en) | 1994-03-18 | 1997-12-16 | Pisharodi; Madhavan | Method and apparatus for spondylolisthesis reduction |
| US5571189A (en) | 1994-05-20 | 1996-11-05 | Kuslich; Stephen D. | Expandable fabric implant for stabilizing the spinal motion segment |
| ATE203885T1 (de) | 1994-09-08 | 2001-08-15 | Stryker Technologies Corp | Bandscheibenkern aus hydrogel |
| US5665122A (en) | 1995-01-31 | 1997-09-09 | Kambin; Parviz | Expandable intervertebral cage and surgical method |
| US5637042A (en) | 1995-03-21 | 1997-06-10 | Dana Corporation | Drive line assembly with reducing tube yoke |
| FR2735354B1 (fr) | 1995-06-13 | 1997-08-14 | Perouse Implant Lab | Prothese mammaire |
| US6183768B1 (en) | 1995-07-26 | 2001-02-06 | HäRLE ANTON | Implantable medicine releasing corpuscles and method of making, implanting and removing the same |
| DE59511075D1 (de) | 1995-11-08 | 2007-02-08 | Zimmer Gmbh | Vorrichtung zum Einbringen eines Implantats, insbesondere einer Zwischenwirbelprothese |
| DE19606490A1 (de) | 1996-02-22 | 1997-08-28 | Merck Patent Gmbh | Vorrichtung zur manuellen Herstellung von perlschnurförmigen pharmakahaltigen Implantaten |
| US5868749A (en) | 1996-04-05 | 1999-02-09 | Reed; Thomas M. | Fixation devices |
| US5690678A (en) | 1996-04-30 | 1997-11-25 | Johnson; Lanny L. | Arrangement for anchoring suture to bone |
| US6491714B1 (en) | 1996-05-03 | 2002-12-10 | William F. Bennett | Surgical tissue repair and attachment apparatus and method |
| US6189537B1 (en) | 1996-09-06 | 2001-02-20 | Lifenet | Process for producing osteoinductive bone, and osteoinductive bone produced thereby |
| US5716416A (en) * | 1996-09-10 | 1998-02-10 | Lin; Chih-I | Artificial intervertebral disk and method for implanting the same |
| US5878886A (en) | 1996-09-20 | 1999-03-09 | Marshall; John C. | Display package for pull chains and the like |
| US5756127A (en) | 1996-10-29 | 1998-05-26 | Wright Medical Technology, Inc. | Implantable bioresorbable string of calcium sulfate beads |
| US5782831A (en) | 1996-11-06 | 1998-07-21 | Sdgi Holdings, Inc. | Method an device for spinal deformity reduction using a cable and a cable tensioning system |
| AU7178698A (en) | 1996-11-15 | 1998-06-03 | Advanced Bio Surfaces, Inc. | Biomaterial system for in situ tissue repair |
| US5836948A (en) | 1997-01-02 | 1998-11-17 | Saint Francis Medical Technologies, Llc | Spine distraction implant and method |
| US20060271061A1 (en) | 2001-07-25 | 2006-11-30 | Disc-O-Tech, Ltd. | Deformable tools and implants |
| WO2001054598A1 (en) | 1998-03-06 | 2001-08-02 | Disc-O-Tech Medical Technologies, Ltd. | Expanding bone implants |
| ES2302349T3 (es) | 1997-03-07 | 2008-07-01 | Disc-O-Tech Medical Technologies, Ltd. | Sistemas para la estabilizacion, fijacion y reparacion osea y vertebral percutaneas. |
| IL128261A0 (en) | 1999-01-27 | 1999-11-30 | Disc O Tech Medical Tech Ltd | Expandable element |
| DE19710392C1 (de) * | 1997-03-13 | 1999-07-01 | Haehnel Michael | Bandscheibenimplantat, insbesondere für den Lendenwirbel- und Brustwirbelbereich |
| US6045579A (en) | 1997-05-01 | 2000-04-04 | Spinal Concepts, Inc. | Adjustable height fusion device |
| US6149651A (en) | 1997-06-02 | 2000-11-21 | Sdgi Holdings, Inc. | Device for supporting weak bony structures |
| US5972015A (en) | 1997-08-15 | 1999-10-26 | Kyphon Inc. | Expandable, asymetric structures for deployment in interior body regions |
| US6048346A (en) | 1997-08-13 | 2000-04-11 | Kyphon Inc. | Systems and methods for injecting flowable materials into bones |
| US5865848A (en) | 1997-09-12 | 1999-02-02 | Artifex, Ltd. | Dynamic intervertebral spacer and method of use |
| NZ503429A (en) * | 1997-09-17 | 2001-10-26 | Osteotech Inc | Fusion implant device formed of bone and to be located in spine |
| US6652592B1 (en) | 1997-10-27 | 2003-11-25 | Regeneration Technologies, Inc. | Segmentally demineralized bone implant |
| US6090998A (en) | 1997-10-27 | 2000-07-18 | University Of Florida | Segmentally demineralized bone implant |
| US20010001129A1 (en) | 1997-12-10 | 2001-05-10 | Mckay William F. | Osteogenic fusion device |
| US5899939A (en) | 1998-01-21 | 1999-05-04 | Osteotech, Inc. | Bone-derived implant for load-supporting applications |
| US7087082B2 (en) | 1998-08-03 | 2006-08-08 | Synthes (Usa) | Bone implants with central chambers |
| US6290718B1 (en) | 1998-02-02 | 2001-09-18 | Regeneration Technologies, Inc. | Luminal graft, stent or conduit made of cortical bone |
| DE19807236C2 (de) | 1998-02-20 | 2000-06-21 | Biedermann Motech Gmbh | Zwischenwirbelimplantat |
| US6835208B2 (en) | 1998-03-30 | 2004-12-28 | J. Alexander Marchosky | Prosthetic system |
| WO1999049818A1 (en) | 1998-03-30 | 1999-10-07 | Marchosky J Alexander | Prosthetic system |
| US6440138B1 (en) | 1998-04-06 | 2002-08-27 | Kyphon Inc. | Structures and methods for creating cavities in interior body regions |
| US6126689A (en) | 1998-06-15 | 2000-10-03 | Expanding Concepts, L.L.C. | Collapsible and expandable interbody fusion device |
| US6293970B1 (en) | 1998-06-30 | 2001-09-25 | Lifenet | Plasticized bone and soft tissue grafts and methods of making and using same |
| US6162231A (en) | 1998-09-14 | 2000-12-19 | Endocare, Inc. | Stent insertion device |
| US6497726B1 (en) | 2000-01-11 | 2002-12-24 | Regeneration Technologies, Inc. | Materials and methods for improved bone tendon bone transplantation |
| JP2003530131A (ja) | 1999-03-07 | 2003-10-14 | ディスクレ リミテッド | コンピューターを利用する手術方法及び装置 |
| US6602291B1 (en) | 1999-04-05 | 2003-08-05 | Raymedica, Inc. | Prosthetic spinal disc nucleus having a shape change characteristic |
| US6332887B1 (en) | 1999-04-06 | 2001-12-25 | Benjamin D. Knox | Spinal fusion instrumentation system |
| AU4810800A (en) | 1999-04-26 | 2000-11-10 | Li Medical Technologies, Inc. | Prosthetic apparatus and method |
| US6969404B2 (en) | 1999-10-08 | 2005-11-29 | Ferree Bret A | Annulus fibrosis augmentation methods and apparatus |
| FR2794362B1 (fr) | 1999-06-02 | 2001-09-21 | Henry Graf | Implant intervertebral et ensemble de pose d'un tel implant |
| AU5701200A (en) | 1999-07-02 | 2001-01-22 | Petrus Besselink | Reinforced expandable cage |
| US7226475B2 (en) | 1999-11-09 | 2007-06-05 | Boston Scientific Scimed, Inc. | Stent with variable properties |
| ATE310457T1 (de) | 2000-01-27 | 2005-12-15 | Synthes Ag | Knochenplatte |
| WO2001078798A1 (en) | 2000-02-10 | 2001-10-25 | Regeneration Technologies, Inc. | Assembled implant |
| US6332894B1 (en) | 2000-03-07 | 2001-12-25 | Zimmer, Inc. | Polymer filled spinal fusion cage |
| AR027685A1 (es) | 2000-03-22 | 2003-04-09 | Synthes Ag | Forma de tejido y metodo para realizarlo |
| AU5326701A (en) | 2000-04-05 | 2001-10-23 | Kyphon Inc | Methods and devices for treating fractured and/or diseased bone |
| US6340477B1 (en) | 2000-04-27 | 2002-01-22 | Lifenet | Bone matrix composition and methods for making and using same |
| US6869445B1 (en) | 2000-05-04 | 2005-03-22 | Phillips Plastics Corp. | Packable ceramic beads for bone repair |
| DE60113095T2 (de) | 2000-05-12 | 2006-05-18 | Osteotech, Inc. | Oberflächen entmineralisiertes osteoimplantat und verfahren zu seiner herstellung |
| US7025771B2 (en) | 2000-06-30 | 2006-04-11 | Spineology, Inc. | Tool to direct bone replacement material |
| ES2341641T3 (es) | 2000-07-21 | 2010-06-24 | The Spineology Group, Llc | Un dispositivo de bolsa de malla porosa expansible y su uso para cirugia osea. |
| US7204851B2 (en) | 2000-08-30 | 2007-04-17 | Sdgi Holdings, Inc. | Method and apparatus for delivering an intervertebral disc implant |
| AU8535101A (en) * | 2000-08-30 | 2002-03-13 | Sdgi Holdings Inc | Intervertebral disc nucleus implants and methods |
| US20050154463A1 (en) * | 2000-08-30 | 2005-07-14 | Trieu Hal H. | Spinal nucleus replacement implants and methods |
| US6679886B2 (en) | 2000-09-01 | 2004-01-20 | Synthes (Usa) | Tools and methods for creating cavities in bone |
| US6761738B1 (en) * | 2000-09-19 | 2004-07-13 | Sdgi Holdings, Inc. | Reinforced molded implant formed of cortical bone |
| US6277120B1 (en) | 2000-09-20 | 2001-08-21 | Kevin Jon Lawson | Cable-anchor system for spinal fixation |
| CA2323252C (en) | 2000-10-12 | 2007-12-11 | Biorthex Inc. | Artificial disc |
| US6733531B1 (en) | 2000-10-20 | 2004-05-11 | Sdgi Holdings, Inc. | Anchoring devices and implants for intervertebral disc augmentation |
| ATE387163T1 (de) | 2000-12-15 | 2008-03-15 | Spineology Inc | Annulusverstärkendes band |
| DE10290985T5 (de) | 2001-02-02 | 2004-04-15 | Technology Finance Corp. (Pty.) Ltd., Sandton | Knochenfüllmaterial |
| JP2005510258A (ja) * | 2001-02-12 | 2005-04-21 | リジェネレーション テクノロジーズ インク. | 混合組成物セグメントを備える、組み立てられた移植物 |
| US6827743B2 (en) | 2001-02-28 | 2004-12-07 | Sdgi Holdings, Inc. | Woven orthopedic implants |
| US6595998B2 (en) | 2001-03-08 | 2003-07-22 | Spinewave, Inc. | Tissue distraction device |
| US6849093B2 (en) | 2001-03-09 | 2005-02-01 | Gary K. Michelson | Expansion constraining member adapted for use with an expandable interbody spinal fusion implant and method for use thereof |
| US6802844B2 (en) | 2001-03-26 | 2004-10-12 | Nuvasive, Inc | Spinal alignment apparatus and methods |
| US6641583B2 (en) | 2001-03-29 | 2003-11-04 | Endius Incorporated | Apparatus for retaining bone portions in a desired spatial relationship |
| US7857860B2 (en) | 2003-04-30 | 2010-12-28 | Therics, Llc | Bone void filler and method of manufacture |
| US6620162B2 (en) | 2001-07-20 | 2003-09-16 | Spineology, Inc. | Device for inserting fill material particles into body cavities |
| US20030028251A1 (en) | 2001-07-30 | 2003-02-06 | Mathews Hallett H. | Methods and devices for interbody spinal stabilization |
| US6706069B2 (en) | 2001-09-13 | 2004-03-16 | J. Lee Berger | Spinal grooved director with built in balloon |
| WO2003024344A1 (en) | 2001-09-14 | 2003-03-27 | The Regents Of The University Of California | System and method for fusing spinal vertebrae |
| EP1432371B1 (en) * | 2001-10-02 | 2009-07-08 | Rex Medical, L.P. | Spinal implant |
| DE10152094C2 (de) | 2001-10-23 | 2003-11-27 | Biedermann Motech Gmbh | Fixationseinrichtung für Knochen |
| DE10154163A1 (de) | 2001-11-03 | 2003-05-22 | Advanced Med Tech | Vorrichtung zum Aufrichten und Stabilisieren der Wirbelsäule |
| US8025684B2 (en) | 2001-11-09 | 2011-09-27 | Zimmer Spine, Inc. | Instruments and methods for inserting a spinal implant |
| JP4230912B2 (ja) | 2001-12-05 | 2009-02-25 | ジンテーズ ゲゼルシャフト ミト ベシュレンクテル ハフツング | 椎間板プロテーゼまたは髄核代替プロテーゼ |
| DE10223332A1 (de) | 2002-05-25 | 2003-12-04 | Efmt Entwicklungs Und Forschun | Medizinisches Implantat |
| JP4179495B2 (ja) | 2002-06-12 | 2008-11-12 | 松崎 浩巳 | 骨補填材 |
| US6793678B2 (en) | 2002-06-27 | 2004-09-21 | Depuy Acromed, Inc. | Prosthetic intervertebral motion disc having dampening |
| US7060066B2 (en) | 2002-06-28 | 2006-06-13 | Mayo Foundation For Medical Education And Research | Spinal fixation support device and methods of using |
| US7332138B2 (en) | 2002-07-26 | 2008-02-19 | Exxonmobil Research And Engineering Company | Jet mixing of process fluids in fixed bed reactor |
| US7101400B2 (en) | 2002-08-19 | 2006-09-05 | Jeffery Thramann | Shaped memory artificial disc and methods of engrafting the same |
| US20040087947A1 (en) | 2002-08-28 | 2004-05-06 | Roy Lim | Minimally invasive expanding spacer and method |
| WO2004026190A2 (en) | 2002-09-18 | 2004-04-01 | Sdgi Holdings, Inc. | Natural tissue devices and methods of implantation |
| EP1567069A4 (en) | 2002-11-08 | 2008-11-12 | Warsaw Orthopedic Inc | METHODS AND DEVICES FOR TRANSPARENCY ACCESS TO INTERVERTEBRAL DISCS |
| JP4467059B2 (ja) | 2002-11-12 | 2010-05-26 | カーモン ベン−ジオン | 組織の拡張、再生および固定のための拡張装置と方法 |
| WO2004047689A1 (en) | 2002-11-21 | 2004-06-10 | Sdgi Holdings, Inc. | Systems and techniques for intravertebral spinal stablization with expandable devices |
| US7828849B2 (en) | 2003-02-03 | 2010-11-09 | Warsaw Orthopedic, Inc. | Expanding interbody implant and articulating inserter and method |
| MXPA05008653A (es) | 2003-02-14 | 2006-04-27 | Depuy Spine Inc | Dispositivo de fusion intervertebral formado in situ. |
| DE20303642U1 (de) | 2003-02-28 | 2003-04-30 | Aesculap AG & Co. KG, 78532 Tuttlingen | Implantat und Implantatsystem zum Wiederaufbau eines Wirbelkörpers |
| US7608096B2 (en) | 2003-03-10 | 2009-10-27 | Warsaw Orthopedic, Inc. | Posterior pedicle screw and plate system and methods |
| US20040225361A1 (en) | 2003-03-14 | 2004-11-11 | Glenn Bradley J. | Intervertebral disk nuclear augmentation system |
| IL155146A0 (en) | 2003-03-30 | 2003-10-31 | Expandis Ltd | Minimally invasive distraction device and method |
| US7416553B2 (en) | 2003-04-09 | 2008-08-26 | Depuy Acromed, Inc. | Drill guide and plate inserter |
| TWI221091B (en) | 2003-04-18 | 2004-09-21 | A Spine Holding Group Corp | Spine filling device |
| TW587933B (en) | 2003-04-30 | 2004-05-21 | A Spine Holding Group Corp | Device for anchoring bone tissue |
| CN1812756A (zh) * | 2003-06-02 | 2006-08-02 | Sdgi控股股份有限公司 | 椎间盘植入体及其制造和使用方法 |
| US7537617B2 (en) | 2003-06-05 | 2009-05-26 | Warsaw Orthopedic, Inc. | Bone strip implants and method of making same |
| US20050015148A1 (en) | 2003-07-18 | 2005-01-20 | Jansen Lex P. | Biocompatible wires and methods of using same to fill bone void |
| US20050021040A1 (en) | 2003-07-21 | 2005-01-27 | Rudolf Bertagnoli | Vertebral retainer-distracter and method of using same |
| US7758647B2 (en) * | 2003-07-25 | 2010-07-20 | Impliant Ltd. | Elastomeric spinal disc nucleus replacement |
| US6958077B2 (en) | 2003-07-29 | 2005-10-25 | Loubert Suddaby | Inflatable nuclear prosthesis |
| EP1675533A2 (en) | 2003-09-19 | 2006-07-05 | Synecor, LLC | Method and apparatus for treating diseased or fractured bone |
| US7513900B2 (en) | 2003-09-29 | 2009-04-07 | Boston Scientific Scimed, Inc. | Apparatus and methods for reducing compression bone fractures using high strength ribbed members |
| US7655010B2 (en) | 2003-09-30 | 2010-02-02 | Depuy Spine, Inc. | Vertebral fusion device and method for using same |
| WO2005039392A2 (en) | 2003-10-22 | 2005-05-06 | Endius Incorporated | Method and surgical tool for inserting a longitudinal member |
| KR101136203B1 (ko) | 2003-10-30 | 2012-04-17 | 신세스 게엠바하 | 뼈플레이트 |
| US20050119752A1 (en) | 2003-11-19 | 2005-06-02 | Synecor Llc | Artificial intervertebral disc |
| US7217291B2 (en) | 2003-12-08 | 2007-05-15 | St. Francis Medical Technologies, Inc. | System and method for replacing degenerated spinal disks |
| US7850733B2 (en) | 2004-02-10 | 2010-12-14 | Atlas Spine, Inc. | PLIF opposing wedge ramp |
| US7294145B2 (en) | 2004-02-26 | 2007-11-13 | Boston Scientific Scimed, Inc. | Stent with differently coated inside and outside surfaces |
| US20050203533A1 (en) | 2004-03-12 | 2005-09-15 | Sdgi Holdings, Inc. | Technique and instrumentation for intervertebral prosthesis implantation |
| US20050209695A1 (en) | 2004-03-15 | 2005-09-22 | De Vries Jan A | Vertebroplasty method |
| US7588578B2 (en) | 2004-06-02 | 2009-09-15 | Facet Solutions, Inc | Surgical measurement systems and methods |
| US20060095138A1 (en) | 2004-06-09 | 2006-05-04 | Csaba Truckai | Composites and methods for treating bone |
| EP1623727A1 (de) | 2004-07-14 | 2006-02-08 | Bruno Sidler | Füllmittel und Zuführvorrichtung zum Ausbilden einer Stützstruktur in einem Knocheninnenraum |
| US7703727B2 (en) | 2004-07-21 | 2010-04-27 | Selness Jerry N | Universal adjustable spacer assembly |
| CN106963464B (zh) | 2004-07-30 | 2019-11-05 | 德普伊新特斯产品有限责任公司 | 外科用具 |
| US7503920B2 (en) * | 2004-08-11 | 2009-03-17 | Tzony Siegal | Spinal surgery system and method |
| US8236029B2 (en) | 2004-08-11 | 2012-08-07 | Nlt Spine Ltd. | Devices for introduction into a body via a substantially straight conduit to for a predefined curved configuration, and methods employing such devices |
| US20060036241A1 (en) | 2004-08-11 | 2006-02-16 | Tzony Siegal | Spinal surgery system and method |
| US7905920B2 (en) * | 2004-08-19 | 2011-03-15 | Foster-Miller, Inc. | Support system for intervertebral fusion |
| US20060106459A1 (en) | 2004-08-30 | 2006-05-18 | Csaba Truckai | Bone treatment systems and methods |
| US7799081B2 (en) | 2004-09-14 | 2010-09-21 | Aeolin, Llc | System and method for spinal fusion |
| CA2585450A1 (en) | 2004-10-25 | 2006-05-04 | Alphaspine, Inc. | Expandable intervertebral spacer method and apparatus |
| US20060100706A1 (en) | 2004-11-10 | 2006-05-11 | Shadduck John H | Stent systems and methods for spine treatment |
| US8562607B2 (en) | 2004-11-19 | 2013-10-22 | Dfine, Inc. | Bone treatment systems and methods |
| US20060122701A1 (en) | 2004-11-23 | 2006-06-08 | Kiester P D | Posterior lumbar interbody fusion expandable cage with lordosis and method of deploying the same |
| ATE524121T1 (de) | 2004-11-24 | 2011-09-15 | Abdou Samy | Vorrichtungen zur platzierung eines orthopädischen intervertebralen implantats |
| US7722620B2 (en) | 2004-12-06 | 2010-05-25 | Dfine, Inc. | Bone treatment systems and methods |
| US20060142858A1 (en) | 2004-12-16 | 2006-06-29 | Dennis Colleran | Expandable implants for spinal disc replacement |
| US7655046B2 (en) | 2005-01-20 | 2010-02-02 | Warsaw Orthopedic, Inc. | Expandable spinal fusion cage and associated instrumentation |
| US7427295B2 (en) | 2005-02-03 | 2008-09-23 | Elli Quence, Llc | Spinal fill for disk surgery |
| ATE531346T1 (de) * | 2005-02-24 | 2011-11-15 | Morphogeny Llc | Verbundene, verschiebbare und zusammensteckbare drehbare komponenten |
| WO2006105437A2 (en) | 2005-03-31 | 2006-10-05 | Life Spine, Inc. | Expandable spinal interbody and intravertebral body devices |
| US7942903B2 (en) | 2005-04-12 | 2011-05-17 | Moskowitz Ahmnon D | Bi-directional fixating transvertebral body screws and posterior cervical and lumbar interarticulating joint calibrated stapling devices for spinal fusion |
| US7575580B2 (en) | 2005-04-15 | 2009-08-18 | Warsaw Orthopedic, Inc. | Instruments, implants and methods for positioning implants into a spinal disc space |
| US20060247781A1 (en) * | 2005-04-29 | 2006-11-02 | Sdgi Holdings, Inc. | Implant |
| WO2006130796A2 (en) | 2005-06-02 | 2006-12-07 | Zimmer Spine, Inc. | Interbody fusion ring and method of using the same |
| US7628800B2 (en) | 2005-06-03 | 2009-12-08 | Warsaw Orthopedic, Inc. | Formed in place corpectomy device |
| US7442210B2 (en) | 2005-06-15 | 2008-10-28 | Jerome Segal | Mechanical apparatus and method for artificial disc replacement |
| US20070010889A1 (en) * | 2005-07-06 | 2007-01-11 | Sdgi Holdings, Inc. | Foldable nucleus replacement device |
| US8591583B2 (en) | 2005-08-16 | 2013-11-26 | Benvenue Medical, Inc. | Devices for treating the spine |
| US8454617B2 (en) | 2005-08-16 | 2013-06-04 | Benvenue Medical, Inc. | Devices for treating the spine |
| US9028550B2 (en) | 2005-09-26 | 2015-05-12 | Coalign Innovations, Inc. | Selectively expanding spine cage with enhanced bone graft infusion |
| US7985256B2 (en) | 2005-09-26 | 2011-07-26 | Coalign Innovations, Inc. | Selectively expanding spine cage, hydraulically controllable in three dimensions for enhanced spinal fusion |
| US20070162132A1 (en) | 2005-12-23 | 2007-07-12 | Dominique Messerli | Flexible elongated chain implant and method of supporting body tissue with same |
| US8034110B2 (en) | 2006-07-31 | 2011-10-11 | Depuy Spine, Inc. | Spinal fusion implant |
| US20080161927A1 (en) | 2006-10-18 | 2008-07-03 | Warsaw Orthopedic, Inc. | Intervertebral Implant with Porous Portions |
| US8840621B2 (en) | 2006-11-03 | 2014-09-23 | Innovative Spine, Inc. | Spinal access systems and methods |
| EP1925272B1 (en) | 2006-11-23 | 2010-01-13 | BIEDERMANN MOTECH GmbH | Expandable intervertebral implant |
| WO2008070863A2 (en) | 2006-12-07 | 2008-06-12 | Interventional Spine, Inc. | Intervertebral implant |
| US7947078B2 (en) | 2007-01-09 | 2011-05-24 | Nonlinear Technologies Ltd. | Devices for forming curved or closed-loop structures |
| US8425602B2 (en) | 2007-02-09 | 2013-04-23 | Alphatec Spine, Inc. | Curvilinear spinal access method and device |
| US8152714B2 (en) | 2007-02-09 | 2012-04-10 | Alphatec Spine, Inc. | Curviliner spinal access method and device |
| US8262666B2 (en) | 2007-04-27 | 2012-09-11 | Atlas Spine, Inc. | Implantable distractor |
| BRPI0813946A2 (pt) | 2007-06-29 | 2015-01-06 | Synthes Gmbh | Implante em cadeia flexível para inserção no volume interior formado em um osso. |
| CN101790355B (zh) | 2007-08-09 | 2012-07-25 | 非线性技术有限公司 | 用于椎骨棘突牵引的装置与方法 |
| US9101491B2 (en) | 2007-12-28 | 2015-08-11 | Nuvasive, Inc. | Spinal surgical implant and related methods |
| US8267939B2 (en) | 2008-02-28 | 2012-09-18 | Stryker Spine | Tool for implanting expandable intervertebral implant |
| CA2731351A1 (en) | 2008-07-27 | 2010-02-04 | Nonlinear Technologies Ltd. | Tool and corresponding method for removal of material from within a body |
| US8328812B2 (en) | 2008-07-27 | 2012-12-11 | NLT-Spine Ltd. | Tool and corresponding method for removal of material from within a body |
| WO2010075555A2 (en) | 2008-12-26 | 2010-07-01 | Scott Spann | Minimally-invasive retroperitoneal lateral approach for spinal surgery |
| US20110029083A1 (en) | 2009-07-31 | 2011-02-03 | Warsaw Orthopedic, Inc. | Flexible Spinal Implant |
| US20110029085A1 (en) | 2009-07-31 | 2011-02-03 | Warsaw Orthopedic, Inc. | Flexible spinal implant |
| CN102933178A (zh) | 2010-02-16 | 2013-02-13 | Nlt脊椎有限公司 | 医疗装置锁定机构 |
| JP5807928B2 (ja) | 2010-07-15 | 2015-11-10 | エヌエルティー スパイン エルティーディー. | 拡張可能なインプラントを移植するための外科的システムおよび方法 |
| WO2012011078A1 (en) | 2010-07-21 | 2012-01-26 | Nonlinear Technologies Ltd. | Spinal surgery implants and delivery system |
| WO2012027490A2 (en) | 2010-08-24 | 2012-03-01 | Stout Medical Group, L.P. | Support device and method for use |
| EP2706931B1 (en) | 2011-05-12 | 2015-04-15 | NLT Spine Ltd. | Tissue disruption device |
| KR20150023455A (ko) | 2012-05-29 | 2015-03-05 | 엔엘티 스파인 리미티드. | 측면으로 휘어지는 임플란트 |
-
2006
- 2006-12-01 US US11/633,131 patent/US20070162132A1/en not_active Abandoned
- 2006-12-20 ES ES06848070T patent/ES2342117T3/es active Active
- 2006-12-20 DE DE602006014202T patent/DE602006014202D1/de active Active
- 2006-12-20 AU AU2006330939A patent/AU2006330939A1/en not_active Abandoned
- 2006-12-20 CA CA2634762A patent/CA2634762C/en active Active
- 2006-12-20 WO PCT/US2006/049105 patent/WO2007076049A2/en not_active Ceased
- 2006-12-20 PL PL06848070T patent/PL1962705T3/pl unknown
- 2006-12-20 BR BRPI0620452-0A patent/BRPI0620452A2/pt not_active IP Right Cessation
- 2006-12-20 JP JP2008547631A patent/JP4990293B2/ja not_active Expired - Fee Related
- 2006-12-20 KR KR1020087018072A patent/KR20080085058A/ko not_active Abandoned
- 2006-12-20 EP EP06848070A patent/EP1962705B1/en active Active
- 2006-12-20 AT AT06848070T patent/ATE466532T1/de active
-
2012
- 2012-07-26 US US13/558,662 patent/US9289240B2/en active Active
-
2016
- 2016-02-10 US US15/040,217 patent/US10881520B2/en active Active
- 2016-09-08 US US15/259,817 patent/US20160374818A1/en not_active Abandoned
- 2016-10-25 US US15/333,275 patent/US9956085B2/en active Active
-
2017
- 2017-11-02 US US15/801,335 patent/US11406508B2/en active Active
-
2020
- 2020-12-08 US US17/115,777 patent/US11701233B2/en active Active
Patent Citations (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4839215A (en) * | 1986-06-09 | 1989-06-13 | Ceramed Corporation | Biocompatible particles and cloth-like article made therefrom |
| US5755797A (en) * | 1993-04-21 | 1998-05-26 | Sulzer Medizinaltechnik Ag | Intervertebral prosthesis and a process for implanting such a prosthesis |
| US5961554A (en) * | 1996-12-31 | 1999-10-05 | Janson; Frank S | Intervertebral spacer |
| US6206923B1 (en) * | 1999-01-08 | 2001-03-27 | Sdgi Holdings, Inc. | Flexible implant using partially demineralized bone |
| US6387130B1 (en) * | 1999-04-16 | 2002-05-14 | Nuvasive, Inc. | Segmented linked intervertebral implant systems |
| US6776800B2 (en) * | 2001-02-28 | 2004-08-17 | Synthes (U.S.A.) | Implants formed with demineralized bone |
| US6652593B2 (en) * | 2001-02-28 | 2003-11-25 | Synthes (Usa) | Demineralized bone implants |
| US6855169B2 (en) * | 2001-02-28 | 2005-02-15 | Synthes (Usa) | Demineralized bone-derived implants |
| US20050131548A1 (en) * | 2001-02-28 | 2005-06-16 | Synthes | Demineralized bone-derived implants |
| US20050209629A1 (en) * | 2001-04-19 | 2005-09-22 | Kerr Sean H | Resorbable containment device and process for making and using same |
| US6632235B2 (en) * | 2001-04-19 | 2003-10-14 | Synthes (U.S.A.) | Inflatable device and method for reducing fractures in bone and in treating the spine |
| US20040097930A1 (en) * | 2002-08-27 | 2004-05-20 | Justis Jeff R. | Systems and methods for intravertebral reduction |
| US7351262B2 (en) * | 2003-06-05 | 2008-04-01 | Warsaw Orthopedic, Inc. | Bone implants and methods of making same |
| US20040249464A1 (en) * | 2003-06-05 | 2004-12-09 | Bindseil James J. | Bone implants and methods of making same |
| US20050113855A1 (en) * | 2003-08-11 | 2005-05-26 | Kennedy Kenneth C.Ii | Surgical implant |
| US20080306595A1 (en) * | 2004-03-26 | 2008-12-11 | Pearsalls Limited | Porous Implant For Spinal Disc Nucleus Replacement |
| US20060100304A1 (en) * | 2004-05-21 | 2006-05-11 | Synthes Inc. | Replacement or supplementation of a nucleus pulposus using a hydrogel |
| US20060089715A1 (en) * | 2004-06-07 | 2006-04-27 | Csaba Truckai | Implants and methods for treating bone |
| US20050278023A1 (en) * | 2004-06-10 | 2005-12-15 | Zwirkoski Paul A | Method and apparatus for filling a cavity |
| US20060052874A1 (en) * | 2004-09-09 | 2006-03-09 | Johnson Wesley M | Prostheses for spine discs having fusion capability |
| US20060265077A1 (en) * | 2005-02-23 | 2006-11-23 | Zwirkoski Paul A | Spinal repair |
| US20070055274A1 (en) * | 2005-06-20 | 2007-03-08 | Andreas Appenzeller | Apparatus and methods for treating bone |
| US20070123986A1 (en) * | 2005-08-16 | 2007-05-31 | Laurent Schaller | Methods of Distracting Tissue Layers of the Human Spine |
| US20070093899A1 (en) * | 2005-09-28 | 2007-04-26 | Christof Dutoit | Apparatus and methods for treating bone |
| US20070093822A1 (en) * | 2005-09-28 | 2007-04-26 | Christof Dutoit | Apparatus and methods for vertebral augmentation using linked expandable bodies |
| US20070093846A1 (en) * | 2005-10-12 | 2007-04-26 | Robert Frigg | Apparatus and methods for vertebral augmentation |
| US20070093912A1 (en) * | 2005-10-25 | 2007-04-26 | Mark Borden | Porous and nonporous materials for tissue grafting and repair |
| US20070270955A1 (en) * | 2006-04-10 | 2007-11-22 | Chow James C | Arthoscopic arthroplasty procedure for the repair or reconstruction of arthritic joints |
| US20080133012A1 (en) * | 2006-11-16 | 2008-06-05 | Mcguckin James F | Spinal implant and method of use |
Cited By (213)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9333087B2 (en) | 1999-08-18 | 2016-05-10 | Intrinsic Therapeutics, Inc. | Herniated disc repair |
| US9706947B2 (en) | 1999-08-18 | 2017-07-18 | Intrinsic Therapeutics, Inc. | Method of performing an anchor implantation procedure within a disc |
| US8409284B2 (en) | 1999-08-18 | 2013-04-02 | Intrinsic Therapeutics, Inc. | Methods of repairing herniated segments in the disc |
| US20110125271A1 (en) * | 1999-08-18 | 2011-05-26 | Intrinsic Therapeutics, Inc. | Method of performing an anchor implantation procedure within a disc |
| US8231678B2 (en) | 1999-08-18 | 2012-07-31 | Intrinsic Therapeutics, Inc. | Method of treating a herniated disc |
| US8257437B2 (en) * | 1999-08-18 | 2012-09-04 | Intrinsic Therapeutics, Inc. | Methods of intervertebral disc augmentation |
| US20080288006A1 (en) * | 2001-09-19 | 2008-11-20 | Brannon James K | Endoscopic Bone Debridement |
| US8382762B2 (en) * | 2001-09-19 | 2013-02-26 | James K Brannon | Endoscopic bone debridement |
| US9095449B2 (en) | 2001-10-02 | 2015-08-04 | Rex Medical, L. P. | Method of inserting a spinal implant |
| US20080009944A1 (en) * | 2001-10-02 | 2008-01-10 | Rex Medical | Spinal implant and method of use |
| US10905801B2 (en) | 2002-06-26 | 2021-02-02 | Lifenet Health | Device and process for producing fiber products and fiber products produced thereby |
| US7803188B2 (en) * | 2002-08-27 | 2010-09-28 | Warsaw Orthopedic, Inc. | Systems and methods for intravertebral reduction |
| US20110015680A1 (en) * | 2002-08-27 | 2011-01-20 | Warsaw Orthopedic, Inc. | Systems and methods for intravertebral reduction |
| US20040097930A1 (en) * | 2002-08-27 | 2004-05-20 | Justis Jeff R. | Systems and methods for intravertebral reduction |
| US11365395B2 (en) | 2003-05-01 | 2022-06-21 | Lifenet Health | In vitro growth of tissues suitable to the formation of bone and bone forming tissue formed thereby |
| US20070043440A1 (en) * | 2003-09-19 | 2007-02-22 | William Michael S | Method and apparatus for treating diseased or fractured bone |
| US20070154563A1 (en) * | 2003-12-31 | 2007-07-05 | Keyvan Behnam | Bone matrix compositions and methods |
| US8328876B2 (en) | 2003-12-31 | 2012-12-11 | Warsaw Orthopedic, Inc. | Bone matrix compositions and methods |
| US8734525B2 (en) | 2003-12-31 | 2014-05-27 | Warsaw Orthopedic, Inc. | Osteoinductive demineralized cancellous bone |
| US9415136B2 (en) | 2003-12-31 | 2016-08-16 | Warsaw Orthopedic, Inc. | Osteoinductive demineralized cancellous bone |
| US9034358B2 (en) | 2003-12-31 | 2015-05-19 | Warsaw Orthopedic, Inc. | Bone matrix compositions and methods |
| US20100137986A1 (en) * | 2004-06-07 | 2010-06-03 | Dfine, Inc. | Implants and methods for treating bone |
| US8409289B2 (en) | 2004-06-07 | 2013-04-02 | Dfine, Inc. | Implants and methods for treating bone |
| US7799078B2 (en) * | 2004-11-12 | 2010-09-21 | Warsaw Orthopedic, Inc. | Implantable vertebral lift |
| US20060106461A1 (en) * | 2004-11-12 | 2006-05-18 | Embry Jill M | Implantable vertebral lift |
| US8992965B2 (en) | 2005-11-01 | 2015-03-31 | Warsaw Orthopedic, Inc. | Bone matrix compositions and methods |
| US10328179B2 (en) | 2005-11-01 | 2019-06-25 | Warsaw Orthopedic, Inc. | Bone matrix compositions and methods |
| US8911759B2 (en) | 2005-11-01 | 2014-12-16 | Warsaw Orthopedic, Inc. | Bone matrix compositions and methods |
| US10881520B2 (en) | 2005-12-23 | 2021-01-05 | DePuy Synthes Products, Inc. | Flexible elongated chain implant and method of supporting body tissue with same |
| US11701233B2 (en) | 2005-12-23 | 2023-07-18 | DePuy Synthes Products, Inc. | Flexible elongated chain implant and method of supporting body tissue with same |
| US9289240B2 (en) | 2005-12-23 | 2016-03-22 | DePuy Synthes Products, Inc. | Flexible elongated chain implant and method of supporting body tissue with same |
| US11406508B2 (en) | 2005-12-23 | 2022-08-09 | DePuy Synthes Products, Inc. | Flexible elongated chain implant and method of supporting body tissue with same |
| US9956085B2 (en) | 2005-12-23 | 2018-05-01 | DePuy Synthes Products, Inc. | Flexible elongated chain implant and method of supporting body tissue with same |
| US11185354B2 (en) | 2005-12-28 | 2021-11-30 | Intrinsic Therapeutics, Inc. | Bone anchor delivery systems and methods |
| US10470804B2 (en) | 2005-12-28 | 2019-11-12 | Intrinsic Therapeutics, Inc. | Bone anchor delivery systems and methods |
| US9039741B2 (en) | 2005-12-28 | 2015-05-26 | Intrinsic Therapeutics, Inc. | Bone anchor systems |
| US8394146B2 (en) | 2005-12-28 | 2013-03-12 | Intrinsic Therapeutics, Inc. | Vertebral anchoring methods |
| US9610106B2 (en) | 2005-12-28 | 2017-04-04 | Intrinsic Therapeutics, Inc. | Bone anchor systems |
| US8114082B2 (en) | 2005-12-28 | 2012-02-14 | Intrinsic Therapeutics, Inc. | Anchoring system for disc repair |
| US9301792B2 (en) * | 2006-01-27 | 2016-04-05 | Stryker Corporation | Low pressure delivery system and method for delivering a solid and liquid mixture into a target site for medical treatment |
| US10426536B2 (en) * | 2006-01-27 | 2019-10-01 | Stryker Corporation | Method of delivering a plurality of elements and fluent material into a vertebral body |
| US20160175019A1 (en) * | 2006-01-27 | 2016-06-23 | Stryker Corporation | Method Of Delivering A Plurality Of Elements And Fluent Material Into A Vertebral Body |
| US8357169B2 (en) | 2006-01-27 | 2013-01-22 | Spinal Ventures, Llc | System and method for delivering an agglomeration of solid beads and cement to the interior of a bone in order to form an implant within the bone |
| US20070233146A1 (en) * | 2006-01-27 | 2007-10-04 | Stryker Corporation | Low pressure delivery system and method for delivering a solid and liquid mixture into a target site for medical treatment |
| US20070233249A1 (en) * | 2006-02-07 | 2007-10-04 | Shadduck John H | Methods for treating bone |
| US20070233250A1 (en) * | 2006-02-07 | 2007-10-04 | Shadduck John H | Systems for treating bone |
| US20080065083A1 (en) * | 2006-09-07 | 2008-03-13 | Csaba Truckai | Bone treatment systems and methods |
| US20120221006A1 (en) * | 2006-10-16 | 2012-08-30 | Depuy Spine, Inc. | Method for Manipulating Intervertebral Tissue |
| US9282980B2 (en) * | 2006-10-16 | 2016-03-15 | DePuy Synthes Products, Inc. | Device and method for manipulating intervertebral tissue |
| US8882771B2 (en) * | 2006-10-16 | 2014-11-11 | DePuy Synthes Products, LLC | Method for manipulating intervertebral tissue |
| US8137352B2 (en) * | 2006-10-16 | 2012-03-20 | Depuy Spine, Inc. | Expandable intervertebral tool system and method |
| US20080177294A1 (en) * | 2006-10-16 | 2008-07-24 | Depuy Spine, Inc. | Expandable intervertebral tool system and method |
| US20150045798A1 (en) * | 2006-10-16 | 2015-02-12 | DePuy Synthes Products, LLC | Device and Method For Manipulating Intervertebral Tissue |
| US20150094817A1 (en) * | 2006-11-16 | 2015-04-02 | Rex Medical, L.P. | Spinal implant and method of use |
| US9259324B2 (en) * | 2006-11-16 | 2016-02-16 | Rex Medical, L.P. | Spinal implant and method of use |
| US8287599B2 (en) | 2006-11-16 | 2012-10-16 | Rex Medical, L.P. | Spinal implant and method of use |
| US8920506B2 (en) | 2006-11-16 | 2014-12-30 | Rex Medical, L.P. | Spinal implant and method of use |
| US20080133012A1 (en) * | 2006-11-16 | 2008-06-05 | Mcguckin James F | Spinal implant and method of use |
| US8142507B2 (en) | 2006-11-16 | 2012-03-27 | Rex Medical, L.P. | Spinal implant and method of use |
| US11642229B2 (en) | 2006-12-07 | 2023-05-09 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11660206B2 (en) | 2006-12-07 | 2023-05-30 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11712345B2 (en) | 2006-12-07 | 2023-08-01 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11432942B2 (en) | 2006-12-07 | 2022-09-06 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11497618B2 (en) | 2006-12-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US7846210B2 (en) | 2007-01-16 | 2010-12-07 | Perez-Cruet Miguelangelo J | Minimally invasive interbody device assembly |
| US7824427B2 (en) | 2007-01-16 | 2010-11-02 | Perez-Cruet Miquelangelo J | Minimally invasive interbody device |
| US20080172127A1 (en) * | 2007-01-16 | 2008-07-17 | Mi4Spine, Llc | Minimally Invasive Interbody Device |
| US20080172128A1 (en) * | 2007-01-16 | 2008-07-17 | Mi4Spine, Llc | Minimally Invasive Interbody Device Assembly |
| US20090130173A1 (en) * | 2007-06-15 | 2009-05-21 | Keyvan Behnam | Bone matrix compositions and methods |
| US8357384B2 (en) | 2007-06-15 | 2013-01-22 | Warsaw Orthopedic, Inc. | Bone matrix compositions and methods |
| US9717822B2 (en) | 2007-06-15 | 2017-08-01 | Warsaw Orthopedic, Inc. | Bone matrix compositions and methods |
| US9554920B2 (en) | 2007-06-15 | 2017-01-31 | Warsaw Orthopedic, Inc. | Bone matrix compositions having nanoscale textured surfaces |
| US10357511B2 (en) | 2007-06-15 | 2019-07-23 | Warsaw Orthopedic, Inc. | Bone matrix compositions and methods |
| US8642061B2 (en) | 2007-06-15 | 2014-02-04 | Warsaw Orthopedic, Inc. | Method of treating bone tissue |
| US10220115B2 (en) | 2007-06-15 | 2019-03-05 | Warsaw Orthopedic, Inc. | Bone matrix compositions having nanoscale textured surfaces |
| US11622868B2 (en) | 2007-06-26 | 2023-04-11 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
| US10716679B2 (en) * | 2007-06-29 | 2020-07-21 | DePuy Synthes Products, Inc. | Flexible chain implants and instrumentation |
| US12409043B2 (en) | 2007-06-29 | 2025-09-09 | DePuy Synthes Products, Inc. | Flexible chain implants and instrumentation |
| US20180133020A1 (en) * | 2007-06-29 | 2018-05-17 | DePuy Synthes Products, Inc. | Flexible Chain Implants and Instrumentation |
| US8673010B2 (en) | 2007-06-29 | 2014-03-18 | DePuy Synthes Products, LLC | Flexible chain implants and instrumentation |
| EP2277467A1 (en) * | 2007-06-29 | 2011-01-26 | Synthes GmbH | Flexible chain implants and instrumentation |
| US9907667B2 (en) * | 2007-06-29 | 2018-03-06 | DePuy Synthes Products, Inc. | Flexible chain implants and instrumentation |
| US20100185290A1 (en) * | 2007-06-29 | 2010-07-22 | Curtis Compton | Flexible chain implants and instrumentation |
| US9492278B2 (en) | 2007-07-10 | 2016-11-15 | Warsaw Orthopedic, Inc. | Delivery system |
| US9333082B2 (en) | 2007-07-10 | 2016-05-10 | Warsaw Orthopedic, Inc. | Delivery system attachment |
| US10028837B2 (en) | 2007-07-10 | 2018-07-24 | Warsaw Orthopedic, Inc. | Delivery system attachment |
| US9358113B2 (en) | 2007-07-10 | 2016-06-07 | Warsaw Orthopedic, Inc. | Delivery system |
| US8361155B2 (en) | 2007-09-07 | 2013-01-29 | Intrinsic Therapeutics, Inc. | Soft tissue impaction methods |
| US9226832B2 (en) | 2007-09-07 | 2016-01-05 | Intrinsic Therapeutics, Inc. | Interbody fusion material retention methods |
| US20110196492A1 (en) * | 2007-09-07 | 2011-08-11 | Intrinsic Therapeutics, Inc. | Bone anchoring systems |
| US8454612B2 (en) | 2007-09-07 | 2013-06-04 | Intrinsic Therapeutics, Inc. | Method for vertebral endplate reconstruction |
| US8323341B2 (en) | 2007-09-07 | 2012-12-04 | Intrinsic Therapeutics, Inc. | Impaction grafting for vertebral fusion |
| US10716685B2 (en) | 2007-09-07 | 2020-07-21 | Intrinsic Therapeutics, Inc. | Bone anchor delivery systems |
| US10076424B2 (en) | 2007-09-07 | 2018-09-18 | Intrinsic Therapeutics, Inc. | Impaction systems |
| US20110144757A1 (en) * | 2007-09-17 | 2011-06-16 | Linares Medical Devices, Llc | Artificial joint support between first and second bones |
| US8435566B2 (en) | 2007-10-19 | 2013-05-07 | Warsaw Orthopedic, Inc. | Demineralized bone matrix compositions and methods |
| US20090226523A1 (en) * | 2007-10-19 | 2009-09-10 | Keyvan Behnam | Demineralized bone matrix compositions and methods |
| US8202539B2 (en) | 2007-10-19 | 2012-06-19 | Warsaw Orthopedic, Inc. | Demineralized bone matrix compositions and methods |
| US11737881B2 (en) | 2008-01-17 | 2023-08-29 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
| US11617655B2 (en) | 2008-04-05 | 2023-04-04 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US11707359B2 (en) | 2008-04-05 | 2023-07-25 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US12023255B2 (en) | 2008-04-05 | 2024-07-02 | DePuy Synthes Products, Inc. | Expandable inter vertebral implant |
| US12011361B2 (en) | 2008-04-05 | 2024-06-18 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US11712341B2 (en) | 2008-04-05 | 2023-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US12440346B2 (en) | 2008-04-05 | 2025-10-14 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US11712342B2 (en) | 2008-04-05 | 2023-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US11602438B2 (en) | 2008-04-05 | 2023-03-14 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US11701234B2 (en) | 2008-04-05 | 2023-07-18 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US8840677B2 (en) | 2008-06-19 | 2014-09-23 | DePuy Synthes Products, LLC | Allograft bone plugs, systems and techniques |
| US9011537B2 (en) | 2009-02-12 | 2015-04-21 | Warsaw Orthopedic, Inc. | Delivery system cartridge |
| US9101475B2 (en) * | 2009-02-12 | 2015-08-11 | Warsaw Orthopedic, Inc. | Segmented delivery system |
| US9220598B2 (en) | 2009-02-12 | 2015-12-29 | Warsaw Orthopedic, Inc. | Delivery systems, tools, and methods of use |
| US10098681B2 (en) | 2009-02-12 | 2018-10-16 | Warsaw Orthopedic, Inc. | Segmented delivery system |
| US20100203155A1 (en) * | 2009-02-12 | 2010-08-12 | Guobao Wei | Segmented delivery system |
| WO2010093955A1 (en) * | 2009-02-12 | 2010-08-19 | Osteotech,Inc. | Segmented delivery system |
| US11612491B2 (en) | 2009-03-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
| US12097124B2 (en) | 2009-03-30 | 2024-09-24 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
| US20100318023A1 (en) * | 2009-06-15 | 2010-12-16 | Heraeus Medical Gmbh | Medical system, pulling device and method for pulling an active substance chain |
| EP2263739A1 (de) * | 2009-06-15 | 2010-12-22 | Heraeus Medical GmbH | Medizinisches System |
| US8613942B2 (en) | 2009-06-15 | 2013-12-24 | Heraeus Medical Gmbh | Medical system, pulling device and method for pulling an active substance chain |
| US11712349B2 (en) | 2009-11-05 | 2023-08-01 | DePuy Synthes Products, Inc. | Self-pivoting spinal implant and associated instrumentation |
| US9931224B2 (en) | 2009-11-05 | 2018-04-03 | DePuy Synthes Products, Inc. | Self-pivoting spinal implant and associated instrumentation |
| US10195049B2 (en) | 2009-11-05 | 2019-02-05 | DePuy Synthes Products, Inc. | Self-pivoting spinal implant and associated instrumentation |
| US10792166B2 (en) | 2009-11-05 | 2020-10-06 | DePuy Synthes Products, Inc. | Self-pivoting spinal implant and associated instrumentation |
| US11607321B2 (en) | 2009-12-10 | 2023-03-21 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
| US9220554B2 (en) | 2010-02-18 | 2015-12-29 | Globus Medical, Inc. | Methods and apparatus for treating vertebral fractures |
| US9282979B2 (en) | 2010-06-24 | 2016-03-15 | DePuy Synthes Products, Inc. | Instruments and methods for non-parallel disc space preparation |
| US10588754B2 (en) | 2010-06-24 | 2020-03-17 | DePuy Snythes Products, Inc. | Lateral spondylolisthesis reduction cage and instruments and methods for non-parallel disc space preparation |
| US11911287B2 (en) | 2010-06-24 | 2024-02-27 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
| US9801639B2 (en) | 2010-06-24 | 2017-10-31 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
| US10405989B2 (en) | 2010-06-24 | 2019-09-10 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
| US9592063B2 (en) | 2010-06-24 | 2017-03-14 | DePuy Synthes Products, Inc. | Universal trial for lateral cages |
| US10449057B2 (en) | 2010-06-24 | 2019-10-22 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
| US12318304B2 (en) | 2010-06-24 | 2025-06-03 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
| US9907560B2 (en) | 2010-06-24 | 2018-03-06 | DePuy Synthes Products, Inc. | Flexible vertebral body shavers |
| US11872139B2 (en) | 2010-06-24 | 2024-01-16 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
| US9763678B2 (en) | 2010-06-24 | 2017-09-19 | DePuy Synthes Products, Inc. | Multi-segment lateral cage adapted to flex substantially in the coronal plane |
| US10646350B2 (en) | 2010-06-24 | 2020-05-12 | DePuy Synthes Products, Inc. | Multi-segment lateral cages adapted to flex substantially in the coronal plane |
| US9801640B2 (en) | 2010-06-24 | 2017-10-31 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
| US8845733B2 (en) | 2010-06-24 | 2014-09-30 | DePuy Synthes Products, LLC | Lateral spondylolisthesis reduction cage |
| US11654033B2 (en) | 2010-06-29 | 2023-05-23 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
| US9144501B1 (en) | 2010-07-16 | 2015-09-29 | Nuvasive, Inc. | Fracture reduction device and methods |
| US8795369B1 (en) | 2010-07-16 | 2014-08-05 | Nuvasive, Inc. | Fracture reduction device and methods |
| US11452607B2 (en) | 2010-10-11 | 2022-09-27 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
| WO2012061024A1 (en) * | 2010-10-25 | 2012-05-10 | Musculoskeletal Transplant Foundation | Demineralized cortical bone implants |
| US8512408B2 (en) | 2010-12-17 | 2013-08-20 | Warsaw Orthopedic, Inc. | Flexiable spinal implant |
| US11369490B2 (en) | 2011-03-22 | 2022-06-28 | DePuy Synthes Products, Inc. | Universal trial for lateral cages |
| US12029655B2 (en) | 2011-07-14 | 2024-07-09 | Seaspine, Inc. | Laterally deflectable implant |
| US10617530B2 (en) | 2011-07-14 | 2020-04-14 | Seaspine, Inc. | Laterally deflectable implant |
| US20130018467A1 (en) * | 2011-07-15 | 2013-01-17 | Sean Suh | Systems and Methods For Vertebral Body and Disc Height Restoration |
| US11529148B2 (en) | 2011-11-14 | 2022-12-20 | The University Of British Columbia | Intramedullary fixation system for management of pelvic and acetabular fractures |
| US9839435B2 (en) | 2011-11-14 | 2017-12-12 | The University Of British Columbia | Intramedullary fixation system for management of pelvic and acetabular fractures |
| US9808299B2 (en) * | 2012-01-31 | 2017-11-07 | The University Of Toledo | Bioactive fusion device |
| US20140350608A1 (en) * | 2012-01-31 | 2014-11-27 | The University Of Toledo | Bioactive Fusion Device |
| US9226764B2 (en) | 2012-03-06 | 2016-01-05 | DePuy Synthes Products, Inc. | Conformable soft tissue removal instruments |
| WO2013133729A1 (en) | 2012-03-06 | 2013-09-12 | Lfc Spolka Z O.O. | Distance interbody device for introducing a biomaterial to a vertebral body and a method of its use |
| US10299936B2 (en) | 2012-03-06 | 2019-05-28 | Lfc Spolka Z O.O. | Distance interbody device for introducing a biomaterial to a vertebral body and a method of its use |
| US9585764B2 (en) * | 2012-07-26 | 2017-03-07 | Warsaw Orthopedic, Inc. | Bone implant device |
| US10022245B2 (en) | 2012-12-17 | 2018-07-17 | DePuy Synthes Products, Inc. | Polyaxial articulating instrument |
| US11730163B2 (en) | 2013-02-22 | 2023-08-22 | Lifenet Health | Packaging assembly for storing tissue and cellular material |
| US10932464B2 (en) * | 2013-02-22 | 2021-03-02 | Lifenet Health | Packaging assembly for storing tissue and cellular material |
| USRE49973E1 (en) | 2013-02-28 | 2024-05-21 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
| US11850164B2 (en) | 2013-03-07 | 2023-12-26 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11497619B2 (en) | 2013-03-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US9782266B2 (en) | 2013-03-15 | 2017-10-10 | Neos Surgery, S.L. | Device for repairing an intervertebral disc |
| WO2014140136A1 (en) * | 2013-03-15 | 2014-09-18 | Neos Surgery, S.L. | Device for repairing an intervertebral disc |
| EP2777628A1 (en) * | 2013-03-15 | 2014-09-17 | Neos Surgery, S.L. | Device for repairing an intervertebral disc |
| RU2644942C2 (ru) * | 2013-03-15 | 2018-02-14 | Неос Суржери, С.Л. | Устройство для исправления межпозвоночного диска |
| US20140364954A1 (en) * | 2013-06-07 | 2014-12-11 | Gregory Merrell | Elbow antibiotic spacer implant |
| US9278002B2 (en) * | 2013-06-07 | 2016-03-08 | Gregory Merrell | Elbow antibiotic spacer implant |
| US11369421B2 (en) | 2014-03-06 | 2022-06-28 | The University of British Columbia and British Columbia Cancer Agency Branch | Shape adaptable intramedullary fixation device |
| US10307188B2 (en) | 2014-03-06 | 2019-06-04 | The University Of British Columbia | Shape adaptable intramedullary fixation device |
| US12167877B2 (en) | 2014-03-06 | 2024-12-17 | The University Of British Columbia | Shape adaptable intramedullary fixation device |
| US10376648B1 (en) * | 2014-08-11 | 2019-08-13 | H & M Innovations, Llc | Bone delivery apparatus and methods |
| US10258394B2 (en) | 2014-10-14 | 2019-04-16 | The University Of British Columbia | Systems and methods for intermedullary bone fixation |
| US12023074B2 (en) | 2014-10-14 | 2024-07-02 | The University Of British Columbia | Systems and methods for intermedullary bone fixation |
| US10973559B2 (en) | 2014-10-14 | 2021-04-13 | University Of British Columbia | Systems and methods for intermedullary bone fixation |
| GB2535487A (en) * | 2015-02-17 | 2016-08-24 | Biocomposites Ltd | Device to fill a bone void whilst minimising pressurisation |
| US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
| US10952856B2 (en) * | 2015-04-15 | 2021-03-23 | FreeseTEC Corporation | Spinal fusion containment system |
| US20160302929A1 (en) * | 2015-04-15 | 2016-10-20 | FreeseTEC Corporation | Spinal fusion containment system |
| US10588755B2 (en) * | 2015-06-25 | 2020-03-17 | Heraeus Medical Gmbh | Kit for building a cage for spondylodesis and method therefor |
| CN106264804A (zh) * | 2015-06-25 | 2017-01-04 | 贺利氏医疗有限公司 | 构建用于脊椎融合术的椎间融合器的套件及其方法 |
| US20160374829A1 (en) * | 2015-06-25 | 2016-12-29 | Heraeus Medical Gmbh | Kit for building a cage for spondylodesis and method therefor |
| TWI576085B (zh) * | 2016-02-01 | 2017-04-01 | 愛派司生技股份有限公司 | 一種長骨固定裝置 |
| US11596523B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable articulating intervertebral cages |
| US11596522B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable intervertebral cages with articulating joint |
| US12433757B2 (en) | 2016-06-28 | 2025-10-07 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable and articulating intervertebral cages |
| US11510788B2 (en) | 2016-06-28 | 2022-11-29 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
| US12390343B2 (en) | 2016-06-28 | 2025-08-19 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
| US11419645B2 (en) | 2016-10-05 | 2022-08-23 | University Of British Columbia | Intramedullary fixation device with shape locking interface |
| US9974655B1 (en) * | 2016-12-19 | 2018-05-22 | Perumala Corporation | Disc and vertebral defect packing tape |
| US10342663B2 (en) | 2016-12-19 | 2019-07-09 | Perumala Corporation | Disc and vertebral defect packing tape |
| US11446155B2 (en) | 2017-05-08 | 2022-09-20 | Medos International Sarl | Expandable cage |
| US12427031B2 (en) | 2017-05-08 | 2025-09-30 | Medos International Sarl | Expandable cage |
| US20200146737A1 (en) * | 2017-06-14 | 2020-05-14 | Osteoagra Llc | Method, composition, and apparatus for stabilization of vertebral bodies |
| US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
| US12102367B2 (en) * | 2017-06-14 | 2024-10-01 | Osteoagra Llc | Method, composition, and apparatus for stabilization of vertebral bodies |
| US10966843B2 (en) | 2017-07-18 | 2021-04-06 | DePuy Synthes Products, Inc. | Implant inserters and related methods |
| US11690734B2 (en) | 2017-08-14 | 2023-07-04 | DePuy Synthes Products, Inc. | Intervertebral implant inserters and related methods |
| US11045331B2 (en) | 2017-08-14 | 2021-06-29 | DePuy Synthes Products, Inc. | Intervertebral implant inserters and related methods |
| US10932839B2 (en) | 2017-12-19 | 2021-03-02 | Stryker Corporation | Systems and methods for delivering elements within a fluent material to an off-axis target site within a bone structure |
| US11832856B2 (en) | 2018-10-17 | 2023-12-05 | The University Of British Columbia | Bone-fixation device and system |
| US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
| US11806245B2 (en) | 2020-03-06 | 2023-11-07 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
| US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
| US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
| US12023258B2 (en) | 2021-04-06 | 2024-07-02 | Medos International Sarl | Expandable intervertebral fusion cage |
| US12447026B2 (en) | 2021-04-06 | 2025-10-21 | Medos International Sarl | Expandable inter vertebral fusion cage |
| US20220409387A1 (en) * | 2021-06-23 | 2022-12-29 | Oluwatodimu Richard Raji | Methods and systems for facilitating treatment of lumbar degenerative disc disease based on total nucleus replacement using magnetic spherical beads |
| US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
| USD1106456S1 (en) * | 2022-03-30 | 2025-12-16 | Lenoss Medical LLC | Flexible implant |
| USD1106457S1 (en) * | 2022-03-30 | 2025-12-16 | Lenoss Medical LLC | Flexible implant |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1962705A2 (en) | 2008-09-03 |
| US20180049884A1 (en) | 2018-02-22 |
| AU2006330939A1 (en) | 2007-07-05 |
| US20160374818A1 (en) | 2016-12-29 |
| US9956085B2 (en) | 2018-05-01 |
| BRPI0620452A2 (pt) | 2011-11-08 |
| US20210113346A1 (en) | 2021-04-22 |
| PL1962705T3 (pl) | 2010-10-29 |
| US20170035573A1 (en) | 2017-02-09 |
| JP2009521279A (ja) | 2009-06-04 |
| ES2342117T3 (es) | 2010-07-01 |
| US11406508B2 (en) | 2022-08-09 |
| EP1962705B1 (en) | 2010-05-05 |
| CA2634762C (en) | 2014-04-29 |
| US11701233B2 (en) | 2023-07-18 |
| ATE466532T1 (de) | 2010-05-15 |
| WO2007076049A2 (en) | 2007-07-05 |
| US20160199107A1 (en) | 2016-07-14 |
| US9289240B2 (en) | 2016-03-22 |
| CA2634762A1 (en) | 2007-07-05 |
| US20120290096A1 (en) | 2012-11-15 |
| WO2007076049A3 (en) | 2008-01-03 |
| KR20080085058A (ko) | 2008-09-22 |
| US10881520B2 (en) | 2021-01-05 |
| JP4990293B2 (ja) | 2012-08-01 |
| DE602006014202D1 (de) | 2010-06-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11701233B2 (en) | Flexible elongated chain implant and method of supporting body tissue with same | |
| US12409043B2 (en) | Flexible chain implants and instrumentation | |
| US7621952B2 (en) | Implants and methods for treating bone | |
| US20070093899A1 (en) | Apparatus and methods for treating bone | |
| KR20080081911A (ko) | 뼈 치료용 장치 및 방법 | |
| JP2010510026A (ja) | 最小侵襲性のモジュール式椎体間固定器具に関する方法および装置 | |
| JP2009504332A (ja) | 脊柱組織伸延装置 | |
| CN101394801B (zh) | 弹性延伸链式移植物及用它支撑身体组织的方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SYNTHES (U.S.A.), PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MESSERLI, DOMINIQUE;REEL/FRAME:018869/0855 Effective date: 20070207 |
|
| AS | Assignment |
Owner name: SYNTHES USA, LLC, PENNSYLVANIA Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140 Effective date: 20081223 Owner name: SYNTHES USA, LLC,PENNSYLVANIA Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140 Effective date: 20081223 |
|
| AS | Assignment |
Owner name: DEPUY SYNTHES PRODUCTS, LLC, MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:HAND INNOVATIONS LLC;REEL/FRAME:030359/0036 Effective date: 20121231 Owner name: HAND INNOVATIONS LLC, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEPUY SPINE, LLC;REEL/FRAME:030359/0001 Effective date: 20121230 Owner name: DEPUY SPINE, LLC, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SYNTHES USA, LLC;REEL/FRAME:030358/0945 Effective date: 20121230 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |
|
| AS | Assignment |
Owner name: DEPUY SYNTHES PRODUCTS, INC., MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:DEPUY SYNTHES PRODUCTS, LLC;REEL/FRAME:035074/0647 Effective date: 20141219 |
|
| AS | Assignment |
Owner name: HAND INNOVATIONS LLC, FLORIDA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPL. NO. 13/486,591 PREVIOUSLY RECORDED AT REEL: 030359 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:DEPUY SPINE, LLC;REEL/FRAME:042621/0565 Effective date: 20121230 |
|
| AS | Assignment |
Owner name: DEPUY SPINE, LLC, MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPLICATION NO. US 13/486,591 PREVIOUSLY RECORDED ON REEL 030358 FRAME 0945. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:SYNTHES USA, LLC;REEL/FRAME:042687/0849 Effective date: 20121230 |